
s e q u e n t i a l bas i c s

Sequential circuits are the mainstay of digital systems. In this chapter,
we start by examining several sequential circuit elements that are widely
used in digital systems for storing information and for counting events.
We then see how a system can be built from two main sections: a data-
path and a control section. We complete the chapter with a discussion of
a clocked synchronous timing methodology based on the abstraction of
discrete time. This methodology is central to design of complex digital
systems.

4.1 S T O R A G E E L E M E N T S

In Chapter 1, we briefly introduced the idea of sequential circuits. We
described a sequential circuit as one whose outputs depend not only on
the current values of inputs, but also on the previous values of inputs.
Such circuits have some form of memory, or storage, of the history of
input values. We mentioned that sequential circuits are commonly regu-
lated by a periodic clock signal that divides the passage of time into dis-
crete clock cycles. We also showed one of the simplest elements for storing
values, a D flip-flop, that can store one bit of information. In this section,
we will look at further uses of the D flip-flop and other storage elements.

4.1.1 F L I P - F LO P S A N D R E G I S T E R S

As a reminder, the symbol for a D flip-flop is shown in Figure 4.1, and
a timing diagram is shown in Figure 4.2. The flip-flop is edge-triggered,
meaning that on each rising edge of the clk input, the current value of the
D input is stored within the flip-flop and reflected on the Q output. We
illustrated use of D flip-flops in sequential circuits in Example 1.2, where
we stored the previous two values of an input signal on successive clock
edges so that we could detect a given sequence of input values.

While it is possible to implement a flip-flop as a combination of gates,
it is not very instructive to do so. Moreover, flip-flops are provided as

D Q

clk

F I G U R E 4 .1 A D fl ip-fl op.

151

4
A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

primitive elements in most implementation fabrics, so we would only need
to implement one using gates in very exceptional circumstances. Advanced
books on IC design typically include more detailed treatment of flip-flop
implementation (see Section 4.6, Further Reading).

In most digital circuits, flip-flops are not used individually, but in
groups to store binary-coded values. A group of flip-flops used in this
way is called a register. Each flip-flop in the register stores one bit of the
code word of the stored value, as shown in Figure 4.3. The circuit at the
top of the figure shows that each bit of an input and an output signal is
connected to the input and output, respectively, of one of the flip-flops,
and that the clock signal is connected in common to the clock input of all
of the flip-flops. When there is a rising edge on the clock input, each flip-
flop in the register updates its stored bit from the signal connected to its
data input and drives the new value on its data output. The symbol for the
register is shown at the bottom of Figure 4.3. The difference, compared
to the symbol for a single flip-flop, is in the thick lines used for the data
input and output, denoting multiple bits. We can think of this as a more
abstract component that has similar behavior to a D flip-flop, except that
it stores a complete code word rather than a single bit.

We can model simple D flip-flops and registers in Verilog using an
always block of the form

always @(posedge clk)
q <= d;

This is the first of a small number of always-block templates that we will
introduce for modeling sequential circuits. It is important that we adhere
to the template structures, since synthesis tools can generally only syn-
thesize sequential circuits that use the templates. A complete description
of the templates and the way synthesis tools process them is included in
Appendix C.

We would place a block representing a flip-flop or register in the
statement part of a module. The notation @(...) after the always keyword
is called the block’s event list, and specifies an event to which the block
responds. In this case, the keyword posedge specifies that the event is a
positive (rising) edge, a change from 0 to 1, on the clock input clk. When

D Q

D Q

D Q

d(0)

…… …

d(1)

d(n)

n n

q(0)

q(1)

q(n)
clk

D Q

clk

clk

clk

clk

F I G U R E 4 .3 A register com-
posed of D fl ip-fl ops (top), and the
symbol for the register (bottom).

152 C H A P T E R F O U R s e q u e n t i a l b a s i c s

D

clk

Q

F I G U R E 4 .2 Timing diagram
for a D fl ip-fl op.

the event occurs, the block performs the statement that follows. (If there is
more than one statement to perform, we can group them using begin . . .
end keywords.) The statement in this case assigns the current value of the
data input d to the data output q. Since this assignment only happens on
rising edges of clk, and the value of q remains unchanged between rising
edges, the block models the behavior we described for an edge-triggered D
flip-flop or a register. The distinction between the two arises from the sizes
of d and q. If they are single bits, the block models a D flip-flop, storing
just a single bit of data. If d and q are vectors, the block models a register.

There are two further points to note about this model for a flip-flop
or register. First, the output q must be declared as a variable, for example,
using a reg or integer keyword. As we have previously mentioned, assign-
ments within procedural blocks must be made to variables, not nets. Sec-
ond, we have used a different form of assignment symbol, 	� instead of �,
in this block. The form using � is called a blocking assignment, and can be
used in blocks that model combinational logic, as we saw in Chapter 2.
The form using 	� is called a nonblocking assignment, and should be
used in assignments to variables representing the outputs of flip-flops or
registers. The reason for the distinctions arise from subtleties in the way
variables are updated during simulation of Verilog models. We will not go
into details in this book. (The details are covered in reference books on
Verilog.) Instead, we will simply follow the convention of using nonblock-
ing assignments in blocks modeling outputs of sequential logic.

One use for a register constructed from simple D flip-flops is as a
pipeline register in a sequential design. We will discuss this in further
detail in Chapter 9, focusing on the use of pipelining as a technique for
improving performance of a digital system. For now, consider the circuit
outlined at the top of Figure 4.4. Successive values of data arriving at
the input are processed by a number of combinational subcircuits, for
example, by arithmetic subcircuits built from components described in
Chapter 3. The total propagation delay of the circuit is the sum of the
propagation delays of the individual subcircuits. This total delay must be
less than the interval between arriving data values, otherwise data values
may be lost. If the total delay is too long, we can divide the circuit into
segments by inserting a register after each subcircuit, as shown at the

 4.1 Storage Elements C H A P T E R F O U R 153

D Q
combi-

national
circuit 1

D Q
combi-

national
circuit 2

D Q
combi-

national
circuit 3

d_in

clk

d_out

combi-
national
circuit 1

combi-
national
circuit 2

combi-
national
circuit 3

d_in d_out

clk clk clk

F I G U R E 4 .4 A circuit
composed of combinational
subcircuits (top), and a pipeline
containing the same subcircuits.

bottom of Figure 4.4. This arrangement is called a pipeline, as it allows
data and intermediate results to flow through over several clock cycles.
A new input value arrives at the beginning of each clock cycle. During
a clock cycle, each subcircuit uses the value from the preceding regis-
ter (or from the input, in the case of the first subcircuit) to perform its
combinational function and to yield an intermediate result. On the next
rising clock edge, the intermediate results are stored in the registers at the
outputs of the subcircuits. Each intermediate result is then used by the next
subcircuit during the next clock cycle. Computation is thus performed in
assembly-line fashion. A new final result reaches the output on each clock
edge, having taken several clock cycles to be computed.

example 4 .1 Develop a Verilog model for a pipelined circuit that com-
putes the average of corresponding values in three streams of input values, a, b

and c. The pipeline consists of three stages: the fi rst stage sums values of a and
b and saves the value of c; the second stage adds on the saved value of c; and
the third stage divides by three. The inputs and output are all signed fi xed-point
numbers indexed from 5 down to �8.

solut ion The module definition is

module average_pipeline (output reg signed [5:–8] avg,
 input signed [5:–8] a, b, c,
 input clk);

wire signed [5:–8] a_plus_b, sum, sum_div_3;
reg signed [5:–8] saved_a_plus_b, saved_c, saved_sum;

assign a_plus_b = a + b;

always @(posedge clk) begin // Pipeline register 1
saved_a_plus_b <= a_plus_b;
saved_c <= c;

end

assign sum = saved_a_plus_b + saved_c;

always @(posedge clk) // Pipeline register 2
saved_sum <= sum;

assign sum_div_3 = saved_sum * 14'b00000001010101;

always @(posedge clk) // Pipeline register 3
avg <= sum_div_3;

endmodule

154 C H A P T E R F O U R s e q u e n t i a l b a s i c s

The nets and variables declared within the module are used for the intermediate
results of the arithmetic operations and for the values saved in registers. The sim-
ple assignment statements model the arithmetic operations (two additions and a
multiplication). We express the division by three as a multiplication by one-third
(expressed as the binary fixed-point number 14'b00000001010101), as multipli-
ers are generally simpler circuits than dividers. Moreover, some implementation
fabrics have built-in multipliers that can be used. The three always blocks model
the pipeline registers storing the intermediate results. Note that the first register
actually stores two values together: the sum of a and b, and the input value c. If
c were not saved in this way, the wrong value from the input stream c would be
added by the second adder, rather than the value corresponding to the saved sum
of a and b. Also note that the third register assigns directly to the output avg, as
the value saved by the third register is the value required at the output.

The D flip-flop that we have considered so far is somewhat limited
in its use, since it stores a new value on every rising edge of the clock
input. Many systems only require a flip-flop to store a value when some
controlling condition arises. For that, we can use an enhanced form of D
flip-flop with a clock-enable input (sometimes call a load-enable input),
illustrated in Figure 4.5. This flip-flop only updates the stored value when
the CE input is 1 at the time of a rising clock edge. If the CE input is 0 on a
rising clock edge, the flip-flop maintains the stored value unchanged. This
behavior is shown in the timing diagram in Figure 4.6. As we mentioned
in Section 1.3.6, the value on the data input must be stable for the setup
time before and the hold time after the clock edge. A similar constraint
applies to the clock-enable input. We say that the clock-enable input is a
synchronous control input, meaning that it must be stable around a clock
edge, and its effect is only acted upon when a clock edge occurs.

As with the simple D flip-flop, we can use multiple flip-flops with
clock enable in parallel to form a register with clock enable. This form of
register is probably the most common used in sequential digital systems, as
it allows for storage of an intermediate result computed during one clock
cycle to be used as an input to a subsequent computation any number of

 4.1 Storage Elements C H A P T E R F O U R 155

D
CE

Q

clk

F I G U R E 4 .5 A D fl ip-fl op
with clock-enable input.

D

CE

clk

Q

F I G U R E 4 .6 Timing diagram
for a D fl ip-fl op with clock enable.

clock cycles later. We will see in Section 4.3 how we can develop control
conditions that govern when data is stored in registers.

We can model flip-flops and registers with clock enable inputs by
extending the always-block template used to model simple D flip-flops
and registers. The revised template is

always @(posedge clk)
if (ce) q <= d;

The difference between this and the previous template is the addition of
the if statement. When a rising edge occurs on the clk input, the output
signal is only updated if the ce input is 1; otherwise, the stored value is
unchanged. As before, the sizes of d and q determine whether the block
models a single-bit flip-flop or a multibit register.

A further extension to the simple flip-flop involves adding an input
to reset the stored value to 0. This is useful for ensuring that the flip-flop
is initialized to a known state when power is first applied to a sequential
circuit or when the circuit must be restarted from an initial state. Some
circuits include a push button to allow the user to reset the circuit, for
example, when it has encountered an error condition from which it cannot
recover. Figure 4.7 shows a symbol for a flip-flop with both a clock-enable
input and a reset input. The reset input overrides the clock-enable and
data inputs. That is, when reset is 1, the stored value and the output Q are
both changed to 0, regardless of the values on the CE and D inputs.

An important question to consider is the timing of changes on the
reset input and when the reset operation occurs. There are two alternative
behaviors, and a flip-flop with reset exhibits one or the other. The first
reset behavior is called synchronous reset, and treats the reset input as a
synchronous control input. This behavior is illustrated in Figure 4.8, in
which the reset input causes the flip-flop to be reset on the first, fourth
and fifth rising clock edges. Notice that, during the seventh clock cycle,
reset changes to 1, but then changes back to 0 before a clock edge occurs.
Since reset is 0 at the time of the next clock edge, the flip-flop is not reset.

D
CE

Q

reset
clk

F I G U R E 4 .7 A D fl ip-fl op
with clock-enable and reset inputs.

D

CE

reset

clk

Q

1 2 3 4 5 6 7 8

F I G U R E 4 .8 Timing diagram
for a fl ip-fl op with clock-enable
and synchronous reset inputs.

156 C H A P T E R F O U R s e q u e n t i a l b a s i c s

Notice also that we have shown the initial value of the Q output as neither
0 nor 1, but some unknown value, denoted by the grey shading. The fact
that reset is 1 at the first clock edge forces the output to the known 0
value. Finally, we have ensured that the value of reset, like other data and
control inputs is stable around each clock edge.

The second reset behavior for flip-flops is called asynchronous reset.
In this case, the reset input is treated as an asynchronous control input,
that is, when it changes to 1, it has an immediate effect regardless of
the value of the clock or occurrence of clock edges. Moreover, the effect
continues for as long as the reset input is 1. This behavior is illustrated in
Figure 4.9. The timing of the inputs is the same as in Figure 4.8, but the
output timing is different. At the start and in the third cycle, Q changes
to 0 as soon as reset changes to 1, rather than waiting until the next clock
edge. Furthermore, in the seventh cycle, the reset pulse that was ignored
in the previous diagram takes effect in this case.

There is a potential problem that we should be aware of when design-
ing circuits with asynchronous reset. The effect of changing the reset
input from 1 back to 0 is to allow flip-flops to resume normal operation.
However, if the change occurs close to a clock rising edge, the effect may
occur at that edge or be delayed until the subsequent edge. This can cause
problems in a system with numerous flip-flops, all of which are connected
to the same clock and reset signals. Differences in the wiring delays can
cause the change of reset from 1 to 0 to occur at slightly different times
relative to clock edges for different flip-flops. Consequently, some flip-
flops may be released from reset and resume storing values at one clock
edge, whereas others might not resume until the subsequent clock edge,
resulting in incorrect circuit operation. The solution to this problem is
to ensure that the release of the reset signal from 1 to 0 always occurs
synchronously with the clock; that is, to ensure that the change occurs
sufficiently before a clock edge that the reset signal is stable around the
edge for all flip-flops in the system.

