
CHAPTER 6 

SYNTHESIS OF VHDL CODE 

Synthesizing VHDL code is the process of realizing the VHDL description using the prim- 
itive logic cells from the target device’s library. In Chapters 4 and 5, we discussed how 
to derive a conceptual diagram from VHDL statements. The conceptual diagram can be 
considered as the first step in realizing the code. The diagram is refined further during 
synthesis. The synthesis process involves complex algorithms and a large amount of data, 
and computers are needed to facilitate the process. Although today’s synthesis software 
appears to be sophisticated and capable, there are fundamental limitations. Understanding 
the capability and limitation of synthesis software will help us better utilize this tool and 
derive more efficient designs. This chapter explains the realization of VHDL operators and 
data types, provides an in-depth overview on the synthesis process, and discusses the timing 
issue involved in synthesis. 

6.1 FUNDAMENTAL LIMITATIONS OF EDA SOFTWARE 

Developing a large digital circuit is a complicated process and involves many difficult tasks. 
We have to deal with complex algorithms and procedures and handle a large amount of data. 
Computers are used to facilitate the process. As computers become more powerful, we may 
ask if it is possible to develop a suite of software and completely automate the synthesis 
process. The ideal scenario is that human designers would only need to develop a high-level 
behavioral description and EDA software would perform the synthesis and placement and 
routing and automatically derive the optimal circuit implementation. The is unfortunately 
not possible. The limitation comes from the theoretical study of computational algorithms. 
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Although this book does not cover EDA algorithms, it will be helpful to know the capability 
and limitation of EDA software tools so that they can be used effectively. 

For the purposes of discussion, we can separate an EDA software tool into a core and a 
shell. The core is the algorithms that perform the transformation or optimization, and the 
shell wraps the algorithm, including data conversion, memory and file management and 
user interface. Although the shell is important, the core algorithms ultimately determine 
the quality and efficiency of the software tool. The problems encountered in EDA are not 
unique. In fact, they are formulated and transformed into optimization problems in other 
fields, especially in the study of graph theory. This section provides a layperson’s overview 
of computability and computation complexity, which helps us understand the fundamental 
limitation of EDA software. 

6.1.1 Computability 

Computability concerns whether a problem can be solved by a computer algorithm. If 
an algorithm exists, the problem is computable (or deciduble). Otherwise, the problem is 
uncomputable (or undecidable). An example of an uncomputable problem is the “halting 
problem.” Some programs, such as a compiler, take another program as input and check 
certain properties (e.g., syntax) of that program. The halting problem asks whether we can 
develop a program that takes any program and its input and determines whether computation 
of that program will eventually halt (e.g., no infinite loop). It can be proven mathematically 
that no such program can be developed, and thus the halting problem is uncomputable. 
Informally speaking, any attempt to examine the “meaning” of a program is uncomputable. 

Equivalence checking discussed in Section 1.5.3 essentially compares whether two pro- 
grams perform the same function, which goes further than the halting problem. Therefore, 
equivalence checking is uncomputable; i.e., it is not possible to develop an EDA tool that 
determines the equivalence of any two descriptions. However, it is possible to use some 
clever techniques to determine the equivalence of some descriptions, which are coded fol- 
lowing certain guidelines. Thus, while equivalence checking cannot guarantee to work all 
of the time, it can be useful some of the time. 

6.1.2 Computation complexity 

If a problem is computable, an algorithm can be derived to solve the problem. The compu- 
tation complexity concerns the efficiency of an algorithm. The computation complexity can 
be further divided into time complexity, which is a measure of the time needed to complete 
the computation, and space complexity, which is a measure of hardware resources, such as 
memory, needed to complete the computation. Since most statements on time complexity 
can be applied to space complexity as well, in the remaining section we focus on time 
complexity. 

Sig-0 notation The computation time of an algorithm depends on the size of the input 
as well as on the type of processor, programming language, compiler and even personal 
coding style. It is difficult to determine the exact time needed to complete execution of an 
algorithm. To characterize an algorithm, we normally focus on the impact of input size and 
try to filter out the effect of the “interferences” on measurement. Instead of determining the 
exact function for computation time, we usually consider only the order of this function. 

