
87

n u m e r i c bas i c s

One of the most common kinds of information processed by digital
systems is numeric information. In this chapter, we will examine various
binary codes for unsigned integers, signed integers, fixed-point fractions
and floating-point real numbers. For each kind of code, we will describe
how some arithmetic operations can be performed. We will also look at
combinational circuits that implement arithmetic operations, and discuss
trade-offs among different circuits that perform the same operation.

3.1 U N S I G N E D I N T E G E R S

In many applications of digital electronics, we deal with signals that only
take on nonnegative integer values. Some signals may be representations
of real-world information, for example, the temperature set on a thermo-
stat. Other signals may arise as a consequence of the way we organize the
digital system, for example, as numeric indices for tables of information
stored in the system’s memory. In this section, we start with the most
common representation for nonnegative integers, then describe arithmetic
operations using that representation. We will finish the section by looking
at an alternative representation that is used in some systems.

3.1.1 C O D I N G U N S I G N E D I N T E G E R S

We are all familiar with decimal positional representation of numbers.
A decimal number such as 12410 denotes the sum of 1 hundred, 2 tens
and 4 units. We use the subscript notation to specify that the number is
to be interpreted as decimal, that is, base 10. The position of each digit in
the number determines the power of 10 by which the digit is multiplied,
starting with 100 for the right-most digit, 101 for the next digit to the left,
and increasing by successive powers of ten for further digits from right to
left. Thus, we write

3
A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

88 C H A P T E R T H R E E n u m e r i c b a s i c s

12410 � 1 � 102 � 2 � 101 � 4 � 100

In most applications that deal with nonnegative integers, the natural
way to represent the numeric values is using unsigned binary numbers.
Unsigned binary representation works in the same way as decimal repre-
sentation, except that we only use the binary digits 0 and 1 and we mul-
tiply digits by powers of 2 instead of powers of 10. We can represent the
same numeric value as 12410 in binary by determining the powers of two
that sum to the number, namely,

12410� 1 � 26� 1 � 25� 1 � 24� 1 � 23� 1 � 22� 0 � 21� 0 � 20

� 11111002

So, to represent this number in a digital system, we would need seven
single-bit signals, each carrying one bit of the binary number. In general,
we represent a number x using n bits xn � 1, xn � 2, . . . , x0, with

x�xn � 12n � 1 �xn � 22n � 2 � . . .�x020

example 3 .1 What number is represented by the unsigned binary
number 1011012?

solut ion Express the number as a sum of powers of two and calculate
the result:

1011012 � 1 � 25 � 0 � 24 � 1 � 23 � 1 � 22 � 0 � 21 � 1 � 20

� 1 � 32 � 0 � 16 � 1 � 8 � 1 � 4 � 0 � 2 � 1 � 1

� 4510

Our discussion of binary codes in Section 2.2 applies equally to
unsigned binary representation of numbers, since that is just one particu-
lar binary code. Thus, given an n-bit unsigned binary code, we can repre-
sent 2n distinct numbers. The smallest number has all 0 bits, representing
the number 0, and the largest number has all 1 bits, representing

1� 2n � 1 � 1 � 2n � 2 � . . .� 1 � 21 � 1 � 20 � 2n � 1

Conversely, if we need to represent numbers between 0 and N� 1,
we need at least ⎡log2N⎤ bits for the unsigned binary representation. In
computer systems, unsigned binary numbers are typically 8, 16 or 32 bits
long, allowing representation of numbers up to 256, over 65,000, and
over 4 billion, respectively. However, when we are designing a digital sys-
tem with no other constraints applied to the number of bits, we would
typically choose the smallest number of bits that can represent the range
of numbers we expect to encode. There is no reason why this should not
be a number of bits other than 8, 16 or 32, such as 5, 17 or 26.

example 3 .2 Suppose we are designing a scientifi c instrument to measure
the time interval between two random events very precisely, with a resolution of
nanoseconds (1ns � 10�9 seconds). Events may occur as much as a day apart.
How many bits are needed to represent the interval as a number of nanoseconds?

solut ion There are 109 nanoseconds per second, and 60�60�24�86,400
seconds per day, so the largest number we need to allow for is 8.64�1013. The
number of bits needed is

⎡log2(8.64� 1013)⎤� ⎡log(8.64� 1013)
���

log 2 ⎤ � ⎡46.296 . . .⎤� 47

So at least 47 bits are needed.

Unsigned Integers in Verilog

We saw in Section 2.1.3 that we can use vectors to model binary coded
data. Since unsigned binary is just one form of binary code, we can use
vectors for numeric data also, specifying ranges of index values for nets,
variables and ports, and using indexing to refer to individual bits. When
we look at arithmetic operations on unsigned integers, we will see how
they can be modeled in Verilog as operations on vectors.

example 3 .3 Develop a Verilog model of a 4-to-1 multiplexer that selects
among four unsigned 6-bit integers.

solut ion The module definition is

module multiplexer_6bit_4_to_1

(output reg [5:0] z,
input [5:0] a0, a1, a2, a3,
input [1:0] sel);

always @*
case (sel)
2'b00: z = a0;
2'b01: z = a1;
2'b10: z = a2;
2'b11: z = a3;

endcase

endmodule

3.1 Unsigned Integers C H A P T E R T H R E E 89

90 C H A P T E R T H R E E n u m e r i c b a s i c s

This is much the same as the multiplexer model that we saw in Section 2.3.2.
The input ports a0 through a3 and the output port z are all 6-bit unsigned vec-
tors, indexed from 5 down to 0. We choose this index range so that the index
of each bit in a vector corresponds to the power of its binary weight. The input
port sel, used to select among the inputs, is also a vector, though we are not
interpreting it as representing a number.

Octal and Hexadecimal Codes

We have seen that we need at least approximately log2N bits to represent
the number N in unsigned binary form. The same number is represented
in decimal with approximately log10N digits. Now

log2N� log 10N/ log 102� log 10N/0.301 . . . � log 10N� 3.32 . . .

In other words, we need more than three times as many binary digits
as decimal digits to represent a given number. While that is not necessarily
a problem in terms of the digital system, it is cumbersome and error prone
for us to write down and read the long strings of bits required for large
numbers. For this reason, we often use hexadecimal (base 16) or, less
commonly, octal (base 8) for those purposes. We will show how these
representations work first, then discuss the advantages of using them.

Octal is just another form of positional number system, except that
we use the digits 0 through 7 and multiply them by powers of 8 depending
on their position. Thus, for example,

 2538 � 2 � 82 � 5 � 81 � 3 � 80

� 2 � 64 � 5 � 8 � 3 � 1

� 128 � 40 � 3 � 17110

More important, for a given octal number, we can factor out powers
of two in each digit and so very quickly determine the binary representa-
tion of the same number. For example,

2538 � 2 � 82 � 5 � 81 � 3 � 80

� (0 � 22 � 1 � 21 � 0 � 20)� 82 � (1 � 22 � 0 � 21 � 1 � 20)� 81

� (0 � 22 � 1 � 21 � 1 � 20)� 80

� (0 � 22 � 1 � 21 � 0 � 20)� 26 � (1 � 22 � 0 � 21 � 1 � 20)� 23

� (0 � 22 � 1 � 21 � 1 � 20)� 20

� (0 � 28 � 1 � 27 � 0 � 26)� (1 � 25 � 0 � 24 � 1 � 23)
� (0 � 22 � 1 � 21 � 1 � 20)

 � 0101010112

In general, given an octal number, we can replace each digit with the
corresponding three binary digits to give the unsigned binary represen-

tation of the number. The three-bit patterns corresponding to the octal
digits are

0: 000 1: 001 2: 010 3: 011 4: 100 5: 101 6: 110 7: 111

Note that we need to take care when using an octal number for an
unsigned binary code if the code is not a multiple of three in length. We
need to understand or specify explicitly how long the binary code is and
drop unused bits from the left when converting from octal. For example,
had we specified that the number 2538 stood for an 8-bit binary number,
we would have dropped the left-most bit to get 101010112. If any of
the bits we drop from the left are 1 rather than 0, the octal number is
greater than the largest number that can be encoded in the given number
of bits. Usually, this is considered an error.

We can also work in the reverse direction from an unsigned binary
number. We divide the bits in to groups of three, starting from the right,
and replace each group with the corresponding octal digit. For example,
given the unsigned binary number 11001011, we can convert it to octal
as follows:

110010112 ⇒ 11 001 011 ⇒ 3138

Note that in this example, the number of bits is not a multiple of
three, so we had to assume a 0 bit on the left. Again, we need to take care
that the actual number of bits in the unsigned binary representation is
understood or explicitly stated.

Hexadecimal is another form of positional number system, like octal,
but based on powers of 16. The only minor problem we encounter is
that we need digits with values from 0 through 15. We use the normal
digits 0 through 9, but augment them with the letters A through F for the
remaining digits. The correspondence is

 A16 � 1010 B16 � 1110 C16 � 1210

 D16 � 1310 E16 � 1410 F16 � 1510

Thus, for example,

 3CE16 � 3 � 162 � 12 � 161 � 14 � 160

� 3 � 256 � 12 � 16 � 14 � 1

� 768 � 192 � 14 � 97410

By similar arguments to those for octal numbers, we can arrive at a
quick method for converting between hexadecimal and unsigned binary
representations of a number. Whereas for octal, we formed groups
of three bits (since 8 � 23), for hexadecimal we form groups of 4 bits
(since 16 � 24). The 4-bit patterns corresponding to the hexadecimal
digits are

3.1 Unsigned Integers C H A P T E R T H R E E 91

92 C H A P T E R T H R E E n u m e r i c b a s i c s

0: 0000 1: 0001 2: 0010 3: 0011 4: 0100 5: 0101 6: 0110 7: 0111

8: 1000 9: 1001 A: 1010 B: 1011 C: 1100 D: 1101 E: 1110 F: 1111

Thus, for example, 3CE16 � 0011 1100 11102. In the reverse direction:

110010112 ⇒ 1100 1011 ⇒ CB16

As we mentioned earlier, nearly all computer systems use number
representations that are 8, 16 or 32 bits long. Hence, the term byte
for 8 bits of data has entered the common language. Since these are all
multiples of 4 in length and not multiples of 3, hexadecimal is a more
natural representation to convert to than octal. (Engineers sometimes use
the term nibble to refer to 4 bits of data, punning on the fact that a nibble
is a small bite.) With hexadecimal in these applications, we don’t need to
worry about assuming or dropping leading 0 bits. That’s why program-
mers usually deal with hexadecimal and not octal. However, since we,
as hardware designers, can select the number of bits that is best for our
needs, we may find octal more useful in some cases, particularly if the
number of bits is a multiple of 3.

3.1.2 O P E R AT I O N S O N U N S I G N E D I N T E G E R S

Since unsigned integers are binary coded, we can perform on them all
of the operations on encoded data described in Section 2.3. A common
application is to decode an n-bit unsigned binary number representing the
location of information in a memory. The decoder has 2n control outputs,
which we can use to activate a particular memory location. We shall see
this in more detail in Chapter 5. We can also use multiplexers in parallel,
one per bit of an unsigned binary representation, to choose between
multiple sources of numeric data. This was illustrated in Example 3.3.
We should also expect to be able to perform arithmetic operations on
numbers represented in unsigned binary. However, before we look at that,
we will discuss some simpler operations.

Resizing Unsigned Integers

When we write numbers in decimal on paper, we usually don’t write any
leading insignificant zeros. We just use the least number of digits needed to
represent the number. For example, we just write 12310, and not 012310
or 00012310, although all represent the same number. We could do the
same in binary, and just write 101102, and not 0101102 or 000101102.
However, in a digital circuit, each bit is implemented by a physical wire,
and we choose the number of bits based on the largest value we expect
to occur during operation of the circuit. Since wires do not come and go
as values change, we normally do write leading insignificant zeros for
unsigned binary numbers occurring in a digital circuit.

Recall that the largest value that can be represented with n bits is
2n � 1. Suppose we have some numeric data x represented with n bits:

x � xn � 12n � 1 � xn � 22n � 2 � . . . � x020

However, in order to perform some arithmetic operations, which may
result in larger values than 2n � 1, we need to represent the same value in
m bits, where m � n:

y � ym � 12m � 1 � . . . � yn2n � yn � 12n � 1 � yn � 22n � 2 � . . . � y020

Since we want y � x, we can just set yi � xi, for i � 0, 1, . . . , n � 1, and yi � 0,
for i � n, n � 1, . . . , m � 1. In other words, we just add leading insignificant
0 bits to the left of the n-bit representation to form the m-bit representa-
tion. In terms of circuit implementation, we simply add extra bit signals
with their value hard-wired to 0, usually by connecting them to the circuit
ground, as shown in Figure 3.1. This technique is called zero extension.

We can express zero extension in a Verilog model by concatenating a
string of 0 bits to the left of a vector representing an unsigned integer. For
example, given nets declared as

wire [3:0] x;
wire [7:0] y;

We can write the following assignment statement in a module to zero
extend the value of x and assign it to y:

assign y = {4 ' b0000, x};

The notation that we have used here simply joins two vector values
together to form a larger vector. For example, if x has the value 1010,
the value assigned to y would be 00001010. As a convenience, Verilog

 3.1 Unsigned Integers C H A P T E R T H R E E 93

F I G U R E 3 .1 Implementation
of zero extension in a circuit.

x0

… …
…

x1

xn − 1

y0

y1

yn − 1

yn

ym − 2

ym − 1

94 C H A P T E R T H R E E n u m e r i c b a s i c s

automatically zero extends a literal vector value to the specified size. So
we could rewrite the above assignment as

assign y = {4 'b0, x};

In this case, Verilog extends the bit value 0 with additional 0 bits to make
a total of 4 bits.

Verilog also allows us to perform zero extension implicitly. If we assign
an unsigned vector of a smaller size to a vector net or variable of a larger
size, the value is implicitly zero extended to the size of the assignment tar-
get. For example, we could have written the above assignment simply as

assign y = x;

in which case the 4-bit value of x would be implicitly zero extended to
8 bits, the size of y. While this might appear to be a more succinct and
convenient way to write the assignment, we should be aware that zero
extension occurs. Using the vector concatenation operation makes the
extension explicit, which better documents our design intent.