 4.1 Storage Elements C H A P T E R F O U R 157

D

CE

reset

clk

Q

1 2 3 4 5 6 7 8

F I G U R E 4 .9 Timing diagram
for a fl ip-fl op with clock-enable
and asynchronous reset inputs.

The choice between synchronous and asynchronous reset may be
influenced by the implementation fabric used for a design. Some fabrics
only provide flip-flops with one or the other form of reset. Others, such
as many FPGAs, allow us to program each flip-flop to use one or the
other form of reset. Alternatively, the choice between the two forms of
reset may be made by a system architect based on requirements for the
design or the timing practices adopted for the design project. In that case,
the chosen form of reset would be incorporated as a design specification
for the subcircuits of the larger system. Generally, we should simplify the
timing of a design by adopting one form of reset, either synchronous or
asynchronous, uniformly throughout the design.

Just as we can use simpler flip-flops in parallel to form registers, so we
can use flip-flops with reset in parallel. The result is a register that can be
reset to a code word of all 0s. We can model flip-flops and registers with
reset in Verilog by extending our previous always-block templates. The
template for a flip-flop with synchronous reset and clock enable is

always @(posedge clk)
if (reset) q <= 1'b0;
else if (ce) q <= d;

On a rising clock edge, the block first checks whether the reset input is
active, since this input has priority over all of the other logic in the flip-
flop. If the reset input is active, the output is reset to 0. If we are modeling
a multibit register, we would change the assignment to something like

q <= 6'b0;

to clear all output bits. The length of the vector will, of course, depend on
the number of elements in the vector output signal. The remainder of the
always-block template, after the test for reset, is the same as before. Only
if reset is inactive does the block check the clock-enable input.

If we need to model a flip-flop or register with asynchronous reset, we
need to take account of the fact that the reset input has an effect regardless
of the value of the clock input. The always-block template for this kind
of flip-flop is

always @(posedge clk or posedge reset)
if (reset) q <= 1'b0;
else if (ce) q <= d;

158 C H A P T E R F O U R s e q u e n t i a l b a s i c s

We have included the reset input in the event list of the block, since the
block may need to update the outputs on a change of value of the reset
input, not just on a change of value of the clock input. The revised block
checks the value of the reset input first, before it looks at the clock input.
If the reset input is 1, the block clears the output immediately. Only if the
reset input is 0 does the block proceed to check for activity of the syn-
chronous control input on a rising clock edge. As before, we can change
the assignment to the output to reflect the difference between a single-bit
flip-flop and a multibit register.

example 4 .2 Develop a Verilog model for an accumulator that calculates
the sum of a sequence of fi xed-point numbers. Each input number is signed with
4 pre-binary-point and 12 post-binary-point bits. The accumulated sum has 8
pre-binary-point and 12 post-binary-point bits. A new number arrives at the
input during a clock cycle when the data_en control input is 1. The accumulated
sum is cleared to 0 when the reset control input is 1. Both control inputs are
synchronous.

solut ion The module requires a clock input, two control inputs, a data
input and a data output, as follows:

module accumulator
(output reg signed [7:-12] data_out,
input signed [3:-12] data_in,
input data_en, clk, reset);

wire signed [7:-12] new_sum;

assign new_sum = data_out + data_in;

always @(posedge clk)
 if (reset) data_out <= 20'b0;
 else if (data_en) data_out <= new_sum;

endmodule

The first assignment in the module models the addition of the accumulated
sum (data_out) and the data input. The data input is implicitly sign-extended to
match the size of the sum. The always block models the register used to accumu-
late the sum. It is based on the template for a register with synchronous reset and
clock enable. When reset is 1, the block clears the register output, represented by
the output variable data_out. If reset is 0, the block checks whether a new data
value has arrived and been added to the sum. In that case, the register output is
updated with the new sum; otherwise, it is unchanged.

4.1 Storage Elements C H A P T E R F O U R 159

160 C H A P T E R F O U R s e q u e n t i a l b a s i c s

We have now covered the main aspects of flip-flops and registers.
There are other extensions, but they are just variations on the themes we
have seen. One such variation is the addition of a control input to preset
a flip-flop to 1. This is much like a reset control input, and may be either
synchronous or asynchronous. Another variation is for the reset control
input to use active-low logic, that is, for a 0 on the reset input to clear the
stored data and output. Likewise, a preset control input might use active-
low logic. A further variation is to use active-low logic for the clock input.
This involves triggering a change of stored value on a falling edge of the
clock signal rather than on a rising edge.

example 4 .3 The symbol in Figure 4.10 shows a negative-edge-triggered
fl ip-fl op with clock enable, negative-logic asynchronous preset and clear, and
both active-high and active-low outputs. It is illegal for both preset and clear to
be active together. Develop a Verilog model for this fl ip-fl op.

solut ion The module definition is

module flip_flop_n (output reg Q,
 output Q_n,
 input pre_n, clr_n, D,
 input clk_n, CE);

always @(negedge clk_n or
 negedge pre_n or negedge clr_n) begin

if (!pre_n && !clr_n)
$display("Illegal inputs: pre_n and clr_n both 0");

if (!pre_n) Q <= 1'b1;
else if (!clr_n) Q <= 1'b0;
else if (CE) Q <= D;

end

assign Q_n = ~Q;

endmodule

We adopt the convention of appending “_n” to a name to indicate active-low
logic. The always block models the flip-flop behavior. Since the pre_n and clr_n
inputs are asynchronous control inputs, we include them, along with the clock
input, in the event list of the block. Since they are all active-low inputs, we use
negedge to specify that the block should respond to negative (falling) edges, that
is, to changes from 1 to 0. Within the block, we check that the illegal condition
described in the specification does not arise during use of the flip-flop in a
circuit. The remainder of the block is based on the template for a flip-flop with
asynchronous control. In this case, we have two asynchronous control inputs, so

D
CE

Q

Q

pre

clr
clk

F I G U R E 4 .10 A negative-
edge-triggered fl ip-fl op.

we test them, one after the other, before checking for the synchronous
clock-enable control input.

4.1.2 S H I F T R E G I S T E R S

A register, as we have seen, stores data and makes it available at the out-
put unchanged. A shift register, on the other hand, can perform a shift
operation on the stored data. We described shift operations in Chapter 3,
and showed how a shift operation has the effect of scaling a numeric value
by a power of 2. As we will see in Chapter 8, shift operations are also used
to implement serial transfer of data, that is, transfer one bit at a time over
a single wire, instead of using separate wires for each of the bits of data.
For now, we will just focus on use of shift registers to combine arithmetic
scaling with storage functions.

Figure 4.11 shows a symbol for a shift register, and Figure 4.12 shows
how it can be implemented with D flip-flops and multiplexers. The shift
register is updated on a rising clock edge when CE is 1. In that case, when
the load_en signal is 1, the multiplexers select new data on the D(n–1)
through D(0) inputs for updating the register. Alternatively, when CE is 1
and load_en is 0, the multiplexers select the existing data, shifted right by
one place. The least significant bit is discarded, and the most significant
bit is updated with the value of the D_in signal. If we tie D_in to 0, the
shift register performs a logical shift right operation on the stored data.
Alternatively, if we connect the most significant output bit back to D_in,
the shift register performs an arithmetic shift right operation. We will see
in Chapter 8 how we connect the D_in input and the Q(0) output for serial
transfer of data.

 4.1 Storage Elements C H A P T E R F O U R 161

F I G U R E 4 .11 A symbol for a
shift register.

D
D_in

CE
load_en

Q

clk

F I G U R E 4 .12 A shift regis-
ter implemented with D fl ip-fl ops
and multiplexers.

D

CE

Q
0

1

D

CE

Q
0

1

D

CE

Q
0

1

Q(n–1)

Q(n–2)

Q(0)

D(n–1)

D(n–2)

D(0)

clk
CE

load_en

D_in

clk

clk

clk

162 C H A P T E R F O U R s e q u e n t i a l b a s i c s

example 4 .4 In Chapter 3, we showed how to perform multiplication of
unsigned integers by addition of partial products. Construct a multiplier for two
16-bit operands containing just one adder that adds successive partial products
over successive clock cycles. The fi nal product is 32 bits.

solut ion In order to perform the operation over multiple cycles, we need
a number of registers to hold intermediate results, as shown in Figure 4.13. The
x operand is stored in an ordinary register whose output connects to an array
of 16 AND gates that form a partial product. The y operand is stored in a shift
register whose least significant bit, Q(0), controls the AND gates. The y operand
is shifted on successive cycles, thus giving the 16 successive partial products. The
sum of the partial products are accumulated in a 17-bit ordinary register and a
15-bit shift register. Since the shift register is never required to load data other
than through the D_in connection, the data and load_en inputs are absent. On
each clock cycle, the least significant bit of the ordinary register is shifted into
the shift register, and the remaining bits of the ordinary register are added with
the next partial product. By shifting the accumulated sum in this way, partial
products are added at successively more significant positions of the result.

F I G U R E 4 .13 Registers, shift
registers and other components
used to form a sequential
multiplier.

17-bit reg

reset
CE

D Q

D

16-bit reg

CE

Q

D_in

15-bit
shift reg

CE

Q

16-bit
shift reg

D_in
D

CE
load_en

Q

x

16-bit
adder

c0

y

c16

s
15...0

16 15

0
31...16

P(14...0)

P(31...15)

y(15...0)

x(15...0)

y_load_en
y_ce

x_ce

P_reset
P_ce

clk

clk

clk

clk

clk

Making the sequential multiplier perform the required operations over successive
clock cycles requires a separate control circuit. We will discuss control sequenc-
ing in detail in Section 4.3, and leave detailed design of the multiplier control to
Exercise 4.20.

4.1.3 L ATC H E S

As we have seen, a flip-flop is a basic sequential circuit element that stores
one bit. Most digital circuits use edge-triggered flip-flops that store a new
data value when the clock signal changes from 0 to 1. No further values
are stored while the clock remains at 1, nor when the clock returns to 0.

Some systems, however, use sequential elements called latches, with
slightly different timing for storage of values. Figure 4.14 shows a symbol
for a latch, and Figure 4.15 shows the timing behavior.

The latch has two inputs, a data input, D, and a latch-enable input,
LE. It also has a data output, Q. When the latch-enable input is 1, the
value at the data input is stored in the latch and transmitted through to
the output. As the timing diagram shows, provided the data input remains
unchanged for the entire time that the latch-enable input is 1, the behavior
is the same as that of a flip-flop. However, if the data input changes while
the latch-enable input is 1, the changed value is transmitted to the output.
When the latch-enable input eventually changes to 0, the value stored
in the latch just before the change is maintained in the latch and at the
output. The fact that data is transmitted through to the output while the
latch-enable input is 1 leads us also to use the name transparent latch
for this component. While the latch-enable input is 1, what we see on
the output is the value present on the input, so the latch appears to be
transparent.

We can model a latch in Verilog using an always block of the form

always @(LE or D)
if(LE) Q <= D;

This block includes both the latch-enable input and the data input in the
event list. The notation or in the event list specifies that the block responds
to changes on either input. However, it only updates the output Q when
LE is 1. If the D input changes while the LE input is 1, the change on D is
reflected on the output, modeling the transparent state of the latch. On
the other hand, if D changes while LE is 0, the output is not assigned and
maintains its previous value.

Just as we can implement multibit registers with flip-flops connected
in parallel, so we can implement multibit latches with single-bit latches
connected in parallel. The result is a latch in which multiple data bits flow
through when the latch-enable input is 1 and are stored when the latch-
enable input is 0.

 4.1 Storage Elements C H A P T E R F O U R 163

F I G U R E 4 .14 Symbol for a
latch.

D Q

LE

D

LE

Q

F I G U R E 4 .15 Timing
diagram for a latch.

While latch circuits are relatively simple to implement in many fabrics,
the fact that data can flow through them transparently can make it harder
to design complex systems with correct timing behavior. The usual solu-
tion is to use two-phase nonoverlapping clock signals. Since this approach
is not widely used now, the details are beyond the scope of this book. (See
the books in Section 4.6, Further Reading.) However, we do need to con-
sider how latching behavior can arise inadvertently from Verilog models,
since it is a common design error.

First, let’s return to our definition of a combinational logic circuit. We
said that such a circuit is one whose outputs are defined purely as a func-
tion of the current input values, and that have no dependence on previous
input values. The way in which a circuit’s output can depend on previous
input values is for the circuit to have a feedback path, that is, a cycle of
connections from the output of a gate through other gates and back to the
input of the gate. Perhaps the simplest such circuit is an inverter whose
output is connected to its input, as shown at the top of Figure 4.16. Since
the output of the inverter is the logical negation of its input, the output
will oscillate between 0 and 1 with a frequency that is dependent on the
propagation delay through the inverter. (Alternatively, the inverter may
exhibit analog circuit behavior and reach an intermediate voltage level
that is neither a valid logic low nor a valid logic high.) If we extend the
feedback loop with more inverters to give an odd number of inverters
in total (as shown at the bottom of Figure 4.16), we reduce the overall
frequency of oscillation. This form of oscillator is called a ring oscillator.
If we extend the ring to have an even number of inverters, the circuit will
reach a stable state in which alternate inverters have a 0 at their output
and the others have a 1. There are two possible stable states for such a
ring of inverters. We could force the ring into one or other of the states by
forcing a given node to 0 or 1, for example, by using switches as shown in
Figure 4.17. (This is an idealization. In a real circuit, the switches would
have some series resistance, thus avoiding damage to the output of the
second inverter.) When both switches are open, the circuit retains the state
into which is was forced. Hence, its output depends on the previous input
value. This is a basic form of one-bit storage, called a reset-set latch, or
RS-latch for short.