The order is defined as follows. Given two functions, f(n) and g(n), we say that f(n) 
is O(g(n)) (pronounced as f (n)  is big-0 of g(n) or f(n) is of orderg(n)) if two constants, 
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Table 6.1 Scaling of some commonly used big-0 functions 

Input size Big-0 function 
n n log2n nlog,n n2 n4 2n 

2 2 p s  l p s  2 p s  4 p s  8 p s  4 PS 
4 4ps 2 p s  8 p s  16ps 64ps  16 ps 
8 8 p s  3 p s  24ps 64ps  512ps 256 ps 
16 16ps  4 p s  64ps 256ps 4ms 66 ms 
32 32ps  5ps 160ps l m s  33ms 71 min 
48 48ps 5 . 5 ~ ~  268ps 2ms l l l m s  9 years 
64 64ps  6 p s  384ps 4ms 262ms 600,000years 

no and c, can be found to satisfy 

f(n) < cg(n) for any n, n > no 

The g(n) function is normally a simple function, such as n, nlog, n, n2, n3 or 2n. For 
example, all the following functions are O(n2): 

0 0.1n2 
0 n 2 + 5 n + 9  
0 500n2 + 1000000 

The purpose of big-0 notation is twofold. First, it drops the less important, secondary 
terms since the highest-order term becomes the dominant factor as n becomes large. Second, 
it concentrates on the rate of change and ignores the constant coefficient in a function. After 
removing the constant coefficients and lower-order terms, we eliminate the effect of coding 
style, instruction set and hardware speed, and can concentrate on the effectiveness of an 
algorithm. Big-0 notation is essentially a scaling factor or growth rate, indicating the 
resources needed as input size increases. 

Commonly encountered orders are 0(1), O(log, n),  O(n),  O(nlog2 n), O(n2),  O(n3) 
and 0 ( 2 n ) .  O(n) indicates the linear growth rate, in which the required computation 
resources increase in proportion to the input size. O( 1) means that the required computation 
resources are constant and do not depend on input size. O(log, n) indicates the logarithmic 
growth rate, which changes rather slowly. For a problem with 0(1) or O(log, n) ,  the input 
size has very little impact on the resources. O(n2) and O(n3) have faster growth rates and 
the required computation resources become more significant as the input size increases. 
All of the orders discussed so far are considered as being of polynomial order since they 
have the form of O(n')), where Ic is a constant. On the other hand, 0(2n) indicates the 
exponential growth rate and the computation time increases geometrically. Note that an 
increment of 1 in input size doubles the computation time. 0 ( 2 n )  grows faster than does 
any polynomial order. 

An example using these functions is shown in Table 6.1, which lists the required compu- 
tation times of algorithms of varying computation complexity. For comparison, we assume 
that it takes 2 ps for an O(n) algorithm to perform a computation of input size 2. The table 
shows the required times as the input size increases from 2 to 64 under different big-0 
functions. 

One example of 0(2n) complexity is the exhaustive testing of a combinational cir- 
cuit. One way to test a combinational circuit is to apply all possible input combinations 
exhaustively and examine their output responses. For a circuit with n inputs, there are 
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2" possible input combinations. If we assume that the testing equipment can check 1 mil- 
lion patterns per second, exhaustively testing a 64-bit circuit takes about 600,000 years (i.e., 
1os,60*60*24+365) 264 to complete. Thus, although simple and straightforward, this method is 
not practical in reality. 

lntractable and tractable problems In most problems, if a polynomial order (O(n')) 
algorithm can be found, the exponent k is normally very small (say, 1,2, or 3). Even though 
the growth rate is much worse than the linear rate, we can tolerate applying the algorithm 
to problems with nontrivial input sizes. We call these problems tractable. On the other 
hand, computation theory has shown that a polynomial-order solution cannot be found or is 
"unlikely" to be found for some problems. The only existing solutions are the algorithms 
with nonpolynomial order, such as O(2"). We call these problems intractable. As we have 
seen in Table 6.1, the computation time for the O(2") algorithm simply grows too fast and 
the algorithm is not practical even for a moderate-sized n. Improvement in hardware speed 
will not change the situation significantly. 