The converse operation to zero extension is truncation, in which we
reduce the number of bits used to represent a numeric value from m to a
smaller size, n. Recall again that the largest value representable in n bits
is 2n � 1. Any m-bit value less than or equal to this value has 0 for all
of the left-most m � n bits. So to represent the value in n bits, we simply
discard the left-most m � n bits. The problem that might arise is that
the value represented in m bits might be larger than 2n � 1, and so not
be representable in n bits. Such a value has at least one of the left-most
m � n bits being 1. In most applications where we need to truncate, this
situation does not arise, and we can discard the bits with impunity. We
only reduce the number of bits when we know that the value must be
within the range representable by the smaller number of bits. We might
arrive at that conclusion by analyzing the arithmetic operations per-
formed to derive the larger-sized value. In terms of circuit implementa-
tion, discarding bits does not mean physically removing anything from
the circuit. Rather, we just leave the left-most bits unconnected, as illus-
trated in Figure 3.2.

An alternative view of truncation of y from m bits to n bits is that it
implements the operation y mod 2n. We can demonstrate this as follows:

y mod 2n

� (ym � 12m � 1 � . . .�yn2n �yn � 12n � 1 � . . . �y020) mod 2n

� ((ym � 12m � n � 1 � . . . � yn20)2n � yn � 12n � 1 � . . . � y020) mod 2n

� yn � 12n � 1 � . . . � y020

Thus, if we want to compute y mod 2n, we just truncate y to n bits,
regardless of the values of any of the discarded bits.

In a Verilog model, we express truncation of a value by picking
out a part select of the net or variable representing the value. For
example, given nets x and y declared as above, we can write the fol-
lowing assignment statement in a module to truncate the value of y
and assign it to x:

assign x = y[3:0];

The range of values in brackets specifies the index positions of the right-
most elements that we want to use for the smaller representation. For
example, if y has the value 00001110, the value assigned to x would be
1110.

Addition of Unsigned Integers

The addition operation on unsigned binary integers is analogous to the
operation on decimal numbers. We start with the two least significant
operand bits and add them to form the least significant sum bit and a
carry into the next position. We then repeat until we reach the most sig-
nificant position, forming the most significant sum bit and the carry out.
The difference between doing this in binary and decimal is that, in binary,
the sum of the two operand bits and the carry into a position is either 0,
1, 2 or at most 3. Since bits can only be 0 or 1, the case of the sum being
2 means the sum bit is 0 and the carry out is 1, and the case of the sum
being 3 means the sum bit is 1 and the carry out is 1.

…

y0

y1

yn − 1

x0

x1

xn − 1

yn

ym − 2

ym − 1

…
…

F I G U R E 3 .2 Implementation
of truncation in a circuit.

 3.1 Unsigned Integers C H A P T E R T H R E E 95

96 C H A P T E R T H R E E n u m e r i c b a s i c s

example 3 .4 Show the addition of the unsigned binary numbers
10101111002 and 00110100102.

solut ion The addition is shown in Figure 3.3. Here, we have included
the carry-out bit from the most significant position. Since it is 0, the result can
be represented in the same number of bits as the two operands.

example 3 .5 Show the addition of the unsigned binary numbers 010012
and 111012.

solut ion The addition is shown in Figure 3.4. Again, we have included
the carry out from the most signifi cant position. However, this time it is 1,
 indicating that the result value cannot be represented in the same number of bits
as the operands. If the design in which we are doing this addition requires the
result to be fi ve bits long, the carry out of 1 is an error condition. Alternatively,
if the design allows us to use an extra bit for the result, we can use the carry-out
bit as the extra most signifi cant bit, as indicated in grey. This is the same as if we
had zero extended the operands by one bit.

As these examples show, if we need to represent the result in the same
number of bits as the operands (a not uncommon case), we can use the
carry-out bit from the most significant position to indicate whether an over-
flow condition has occurred. When the bit is 1, the sum bits are incorrect.

Let’s now look at how to design a digital circuit to perform addition
upon unsigned binary numbers. Such a circuit is called, unsurprisingly,
an adder. If we consider the method for addition described above, we see
that for the least significant position, the sum (s0) and carry-out (c1) bits
are Boolean functions of the two least significant operand bits (x0, y0). We
can express the functions as Boolean equations:

 s0 � x0 ⊕ y0 c1 � x0 � y0 (3.1)

A circuit to implement these equations is called a half adder, and can
be constructed with an XOR gate to produce the sum bit and an AND
gate to produce the carry-out bit. The reason it’s only half an adder will
become clear in a moment.

For the remaining bits, at each position i, the sum (si) and carry-out
(ci � 1) bits are Boolean functions of the operand (xi, yi) and carry-in (ci)
bits. The functions are as shown in the truth table in Table 3.1. They can
also be expressed as Boolean equations, as follows:

 si � (xi ⊕ yi) ⊕ ci (3.2)

 ci � 1 � xi � yi � (xi ⊕ yi) � ci (3.3)

A circuit that implements these equations is called a full adder, since we
can construct it from two half adders: one to add the two operand bits

0 1 0 0 1

0 0 11 1 0

1 1 1 0 1

1 1 0 0 1

F I G U R E 3 .4 Unsigned addi-
tion with carry out of 1.

1 0 1 0 1 1 1 1 0 0

1 1 1 0 0 0 1 1 1 0

0 0 1 1 0 1 0 0 1 0

0 0 1 1 1 1 0 0 0 0

F I G U R E 3 .3 Unsigned addi-
tion with carry out of 0.

x i y i c i s i c i � 1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

TAB LE 3 .1 Truth table for sum
and carry bits.

and one to add the result of that with the carry-in bit. A small amount of
additional logic is needed to form the carry out. However, this form of full
adder is largely of historical interest, since constraints that apply in most
designs lead to different implementations.

One thing to note about the equations for a full adder is that, if the
carry in, ci, is 0, the equations simplify to those for a half adder. A con-
sequence is that we can use a full adder for the least significant position
instead of a half adder simply by setting the carry-in bit to 0. This allows
us to treat all positions uniformly, and will also afford another advantage
that we shall see when we get to signed integer addition and subtraction.
Thus, a complete structure for an adder for unsigned integers consists of
a full adder cell for each bit position, with carry outs chained to carry ins
of adjacent positions, as shown in Figure 3.5. (For arithmetic circuits, we
usually arrange components left-to-right in order of decreasing signifi-
cance, to match the left-to-right order of bits of a number. The arrows
on the carry connections in Figure 3.5 indicate that carry values flow
from right to left, contrary to our usual convention of left-to-right flow.)
The carry out of the most significant position can be used as the most
significant sum bit if the sum is allowed to be longer than the operands.
Otherwise, it can be used as an overflow condition signal.

This kind of adder structure is called a ripple-carry adder. We can
see why it has this name by considering the flow of information through
the structure. At each bit position, the values of the sum and carry out-
puts depend not only on the two operand bit inputs, but also on the
carry from the adjacent less significant position. We can also see this by
examining the Boolean equations for the full adder. They form a recur-
rence relation, so that, ultimately, each sum bit and the final carry-out
bit depend on all of the less significant operand bits. When two operand
values arrive at the adder inputs, each full adder determines a transient
value for its sum and carry-out outputs. However, the full adders have
some propagation delay, since they are just logic circuits. Thus, the carry
out from the least significant position acts as an input to the next posi-
tion after the propagation delay, possibly affecting the output of that
position. Its carry out, after another propagation delay, may affect the
output of the third position. In this way, carry values “ripple” from least
significant to most significant position, possibly affecting sum-bit values
along the way.

full
adder

xi

si

cici+1

yi

full
adder

x0

s0

c0c1

y0

full
adder

x1

s1

c2

y1

full
adder

xn–1

sn–1sn

cn–1cn

yn–1

F I G U R E 3 .5 Structure of an
adder for unsigned integers using
full adder cells.

 3.1 Unsigned Integers C H A P T E R T H R E E 97

98 C H A P T E R T H R E E n u m e r i c b a s i c s

In the worst case, the delay from operand values arriving to the sum
value settling is the product of each full adder’s propagation delay and the
number of bits in the unsigned binary representation. If the performance
constraints of the application allow for an addition to be done slowly,
a ripple-carry adder is a simple and effective adder structure. However,
many applications require that arithmetic operations have high perfor-
mance in order to meet timing constraints. In those cases, we can find
alternate adder structures that have less delay, though at the expense of
greater circuit area and power consumption.

We will now outline a couple of ways in which we can improve the
adder performance over that of a ripple-carry adder. As the basis of our
discussion, let’s return to Equations 3.2 and 3.3 and to the truth table in
Table 3.1. For a given position i, we can see the following properties.

If xi and yi are both 0, then ci � 1 � 0, regardless of the value of ci. In
this case, any carry in to the position is killed. We define a signal for
this condition:

ki �
_
xi �

_
yi (3.4)

If one of xi and yi is 1 and the other is 0, then ci� 1 �ci. In this case,
the carry in is propagated to the next position. A signal for this
condition is

pi �xi ⊕yi (3.5)

If xi and yi are both 1, then ci � 1 � 1, regardless of the value of ci. In
this case, a carry out is generated for the next position. We define a
signal for this condition:

gi �xi �yi (3.6)

Substituting Equations 3.5 and 3.6 into Equations 3.2 and 3.3 gives

si �pi ⊕ci (3.7)

ci � 1 �gi �pi �ci (3.8)

One way in which these reformulated equations help is by exposing
a way of determining the carry values at each position more quickly than
the ripple-carry method. Note that the ki, pi and gi signals only depend
on the operand bit values at their respective positions, so they can be
determined quickly after the operand values arrive at the adder inputs. If
a carry is killed or generated at a given position, we don’t need to wait for
the carry in from less significant positions; we can drive a 0 or 1 carry-out
value immediately. On the other hand, if carry is to be propagated, we

�

�

�

xi

gi pi ki

si

cici+1

yixi

pi

si

ci

ci+1

yi

0

1

+V

F I G U R E 3 .6 Fast-carry-chain
full-adder cells.

 3.1 Unsigned Integers C H A P T E R T H R E E 99

can switch the carry in to the carry out very quickly. These observations
form the basis for the structure of a fast-carry-chain adder, sometimes
also called a Manchester adder.

Figure 3.6 shows two alternate implementations of the full-adder
cell used in such an adder. In the implementation on the left, the box at
the top derives the propagate signal, which drives the select input of a
 multiplexer. If pi is 0, then the carry is either generated (xi and yi are both
1) or killed (xi and yi are both 0). So either of the input bits can be selected
to derive the carry out, without having to wait for the carry in. If pi is 1,
then the carry out is the same as the carry in. Like the ripple-carry adder,
in the worst case, the carry has to propagate from the least significant
to the most significant position. However, if the implementation fabric
provides fast multiplexers (which many do), the propagation delay along
this carry chain is much less than that of a chain of gate circuits based
on Equation 3.3. As an example, several FPGA families manufactured by
Xilinx include fast-carry chains using multiplexers, allowing fast-carry-
chain adders to be implemented.

The full-adder cell shown at the right of Figure 3.6 is very similar.
The box at the top derives all of the generate, propagate and kill signals.
These are used to drive the control inputs of electronic switches to derive
the carry-out bit. If gi is 1, the carry-out bit is switched to 1; if ki is 1, the
carry-out bit is switched to 0; and if pi is 1, the carry-out bit is switched
from the carry-in input. Again, in the worst case, a carry may have
to propagate from the least significant to the most significant position.
However, fabrics such as custom or standard-cell ASICs include switch
components that have very small propagation delay, allowing fast-carry-
chain adders to be implemented in this way.

Another way in which we can use the reformulated equations is to
solve Equation 3.8 as a recurrence relation and determine all of the carry

100 C H A P T E R T H R E E n u m e r i c b a s i c s

x0

g0 p0

p3

s3

c0

c3

c4

y0x1

g1 p1

y1x2

g2 p2

y2x3

g3 p3

y3

p2

s2

c2 p1

s1

c1 p0

s0

carry-lookahead generatorF I G U R E 3 .7 A 4-bit carry-
lookahead adder.

bits at once. Equation 3.8 gives us the equation for c1 directly. We can
substitute this back into Equation 3.8 to get the equation for c2:

c2 � g1 � p1 � (g0 � p0 � c0) � g1 � p1 � g0 � p1 � p0 � c0

We can repeat substitution and similarly get the equations for c3 and c4:

 c3 � g2 � p2 � g1 � p2 � p1 � g0 � p2 � p1 � p0 � c0

c4 � g3 � p3 � g2 � p3 � p2 � g1 � p3 � p2 � p1 � g0 � p3 � p2 � p1 � p0 � c0

Note that each of these expressions is a function of only c0 and the
operand input bits (since the generate and propagate signals are func-
tions only of the operand bits). This gives us a way to determine the
carry bit at each position without having to wait for carries to propa-
gate up from less significant positions. We can then use the carry bit
to derive the sum bits according to Equation 3.2. An adder based on
this formulation is called a carry-lookahead adder. A 4-bit version of
such an adder is illustrated in Figure 3.7. Each of the boxes at the top
derives the generate and propagate signals for the corresponding bit
position. The carry-lookahead generator implements the equations
shown above to derive the carry signals. These are combined with the
propagate signals to derive the sum bits. The trade-off for getting the
sum bits faster is the area and power consumed by the carry-lookahead
generator circuitry.

We have shown a carry-lookahead generator for 4 bits, since that is
about as large as we can practically make it. In principle, we could con-
tinue substituting in Equation 3.8 to get further carry bits. However, a
more practical approach for wider adders is to use 4-bit carry-lookahead
adders for segments of 4 bits, and to use a second level of carry-lookahead
generators to derive the carry-in bits for each segment. There are also

other forms of adders that build upon the reformulated expressions to
compute carry bits in different ways. The choice among them is a ques-
tion of making trade-offs among circuit area, power and performance,
constrained by the resources available in implementation fabrics. A full
discussion of these adder structures is beyond the scope of this book, but
there are many references that go into detail.