A more common implementation of an RS-latch uses cross-coupled
gates, as shown in Figure 4.18. The timing behavior of the RS-latch is
shown in Figure 4.19. Normally, the reset input R and the set input S
are both 0. Assume initially that Q is 0 and

_
 Q is 1. This is a stable state,

called the reset state. If the R input changes to 1 in this state, neither out-
put changes and the latch stays in the reset state. However, if the S input
changes to 1,

_
 Q changes to 0. This value is fed back to the other gate,

which causes Q to change to 1. This is also a stable state, called the set
state. When S returns to 0, the latch stays in the set state. Further changes

F I G U R E 4 .16 Inverters
connected in feedback loops.

F I G U R E 4 .17 Using switches
to force a node of an inverter ring
to 0 or 1.

+V

F I G U R E 4 .18 Cross-coupled
RS-latch.

Q

Q

R

S

164 C H A P T E R F O U R s e q u e n t i a l b a s i c s

 4.1 Storage Elements C H A P T E R F O U R 165

Q

S

R

Q

reset reset setset illegal

F I G U R E 4 .19 Timing for an
RS-latch, showing the reset and
set states, as well as an illegal
operating condition.

of S to 1 while the latch is in the set state make no difference. However, if
R goes to 1, the feedback causes the latch to change back to the reset state.
Thus, which state the latch is in at any time depends on which of the S or
R inputs was 1 most recently. Note that if both R and S are 1 at the same
time, both Q and

_
 Q are 0. This is usually considered an illegal operating

condition for an RS-latch.
Now that we have seen ways in which feedback can cause latching

behavior, let’s see how feedback can arise in Verilog models. In Chapter 2,
we showed how a combinational circuit is modeled using an assignment
statement in an architecture. Normally, we include the inputs to the
 circuit in the expression on the right-hand side of the assignment symbol
and the output of the circuit on the left-hand side. However, if we have
an assignment with a given net appearing both on the left-hand side
and on the right-hand side, we imply a feedback loop from the output
to the input. Most synthesis CAD tools will not synthesize such circuits
without complaint, since the timing is not readily predictable and correct
operation is not guaranteed. For example, if we write the following in a
model:

assign a = a + b;

we imply an adder with the output feeding back directly into an input.
In this sense, assignments modeling combination hardware in Verilog
are different from assignments to variables in programming languages.
Depending on the propagation delay through the synthesized and imple-
mented circuit, we may add the value of b to itself once, twice, or more
times within a given time interval. Moreover, if the delays are different
for different bits, the result may not correspond to addition of the value
of b at all. Most synthesis tools would either issue a warning or reject an
assignment in the above form as erroneous.

166 C H A P T E R F O U R s e q u e n t i a l b a s i c s

A feedback loop can also be implied by a number of assignments in
combination, where there is a cycle of dependencies between them. For
example, consider the following assignments:

assign x = y + 1;
assign y = x + z;

Due to the first assignment, the value of x depends on the value of y. Due
to the second assignment, the value of x depends on y, and thus indirectly
on x itself. A synthesis tool should also issue a warning or flag this as
erroneous.

The fact that synthesis tools object to feedback loops in combina-
tional circuits can make it hard to model circuits in which we deliberately
include such loops. For example, a Verilog model of the cross-coupled
RS-latch of Figure 4.18 might be written as

assign Q = ~(R | Q_n);
assign Q_n = ~(S | Q);

These assignments imply a cyclic dependency between Q and Q_n, which is
exactly what we want in the synthesized circuit. An alternative way of mod-
eling this behavior is to use an always block and an assignment, as follows:

always @(R or S)
if (R) Q <= 1'b0;

 else if (S) Q <= 1'b1;

assign Q_n = Q;

The assignment simply negates the value of Q, which is generated by the
always block. In the block, we have included the R and S inputs in the event
list. Thus, the block will be reactivated whenever either input changes. If R
is 1, the block updates the Q output to represent the reset state, and if S is 1,
the block updates the output to represent the set state. Note that, if neither
input is 1, the block makes no assignment to Q. In that case, the outputs
remain unchanged; that is, it stores the previously updated state. In gen-
eral, if there is any execution path through an always block where we do
not update an output, then the block represents latching behavior for that
output, since the output maintains its previous value. If this is intended, as
in the block modeling the RS-latch, we don’t have a problem. However, it
is a common Verilog modeling error to inadvertently omit an assignment

to an output in an execution path, for example, in one alternative of a
complex if statement. The unintended latching behavior for that output
can be most perplexing until the error is located and corrected.

example 4 .5 The following always block is intended to model multi-
plexer circuitry that selects between a number of inputs to assign to outputs z1

and z2. Identify the error in the block and describe the behavior that results.

always @*
if (~sel) begin

z1 <= a1; z2 <= b1;
end else begin

z1 <= a2; z3 <= b2;
end

solut ion The assignment to z3 in the “else” part of the if statement
should assign to z2. As a consequence, z2 is not updated on that execution path
and z3 is not updated on the execution path in which sel is 0. Thus, the block
implies transparent latches for z2 and z3. The latch for z2 is transparent when
sel is 0 and stores a value when sel is 1. The latch for z3 is transparent when sel

is 1 and stores a value when sel is 0. This unintended behavior can be corrected
simply by changing the target of the assignment from z3 to z2, as it should be.

1. Write a Verilog always block for a simple rising-edge-triggered register.

2. What do we call an arrangement of combinational subcircuits and
registers that operate in assembly-line-like fashion?

3. What effect does a clock-enable input have on a register?

4. What is the distinction between an asynchronous reset and a
synchronous reset?

5. What additional function does a shift register provide compared to
an ordinary register?

6. What is meant by the term “transparent” with respect to a latch?

7. What problem is caused by omitting an assignment to an output in
a Verilog always block that models combinational logic?

4.2 C O U N T E R S

A counter is a sequential component that increments or decrements a
stored value. Counters occur in many digital circuit applications. For
example, if an application requires a given operation to be performed on

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

4.2 Counters C H A P T E R F O U R 167

168 C H A P T E R F O U R s e q u e n t i a l b a s i c s

a number of items of data or to be repeated a number of times, a counter
can be used to keep track of how many items have been processed or how
many times the operation has been performed. Counters are also used as
timers, by counting the number of intervals of a fixed duration that have
passed.

A simple form of counter is composed of an edge-triggered register
and an incrementer, as shown in Figure 4.20. The value stored in the reg-
ister is interpreted as an unsigned binary integer. The incrementer can be
implemented using the circuit we described for an unsigned incrementer
in Section 3.1.2 on page 108. The counter increments the stored value on
every clock edge. When the stored count value reaches its maximum value
(2n � 1, for an n-bit counter), the incrementer yields a result of all zeros,
with the carry out being ignored. This result value is stored on the next
clock edge. Thus, the counter acts like the odometer in a car, rolling over
to zeros after reaching its maximum value. Mathematically speaking, the
counter increments modulo 2n. The counter goes through all 2n unsigned
binary integer values in order every 2n clock cycles. One use for such
a counter is in conjunction with a decoder to produce periodic control
signals.

example 4 .6 Design a circuit that counts 16 clock cycles and produces a
control signal, ctrl, that is 1 during every eighth and twelfth cycle.

solut ion We need a 4-bit counter, since 16 � 24. The counter counts
from 0 to 15 and then wraps back to 0. During the eighth cycle, the counter
value is 7 (01112), and during the twelfth cycle, the counter value is 11 (10112).
We can generate the control signal by decoding the two required counter values
and forming the logical OR of the decoded signals. The required circuit is shown
in Figure 4.21.

D Q+1 Q

clk
clk

F I G U R E 4 .20 A simple
counter composed of a register
and an incrementer.

+1

clk

ctrl

0

1

2

3

0

1

2

3

D Q

D Q

D Q

D Q

clk

clk

clk

clk

F I G U R E 4 .21 A counter with
decoded outputs.

example 4 .7 Develop a Verilog model of the circuit from Example 4.6.

solut ion The module definition is

module decoded_counter (output ctrl,
 input clk);

reg [3:0] count_value;

always @(posedge clk)
count_value <= count_value + 1;

assign ctrl = count_value = = 4'b0111 ||
 count_value = = 4'b1011;

endmodule

The module contains an always block that represents the counter. It is similar
in form to a block for an edge-triggered register. The difference is that the value
assigned to the count_value output on a rising clock edge is the incremented
count value. The assignment to count_value represents the update of the value
stored in the register, and the addition of 1 represents the incrementer. The final
assignment statement in the module represents the decoder.

The counter that we have described so far is free running, increment-
ing the count value on every clock cycle. We can modify the counter to
make it useful in applications that require more control over the count
value. Two simple modifications involve adding a clock enable and a
reset input to the storage register within a counter. The clock-enable input
allows us to control when the counter increments its value, so this input
is often called a count-enable input. The reset input allows us to clear
the count value back to zero. A counter modified in this way is shown in
Figure 4.22. This form of counter is very useful for counting occurrences
of events. We would connect a signal indicating event occurrence to the
count-enable input of the counter. If we need to count events over several
intervals, we can reset the counter at the start of each interval.

Another modification is a terminal-count output. This is simply a
decoded output that is 1 when the counter reaches is maximum, or ter-
minal, value. For the counters we have described above, the maximum
value of 2n � 1 is represented by a count value with all 1 bits. We can use
an n-input AND gate to generate the terminal count output, as shown in
Figure 4.23. For a free-running counter, the terminal-count output is 1
for a single clock cycle every 2n clock cycles; that is, it is a periodic signal
whose frequency is the input clock frequency divided by 2n.

 4.2 Counters C H A P T E R F O U R 169

+1
Q

clk

CE
reset

D

CE

Q

reset

clk

F I G U R E 4 .22 A counter with
clock-enable and reset inputs.

counter

… …

Q0
Q1

Qn

… TC

clk

F I G U R E 4 .23 A counter with
terminal-count output.

170 C H A P T E R F O U R s e q u e n t i a l b a s i c s

example 4 .8 A digital alarm clock needs to generate a periodic signal at
a frequency of approximately 500Hz to drive the speaker for the alarm tone.
Use a counter to divide the system’s master clock signal, with a frequency of
1 MHz, to derive the alarm tone.

solut ion We need to divide the master clock signal by approximately
2000. We can use a divisor of 211 � 2048, which gives us an alarm tone fre-
quency of 488Hz, which is close enough to 500 Hz. Thus, we could use the
 terminal-count output of an 11-bit counter for the tone signal. However, the
duty cycle (the ratio of time for which the signal is 1 to the time for which it
is 0) would only be 1/2048, which would have very low AC energy. We can
rectify this by dividing the master clock by 210 with a 10-bit counter, and using
the terminal-count output as the count-enable input to a divide-by-2 counter.
A circuit is shown in Figure 4.24, and a timing diagram in Figure 4.25. The
output of the divide-by-2 counter alternates between 0 and 1 for every pulse on
its clock-enable input. The output thus has a 50% duty cycle, which will drive a
speaker much more efficiently.

Not all free-running counter applications need to divide by a power
of 2. If we need to divide by some other value, k, we need the counter
to wrap back to 0 after reaching a terminal count of k � 1. Mathemati-
cally speaking, the counter increments modulo k. We can construct such a
counter by decoding the unsigned binary code word for k � 1 and using
that as the terminal count output. We can feed the terminal count sig-
nal back to a synchronous reset input to the storage register within the
counter.

count
tone2

tone

clk

10-bit
counter

Q

TC

D

CE

Q

clk

clk

F I G U R E 4 .24 An alarm clock
frequency divider.

tone

tone2

count

clk

1 100 2 2 10 2 10

1023 1023 1023
F I G U R E 4 .25 Timing
diagram for an alarm clock
frequency divider.

example 4 .9 Design a circuit for a modulo 10 counter, otherwise known
as a decade counter.

solut ion The maximum count value is 9, so we need 4 bits for the counter.
The unsigned binary code word for 9 is 10012. We can decode this value and
use it to reset to counter to 0 on the next clock cycle. The circuit is shown in
Figure 4.26.

 4.2 Counters C H A P T E R F O U R 171

clk Q0
Q1
Q2
Q3

Q0
Q1
Q2
Q3reset

counter

clk

F I G U R E 4 .26 A decade
counter.

example 4 .10 Develop a Verilog model for the decade counter of
Example 4.9.

solut ion The module definition is

module decade_counter (output reg [3:0] q,
 input clk);

always @(posedge clk)
q <= q = = 9 ? 0 : q + 1;

endmodule

We model the output port for the count value using an unsigned vector, since
it is represents a binary-coded integer value. On a rising clock edge, the always
block checks whether the counter has reached the terminal count value. If so,
the count value wraps back to 0; otherwise, the block adds 1 to yield the new
count value.

Another form of counter that is useful in timing applications is a
down counter with load. This counter is loaded with an input value, and
then decrements the count value. The terminal count output is activated
when the count value reaches zero. A circuit for the counter is shown in
Figure 4.27. It consists of a register whose input comes either from the
input value to be loaded or from the decremented count value. In this
case, the loading of input data is synchronous, since it occurs on a rising
clock edge.