The situation is not completely hopeless for an intractable problem. An intractable 
problem usually means that it takes O(2") computation time to find the optimal answer 
for any given input. It is frequently possible to find a polynomial-order algorithm, based 
on some smart tactics and heuristics (an educated guess), that permits us to obtain a valid, 
suboptimal answer or the optimal solution for some input patterns. 

Synthesis as an intractable problem The focus of this book is on describing a de- 
sign in textual HDL code and then using synthesis software to realize the circuit. From the 
computation complexity point of view, the synthesis consists of several intractable prob- 
lems, and thus no polynomial-time algorithm exists. We can treat the synthesis process 
as a searching procedure. For a given specification, there are possibly O(2") valid circuit 
configurations. Finding the optimal configuration corresponds to a global search, exhaus- 
tively checking and comparing all O(2") possible configurations. Real synthesis software 
must limit the search space. It normally performs the search on a local basis and applies 
some smart tactics and heuristics to guide the direction of the search. The starting point of 
the search corresponds to the configuration described in our HDL code. Since the search 
is local, the initial starting point plays a key role. A good initial description will put the 
starting point in a good location, and an efficient configuration can be obtained accordingly. 
On the other hand, if the initial description is poor, the good configurations will be far away. 
Since synthesis software doesn't perform a global search, it is unlikely that software can 
obtain an efficient configuration. 

6.1.3 Limitations of EDA software 

Like synthesis, other design tasks contain intractable or even undecidable computation 
problems. This is the inherent, theoretical limitation of EDA software and cannot be 
overcome by fast hardware, smart software code or human talents. Heuristics and tricks of 
software algorithms can sometimes find good solutions for certain types of inputs. There is 
no guarantee that the solutions are optimal or that the algorithm will work for all types of 
inputs. Therefore, it is impossible to use EDA software to completely automate the design 
process. This limitation is real and here to stay. The quality and efficiency of a design still 
rely on a human designer's experience, insight, ingenuity and imagination, which, to some 
degree, can be considered as the ultimate heuristics that cannot be coded into software. 
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6.2 REALIZATION OF VHDL OPERATORS 

When we develop VHDL code for synthesis, language constructs in the code are eventually 
mapped to hardware. In the previous chapters, we illustrated the realization (i.e., the 
conceptual diagram) of basic concurrent and sequential statements. VHDL operators are 
used as building components in these diagrams. In a conventional programming language, 
we don’t pay too much attention to the operators since most operations, including integer 
arithmetic operations, logical operations and shift operations, take the same amount of 
resources: one instruction cycle of the CPU. This is totally different in synthesis. Hardware 
complexities and operation speed of VHDL operators vary significantly and are processed 
differently during synthesis. To derive an efficient design, we have to be aware of the 
implications of VHDL operators on hardware implementation. 

Only a subset of VHDL operators can be synthesized automatically. The subset nor- 
mally includes the logical operators, relational operators as well as addition and subtraction 
operators. Some software may also include more complicated operators, such as shift or 
multiplication operators. Software can rarely automatically synthesize division (/I, mod, 
rem and exponential (**) operators or any operators associated with floating-point data- 
type operands. The following subsections provide an overview of the realization of VHDL 
operators. 

6.2.1 Realization of logical operators 

Logical operators can be mapped directly to logic gates, and their synthesis is straightfor- 
ward. The and, nand, or and nor operators have similar area and delay characteristics. 
The xor and xnor operators are slightly more involved and their implementation requires 
more silicon area and experiences a larger propagation delay. 

In VHDL, a logical operation can be applied over operands with multiple bits. For ex- 
ample, let a and b be 8-bit signals with a data type of std,logic-vector(7 downto 0). 
The expression a xor b means that the xor operation is applied to eight individual bits in 
parallel. Since each bit of the input operates independently, the area of the circuit grows 
linearly with the number of input bits (i.e., on the order of O(n)),  and the propagation delay 
is a constant (i.e., on the order of O(1)). 

6.2.2 Realization of relational operators 

There are six relational operators in VHDL: =, /=, <, <=, > and =>. According to their 
hardware implementation, these operators can be divided into the equality group, which 
includes the = and /= operators, and the greater-less group, which includes the other four 
operators. 

