
s e q u e n t i a l  bas i c s

Sequential circuits are the mainstay of digital systems. In this chapter, 
we start by examining several sequential circuit elements that are widely 
used in digital systems for storing information and for counting events. 
We then see how a system can be built from two main sections: a data-
path and a control section. We complete the chapter with a discussion of 
a clocked synchronous timing methodology based on the abstraction of 
discrete time. This methodology is central to design of complex digital 
systems.

4.1 S T O R A G E  E L E M E N T S

In Chapter 1, we briefly introduced the idea of sequential circuits. We 
described a sequential circuit as one whose outputs depend not only on 
the current values of inputs, but also on the previous values of inputs. 
Such circuits have some form of memory, or storage, of the history of 
input values. We mentioned that sequential circuits are commonly regu-
lated by a periodic clock signal that divides the passage of time into dis-
crete clock cycles. We also showed one of the simplest elements for storing 
values, a D flip-flop, that can store one bit of information. In this section, 
we will look at further uses of the D flip-flop and other storage elements.

4.1.1 F L I P - F LO P S  A N D  R E G I S T E R S

As a reminder, the symbol for a D flip-flop is shown in Figure 4.1, and 
a timing diagram is shown in Figure 4.2. The flip-flop is edge-triggered, 
meaning that on each rising edge of the clk input, the current value of the 
D input is stored within the flip-flop and reflected on the Q output. We 
illustrated use of D flip-flops in sequential circuits in Example 1.2, where 
we stored the previous two values of an input signal on successive clock 
edges so that we could detect a given sequence of input values.

While it is possible to implement a flip-flop as a combination of gates, 
it is not very instructive to do so. Moreover, flip-flops are provided as 
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primitive elements in most implementation fabrics, so we would only need 
to implement one using gates in very exceptional circumstances. Advanced 
books on IC design typically include more detailed treatment of flip-flop 
implementation (see Section 4.6, Further Reading).

In most digital circuits, flip-flops are not used individually, but in 
groups to store binary-coded values. A group of flip-flops used in this 
way is called a register. Each flip-flop in the register stores one bit of the 
code word of the stored value, as shown in Figure 4.3. The circuit at the 
top of the figure shows that each bit of an input and an output signal is 
connected to the input and output, respectively, of one of the flip-flops, 
and that the clock signal is connected in common to the clock input of all 
of the flip-flops. When there is a rising edge on the clock input, each flip-
flop in the register updates its stored bit from the signal connected to its 
data input and drives the new value on its data output. The symbol for the 
register is shown at the bottom of Figure 4.3. The difference, compared 
to the symbol for a single flip-flop, is in the thick lines used for the data 
input and output, denoting multiple bits. We can think of this as a more 
abstract component that has similar behavior to a D flip-flop, except that 
it stores a complete code word rather than a single bit.

We can model simple D flip-flops and registers in Verilog using an 
always block of the form

always @(posedge clk)
q <= d;

 

This is the first of a small number of always-block templates that we will 
introduce for modeling sequential circuits. It is important that we adhere 
to the template structures, since synthesis tools can generally only syn-
thesize sequential circuits that use the templates. A complete description 
of the templates and the way synthesis tools process them is included in 
Appendix C.

We would place a block representing a flip-flop or register in the 
statement part of a module. The notation @(...) after the always keyword 
is called the block’s event list, and specifies an event to which the block 
responds. In this case, the keyword posedge specifies that the event is a 
positive (rising) edge, a change from 0 to 1, on the clock input clk. When 
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F I G U R E 4 .3  A register com-
posed of D fl ip-fl ops (top), and the 
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for a D fl ip-fl op.



the event occurs, the block performs the statement that follows. (If there is 
more than one statement to perform, we can group them using begin . . . 
end keywords.) The statement in this case assigns the current value of the 
data input d to the data output q. Since this assignment only happens on 
rising edges of clk, and the value of q remains unchanged between rising 
edges, the block models the behavior we described for an edge-triggered D 
flip-flop or a register. The distinction between the two arises from the sizes 
of d and q. If they are single bits, the block models a D flip-flop, storing 
just a single bit of data. If d and q are vectors, the block models a register.

There are two further points to note about this model for a flip-flop 
or register. First, the output q must be declared as a variable, for example, 
using a reg or integer keyword. As we have previously mentioned, assign-
ments within procedural blocks must be made to variables, not nets. Sec-
ond, we have used a different form of assignment symbol, 	� instead of �, 
in this block. The form using � is called a blocking assignment, and can be 
used in blocks that model combinational logic, as we saw in Chapter 2. 
The form using 	� is called a nonblocking assignment, and should be 
used in assignments to variables representing the outputs of flip-flops or 
registers. The reason for the distinctions arise from subtleties in the way 
variables are updated during simulation of Verilog models. We will not go 
into details in this book. (The details are covered in reference books on 
Verilog.) Instead, we will simply follow the convention of using nonblock-
ing assignments in blocks modeling outputs of sequential logic.

One use for a register constructed from simple D flip-flops is as a 
pipeline register in a sequential design. We will discuss this in further 
detail in Chapter 9, focusing on the use of pipelining as a technique for 
improving performance of a digital system. For now, consider the circuit 
outlined at the top of Figure 4.4. Successive values of data arriving at 
the input are processed by a number of combinational subcircuits, for 
example, by arithmetic subcircuits built from components described in 
Chapter 3. The total propagation delay of the circuit is the sum of the 
propagation delays of the individual subcircuits. This total delay must be 
less than the interval between arriving data values, otherwise data values 
may be lost. If the total delay is too long, we can divide the circuit into 
segments by inserting a register after each subcircuit, as shown at the 
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bottom of Figure 4.4. This arrangement is called a pipeline, as it allows 
data and intermediate results to flow through over several clock cycles. 
A new input value arrives at the beginning of each clock cycle. During 
a clock cycle, each subcircuit uses the value from the preceding regis-
ter (or from the input, in the case of the first subcircuit) to perform its 
combinational function and to yield an intermediate result. On the next 
rising clock edge, the intermediate results are stored in the registers at the 
outputs of the subcircuits. Each intermediate result is then used by the next 
subcircuit during the next clock cycle. Computation is thus performed in 
assembly-line fashion. A new final result reaches the output on each clock 
edge, having taken several clock cycles to be computed.

example  4 .1  Develop a Verilog model for a pipelined circuit that com-
putes the average of corresponding values in three streams of input values, a, b

and c. The pipeline consists of three stages: the fi rst stage sums values of a and 
b and saves the value of c; the second stage adds on the saved value of c; and 
the third stage divides by three. The inputs and output are all signed fi xed-point 
numbers indexed from 5 down to �8.

solut ion The module definition is

module average_pipeline ( output reg signed [5:–8] avg,
 input signed [5:–8] a, b, c,
 input clk );

wire signed [5:–8] a_plus_b, sum, sum_div_3;
reg  signed [5:–8] saved_a_plus_b, saved_c, saved_sum;

assign a_plus_b = a + b;

always @(posedge clk) begin // Pipeline register 1
saved_a_plus_b <= a_plus_b;
saved_c <= c;

end

assign sum = saved_a_plus_b + saved_c;

always @(posedge clk) // Pipeline register 2
saved_sum <= sum;

assign sum_div_3 = saved_sum * 14'b00000001010101;

always @(posedge clk) // Pipeline register 3
avg <= sum_div_3;

endmodule
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The nets and variables declared within the module are used for the intermediate 
results of the arithmetic operations and for the values saved in registers. The sim-
ple assignment statements model the arithmetic operations (two additions and a 
multiplication). We express the division by three as a multiplication by one-third 
(expressed as the binary fixed-point number 14'b00000001010101), as multipli-
ers are generally simpler circuits than dividers. Moreover, some implementation 
fabrics have built-in multipliers that can be used. The three always blocks model 
the pipeline registers storing the intermediate results. Note that the first register 
actually stores two values together: the sum of a and b, and the input value c. If 
c were not saved in this way, the wrong value from the input stream c would be 
added by the second adder, rather than the value corresponding to the saved sum 
of a and b. Also note that the third register assigns directly to the output avg, as 
the value saved by the third register is the value required at the output.

The D flip-flop that we have considered so far is somewhat limited 
in its use, since it stores a new value on every rising edge of the clock 
input. Many systems only require a flip-flop to store a value when some 
controlling condition arises. For that, we can use an enhanced form of D 
flip-flop with a clock-enable input (sometimes call a load-enable input), 
illustrated in Figure 4.5. This flip-flop only updates the stored value when 
the CE input is 1 at the time of a rising clock edge. If the CE input is 0 on a 
rising clock edge, the flip-flop maintains the stored value unchanged. This 
behavior is shown in the timing diagram in Figure 4.6. As we  mentioned 
in Section 1.3.6, the value on the data input must be stable for the setup 
time before and the hold time after the clock edge. A similar constraint 
applies to the clock-enable input. We say that the clock-enable input is a 
synchronous control input, meaning that it must be stable around a clock 
edge, and its effect is only acted upon when a clock edge occurs.

As with the simple D flip-flop, we can use multiple flip-flops with 
clock enable in parallel to form a register with clock enable. This form of 
register is probably the most common used in sequential digital systems, as 
it allows for storage of an intermediate result computed  during one clock 
cycle to be used as an input to a subsequent computation any  number of 
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clock cycles later. We will see in Section 4.3 how we can develop control 
conditions that govern when data is stored in registers.

We can model flip-flops and registers with clock enable inputs by 
extending the always-block template used to model simple D flip-flops 
and registers. The revised template is

always @(posedge clk)
if (ce) q <= d;

The difference between this and the previous template is the addition of 
the if statement. When a rising edge occurs on the clk input, the output 
signal is only updated if the ce input is 1; otherwise, the stored value is 
unchanged. As before, the sizes of d and q determine whether the block 
models a single-bit flip-flop or a multibit register.

A further extension to the simple flip-flop involves adding an input 
to reset the stored value to 0. This is useful for ensuring that the flip-flop 
is initialized to a known state when power is first applied to a sequential 
circuit or when the circuit must be restarted from an initial state. Some 
circuits include a push button to allow the user to reset the circuit, for 
example, when it has encountered an error condition from which it cannot 
recover. Figure 4.7 shows a symbol for a flip-flop with both a clock-enable 
input and a reset input. The reset input overrides the clock-enable and 
data inputs. That is, when reset is 1, the stored value and the output Q are 
both changed to 0, regardless of the values on the CE and D inputs.

An important question to consider is the timing of changes on the 
reset input and when the reset operation occurs. There are two alternative 
behaviors, and a flip-flop with reset exhibits one or the other. The first 
reset behavior is called synchronous reset, and treats the reset input as a 
synchronous control input. This behavior is illustrated in Figure 4.8, in 
which the reset input causes the flip-flop to be reset on the first, fourth 
and fifth rising clock edges. Notice that, during the seventh clock cycle, 
reset changes to 1, but then changes back to 0 before a clock edge occurs. 
Since reset is 0 at the time of the next clock edge, the flip-flop is not reset. 

D
CE

Q

reset
clk

F I G U R E 4 .7  A D fl ip-fl op 
with clock-enable and reset inputs.
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F I G U R E 4 .8  Timing diagram 
for a fl ip-fl op with clock-enable 
and synchronous reset inputs.
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Notice also that we have shown the initial value of the Q output as neither 
0 nor 1, but some unknown value, denoted by the grey shading. The fact 
that reset is 1 at the first clock edge forces the output to the known 0 
value. Finally, we have ensured that the value of reset, like other data and 
control inputs is stable around each clock edge.

The second reset behavior for flip-flops is called asynchronous reset. 
In this case, the reset input is treated as an asynchronous control input, 
that is, when it changes to 1, it has an immediate effect regardless of 
the value of the clock or occurrence of clock edges. Moreover, the effect 
continues for as long as the reset input is 1. This behavior is illustrated in 
Figure 4.9. The timing of the inputs is the same as in Figure 4.8, but the 
output timing is different. At the start and in the third cycle, Q changes 
to 0 as soon as reset changes to 1, rather than waiting until the next clock 
edge. Furthermore, in the seventh cycle, the reset pulse that was ignored 
in the previous diagram takes effect in this case.