In all of our discussion of adders so far, we have not yet described
how to model them in Verilog. We could simply translate the Bool-
ean expressions in the various forms we have discussed into Verilog.
However, doing so would disguise our design intent of adding unsigned
binary numbers. In particular, a CAD tool would just try to implement
the model as combinational circuitry, and may not readily be able to
recognize the opportunity to use any specialized circuit resources, such
as fast-carry chains, available in an implementation fabric. A much
better approach is to use the addition operator provided by Verilog to
operate on vector values. A synthesis CAD tool can then implement the
addition operation using the most appropriate form of adder provided
by the target fabric to meet design constraints. Alternatively, we could
develop a structural model, selecting the most appropriate form of adder
from a library of arithmetic components, and verify that the structural
model produces the same results as a behavioral model using the addi-
tion operator.

example 3 .6 Given the Verilog declaration of three nets:

wire [7:0] a, b, s;

write a Verilog statement to assign the sum of a and b to s.

solut ion The required statement is

assign s = a + b;

The � operator works on two unsigned values to produce an unsigned result
whose length is the larger of the two operands. It does not produce a carry out,
so if there is an overflow, it remains undetected.

example 3 .7 Revise the statements to produce a carry-out bit, c.

solut ion We can do this by zero extending a and b by one extra bit before
doing the additions, in order to get a 9-bit result. The carry out is then

3.1 Unsigned Integers C H A P T E R T H R E E 101

102 C H A P T E R T H R E E n u m e r i c b a s i c s

the most significant bit of that result, and the 8-bit sum is the remaining bits.
We need to declare a net for the 9-bit intermediate result and for the carry bit:

wire [8:0] tmp_result;
wire c;

The required statements are

assign tmp_result = {1 'b0, a} + {1 'b0, b};
assign c = tmp_result[8];
assign s = tmp_result[7:0];

An alternative way of writing these assignments is

assign {c, s} = {1 'b0, a} + {1 'b0, b};

In this assignment, the left-hand side is written as a concatenation of the carry
bit and sum nets. The bits of the result of addition are assigned to the corre-
sponding bits of the concatenated nets. We can simplify this further, since Verilog
has rules that cover implicit extension of expression operands based on the size
of the left-hand side of an assignment. If we write

assign {c, s} = a + b;

the Verilog rules determine that the size of the left-hand side is 9 bits, so the values
of a and b must be extended to 9 bits. Since they are unsigned values, they are
implicitly zero extended, and the result of the addition is also 9 bits long. As we
mentioned earlier, while these rules might appear to make the assignment more
succinct, we must take care that implicit extensions have the effect we really want.
If in doubt, or if we want to make our intent explicit, we can use explicit extension.

The above example shows how we can use vectors when we need
to access the individual bits of the binary code. Often, we can raise the
level of abstraction in our Verilog model by considering only the numeric
aspects of data and not their binary encoding. Verilog allows us to do so
using the type integer for numbers. We can declare a variable (but not a
net) to be of type integer as follows:

integer n;

Integer variables are typically 32 bits long, though a Verilog implementa-
tion is allowed to use a larger size. The range of values represented by a
32-bit integer includes the unsigned values up to approximately 2 billion.
It also includes negative numbers, which we will discuss further in the
next section.

example 3 .8 Revise the declaration and statement in Example 3.6 to use
integer variables instead of vector nets.

solut ion The revised declaration is

integer a, b, s;

Since we are using variables instead of nets, the assignment must be in a proce-
dural block. We replace the assignment statement with the always block:

always @*
s = a + b;

The addition expression looks exactly like that in the original assignment. The
only difference is that we are not concerned about the size of the variables and
are ignoring the possibility of any carry out. A synthesis tool would infer at least
a 32-bit adder with no overflow checking, since we have not indicated the actual
range of values that can occur. That is one reason why we would not generally
use integer types for synthesizable models where the range of values is known to
be smaller than 32.

Subtraction of Unsigned Integers

We can work out how to perform subtraction of unsigned binary inte-
gers by following a process similar to that for addition. First, we devise
the steps for binary subtraction, bit by bit, analogously to subtraction of
decimal digits. Recall that, in decimal, if we subtract a larger digit from a
smaller digit, we borrow from the next column. We do the same in binary,
borrowing if we subtract 1 from 0.

example 3 .9 Show the subtraction of the unsigned binary numbers
101001102 and 010010102.

solut ion The subtraction is shown in Figure 3.8. Here, we have included
the borrow-out bit from the most signifi cant position. Since it is 0, the result
can be represented in the same number of bits as the two operands.

1 0 1 0 0 1 1 0

0 1 0 1 1 1 0 0

0– 1 0 0 1 0 1 0

0 1 0 1 1 0 0 0

x:
y:

d:

b:

F I G U R E 3 .8 Unsigned
subtraction.

 3.1 Unsigned Integers C H A P T E R T H R E E 103

104 C H A P T E R T H R E E n u m e r i c b a s i c s

Next, we look at how to design a subtracter circuit to perform sub-
traction upon unsigned binary numbers. For the least significant position,
the difference (d0) and borrow-out (b1) bits are Boolean functions of the
two least significant operand bits. The Boolean equations are

d0 �x0 ⊕y0 b1 �
_
x0 �y0

For the remaining bits, at each position i, the difference (di) and borrow-out
(bi�1) bits are Boolean functions of the operand (xi, yi) and borrow-in (bi)
bits, with the truth table shown in Table 3.2. They can also be expressed as
Boolean equations, as follows:

di � (xi ⊕yi)⊕bi (3.9)

bi � 1 �
_
xi �yi �

(xi⊕ yi) �bi (3.10)

As we did in the case of the adder, we can set the borrow in for the least
significant position to 0 and just use Equations 3.9 and 3.10 uniformly for all
positions. We could now go ahead and develop circuits for these equations.
However, many systems that need a subtracter also need an adder, and
choose whether to add or subtract the operands. A little algebraic manipu-
lation will expose a trick that allows us to use the same circuit to perform
either addition or subtraction. Notice that the equation for the difference is
the same as that for the sum in an adder, and that the equation for the bor-
row is similar to that for the carry. The trick lies in using the complemented
form of the borrow bits. If we do that, we can rewrite the equations as

di � (xi ⊕
_
yi)⊕

_
bi (3.11)

bi � 1 �xi �

_
yi � (xi ⊕

_
yi) �

_
bi (3.12)

Proof of this is left to Exercise 3.27. If we compare these equations with Equa-
tions 3.2 and 3.3, we see that they are identical in form, but with

_
yi replacing

yi and
_
bi replacing ci. Consequently, we can use an adder circuit to perform

subtraction simply by negating each bit of the second operand and using a
negated form of borrow. For the least significant position, we set the negated
borrow-in bit to 1. We can use the negated borrow out from the most sig-
nificant position to indicate underflow: if it is 0, indicating a borrow, the true
difference is negative, and so cannot be represented as an unsigned integer.

Now let’s see how to modify an adder circuit to perform both addition
and subtraction. Suppose we have a control signal that is 0 when we want
the circuit to perform addition and 1 when we want it to perform subtrac-
tion. Since addition requires a 0 value for the least significant carry in and
subtraction requires a 1 for the least significant negated borrow in, we
can just use the control signal as the carry in/negated borrow in. We could
also use the control signal to control an n-bit 2-to-1 multiplexer selecting
between the second operand and its negation as the second input to the
circuit. However, another part of the trick is to notice that yi⊕ 0 �yi and
yi⊕ 1 �

_
yi. So we can connect each bit of the second operand to an XOR

x i y i b i d i bi� 1

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

TAB LE 3 .2 Truth table for
difference and borrow bits.

 3.1 Unsigned Integers C H A P T E R T H R E E 105

y0y1yn–1

y0

c0cn

y1yn–1

…

…

…

…

x0x1xn–1

x0x1xn–1

… s0s1sn–1

sn–1/dn–1 s1/d1 s0/d0

…

adder

add/sub

ovf/unf

F I G U R E 3 .9 Adapting an
adder to perform addition and
subtraction.

gate with the control signal as the other gate input, and connect the gate
outputs to the adder. The final circuit for an adder/subtracter is shown in
Figure 3.9. The adder can be any of the circuits we described earlier: ripple-
carry or optimized for the application’s requirements and constraints.

As with Verilog models that perform addition, we normally write
models that apply the subtraction operator to vector values, rather than
directly implementing the Boolean equations for a subtracter. That way,
we can let the synthesis CAD tool decide on an appropriate subtracter
circuit to use depending on constraints that apply. Moreover, if the system
we are designing performs both addition and subtraction, the tool can
decide whether to use separate circuits for the operations, or to share
a single adder/subtracter between the operations. Naturally, it can only
share the circuit if operations are to be done at different times. We shall
see in later chapters how to control sequencing of operations. For now,
we will just consider combinational circuits that assume the existence of a
control signal for selecting between addition and subtraction operations.

example 3 .10 Develop a Verilog behavioral model of an adder/subtracter
for 12-bit unsigned binary numbers. The circuit has data inputs x and y, a data
output s, a control input mode that is 0 for addition and 1 for subtraction, and
an output ovf_unf that is 1 when an addition overfl ow or a subtraction under-
fl ow occurs.

solut ion The module performs the addition and subtraction using the �
and � operators on the vector operand values, as follows:

module adder_subtracter (output [11:0] s,
output ovf_unf,
input [11:0] x, y,
input mode);

assign {ovf_unf, s} = !mode ? (x + y) : (x – y);

endmodule

106 C H A P T E R T H R E E n u m e r i c b a s i c s

The assignment in the module uses the mode input to choose between addition
and subtraction of the operands. Since we want to use the carry-out or borrow-
out bit for the ovf_unf output, we assign to the concatenation of the two outputs
using the notation we saw in Example 3.7. Verilog implicitly extends the addi-
tion and subtraction operands to match the 13-bit size of the assignment target.
The least significant 12 bits of the result are used as the sum or difference output
value and the most significant bit as the ovf_unf value. In the case of addition,
the most significant bit is the carry out: 1 for overflow, or 0 otherwise. In the
case of subtraction, the most significant bit is the borrow out, not negated: 1 for
underflow, or 0 otherwise. Thus, we can use this bit for the ovf_unf output.

example 3 .11 Develop a verifi cation testbench for the adder/subtracter
that compares the result with the result of addition or subtraction performed on
values of type integer.

solut ion The module, test_add_sub, has no ports, since it is a self-
contained testbench:

`timescale 1ns/1ns

module test_add_sub;

reg [11:0] x, y;
wire [11:0] s;
reg mode;
wire ovf_unf;

integer x_num, y_num, s_num;

task apply_test (input integer x_test, y_test,
input mode_test);

begin
x = x_test; y = y_test; mode = mode_test;
#10;

end
endtask

adder_subtracter duv (.x(x), .y(y), .s(s),
.mode(mode), .ovf_unf(ovf_unf));

initial begin
apply_test(0, 10, 0);
apply_test(0, 10, 1);
apply_test(10, 0, 0);
apply_test(10, 0, 1);
apply_test(2**11, 2**11, 0);

(continued)

The module declares nets and variables to connect to the inputs and outputs of
the adder/subtracter instance, duv. The instance is followed by a task to apply
individual test cases. The initial block makes successive calls to the task to assign
a sequence of input values to the inputs, exercising both addition and subtrac-
tion with cases that produce normal results, overflow and underflow. Note the
use of the value 2**11, which is the way we write 211 in Verilog. The ** operator
performs exponentiation.

The always block responds to changes of input values to the adder/
subtracter, then waits for the adder/subtracter to produce outputs. The block
then assigns the unsigned input values to the variables x_num, y_num and
s_num of type integer. The block then checks the value of the mode input. If
it is 0, indicating addition, the block checks the numeric sum of the oper-
ands. Since it does this using the numeric variables, the result is not limited
to the range representable in 12 bits. Hence, the block can compare the true
sum with the largest value representable in 12 bits, namely, 212 � 1. If the
sum is larger, the block verifies that the ovf_unf output is 1. Otherwise, the
block verifies that the ovf_unf output is 0 and that the sum result is equal to

apply_test(2**11, 2**11, 1);
// ... further test cases
#10 $finish;

end

always @* begin
#5
x_num = x; y_num = y; s_num = s;
if (!mode)
if (x_num + y_num > 2**12–1) begin
if (!ovf_unf)
$display("Addition overflow: ovf_unf should be 1");

end
else begin
if (!(!ovf_unf && s_num = = x_num + y_num))
$display("Addition result incorrect");

end
else
if (x_num – y_num < 0) begin
if (!ovf_unf)
$display("Subtraction underflow: ovf_unf should be 1");

end
else begin

 if (!(!ovf_unf && s_num = = x_num – y_num))
 $display("Subtraction result incorrect");

end
end

endmodule

3.1 Unsigned Integers C H A P T E R T H R E E 107

108 C H A P T E R T H R E E n u m e r i c b a s i c s

the computed numeric sum. If mode is 1, indicating subtraction, the block
performs similar checks, but compares the numeric difference between the
operands with 0.

Note that the condition checks and choices between consequent actions in the
always block are written using Verilog if statements. Each if statement has
the form

if (condition)
statement

else
statement

The first statement is performed if the condition is true, and the second state-
ment is performed if the condition is false. The keyword else and the the second
statement are optional, and are omitted if there is no action to perform if the
condition is false. Since an if statement is just one form of statement, we can nest
an if statement within an alternative of an outer if statement. The always block
illustrates this: it has an outer if statement, if (!mode) . . . , that has nested if state-
ments for each of the alternatives. If we need to perform more than one state-
ment in either alternative, we bracket the group of statements in the keywords
begin . . . end, as shown in the example model. We also use begin . . . end

bracketing if a nested if statement omits the else alternative. The bracketing
makes it clear that the else belongs to the outer if statement, not the inner if
statement.

Incrementing and Decrementing Unsigned Integers

There are two further arithmetic operations that we may perform on
unsigned binary integers and that are related to addition and subtrac-
tion. The increment operation involves adding the constant value 1,
and the decrement operation involves subtracting the constant value 1.
These operations arise quite frequently in digital systems, particularly as
part of counters, which generate increasing or decreasing sequences of
numbers.