In the equality group, operators can easily be implemented by a tree-like structure. For 
this implementation, the circuit area grows linearly with the number of input bits (i.e., 
O(n)),  and the delay grows at a relatively slow O(log, n) rate. In the greater-less group, 
the operation exhibits a strong data dependency of input bits. For example, to determine 
the “greater than” relationship, we first have to compare the most significant bits of two 
operands and, if they are equal, the next lower bits and so on. This leads to larger area and 
propagation delay. Because of the circuit complexity, these operators can be implemented 
in a variety of ways, each with a different area-delay characteristic. In the minimal-area 
implementation, both area and delay grow linearly (i.e., O(n))  with the number of input 
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bits. There are several different ways to improve the performance (i.e., reduce the delay), 
all at the expense of extra hardware. 

6.2.3 Realization of addition operators 

The addition operator (+) is the most basic arithmetic operator. Several other operators, 
including subtraction (-), negation (- with one operand) and absolute value (abs), can easily 
be derived from the addition operator. 

The addition operation has an even stronger data dependency of individual bits since the 
least significant bit of input may affect the most significant bit of the result. It is normally 
the most complex operator that can be synthesized automatically. Since the adder is the 
basis of other arithmetic operations, its implementation has been studied extensively and a 
wide range of circuits that exhibit different area-delay characteristics has been developed. 
The minimal-area circuit, sometimes known as a serial or ripple adder, can easily be im- 
plemented by cascading a series of 1-bit full adders. In this implementation, both area and 
delay grow linearly (i.e., O(n)). 

6.2.4 Synthesis support for other operators 

Synthesis support for other more complicated operators is sporadic. It depends on individual 
synthesis software, the width of the input operands as well as the targeted device technology. 
Some high-end synthesis software can automatically derive multiplication operator (*) and 
shift operators (sll, srl, sla, sra, rol and ror of VHDL, and sh i f t - le f t ,  s h i f t r i g h t ,  
rotate-left  and r o t a t e r i g h t  of the IEEE numericstd library). Because of the 
hardware complexity, we must be extremely careful if these operators are used in a VHDL 
code. Synthesis software rarely supports division-related operators (/, mod and rem) 
or the exponential operator (**) or any operators associated with floating-point data-type 
operands. 

Since the emphasis in this book is on portable description, we will not use these operators 
in our VHDL codes. Examples in Chapters 8 and 15 show how to design and derive VHDL 
code for some of these operators. 

6.2.5 Realization of an operator with constant operands 

The operands of VHDL operators can sometimes be a constant expression, which does 
not depend on the value of any input signal. Such constant operands have a significant 
implication in the synthesis process. 

Operator with a// constant operands If all the operands of an expression are con- 
stants, we can evaluate the expression in advance and replace it with a constant value. 
However, it is good practice to use constant symbols and constant expressions in VHDL 
code. They make the code more descriptive. For example, consider the following code 
segment: 

cons tant  OFFSET: integer := 8; 
s ignal  boundary : unsigned ( 8  downto 0) ; 
s i g n a l  overflow: std-logic ; 

overflow <= '1' when boundary > (P**OFFSET-l) e l s e  
. . .  

'0'; 
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The operands of operators ** and - are constants, and the 2**OFFSET-I expression can be 
replaced by a constant, 255. Although we can use 255 in VHDL code, it is less clear about 
how the value is obtained. In a large, complex VHDL program that involves many constant 
values, keeping track of the meaning of all constants becomes difficult. It is advisable to 
use constant symbols and constant expressions. 

During synthesis, software can easily detect constant expressions and replace them with 
constants during preprocessing (in the elaboration phase of VHDL code). Since no physical 
hardware will be inferred from constant expressions, we can use them freely in VHDL code. 

Operator with partial constant operands Most VHDL operators have two operands. 
Sometimes one of the operands is a constant, as in count+l, Instead of using a full-fledged 
operator implementation, synthesis software can “propagate” and “embed” the constant 
value into the circuit implementation. From a synthesis point of view, a constant operand 
actually decreases the number of inputs of the circuit by half and thus can significantly 
reduce the circuit complexity. For example, if a and b are two 8-bit signals and op is a 
VHDL operator, implementing the a op b expression requires a combination circuit with 
16 inputs. On the other hand, if one operand is a constant, say “0001001”, implementing 
the a op “00010001” expression only requires a combination circuit with eight inputs. 