There is a potential problem that we should be aware of when design-
ing circuits with asynchronous reset. The effect of changing the reset 
input from 1 back to 0 is to allow flip-flops to resume normal operation. 
However, if the change occurs close to a clock rising edge, the effect may 
occur at that edge or be delayed until the subsequent edge. This can cause 
problems in a system with numerous flip-flops, all of which are connected 
to the same clock and reset signals. Differences in the wiring delays can 
cause the change of reset from 1 to 0 to occur at slightly different times 
relative to clock edges for different flip-flops. Consequently, some flip-
flops may be released from reset and resume storing values at one clock 
edge, whereas others might not resume until the subsequent clock edge, 
resulting in incorrect circuit operation. The solution to this problem is 
to ensure that the release of the reset signal from 1 to 0 always occurs 
synchronously with the clock; that is, to ensure that the change occurs 
sufficiently before a clock edge that the reset signal is stable around the 
edge for all flip-flops in the system.
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The choice between synchronous and asynchronous reset may be 
influenced by the implementation fabric used for a design. Some fabrics 
only provide flip-flops with one or the other form of reset. Others, such 
as many FPGAs, allow us to program each flip-flop to use one or the 
other form of reset. Alternatively, the choice between the two forms of 
reset may be made by a system architect based on requirements for the 
design or the timing practices adopted for the design project. In that case, 
the chosen form of reset would be incorporated as a design specification 
for the subcircuits of the larger system. Generally, we should simplify the 
timing of a design by adopting one form of reset, either synchronous or 
asynchronous, uniformly throughout the design.

Just as we can use simpler flip-flops in parallel to form registers, so we 
can use flip-flops with reset in parallel. The result is a register that can be 
reset to a code word of all 0s. We can model flip-flops and registers with 
reset in Verilog by extending our previous always-block templates. The 
template for a flip-flop with synchronous reset and clock enable is

always @(posedge clk)
if (reset) q <= 1'b0;
else if (ce) q <= d;

On a rising clock edge, the block first checks whether the reset input is 
active, since this input has priority over all of the other logic in the flip-
flop. If the reset input is active, the output is reset to 0. If we are modeling 
a multibit register, we would change the assignment to something like

q <= 6'b0;

to clear all output bits. The length of the vector will, of course, depend on 
the number of elements in the vector output signal. The remainder of the 
always-block template, after the test for reset, is the same as before. Only 
if reset is inactive does the block check the clock-enable input.

If we need to model a flip-flop or register with asynchronous reset, we 
need to take account of the fact that the reset input has an effect regardless 
of the value of the clock input. The always-block template for this kind 
of flip-flop is

always @(posedge clk or posedge reset)
if (reset) q <= 1'b0;
else if (ce) q <= d;
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We have included the reset input in the event list of the block, since the 
block may need to update the outputs on a change of value of the reset 
input, not just on a change of value of the clock input. The revised block 
checks the value of the reset input first, before it looks at the clock input. 
If the reset input is 1, the block clears the output immediately. Only if the 
reset input is 0 does the block proceed to check for activity of the syn-
chronous control input on a rising clock edge. As before, we can change 
the assignment to the output to reflect the difference between a single-bit 
flip-flop and a multibit register.

example  4 .2  Develop a Verilog model for an accumulator that calculates 
the sum of a sequence of fi xed-point numbers. Each input number is signed with 
4 pre-binary-point and 12 post-binary-point bits. The accumulated sum has 8 
pre-binary-point and 12 post-binary-point bits. A new number arrives at the 
input during a clock cycle when the data_en control input is 1. The accumulated 
sum is cleared to 0 when the reset control input is 1. Both control inputs are 
synchronous.

solut ion The module requires a clock input, two control inputs, a data 
input and a data output, as follows:

module accumulator
( output reg signed [7:-12] data_out,
input signed [3:-12] data_in,
input data_en, clk, reset );

wire signed [7:-12] new_sum;

assign new_sum = data_out + data_in;

always @(posedge clk)
 if (reset) data_out <= 20'b0;
 else if (data_en) data_out <= new_sum;

endmodule

The first assignment in the module models the addition of the accumulated 
sum (data_out) and the data input. The data input is implicitly sign-extended to 
match the size of the sum. The always block models the register used to accumu-
late the sum. It is based on the template for a register with synchronous reset and 
clock enable. When reset is 1, the block clears the register output, represented by 
the output variable data_out. If reset is 0, the block checks whether a new data 
value has arrived and been added to the sum. In that case, the register output is 
updated with the new sum; otherwise, it is unchanged.
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We have now covered the main aspects of flip-flops and registers. 
There are other extensions, but they are just variations on the themes we 
have seen. One such variation is the addition of a control input to preset 
a flip-flop to 1. This is much like a reset control input, and may be either 
synchronous or asynchronous. Another variation is for the reset control 
input to use active-low logic, that is, for a 0 on the reset input to clear the 
stored data and output. Likewise, a preset control input might use active-
low logic. A further variation is to use active-low logic for the clock input. 
This involves triggering a change of stored value on a falling edge of the 
clock signal rather than on a rising edge.

example  4 .3  The symbol in Figure 4.10 shows a negative-edge-triggered 
fl ip-fl op with clock enable, negative-logic asynchronous preset and clear, and 
both active-high and active-low outputs. It is illegal for both preset and clear to 
be active together. Develop a Verilog model for this fl ip-fl op.

solut ion  The module definition is

module flip_flop_n ( output reg Q,
 output Q_n,
 input pre_n, clr_n, D,
 input clk_n, CE );

always @( negedge clk_n or 
 negedge pre_n or negedge clr_n ) begin

if (!pre_n && !clr_n)
$display("Illegal inputs: pre_n and clr_n both 0");

if (!pre_n) Q <= 1'b1;
else if (!clr_n) Q <= 1'b0;
else if (CE) Q <= D;

end

assign Q_n = ~Q;

endmodule

We adopt the convention of appending “_n” to a name to indicate active-low 
logic. The always block models the flip-flop behavior. Since the pre_n and clr_n 
inputs are asynchronous control inputs, we include them, along with the clock 
input, in the event list of the block. Since they are all active-low inputs, we use 
negedge to specify that the block should respond to negative (falling) edges, that 
is, to changes from 1 to 0. Within the block, we check that the illegal condition 
described in the specification does not arise during use of the flip-flop in a 
circuit. The remainder of the block is based on the template for a flip-flop with 
asynchronous control. In this case, we have two asynchronous control inputs, so 
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we test them, one after the other, before checking for the synchronous 
clock-enable control input.

4.1.2 S H I F T  R E G I S T E R S

A register, as we have seen, stores data and makes it available at the out-
put unchanged. A shift register, on the other hand, can perform a shift 
operation on the stored data. We described shift operations in Chapter 3, 
and showed how a shift operation has the effect of scaling a numeric value 
by a power of 2. As we will see in Chapter 8, shift operations are also used 
to implement serial transfer of data, that is, transfer one bit at a time over 
a single wire, instead of using separate wires for each of the bits of data. 
For now, we will just focus on use of shift registers to combine arithmetic 
scaling with storage functions.

Figure 4.11 shows a symbol for a shift register, and Figure 4.12 shows 
how it can be implemented with D flip-flops and multiplexers. The shift 
register is updated on a rising clock edge when CE is 1. In that case, when 
the load_en signal is 1, the multiplexers select new data on the D(n–1) 
through D(0) inputs for updating the register. Alternatively, when CE is 1 
and load_en is 0, the multiplexers select the existing data, shifted right by 
one place. The least significant bit is discarded, and the most significant 
bit is updated with the value of the D_in signal. If we tie D_in to 0, the 
shift register performs a logical shift right operation on the stored data. 
Alternatively, if we connect the most significant output bit back to D_in, 
the shift register performs an arithmetic shift right operation. We will see 
in Chapter 8 how we connect the D_in input and the Q(0) output for serial 
transfer of data.
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example  4 .4  In Chapter 3, we showed how to perform multiplication of 
unsigned integers by addition of partial products. Construct a multiplier for two 
16-bit operands containing just one adder that adds successive partial products 
over successive clock cycles. The fi nal product is 32 bits.

solut ion  In order to perform the operation over multiple cycles, we need 
a number of registers to hold intermediate results, as shown in Figure 4.13. The 
x operand is stored in an ordinary register whose output connects to an array 
of 16 AND gates that form a partial product. The y operand is stored in a shift 
register whose least significant bit, Q(0), controls the AND gates. The y operand 
is shifted on successive cycles, thus giving the 16 successive partial products. The 
sum of the partial products are accumulated in a 17-bit ordinary register and a 
15-bit shift register. Since the shift register is never required to load data other 
than through the D_in connection, the data and load_en inputs are absent. On 
each clock cycle, the least significant bit of the ordinary register is shifted into 
the shift register, and the remaining bits of the ordinary register are added with 
the next partial product. By shifting the accumulated sum in this way, partial 
products are added at successively more significant positions of the result.

F I G U R E 4 .13 Registers, shift 
registers and other components 
used to form a sequential 
multiplier.
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Making the sequential multiplier perform the required operations over successive 
clock cycles requires a separate control circuit. We will discuss control sequenc-
ing in detail in Section 4.3, and leave detailed design of the multiplier control to 
Exercise 4.20.

4.1.3 L ATC H E S

As we have seen, a flip-flop is a basic sequential circuit element that stores 
one bit. Most digital circuits use edge-triggered flip-flops that store a new 
data value when the clock signal changes from 0 to 1. No further values 
are stored while the clock remains at 1, nor when the clock returns to 0. 



Some systems, however, use sequential elements called latches, with 
slightly different timing for storage of values. Figure 4.14 shows a symbol 
for a latch, and Figure 4.15 shows the timing behavior.

The latch has two inputs, a data input, D, and a latch-enable input, 
LE. It also has a data output, Q. When the latch-enable input is 1, the 
value at the data input is stored in the latch and transmitted through to 
the output. As the timing diagram shows, provided the data input remains 
unchanged for the entire time that the latch-enable input is 1, the  behavior 
is the same as that of a flip-flop. However, if the data input changes while 
the latch-enable input is 1, the changed value is transmitted to the output. 
When the latch-enable input eventually changes to 0, the value stored 
in the latch just before the change is maintained in the latch and at the 
output. The fact that data is transmitted through to the output while the 
latch-enable input is 1 leads us also to use the name transparent latch 
for this component. While the latch-enable input is 1, what we see on 
the output is the value present on the input, so the latch appears to be 
transparent.

We can model a latch in Verilog using an always block of the form

always @(LE or D)
if(LE) Q <= D;

This block includes both the latch-enable input and the data input in the 
event list. The notation or in the event list specifies that the block responds 
to changes on either input. However, it only updates the output Q when 
LE is 1. If the D input changes while the LE input is 1, the change on D is 
reflected on the output, modeling the transparent state of the latch. On 
the other hand, if D changes while LE is 0, the output is not assigned and 
maintains its previous value.

Just as we can implement multibit registers with flip-flops connected 
in parallel, so we can implement multibit latches with single-bit latches 
connected in parallel. The result is a latch in which multiple data bits flow 
through when the latch-enable input is 1 and are stored when the latch-
enable input is 0.
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While latch circuits are relatively simple to implement in many  fabrics, 
the fact that data can flow through them transparently can make it harder 
to design complex systems with correct timing behavior. The usual solu-
tion is to use two-phase nonoverlapping clock signals. Since this approach 
is not widely used now, the details are beyond the scope of this book. (See 
the books in Section 4.6, Further Reading.) However, we do need to con-
sider how latching behavior can arise inadvertently from Verilog models, 
since it is a common design error.

First, let’s return to our definition of a combinational logic circuit. We 
said that such a circuit is one whose outputs are defined purely as a func-
tion of the current input values, and that have no dependence on previous 
input values. The way in which a circuit’s output can depend on previous 
input values is for the circuit to have a feedback path, that is, a cycle of 
connections from the output of a gate through other gates and back to the 
input of the gate. Perhaps the simplest such circuit is an inverter whose 
output is connected to its input, as shown at the top of Figure 4.16. Since 
the output of the inverter is the logical negation of its input, the output 
will oscillate between 0 and 1 with a frequency that is dependent on the 
propagation delay through the inverter. (Alternatively, the inverter may 
exhibit analog circuit behavior and reach an intermediate voltage level 
that is neither a valid logic low nor a valid logic high.) If we extend the 
feedback loop with more inverters to give an odd number of inverters 
in total (as shown at the bottom of Figure 4.16), we reduce the overall 
frequency of oscillation. This form of oscillator is called a ring oscillator. 
If we extend the ring to have an even number of inverters, the circuit will 
reach a stable state in which alternate inverters have a 0 at their output 
and the others have a 1. There are two possible stable states for such a 
ring of inverters. We could force the ring into one or other of the states by 
forcing a given node to 0 or 1, for example, by using switches as shown in 
Figure 4.17. (This is an idealization. In a real circuit, the switches would 
have some series resistance, thus avoiding damage to the output of the 
second inverter.) When both switches are open, the circuit retains the state 
into which is was forced. Hence, its output depends on the previous input 
value. This is a basic form of one-bit storage, called a reset-set latch, or 
RS-latch for short.