A straightforward way to design an increment circuit would be to
use an adder with one operand input hard wired to the unsigned binary
representation of 1, namely, 0 . . . 001. Alternatively, we could hard wire
one input to the representation of 0 and the carry in to 1. However, since
one input is a constant value, we can simplify the circuit considerably. To
see how, let’s return to the Boolean equations for an adder, Equations 3.2
and 3.3. If we substitute yi � 0, we can simplify to the equations

si �xi ⊕ci ci � 1 �xi �ci

half
adder

xi

si

ci

ci+1 half
adder

x0

s0

c1

half
adder

x1

s1

c2half
adder

xn–1

sn–1sn

cn–1

cn

+V

F I G U R E 3 .10 Structure of
an incrementer for unsigned inte-
gers using half adder cells.

 3.1 Unsigned Integers C H A P T E R T H R E E 109

which are essentially those for a half adder (Equation 3.1 on page 96).
In other words, an incrementer can be formed using a chain of half
adders, as shown in Figure 3.10. The carry out of the most significant
bit can be used for an overflow condition signal. A decrementer can be
formed similarly by simplifying the equations for a subtracter with one
input hard wired to the representation of 0 and the negated borrow in
hard wired to 0.

Note that the incrementer of Figure 3.10 is a ripple-carry circuit, and
so has similar delay characteristics to a ripple-carry adder. In the same
way that we improved the performance of adders and subtracters, we
could improve the performance of incrementers and decrementers, for
example, using fast carry chains or carry-lookahead.

In Verilog models, we can express the increment or decrement opera-
tion by adding or subtracting the literal value 1 to an operand. For exam-
ple, given nets declared as

wire [15:0] x, s;

we could assign the incremented value of x to s with the statement

assign s = x + 1;

and we could assign the decremented value with the statement

assign s = x – 1;

Note that the value 1 is a numeric value, represented by Verilog in binary
form. The size of the representation is determined by the context. In this
example, it is 16 bits, since that is the size of the addition and subtraction
operands and the assignment target. Using unsized numeric values like
this is a convenient way to make our Verilog models more concise.

110 C H A P T E R T H R E E n u m e r i c b a s i c s

Comparison of Unsigned Integers

In some applications, it may be necessary to compare two unsigned binary
integers for equality or inequality. Since there is exactly one code word
for each numeric value, we can test for equality of two unsigned binary
integers by testing whether the corresponding bits of each are the same.
When we introduced the XNOR gate in Section 2.1.1, we mentioned that
it is also called an equivalence gate, since its output is 1 only when its
two inputs are the same. Thus, we can test for equality of two unsigned
binary numbers using the circuit of Figure 3.11, called an equality com-
parator. In practice, an AND gate with many inputs is not workable, so
we would modify this circuit to better suit the chosen implementation
fabric. Better yet, we would express the comparison in a Verilog model
and let the synthesis tool choose the most appropriate circuit from its
library of cells.

Comparing two unsigned binary integers for inequality (greater than
or less than comparison) is somewhat more complicated. To test whether
a number x is greater than another number y, we can start by comparing
the most significant bits, xn � 1 and yn � 1. If xn � 1 � yn � 1, we know imme-
diately that x � y. Similarly, if xn � 1 	 yn � 1, we know immediately that
x 	 y. In both cases, the final result is completely determined by compar-
ing just the most significant bits. If xn � 1 � yn � 1, the result depends on
the remaining bits, and is true if and only if xn � 2 . . . 0 � yn � 2 . . . 0. We can
now apply the same argument recursively, examining the next pair of bits,
and, if they are equal, continuing to less significant bits. Note that xi �
yi is only true for xi � 1 and yi � 0, that is, if xi �

_
 yi is true. These consid-

erations lead to the circuit of Figure 3.12, called a magnitude compara-
tor. We can use the same circuit to test for less than inequality simply by
exchanging the operands at the inputs.

In Verilog, we can express comparison operations on unsigned val-
ues using the ��, � and 	 operators. (Note the distinction between
the equality operator, ��, and the assignment operation, �.) We can
also use !� for “not-equal,” 	� for “less-than or equal,” and �� for
“greater-than or equal.” All of these operators yield a single-bit 0 or 1

x0

eq…

y0

x1

y1

xn–1

yn–1

…F I G U R E 3 .11 Circuit for an
equality comparator.

result, which can also be interpreted as a Boolean false or true result,
respectively. This is convenient if the comparison occurs in the condition
part of an if statement, since a Boolean result is expected in that context.
It is also convenient if we want to assign the result to a net or variable,
for example:

assign gt = x > y;

example 3 .12 Develop a Verilog model for a thermostat that has two
8-bit unsigned binary inputs representing the target temperature and the actual
temperature in degrees Fahrenheit (˚F). Assume that both temperatures are above
freezing (32˚F). The detector has two outputs: one to turn a heater on when the
actual temperature is more than 5˚F below target, and one to turn a cooler on
when the actual temperature is more than 5˚F above target.

solut ion The module definition is

module thermostat (output heater_on, cooler_on,
input [7:0] target, actual);

assign heater_on = actual < target – 5;
assign cooler_on = actual > target + 5;

endmodule

xn–1

gt
xn–1 > yn–1

xn–1 = yn–1

xn–2 > yn–2

xn–2 = yn–2

yn–1

xn–2

yn–2

x1 > y1

x1…0 > y1…0

xn–2…0 > yn–2…0

x1 = y1

x1

y1

x0 > y0x0

y0

…… … F I G U R E 3 .12 A magnitude
comparator to test for greater than
inequality.

 3.1 Unsigned Integers C H A P T E R T H R E E 111

112 C H A P T E R T H R E E n u m e r i c b a s i c s

The assignments use the subtraction and addition operators to calculate the
thresholds for turning the heater and cooler on. They use the 	 and � operators
for performing the comparisons against the thresholds.

Scaling by a Constant Power of 2

Before we turn to multiplying unsigned integers in a general way, let’s
look at the specific case of scaling an unsigned integer by a given constant
value that is a power of 2. The simplest case is multiplying by 2. Recall
that the value x represented by the n bits xn� 1, xn� 2, . . . , x0 is

x�xn� 12n� 1 �xn� 22n� 2 � . . . � x020 (3.13)

If we multiply both sides by 2, we get

2x�xn� 12n �xn� 22n� 1 � . . . � x021 � (0)20

which is an n � 1 bit number consisting of the bits of x, shifted left by
one position, and a 0 bit appended as the least significant bit. If we are
working with fixed-length integers, we can truncate the most significant
bit to yield an n-bit number, provided the truncated bit is 0. This opera-
tion is called a logical shift left by one position. We can take this form
of scaling further. To scale by a factor of 2k, we repeat the scaling-by-2
process k times. That is, we shift the bits left by k positions and append
k bits of 0 to the least significant end. If we need to truncate to an n-bit
result, the k truncated bits must all be zero; otherwise an overflow has
occurred.

Dividing by 2 works similarly. If we divide both sides of Equation 3.13
by 2 we get

x/2�xn� 12n� 2 �xn� 22n� 3 � . . . � x120 �x02 � 1

Since 2 �1 is the fraction ½, and we are dealing with integers only, we can
discard the last term in this equation. The result is an n� 1 bit number
consisting of the bits of x, except for the least significant bit, shifted right
by one position. If we are working with fixed-length integers, we can
append a 0 to the most significant end to maintain the value. This opera-
tion is called a logical shift right by one position.

We can take this further also. To divide by 2k, we shift the bits right
by k positions, discarding the k least significant bits and appending k bits
of 0 at the most significant end. If any of the discarded bits were nonzero,
the true result of the division is truncated toward 0.

Verilog provides two operators for shifting the bits of an unsigned
value. The 		 operator performs a logical shift left, and the �� operator
performs a logical shift right. For example, if the unsigned net or vari-
able s has the value 00010011, representing the value 1910, the Verilog
expression

s << 2

would yield the value 01001100, representing the value 7610. The
expression

s >> 2

would yield the value 00000100, representing the value 410.

Multiplication of Unsigned Integers

The final arithmetic operation on unsigned integers that we shall examine
is multiplication. A straightforward approach for multiplying x by y is to
expand the product out as follows:

xy�x(yn� 12n� 1 �yn� 22n� 2 � . . . � y020)

�yn� 1x2n� 1 �yn� 2x2n� 2 � . . . � y0x20

The largest value of the product is the product of the largest values of the
operands. For n-bit operands, that is

(2n � 1)(2n � 1) � 22n � 2n � 2n � 1 � 22n � (2n� 1 � 1)

which requires 2n bits to represent. If we provide this many bits for the
product, there is no possibility of overflow.

Each of the terms in the expanded product equation is called a
partial product, and consists of the product of a bit yi, the number x
and 2i. Recall that x2i is just the bits of x shifted left by i positions. Also,
yi is either 0 or 1. If it is 0, the partial product is 0. If it is 1, the partial
product is just the shifted version of x. Thus the partial product can be
formed by AND-ing each bit of x with yi and adding it, shifted i places
to the left, into the final product. The addition of the partial prod-
ucts can be performed by a series of adders, as shown in Figure 3.13.
This is a basic form of combinational multiplier, so called because it
is a combinational circuit (albeit a large one). In Chapter 4, we will
look at techniques that allow us to construct a sequential multiplier, in
which we add partial products one at a time in successive clock cycles.
A sequential multiplier trades off reduced area against time taken to
yield the product.

In the multiplier circuit of Figure 3.13, we have not specified what
kind of adder to use. We could use any of the adders we discussed
earlier, with the choice depending on the performance requirements
and area constraints that apply. We could also optimize the circuit by

3.1 Unsigned Integers C H A P T E R T H R E E 113

114 C H A P T E R T H R E E n u m e r i c b a s i c s

 combining parts of adjacent adders to reduce the overall propagation
delay through the structure. However, techniques for doing so are
beyond the scope of this book. They are discussed in detail in books
cited for further reading in Section 3.6. For our purposes, we will rely
on a synthesis CAD tool selecting an appropriate multiplier from the
resources available to it.

As with other arithmetic operations on unsigned binary integers, we
represent multiplication in Verilog models using an operator on unsigned

x0 y1x1xn–1

y0

c0cn

y1yn–1 yn–2

…

……

xn–2

x0x1xn–2

… s0s1s2

xn–1

…

sn–1

… s1s2

…

… … …

sn–1

adder

x0 y2x1xn–1

y0

c0cn

y1yn–1 yn–2

…

…

…

…

xn–2

x0x1xn–2

s0

xn–1

…

adder

… s1s2

…

sn–1

x0 y0x1xn–1

y0

c0cn

y1yn–1 yn–2

…

…

…

…

xn–2

x0x1xn–2

s0

xn–1

adder

… s1s2

…

sn–1

x0 yn–1x1xn–1

y0

c0cn

y1yn–1 yn–2

…

…

…

…

xn–2

p0p1p2pn–1pnpn+1p2n–2p2n–1

x0x1xn–2

s0

xn–1

adder

F I G U R E 3 .13 A combina-
tional multiplier constructed from
adders for partial products.

values. The result of the * operator is an unsigned vector whose length
is the larger of the operand lengths. If we need the multiplication to be
performed with size that is the sum of the operand lengths, in order not
to overflow, we must extend the operand values before multiplying them.
For example, given the following declarations:

wire [7:0] x;
wire [13:0] y;
wire [21:0] p;

we could assign the product of x and y to p with the following
statement:

assign p = {14'b0, x} * {8'b0, y};

Alternatively, we could rely on Verilog’s implicit zero extension and just
write:

assign p = x * y;

Summary of Arithmetic Operations

In this section, we have examined several arithmetic operations that can
be performed on unsigned binary integers, including addition, subtrac-
tion and multiplication. We have deliberately avoided division, since it
is considerably more complex to implement than the other operations,
and arises less frequently in real-world applications. Hence, there are
relatively few application-specific digital systems that include circuits for
performing division. Division circuits are described in the books cited in
Section 3.6.

In our discussion, we focused on addition as a foundational operation
and examined a number of adder circuits that trade off between perfor-
mance and circuit area. This is a recurring theme in digital design, and is
well illustrated through consideration of adder circuits. We return to it
throughout this book.

For each operation, we also discussed how to represent the opera-
tion in Verilog models that use unsigned vectors. This approach allows
us to abstract away from the details of the digital circuits that implement
the arithmetic operations, relying on synthesis CAD tools to choose
appropriate circuits from libraries of cells that can be implemented in

3.1 Unsigned Integers C H A P T E R T H R E E 115

116 C H A P T E R T H R E E n u m e r i c b a s i c s

the target fabric. As we shall see when we describe our implementation
methodology in more detail, we separate the concerns of specifying
the circuit behavior in Verilog and constraining the implementation.
We provide speed and area constraints for use by the synthesis tool
to determine an appropriate implementation. This approach helps us
manage the complexity of designing systems to perform numerical
computation.

3.1.3 G R AY C O D E S

The binary code that we have considered so far in this section is not the
only code for unsigned integers, though it is the most natural code to use
when we need to perform arithmetic operations. However, it has some
disadvantages in other applications. Consider a scenario in which we are
to design a system that uses a binary code to represent the angular posi-
tion of a rotating shaft. A common way to measure the position is with
a shaft encoder, illustrated in Figure 3.14. The disk attached to the shaft
has a number of concentric bands, each of which has opaque parts and
transparent parts. For each band, there is a light emitter and a detector.
The detector output is 1 when the light shines through the transparent
part of the band and 0 when the light is obscured by the opaque part of
the band. The collection of four decoder outputs forms a binary code for
the angular position of the shaft.

The pattern of transparency and opacity in the bands on the disk
is shown in Figure 3.15, and corresponds to a 4-bit Gray code, in
which adjacent code words differ by only one bit. A complete rota-
tion is divided into 16 segments, and between any two adjacent seg-
ments, exactly one band changes between transparent and opaque. This
prevents any minor error in positioning of the detectors from caus-
ing incorrect position codes. Suppose, in contrast, that we used the
unsigned binary code of Section 3.1.1 for the angular position. This
would give a code word of 0011 for segment 3 and 0100 for segment
4. A minor error in position of the detector for the second band might
cause it to sense the change from 0 to 1 before the detectors for the
right two bands sense the changes from 1 to 0. This would give a code
word of 0111, representing segment 7, for the angular position close to
the boundary between segments 3 and 4. It is difficult to manufacture
mechanical components with sufficient precision to avoid this kind of
error. The Gray code, on the other hand, is much more tolerant of posi-
tioning error, and so is widely used in electromechanical components
that measure position.