The following three examples further depict the difference between a full-fledged circuit 
and the simplified implementation. The first example is of a rotation operator. Assume that 
x and y are 8-bit signals and consider the following rotation operation: 

y <= r o t a t e - r i g h t ( x ,  3 ) ;  

Since the shifting amount is a constant of 3, no actual shifting circuit is needed. This 
operation can be implemented by properly connecting the input signals to the output signals, 
which requires no logic at all. It is the same as 

y <= x ( 2  downto 0) & x ( 7  downto 3 ) ;  

The second example is of an equality operator. Let us consider a 4-bit equality comparator 
with inputs of ~ 3 2 2 ~ 1 ~ 0  and ~ 3 ~ 2 ~ 1 ~ 0 .  The logic expression of this operation is 

( z 3  @ 93)’ * (.2 @ 92)’ * bl@ Yd’ * (20 a3 YO)’ 

If one operand is a constant, say, y3y2ylyo  = 0000, the expression can be simplified to 

The comparator is reduced to a 4-input nor gate. Thus, there is a significant difference 
between a full-fledged comparator and a reduced comparator. 

The last example is of an addition operator. A frequently used operation in VHDL is 
incrementing: adding 1 to a signal, as in count+l. A minimal-area implementation of the 
addition operator is done by cascading 1-bit full adders. On the other hand, a minimal-area 
incrementor can be implemented by half adders, whose size is about one half that of full 
adders. Thus, the circuit area of an incrementor is only about one half that of a regular 
addition operator. 

6.2.6 An example implementation 

It will be helpful to have a comprehensive table that lists the areas and delays of synthe- 
sizable operators. However, because of the complexity of the synthesis process and device 
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Table 6.2 Circuit area and delay of some commonly used VHDL operators 

Width VHDL operator 

8 8 22 25 68 26 27 33 51 118 21 
16 16 44 52 102 51 55 73 101 265 42 
32 32 85 105 211 102 113 153 203 437 85 
64 64 171 212 398 204 227 313 405 755 171 

Delay (ns) 

8 0.1 0.4 4.0 1.9 1.0 2.4 1.5 4.2 3.2 0.3 
16 0.1 0.4 8.6 3.7 1.7 5.5 3.3 8.2 5.5 0.3 
32 0.1 0.4 17.6 6.7 1.8 11.6 7.5 16.2 11.1 0.3 
64 0.1 0.4 35.7 14.3 2.2 24.0 15.7 32.2 22.9 0.3 

technology, a small variation in VHDL code, synthesis algorithm, or device parameters 
will lead to different results. Table 6.2 shows one synthesis result for several representative 
operators of different input widths in a 0.55-micron CMOS standard-cell technology. The 
subscripts a and d indicates that the circuit is optimized for area and for delay respectively. 

The unit of area is a gate count, which is the equivalent number of 2-input nand gates used 
to implement the circuit, and the unit of propagation delay is the nanosecond (ns). We need 
to be cautious about the data in the table. The data is valid only for a particular version of a 
particular software on a particular device technology and should not be overly interpreted 
or analyzed. However, this data does show a general trend and provide a rough idea about 
the relative complexity of different operators. The information for a 2-to-1 multiplexer, 
which is the basic component for routing, is also included in the table for reference. 

There are several important observations to be made from the table. First, as we expect, 
the area and propagation delay vary significantly among the different operators. For exam- 
ple, the area of a 32-bit fast addition operator is more than 10 times larger than that of a 
32-bit nand operator, and the propagation delay of the adder is more than 100 times longer 
than that of the nand operator. 

The second observation is about the trade-off between area and delay. In digital system 
design, it is generally not possible to find an optimal implementation, which has both min- 
imal area and minimal delay. We normally have to invest more resources (a larger area) for 
better performance (less delay). Except for the trivial implementation of logical operators, 
other operators have multiple implementations with different area-delay characteristics. 
Table 6.2 shows the area and delay characteristics of two implementations, in which one is 
optimized for a smaller area and the other is optimized for less delay. 