A more common implementation of an RS-latch uses cross-coupled 
gates, as shown in Figure 4.18. The timing behavior of the RS-latch is 
shown in Figure 4.19. Normally, the reset input R and the set input S 
are both 0. Assume initially that Q is 0 and  

_
 Q  is 1. This is a stable state, 

called the reset state. If the R input changes to 1 in this state, neither out-
put changes and the latch stays in the reset state. However, if the S input 
changes to 1,  

_
 Q  changes to 0. This value is fed back to the other gate, 

which causes Q to change to 1. This is also a stable state, called the set 
state. When S returns to 0, the latch stays in the set state. Further changes 

F I G U R E 4 .16 Inverters 
connected in feedback loops.

F I G U R E 4 .17 Using switches 
to force a node of an inverter ring 
to 0 or 1.
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F I G U R E 4 .19 Timing for an 
RS-latch, showing the reset and 
set states, as well as an illegal 
operating condition.

of S to 1 while the latch is in the set state make no difference. However, if 
R goes to 1, the feedback causes the latch to change back to the reset state. 
Thus, which state the latch is in at any time depends on which of the S or 
R inputs was 1 most recently. Note that if both R and S are 1 at the same 
time, both Q and  

_
 Q  are 0. This is usually considered an illegal operating 

condition for an RS-latch.
Now that we have seen ways in which feedback can cause latching 

behavior, let’s see how feedback can arise in Verilog models. In  Chapter 2, 
we showed how a combinational circuit is modeled using an assignment 
statement in an architecture. Normally, we include the inputs to the 
 circuit in the expression on the right-hand side of the assignment symbol 
and the output of the circuit on the left-hand side. However, if we have 
an assignment with a given net appearing both on the left-hand side 
and on the right-hand side, we imply a feedback loop from the output 
to the input. Most synthesis CAD tools will not synthesize such circuits 
without  complaint, since the timing is not readily predictable and correct 
operation is not guaranteed. For example, if we write the following in a 
model:

assign a = a + b;

we imply an adder with the output feeding back directly into an input. 
In this sense, assignments modeling combination hardware in Verilog 
are different from assignments to variables in programming languages. 
Depending on the propagation delay through the synthesized and imple-
mented circuit, we may add the value of b to itself once, twice, or more 
times within a given time interval. Moreover, if the delays are different 
for different bits, the result may not correspond to addition of the value 
of b at all. Most synthesis tools would either issue a warning or reject an 
assignment in the above form as erroneous.
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A feedback loop can also be implied by a number of assignments in 
combination, where there is a cycle of dependencies between them. For 
example, consider the following assignments:

assign x = y + 1;
assign y = x + z;

Due to the first assignment, the value of x depends on the value of y. Due 
to the second assignment, the value of x depends on y, and thus indirectly 
on x itself. A synthesis tool should also issue a warning or flag this as 
erroneous.

The fact that synthesis tools object to feedback loops in combina-
tional circuits can make it hard to model circuits in which we deliberately 
include such loops. For example, a Verilog model of the cross-coupled 
RS-latch of Figure 4.18 might be written as

assign Q = ~(R | Q_n);
assign Q_n = ~(S | Q);

These assignments imply a cyclic dependency between Q and Q_n, which is 
exactly what we want in the synthesized circuit. An alternative way of mod-
eling this behavior is to use an always block and an assignment, as follows:

always @(R or S)
if (R) Q <= 1'b0;

  else if (S) Q <= 1'b1;

assign Q_n = Q;

The assignment simply negates the value of Q, which is generated by the 
always block. In the block, we have included the R and S inputs in the event 
list. Thus, the block will be reactivated whenever either input changes. If R
is 1, the block updates the Q output to represent the reset state, and if S is 1, 
the block updates the output to represent the set state. Note that, if neither 
input is 1, the block makes no assignment to Q. In that case, the outputs 
remain unchanged; that is, it stores the previously updated state. In gen-
eral, if there is any execution path through an always block where we do 
not update an output, then the block represents latching behavior for that 
output, since the output maintains its previous value. If this is intended, as 
in the block modeling the RS-latch, we don’t have a problem. However, it 
is a common Verilog modeling error to inadvertently omit an assignment 



to an output in an execution path, for example, in one alternative of a 
complex if statement. The unintended latching behavior for that output 
can be most perplexing until the error is located and corrected.

example  4 .5  The following always block is intended to model multi-
plexer circuitry that selects between a number of inputs to assign to outputs z1

and z2. Identify the error in the block and describe the behavior that results.

always @*
if (~sel) begin

z1 <= a1; z2 <= b1;
end else begin

z1 <= a2; z3 <= b2;
end

solut ion The assignment to z3 in the “else” part of the if statement 
should assign to z2. As a consequence, z2 is not updated on that execution path 
and z3 is not updated on the execution path in which sel is 0. Thus, the block 
implies transparent latches for z2 and z3. The latch for z2 is transparent when 
sel is 0 and stores a value when sel is 1. The latch for z3 is transparent when sel

is 1 and stores a value when sel is 0. This unintended behavior can be corrected 
simply by changing the target of the assignment from z3 to z2, as it should be.

1. Write a Verilog always block for a simple rising-edge-triggered register.

2. What do we call an arrangement of combinational subcircuits and 
registers that operate in assembly-line-like fashion?

3. What effect does a clock-enable input have on a register?

4. What is the distinction between an asynchronous reset and a 
synchronous reset?

5. What additional function does a shift register provide compared to 
an ordinary register?

6. What is meant by the term “transparent” with respect to a latch?

7. What problem is caused by omitting an assignment to an output in 
a Verilog always block that models combinational logic?

4.2 C O U N T E R S

A counter is a sequential component that increments or decrements a 
stored value. Counters occur in many digital circuit applications. For 
example, if an application requires a given operation to be performed on 
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a number of items of data or to be repeated a number of times, a counter 
can be used to keep track of how many items have been processed or how 
many times the operation has been performed. Counters are also used as 
timers, by counting the number of intervals of a fixed duration that have 
passed.

A simple form of counter is composed of an edge-triggered register 
and an incrementer, as shown in Figure 4.20. The value stored in the reg-
ister is interpreted as an unsigned binary integer. The incrementer can be 
implemented using the circuit we described for an unsigned incrementer 
in Section 3.1.2 on page 108. The counter increments the stored value on 
every clock edge. When the stored count value reaches its maximum value 
(2n � 1, for an n-bit counter), the incrementer yields a result of all zeros, 
with the carry out being ignored. This result value is stored on the next 
clock edge. Thus, the counter acts like the odometer in a car, rolling over 
to zeros after reaching its maximum value. Mathematically speaking, the 
counter increments modulo 2n. The counter goes through all 2n unsigned 
binary integer values in order every 2n clock cycles. One use for such 
a counter is in conjunction with a decoder to produce periodic control 
signals.

example  4 .6  Design a circuit that counts 16 clock cycles and produces a 
control signal, ctrl, that is 1 during every eighth and twelfth cycle.

solut ion  We need a 4-bit counter, since 16 � 24. The counter counts 
from 0 to 15 and then wraps back to 0. During the eighth cycle, the counter 
value is 7 (01112), and during the twelfth cycle, the counter value is 11 (10112). 
We can generate the control signal by decoding the two required counter values 
and forming the logical OR of the decoded signals. The required circuit is shown 
in Figure 4.21.
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F I G U R E 4 .20 A simple 
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and an incrementer.
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example  4 .7  Develop a Verilog model of the circuit from Example 4.6.

solut ion  The module definition is

module decoded_counter ( output ctrl,
 input  clk );

reg [3:0] count_value;

always @(posedge clk)
count_value <= count_value + 1;

assign ctrl = count_value = = 4'b0111 ||
 count_value = = 4'b1011;

endmodule

The module contains an always block that represents the counter. It is similar 
in form to a block for an edge-triggered register. The difference is that the value 
assigned to the count_value output on a rising clock edge is the incremented 
count value. The assignment to count_value represents the update of the value 
stored in the register, and the addition of 1 represents the incrementer. The final 
assignment statement in the module represents the decoder.

The counter that we have described so far is free running, increment-
ing the count value on every clock cycle. We can modify the counter to 
make it useful in applications that require more control over the count 
value. Two simple modifications involve adding a clock enable and a 
reset input to the storage register within a counter. The clock-enable input 
allows us to control when the counter increments its value, so this input 
is often called a count-enable input. The reset input allows us to clear 
the count value back to zero. A counter modified in this way is shown in 
Figure 4.22. This form of counter is very useful for counting occurrences 
of events. We would connect a signal indicating event occurrence to the 
count-enable input of the counter. If we need to count events over several 
intervals, we can reset the counter at the start of each interval.

Another modification is a terminal-count output. This is simply a 
decoded output that is 1 when the counter reaches is maximum, or ter-
minal, value. For the counters we have described above, the maximum 
value of 2n � 1 is represented by a count value with all 1 bits. We can use 
an n-input AND gate to generate the terminal count output, as shown in 
Figure 4.23. For a free-running counter, the terminal-count output is 1 
for a single clock cycle every 2n clock cycles; that is, it is a periodic signal 
whose frequency is the input clock frequency divided by 2n.
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example  4 .8  A digital alarm clock needs to generate a periodic signal at 
a frequency of approximately 500Hz to drive the speaker for the alarm tone. 
Use a counter to divide the system’s master clock signal, with a frequency of 
1 MHz, to derive the alarm tone.

solut ion  We need to divide the master clock signal by approximately 
2000. We can use a divisor of 211 � 2048, which gives us an alarm tone fre-
quency of 488Hz, which is close enough to 500 Hz. Thus, we could use the 
 terminal-count output of an 11-bit counter for the tone signal. However, the 
duty cycle (the ratio of time for which the signal is 1 to the time for which it 
is 0) would only be 1/2048, which would have very low AC energy. We can 
rectify this by dividing the master clock by 210 with a 10-bit counter, and using 
the terminal-count output as the count-enable input to a divide-by-2 counter. 
A circuit is shown in Figure 4.24, and a timing diagram in Figure 4.25. The 
output of the divide-by-2 counter alternates between 0 and 1 for every pulse on 
its clock-enable input. The output thus has a 50% duty cycle, which will drive a 
speaker much more efficiently.

Not all free-running counter applications need to divide by a power 
of 2. If we need to divide by some other value, k, we need the counter 
to wrap back to 0 after reaching a terminal count of k � 1. Mathemati-
cally speaking, the counter increments modulo k. We can construct such a 
counter by decoding the unsigned binary code word for k � 1 and using 
that as the terminal count output. We can feed the terminal count sig-
nal back to a synchronous reset input to the storage register within the 
counter.
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example  4 .9  Design a circuit for a modulo 10 counter, otherwise known 
as a decade counter.

solut ion  The maximum count value is 9, so we need 4 bits for the counter. 
The unsigned binary code word for 9 is 10012. We can decode this value and 
use it to reset to counter to 0 on the next clock cycle. The circuit is shown in 
Figure 4.26.
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example  4 .10  Develop a Verilog model for the decade counter of 
Example 4.9.

solut ion  The module definition is

module decade_counter ( output reg [3:0] q,
 input clk );

always @(posedge clk)
q <= q = = 9 ? 0 : q + 1;

endmodule

We model the output port for the count value using an unsigned vector, since 
it is represents a binary-coded integer value. On a rising clock edge, the always 
block checks whether the counter has reached the terminal count value. If so, 
the count value wraps back to 0; otherwise, the block adds 1 to yield the new 
count value.