The 4-bit Gray code we have used in this example scenario is listed,
along with the corresponding decimal and unsigned binary codes, in
Table 3.3. Note how adjacent Gray code words differ in only one bit

F I G U R E 3 .14 An optical
shaft encoder.

0000

00010101

1100 1000

10011101

1111 1011
1110 1010

0111 0011
0110 0010

0100

F I G U R E 3 .15 Gray code
pattern on a shaft-encoder disk.

3.1 Unsigned Integers C H A P T E R T H R E E 117

position, unlike the corresponding unsigned binary code words. This is
not the only 4-bit Gray code; there are others that also have the property
of single-bit difference between adjacent code words. The code we have
used here is generated by the following rules, which allow us to generate
an n-bit Gray code:

A 1-bit Gray code has the two code words 0 and 1.

The first 2n� 1 code words of an n-bit Gray code consist of the
code words of an (n� 1)-bit Gray code, in order, each with a 0 bit
appended as the left-most bit.

The last 2n� 1 code words of an n-bit Gray code consist of the code
words of an (n� 1)-bit Gray code, in reverse order, each with a 1 bit
appended as the left-most bit.

example 3 .13 Develop a Verilog model of a code converter to convert
the 4-bit Gray code to a 4-bit unsigned binary integer.

�

�

�

d e c i m a l u n s i g n e d
b i n a ry

g r ay c o d e

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

TAB LE 3 .3 4-bit Gray code,
compared to unsigned binary code.

118 C H A P T E R T H R E E n u m e r i c b a s i c s

solut ion For the both the Gray-code input to the converter and the
binary-code output, we use vector ports. The module definition is

module gray_converter (output reg [3:0] numeric_value,
input [3:0] gray_value);

always @*
case (gray_value)
4'b0000: numeric_value = 4'b0000;
4'b0001: numeric_value = 4'b0001;
4'b0011: numeric_value = 4'b0010;
4'b0010: numeric_value = 4'b0011;
4'b0110: numeric_value = 4'b0100;
4'b0111: numeric_value = 4'b0101;
4'b0101: numeric_value = 4'b0110;
4'b0100: numeric_value = 4'b0111;
4'b1100: numeric_value = 4'b1000;
4'b1101: numeric_value = 4'b1001;
4'b1111: numeric_value = 4'b1010;
4'b1110: numeric_value = 4'b1011;
4'b1010: numeric_value = 4'b1100;
4'b1011: numeric_value = 4'b1101;
4'b1001: numeric_value = 4'b1101;
4'b1000: numeric_value = 4'b1111;

endcase

endmodule

The module’s behavior takes the form of a truth table. It uses the Gray-code
value to select which unsigned numeric value to assign to the output.

1. How is a number x represented in binary as a sum of powers of 2?

2. What range of values can be represented as an n-bit unsigned binary
number?

3. Write a Verilog declaration for a net x to represent unsigned
numbers in the range 0 to 8191.

4. Write the binary number 01011101 in octal and in hexadecimal.

5. Resize the unsigned binary number 10010011 to 12 bits and to 6
bits. In each case, does the result correctly represent the same value
as the original number?

6. Add the two 8-bit unsigned binary numbers 01001010 and
01100000 to get an 8-bit result. Does the addition overfl ow?

7. What distinguishes a ripple-carry adder from a carry-lookahead
adder?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

 8. Write Verilog assignments to add two nets s1 and s2 of type wire
[15:0] to get a result net s3 of the same type as s1 and s2 and a
carry-out net c_out.

 9. Perform the 8-bit unsigned binary subtraction 01001010 � 01100000
to get an 8-bit result. Does the subtraction underfl ow?

10. Given a control signal
__
add/sub, how can we adapt an unsigned

adder to perform both addition and subtraction?

11. Write a Verilog assignment that compares two unsigned nets a and b
and assigns 1 to a net smaller if a	b, or 0 otherwise.

12. How is an unsigned binary number multiplied by 16? How is it
divided by 16?

13. How many bits are required for the product of two n-bit unsigned
binary numbers?

14. Why are Gray codes often used in electromechanical position sensors?

3.2 S I G N E D I N T E G E R S

While many applications deal only with nonnegative integers, there are
others that deal with integers that range over both positive and negative
values. In this section we will explore a binary code for signed integers
and see how to implement operations on these encoded values.

3.2.1 C O D I N G S I G N E D I N T E G E R S

The predominant encoding used in digital systems for signed integers is
called 2s complement. It is a special case of radix complement representa-
tion in which the radix (the base used for positional representation) is 2. We
will refer to the Further Reference books for details of general radix comple-
ment representations, and focus our attention here just on 2s complement.

A signed number is represented in 2s-complement form as a weighted
sum of powers of two, in a similar way to unsigned binary representation.
The difference is that, for an n-bit signed number, the weight of the left-
most bit is negative. An n-bit number x represents the value

x��xn� 12n� 1 �xn� 22n� 2 � . . . �x020 (3.14)

This representation has a number of interesting and useful properties
that we will now explore. First, the most negative number that can be
represented has xn� 1 � 1 and all other bits 0, giving the value �2n� 1.
The most positive number has xn� 1 � 0 and all other bits 1, giving the
value 2n� 1 � 1. If xn� 1 is 1, the number represented is negative, since the
sum of all the positively weighted powers of 2 is less than 2n� 1. Thus,
xn� 1 serves as a sign bit: if it is 1, the number is negative, and if it is 0, the

3.2 Signed Integers C H A P T E R T H R E E 119

120 C H A P T E R T H R E E n u m e r i c b a s i c s

number is zero or positive. The range of numbers that can be represented
is not symmetric about zero, since the negation of �2n� 1 is one more
than the most positive number that can be represented.

example 3 .14 What values are represented by the 8-bit 2s-complement
numbers 00110101 and 10110101?

solut ion The first number is

1� 25 � 1 � 24 � 1 � 22 � 1 � 20 � 32 � 16 � 4 � 1 � 53

The second number is

� 1 � 27 � 1 � 25 � 1 � 24 � 1 � 22 � 1 � 20 �� 128 � 32 � 16 � 4 � 1 ��75

While 2s-complement representation for signed integers predomi-
nates, there are other forms that are useful in some applications. One form,
signed magnitude, is analogous to our conventional decimal representa-
tion for signed integers, in which we write a sequence of decimal digits for
the magnitude of a number, preceded by a � or � sign to indicate whether
the number is positive or negative. In signed magnitude binary representa-
tion, we represent a signed number with a sequence of binary digits (bits),
preceded by a binary code for the sign of the number. Usually, we would
encode a � sign with 1 and a � sign with 0. While some early digital
computers used signed magnitude representation, there are a number of
disadvantages that make it uncommon in modern digital systems. For this
reason, we will not describe in any further detail, and instead refer to the
books listed in Section 3.6, Further Reading, for more information.

Representing Signed Integers in Verilog

We saw in Section 3.1.1 that we can use vectors and built-in arithme-
tic operators to deal with unsigned integers. For signed integers, we also
use vectors, but we include the keyword signed in their declarations, for
example:

wire signed [7:0] a;
reg signed [13:0] b;

The arithmetic operators then assume 2s-complement representation,
with the sign bit being the left-most bit in a vector and the least significant
bit being the right-most bit.

An important point to note is that, even though we might declare nets
or variables to be unsigned or signed, the interpretation of the bits of a

value depends on the operator being applied and the declaration of the
other operand. If both operands to an arithmetic operation are signed, a
signed operation is performed. If either or both operations are unsigned,
an unsigned operation is performed. If we really want to interpret values
that are declared unsigned as representing signed values, we can use the
$signed conversion operation, for example:

wire [11:0] s1;
wire signed [11:0] s2;
...
assign s2 = $signed(s1); // s1 is known to be less than 2**11

Similarly, if we want to interpret values declared signed as represent-
ing unsigned values, we use the $unsigned conversion operation, for
example:

assign s1= $unsigned(s2); // s2 is known to be nonnegative

We also mentioned the abstract numeric type integer in Section 3.1.1,
showing how it can be used for nonnegative numbers. In fact, the inte-
ger type represents numbers that can be positive or negative, provided
their 2s-complement representation can fit within 32 bits. We can perform
arithmetic operations on values of type integer, and we can mix inte-
ger with unsigned and signed net and variable values. The type integer is
really just a signed variable type whose size is fixed at 32 bits.

Octal and Hexadecimal Codes for Signed Integers

We saw in Section 3.1.1 that we could use octal or hexadecimal codes
for unsigned integers. We can also use octal and hexadecimal for
2s-complement signed integers. However, when we do so, we don’t usually
think in terms of signed octal or signed hexadecimal numbers. Instead, we
just use octal or hexadecimal as a shorthand notation for the vector of
bits. We divide the vector into groups of three bits (for octal) or four bits
(for hexadecimal) and substitute the corresponding octal or hexadecimal
digit for each group.

example 3 .15 The 12-bit 2s-complement representation of 84410 is
001101001100. Express the bit vector in hexadecimal.

solut ion Dividing into groups of four bits, we get 0011 0100 1100.
Substituting hexadecimal digits for the 4-bit groups gives 34C16.

3.2 Signed Integers C H A P T E R T H R E E 121

122 C H A P T E R T H R E E n u m e r i c b a s i c s

example 3 .16 The 10-bit 2s-complement representation of �42 is
1111010110. Express the bit vector in octal.

solut ion Dividing into groups of three bits, we get 1 111 010 110.
Substituting octal digits for the 3-bit groups gives 17268. When reading this
octal number, we need to understand that it represents 10 bits. The right-most
three digits represent 9 bits, and the left-most digit represents just one bit, the
sign bit. Since the sign bit is 1, the number is negative, even though the octal
number does not include a � sign.

3.2.2 O P E R AT I O N S O N S I G N E D I N T E G E R S

As with unsigned numbers and binary codes in general, we can perform
operations on signed integers that don’t rely on their numeric interpreta-
tion, such as selecting among several encoded numbers using multiplex-
ers. In this section, we will describe operations that relate to the numeric
interpretation, such as arithmetic operations. Most of these operations
are implemented in a similar way to their counterparts for unsigned
integers.

Resizing Signed Integers

The resizing operation on unsigned integers simply involved appending
or truncating leading zeros to reach the desired length of representation
while maintaining the same numeric value. With 2s-complement num-
bers, however, the left-most bit is the sign bit, so appending or truncating
leading zeros will not work in general. Let’s consider the two cases of
nonnegative and negative numbers, respectively.

For nonnegative numbers, the sign bit is 0, and the remaining bits
constitute the magnitude of the number. In this case, the 2s-complement
representation is the same as the unsigned representation, and zero extend-
ing it maintains the same value. We can also truncate leading zeros, as we
did for unsigned numbers, provided both that none of the truncated bits is
1 and that the left-most bit of the result is 0. Were the left-most bit of the
result 1, that would imply a negative result, which would be incorrect. For
example, the 8-bit 2s-complement representation of 4110 is 00101001.
Truncating this to 6 bits would give 101001, which, interpreted as a
2s-complement number, is �23. The problem is that 4110 cannot be rep-
resented in 6-bit 2s-complement.

For negative numbers, the sign bit is 1. We can extend an n-bit negative
number to m bits by appending leading 1 bits. To see that this conserves
the negative numeric value, consider the value represented by a negative
number x:

x��2n� 1 �xn� 2 2
n� 2 � . . . �x020 (3.15)

Extending this with leading 1 bits gives the 2s-complement number

 �2m � 1 � 2m � 2 � . . . � 2n � 1 � xn � 2 2
n � 2 � . . . � x020 (3.16)

We can make use of the following identity:

 2k � 2k � 1 � 2k � 2 � . . . � 20 � 1 (3.17)

Expanding the first term in Equation 3.16 using this identity gives

 � 2m � 2 � . . . � 2n � 1 �2n � 2 � . . . � 20 � 1

 � 2m � 2 � . . . � 2n � 1 � xn � 2 2
n � 2 � . . . � x020

� � 2n � 2 � . . . � 20 � 1 � xn � 2 2
n � 2 � . . . � x020

 � � (2n � 2 � . . . � 20 � 1) � xn � 2 2
n � 2 � . . . � x020

 � � 2n � 1 � xn � 2 2
n � 2� . . . � x020 � x

We can argue similarly to show that, for a negative number, we can trun-
cate to a smaller length by truncating leading 1 bits, provided the left-
most bit of the result is 1.

In summary, for a 2s-complement signed integer, extending to a
greater length involves replicating the sign bit to the left. This is called
sign extension, and preserves the numeric value, be it positive or negative.
A circuit to implement sign extension of an n-bit signal x to an m-bit
 signal y is shown in Figure 3.16. We can truncate by discarding the
left-most bits, provided all of the discarded bits and the resulting sign bit
are the same as the original sign bit. The circuit implementation for trun-
cation from m bits to n bits is the same as for truncation of an unsigned
value, shown in Figure 3.2, and just involves leaving the left-most m � n
bits unconnected. The problem that might arise is that the value repre-
sented in m bits might be larger in magnitude than can be represented
in n bits. Usually, this situation does not arise, since we only reduce the
number of bits when we know that the value must be within the range

… …
…

x0

x1

xn − 1

y0

y1

yn − 1

yn

ym − 2

ym − 1

F I G U R E 3 .16 An implemen-
tation of sign extension in a circuit.

 3.2 Signed Integers C H A P T E R T H R E E 123

124 C H A P T E R T H R E E n u m e r i c b a s i c s

representable by the smaller number of bits. We might arrive at that
conclusion by analyzing the arithmetic operations performed to derive
the larger-sized value.

We can express sign extension of a signed value in Verilog using the
bit-replication notation to replicate the sign bit. For example given nets
declared as

wire signed [7:0] x;
wire signed [15:0] y;

we can write the following assignment to sign extend the value of x and
assign it to y:

assign y = {{8{x[7]}}, x};

The notation {n{...}} specifies n replications of the bits inside the inner
braces.