The third observation is about scaling, the impact of increasing the size of the input of 
an operator (e.g., from 8 bits to 16 bits to 32 bits). The growth rates of area and delay are 
not always linear (i.e., O(n)). In general, the growth rate of delay is on the order of O(1), 
O(log, n) or O(n),  while the growth rate of area is between the orders O(n)  and O(n2).  
Since the commercial synthesis software normally does not reveal its internal algorithms, 
the growth rate observation is true only for this particular software and device. Chapter 15 
provides an in-depth discussion of the design of some operators. 
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Figure 6.1 Tri-state buffer. 

6.3 REALIZATION OF VHDL DATA TYPES 

6.3.1 Use of the std-logic data type 

VHDL supports a rich set of data types. During synthesis, these data types must be mapped 
into binary representations so that they can be realized in a physical circuit. The VHDL 
standard itself does not define the mapping mechanism, and thus the mapping is left for 
synthesis software. To have better control of the final implementation, we limit our use of 
data types primarily to the s td- logic  data type and its derivatives, the std-logic-vector,  
signed and unsigned data types. The only exception is the user-defined enumeration data 
type, which is used for the description of a finite state machine and is discussed in Chapter 9. 

Recall that there are nine possible values in the s td- logic  data type. Among them, ’ 0 ’ 
and ’ 1 ’ are interpreted as logic 0 and logic 1 and are used in regular synthesis. ’ L ’ and ’ H ’ 
are interpreted as weak 0 and weak 1, as in wired logic. Since modem device technologies 
no longer use this kind of circuitry, the two values should not be used. ’U’, ’X’ and 
’W’ are meaningful only in modeling and simulation, and they cannot be synthesized. 
The two remaining values, ’ 2 ’ and ’ - ’ , which represent high impedance and “don’t- 
care” respectively, have some impact on synthesis. Their use is discussed in the following 
subsections. 

6.3.2 Use and realization of the ’ Z value 

The ’2” value means high impedance or an open circuit. It is not a value in Boolean 
algebra but a special electrical property exhibited in a physical circuit. Only a special kind 
of component, known as a tri-state buffer, can have an output of this value. The symbol 
and function table of a tri-state buffer are shown in Figure 6.1. When the oe (for “output 
enable”) signal is ’ 1 ’ , the buffer acts as a short circuit and the input is passed to output. 
On the other hand, when the oe signal is 0 ’ , the y output appears to be an open circuit. 

VHDL description of a frl-state buffer High impedance cannot be handled by regular 
logic and can exist only in the output of a tri-state buffer. The VHDL description of the 
tri-state buffer of Figure 6.1 is 

y <= a - i n  when oe=’l’ e l s e  
’ 2 ’ ;  

We cannot use a value of 2 ’ as an input or manipulate it as a logic value. For example, 
the following statements cannot be realized and are meaningless in synthesis: 

f <= ’ Z ’  and a ;  
y <= d a t a - a  when i n -bus=’Z’  e l s e  

d a t a - b  ; 
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Figure 6.2 Use of Z ' as an output value. 

Since a hi-state buffer is not an ordinary logic value, it is a good idea to code it in a 
separate statement. For example, consider the following VHDL description: 

with sel s e l e c t  
y <= 'Z' when 110011, 

' 1 ' when I ' O 1  I 11" , 
'0' when o t h e r s ;  

Although the code is correct, direct transformation to a conceptual diagram, as shown in 
Figure 6.2(a), cannot be synthesized. To clarify the intended structure, the code should be 
modified as 

with s e l  s e l e c t  
tmp <= '1' when 1101"1111111, 

'0' when o t h e r s ;  
y <= tmp when sel/="OO1a e l s e  

'2'; 

Following the description, we can easily derive the intended block diagram, as shown in 
Figure 6.2(b). 

The major application of a hi-state buffer is to implement a bidirectional VO port to save 
the pin count and to form a bus. 