Another form of counter that is useful in timing applications is a 
down counter with load. This counter is loaded with an input value, and 
then decrements the count value. The terminal count output is activated 
when the count value reaches zero. A circuit for the counter is shown in 
Figure 4.27. It consists of a register whose input comes either from the 
input value to be loaded or from the decremented count value. In this 
case, the loading of input data is synchronous, since it occurs on a rising 
clock edge.
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If the clock input to the counter is a periodic signal with period t and 
the counter is loaded with a value k, the terminal count is reached after 
an interval of k � t. Thus, this form of counter can be used as an interval 
timer, where the terminal-count output signal is used to trigger an activity 
after expiration of a given time interval.

example  4 .11  Develop a Verilog model for an interval timer that has 
clock, load and data input ports and a terminal-count output port. The timer 
must be able to count intervals of up to 1000 clock cycles.

solut ion  The data input and counter need to be 10 bits wide, since that is 
the minimum number of bits needed to represent 1000. The module definition is

module interval_timer_rtl ( output tc,
 input [9:0] data,
 input load, clk );

reg [9:0] count_value;

always @(posedge clk)
if (load) count_value <= data;
else count_value <= count_value – 1;

assign tc = count_value = = 0;

endmodule

On a rising clock edge, the always block uses the load input to determine 
whether to update the count value with the data input or the decremented 
count value. The decrement operation is performed using an unsigned subtrac-
tion without borrow out. So after reaching zero, the count value wraps back to 
the largest 10-bit value, namely, 1023. The final assignment in the architecture 
drives the terminal count to 1 when the count value reaches zero.

example  4 .12  Modify the interval timer so that, when it reaches zero, it 
reloads the previously loaded value rather than wrapping around to the largest 
count value.
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F I G U R E 4 .27 A down 
counter with synchronous load.



solut ion  We need to use a separate register to store the data value to load 
into the counter. When the load input is activated, a new data value is loaded 
into the storage register as well as into the counter. When the terminal count is 
reached, the counter should be loaded from the storage register. The inputs and 
outputs of the revised interval timer are the same, so we don’t need to change the 
ports of the module definition. The revised module is

module interval_timer_repetitive ( output tc,
 input [9:0] data,
 input load, clk );

reg [9:0] load_value, count_value;

always @(posedge clk)
if (load) begin

 load_value <= data;
 count_value <= data;

end
else if (count_value = = 0)

 count_value <= load_value;
else

 count_value <= count_value – 1;

assign tc = count_value = = 0;

endmodule

In this module, we have added a separate variable, load_value, to represent the 
storage register. The always block is revised so that, when load is 1 on a ris-
ing clock edge, both the load_value variable and the count_value variable are 
updated from the data input. Also, when the count value is 0 on a rising clock 
edge (provided load is not 1), the count value is updated from the load_value 
variable. Otherwise, the count value is decremented as before.

The last kind of counter that we will describe in this section is a ripple 
counter (distinct from ripple carry used in an incrementer of a counter), 
shown in Figure 4.28. It is somewhat different in structure from the syn-
chronous counters we have previously examined. Like those counters, it 
has a collection of flip-flops for storing the count value. However, unlike 
them, the clock signal is not connected in common to all of the flip-flop 
clock inputs. Rather, the clock input just triggers the flip-flop for the 
least significant bit, causing it to toggle between 0 and 1 on each rising 
clock edge. When the Q output changes to 0, the  

_
 Q  output changes to 

1, triggering the next flip-flop to toggle between 0 and 1. This flip-flop 
behaves similarly, causing the third flip-flop to toggle when it (the second 
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flip-flop) changes from 1 to 0. In general, we can think of the flip-flops for 
bits 0 to i � 1 as forming an i-bit counter. The most significant bit of this  
counter changes from 1 to 0 when it overflows. When that happens, the 
next flip-flop, for bit i, toggles between 0 and 1. This behavior is shown 
in the timing diagram of Figure 4.29.

An important timing issue arises from the fact that the flip-flops in a 
ripple counter are not all clocked together. Each flip-flop has a  propagation 
delay between a rising edge occurring on its clock input and the  outputs 
changing value. These propagation delays are shown in  Figure 4.29. 
Since each flip-flop is clocked from the output of the previous flip-flop, 
the propagation delays accumulate. The outputs of the counter don’t all 
change at once on a change of the counter’s clock input. Instead, the out-
put changes “ripple” along the counter as they propagate through the 
flip-flops; hence, the name of this kind of counter. The shaded areas in the 
timing diagram show intervals where the count value is not correct, due to 
changes not having propagated completely through the counter. Whether 
this lack of synchronization among output changes is a problem or not 
depends on the particular application under consideration. Some factors 
to consider include:

The length of the counter. For longer counters, there are more flip-
flops through which changes have to propagate, making the maxi-
mum accumulated delay larger. For short counters, the delay may 
be acceptable.

The period of the input clock relative to the propagation delays of 
the counter. For a short clock period, the accumulated delay may 
exceed the clock period. In that case, there will be clock cycles dur-
ing which the counter outputs don’t reach the correct value before 
the end of the cycle. For systems with long clock periods, the count 
value will settle early in the clock cycle.

�

�
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F I G U R E 4 .29 Timing 
diagram for a ripple counter.



The tolerance for transient incorrect count values. If the count value 
may be sampled before it has settled, incorrect operation may result. 
However, if the count value is not sampled until it is guaranteed 
settled, operation is correct.

The main advantages of a ripple counter are that it uses much less 
circuitry in its implementation (since an incrementer is not required) and 
that it consumes less power. Hence, it is useful in those applications that 
are sensitive to area, cost and power and that have less stringent timing 
constraints. As an example, a digital alarm clock might use ripple coun-
ters to count the time, since changes occur infrequently relative to the 
propagation delay (seconds compared to nanoseconds).

 1. Show in a diagram how an incrementer and a register can be 
connected to form a simple counter.

 2. What is the maximum count value for an n-bit counter? What value 
does it then advance to?

 3. How is a modulo k counter constructed?

 4. What is a decade counter?

 5. What is an interval timer?

 6. Why might a long ripple counter be unsuitable for an application 
with a fast clock?

4.3 S E Q U E N T I A L  D ATA PAT H S 
A N D  C O N T R O L

We have now arrived at a key point in our discussion of digital logic 
design. We have seen how information can be binary encoded, how 
encoded information can be operated upon using combinational circuits, 
and how encoded information can be stored using registers. We have also 
seen that registers are needed both to avoid feedback loops in combina-
tional circuits and to deal with data that arrives at the inputs sequentially. 
We have discussed counters as examples of combining registers and com-
binational circuits to perform sequential operations, that is, operations 
that proceed over a number of discrete intervals of time. We are now 
in a position to take a more general view of sequential operations. This 
general view will form the basis of our subsequent discussions of digital 
systems and embedded systems.

In many digital systems, the operations to be performed on input data 
are expressed as a combination of simpler operations, such as arithmetic 
operations and selection between alternative data values. Our general view 
of a digital system divides the circuit that implements the operations into a 
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datapath and a control section. The datapath contains the combinational
circuits that implement the basic operations and the registers that store 
intermediate results. The control section generates control signals that 
govern the operation of the datapath elements: selecting operations to 
be performed and enabling registers. In particular, the control section 
ensures that control signals are activated in the right order and at the right 
times to cause the datapath to perform the required operations on the 
data flowing through it. Hence, we say that the control section performs 
control sequencing. In many cases, the control section makes use of status
signals generated by the datapath. The status signals indicate whether cer-
tain conditions of interest are true, for example, whether data has certain 
values, or whether input data is available. The values of the status signals 
can influence the control sequence.

One of the most challenging tasks in digital design is designing a data-
path and corresponding control section to meet the given requirements 
and constraints. There are usually many alternative datapaths that could 
meet the functional requirements. Choosing among them usually involves 
trading off between area and performance.

example  4 .13  Develop a datapath to perform a complex multiplication 
of two complex numbers. The operands and product are all in Cartesian form. 
The real and imaginary parts of the operands are represented as signed fi xed-
point numbers with 4 pre-binary-point and 12 post-binary-point bits. The real 
and imaginary parts of the product are similarly represented, but with 8 pre-
binary-point and 24 post-binary-point bits. The complex multiplier is subject to 
constraints that strongly limit the circuit area.

solut ion  Given two complex numbers a�ar � jai and b�br � jbi, the 
complex product is

p�ab�pr � jpi � (arbr �aibi)� j(arbi �aibr) (4.1)

This computation requires four fixed-point multiplications, one subtraction and 
one addition. If we were to implement the complex multiplier as a combinational 
circuit, separate components would be needed for each of these operations, 
consuming a large amount of circuit area. Since area is a strong constraint, we 
can reduce the area by using one multiplier to perform the four multiplications 
in sequence, and one adder/subtracter to form the real and imaginary parts of 
the product. We will need registers to store the intermediate results. The full 
computation will take place over several clock cycles.

A datapath to perform the sequential complex multiplication is shown in 
Figure 4.30. Since the multiplier is shared, multiplexers at the multiplier inputs 
are needed to select the operands. The result of a given multiplication is stored 
in one or other of the partial-product registers. To form the real part of the 
complex product, two partial products are subtracted by the adder/subtracter. 



In the diagram, the signals upon which data flows are drawn with thicker lines, 
since they carry multibit binary-coded values. The remaining signals, drawn with 
lighter weight lines, are the clock and the control signals. They include select 
signals for the multiplexers, clock-enable signals for the registers, and a signal 
to choose the operation to be performed by the adder/subtracter. The values of 
the control signals are driven by a separate control section, not shown on the 
diagram.

example  4 .14  Develop a Verilog model of the complex multiplier 
 datapath.

solut ion  The module includes ports for the data inputs and outputs, as 
well as clock and reset inputs and an input to indicate the arrival of new data. 
We will return to the last of these inputs later. The module definition is
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sequential complex multiplier.

module multiplier
( output reg signed [7:-24] p_r, p_i,

input signed [3:-12] a_r, a_i, b_r, b_i,
input clk, reset, input_rdy );

reg a_sel, b_sel, pp1_ce, pp2_ce, sub, p_r_ce, p_i_ce;

wire signed [3:-12] a_operand, b_operand;
wire signed [7:-24] pp, sum;
reg  signed [7:-24] pp1, pp2;

...

(continued)

To form the imaginary part, two partial products are added. In each case, the 
part of the complex product is stored in an output register.
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The nets and variables declared within the module represent the control signals 
and the internal data connections. There are further declarations for the control 
section that we will return to later. In the statement part of the architecture, the 
assignments to a_operand and b_operand represent the multiplexers, and the 
assignment to pp represents the multiplier. (The multiplier operands are extended 
so that the result size matches the sizes of the real and imaginary parts of the 
product.) The first two always blocks represent the partial-product registers. The 
assignment to sum represents the adder/subtracter, and the second two always 
blocks represent the output registers. We will return to further statements that 
represent the control section later.

example  4 .15  Design a control sequence for the control signals of the 
sequential complex multiplier.

solut ion  We first need to determine a sequence of operations to be 
performed by the datapath to implement the required function expressed in 
Equation 4.1. There are many possible sequences, but we must ensure that there 
is no conflict for resources; that is, we must ensure that we don’t try to use an 
element of the datapath for more than one operation at a time. One possible 
sequence, initiated by input_rdy being 1, is:

1. Multiply a_r and b_r, and store the result in partial product register 1.

2. Multiply a_i and b_i, and store the result in partial product register 2.

assign a_operand = ~a_sel ? a_r : a_i;
assign b_operand = ~b_sel ? b_r : b_i;

assign pp = {{4{a_operand[3]}}, a_operand, 12'b0} *
{{4{b_operand[3]}}, b_operand, 12'b0};

always @(posedge clk)  // Partial product 1 register
if (pp1_ce) pp1 <= pp;

always @(posedge clk)  // Partial product 2 register
if (pp2_ce) pp2 <= pp;

assign sum � ~sub ? pp1 + pp2 : pp1 – pp2;

always @(posedge clk)  // Product real-part register
if (p_r_ce) p_r <= sum;

always @(posedge clk)  // Product imaginary-part register
if (p_i_ce) p_i <= sum;

...

endmodule



3. Subtract the partial product register values and store the result in the 
product real part register.

4. Multiply a_r and b_i, and store the result in partial product register 1.

5. Multiply a_i and b_r, and store the result in partial product register 2.

6. Add the partial product register values and store the result in the product 
imaginary part register.

This sequence would take six clock cycles to complete. In each cycle, only one of 
the arithmetic components is used, so there is no conflict for resources. However, 
we can reduce the number of cycles required, without creating conflict, by using 
the multiplier and the adder/subtracter concurrently. Specifically, we can merge 
steps 3 and 4 into one step, in which we subtract partial products to form the 
real part of the product and we multiply a_r and b_i to form a further partial 
product.

Given this 5-step sequence, the control signals that need to be activated in 
each step are shown in Table 4.1. The combination of control signal values in 
each step cause the datapath components to perform the required operations 
for that step. Note that in some steps, the multiplexers and adder/subtracter are 
not used. We don’t care what values are driven for the control signals governing 
those components in those steps.
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4.3.1 F I N I T E - S TAT E  M A C H I N E S

 Example 4.15 describes a control sequence for a sequential datapath, but 
we have yet to show how to design a circuit for the control section that 
generates the control sequence. We will introduce an abstraction called 
a finite-state machine for this purpose. There is a substantial body of 
mathematical theory underlying finite-state machines. Some of the useful 
results from this theory are implemented in CAD tools that transform 
finite-state machines to optimize sequential circuits. However, we will 
take a pragmatic approach, focusing on the design of control sections to 
sequence the operation of datapaths.

s t e p a_sel b_sel pp1_ce pp2_ce sub p_r_ce p_i_ce

1 0 0 1 0 – 0 0

2 1 1 0 1 – 0 0

3 0 1 1 0 1 1 0

4 1 0 0 1 – 0 0

5 – – 0 0 0 0 1

TAB LE 4 .1  Control sequence 
for the complex multiplier.
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for a fi nite-state machine.