Sign extension or truncation of a signed value in a Verilog model
also occurs implicitly when we assign the value to a target that is
of a different length. For example, we can rewrite the above assignment
statement as

assign y = x; // x is sign-extended to 16 bits

Similarly, we can write the following assignment to truncate the value of
y and assign it to x:

assign x = y; // y is truncated to 8 bits

Negating Signed Integers

Since we can represent both positive and negative numbers using 2s-
complement encoding, it makes sense to consider negating a number. The
steps needed to perform negation of a number x are first to complement
each bit of x (that is, change each 0 to 1 and each 1 to 0), and then to
add 1. We can prove that this yields the 2s-complement representation of
�x. We need to use the bit identity

_
xi� 1 �xi together with the identity in

Equation 3.17. The proof is

_
x� 1 ��(1�xn� 1)2n� 1� (1 �xn� 2)2n� 2� . . .� (1 �x0)20� 1

��2n� 1�xn� 1 2n� 1� 2n� 2�xn� 2 2
n� 2� . . .� 20�x020� 1

��(�xn� 1 2n� 1 �xn� 2 2n� 2 � . . .�x020)

�2n� 1 � 2n� 2 � . . .� 20 � 1

��x� 2n� 1 � 2n� 1 ��x

example 3 .17 Determine the 8-bit 2s-complement representation of �43.

solut ion The 8-bit 2s-complement representation of 43 is 00101011.
Complementing this gives 11010100. Adding 1 gives 11010101, which is the
required result.

Recall that the range of numbers representable in 2s-complement form
is not symmetric about zero. Consider what happens if we try to comple-
ment and add 1 to the representation of �2n� 1, which is 100 . . . 0. Com-
plementing gives 011 . . . 1. Adding 1 to this gives 100 . . . 0, which is the
negative number we started with. So if we are to negate a 2s-complement
number, we need either to sign extend it by one bit to allow for this case,
or be sure that the value �2n� 1 cannot occur as input.

In Verilog models, we express negation of a signed value with the
prefix � operator. For example, to assign the negation of a net x to a net
y, we would write:

assign y = –x;

Addition of Signed Integers

We can add two 2s-complement numbers x and y using much the same
procedure that we used for unsigned binary numbers. The main differ-
ence lies in the way we deal with the sign bit, which has a negative
weight of �2n � 1. In order to understand how 2s-complement addition
works, we can think of each number as the sum of the weighted sign
part, which is either 0 or �2n � 1, and a positive offset, which is less than
2n � 1. That is,

x�� xn� 1 2
n� 1 �xn� 2 . . . 0 y�� yn� 1 2

n� 1 �yn� 2 . . . 0

and

x�y��(xn� 1 �yn� 1)2n� 1 �xn� 2 . . . 0 �yn� 2 . . . 0

3.2 Signed Integers C H A P T E R T H R E E 125

126 C H A P T E R T H R E E n u m e r i c b a s i c s

We will do a case analysis of combinations of sign-bit values for the two
n-bit operands.

First, consider the case of adding two nonnegative numbers. The sign
bits are both 0, and can be added to give a result sign bit of 0 with no
carry. The bits of the offsets are all positively weighted and can be added
using the procedure for unsigned numbers, provided the carry out from
position n � 2 is 0, as in the first example in Figure 3.17. On the other
hand, if the carry out from position n � 2 is 1, as in the second example in
Figure 3.17, the positive magnitude of the result would be larger than can
be represented in n-bit 2s-complement form; that is, it would overflow.

Next, consider the case of adding two negative numbers, with both
sign bits being 1. Adding the sign bits gives 0 with a carry out of 1 from
the sign position. This corresponds to adding the weighted sign parts to
give �2n. So we need the sum of the positive offsets to yield a carry out
of 1, with weight 2n � 1, to add to this to give �2n � 1. We can just add the
carry out from the offsets to the sum of the sign bits to give a final sign
bit of 1, as in the third example in Figure 3.17. On the other hand, if the
sum of the positive offsets yields a carry out of 0, as in the fourth example
in Figure 3.17, the result is more negative than can be represented in n-bit
2s-complement form; that is, it would overflow in the negative direction.

Finally, consider the case of adding one positive number (sign bit is 0)
and one negative number (sign bit is 1). No overflow can occur in this case.
Adding the two sign bits gives 1 with a carry out of 0. This corresponds to
adding the weighted sign parts to give �2n � 1. If the sum of the positive
offsets is less than 2n � 1, the carry out from position n � 2 is 0, as in the
fifth example in Figure 3.17, and the final result is negative. If the sum of
the positive offsets is greater than or equal to 2n � 1, the carry out from posi-
tion n � 2 is 1, and the final result is nonnegative, as in the sixth example in
 Figure 3.17. We can add the carry out from position n � 2 into the sign posi-
tion to give a final sign bit of 0 and a carry out of 1 from the sign position.

So in all cases, we can perform 2s-complement addition using exactly
the same process as unsigned addition, including adding the carry out
from position n � 2 into the sign position. Overflow is indicated when the
carry into the sign position is different from the carry out of that position.
We have circled these two bits to highlight them in each of the examples
in Figure 3.17. It follows that we can use exactly the same circuit to add
unsigned numbers or 2s-complement numbers. We use the carry out from
the most significant position to indicate overflow for unsigned addition,
and the exclusive OR of the carry in and carry out of the most significant
position to indicate overflow for signed addition.

In Verilog, we express addition of signed values using the � operator,
just as we did for unsigned values. For signed values, if we want to allow
for a result that would overflow if represented using the same number of
bits as the operands, we can resize the operand values. For example, given
the declarations

0 1 0 0 1 0 0 0

0 1 1 1 1 0 0 1

0
72:
49:

121:

0 1 1 0 0 0 1

0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

1 0 1 1 0 0 0 1

0
72:

105: 1 1 0 1 0 0 1

0 1 0 0 1 0 0 0

1 1 0 0 0 0 0 1

0 1 1 0 0 0 0 1

1
–63:
–96: 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 1 0 1 1 0

1 1 0 1 1 1 1 0

0
–42:

–34:

8: 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 0 1 0 0 0 1 0

1
42:

34:

–8: 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 1

1
–63:
–32:

–95:

1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

F I G U R E 3 .17 Examples of
signed addition. In each case, the
addition overfl ows if the left-most
two carry bits differ.

wire signed [11:0] v1, v2;
wire signed [12:0] sum ;

we can add the two 12-bit values and get a 13-bit result using the
assignment

assign sum = {v1[11], v1} + {v2[11], v2};

Alternatively, we can rely on Verilog’s implicit sign extension, given that
the assignment target is 13 bits, and just write:

assign sum = v1 + v2;

Developing a Verilog model that represents the sum using the same
number of bits as the operands and that derives the overflow condition is
somewhat more involved. Referring back to our case analysis of the signs
of the operands, we see that overflow only occurs if both operands are
nonnegative and the carry in to the sign position is 1 (yielding an appar-
ently negative result), or if both operands are negative and the carry in to
the sign position is 0 (yielding an apparently nonnegative result). Given
this observation and the declarations

wire signed [7:0] x‚ y, z;
wire ovf;

we can write the following assignments to derive the required sum and
overflow condition bit:

assign z = x + y;
assign ovf = ~x[7] & ~y[7] & z[7] | x[7] & y[7] & ~z[7];

Subtraction of Signed Integers

Now that we have seen how to perform addition and negation on
2s-complement numbers, subtraction follows from the identity

x�y�x� (�y)�x�
_
y� 1

3.2 Signed Integers C H A P T E R T H R E E 127

128 C H A P T E R T H R E E n u m e r i c b a s i c s

y0y1yn–1

y0

c0cn

y1yn–1

…

…

…

…

x0x1xn–1

x0x1xn–1

… s0s1sn–1

sn–1/dn–1 s1/d1 s0/d0

…

cn–1

adder

add/sub

unsigned
ovf/und

signed
ovf

F I G U R E 3 .18 An adder/
subtracter for both unsigned and
2s-complement numbers.

This suggests that we can use the same adder/subtracter, shown in
 Figure 3.9, that we described for unsigned numbers. The revised form
that deals with both kinds of numbers, unsigned and 2s-complement, is
shown in Figure 3.18. For signed numbers, when the

__
 add /sub control

input is 0, the y operand is passed through the XOR gates unchanged
and the carry in to the adder is 0. When the

__
 add /sub input is 1, the y

operand is complemented by the XOR gates, and the carry in is 1. Thus
the circuit subtracts by adding to x the complement of y and 1. Depending
on whether the operands are interpreted as unsigned or signed operands,
we use one or the other of the overflow condition outputs.

In Verilog, we express subtraction of signed values using the � operator.
For signed values, if we want to allow for a result that would overflow if rep-
resented as the same number of bits as the operands, we can resize the oper-
and values, as we described for signed addition. Thus, given the declarations

wire signed [11:0] v1, v2;
wire signed [12:0] diff;

we can calculate the 13-bit difference between the two 12-bit values using
the assignment

assign diff = {v1[11], v1} – {v2[11], v2};

or in simplified form, relying on Verilog’s implicit sign extension,

assign diff = v1 – v2;

Again, a Verilog model that represents the difference using the same
number of bits as the operands and that derives the overflow condition is
somewhat more involved. Since x�y is the same as x� (�y), and the sign
of �y is the complement of the sign of y (except when y is zero), we can
work out the overflow condition by examining sign bits in a way similar
to that for addition. We just need to use the logical negation of the sign bit
of y in the overflow expression. Thus, for the declarations

wire signed [7:0] x, y, z;
wire ovf;

we can write the following assignments to derive the required difference
and overflow condition bit:

assign z = x – y;
assign ovf = ~x[7] & y[7] & z[7] | x[7] & ~y[7] & ~z[7];

The case of y being zero is handled correctly by this expression, since in
that case, the result z is the same as x, and so the sign of z is the same as
the sign of x.

A further case to consider is subtraction of two unsigned numbers
to give a signed result, rather than underflowing when the difference is
negative. In order to determine the size to use for the result, we can con-
sider the range of possible result values. Suppose we are subtracting n-bit
unsigned values. The greatest result arises from subtraction of zero from
the greatest unsigned value, giving 2n � 1. The least (most negative) result
arises from subtraction of 2n � 1 from zero, giving �2n � 1. This range is
encompassed by a result with n� 1 bits. So the simplest way to express
the subtraction is to zero extend the operands by one bit, treat them as
signed, and then apply the signed subtraction operation. In Verilog, given
8-bit operands and a 9-bit result declared as

wire [7:0] v1, v2;
wire signed [8:0] diff;

we could write the subtraction as

assign diff = $signed({1'b0, v1}) – $signed({1'b0, v2});

3.2 Signed Integers C H A P T E R T H R E E 129

130 C H A P T E R T H R E E n u m e r i c b a s i c s

Other Arithmetic Operations on Signed Integers

As part of our examination of unsigned integers, we saw that we could
use simplified forms of adder and subtracter to implement the increment
and decrement operations. The same argument applies to incrementing
and decrementing 2s-complement signed integers. However, we won’t go
into the details here. As with unsigned integers, we can use the � operator
in Verilog models to add 1 to a signed value to increment, and use the
� operator to subtract 1 to decrement the value.

Comparison of signed integers is also done similarly to comparison
of unsigned integers. The main difference arises from the negative weight
for the sign bit. Hence, instead of using xn� 1 �

yn� 1 to compare the most

significant bits in the comparator for x�y, we substitute

xn� 1 �yn� 1 to

compare the sign bits. This follows, since a nonnegative number, with a
sign bit of 0 is greater than a negative number with a sign bit of 1. We
make the corresponding adjustment in a comparator for x	y. The Ver-
ilog comparison operators, 	, �, 	�, and ��, all work on signed values
in an analogous way to unsigned integers.

Scaling a signed integer by a constant power of 2 is slightly different
for signed integers than for unsigned integers. Multiplying by 2k involves
shifting to the left by k positions and appending k bits of 0 to the least
significant end. This is the same logical shift left operation that we say for
unsigned numbers. However, if we need to represent the result in the same
number of bits as the original unscaled number, we must truncate using
the resizing rules for 2s-complement described earlier. Thus, the truncated
bits must all be the same as the original sign bit, and the sign of the result
must also have that same sign. Dividing by 2k involves shifting the bits
right by k positions, discarding the k least significant bits and appending
k copies of the original sign bit at the most significant end. This operation
is called an arithmetic shift right. It differs from a logical shift right in the
replication of the sign bit instead of filling with 0 bits. Proof that these
operations correctly implement scaling is left to Exercise 3.54.

In Verilog, we can apply the 			 and ��� operators to signed oper-
ands. The 			 operator, like the 		 operator, performs a logical shift
left, but the ��� operator performs an arithmetic shift right. For exam-
ple, if the signed net or variable s has the value 11110011, representing
the value �1310, the Verilog expression

s <<< 2

would yield the value 11001100, representing the value �5210. The
expression

s >>> 2

would yield the value 11111100, representing the value �410.

The final operation that we discussed in the context of unsigned
integers was multiplication. Extending the multiplier design that we
described there to deal with 2s-complement signed numbers gets quite
complicated, since we need to deal with sign extension within partial
products. In real designs, signed multipliers are based on transformations
of this basic approach to reduce the amount of circuitry required and to
improve performance. We will not go into detail here, but refer to the
books listed in Section 3.6, Further Reading. In any case, using our design
methodology, we can simply express multiplication in Verilog using the *
operator on signed values and let synthesis CAD tools choose an appro-
priate multiplier circuit to use.

1. What is the difference in representation between unsigned binary
and 2s-complement signed binary?

2. What is the range of values that can be represented using 12-bit
2s-complement signed binary form?

3. Write a Verilog declaration for a net that represents a number in the
range �512 to 511 in 2s-complement signed form.

4. Resize the 2s-complement numbers 01110001 and 11110011 to
12 bits and 6 bits. In each case, does the result correctly represent
the same value as the original?