VHDL description of a bidirectional i/O port As a silicon device packs more cir- 
cuitry into a chip, the number of VO signals increases accordingly. A bidirectional VO pin 
can be used as either an input or an output and thus makes more efficient use of an VO pin. 
Most P G A  and memory devices utilize bidirectional U0 pins. 

The schematic of a simple circuit with bidirectional VO port, b i ,  is shown in Figure 6.3. 
The d i r  signal controls the direction of the VO port. When it is 'O', the port is used as an 
input port. The hi-state buffer is in a high-impedance state, and thus the sig-out signal is 
blocked. The external signal connected to the b i  port is routed to the sig-in signal. When 
the d i r  signal is 'l', the port is used as an output port and the sig-out signal is connected 
to an external circuit. Note that the sig-out signal is implicitly routed back to the sig-in 
signal when the d i r  signal is ' 1'. If this causes a problem, we can add an additional hi-state 
buffer to break the return path, as shown in Figure 6.4. Since the control signals of hi-state 
buffers are connected to a complementary enable signal, only one tri-state buffer is enabled 
at a time. 
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Figure 6.3 Single-buffer bidirectional U0 port. 

Figure 6.4 Dual-buffer bidirectional I/O port. 

The VHDL description for a bidirectional port is straightforward. We first specify the 
mode as inout in port declaration and then describe the hi-state buffer accordingly. The 
VHDL segment for the single-buffer diagram of Figure 6.3 is 

e n t i t y  bi-demo i s  
port ( 

bi : inout std-logic ; 
. . .  

begin 
sig-out <= output-expression; 

some-signal <= expression-with-sig-in; 

bi <= sig-out when dir=’l’ e l s e  ’Z’; 
sig-in <= bi; 

. . .  

. . .  

. . .  
To accommodate the dual-buffer configuration of Figure 6.4, we just need to modify the 
last statement to reflect the change: 

sig-in <= bi when dir=’O’ e l s e  8 Z ’ ;  

Tri-state buffer-based bus Another application of the tri-state buffer is to form a 
bus. The diagram of a simple hi-state buffer-based bus (or simply hi-state bus) is shown in 
Figure 6.5, in which four sources are connected to the bus. The signal srcselect specifies 
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data-bus 

Figure 6.5 Tri-state bus. 

which input source is to be placed on the bus. It is connected to a decoding circuit that 
generates four non-overlapping control signals, oe (01, oe (1) , oe (2) and oe (3). Only 
one can be activated at a time, and the input connected to the activated buffer is placed on 
the bus. The VHDL code for this circuit is 

-- b i n a r y  d e c o d e r  
with s r c - s e l e c t  s e l e c t  

oe <= l t O O O 1 ”  when 1100“ ,  
“0010” when 
1 1 0 1 0 0 ~ ~  when lllOtl, 
~110008~ when o t h e r s ;  - “ I  I ‘I 

- t r i  - s t a t e  b u f f e r s  
y0 <= i 0  when oe(O)=’l’ e l s e  ’Z’; 
y l  <= i l  when o e ( l ) = ’ l ’  e l s e  ’Z’; 
y2 <= i 2  when o e ( 2 ) = ’ 1  ’ e l s e  ’Z’; 
y 3  <= i 3  when o e ( 3 ) = ’ 1 ’  e l s e  ’Z’; 
d a t a - b u s  <= y 0 ;  
d a t a - b u s  <= y l ;  
d a t a - b u s  <= y 2 ;  
d a t a - b u s  <= y 3 ;  

Despite its simple appearance, the internal tri-state buses presents a serious problem in 
the development flow. Since the theoretical models of most EDA algorithms are based on 
Boolean algebra, which is defined according to two logic values, the software tools cannot 
handle the high-impedance state. The tri-state bus thus imposes a problem in optimization, 
timing analysis, verification and testing. Furthermore, internal tri-state bus is technology 
dependent, and thus the design is less portable. 
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Table 6.3 Function tables of a 3-to-2 priority encoder 
Inpu't Output Input Output 
req code req code 
1 0 0  10 1 -- 10 
1 0 1  10 0 1 -  01 
1 1 0  10 0 0 1  00 
1 1 1  10 0 0 0  00 
0 1 0  01 
0 1 1  01 
0 0 1  00 
0 0 0  00 