In general terms, a finite-state machine is defined by a set of inputs, 
a set of outputs, a set of states, a transition function that governs transi-
tions between states, and an output function. The states are just abstract 
values that mark steps in a sequence of operations. The machine is called 
“finite-state” because the set of states is finite in size. The finite-state 
machine has a current state in a given clock cycle. The transition function 
determines the next state for the next clock cycle based on the current 
state and,  possibly, the values of inputs in the given clock cycle. The out-
put function determines the values of the outputs in a given clock cycle 
based on the current state and, possibly, the values of inputs in the given 
clock cycle.

Figure 4.31 shows a schematic representation of a finite-state machine. 
The register stores the current state in binary coded form. One of the states 
in the state set is designated the initial state. When the system is reset, the 
register is reset to the binary code for the initial state; thus, the finite-state 
machine assumes the initial state as its current state. During each clock 
cycle, the value of the next state is computed by the next state logic, which 
is a combinational circuit that implements the transition function. Also, 
the outputs are driven with the value computed by the output logic, which 
is a combinational circuit that implements the output function. The out-
puts are the control signals that govern operation of a datapath. On the 
rising clock edge marking the beginning of the next clock cycle, the cur-
rent state is updated with the computed next-state value. The next state 
may be the same as the previous state, or it may be a different state.

Finite-state machines are often divided into two classes. In a Mealy 
finite-state machine, the output function depends on both the current 
state and the values of the inputs. In such a machine, the connection 
drawn with a dashed line in Figure 4.31 is present. If the input values 
change during a clock cycle, the output values may change as a conse-
quence. In a Moore finite-state machine, on the other hand, the output 
function depends only on the current state, and not on the input values. 
The dashed connection in Figure 4.31 is absent in a Moore machine. If the 
input  values change during a clock cycle, the outputs remain unchanged. 



In theory, for any Mealy machine, there is an equivalent Moore machine, 
and vice versa. However, in practice, one or the other kind of machine will 
be most appropriate. A Mealy machine may be able to implement a given 
control sequence with fewer states, but it may be harder to meet timing 
constraints, due to delays in arrival of inputs used to compute the next 
state. As we present examples of finite-state machines, we will identify 
whether they are Mealy or Moore machines.

In many finite-state machines, there is an idle state that indicates 
that the system is waiting to start a sequence of operations. When an 
input indicates that the sequence should start, the finite-state machine 
follows a sequence of states on successive clock cycles, with the output 
values controlling the operations in a datapath. Eventually, when the 
sequence of operations is complete, the finite-state machine returns to 
the idle state.

example  4 .16  Design a fi nite-state machine to implement the control 
sequence for the complex multiplier described in Example 4.15. The control 
sequence is initiated by input_rdy being 1 during the clock cycle in which new 
data arrives at the datapath inputs.

solut ion  Our finite-state machine needs five states, one for each of the 
steps of the control sequence. Let’s call them step1 through step5. We also need 
to deal with the case of waiting for input data to arrive. We could consider a 
separate idle state for that case. When, in the idle state, input_rdy is 1, we would 
then transition to state1 to start the multiplication; otherwise, we would stay 
in the idle state. The problem with this is that it wastes a clock cycle, since we 
would not perform the first multiplication until after the cycle in which data 
arrived.

The alternative is to use step1 as the idle state. If it turns out that new data has 
not arrived in a given clock cycle while in this state, we simply repeat step1 as 
the next state. On the other hand, if new data has arrived, indicated by input_rdy

being 1 in the clock cycle, the real parts are multiplied during that clock cycle 
and can be stored on the next clock edge. We would then transition to step2,
and on subsequent clock cycles to step3, step4 and step5. At the end of the 
step5 clock cycle, the complete complex product is stored in the output registers 
of the datapath, so we can transition back to step1 in the next clock cycle.

In summary, our finite-state machine has the signal input_rdy as its single input, 
and the control signals listed in Example 4.15 as outputs. The state set is {step1,
step2, step3, step4, step5}, with step1 being the initial state. The transition 
function is defined in Table 4.2. The output function is defined in Table 4.1. 
Since the output function depends only on the current state and not on the input 
value, this finite-state machine is a Moore machine.
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cu r ren t _
s t a t e

inpu t _
rdy

nex t _
s t a t e

step1 0 step1

step1 1 step2

step2 – step3

step3 – step4

step4 – step5

step5 – step1

TAB LE 4 .2  The transition 
function for the complex multiplier 
fi nite-state machine.
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An important issue to consider when designing a finite-state machine 
is how to encode the state values. We glossed over that in Example 4.16 
by treating the states as abstract values. As we discussed in Chapter 2, 
if we have N states, we need at least ⎡log2N⎤ bits in our code. However, 
we may choose to have more if that simplifies circuitry that uses encoded 
states. In particular, while a longer than minimal code length requires 
more flip-flops in the state register and more wires for the state signals, 
it may make the next-state and output logic circuits simpler and smaller. 
In general choosing an optimal state encoding is a complex mathematical 
problem. However, synthesis CAD tools incorporate methods for choos-
ing a state encoding, so we may be able to let a tool make the choice for 
us. One aspect of state encoding is the choice of a code word to represent 
the initial state. In many cases, a good choice is a code word with all 0 
bits, since that allows us to use a simple register with reset for the state 
register. If some other code word is chosen for the initial state, that code 
word must be loaded into the register on system reset.

Modeling Finite-State Machines in Verilog

Since a finite-state machine is composed of a register, next-state logic and 
output logic, a straightforward way to model a finite-state machine is 
to use the Verilog features that we already know for modeling registers 
and combinational logic. The only aspect we have not addressed is how 
to represent the state set, particularly when we want to take an abstract 
view and leave state encoding to the synthesis tool. In Verilog, we can use 
parameter definitions to specify a set of symbolic names associated with 
the binary code words for the states. For example, we can define param-
eters for the states in Example 4.16 as follows:

parameter [2:0] step1 = 3'b000, step2 = 3'b001,
 step3 = 3'b010, step4 = 3'b011,
 step5 = 3'b100;

This defines five parameters, named step1 through step5, corresponding 
to the binary code words 000 through 100, respectively. In the rest of the 
state machine model, we just use the symbolic names, not the code word 
values. A synthesis tool may be able to recode the state parameters, that is, 
to choose an alternate encoding for the state set, to optimize the generated 
hardware for the state machine.

We can declare a variable to represent the current state of a state 
machine as follows:

reg [2:0] current_state;



This specifies that current_state is a vector that can take on parameter 
values representing states. So, for example, we could make the following 
assignment in a procedural block:

current_state <= step4;

to assign the value step4 to the variable.

example  4 .17  Develop a Verilog model of the fi nite-state machine in 
Example 4.16.

solut ion We will augment the architecture declaration of Example 4.14 
with the Verilog representation of the control section. The additional declarations 
of parameters for the set of states and variables for the current and next state are

parameter [2:0] step1 = 3'b000, step2 = 3'b001,
 step3 = 3'b010, step4 = 3'b011,
 step5 = 3'b100;
reg [2:0] current_state, next_state ;
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The additional statements added to the module are

always @(posedge clk or posedge reset)  // State register
if (reset) current_state <= step1;
else current_state <= next_state;

 always @*  // Next-state logic
case (current_state)

 step1: if (!input_rdy) next_state = step1;
 else next_state = step2;
 step2: next_state = step3;
 step3: next_state = step4;
 step4: next_state = step5;
 step5: next_state = step1;

endcase

 always @* begin  // Output_logic
 a_sel = 1'b0; b_sel = 1'b0;  pp1_ce = 1'b0; pp2_ce = 1'b0;
 sub = 1'b0;   p_r_ce = 1'b0; p_i_ce = 1'b0;
 case (current_state)
 step1: begin
 pp1_ce = 1'b1;
 end

(continued)
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The first always block models the state storage for the finite-state machine. 
It is based on the template for a register with asynchronous reset. When the 
reset input is active, the block resets the current state to the initial state, step1.
Otherwise, on a rising clock edge, the block updates the current state with the 
computed next state.

The next state is computed by the second always block, which models the transi-
tion function of Table 4.2. The statement inside the block is a case statement.
It uses the value of the current_state variable to choose among alternatives for 
updating next_state. The alternative for step1 uses a nested if statement to 
determine whether to proceed to step2 or stay in step1, depending on the value 
of input_rdy. All other alternatives simply advance the state unconditionally.

The output values are computed by the third always block, which models the 
output function of Table 4.1. This block also includes a case statement that 
chooses alternatives for assigning values to the outputs depending on the value of 
current_state. Rather than including an assignment for every output in each alter-
native of the case statement, we precede the case statement with a default assign-
ment of 0 for each output, and only include overriding assignments of 1 in those 
alternatives where they are required. This style for modeling the output function 
usually makes the always block more succinct, and helps to avoid inadvertent 
introduction of latches due to omission of an output assignment in an alternative.

State Transition Diagrams

A state transition diagram is an abstract diagrammatic representation of a 
finite-state machine. It uses a circle, or “bubble,” to represent each state. 
Directed arcs between state bubbles represent transitions from one state 
to another. An arc may be labeled with a combination of input  values

 step2: begin
 a_sel = 1'b1; b_sel = 1'b1; pp2_ce = 1'b1;
 end
 step3: begin
 b_sel = 1'b1; pp1_ce = 1'b1;
 sub = 1'b1;   p_r_ce = 1'b1;
 end
 step4: begin
 a_sel = 1'b1; pp2_ce = 1'b1;
 end
 step5: begin
 p_i_ce = 1'b1;
 end
endcase

end



that allow the transition to occur. To illustrate, Figure 4.32 shows a state 
 transition diagram for a finite-state machine with states s1, s2 and s3. 
Each arc is labeled with the values of two inputs, a1 and a2, that are 
required for the transition. Thus, when the finite-state machine is in state 
s1 and the inputs are both 1, the state of the machine in the next clock 
cycles is s3. If the machine is in state s1 and both inputs are 0, the machine 
stays in state s1. From state s1, if the inputs are 0 and 1, or 1 and 0, the 
machine transitions to state s2. Note that we have omitted a label on the 
arc from s2 to s3. This is a common convention to indicate an uncondi-
tional transition; that is, when the machine is in state s2, the next state 
is s3 regardless of the input values. Another important point is that all 
possible combinations of input values are accounted for in each state, 
and that no combination is repeated on more than one arc from a given 
state.

A bubble diagram may also be labeled with the values of outputs. 
Since Moore-machine outputs depend only on the current state, we attach 
the labels for such outputs to the state bubbles. This is shown on the aug-
mented bubble diagram in Figure 4.33. For each state, we list the values 
of two Moore-style outputs, x1 and x2, in that order.

Mealy-machine outputs, on the other hand, depend on both the cur-
rent state and the current input values. Usually, the input conditions are 
the same as those that determine the next state, so we usually attach 
Mealy-output labels to the arcs. This does not imply that the outputs 
change at the time of the transition, only that the output values are driven 
when the current state is the source state of the arc and the input val-
ues are those of the arc label. If the inputs change while in the source 
state, the outputs change to those listed on some other arc labeled with 
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the new input values. Mealy-style outputs are also shown on the arcs in 
Figure 4.33. In each case, the output values are listed after the “/” in the 
order y1, y2 and y3.

example  4 .18  Draw a state transition diagram for the fi nite-state 
machine of Example 4.16. Include the output values in the order of their occur-
rence in Table 4.1.

solut ion  The diagram is shown in Figure 4.34. There is a transition 
from step1 to step2 that occurs when input_rdy is 1, and a transition from 
step1 back to itself when input_rdy is 0. All other transitions are uncondi-
tional. Since it is a Moore machine, the output values are all drawn in the state 
bubbles.

In many applications, a state transition diagram is a useful notation, 
since it graphically conveys the control organization of a sequential design. 
Many CAD tools provide graphical editors for entering state transition 
diagrams, and can automatically generate Verilog code for simulation 
and synthesis. The disadvantage of the notation is that the annotations 
of input conditions and output values can clutter the diagram, obscuring 
the control organization. Also, for large and complex state machines, the 
diagram can become unwieldy. In those cases, a Verilog model in textual 
form may be more intelligible. Ultimately, since state transition diagrams 
and Verilog models of state machines encapsulate the same information, 
it is a question of personal preference or project guidelines that determine 
the method to use.

1. What is the purpose of the datapath in a digital system?

2. What is the purpose of the control section in a digital system?

3. What are control signals and status signals?

4. What is the distinction between a Moore and a Mealy fi nite-state 
machine?

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z
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F I G U R E 4 .3 4 State transition 
diagram for the complex multiplier.