172 C H A P T E R F O U R s e q u e n t i a l b a s i c s

If the clock input to the counter is a periodic signal with period t and
the counter is loaded with a value k, the terminal count is reached after
an interval of k � t. Thus, this form of counter can be used as an interval
timer, where the terminal-count output signal is used to trigger an activity
after expiration of a given time interval.

example 4 .11 Develop a Verilog model for an interval timer that has
clock, load and data input ports and a terminal-count output port. The timer
must be able to count intervals of up to 1000 clock cycles.

solut ion The data input and counter need to be 10 bits wide, since that is
the minimum number of bits needed to represent 1000. The module definition is

module interval_timer_rtl (output tc,
 input [9:0] data,
 input load, clk);

reg [9:0] count_value;

always @(posedge clk)
if (load) count_value <= data;
else count_value <= count_value – 1;

assign tc = count_value = = 0;

endmodule

On a rising clock edge, the always block uses the load input to determine
whether to update the count value with the data input or the decremented
count value. The decrement operation is performed using an unsigned subtrac-
tion without borrow out. So after reaching zero, the count value wraps back to
the largest 10-bit value, namely, 1023. The final assignment in the architecture
drives the terminal count to 1 when the count value reaches zero.

example 4 .12 Modify the interval timer so that, when it reaches zero, it
reloads the previously loaded value rather than wrapping around to the largest
count value.

D Q
–1

=0?

Q

TC
clk

load
D

0

1
clk

F I G U R E 4 .27 A down
counter with synchronous load.

solut ion We need to use a separate register to store the data value to load
into the counter. When the load input is activated, a new data value is loaded
into the storage register as well as into the counter. When the terminal count is
reached, the counter should be loaded from the storage register. The inputs and
outputs of the revised interval timer are the same, so we don’t need to change the
ports of the module definition. The revised module is

module interval_timer_repetitive (output tc,
 input [9:0] data,
 input load, clk);

reg [9:0] load_value, count_value;

always @(posedge clk)
if (load) begin

 load_value <= data;
 count_value <= data;

end
else if (count_value = = 0)

 count_value <= load_value;
else

 count_value <= count_value – 1;

assign tc = count_value = = 0;

endmodule

In this module, we have added a separate variable, load_value, to represent the
storage register. The always block is revised so that, when load is 1 on a ris-
ing clock edge, both the load_value variable and the count_value variable are
updated from the data input. Also, when the count value is 0 on a rising clock
edge (provided load is not 1), the count value is updated from the load_value
variable. Otherwise, the count value is decremented as before.

The last kind of counter that we will describe in this section is a ripple
counter (distinct from ripple carry used in an incrementer of a counter),
shown in Figure 4.28. It is somewhat different in structure from the syn-
chronous counters we have previously examined. Like those counters, it
has a collection of flip-flops for storing the count value. However, unlike
them, the clock signal is not connected in common to all of the flip-flop
clock inputs. Rather, the clock input just triggers the flip-flop for the
least significant bit, causing it to toggle between 0 and 1 on each rising
clock edge. When the Q output changes to 0, the

_
 Q output changes to

1, triggering the next flip-flop to toggle between 0 and 1. This flip-flop
behaves similarly, causing the third flip-flop to toggle when it (the second

 4.2 Counters C H A P T E R F O U R 173

D

Q

Q

D

Q

Q

D

Q

Q

D

Q

Q

Q0

Q1

Q2

Qn

clk clk

clk

clk

clk

F I G U R E 4 .28 Structure of a
ripple counter.

174 C H A P T E R F O U R s e q u e n t i a l b a s i c s

flip-flop) changes from 1 to 0. In general, we can think of the flip-flops for
bits 0 to i � 1 as forming an i-bit counter. The most significant bit of this
counter changes from 1 to 0 when it overflows. When that happens, the
next flip-flop, for bit i, toggles between 0 and 1. This behavior is shown
in the timing diagram of Figure 4.29.

An important timing issue arises from the fact that the flip-flops in a
ripple counter are not all clocked together. Each flip-flop has a propagation
delay between a rising edge occurring on its clock input and the outputs
changing value. These propagation delays are shown in Figure 4.29.
Since each flip-flop is clocked from the output of the previous flip-flop,
the propagation delays accumulate. The outputs of the counter don’t all
change at once on a change of the counter’s clock input. Instead, the out-
put changes “ripple” along the counter as they propagate through the
flip-flops; hence, the name of this kind of counter. The shaded areas in the
timing diagram show intervals where the count value is not correct, due to
changes not having propagated completely through the counter. Whether
this lack of synchronization among output changes is a problem or not
depends on the particular application under consideration. Some factors
to consider include:

The length of the counter. For longer counters, there are more flip-
flops through which changes have to propagate, making the maxi-
mum accumulated delay larger. For short counters, the delay may
be acceptable.

The period of the input clock relative to the propagation delays of
the counter. For a short clock period, the accumulated delay may
exceed the clock period. In that case, there will be clock cycles dur-
ing which the counter outputs don’t reach the correct value before
the end of the cycle. For systems with long clock periods, the count
value will settle early in the clock cycle.

�

�

Q1

Q0

Q0

clk

Q1

Q2

Q2

F I G U R E 4 .29 Timing
diagram for a ripple counter.

The tolerance for transient incorrect count values. If the count value
may be sampled before it has settled, incorrect operation may result.
However, if the count value is not sampled until it is guaranteed
settled, operation is correct.

The main advantages of a ripple counter are that it uses much less
circuitry in its implementation (since an incrementer is not required) and
that it consumes less power. Hence, it is useful in those applications that
are sensitive to area, cost and power and that have less stringent timing
constraints. As an example, a digital alarm clock might use ripple coun-
ters to count the time, since changes occur infrequently relative to the
propagation delay (seconds compared to nanoseconds).

 1. Show in a diagram how an incrementer and a register can be
connected to form a simple counter.

 2. What is the maximum count value for an n-bit counter? What value
does it then advance to?

 3. How is a modulo k counter constructed?

 4. What is a decade counter?

 5. What is an interval timer?

 6. Why might a long ripple counter be unsuitable for an application
with a fast clock?

4.3 S E Q U E N T I A L D ATA PAT H S
A N D C O N T R O L

We have now arrived at a key point in our discussion of digital logic
design. We have seen how information can be binary encoded, how
encoded information can be operated upon using combinational circuits,
and how encoded information can be stored using registers. We have also
seen that registers are needed both to avoid feedback loops in combina-
tional circuits and to deal with data that arrives at the inputs sequentially.
We have discussed counters as examples of combining registers and com-
binational circuits to perform sequential operations, that is, operations
that proceed over a number of discrete intervals of time. We are now
in a position to take a more general view of sequential operations. This
general view will form the basis of our subsequent discussions of digital
systems and embedded systems.

In many digital systems, the operations to be performed on input data
are expressed as a combination of simpler operations, such as arithmetic
operations and selection between alternative data values. Our general view
of a digital system divides the circuit that implements the operations into a

�

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

4.3 Sequential Datapaths and Control C H A P T E R F O U R 175

176 C H A P T E R F O U R s e q u e n t i a l b a s i c s

datapath and a control section. The datapath contains the combinational
circuits that implement the basic operations and the registers that store
intermediate results. The control section generates control signals that
govern the operation of the datapath elements: selecting operations to
be performed and enabling registers. In particular, the control section
ensures that control signals are activated in the right order and at the right
times to cause the datapath to perform the required operations on the
data flowing through it. Hence, we say that the control section performs
control sequencing. In many cases, the control section makes use of status
signals generated by the datapath. The status signals indicate whether cer-
tain conditions of interest are true, for example, whether data has certain
values, or whether input data is available. The values of the status signals
can influence the control sequence.

One of the most challenging tasks in digital design is designing a data-
path and corresponding control section to meet the given requirements
and constraints. There are usually many alternative datapaths that could
meet the functional requirements. Choosing among them usually involves
trading off between area and performance.

example 4 .13 Develop a datapath to perform a complex multiplication
of two complex numbers. The operands and product are all in Cartesian form.
The real and imaginary parts of the operands are represented as signed fi xed-
point numbers with 4 pre-binary-point and 12 post-binary-point bits. The real
and imaginary parts of the product are similarly represented, but with 8 pre-
binary-point and 24 post-binary-point bits. The complex multiplier is subject to
constraints that strongly limit the circuit area.

solut ion Given two complex numbers a�ar � jai and b�br � jbi, the
complex product is

p�ab�pr � jpi � (arbr �aibi)� j(arbi �aibr) (4.1)

This computation requires four fixed-point multiplications, one subtraction and
one addition. If we were to implement the complex multiplier as a combinational
circuit, separate components would be needed for each of these operations,
consuming a large amount of circuit area. Since area is a strong constraint, we
can reduce the area by using one multiplier to perform the four multiplications
in sequence, and one adder/subtracter to form the real and imaginary parts of
the product. We will need registers to store the intermediate results. The full
computation will take place over several clock cycles.

A datapath to perform the sequential complex multiplication is shown in
Figure 4.30. Since the multiplier is shared, multiplexers at the multiplier inputs
are needed to select the operands. The result of a given multiplication is stored
in one or other of the partial-product registers. To form the real part of the
complex product, two partial products are subtracted by the adder/subtracter.

In the diagram, the signals upon which data flows are drawn with thicker lines,
since they carry multibit binary-coded values. The remaining signals, drawn with
lighter weight lines, are the clock and the control signals. They include select
signals for the multiplexers, clock-enable signals for the registers, and a signal
to choose the operation to be performed by the adder/subtracter. The values of
the control signals are driven by a separate control section, not shown on the
diagram.

example 4 .14 Develop a Verilog model of the complex multiplier
 datapath.

solut ion The module includes ports for the data inputs and outputs, as
well as clock and reset inputs and an input to indicate the arrival of new data.
We will return to the last of these inputs later. The module definition is

 4.3 Sequential Datapaths and Control C H A P T E R F O U R 177

0

1

0

1

D

CE

Q

D

CE

Q

× ±

D

CE

Q

D

CE

Q

p_r

p_i

a_r
a_i

b_r
b_i

a_sel

b_sel
pp1_ce
pp2_ce

sub
p_r_ce
p_i_ce

clk

clk

clk clk

clk

F I G U R E 4 .3 0 Datapath for a
sequential complex multiplier.

module multiplier
(output reg signed [7:-24] p_r, p_i,

input signed [3:-12] a_r, a_i, b_r, b_i,
input clk, reset, input_rdy);

reg a_sel, b_sel, pp1_ce, pp2_ce, sub, p_r_ce, p_i_ce;

wire signed [3:-12] a_operand, b_operand;
wire signed [7:-24] pp, sum;
reg signed [7:-24] pp1, pp2;

...

(continued)

To form the imaginary part, two partial products are added. In each case, the
part of the complex product is stored in an output register.

178 C H A P T E R F O U R s e q u e n t i a l b a s i c s

The nets and variables declared within the module represent the control signals
and the internal data connections. There are further declarations for the control
section that we will return to later. In the statement part of the architecture, the
assignments to a_operand and b_operand represent the multiplexers, and the
assignment to pp represents the multiplier. (The multiplier operands are extended
so that the result size matches the sizes of the real and imaginary parts of the
product.) The first two always blocks represent the partial-product registers. The
assignment to sum represents the adder/subtracter, and the second two always
blocks represent the output registers. We will return to further statements that
represent the control section later.

example 4 .15 Design a control sequence for the control signals of the
sequential complex multiplier.

solut ion We first need to determine a sequence of operations to be
performed by the datapath to implement the required function expressed in
Equation 4.1. There are many possible sequences, but we must ensure that there
is no conflict for resources; that is, we must ensure that we don’t try to use an
element of the datapath for more than one operation at a time. One possible
sequence, initiated by input_rdy being 1, is:

1. Multiply a_r and b_r, and store the result in partial product register 1.

2. Multiply a_i and b_i, and store the result in partial product register 2.

assign a_operand = ~a_sel ? a_r : a_i;
assign b_operand = ~b_sel ? b_r : b_i;

assign pp = {{4{a_operand[3]}}, a_operand, 12'b0} *
{{4{b_operand[3]}}, b_operand, 12'b0};

always @(posedge clk) // Partial product 1 register
if (pp1_ce) pp1 <= pp;

always @(posedge clk) // Partial product 2 register
if (pp2_ce) pp2 <= pp;

assign sum � ~sub ? pp1 + pp2 : pp1 – pp2;

always @(posedge clk) // Product real-part register
if (p_r_ce) p_r <= sum;

always @(posedge clk) // Product imaginary-part register
if (p_i_ce) p_i <= sum;

...

endmodule

3. Subtract the partial product register values and store the result in the
product real part register.

4. Multiply a_r and b_i, and store the result in partial product register 1.

5. Multiply a_i and b_r, and store the result in partial product register 2.

6. Add the partial product register values and store the result in the product
imaginary part register.

This sequence would take six clock cycles to complete. In each cycle, only one of
the arithmetic components is used, so there is no conflict for resources. However,
we can reduce the number of cycles required, without creating conflict, by using
the multiplier and the adder/subtracter concurrently. Specifically, we can merge
steps 3 and 4 into one step, in which we subtract partial products to form the
real part of the product and we multiply a_r and b_i to form a further partial
product.

Given this 5-step sequence, the control signals that need to be activated in
each step are shown in Table 4.1. The combination of control signal values in
each step cause the datapath components to perform the required operations
for that step. Note that in some steps, the multiplexers and adder/subtracter are
not used. We don’t care what values are driven for the control signals governing
those components in those steps.