5. Negate the 2s-complement signed number 11110010.

6. How is a signed adder used to perform signed subtraction?

7. How is a 2s-complement signed number multiplied by 16? How is it
divided by 16?

3.3 F I X E D - P O I N T N U M B E R S

While many applications deal with integer data, there is a growing list of
applications that also deal with fractional numeric data. Many such appli-
cations involve digital signal processing, in which time-varying analog
signals are sampled, converted to a digital representation and subject to
numerical operations. For example, most modern audio devices deal with
sampled audio signals and perform operations such as filtering, amplifi-
cation and equalization. The audio samples are approximations to real
numbers within a given range. The circuits representing and operating
upon the samples need to deal with fractional values, that is, values that
lie between integers. In this section, we will introduce the notion of fixed-
point representation of nonintegral values.

3.3.1 C O D I N G F I X E D - P O I N T N U M B E R S

Suppose we need to represent numeric values that lie in the range �12.0
to �12.0. Since there are an infinite number of real numbers in that range,

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

3.3 Fixed-Point Numbers C H A P T E R T H R E E 131

132 C H A P T E R T H R E E n u m e r i c b a s i c s

we cannot represent all of them. Instead, we determine a precision, based
on the requirements of our application, and approximate values with a
multiple of that precision. For example, if our chosen precision is 0.01, we
would round each value to the nearest multiple of 0.01. Thus an original
value of 10.23683 would be approximated with a value of 10.24.

When we write decimal numbers in this way, we are extending the
positional notation that we described for integers in Section 3.1. We use
the decimal point to mark the boundary between digits whose weight is a
nonnegative power of 10 and digits whose weight is a negative power of
ten. For example, the number 10.2410 is

10.2410 � 1 � 101 � 0 � 100 � 2 � 10 �1 � 4 � 10�2

We can extend this idea to binary, in which the digits are weighted
with powers of 2 and each binary digit (each bit) is 0 or 1. Thus, the
binary number 101.012 is

101.012 � 1 � 22 � 0 � 21 � 1 � 20 � 0 � 2 �1� 1 � 2�2

Since we are dealing with nonintegral numbers, we use negative powers of
2 for the fractional part. We refer to the period dividing the binary num-
ber into its integral and fractional parts as the binary point.

When we come to implement nonintegral numbers in digital systems,
the question arises of how to represent the binary point. The fixed-point
representation relies on the position of the binary point being implicit. We
just represent the bits, as we did for integral values, as a vector with one
element per bit position. Thus, the number 101.012 could be represented
by the bit vector 10101, with the assumption that the binary point lies
two places from the right.

example 3 .18 What number is represented by the fi xed-point binary
number 01100010, assuming the binary point is four places from the right?

solut ion The number is

 0110.00102

�0� 23 � 1 � 22 � 1 � 21 � 0 � 20 � 0 � 2 �1 � 0 � 2 �2 � 1 � 2 �3

� 0 � 2 �4

� 0 � 4 � 2 � 0 � 0 � 0 � 1

8

� 0 � 6.12510

In general, we write an n-bit unsigned fixed-point number with m
bits before the assumed binary point and f bits after the assumed binary
point, where n�m� f. The number x represented by the bits xm� 1, . . . ,
x0, x�1, . . . , x � f is

x��xm� 1 2m� 1 � . . .�x020 �x � 1 2 �1 � . . .�x � f 2 �f

The smallest number representable using such a code is 0, with a code
word of all 0 bits. The largest number representable has a code word of
all 1 bits, and represents 2m � 2�f. In between those bounds, numbers are
represented as multiples of the precision, 2�f.

Note that a code with no digits before the assumed binary point
is permissible, and indeed, practical. This would correspond to a code
with m� 0. In such a code, all of the bits represent the fractional part
of the number, so the range is between 0 and 1 � 2�f. We can even go
so far as to have the assumed binary point several positions to the left of
the left-most bit, that is, for m to be negative. For example, a code with
m��3 and f� 13 would be a 10-bit code with values ranging from 0 to
2�3 � 2�13 in steps of 2�13, or in decimal, from 0 to 0.12487. . . in steps
of 0.000122. . . .

Similarly, we can have a fixed-point code with no digits to the right of
the binary point, that is, with f� 0. Numbers represented in such a code
are, in fact, unsigned integers. If we substitute f� 0 in the expressions for
the upper bound and precision, we get an upper bound of 2m � 1 and a
precision of 1, as we would expect for integers. Thus, integers are just a
special case of fixed-point representation.

We can also use fixed-point representation for signed fractional num-
bers. We use the same approach as we did for integers, changing the weight
of the most significant digit to be negative. This gives us a 2s-complement
fixed-point signed representation. In this case, the number x represented
with m bits before and f bits after the assumed binary point is

x�xm� 1 2m� 1 � . . . �x020 �x � 1 2�1 � . . . �x � f 2�f

The range of numbers represented using this form is from �2m� 1 to
2m� 1 � 2�f, with a precision of 2�f. Again, we can have a code with
m being zero or negative. Since the left-most bit in a signed fixed-point
representation is the sign bit, a code that represents values between �1
and just less than 1 has m� 1, with the single bit before the binary point
being the sign bit.

example 3 .19 What number is represented by the signed fi xed-point
binary number 111101, assuming the binary point is four places from the right?

solut ion The number is

11.11012

�� 1 � 21 � 1 � 20 � 1 � 2�1 � 1 � 2�2 � 0 � 2�3 � 1 � 2�4

�� 2 � 1 �1
�
2

�1
�
4

� 0 � 1�
16

��0.187510

Having described how we can represent fixed-point numbers with
a given range and precision, the question arises of determining what

3.3 Fixed-Point Numbers C H A P T E R T H R E E 133

134 C H A P T E R T H R E E n u m e r i c b a s i c s

range and precision to use in a given application. The answer is not
simple, and depends on the application. In digital signal processing
applications, where fixed-point numbers are used to represent samples
of analog signals, the range of the representation affects the dynamic
range (the ratio of maximum to minimum amplitude) of signals that
can be processed, and the precision affects the signal-to-noise ratio (a
measure of quality or fidelity) of the system. If the system is to per-
form arithmetic operations on the fixed-point values to implement
some processing algorithm, the precision affects the numerical behavior
of the algorithm. The finite precision of the representation means that
analog signal values are only represented approximately, thus, there
is an inherent error in the representation. Some numerical processing
steps can magnify the effect of the error. Also, processing steps might
yield intermediate values whose range differs from that of the samples,
requiring a greater range, and thus more bits, for their representation.
Mathematical analysis of the behavior and sensitivity of numerical
computations is beyond the scope of this book. Nonetheless, it is a vital
early design step in applications that implement numerical processing
procedures. More information is provided in the reference books cited
in Section 3.6, Further Reading.

Fixed-Point Representation in Verilog

We can represent fixed-point numbers in Verilog using vectors. When we
use vectors for integers, we have consistently declared them with index
values corresponding to the binary weights. We can follow the same con-
vention when declaring vectors representing fixed-point numbers. We
specify the left and right index bounds, indicating the power of two for
the weights of the most-significant and least-significant bits, respectively.
We assume that the binary point is between indices 0 and �1, whether
those indices actually occur in a given vector or not.

example 3 .20 Write Verilog module declarations for a code converter
that has an input representing an unsigned number in the range 0 to 48 with
a precision of at least 0.01, and an output representing a signed number in the
range �100 to 100 with a precision of at least 0.01.

solut ion For the input, we need 6 bits before the binary point,
since élog248ù � 6. We need a precision that is smaller than 0.01. Since
log20.01��6.64, we need 7 bits after the binary point. For the output,
élog2100ù � 7, so we need 7 bits, plus one for the sign bit, giving 8 bits before
the binary point. We just need to extend the 6 pre-binary-point input bits with
two zero bits to get the 8 pre-binary-point output bits. Since we need the same
output precision as the input, we use the same number of bits after the binary
point, namely, 7. The module definition is

module fixed_converter (input [5:–7] in,
output signed [7:–7] out);

assign out = {2'b0, in};

endmodule

In our discussion of integers, we mentioned that Verilog provides the
type integer for abstract representation of numbers. Unfortunately, Veri-
log does not provide a corresponding type for abstract representation of
fixed-point numbers. Abstract fixed-point types could, in principle, be
included in the language, as has been done in the Ada programming lan-
guage, for example. While we might hope that abstract fixed-point types
might be included in a future version of Verilog as applications become
more common, for now, we will just make use of the vector types.

For testbenches in Verilog, however, we can make use of a built-in
type real. We can declare a variable (but not a net) to be of this type as
follows:

real x;

Real variables are actually represented using floating-point format,
described in Section 3.4. However, we can use them for nonintegral val-
ues to be applied to the inputs or checked at the outputs of models using
fixed-point representation. Some examples are

real r1, r2;
wire [5:-16] x, y;
wire [8:-14] z;

r1 <= $itor(x)/2**16;
r2 <= r1 / ($itor(y)/2**16);
z <= $rtoi(r2 * 2**14);

The conversion function $itor used here converts from a vector value,
interpreted as an integer, to a real-number value. The scaling is required,
since our actual interpretation of the vector is a fixed-point value. The
conversion function $rtoi works in the reverse direction, from a real-
number value to a vector interpreted as an integer. Again, scaling is
required to take account of our actual interpretation of the vector as a
fixed-point value.

3.3 Fixed-Point Numbers C H A P T E R T H R E E 135

136 C H A P T E R T H R E E n u m e r i c b a s i c s

3.3.2 O P E R AT I O N S O N F I X E D - P O I N T N U M B E R S

We now turn to implementation of arithmetic operations on fixed-point
numbers. We have already covered most of what we need in our discus-
sion of arithmetic operations on integers, since fixed-point numbers can
be viewed as scaled integers. For example, if x and y are fixed-point num-
bers with the binary point f positions from the right, then x � 2f and y � 2f
are integers represented by the same bit vectors as x and y, respectively.
Furthermore,

x � y � (x � 2f � y � 2f)/2f

We know how to add the two integers, and dividing by 2f simply consists
of moving the binary point f places to the left, giving us the result in the
same fixed-point format as x and y. Thus, we can use the same kinds of
adder circuits for fixed-point numbers as for integers. Similar arguments
hold for subtraction, incrementing, decrementing, scaling by constant
powers of 2, and resizing.

One issue we need to be aware of is that a design might represent dif-
ferent signals as fixed-point numbers of different lengths or with the binary
point in different positions. When we perform operations such as addition
or subtraction, we need to ensure that we add or subtract the bits with
corresponding binary weights, wherever they occur in a vector. We may
need to resize one operand to align it with the other. If we need to add or
truncate on the left-hand end of a fixed-point number, the same consider-
ations apply for resizing integers. Thus, in the case of unsigned fixed-point
numbers, we add 0 bits to the left to extend the number, and we truncate
0 bits to reduce its size. In the case of 2s-complement signed numbers, we
replicate the sign bit to extend the number, and we truncate bits to reduce
the number, provided the truncated bits and the resulting sign bit are all
the same as the original sign bit. If we need to add or truncate on the right-
hand end of a number, things are simpler, since the right-most bits all have
positive weight. For both unsigned and 2s-complement representations,
we add 0 bits to extend and truncate bits to reduce the size.

example 3 .21 Show how to use an adder for two signed fi xed-point
signals: a, with 4 pre-binary-point and 7 post-binary-point bits, and b, with
6 pre-binary-point and 4 post-binary-point bits. The result c should have
6 pre-binary-point and 4 post-binary-point bits.

solut ion The operand a needs to be sign extended by two bits on the
left-hand end and can be truncated by three bits on the right-hand end. A 10-bit
adder is needed, connected as shown in Figure 3.19.

Unfortunately, the Verilog � and � operators applied to vector oper-
ands representing fixed-point numbers do not take care of alignment. They

x0

10-bit
adder

……

a–4

a–5

a–6

a–7

x7a3

x8

x9

y0……

b–4

y7b3

b4

b5

c–4

c3

c4

c5

…

y8

y9

s0…
s7

s8

s9

F I G U R E 3 .19 Alignment of
operands for fi xed-point addition.

just perform the operations assuming the right-most bits of the operands
are the corresponding least significant bits. If both operands are declared
with the same index bounds, the operations are performed correctly for
the fixed-point interpretation of the values. If, however, the index bounds
are not the same, we need to extend or truncate both ends of the operands
to make sure that the assumed binary points align.

example 3 .22 Write Verilog declarations and an assignment to perform
the addition described in Example 3.21.

solut ion The declarations for the nets a, b and c are

wire signed [3:-7] a;
wire signed [5:-4] b, c;

We could try the following assignment as a first attempt:

assign c = a + b;

Since a is 11 bits and b is 10 bits, the � operator would sign extend b to 11 bits
and perform an 11-bit addition. The implicit binary points would be misaligned
by three places. To correct this, we need to sign extend the value of a by 2
bits, and to truncate the 3 least signficant bits of a. We can use a part select to
perform the truncation, but the result of a part select is treated as unsigned in
Verilog. We can use the $signed conversion operation to re-interpret it as signed.
The following assignment incorporates these corrections:

assign c = {{2{a[3]}}, $signed(a[3:–4])} + b;

Another related issue to be aware of is the position of the binary point
in the result of a multiplication. We can appeal to the way in which we
do multiplication of decimals for an analogy. Suppose, for example, that
we wish to multiply 23.76 by 3.128. We first multiply the digits without
regard to the decimal points to get 7432128. We then add the number of
post-decimal digits in the operands, namely, 2 and 3, to get the number of
post-decimal digits in the result, namely, 5. Thus the product is 74.32128.

By analogy, multiplying two fixed-point binary numbers with m1 and m2
pre-binary-point bits and f1 and f2 post-binary-point bits, respectively, gives
us a product with m1�m2 pre-binary-point bits and f1� f2 post-binary-
point bits. For example, multiplying 1.1012 by 10.12 gives 100.00012. If

3.3 Fixed-Point Numbers C H A P T E R T H R E E 137

138 C H A P T E R T H R E E n u m e r i c b a s i c s

we are to use the Verilog * operator to produce a product of this length, we
must extend each operand on the left to the final product size.

1. How is a nonnegative number x represented as a sum of powers of
2 in fi xed-point form?

2. What range of values can be represented as signed fi xed-point
numbers with m pre-binary-point bits and f post-binary-point bits?