 5. Write a Verilog parameter defi nition for the set of states s0, s1, s2 
and s3.

 6. In a state transition diagram, where are labels written for Mealy-
style outputs and for Moore-style outputs?

4.4  C LO C K E D  S Y N C H R O N O U S  T I M I N G 
M E T H O D O LO G Y

We now have a general view of a digital system, shown in Figure 4.35. It 
comprises a datapath that stores and transforms binary-coded informa-
tion and a control section that sequences operations within the datapath. 
The datapath, in turn, includes combinational subcircuits that perform 
operations on the data and registers that store the data. Stored data can 
be fed back to earlier stages of the datapath or fed forward to subsequent 
stages. The control section drives the control signals that govern opera-
tion of the combinational subcircuits and storage of data in the regis-
ters. The control section can also use status information about the data 
values to determine what operations to perform and in what sequence. 
Given that data is transferred between registers through combinational 
 subcircuits, this view of a system is often called a register-transfer level 
(RTL) view. The word “level” refers to the level of abstraction. Register-
transfer level is more abstract than a gate-level view, but less abstract than 
an algorithmic view.

In Chapter 1, we identified division of time into discrete intervals as a 
key abstraction for managing the complexity of timing in digital systems. 
We also described some of the specific timing characteristics of flip-flops 
(and hence registers) over which the discrete-timing approach abstracts. 
Now that we have seen some more complex digital systems, we can begin 
to see the value of the discrete-timing abstraction. It is based on driving 
all of the registers shown in Figure 4.35 with a common periodic clock 
signal. We say that the registers are all clocked synchronously on each 
rising clock edge. The combinational subcircuits perform their opera-
tions in the interval between one clock edge and the next, called a clock 
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cycle. This clocked synchronous timing methodology helps us ensure 
that operations are completed by combinational subcircuits by the time 
their results are needed, and simplifies composition of large systems from 
smaller subsystems.

Since registers are composed of flip-flops connected in parallel, we 
can derive the timing characteristics of registers from those of flip-flops. 
We will make the simplifying assumption that all of the flip-flops in a 
given register have the same timing characteristics, or that any differences 
are negligible. We can thus identify the setup time (tsu), hold time (th) and 
clock-to-output delay (tco) of a register as being the same as those char-
acteristics of the constituent flip-flops. All of the bits of data to be stored 
in a register must be stable at the input for at least the setup time before a 
clock edge and for at least the hold time after the clock edge. We can only 
guarantee that all bits of the stored data will be available at the output 
after the clock-to-output delay following the clock edge.

These considerations lead us to the register-to-register timing for a 
path in the system shown in Figure 4.36. Q1 is the output of one register 
that feeds into a combinational subcircuit. D2 is the output of the subcir-
cuit, feeding into the next register. The timing parameters are illustrated 
in Figure 4.37. After a clock rising edge, Q1 changes to the new stored 
value and stabilizes by the end of the interval tco. The new value then 
propagates through the combinational subcircuit, stabilizing at the output 
D2 by the end of the interval tpd, the propagation delay of the subcircuit. 
The value on D2 must be stable at least tsu before the next clock edge, so 
there is a slack period, tslack, where nothing changes. The diagram shows 
that the sum of these intervals must be equal to the clock cycle time, tc. 
Alternatively, we can express this as an inequality:

 tco � tpd � tsu 	 tc (4.2)

Another important path in the digital system is the control path 
shown in Figure 4.38. At the top of the figure is a register-to-register 
 section of the datapath, and at the bottom is the finite-state machine in 

Q1 D2tpdtco tsu

F I G U R E 4 .3 6 A register-
to-register path.
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the  control  section. The status signals driven by the combinational subcir-
cuit are inputs to the output logic and next-state logic in the control sec-
tion. The control signals driven by the output logic govern the operation 
of the combinational subcircuit and the target register. (In general, status 
signals from one combinational subcircuit would influence operation of 
some other combinational subcircuit, but the same timing considerations 
apply.) Our timing analysis for these control paths is similar to that for 
the register-to-register datapath. We simply aggregate the combinational 
propagation delays through the combinational subcircuit and output logic 
to derive the inequality:

 tco � tpd-s � tpd-o � tpd-c � tsu 	 tc (4.3)

Here, tpd�s is the propagation delay through the combinational subcir-
cuit to drive the status signals, tpd�o is the propagation delay through 
the output logic to drive the control signals, and tpd�c is the propagation 
delay through the combinational subcircuit for a change in the control 
signal to affect the output data. For a Moore-style control signal that does 
not depend on a status input, we can ignore the parameter tpd�s in this 
inequality. In a similar way, we can derive the following inequality for the 
path that generates the next-state value:

 tco � tpd-s � tpd-ns � tsu 	 tc (4.4)

where tpd�ns is the propagation delay through the next-state logic.
The inequalities in Equations 4.2 through 4.4 must hold for all of 

the register-to-register and control paths in the system. Since the clock 
is common to all registers, tc is the same for all paths. Similarly, if we 
assume that the same kinds of registers are used throughout the system 
(which is the case in fabrics such as FPGAs), tco and tsu are the same for 
all paths. That only leaves the propagation delay parameters as the differ-
ence among paths.

The path with the longest propagation delay is called the critical path. 
It determines the shortest possible clock cycle time for the system. Since 
all operations are performed in times determined by the clock, the  critical 
path determines the overall system performance. Hence, if we need to 
address performance issues, we need to identify which combinational sub-
circuit is on the critical path and attempt to reduce its delay. In most sys-
tems, the critical path will be a register-to-register path in the datapath of 
the system. For example, if there is such a path that performs an arithme-
tic operation or that includes a counter, the carry chain may be the critical 
path. Alternatively, if a system uses a Mealy finite-state machine and a 
control path corresponding to Equation 4.3 is on the critical path, it may 
be possible to use an equivalent Moore machine to avoid the status-signal 
delay in the control path. Of course, once the delay on the critical path is 
reduced below that of another path, that other path becomes the critical 
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path. Hence, attention may need to be paid to several paths in a system to 
address performance issues.

Depending on the requirements and constraints for the system, we 
can interpret Equations 4.2 through 4.4 in two ways. One interpreta-
tion involves treating the propagation delays as independent parameters 
and determining the resulting minimum clock period. The system can 
then be operated with any clock period greater than the minimum. This 
interpretation is appropriate for systems where high performance is not 
a requirement.

The other interpretation involves treating the clock cycle time as the 
independent parameter and determining the propagation delays from it. 
We might be given a target clock cycle time by a system architect or our 
marketing department and be asked to design the system to meet that 
target. In that case, the inequalities place constraints on the propagation
delays through the combinational data and control paths. If we meet the 
constraints with plenty of slack, we might try to optimize the design to 
reduce cost, for example, by using subcircuits with less area. If we don’t 
meet the constraints, we need to focus attention on the critical path or paths 
to reduce their delay. It may be that we have designed the system with too 
much computation to be performed in one or more combinational subcir-
cuits to allow sufficient reduction of the critical path propagation delay. 
In that case, we could divide the computation into a number of smaller 
steps that can be done sequentially or in parallel. The combinational sub-
circuits for the simpler steps should have smaller propagation delay than 
the original. Thus, even if more steps are required overall to perform the 
system’s operation, the fact that the clock cycle time is reduced may allow 
us to meet our performance target.

example  4 .19  Suppose we have designed a system that includes a 
multiplication operation on 16-bit unsigned binary-coded integers. The system is 
required to operate at 50 MHz (a clock cycle time of 20 ns). We have included a 
combinational multiplier to perform the multiplication, but its propagation delay 
is 35 ns. All other data and control paths have plenty of slack with the 20 ns 
clock cycle time. The result of the multiplication is not needed until 20 cycles 
after the operands are available. Describe how use of the sequential multiplier of 
Example 4.4 could help us meet our timing requirement.

solut ion  The sequential multiplier performs the multiplication operation 
in 17 steps with one adder. In the first step, we store the operands and reset the 
output register to zero. Then on each of the 16 subsequent steps, we add the par-
tial products. Each step involves only an AND operation and an addition. Thus, 
the combinational subcircuit between the operand registers and the product 
output registers will have significantly smaller propagation delay than the 35 ns 
delay of the full combinational multiplier. This reduction should allow the clock 
period to be reduced to meet the timing constraint.



Further timing considerations arise from the way the clock signal is 
connected to all of the registers in a circuit. Suppose, in a register-to-
 register path, the clock signal to the target register is connected via a long 
wire with significant delay, as shown in Figure 4.39. A rising clock edge 
arrives at the source register earlier than at the target register. This phe-
nomenon is called clock skew. If the propagation delay through the com-
binational subcircuit is small (for example, if the subcircuit is just a direct 
connection to the target register with negligible delay), the value from 
the previous cycle may not remain stable for the hold time after the clock 
edge, as shown in Figure 4.40. In most implementation fabrics, the hold 
time is very small, or may even be negative, thus reducing the likelihood 
of this problem. (A negative hold time simply means that the data may 
start changing before the clock edge.) However, if we don’t take care to 
minimize clock skew in a design, the circuit may operate unreliably. Given 
the importance of minimizing skew across the clock connection network, 
together with the need for buffers to drive the large number of flip-flop 
clock inputs as described in Section 2.1.1, we usually leave implementa-
tion of the clock signal to CAD tools. As part of the physical design, a tool 
will insert clock buffers into the circuit and route the connections so as 
to minimize skew. In FPGA fabrics, dedicated buffer and wiring resources 
for clock distribution are built into the chip.

The timing parameters and constraints that we have considered so far 
apply to the datapath and control section within an integrated  circuit chip. 
When we use that chip as a component of a larger system, we also need 
to take account of the effect of the input and output pins that  connect the 
chip to other components via wires on a printed circuit board. The inputs 
have internal buffers that protect the chip from excessive voltage swings 
and static discharge, and the outputs have buffers to drive the relatively 
large capacitances and inductances that occur outside the chip. These 
 buffers, together with the associated wiring connecting the integrated 
 circuit chip to the package pins, introduce propagation delays. So when 
we  analyze the timing behavior of the complete system, we need to include 
the pin and wiring delays. We can apply the same path-based analysis that 
we used for internal paths. Figure 4.41 shows a register-to-register path 
between a source register on one chip and a target register on another. 
The path includes output combinational logic, the output buffer and 
pin, the printed-circuit-board wiring, the input pin and buffer, and input 
combinational logic. The sum of the propagation delays plus the register 
clock-to-output and setup times must be less than the system’s clock cycle 
time. For high-speed systems, this can be a difficult constraint to meet. 
In such systems, we usually avoid having any combinational input or 
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 output logic. An input that connects directly to an input register is often 
called a registered input, and an output that is driven directly from 
an  output register is called a registered output. High-speed design meth-
odologies often require registered inputs, registered outputs or a com-
bination of both. Using both allows a whole clock cycle for inter-chip 
transmission.

4.4.1 A SY N C H R O N O U S  I N P U TS

Our clocked synchronous timing methodology requires us to ensure that 
inputs to registers are stable during an interval around each clock edge. 
For those signals that are generated within the circuit, we can ensure that 
we meet this constraint. However, most circuits must deal with some 
inputs that are generated externally, either by transducers whose outputs 
represent real-world quantities or events, or by separate systems that do 
not share a common clock. We call such signals asynchronous inputs. We 
have no control over the times at which they change value; hence, we can-
not guarantee that they meet our timing constraints for register inputs. 

Before we describe how to deal with asynchronous inputs, let’s exam-
ine the behavior of a register, or more specifically, a flip-flop, when its 
input can change at any time. A flip-flop circuit internally uses a combi-
nation of charge storage and positive feedback to store a 0 or a 1 value. 
Figure 4.17 on page 164 gives a general idea of how this might work in 
a latch. A D flip-flop circuit elaborates on this structure to make storage 
edge-triggered. In order to change from storing a 0 to storing a 1, or vice 
versa, some energy input is required. A common analogy is to consider 
a ball resting in one of two holes, with a hill in between, as shown in 
 Figure 4.42. The ball resting in one hole corresponds to storing a 0, and 
the ball resting in the other to storing a 1. In order to change the stored 
value, energy must be supplied to push the ball over the hill. In the case 
of a D flip-flop, a pulse of energy is sampled from the D input when the 
clock rises. If the input is 0, the ball is pushed toward the 0 hole, and if the 
input is 1, the ball is pushed toward the 1 hole.