4.3 Sequential Datapaths and Control C H A P T E R F O U R 179

4.3.1 F I N I T E - S TAT E M A C H I N E S

 Example 4.15 describes a control sequence for a sequential datapath, but
we have yet to show how to design a circuit for the control section that
generates the control sequence. We will introduce an abstraction called
a finite-state machine for this purpose. There is a substantial body of
mathematical theory underlying finite-state machines. Some of the useful
results from this theory are implemented in CAD tools that transform
finite-state machines to optimize sequential circuits. However, we will
take a pragmatic approach, focusing on the design of control sections to
sequence the operation of datapaths.

s t e p a_sel b_sel pp1_ce pp2_ce sub p_r_ce p_i_ce

1 0 0 1 0 – 0 0

2 1 1 0 1 – 0 0

3 0 1 1 0 1 1 0

4 1 0 0 1 – 0 0

5 – – 0 0 0 0 1

TAB LE 4 .1 Control sequence
for the complex multiplier.

180 C H A P T E R F O U R s e q u e n t i a l b a s i c s

D

reset

Q
current_state

outputs
inputs

clk
reset

next
state
logic

output
logic

clk

F I G U R E 4 .31 Circuit structure
for a fi nite-state machine.

In general terms, a finite-state machine is defined by a set of inputs,
a set of outputs, a set of states, a transition function that governs transi-
tions between states, and an output function. The states are just abstract
values that mark steps in a sequence of operations. The machine is called
“finite-state” because the set of states is finite in size. The finite-state
machine has a current state in a given clock cycle. The transition function
determines the next state for the next clock cycle based on the current
state and, possibly, the values of inputs in the given clock cycle. The out-
put function determines the values of the outputs in a given clock cycle
based on the current state and, possibly, the values of inputs in the given
clock cycle.

Figure 4.31 shows a schematic representation of a finite-state machine.
The register stores the current state in binary coded form. One of the states
in the state set is designated the initial state. When the system is reset, the
register is reset to the binary code for the initial state; thus, the finite-state
machine assumes the initial state as its current state. During each clock
cycle, the value of the next state is computed by the next state logic, which
is a combinational circuit that implements the transition function. Also,
the outputs are driven with the value computed by the output logic, which
is a combinational circuit that implements the output function. The out-
puts are the control signals that govern operation of a datapath. On the
rising clock edge marking the beginning of the next clock cycle, the cur-
rent state is updated with the computed next-state value. The next state
may be the same as the previous state, or it may be a different state.

Finite-state machines are often divided into two classes. In a Mealy
finite-state machine, the output function depends on both the current
state and the values of the inputs. In such a machine, the connection
drawn with a dashed line in Figure 4.31 is present. If the input values
change during a clock cycle, the output values may change as a conse-
quence. In a Moore finite-state machine, on the other hand, the output
function depends only on the current state, and not on the input values.
The dashed connection in Figure 4.31 is absent in a Moore machine. If the
input values change during a clock cycle, the outputs remain unchanged.

In theory, for any Mealy machine, there is an equivalent Moore machine,
and vice versa. However, in practice, one or the other kind of machine will
be most appropriate. A Mealy machine may be able to implement a given
control sequence with fewer states, but it may be harder to meet timing
constraints, due to delays in arrival of inputs used to compute the next
state. As we present examples of finite-state machines, we will identify
whether they are Mealy or Moore machines.

In many finite-state machines, there is an idle state that indicates
that the system is waiting to start a sequence of operations. When an
input indicates that the sequence should start, the finite-state machine
follows a sequence of states on successive clock cycles, with the output
values controlling the operations in a datapath. Eventually, when the
sequence of operations is complete, the finite-state machine returns to
the idle state.

example 4 .16 Design a fi nite-state machine to implement the control
sequence for the complex multiplier described in Example 4.15. The control
sequence is initiated by input_rdy being 1 during the clock cycle in which new
data arrives at the datapath inputs.

solut ion Our finite-state machine needs five states, one for each of the
steps of the control sequence. Let’s call them step1 through step5. We also need
to deal with the case of waiting for input data to arrive. We could consider a
separate idle state for that case. When, in the idle state, input_rdy is 1, we would
then transition to state1 to start the multiplication; otherwise, we would stay
in the idle state. The problem with this is that it wastes a clock cycle, since we
would not perform the first multiplication until after the cycle in which data
arrived.

The alternative is to use step1 as the idle state. If it turns out that new data has
not arrived in a given clock cycle while in this state, we simply repeat step1 as
the next state. On the other hand, if new data has arrived, indicated by input_rdy

being 1 in the clock cycle, the real parts are multiplied during that clock cycle
and can be stored on the next clock edge. We would then transition to step2,
and on subsequent clock cycles to step3, step4 and step5. At the end of the
step5 clock cycle, the complete complex product is stored in the output registers
of the datapath, so we can transition back to step1 in the next clock cycle.

In summary, our finite-state machine has the signal input_rdy as its single input,
and the control signals listed in Example 4.15 as outputs. The state set is {step1,
step2, step3, step4, step5}, with step1 being the initial state. The transition
function is defined in Table 4.2. The output function is defined in Table 4.1.
Since the output function depends only on the current state and not on the input
value, this finite-state machine is a Moore machine.

4.3 Sequential Datapaths and Control C H A P T E R F O U R 181

cu r ren t _
s t a t e

inpu t _
rdy

nex t _
s t a t e

step1 0 step1

step1 1 step2

step2 – step3

step3 – step4

step4 – step5

step5 – step1

TAB LE 4 .2 The transition
function for the complex multiplier
fi nite-state machine.

182 C H A P T E R F O U R s e q u e n t i a l b a s i c s

An important issue to consider when designing a finite-state machine
is how to encode the state values. We glossed over that in Example 4.16
by treating the states as abstract values. As we discussed in Chapter 2,
if we have N states, we need at least ⎡log2N⎤ bits in our code. However,
we may choose to have more if that simplifies circuitry that uses encoded
states. In particular, while a longer than minimal code length requires
more flip-flops in the state register and more wires for the state signals,
it may make the next-state and output logic circuits simpler and smaller.
In general choosing an optimal state encoding is a complex mathematical
problem. However, synthesis CAD tools incorporate methods for choos-
ing a state encoding, so we may be able to let a tool make the choice for
us. One aspect of state encoding is the choice of a code word to represent
the initial state. In many cases, a good choice is a code word with all 0
bits, since that allows us to use a simple register with reset for the state
register. If some other code word is chosen for the initial state, that code
word must be loaded into the register on system reset.

Modeling Finite-State Machines in Verilog

Since a finite-state machine is composed of a register, next-state logic and
output logic, a straightforward way to model a finite-state machine is
to use the Verilog features that we already know for modeling registers
and combinational logic. The only aspect we have not addressed is how
to represent the state set, particularly when we want to take an abstract
view and leave state encoding to the synthesis tool. In Verilog, we can use
parameter definitions to specify a set of symbolic names associated with
the binary code words for the states. For example, we can define param-
eters for the states in Example 4.16 as follows:

parameter [2:0] step1 = 3'b000, step2 = 3'b001,
 step3 = 3'b010, step4 = 3'b011,
 step5 = 3'b100;

This defines five parameters, named step1 through step5, corresponding
to the binary code words 000 through 100, respectively. In the rest of the
state machine model, we just use the symbolic names, not the code word
values. A synthesis tool may be able to recode the state parameters, that is,
to choose an alternate encoding for the state set, to optimize the generated
hardware for the state machine.

We can declare a variable to represent the current state of a state
machine as follows:

reg [2:0] current_state;

This specifies that current_state is a vector that can take on parameter
values representing states. So, for example, we could make the following
assignment in a procedural block:

current_state <= step4;

to assign the value step4 to the variable.

example 4 .17 Develop a Verilog model of the fi nite-state machine in
Example 4.16.

solut ion We will augment the architecture declaration of Example 4.14
with the Verilog representation of the control section. The additional declarations
of parameters for the set of states and variables for the current and next state are

parameter [2:0] step1 = 3'b000, step2 = 3'b001,
 step3 = 3'b010, step4 = 3'b011,
 step5 = 3'b100;
reg [2:0] current_state, next_state ;

4.3 Sequential Datapaths and Control C H A P T E R F O U R 183

The additional statements added to the module are

always @(posedge clk or posedge reset) // State register
if (reset) current_state <= step1;
else current_state <= next_state;

 always @* // Next-state logic
case (current_state)

 step1: if (!input_rdy) next_state = step1;
 else next_state = step2;
 step2: next_state = step3;
 step3: next_state = step4;
 step4: next_state = step5;
 step5: next_state = step1;

endcase

 always @* begin // Output_logic
 a_sel = 1'b0; b_sel = 1'b0; pp1_ce = 1'b0; pp2_ce = 1'b0;
 sub = 1'b0; p_r_ce = 1'b0; p_i_ce = 1'b0;
 case (current_state)
 step1: begin
 pp1_ce = 1'b1;
 end

(continued)

184 C H A P T E R F O U R s e q u e n t i a l b a s i c s

The first always block models the state storage for the finite-state machine.
It is based on the template for a register with asynchronous reset. When the
reset input is active, the block resets the current state to the initial state, step1.
Otherwise, on a rising clock edge, the block updates the current state with the
computed next state.

The next state is computed by the second always block, which models the transi-
tion function of Table 4.2. The statement inside the block is a case statement.
It uses the value of the current_state variable to choose among alternatives for
updating next_state. The alternative for step1 uses a nested if statement to
determine whether to proceed to step2 or stay in step1, depending on the value
of input_rdy. All other alternatives simply advance the state unconditionally.

The output values are computed by the third always block, which models the
output function of Table 4.1. This block also includes a case statement that
chooses alternatives for assigning values to the outputs depending on the value of
current_state. Rather than including an assignment for every output in each alter-
native of the case statement, we precede the case statement with a default assign-
ment of 0 for each output, and only include overriding assignments of 1 in those
alternatives where they are required. This style for modeling the output function
usually makes the always block more succinct, and helps to avoid inadvertent
introduction of latches due to omission of an output assignment in an alternative.

State Transition Diagrams

A state transition diagram is an abstract diagrammatic representation of a
finite-state machine. It uses a circle, or “bubble,” to represent each state.
Directed arcs between state bubbles represent transitions from one state
to another. An arc may be labeled with a combination of input values

 step2: begin
 a_sel = 1'b1; b_sel = 1'b1; pp2_ce = 1'b1;
 end
 step3: begin
 b_sel = 1'b1; pp1_ce = 1'b1;
 sub = 1'b1; p_r_ce = 1'b1;
 end
 step4: begin
 a_sel = 1'b1; pp2_ce = 1'b1;
 end
 step5: begin
 p_i_ce = 1'b1;
 end
endcase

end

that allow the transition to occur. To illustrate, Figure 4.32 shows a state
 transition diagram for a finite-state machine with states s1, s2 and s3.
Each arc is labeled with the values of two inputs, a1 and a2, that are
required for the transition. Thus, when the finite-state machine is in state
s1 and the inputs are both 1, the state of the machine in the next clock
cycles is s3. If the machine is in state s1 and both inputs are 0, the machine
stays in state s1. From state s1, if the inputs are 0 and 1, or 1 and 0, the
machine transitions to state s2. Note that we have omitted a label on the
arc from s2 to s3. This is a common convention to indicate an uncondi-
tional transition; that is, when the machine is in state s2, the next state
is s3 regardless of the input values. Another important point is that all
possible combinations of input values are accounted for in each state,
and that no combination is repeated on more than one arc from a given
state.

A bubble diagram may also be labeled with the values of outputs.
Since Moore-machine outputs depend only on the current state, we attach
the labels for such outputs to the state bubbles. This is shown on the aug-
mented bubble diagram in Figure 4.33. For each state, we list the values
of two Moore-style outputs, x1 and x2, in that order.

Mealy-machine outputs, on the other hand, depend on both the cur-
rent state and the current input values. Usually, the input conditions are
the same as those that determine the next state, so we usually attach
Mealy-output labels to the arcs. This does not imply that the outputs
change at the time of the transition, only that the output values are driven
when the current state is the source state of the arc and the input val-
ues are those of the arc label. If the inputs change while in the source
state, the outputs change to those listed on some other arc labeled with

 4.3 Sequential Datapaths and Control C H A P T E R F O U R 185

s1 s2

s3

0, 0

0, 0

0, 1

1, 0

0, 1

1, 0

1, 1

1, 1

F I G U R E 4 .32 A state
transition diagram.

s1 s2

s3

0, 0 / 0, 0, 0
1, 0 0, 0

0, 1

0, 0 / 0, 0, 0

0, 1 / 0, 1, 1

/ 0, 1, 1

1, 0 / 1, 0, 0

0, 1 / 0, 1, 1

1, 0 / 1, 0, 0

1, 1 / 1, 1, 1

1, 1 / 1, 1, 1

F I G U R E 4 .33 A state
transition diagram augmented with
Moore- and Mealy-style output
values.

186 C H A P T E R F O U R s e q u e n t i a l b a s i c s

the new input values. Mealy-style outputs are also shown on the arcs in
Figure 4.33. In each case, the output values are listed after the “/” in the
order y1, y2 and y3.

example 4 .18 Draw a state transition diagram for the fi nite-state
machine of Example 4.16. Include the output values in the order of their occur-
rence in Table 4.1.

solut ion The diagram is shown in Figure 4.34. There is a transition
from step1 to step2 that occurs when input_rdy is 1, and a transition from
step1 back to itself when input_rdy is 0. All other transitions are uncondi-
tional. Since it is a Moore machine, the output values are all drawn in the state
bubbles.