3. Write a Verilog declaration for a net x, not to represent numbers in
the range 0.0 to 359.9 with a precision of 0.1.

4. Write a Verilog assignment to subtract the value of a net s2 from the
value of a net s1, where both are of type wire [7:–7], to get a result
net s3 of the same type. No overfl ow detection is required.

5. How many bits are required for the product of two fi xed-point
numbers with 5 pre-binary-point bits and 9 post-binary-point bits?

3.4 F LO AT I N G - P O I N T N U M B E R S

The final number representation that we will discuss in this chapter is
floating-point, which is another representation for approximating real
numbers. They allow for representation of a greater range of numbers
than a fixed-point representation with the same number of bits. However,
implementation of arithmetic operations is considerably more complex.
Indeed, most circuits for floating-point arithmetic are not combinational,
since they would otherwise be too complex and reduce overall system per-
formance. Since we have deferred detailed discussion of sequential circuit
design to a later chapter, we will not go into circuits for floating-point
arithmetic here. For completeness of our survey of numeric representa-
tions in this chapter, we will just introduce floating-point format. Unfor-
tunately, Verilog only provides rudimentary features for dealing with
floating-point numbers. They are not sufficient for modeling floating-
point circuits, so we will not discuss them here.

3.4.1 C O D I N G F LO AT I N G - P O I N T N U M B E R S

Floating-point representation in digital systems is based on the same ideas
as scientific notation for decimal numbers. We can write numbers that are
very small or very large as the product of a fixed-point decimal fraction and
a power of 10. This saves us from writing long strings of leading or trailing
zeros and makes the number much easier to read and understand. Exam-
ples of numbers expressed in scientific notation are 6.02214199 � 1023

(Avogadro’s number) and 1.60217653 � 10�19 (the charge, in Coulombs,
of an electron). We call the fractional part before the � sign the mantissa
and the power to which 10 is raised the exponent.

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

Floating-point representations adopt these ideas, but use binary instead
of decimal. The mantissa is expressed as a fixed-point binary number, the
base of the exponent is 2, and the exponent is a signed binary number.
Within these general guidelines, there are many alternative floating-point
representations, and, historically, several have been implemented in com-
puter designs. However, modern general-purpose computers have almost
universally adopted a floating-point representation standardized as IEEE
Standard 754, the so called IEEE floating-point format. In this section,
we will describe this format and formats that differ from it only in the
number of bits used for the mantissa and exponent.

A floating-point number is represented as a vector of bits arranged
as shown in Figure 3.20. The mantissa is represented using a sign bit, s,
located in the left-most bit of the vector, and the unsigned magnitude,
located in the right-most m bits of the vector. The exponent is repre-
sented using e bits between the sign bit and the mantissa magnitude. The
IEEE floating-point standard defines two standard floating-point sizes:
32-bit single precision, with m � 23 bits and e � 8 bits; and 64-bit double
precision, with m � 52 bits and e � 11 bits. These are implemented by
most computers. However, if we are designing custom digital circuits for
specific applications, we need not be constrained to these sizes. We can
choose smaller or larger sizes in order to meet the requirements and con-
straints of the application. After we’ve explored some more of the details
of the way in which numbers are represented, we will see how the sizes
of the exponent and mantissa affect the range and precision of numbers
represented.

A floating-point number is usually normalized, meaning that the
magnitude of the mantissa is greater than or equal to 1.010 (that is, 1.02)
and less than 2.010 (that is, less than or equal to, 1.111. . .12), with the
exponent being adjusted to give the required value for the number. The
mantissa magnitude could be represented as a fixed-point fraction with
the binary point located just to the right of the most significant bit. How-
ever, as a consequence of normalizing, the most significant bit is always 1.
So we can gain an extra bit of precision by not explicitly representing
the most significant bit, but assuming that it is 1. This implicit bit in the
floating-point format is called the hidden bit. Note that the mantissa is
not represented using 2s-complement encoding, even though it is a signed
value. The sign/magnitude representation turns out to have several advan-
tages, including simplification of circuits for some arithmetic operations.
We won’t go into details here.

Similarly, though the exponent is a signed number, it also is not
 represented in 2s-complement form. Rather, it is represented in excess
form. That is, for a given actual exponent value E, we represent it with the
e-bit unsigned binary code for E � 2e � 1 � 1. The value 2e � 1 � 1 is called
the bias, and is chosen so that a symmetric range of positive and nega-
tive actual exponent values can be represented. For example, if 5 bits are

s
e bits m bits

exp mantissa

F I G U R E 3 .20 Floating-point
format.

 3.4 Floating-Point Numbers C H A P T E R T H R E E 139

used for the exponent, the bias would be 24 � 1 � 15, that is, 011112. An
actual exponent value of 3 would be represented using the 5-bit unsigned
binary code for 3 � 15 � 18, that is 100102. The reason for using excess
coding is that all exponent codes are unsigned. Given the position of the
exponent within a floating-point code word, and the fact that numbers
with smaller exponents are smaller than numbers with larger exponents
(due to normalization), floating-point numbers can be compared using
the same hardware as for comparing integers. This is a useful trick for
saving cost and execution time in floating-point arithmetic hardware.

Let’s now consider the range and precision of values that can be
represented using floating-point format. As with fixed-point numbers,
the range and precision are important factors that influence the numeri-
cal behavior of computations. The range of values is determined by the
length of the exponent, since the most positive exponent determines the
largest value and the most negative exponent determines the smallest
value. The IEEE floating-point format reserves two exponent encodings
for special purposes: the largest encoding, 2e� 1, with all 1 bits; and the
smallest encoding, with all 0 bits. We will return to these shortly. Setting
them aside, the smallest exponent has an encoding of 1, representing an
actual exponent value of �2e� 1� 2. Putting this together with the smallest
mantissa magnitude of 1.0 gives us the smallest representable value of
�1.0� 2�2e� 1� 2. The largest exponent has an encoding of 2e� 2, repre-
senting an actual exponent value of 2e� 1� 1. Putting this together with
the largest mantissa magnitude of just under 2.0 gives us the largest rep-
resentable value of just under � 2.0� 2 2

e� 1 � 1, that is, � 2 2e� 1
. For IEEE

single-precision format, this corresponds to a range of approximately
�1.2� 10� 38 to �3.4� 1038, and for IEEE double-precision format,
a range of approximately �2.2� 10� 308 to �1.8� 10308. A custom
floating-point representation with a 5-bit exponent, on the other hand,
would give us a range of approximately �6.1� 10�5 to �6.6� 104.

When considering the precision of floating-point numbers, we usually
talk about relative precision, since absolute precision varies with the
exponent. The relative precision is determined by the number of bits in
the mantissa magnitude. All of the bits are significant, since there are
no leading zeros in the mantissa (taking into account the hidden bit). So
the relative precision remains the same across the full range of values,
and is approximately 2�m. Another way of thinking about precision is to
specify the number of significant decimal digits, which is approximately
m� log102, that is m� 0.3 digits. For example, IEEE single-precision for-
mat gives a precision of approximately 7 decimal digits, and IEEE double-
precision format gives approximately 16 decimal digits. A custom format
with 16 bits of mantissa magnitude would give a precision of approxi-
mately 5 decimal digits.

140 C H A P T E R T H R E E n u m e r i c b a s i c s

We can return now to the special exponent encodings that we mentioned
above. First, the smallest exponent encoding, all zeros, is used for denormal
numbers, in which the hidden bit is 0. The actual exponent is still repre-
sented using excess form, and so has a value of �2e� 1 � 1. Thus, denormal
numbers are all smaller in magnitude than the smallest normalized number,
though they have fewer significant bits. They allow for gradual under-
flow in a computation, where the results diminish toward 0.0 once the
limit of precision has been reached. This feature of the representation
improves the numerical behavior of some algorithms. If all the mantissa
bits in a denormal number are 0, we get �0.0� 2� 2

e� 1 � 1. Thus, there
are two alternate representations for 0.0, one with a sign bit of 0 and the
other with a sign bit of 1. The IEEE standard specifies that a zero result
in most cases be represented by the nonnegative version, but that in any
case, the two versions should be deemed equal.

The other special exponent encoding, all 1s, has two uses. If the man-
tissa magnitude bits are all 0 (not counting the hidden bit), the number
represents an infinite value. The value of the sign bit determines whether
it is a positive or negative infinity. Operations that overflow generally
yield an infinite result, which is maintained in subsequent computations.
This avoids having to check for overflow until completion of a multistep
computation, thus improving performance. If the exponent encoding is
all 1s and the mantissa magnitude is other than all 0s, the value is said
to represent not a number (NaN). NaN results arise from computations
such as division of 0 by 0, and can also be maintained through a multistep
computation.

In addition to the representation for floating-point numbers, the IEEE
standard also specifies how arithmetic operations are to be performed,
provides options for specifying how operations are to be rounded, and
specifies the conditions under which exceptions may occur. (A system may
abort a computation or take recovery action when an exception occurs.)
The details are beyond the scope of this book, but can be found in the
Further Reading references.

For a given number of bits of representation, floating-point representa-
tion can give a larger range of values than fixed-point, albeit at the expense
of precision. The choice between floating-point and fixed-point in a given
application will depend largely on the range of values that must be repre-
sented, both for the input and output signals, as well as for intermediate
results during computation. There is also a trade-off with the complexity of
circuits needed to perform the computations. Fixed-point circuits are gen-
erally simpler, but if significantly more bits are needed to get the required
range, the circuits may consume more area. In many cases, the choice will
only be made after thorough exploration of the numerical behavior of
the computations to be performed and comparison of implementation

3.4 Floating-Point Numbers C H A P T E R T H R E E 141

142 C H A P T E R T H R E E n u m e r i c b a s i c s

complexities of alternate representations. This exploration will usually be
performed by a system architect early in the development process. The
result of the exploration will be a design specification that includes details
of number representations to be used within the system. In a circuit that
is customized for a particular application, a floating-point representation
can use exponent and mantissa sizes other than those defined by the IEEE
standard, thus reducing cost and potentially improving performance.

1. Express the number 4.510 in fl oating-point format with 5 bits of
exponent and 12 bits of mantissa magnitude.

2. What values are represented by the following bit vectors, interpreted
in fl oating-point format with 4 bits of exponent and 11 bits of
mantissa magnitude: 0000000000000000, 0111100000000000 and
0100010000000000?

3. Determine the minimum number of exponent and mantissa bits
required to represent a fl oating-point value in the range �100 to
100 with a precision of at least 4 decimal digits.

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

3.5 C H A P T E R S U M M A R Y

A nonnegative integer x less than or equal to 2n � 1 is represented in
n-bit unsigned binary form as

x�xn� 1 2
n� 1 �xn� 2 2

n� 2 � . . .�x020

A signed integer x between �2n� 1 and 2n� 1 � 1 inclusive is repre-
sented in n-bit 2s-complement form as

x��xn� 1 2
n� 1 �xn� 2 2

n� 2 � . . .�x020

Octal (base 8) and hexadecimal (base 16) are shorthand codes for
binary codes.

Unsigned and signed integers are modeled in Verilog using vector
values, or using the type integer. For signed integers the keyword
signed is used in the net or variable declaration. Arithmetic opera-
tors can be used for these types.

An unsigned number is zero-extended by adding 0s to the left, and is
truncated by discarding leading 0s. A 2s-complement signed number
is sign-extended by replicating the sign bit to the left, and is trun-
cated by discarding leading copies of the sign bit.

Addition of binary-coded integers is performed by an adder circuit.
The simplest form of adder is a ripple-carry adder. Fast carry chain,
carry-lookahead and other adder structures improve performance at
the cost of circuit area and power.

A 2s-complement signed integer is negated by complementing and
adding 1.

Subtraction of binary-coded integers can be implemented using an
adder by complementing the second operand and setting the carry in
to 1.

A magnitude comparator compares two binary-coded integers for
equality or inequality (greater than or less than comparison).

Binary-coded integers are multiplied by a power of two by a logical
shift left. Unsigned integers are divided by a power of 2 by a logical
shift right. 2s-complement signed integers are divided by a power of
2 by an arithmetic shift right.

A combinational multiplier forms partial products by multiplying
one operand by each bit of the other operand, then adds the partial
products to form the product.

�

�

�

�

�

�

�

�

�

�

�

3.5 Chapter Summary C H A P T E R T H R E E 143

144 C H A P T E R T H R E E n u m e r i c b a s i c s

Gray codes change only in one bit position between adjacent
|code words. They are commonly used in electromechanical
position sensors.

A fractional number can be represented in fixed-point binary form
by assuming a fixed position for the binary point. Arithmetic circuits
for integers can be used, since fixed-point numbers can be inter-
preted as scaled integers.

Fixed-point numbers are modeled in Verilog using vector values.
Arithmetic operators can be used for these types, provided the
implicit binary points are properly aligned.

A fractional number can be represented in floating-point binary form
with a signed mantissa and an exponent. IEEE format specifies sign/
magnitude representation for the mantissa and excess representation
for the exponent. Special representations are provided for denormal
numbers, infinities and not-a-number values.

Modeling a design using vector types and arithmetic operations allows
a synthesis tool to choose arithmetic components optimized for the
target fabric, subject to performance requirements and constraints.

3.6 F U R T H E R R E A D I N G

Digital Arithmetic, Miloš D. Ercegovac and Tomás Lang, Morgan
Kaufmann Publishers, 2004. A comprehensive reference on numeri-
cal representations and algorithms and circuit structures for arith-
metic operations.

Understanding Digital Signal Processing, Richard G. Lyons, Prentice
Hall, 2001. An introduction to the theory of digital signal process-
ing (DSP), including a discussion of the effects of finite fixed-point
representation.

IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-
1985. This standard defined the representation for single- precision
(32-bit) and double-precision (64-bit) and extended-precision
floating-point numbers. It also specifies how arithmetic operations
on such numbers are to be performed.

e x e rc i s e 3 . 1 Express the following decimal numbers in 8-bit unsigned
binary form: 5, 83 and 240.

e x e rc i s e 3 . 2 What decimal numbers are represented by the following
8-bit unsigned binary numbers: 00100101 and 11000000?

�

�

�

�

�

E X E R C I S E SE X E R C I S E S