Now if the input changes close to the time the clock rises, insufficient 
energy may be sampled. For example, if the ball is in the 0 hole and the 
input changes to 1, there may be insufficient energy to push the ball to the 
1 hole. The ball may get close to the top of the hill then fall back again. 
This corresponds to the flip-flop output starting to change from 0 to 1, 
but then reverting to 0. A particularly significant case arises if there is 
just sufficient energy to push the ball to the top of the hill, as shown in 
Figure 4.43, but not to push it straight over. In that case, the ball teeters 
on the top for some time before falling one way or the other. The time for 
which it teeters and the direction in which it falls are unpredictable. This 
condition is called metastability. The behavior of a real flip-flop in a meta-
stable state depends on the details of the internal electrical and  physical 
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design of the flip-flop. Some flip-flops may delay a change between 0 
and 1, some may oscillate, and others may have an invalid logic level at 
the output for some time. The problem is not so much the indeterminate 
behavior of the flip-flop output while the metastable state persists, but 
the fact that the delay until the output is stable is not bounded. As a con-
sequence, we can’t guarantee that the timing constraints for the circuits 
connected to the flip-flop output will be met.

Mathematical models of flip-flop behavior can be developed to help 
us understand how asynchronous inputs affect circuit operation. The 
details of these models are beyond the scope of this book, so we just sum-
marize the conclusions here. Suppose an asynchronous input changes with 
a  frequency of f1 and the clock frequency of the system is f2. We sample 
the output value of the flip-flop to which the asynchronous input is con-
nected after a period t. Occasionally, the sampled value will be incorrect 
due to metastability in the flip-flop, and that will cause some form of 
failure. The mathematical model gives us the mean time between failures 
(MTBF):

 MTBF  �    ek2t
 
 

k1f1f2
   (4.5)

The constants k1 and k2 are measured for a particular flip-flop. Since 
the MTBF is inversely proportional to the frequencies, higher frequencies 
lead to shorter MTBF, that is, to more frequent failure. More significant, 
however, is that the MTBF is nonlinearly related to the time before sam-
pling. The value of k2 is typically large and positive, so a small increase in 
the time before sampling yields a significant increase in the MTBF.

The usual approach to dealing with asynchronous inputs is to  connect 
them to a synchronizer, and to use the output of the synchronizer in the 
rest of the system. A simple synchronizer is shown in Figure 4.44. The 
first flip-flop samples the value of the asynchronous input at each clock 
edge. Usually, the value is passed on to the flip-flop’s output within the 
clock-to-output delay of the flip-flop and sampled on the next clock edge 
by the second flip-flop. The output of the second flip-flop is used in the 
rest of the system. On those occasions where the asynchronous input 
changes close to a clock edge, the first flip-flop may enter the metastable 
state. However, its output is not sampled for an entire clock cycle, giving 
the flip-flop time to resolve the metastability. In terms of Equation 4.5, 
the sampling interval t is one clock cycle period, tc.
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It is only in fairly recent times that component manufacturers have 
developed a complete understanding of metastability and its effects on 
system reliability. Earlier than 15 years or so ago, published data on the 
metastability characteristics of flip-flops was hard to find. Since then, 
manufacturers have improved both their device behavior and their pub-
lished data. For most applications using modern implementation fabrics, 
the simple synchronizer shown in Figure 4.44 is sufficient to give a MTBF 
that is much longer than the lifetime of the system. However, for those 
applications in which reliability is a key requirement and that have many 
asynchronous inputs, we should study the published data for implementa-
tion fabric we use and follow the manufacturer’s advice on synchronizing 
inputs.

Switch Inputs and Debouncing

We mentioned that externally generated signals are often asynchronous 
inputs to a system. A common example is connection of switches that 
form a user interface to the system. This includes push-button, slider, tog-
gle and rotary switches. A user can change a switch position at random 
times, so we cannot assume synchronization with a clock signal. Similarly, 
a microswitch used to sense mechanical input may change asynchronously. 
There is a further problem that we must also deal with. Switches are elec-
tromechanical devices containing electrical contacts that open and close 
a circuit in response to mechanical movement. As the contacts close, they 
bounce, causing the circuit to open and close one or more times before 
finally setting in the closed position. Similarly, as the contacts open, they 
may also bounce. If we are to avoid spurious activation of the system’s 
response to switch movements, we must debounce the switch input. This 
involves waiting for some period of time after an initial change in circuit 
closure is detected before treating the switch input as valid. For most 
switches, the time taken to settle is of the order of a few millisecond, 
so a debounce delay of up to 10ms is common practice. Delaying too 
long causes the user to notice the lag in response to switch activation. 
A response time of less than 50ms is generally imperceptible.

There are probably as many solutions to switch debouncing as there 
are design engineers. One simple approach is shown in Figure 4.45. 
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It uses an RS-latch with negative-logic inputs and a double-throw switch. 
When the switch is in the position shown, it holds the reset input of the 
latch active, producing a 0 at the Q output. When the switch is toggled, 
we assume that one contact is opened before the other contact is closed. 
(This is sometimes called “break before make.”) Bouncing on the con-
tact to be opened simply leaves the latch in the reset state. When the 
first bounce occurs on the contact to be closed, the set input is activated, 
causing the Q output to change to 1. Subsequent bounces leave the latch 
in the set state. The behavior is similar when the switch is toggled in the 
other direction.

While this approach is very effective, it has two drawbacks. First, 
it requires two inputs to the digital system for what is really just one 
input. Second, it requires a double-throw switch, whereas many low-cost 
applications require a single-throw switch consisting of two contacts that 
are shorted together by a push button. Simple circuits for debouncing 
single-throw switches generally rely on analog circuit design techniques 
and require components external to the main digital chip. We will not 
discuss them here, but refer to Section 4.6, Further Reading. Instead, we 
will outline a fully digital approach to debouncing that can be designed 
into the main digital circuit of a system.

A simple way of connecting a single-throw or momentary-contact 
switch to a digital circuit input is shown in Figure 4.46. When the switch 
is open, the input is pulled to 1, and when the switch is closed, the input 
is pulled to 0. A change of switch position causes the input to toggle 
between 0 and 1 until the bouncing stops and the input settles at its final 
value. Rather than using the input value directly within the system, we 
sample it at intervals longer than the bounce time. When we get two suc-
cessive samples that have the same value, we use that value as the stable 
state of the switch input.

example  4 .20  Develop a Verilog model of a debouncer for a push-
button switch that uses a debounce interval of 10ms. Assume the system clock 
frequency is 50MHz.

solut ion  The module definition is
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module debouncer ( output reg pb_debounced,
 input pb,
 input clk, reset );

reg [18:0] count500000; // values are in the range 
                        // 0 to 499999
wire clk_100 Hz;
reg pb_sampled;

(continued)
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The first always block represents a down counter that divides the clock by 
500,000. The assignment following the block decodes the terminal count to 
derive a sampling clock that pulses to 1 every 10ms. When the sampling clock 
is 1, the second always block compares the current push-button input value 
(pb) with a previously sampled value (pb_sampled). If they are the same, the 
block updates the debounced output with the current value. If they are not the 
same, the output is unchanged. Also, when the sampling clock is 1, the block 
updates the sampled value with the current value.

It is important to note that, even though the debouncer of Example 4.20 
uses much more circuitry than the simple debouncer of Figure 4.45, it will 
probably be cheaper to implement. It uses a simple single-throw switch 
and only a single resistor external to the integrated circuit, and only 
requires one input pin. The saving in packaging resources and printed 
circuit board assembly costs would be more significant in a large-volume 
application than the expense of additional circuit resources used within 
the integrated circuit. We might also consider implementing the debounce 
operation in software run on an embedded processor, if the application 
requires a processor to be included anyway. If the processor has sufficient 
time in its task schedule to perform debouncing, that might be a more 
efficient use of resources. The lesson to learn is that, when we make these 
trade-off decisions, we must consider all of the costs and resources for the 
entire system, not just for one aspect in isolation.

4.4.2 V E R I F I C AT I O N  O F  S E Q U E N T I A L  C I R C U I TS

Now that we have described the design of clocked sequential circuits 
and the timing constraints that apply, we can return to the verification 
steps outlined in the design methodology in Section 1.5. We need to 
consider functional verification (that the sequential circuit performs its 

always @(posedge clk or posedge reset)
if  (reset) count500000  <= 499999;
else if (clk_100Hz) count500000 <= 499999;
else count500000  <= count500000 – 1;

assign clk_100Hz = count500000 == 499999;

always @(posedge clk)
if (clk_100Hz) begin

 if (pb == pb_sampled) pb_debounced <= pb;
 pb_sampled <= pb;

end

endmodule



function correctly) and timing verification (that the circuit meets timing 
constraints). We outlined in Section 1.5 how tools perform static tim-
ing analysis to verify timing constraints. Here, we will discuss functional 
verification using Verilog models, expanding on the ideas introduced in 
Section 2.4 relating to verification of combinational circuits.

When verifying a combinational circuit, we saw that we need to wait 
for some time after applying a test case to the circuit’s inputs before check-
ing the circuit’s outputs, to allow for the propagation delay of the circuit. 
Similarly, when verifying a sequential circuit, we need to take account of 
the fact that operations take one or more clock cycles to complete. We need 
to ensure that the procedural block that checks the output is synchronized 
with the stimulus block, and knows how many clock cycles after application 
of a test case to wait before checking the output. If all operations com-
plete in the same number of cycles, and only one operation takes place at 
a time, this is relatively straightforward. On the other hand, if operations 
take varying numbers of cycles to complete, the checker needs to check 
both that the operation completes at the correct time and that the correct 
result is produced. If multiple operations can take place concurrently, for 
example, if the datapath is a pipeline, the checker needs to ensure that 
all operations that start also complete, and that no spurious results are 
produced.

Developing testbench models for complex sequential circuits can 
itself become a complex endeavor. We will discuss some of the general 
techniques that can be used in Chapter 10. For now, we will illustrate a 
simulation-based approach for verifying circuits that we introduced in 
previous examples.

example  4 .21  Develop a testbench model for the sequential multiplier 
of Example 4.14. Verify that the result computed by the multiplier is the same 
(within the limits of the precision of the operands) as that produced using multi-
plication with the built-in Verilog type real.

solut ion  The testbench has no external connections, and so the module 
definition is
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`timescale 1 ns/1ns

module multiplier_testbench;

parameter t_c = 50;

reg clk, reset;
reg input_rdy;

(continued)
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wire signed [3:–12] a_r, a_i, b_r, b_i;
wire signed [7:–24] p_r, p_i;

real real_a_r, real_a_i, real_b_r, real_b_i,
 real_p_r, real_p_i, err_p_r, err_p_i;

task apply_test ( input real a_r_test, a_i_test,
 b_r_test, b_i_test );

begin
real_a_r = a_r_test; real_a_i = a_i_test;
real_b_r = b_r_test; real_b_i = b_i_test;
input_rdy = 1'b1;
@(negedge clk) input_rdy = 1'b0;
repeat (5) @(negedge clk);

end
endtask

multiplier duv ( .clk(clk), .reset(reset),
 .input_rdy(input_rdy),
 .a_r(a_r), .a_i(a_i),
 .b_r(b_r), .b_i(b_i),
 .p_r(p_r), .p_i(p_i) );

always begin  // Clock generator
#(t_c/2) clk = 1'b1;
#(t_c – t_c/2) clk = 1'b0;

end

initial begin  // Reset generator
reset <= 1'b1;
#(2*t_c) reset = 1'b0;

end

initial begin  // Apply test cases
@(negedge reset)
@(negedge clk)
apply_test(0.0, 0.0, 1.0, 2.0);
apply_test(1.0, 1.0, 1.0, 1.0);
// further test cases ...
$finish;

end

assign a_r = $rtoi(real_a_r * 2**12);
assign a_i = $rtoi(real_a_i * 2**12);
assign b_r = $rtoi(real_b_r * 2**12);
assign b_i = $rtoi(real_b_i * 2**12);

always @(posedge clk)  // Check outputs
if (input_rdy) begin
real_p_r = real_a_r * real_b_r – real_a_i * real_b_i;

(continued)



Within the module, we have instantiated the multiplier module as the device 
under verification. The instance is connected to testbench nets and variables 
declared in the module.

Since the multiplier is clocked, we need to generate a clock signal to drive it. 
This is done by the first always block. It uses a parameter, called t_c, for the 
clock cycle time. Using a parameter like this allows us to change the clock cycle 
time without having to chase down every number that varies as a consequence 
of the change. The block delays for half a clock cycle time, sets the clock to 1, 
delays a further half a clock cycle time, then sets the clock to 0. (The expres-
sion for the duration of the second half clock cycle time is structured so as to 
compensate for any rounding that may occur in the expression for the first half 
cycle duration.) After that, the block repeats from the beginning. We also need to 
generate a reset pulse for the device under verification. This is done by the first 
initial block. The block sets reset to 1 immediately, then back to 0 after a delay 
of two clock cycles.