In many applications, a state transition diagram is a useful notation,
since it graphically conveys the control organization of a sequential design.
Many CAD tools provide graphical editors for entering state transition
diagrams, and can automatically generate Verilog code for simulation
and synthesis. The disadvantage of the notation is that the annotations
of input conditions and output values can clutter the diagram, obscuring
the control organization. Also, for large and complex state machines, the
diagram can become unwieldy. In those cases, a Verilog model in textual
form may be more intelligible. Ultimately, since state transition diagrams
and Verilog models of state machines encapsulate the same information,
it is a question of personal preference or project guidelines that determine
the method to use.

1. What is the purpose of the datapath in a digital system?

2. What is the purpose of the control section in a digital system?

3. What are control signals and status signals?

4. What is the distinction between a Moore and a Mealy fi nite-state
machine?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

step1
0, 0, 1, 0, –, 0, 0

0
1 step2

1, 1, 0, 1, –, 0, 0

step4
1, 0, 0, 1, –, 0, 0

step5
–, –, 0, 0, 0, 0, 1

step3
0, 1, 1, 0, 1, 1, 0

F I G U R E 4 .3 4 State transition
diagram for the complex multiplier.

 5. Write a Verilog parameter defi nition for the set of states s0, s1, s2
and s3.

 6. In a state transition diagram, where are labels written for Mealy-
style outputs and for Moore-style outputs?

4.4 C LO C K E D S Y N C H R O N O U S T I M I N G
M E T H O D O LO G Y

We now have a general view of a digital system, shown in Figure 4.35. It
comprises a datapath that stores and transforms binary-coded informa-
tion and a control section that sequences operations within the datapath.
The datapath, in turn, includes combinational subcircuits that perform
operations on the data and registers that store the data. Stored data can
be fed back to earlier stages of the datapath or fed forward to subsequent
stages. The control section drives the control signals that govern opera-
tion of the combinational subcircuits and storage of data in the regis-
ters. The control section can also use status information about the data
values to determine what operations to perform and in what sequence.
Given that data is transferred between registers through combinational
 subcircuits, this view of a system is often called a register-transfer level
(RTL) view. The word “level” refers to the level of abstraction. Register-
transfer level is more abstract than a gate-level view, but less abstract than
an algorithmic view.

In Chapter 1, we identified division of time into discrete intervals as a
key abstraction for managing the complexity of timing in digital systems.
We also described some of the specific timing characteristics of flip-flops
(and hence registers) over which the discrete-timing approach abstracts.
Now that we have seen some more complex digital systems, we can begin
to see the value of the discrete-timing abstraction. It is based on driving
all of the registers shown in Figure 4.35 with a common periodic clock
signal. We say that the registers are all clocked synchronously on each
rising clock edge. The combinational subcircuits perform their opera-
tions in the interval between one clock edge and the next, called a clock

 4.4 Clocked Synchronous Timing Methodology C H A P T E R F O U R 187

control section

outputs
inputs F I G U R E 4 .35 A general view

of a digital system.

188 C H A P T E R F O U R s e q u e n t i a l b a s i c s

cycle. This clocked synchronous timing methodology helps us ensure
that operations are completed by combinational subcircuits by the time
their results are needed, and simplifies composition of large systems from
smaller subsystems.

Since registers are composed of flip-flops connected in parallel, we
can derive the timing characteristics of registers from those of flip-flops.
We will make the simplifying assumption that all of the flip-flops in a
given register have the same timing characteristics, or that any differences
are negligible. We can thus identify the setup time (tsu), hold time (th) and
clock-to-output delay (tco) of a register as being the same as those char-
acteristics of the constituent flip-flops. All of the bits of data to be stored
in a register must be stable at the input for at least the setup time before a
clock edge and for at least the hold time after the clock edge. We can only
guarantee that all bits of the stored data will be available at the output
after the clock-to-output delay following the clock edge.

These considerations lead us to the register-to-register timing for a
path in the system shown in Figure 4.36. Q1 is the output of one register
that feeds into a combinational subcircuit. D2 is the output of the subcir-
cuit, feeding into the next register. The timing parameters are illustrated
in Figure 4.37. After a clock rising edge, Q1 changes to the new stored
value and stabilizes by the end of the interval tco. The new value then
propagates through the combinational subcircuit, stabilizing at the output
D2 by the end of the interval tpd, the propagation delay of the subcircuit.
The value on D2 must be stable at least tsu before the next clock edge, so
there is a slack period, tslack, where nothing changes. The diagram shows
that the sum of these intervals must be equal to the clock cycle time, tc.
Alternatively, we can express this as an inequality:

 tco � tpd � tsu 	 tc (4.2)

Another important path in the digital system is the control path
shown in Figure 4.38. At the top of the figure is a register-to-register
 section of the datapath, and at the bottom is the finite-state machine in

Q1 D2tpdtco tsu

F I G U R E 4 .3 6 A register-
to-register path.

Q1

clk

D2

tco

tc

tpd tsutslack

F I G U R E 4 .37 Register-
to-register timing.

the control section. The status signals driven by the combinational subcir-
cuit are inputs to the output logic and next-state logic in the control sec-
tion. The control signals driven by the output logic govern the operation
of the combinational subcircuit and the target register. (In general, status
signals from one combinational subcircuit would influence operation of
some other combinational subcircuit, but the same timing considerations
apply.) Our timing analysis for these control paths is similar to that for
the register-to-register datapath. We simply aggregate the combinational
propagation delays through the combinational subcircuit and output logic
to derive the inequality:

 tco � tpd-s � tpd-o � tpd-c � tsu 	 tc (4.3)

Here, tpd�s is the propagation delay through the combinational subcir-
cuit to drive the status signals, tpd�o is the propagation delay through
the output logic to drive the control signals, and tpd�c is the propagation
delay through the combinational subcircuit for a change in the control
signal to affect the output data. For a Moore-style control signal that does
not depend on a status input, we can ignore the parameter tpd�s in this
inequality. In a similar way, we can derive the following inequality for the
path that generates the next-state value:

 tco � tpd-s � tpd-ns � tsu 	 tc (4.4)

where tpd�ns is the propagation delay through the next-state logic.
The inequalities in Equations 4.2 through 4.4 must hold for all of

the register-to-register and control paths in the system. Since the clock
is common to all registers, tc is the same for all paths. Similarly, if we
assume that the same kinds of registers are used throughout the system
(which is the case in fabrics such as FPGAs), tco and tsu are the same for
all paths. That only leaves the propagation delay parameters as the differ-
ence among paths.

The path with the longest propagation delay is called the critical path.
It determines the shortest possible clock cycle time for the system. Since
all operations are performed in times determined by the clock, the critical
path determines the overall system performance. Hence, if we need to
address performance issues, we need to identify which combinational sub-
circuit is on the critical path and attempt to reduce its delay. In most sys-
tems, the critical path will be a register-to-register path in the datapath of
the system. For example, if there is such a path that performs an arithme-
tic operation or that includes a counter, the carry chain may be the critical
path. Alternatively, if a system uses a Mealy finite-state machine and a
control path corresponding to Equation 4.3 is on the critical path, it may
be possible to use an equivalent Moore machine to avoid the status-signal
delay in the control path. Of course, once the delay on the critical path is
reduced below that of another path, that other path becomes the critical

 4.4 Clocked Synchronous Timing Methodology C H A P T E R F O U R 189

F I G U R E 4 .3 8 Control path in
a digital system.

tpd-s tpd-c

tpd-o

tpd-ns

tco tsu

tsu

190 C H A P T E R F O U R s e q u e n t i a l b a s i c s

path. Hence, attention may need to be paid to several paths in a system to
address performance issues.

Depending on the requirements and constraints for the system, we
can interpret Equations 4.2 through 4.4 in two ways. One interpreta-
tion involves treating the propagation delays as independent parameters
and determining the resulting minimum clock period. The system can
then be operated with any clock period greater than the minimum. This
interpretation is appropriate for systems where high performance is not
a requirement.

The other interpretation involves treating the clock cycle time as the
independent parameter and determining the propagation delays from it.
We might be given a target clock cycle time by a system architect or our
marketing department and be asked to design the system to meet that
target. In that case, the inequalities place constraints on the propagation
delays through the combinational data and control paths. If we meet the
constraints with plenty of slack, we might try to optimize the design to
reduce cost, for example, by using subcircuits with less area. If we don’t
meet the constraints, we need to focus attention on the critical path or paths
to reduce their delay. It may be that we have designed the system with too
much computation to be performed in one or more combinational subcir-
cuits to allow sufficient reduction of the critical path propagation delay.
In that case, we could divide the computation into a number of smaller
steps that can be done sequentially or in parallel. The combinational sub-
circuits for the simpler steps should have smaller propagation delay than
the original. Thus, even if more steps are required overall to perform the
system’s operation, the fact that the clock cycle time is reduced may allow
us to meet our performance target.

example 4 .19 Suppose we have designed a system that includes a
multiplication operation on 16-bit unsigned binary-coded integers. The system is
required to operate at 50 MHz (a clock cycle time of 20 ns). We have included a
combinational multiplier to perform the multiplication, but its propagation delay
is 35 ns. All other data and control paths have plenty of slack with the 20 ns
clock cycle time. The result of the multiplication is not needed until 20 cycles
after the operands are available. Describe how use of the sequential multiplier of
Example 4.4 could help us meet our timing requirement.

solut ion The sequential multiplier performs the multiplication operation
in 17 steps with one adder. In the first step, we store the operands and reset the
output register to zero. Then on each of the 16 subsequent steps, we add the par-
tial products. Each step involves only an AND operation and an addition. Thus,
the combinational subcircuit between the operand registers and the product
output registers will have significantly smaller propagation delay than the 35 ns
delay of the full combinational multiplier. This reduction should allow the clock
period to be reduced to meet the timing constraint.

Further timing considerations arise from the way the clock signal is
connected to all of the registers in a circuit. Suppose, in a register-to-
 register path, the clock signal to the target register is connected via a long
wire with significant delay, as shown in Figure 4.39. A rising clock edge
arrives at the source register earlier than at the target register. This phe-
nomenon is called clock skew. If the propagation delay through the com-
binational subcircuit is small (for example, if the subcircuit is just a direct
connection to the target register with negligible delay), the value from
the previous cycle may not remain stable for the hold time after the clock
edge, as shown in Figure 4.40. In most implementation fabrics, the hold
time is very small, or may even be negative, thus reducing the likelihood
of this problem. (A negative hold time simply means that the data may
start changing before the clock edge.) However, if we don’t take care to
minimize clock skew in a design, the circuit may operate unreliably. Given
the importance of minimizing skew across the clock connection network,
together with the need for buffers to drive the large number of flip-flop
clock inputs as described in Section 2.1.1, we usually leave implementa-
tion of the clock signal to CAD tools. As part of the physical design, a tool
will insert clock buffers into the circuit and route the connections so as
to minimize skew. In FPGA fabrics, dedicated buffer and wiring resources
for clock distribution are built into the chip.

The timing parameters and constraints that we have considered so far
apply to the datapath and control section within an integrated circuit chip.
When we use that chip as a component of a larger system, we also need
to take account of the effect of the input and output pins that connect the
chip to other components via wires on a printed circuit board. The inputs
have internal buffers that protect the chip from excessive voltage swings
and static discharge, and the outputs have buffers to drive the relatively
large capacitances and inductances that occur outside the chip. These
 buffers, together with the associated wiring connecting the integrated
 circuit chip to the package pins, introduce propagation delays. So when
we analyze the timing behavior of the complete system, we need to include
the pin and wiring delays. We can apply the same path-based analysis that
we used for internal paths. Figure 4.41 shows a register-to-register path
between a source register on one chip and a target register on another.
The path includes output combinational logic, the output buffer and
pin, the printed-circuit-board wiring, the input pin and buffer, and input
combinational logic. The sum of the propagation delays plus the register
clock-to-output and setup times must be less than the system’s clock cycle
time. For high-speed systems, this can be a difficult constraint to meet.
In such systems, we usually avoid having any combinational input or

 4.4 Clocked Synchronous Timing Methodology C H A P T E R F O U R 191

Q1 D2

F I G U R E 4 .3 9 A register-
to-register path with clock skew.

Q1

clk1

clk2

D2

th

F I G U R E 4 .4 0 A timing
problem arising from clock skew.

Q1 D2 F I G U R E 4 .41 A register-
to-register path between chips.

192 C H A P T E R F O U R s e q u e n t i a l b a s i c s

 output logic. An input that connects directly to an input register is often
called a registered input, and an output that is driven directly from
an output register is called a registered output. High-speed design meth-
odologies often require registered inputs, registered outputs or a com-
bination of both. Using both allows a whole clock cycle for inter-chip
transmission.

4.4.1 A SY N C H R O N O U S I N P U TS

Our clocked synchronous timing methodology requires us to ensure that
inputs to registers are stable during an interval around each clock edge.
For those signals that are generated within the circuit, we can ensure that
we meet this constraint. However, most circuits must deal with some
inputs that are generated externally, either by transducers whose outputs
represent real-world quantities or events, or by separate systems that do
not share a common clock. We call such signals asynchronous inputs. We
have no control over the times at which they change value; hence, we can-
not guarantee that they meet our timing constraints for register inputs.