The second initial block stimulates the device under verification with input 
data. The block uses a task to abstract out the common operations in applying 
each test-case. Rather than generating fixed-point values directly, the block 
generates test-case operands of type real on the variables real_a_r, real_a_i,
real_b_r and real_b_i. The assignments following the stimulus initial block use 
the $rtoi conversion function, which converts a real value to an integer value, to 
assign test-case values to the input inputs of the device under verification. The 
scaling by 212 is required, since the binary point in each input is 12 places from 
the right.

Within the stimulus initial block, we must ensure that we generate input stimulus 
values that meet the timing requirements of the device under verification. The 
operand values and the input_rdy signal must be set up before a clock edge. The 
operand values must be held for four cycles while the operation proceeds. To 
satisfy these requirements, we wait until the first falling clock edge after reset has 
returned to 0. We do this using the @ notation to delay until the required events 
occur. The call to the apply_test task then assigns the first test-case operands to 
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real_p_i = real_a_r * real_b_i + real_a_i * real_b_r;
repeat (5) @(negedge clk);
err_p_r = $itor(p_r)/2**(–24) – real_p_r;
err_p_i = $itor(p_i)/2**(–24) – real_p_i;

if (!( –(2.0**(–12)) < err_p_r && err_p_r < 2.0**(–12) &&
–(2.0**(–12)) < err_p_i && err_p_i < 2.0**(–12) ))

 $display("Result precision requirement not met");
end

endmodule
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the inputs and sets input_rdy to 1. Next, the task waits for the subsequent falling 
clock edge before resetting input_rdy back to 0. It then waits a further five cycles, 
giving the device under verification time to produce its output. After that, subse-
quent calls to the task repeat these steps with the further test-case operands.

The output-checking always block verifies that the multiplier produces the cor-
rect results. It must synchronize with the input stimulus to ensure that it checks 
the results at the right time. It waits on the same condition as the multiplier’s 
controller finite-state machine, namely, input_rdy being 1 on a rising clock edge. 
When that occurs, the block reads the stimulus operand values from the vari-
ables real_a_r, real_a_i, real_b_r and real_b_i, forms the complex product using 
the real multiplication operator, and saves the product in the variables real_p_r

and real_p_i. The block then waits until the fifth subsequent falling clock edge, 
by which time the device under verification has stored its result in its output 
registers. The results are available on the p_r and p_i nets. The block converts 
them to real form and compares them with the real and imaginary parts saved in 
real_p_r and real_p_i. It uses the $itor conversion function to convert values from 
integer to real, and scales by 224 to deal with the assumed position of the binary 
point 24 places from the right. Since the type real and our fixed-point repre-
sentation are discrete approximations to mathematical real numbers, an exact 
equality test is unlikely to succeed. Instead, we check whether the absolute value 
of the difference is within the required precision, in this case, the precision of the 
input-operand representation.

4.4.3 A SY N C H R O N O U S  T I M I N G  M E T H O D O LO G I E S

We will close this section on timing methodology with a brief discussion 
of some alternative approaches. While the clocked synchronous approach 
yields significant simplifications, there are some applications where it 
breaks down. Two key assumptions are that the clock signal is distributed 
globally (that is, across the entire system) with minimal skew, and that 
the propagation delay between registers is less than a clock cycle. In large 
high-speed systems, these assumptions are very difficult to maintain. For 
example, in a large integrated circuit operating with a clock frequency 
of several GHz, the time taken for a change of signal value to propagate 
along a wire that stretches across the chip may be a large proportion of a 
clock cycle, or even more than a clock cycle.

One emerging solution is to reconsider the assumption of a single 
global clock signal for the entire chip or system. Instead, the system is 
divided into several regions, each with its own local clock. Where signals
connect from one region to another, they are treated as asynchronous 
inputs. The timing for the system is said to be globally asynchronous, 
locally synchronous (GALS). The benefit of this approach is that it makes 



the constraints on clock distribution and timing within each region 
simpler to manage. The downside is that inter-region connections must be 
synchronized, thus adding delay to communication. The challenge for the 
system architect is to find a partitioning for the system that minimizes the 
amount of communication between regions, or that avoids sensitivity to 
delay in inter-region communication.

The difficulty in distributing high-speed clock signals and managing 
timing is even greater in the context of a complete circuit board consist-
ing of several integrated circuits, or a large system consisting of several 
circuit boards. It is simply not practical to distribute a high-speed clock 
across a large system. Instead, a slower clock is often used externally 
to high-speed chips, and operations between chips are synchronized to 
that external clock. The internal clocks operate at a frequency that is 
a multiple of the external clock, allowing for synchronization of clock 
edges. The separate boards in a high-speed system typically are not 
synchronized, but have independent clocks. Data transmitted from one 
board to another is treated as an asynchronous input by the receiving 
board.

Another aspect of timing in clocked synchronous systems is that all 
register-to-register operations take one clock cycle, whether the combina-
tional subcircuit is on the critical path or not. In principle, the slack time 
in a clock cycle is wasted; all operations are held back to the time taken by 
the slowest. It is possible to design asynchronous circuits in which com-
pletion of one operation triggers dependent operations. Such circuits are 
also called delay insensitive, since they operate as fast as the components 
and the data allow. However, appropriate design techniques are far less 
mature than those for clocked circuits, and there is negligible CAD tool 
support for asynchronous methodologies. Hence, products using asyn-
chronous circuits are very uncommon.

A separate issue with the clocked approach is that clocked circuits 
consume significant amounts of power. Even if a flip-flop does not change 
its stored value, changing the clock input between 0 and 1 involves switch-
ing transistors on and off, thus consuming extra power. In applications 
with very low power budgets, such as battery powered mobile devices, 
this waste of power is unacceptable. One approach to dealing with it 
is to avoid clocking parts of a system that are inactive. Clock gating, as 
it is called, is becoming a more common design technique as the num-
ber of low-power applications increases. Asynchronous circuits are an 
alternative, since logic levels only change when data values change. If 
there is no new data to operate upon, the circuit becomes quiescent. A few 
low-power products using asynchronous circuits have been successfully 
fielded. Low-power applications may be a more significant motivation for 
asynchronous design than the potential performance gains.
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 1. What is meant by the term register transfer level?

 2. Write the timing condition that must apply on a register-to-register 
path.

 3. What is the critical path in a system?

 4. How does the critical path delay affect the clock cycle time of the 
system?

 5. If a given clock cycle time is required, but the critical path delay is 
too long to achieve it, where should optimization effort be focused?

 6. What is meant by the term clock skew?

 7. Why are registered inputs and outputs used in high-speed systems?

 8. What problem can be caused in input registers by asynchronous 
inputs?

 9. Why must inputs from electromechanical switches be debounced?

10. What is the main difference between a testbench for a 
combinational circuit and a testbench for a sequential circuit?

11. What is meant by the term globally asynchronous, locally 
synchronous (GALS)?

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z



4.5 C H A P T E R  S U M M A R Y

Registers are storage components composed of flip-flops. Simple 
 registers can be augmented with clock-enable, reset and preset 
 control inputs.

Synchronous control inputs are acted upon on a clock edge. 
 Asynchronous control inputs are acted upon immediately.

Latching behavior is produced by feedback paths in digital circuits. 
A transparent latch passes data through while the enable input is 1 
and stores data when the enable input is 0.

A simple free-running counter consists of an incrementer and a 
 register. Substituting a decrementer for the incrementer causes the 
counter to count down instead of up. Adding a clock-enable input to 
the register allows control over when the counter increments. Adding 
a reset input to the register allows the count value to be cleared to 0.

An n-bit counter counts modulo 2n; that is, it counts to 2n � 1 then 
wraps to 0. A modulo k up counter decodes the value k� 1 and uses 
it to reset the counter. A modulo k down counter decrements down 
to 0 and then reloads the value k� 1.

A ripple counter uses the output of one flip-flop to trigger the 
next flip-flop. It uses less circuitry and consumes less power than a 
synchronous counter, and can be used in applications where timing 
constraints allow and power constraints are significant.

A digital system, in general, consists of a datapath and a control 
 section. The datapath contains combinational subcircuits for oper-
ating on data and registers for storing data. The control section 
sequences operations in the datapath by activating control signals at 
various times. The control section uses status signals to influence the 
control sequence.

A finite-state machine (FSM) has a set of inputs, a set of outputs, 
a set of states, a transition function and an output function. For a 
given clock cycle, the FSM has a current state. The transition func-
tion determines the next state given the current state and the input 
values. The output function determines the output values given just 
the current state (Moore machine), or given the current state and the 
input values (Mealy machine).

The state encoding of an FSM can influence the complexity of the 
next-state and output logic. Synthesis CAD tools are usually able 
to optimize the state encoding.
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A state transition diagram represents a finite state machine with 
bubbles for states, arcs for transitions, and labels for input condi-
tions and output values. Labels for Moore-style outputs are written 
in the bubbles, and labels for Mealy-style outputs are written on 
arcs.

At the register-transfer level of abstraction, operation of a system 
is described in terms of transfer of data between registers through 
combinational circuits that operate on the data.

The clocked synchronous timing methodology involves a common 
clock for all registers, and operation on data by combinational 
circuits between clock edges.

For each path from register output to register input, the sum of the 
clock-to-output delay, combinational propagation delay and setup 
time must be less than the clock cycle time. The path with the least 
slack time is the critical path.

The critical path delay places a lower bound on the clock cycle time. 
Alternatively, a required clock cycle time places an upper bound on 
the critical path delay.

Clock skew is the difference in arrival time of a clock edge at 
different flip-flops in a system. Clock skew must be minimized to 
ensure that clocked synchronous circuits operate correctly. CAD 
tools typically implement clock distribution to minimize skew.

Registered inputs and outputs reduce combinational delays in 
interchip register-to-register paths, and thus help in meeting timing 
constraints.

Asynchronous inputs are those that are not guaranteed to be stable 
around clock edges. They can cause metastability in input registers. 
Synchronizers are required to avoid system failure due to metastability.

Testbenches for clocked sequential circuits must ensure that stimulus 
inputs are applied so as to meet timing constraints, and must wait 
until outputs are valid before checking them.

A globally asynchronous, locally synchronous (GALS) system has 
regions with local clocks, and treats inter-region connections as 
asynchronous inputs.

4.6 F U R T H E R  R E A D I N G

Digital Design: Principles and Practices, 3rd Edition, John F. Wakerly, 
Prentice Hall, 2001. Describes flip-flops and latches in detail, pre-
sents detailed low-level design procedures for finite-state machines, 
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provides an analysis procedure for feedback circuits, and discusses 
metastability and synchronizers in detail.

CMOS VLSI Design: A Circuits and Systems Perspective, 3rd Edition,
Neil H. E. Weste and David Harris, Addison-Wesley, 2005. Among 
many other aspects of CMOS circuit design, this book discusses 
detailed design of flip-flops and latches and addresses both single-
phase and two-phase clocking schemes.

Asynchronous Circuit Design, Chris J. Myers, Wiley-Interscience, 2001. 
An in-depth treatment of theory and practice.

A Guide to Debouncing, Jack G. Ganssle, The Ganssle Group, 2004, 
www.ganssle.com/debouncing.pdf. Presents empirical data on 
switch bounce behavior, and describes hardware and software 
approaches to debouncing.

Comprehensive Functional Verification: The Complete Industry 
Cycle, Bruce Wile, John C. Goss and Wolfgang Roesner, Morgan 
Kaufmann Publishers, 2005. Describes strategies and techniques 
for stimulus generation and result checking in simulation-based 
verification.

e x e rc i s e  4 . 1  Draw a schematic for a 6-bit register, constructed from 
D flip-flops, that updates the stored value on every clock cycle.

e x e rc i s e  4 . 2  Write a Verilog model for a 12-bit register that stores an 
unsigned integer value.

e x e rc i s e  4 . 3  Develop a Verilog model of a pipelined circuit that com-
putes the maximum of corresponding values in three streams of input values, a, 
b and c. The pipeline should have two stages: the first stage determines the larger 
of a and b and saves the value of c; the second stage finds the larger of c and 
the maximum of a and b. The inputs and outputs are all 14-bit signed 
2s-complement integers.

e x e rc i s e  4 . 4  Revise the schematic of Exercise 4.1 to include a clock 
enable and a reset input to the register, using flip-flops with clock-enable and 
reset inputs.

e x e rc i s e  4 . 5  Write a Verilog model for a register with clock-enable and 
synchronous reset that stores a 16-bit 2s-complement signed integer value.

e x e rc i s e  4 . 6  Draw a datapath for a pipelined complex multiplier. Unlike 
the sequential multiplier in Example 4.13 that takes five cycles to do each 
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