Before we describe how to deal with asynchronous inputs, let’s exam-
ine the behavior of a register, or more specifically, a flip-flop, when its
input can change at any time. A flip-flop circuit internally uses a combi-
nation of charge storage and positive feedback to store a 0 or a 1 value.
Figure 4.17 on page 164 gives a general idea of how this might work in
a latch. A D flip-flop circuit elaborates on this structure to make storage
edge-triggered. In order to change from storing a 0 to storing a 1, or vice
versa, some energy input is required. A common analogy is to consider
a ball resting in one of two holes, with a hill in between, as shown in
 Figure 4.42. The ball resting in one hole corresponds to storing a 0, and
the ball resting in the other to storing a 1. In order to change the stored
value, energy must be supplied to push the ball over the hill. In the case
of a D flip-flop, a pulse of energy is sampled from the D input when the
clock rises. If the input is 0, the ball is pushed toward the 0 hole, and if the
input is 1, the ball is pushed toward the 1 hole.

Now if the input changes close to the time the clock rises, insufficient
energy may be sampled. For example, if the ball is in the 0 hole and the
input changes to 1, there may be insufficient energy to push the ball to the
1 hole. The ball may get close to the top of the hill then fall back again.
This corresponds to the flip-flop output starting to change from 0 to 1,
but then reverting to 0. A particularly significant case arises if there is
just sufficient energy to push the ball to the top of the hill, as shown in
Figure 4.43, but not to push it straight over. In that case, the ball teeters
on the top for some time before falling one way or the other. The time for
which it teeters and the direction in which it falls are unpredictable. This
condition is called metastability. The behavior of a real flip-flop in a meta-
stable state depends on the details of the internal electrical and physical

0 1

F I G U R E 4 .42 An analogy for
the behavior of a fl ip-fl op.

0 1

F I G U R E 4 .43 An analogy for
the behavior of a fl ip-fl op.

design of the flip-flop. Some flip-flops may delay a change between 0
and 1, some may oscillate, and others may have an invalid logic level at
the output for some time. The problem is not so much the indeterminate
behavior of the flip-flop output while the metastable state persists, but
the fact that the delay until the output is stable is not bounded. As a con-
sequence, we can’t guarantee that the timing constraints for the circuits
connected to the flip-flop output will be met.

Mathematical models of flip-flop behavior can be developed to help
us understand how asynchronous inputs affect circuit operation. The
details of these models are beyond the scope of this book, so we just sum-
marize the conclusions here. Suppose an asynchronous input changes with
a frequency of f1 and the clock frequency of the system is f2. We sample
the output value of the flip-flop to which the asynchronous input is con-
nected after a period t. Occasionally, the sampled value will be incorrect
due to metastability in the flip-flop, and that will cause some form of
failure. The mathematical model gives us the mean time between failures
(MTBF):

 MTBF � ek2t

k1f1f2
 (4.5)

The constants k1 and k2 are measured for a particular flip-flop. Since
the MTBF is inversely proportional to the frequencies, higher frequencies
lead to shorter MTBF, that is, to more frequent failure. More significant,
however, is that the MTBF is nonlinearly related to the time before sam-
pling. The value of k2 is typically large and positive, so a small increase in
the time before sampling yields a significant increase in the MTBF.

The usual approach to dealing with asynchronous inputs is to connect
them to a synchronizer, and to use the output of the synchronizer in the
rest of the system. A simple synchronizer is shown in Figure 4.44. The
first flip-flop samples the value of the asynchronous input at each clock
edge. Usually, the value is passed on to the flip-flop’s output within the
clock-to-output delay of the flip-flop and sampled on the next clock edge
by the second flip-flop. The output of the second flip-flop is used in the
rest of the system. On those occasions where the asynchronous input
changes close to a clock edge, the first flip-flop may enter the metastable
state. However, its output is not sampled for an entire clock cycle, giving
the flip-flop time to resolve the metastability. In terms of Equation 4.5,
the sampling interval t is one clock cycle period, tc.

 4.4 Clocked Synchronous Timing Methodology C H A P T E R F O U R 193

D Q D Q

clk

asynch_in
synch_in

clk clk
F I G U R E 4 .4 4 A synchro-
nizer for an asynchronous input.

194 C H A P T E R F O U R s e q u e n t i a l b a s i c s

It is only in fairly recent times that component manufacturers have
developed a complete understanding of metastability and its effects on
system reliability. Earlier than 15 years or so ago, published data on the
metastability characteristics of flip-flops was hard to find. Since then,
manufacturers have improved both their device behavior and their pub-
lished data. For most applications using modern implementation fabrics,
the simple synchronizer shown in Figure 4.44 is sufficient to give a MTBF
that is much longer than the lifetime of the system. However, for those
applications in which reliability is a key requirement and that have many
asynchronous inputs, we should study the published data for implementa-
tion fabric we use and follow the manufacturer’s advice on synchronizing
inputs.

Switch Inputs and Debouncing

We mentioned that externally generated signals are often asynchronous
inputs to a system. A common example is connection of switches that
form a user interface to the system. This includes push-button, slider, tog-
gle and rotary switches. A user can change a switch position at random
times, so we cannot assume synchronization with a clock signal. Similarly,
a microswitch used to sense mechanical input may change asynchronously.
There is a further problem that we must also deal with. Switches are elec-
tromechanical devices containing electrical contacts that open and close
a circuit in response to mechanical movement. As the contacts close, they
bounce, causing the circuit to open and close one or more times before
finally setting in the closed position. Similarly, as the contacts open, they
may also bounce. If we are to avoid spurious activation of the system’s
response to switch movements, we must debounce the switch input. This
involves waiting for some period of time after an initial change in circuit
closure is detected before treating the switch input as valid. For most
switches, the time taken to settle is of the order of a few millisecond,
so a debounce delay of up to 10ms is common practice. Delaying too
long causes the user to notice the lag in response to switch activation.
A response time of less than 50ms is generally imperceptible.

There are probably as many solutions to switch debouncing as there
are design engineers. One simple approach is shown in Figure 4.45.

Q

R

S

+V

F I G U R E 4 .45 A switch
debouncer using an RS-latch.

It uses an RS-latch with negative-logic inputs and a double-throw switch.
When the switch is in the position shown, it holds the reset input of the
latch active, producing a 0 at the Q output. When the switch is toggled,
we assume that one contact is opened before the other contact is closed.
(This is sometimes called “break before make.”) Bouncing on the con-
tact to be opened simply leaves the latch in the reset state. When the
first bounce occurs on the contact to be closed, the set input is activated,
causing the Q output to change to 1. Subsequent bounces leave the latch
in the set state. The behavior is similar when the switch is toggled in the
other direction.

While this approach is very effective, it has two drawbacks. First,
it requires two inputs to the digital system for what is really just one
input. Second, it requires a double-throw switch, whereas many low-cost
applications require a single-throw switch consisting of two contacts that
are shorted together by a push button. Simple circuits for debouncing
single-throw switches generally rely on analog circuit design techniques
and require components external to the main digital chip. We will not
discuss them here, but refer to Section 4.6, Further Reading. Instead, we
will outline a fully digital approach to debouncing that can be designed
into the main digital circuit of a system.

A simple way of connecting a single-throw or momentary-contact
switch to a digital circuit input is shown in Figure 4.46. When the switch
is open, the input is pulled to 1, and when the switch is closed, the input
is pulled to 0. A change of switch position causes the input to toggle
between 0 and 1 until the bouncing stops and the input settles at its final
value. Rather than using the input value directly within the system, we
sample it at intervals longer than the bounce time. When we get two suc-
cessive samples that have the same value, we use that value as the stable
state of the switch input.

example 4 .20 Develop a Verilog model of a debouncer for a push-
button switch that uses a debounce interval of 10ms. Assume the system clock
frequency is 50MHz.

solut ion The module definition is

 4.4 Clocked Synchronous Timing Methodology C H A P T E R F O U R 195

+V

F I G U R E 4 .4 6 Simple switch
input connection.

module debouncer (output reg pb_debounced,
 input pb,
 input clk, reset);

reg [18:0] count500000; // values are in the range
 // 0 to 499999
wire clk_100 Hz;
reg pb_sampled;

(continued)

196 C H A P T E R F O U R s e q u e n t i a l b a s i c s

The first always block represents a down counter that divides the clock by
500,000. The assignment following the block decodes the terminal count to
derive a sampling clock that pulses to 1 every 10ms. When the sampling clock
is 1, the second always block compares the current push-button input value
(pb) with a previously sampled value (pb_sampled). If they are the same, the
block updates the debounced output with the current value. If they are not the
same, the output is unchanged. Also, when the sampling clock is 1, the block
updates the sampled value with the current value.

It is important to note that, even though the debouncer of Example 4.20
uses much more circuitry than the simple debouncer of Figure 4.45, it will
probably be cheaper to implement. It uses a simple single-throw switch
and only a single resistor external to the integrated circuit, and only
requires one input pin. The saving in packaging resources and printed
circuit board assembly costs would be more significant in a large-volume
application than the expense of additional circuit resources used within
the integrated circuit. We might also consider implementing the debounce
operation in software run on an embedded processor, if the application
requires a processor to be included anyway. If the processor has sufficient
time in its task schedule to perform debouncing, that might be a more
efficient use of resources. The lesson to learn is that, when we make these
trade-off decisions, we must consider all of the costs and resources for the
entire system, not just for one aspect in isolation.

4.4.2 V E R I F I C AT I O N O F S E Q U E N T I A L C I R C U I TS

Now that we have described the design of clocked sequential circuits
and the timing constraints that apply, we can return to the verification
steps outlined in the design methodology in Section 1.5. We need to
consider functional verification (that the sequential circuit performs its

always @(posedge clk or posedge reset)
if (reset) count500000 <= 499999;
else if (clk_100Hz) count500000 <= 499999;
else count500000 <= count500000 – 1;

assign clk_100Hz = count500000 == 499999;

always @(posedge clk)
if (clk_100Hz) begin

 if (pb == pb_sampled) pb_debounced <= pb;
 pb_sampled <= pb;

end

endmodule

function correctly) and timing verification (that the circuit meets timing
constraints). We outlined in Section 1.5 how tools perform static tim-
ing analysis to verify timing constraints. Here, we will discuss functional
verification using Verilog models, expanding on the ideas introduced in
Section 2.4 relating to verification of combinational circuits.

When verifying a combinational circuit, we saw that we need to wait
for some time after applying a test case to the circuit’s inputs before check-
ing the circuit’s outputs, to allow for the propagation delay of the circuit.
Similarly, when verifying a sequential circuit, we need to take account of
the fact that operations take one or more clock cycles to complete. We need
to ensure that the procedural block that checks the output is synchronized
with the stimulus block, and knows how many clock cycles after application
of a test case to wait before checking the output. If all operations com-
plete in the same number of cycles, and only one operation takes place at
a time, this is relatively straightforward. On the other hand, if operations
take varying numbers of cycles to complete, the checker needs to check
both that the operation completes at the correct time and that the correct
result is produced. If multiple operations can take place concurrently, for
example, if the datapath is a pipeline, the checker needs to ensure that
all operations that start also complete, and that no spurious results are
produced.

Developing testbench models for complex sequential circuits can
itself become a complex endeavor. We will discuss some of the general
techniques that can be used in Chapter 10. For now, we will illustrate a
simulation-based approach for verifying circuits that we introduced in
previous examples.

example 4 .21 Develop a testbench model for the sequential multiplier
of Example 4.14. Verify that the result computed by the multiplier is the same
(within the limits of the precision of the operands) as that produced using multi-
plication with the built-in Verilog type real.

solut ion The testbench has no external connections, and so the module
definition is

4.4 Clocked Synchronous Timing Methodology C H A P T E R F O U R 197

`timescale 1 ns/1ns

module multiplier_testbench;

parameter t_c = 50;

reg clk, reset;
reg input_rdy;

(continued)

198 C H A P T E R F O U R s e q u e n t i a l b a s i c s

wire signed [3:–12] a_r, a_i, b_r, b_i;
wire signed [7:–24] p_r, p_i;

real real_a_r, real_a_i, real_b_r, real_b_i,
 real_p_r, real_p_i, err_p_r, err_p_i;

task apply_test (input real a_r_test, a_i_test,
 b_r_test, b_i_test);

begin
real_a_r = a_r_test; real_a_i = a_i_test;
real_b_r = b_r_test; real_b_i = b_i_test;
input_rdy = 1'b1;
@(negedge clk) input_rdy = 1'b0;
repeat (5) @(negedge clk);

end
endtask

multiplier duv (.clk(clk), .reset(reset),
 .input_rdy(input_rdy),
 .a_r(a_r), .a_i(a_i),
 .b_r(b_r), .b_i(b_i),
 .p_r(p_r), .p_i(p_i));

always begin // Clock generator
#(t_c/2) clk = 1'b1;
#(t_c – t_c/2) clk = 1'b0;

end

initial begin // Reset generator
reset <= 1'b1;
#(2*t_c) reset = 1'b0;

end

initial begin // Apply test cases
@(negedge reset)
@(negedge clk)
apply_test(0.0, 0.0, 1.0, 2.0);
apply_test(1.0, 1.0, 1.0, 1.0);
// further test cases ...
$finish;

end

assign a_r = $rtoi(real_a_r * 2**12);
assign a_i = $rtoi(real_a_i * 2**12);
assign b_r = $rtoi(real_b_r * 2**12);
assign b_i = $rtoi(real_b_i * 2**12);

always @(posedge clk) // Check outputs
if (input_rdy) begin
real_p_r = real_a_r * real_b_r – real_a_i * real_b_i;

(continued)

Within the module, we have instantiated the multiplier module as the device
under verification. The instance is connected to testbench nets and variables
declared in the module.

Since the multiplier is clocked, we need to generate a clock signal to drive it.
This is done by the first always block. It uses a parameter, called t_c, for the
clock cycle time. Using a parameter like this allows us to change the clock cycle
time without having to chase down every number that varies as a consequence
of the change. The block delays for half a clock cycle time, sets the clock to 1,
delays a further half a clock cycle time, then sets the clock to 0. (The expres-
sion for the duration of the second half clock cycle time is structured so as to
compensate for any rounding that may occur in the expression for the first half
cycle duration.) After that, the block repeats from the beginning. We also need to
generate a reset pulse for the device under verification. This is done by the first
initial block. The block sets reset to 1 immediately, then back to 0 after a delay
of two clock cycles.

The second initial block stimulates the device under verification with input
data. The block uses a task to abstract out the common operations in applying
each test-case. Rather than generating fixed-point values directly, the block
generates test-case operands of type real on the variables real_a_r, real_a_i,
real_b_r and real_b_i. The assignments following the stimulus initial block use
the $rtoi conversion function, which converts a real value to an integer value, to
assign test-case values to the input inputs of the device under verification. The
scaling by 212 is required, since the binary point in each input is 12 places from
the right.

Within the stimulus initial block, we must ensure that we generate input stimulus
values that meet the timing requirements of the device under verification. The
operand values and the input_rdy signal must be set up before a clock edge. The
operand values must be held for four cycles while the operation proceeds. To
satisfy these requirements, we wait until the first falling clock edge after reset has
returned to 0. We do this using the @ notation to delay until the required events
occur. The call to the apply_test task then assigns the first test-case operands to

4.4 Clocked Synchronous Timing Methodology C H A P T E R F O U R 199

real_p_i = real_a_r * real_b_i + real_a_i * real_b_r;
repeat (5) @(negedge clk);
err_p_r = $itor(p_r)/2**(–24) – real_p_r;
err_p_i = $itor(p_i)/2**(–24) – real_p_i;

if (!(–(2.0**(–12)) < err_p_r && err_p_r < 2.0**(–12) &&
–(2.0**(–12)) < err_p_i && err_p_i < 2.0**(–12)))

 $display("Result precision requirement not met");
end

endmodule

200 C H A P T E R F O U R s e q u e n t i a l b a s i c s

the inputs and sets input_rdy to 1. Next, the task waits for the subsequent falling
clock edge before resetting input_rdy back to 0. It then waits a further five cycles,
giving the device under verification time to produce its output. After that, subse-
quent calls to the task repeat these steps with the further test-case operands.

The output-checking always block verifies that the multiplier produces the cor-
rect results. It must synchronize with the input stimulus to ensure that it checks
the results at the right time. It waits on the same condition as the multiplier’s
controller finite-state machine, namely, input_rdy being 1 on a rising clock edge.
When that occurs, the block reads the stimulus operand values from the vari-
ables real_a_r, real_a_i, real_b_r and real_b_i, forms the complex product using
the real multiplication operator, and saves the product in the variables real_p_r

and real_p_i. The block then waits until the fifth subsequent falling clock edge,
by which time the device under verification has stored its result in its output
registers. The results are available on the p_r and p_i nets. The block converts
them to real form and compares them with the real and imaginary parts saved in
real_p_r and real_p_i. It uses the $itor conversion function to convert values from
integer to real, and scales by 224 to deal with the assumed position of the binary
point 24 places from the right. Since the type real and our fixed-point repre-
sentation are discrete approximations to mathematical real numbers, an exact
equality test is unlikely to succeed. Instead, we check whether the absolute value
of the difference is within the required precision, in this case, the precision of the
input-operand representation.

4.4.3 A SY N C H R O N O U S T I M I N G M E T H O D O LO G I E S

We will close this section on timing methodology with a brief discussion
of some alternative approaches. While the clocked synchronous approach
yields significant simplifications, there are some applications where it
breaks down. Two key assumptions are that the clock signal is distributed
globally (that is, across the entire system) with minimal skew, and that
the propagation delay between registers is less than a clock cycle. In large
high-speed systems, these assumptions are very difficult to maintain. For
example, in a large integrated circuit operating with a clock frequency
of several GHz, the time taken for a change of signal value to propagate
along a wire that stretches across the chip may be a large proportion of a
clock cycle, or even more than a clock cycle.

One emerging solution is to reconsider the assumption of a single
global clock signal for the entire chip or system. Instead, the system is
divided into several regions, each with its own local clock. Where signals
connect from one region to another, they are treated as asynchronous
inputs. The timing for the system is said to be globally asynchronous,
locally synchronous (GALS). The benefit of this approach is that it makes

the constraints on clock distribution and timing within each region
simpler to manage. The downside is that inter-region connections must be
synchronized, thus adding delay to communication. The challenge for the
system architect is to find a partitioning for the system that minimizes the
amount of communication between regions, or that avoids sensitivity to
delay in inter-region communication.

The difficulty in distributing high-speed clock signals and managing
timing is even greater in the context of a complete circuit board consist-
ing of several integrated circuits, or a large system consisting of several
circuit boards. It is simply not practical to distribute a high-speed clock
across a large system. Instead, a slower clock is often used externally
to high-speed chips, and operations between chips are synchronized to
that external clock. The internal clocks operate at a frequency that is
a multiple of the external clock, allowing for synchronization of clock
edges. The separate boards in a high-speed system typically are not
synchronized, but have independent clocks. Data transmitted from one
board to another is treated as an asynchronous input by the receiving
board.

Another aspect of timing in clocked synchronous systems is that all
register-to-register operations take one clock cycle, whether the combina-
tional subcircuit is on the critical path or not. In principle, the slack time
in a clock cycle is wasted; all operations are held back to the time taken by
the slowest. It is possible to design asynchronous circuits in which com-
pletion of one operation triggers dependent operations. Such circuits are
also called delay insensitive, since they operate as fast as the components
and the data allow. However, appropriate design techniques are far less
mature than those for clocked circuits, and there is negligible CAD tool
support for asynchronous methodologies. Hence, products using asyn-
chronous circuits are very uncommon.

A separate issue with the clocked approach is that clocked circuits
consume significant amounts of power. Even if a flip-flop does not change
its stored value, changing the clock input between 0 and 1 involves switch-
ing transistors on and off, thus consuming extra power. In applications
with very low power budgets, such as battery powered mobile devices,
this waste of power is unacceptable. One approach to dealing with it
is to avoid clocking parts of a system that are inactive. Clock gating, as
it is called, is becoming a more common design technique as the num-
ber of low-power applications increases. Asynchronous circuits are an
alternative, since logic levels only change when data values change. If
there is no new data to operate upon, the circuit becomes quiescent. A few
low-power products using asynchronous circuits have been successfully
fielded. Low-power applications may be a more significant motivation for
asynchronous design than the potential performance gains.

4.4 Clocked Synchronous Timing Methodology C H A P T E R F O U R 201

202 C H A P T E R F O U R s e q u e n t i a l b a s i c s

 1. What is meant by the term register transfer level?

 2. Write the timing condition that must apply on a register-to-register
path.

 3. What is the critical path in a system?

 4. How does the critical path delay affect the clock cycle time of the
system?

 5. If a given clock cycle time is required, but the critical path delay is
too long to achieve it, where should optimization effort be focused?

 6. What is meant by the term clock skew?

 7. Why are registered inputs and outputs used in high-speed systems?

 8. What problem can be caused in input registers by asynchronous
inputs?

 9. Why must inputs from electromechanical switches be debounced?

10. What is the main difference between a testbench for a
combinational circuit and a testbench for a sequential circuit?

11. What is meant by the term globally asynchronous, locally
synchronous (GALS)?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

4.5 C H A P T E R S U M M A R Y

Registers are storage components composed of flip-flops. Simple
 registers can be augmented with clock-enable, reset and preset
 control inputs.

Synchronous control inputs are acted upon on a clock edge.
 Asynchronous control inputs are acted upon immediately.

Latching behavior is produced by feedback paths in digital circuits.
A transparent latch passes data through while the enable input is 1
and stores data when the enable input is 0.

A simple free-running counter consists of an incrementer and a
 register. Substituting a decrementer for the incrementer causes the
counter to count down instead of up. Adding a clock-enable input to
the register allows control over when the counter increments. Adding
a reset input to the register allows the count value to be cleared to 0.

An n-bit counter counts modulo 2n; that is, it counts to 2n � 1 then
wraps to 0. A modulo k up counter decodes the value k� 1 and uses
it to reset the counter. A modulo k down counter decrements down
to 0 and then reloads the value k� 1.

A ripple counter uses the output of one flip-flop to trigger the
next flip-flop. It uses less circuitry and consumes less power than a
synchronous counter, and can be used in applications where timing
constraints allow and power constraints are significant.

A digital system, in general, consists of a datapath and a control
 section. The datapath contains combinational subcircuits for oper-
ating on data and registers for storing data. The control section
sequences operations in the datapath by activating control signals at
various times. The control section uses status signals to influence the
control sequence.

A finite-state machine (FSM) has a set of inputs, a set of outputs,
a set of states, a transition function and an output function. For a
given clock cycle, the FSM has a current state. The transition func-
tion determines the next state given the current state and the input
values. The output function determines the output values given just
the current state (Moore machine), or given the current state and the
input values (Mealy machine).

The state encoding of an FSM can influence the complexity of the
next-state and output logic. Synthesis CAD tools are usually able
to optimize the state encoding.

�

�

�

�

�

�

�

�

�

4.5 Chapter Summary C H A P T E R F O U R 203

204 C H A P T E R F O U R s e q u e n t i a l b a s i c s

A state transition diagram represents a finite state machine with
bubbles for states, arcs for transitions, and labels for input condi-
tions and output values. Labels for Moore-style outputs are written
in the bubbles, and labels for Mealy-style outputs are written on
arcs.

At the register-transfer level of abstraction, operation of a system
is described in terms of transfer of data between registers through
combinational circuits that operate on the data.

The clocked synchronous timing methodology involves a common
clock for all registers, and operation on data by combinational
circuits between clock edges.

For each path from register output to register input, the sum of the
clock-to-output delay, combinational propagation delay and setup
time must be less than the clock cycle time. The path with the least
slack time is the critical path.

The critical path delay places a lower bound on the clock cycle time.
Alternatively, a required clock cycle time places an upper bound on
the critical path delay.

Clock skew is the difference in arrival time of a clock edge at
different flip-flops in a system. Clock skew must be minimized to
ensure that clocked synchronous circuits operate correctly. CAD
tools typically implement clock distribution to minimize skew.

Registered inputs and outputs reduce combinational delays in
interchip register-to-register paths, and thus help in meeting timing
constraints.

Asynchronous inputs are those that are not guaranteed to be stable
around clock edges. They can cause metastability in input registers.
Synchronizers are required to avoid system failure due to metastability.

Testbenches for clocked sequential circuits must ensure that stimulus
inputs are applied so as to meet timing constraints, and must wait
until outputs are valid before checking them.

A globally asynchronous, locally synchronous (GALS) system has
regions with local clocks, and treats inter-region connections as
asynchronous inputs.

4.6 F U R T H E R R E A D I N G

Digital Design: Principles and Practices, 3rd Edition, John F. Wakerly,
Prentice Hall, 2001. Describes flip-flops and latches in detail, pre-
sents detailed low-level design procedures for finite-state machines,

�

�

�

�

�

�

�

�

�

�

Exercises C H A P T E R F O U R 205

provides an analysis procedure for feedback circuits, and discusses
metastability and synchronizers in detail.

CMOS VLSI Design: A Circuits and Systems Perspective, 3rd Edition,
Neil H. E. Weste and David Harris, Addison-Wesley, 2005. Among
many other aspects of CMOS circuit design, this book discusses
detailed design of flip-flops and latches and addresses both single-
phase and two-phase clocking schemes.

Asynchronous Circuit Design, Chris J. Myers, Wiley-Interscience, 2001.
An in-depth treatment of theory and practice.

A Guide to Debouncing, Jack G. Ganssle, The Ganssle Group, 2004,
www.ganssle.com/debouncing.pdf. Presents empirical data on
switch bounce behavior, and describes hardware and software
approaches to debouncing.

Comprehensive Functional Verification: The Complete Industry
Cycle, Bruce Wile, John C. Goss and Wolfgang Roesner, Morgan
Kaufmann Publishers, 2005. Describes strategies and techniques
for stimulus generation and result checking in simulation-based
verification.

e x e rc i s e 4 . 1 Draw a schematic for a 6-bit register, constructed from
D flip-flops, that updates the stored value on every clock cycle.

e x e rc i s e 4 . 2 Write a Verilog model for a 12-bit register that stores an
unsigned integer value.

e x e rc i s e 4 . 3 Develop a Verilog model of a pipelined circuit that com-
putes the maximum of corresponding values in three streams of input values, a,
b and c. The pipeline should have two stages: the first stage determines the larger
of a and b and saves the value of c; the second stage finds the larger of c and
the maximum of a and b. The inputs and outputs are all 14-bit signed
2s-complement integers.

e x e rc i s e 4 . 4 Revise the schematic of Exercise 4.1 to include a clock
enable and a reset input to the register, using flip-flops with clock-enable and
reset inputs.

e x e rc i s e 4 . 5 Write a Verilog model for a register with clock-enable and
synchronous reset that stores a 16-bit 2s-complement signed integer value.

e x e rc i s e 4 . 6 Draw a datapath for a pipelined complex multiplier. Unlike
the sequential multiplier in Example 4.13 that takes five cycles to do each

E X E R C I S E SE X E R C I S E S