Table 6.4 Don't-care used as an output value 

input output 
a b  f 
0 0  0 
0 1  1 
1 0  1 
1 1  - 

A tri-state bus essentially performs multiplexing. For example, the previous design can 
be replaced by a 4-to-1 multiplexer: 

with src-select s e l e c t  
data-bus <= i0 when "OO", 

i l  when "Ol", 
i 2  when "IO", 
i3 when o t h e r s ;  - " 1 1 'I 

This scheme is more robust and portable and thus is the preferred choice. The major 
application of the tri-state bus is to construct the external back-plan bus of a printed circuit 
board. An add-on card can easily be added to or removed from the bus without affecting 
subsystems residing on other cards. 

6.3.3 Use of the - ' value 

Don't-care is not a valid logic value in Boolean algebra but is used to facilitate the design 
process. Don't-care can be used as an input value to make a function table clear and compact. 
For example, the original function table of a 3-input priority encoder is shown on the left of 
Table 6.3. When req(2) is 'l', the output should be "10" regardless of the values of other 
requests. Instead of using four rows, we can use 1-- to indicate the condition. The revised 
table, as on the right of Table 6.3, is more compact and more descriptive. 

When used as an output value, don't-care indicates that the exact value is not important. 
This happens when some of the input combinations are not used. During the synthesis 
process, we can assign a value that helps to reduce the circuit complexity. A simple example 
is shown in Table 6.4, in which the output value for the input pattern "1 1" is don't-care. If 
don't-care is assigned to '0' during synthesis, f becomes a' b + a b'. On the other hand, 
when it is assigned to ' 1'' f can be simplified to a + b, which requires much less hardware. 
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According to the definition of the std-logic data type, the '-' value is designated 
as "don't-care." However, VHDL treats '-' as an independent symbolic value of the 
std-logic data type rather than "0 or 1." This definition is somewhat different from our 
conventional use and may lead to unexpected behaviors and subtle mistakes. The following 
paragraphs discuss the use of this value. 

Use of ' - ' as an input value Let us first examine the issues related to using - as 
an input value. Consider the priority function of Table 6.3. We may be tempted to code the 
circuit as follows: 

y <= "10" when req="l--" e l s e  
a O 1 l l  when req="01-" e l s e  
"00" when req="001" e l s e  
00 ; 

The code is syntactically correct. However, in a physical circuit, an input signal can only 
assume a value of '0' or '1' but never '-', and thus the req=lll--" and req="Ol-" 
expressions will always be false. If the value of the req signal is "Ill", none of the 
Boolean expression is true and aOO" will be assigned to y accordingly. To correct the 
problem, we have to eliminate the comparison of ' - ' in Boolean expressions: 

y <= "10" when req(2)='1' e l s e  
"01" when req(2 downto l)=tlOlll e l s e  
"00" when req(2 downto O>=ll0Olt1 e l s e  
00 ; 

The code is just for demonstration purposes and is not very efficient. Better code for priority 
encoding circuit was illustrated in Section 4.3.1. 

In the IEEE numeric-std package, there is a function, std-matcho, which performs 
don't-care comparisons according to the traditional interpretation. The function compares 
two inputs of std-logic-vector data type and interprets '- ' as a don't-care in a conven- 
tional sense. The previous code can be written as 

9 . .  

use ieee . numeric-std. a l l  ; 

y <= l l l O t l  when std-match(req,"l--" 1 e l s e  
"01" when std-match(req, l a O l - I 1 )  e l s e  
110011 when std-match(req,"OOl") e l s e  
I1 0 0 I1 . 

. . .  

I 

Our discussion of '-' is also applied to the choice expression in a selected signal 
assignment statement and case statement. For example, the following code seems to be the 
direct implementation of the compact function table of Table 6.3: 

with req s e l e c t  
y <= t1101~ when I I 1 - - 1 1  

" O 1 l t  when l t O 1 - l t ,  
a O O t l  when l s O O 1 l l ,  
l f O O 1 a  when o t h e r s ;  

The code is syntactically correct. Again, since a physical input signal can never assume a 
value of '-', the choices 111--" and "01-" will never occur. If the value of the req signal 
is 1 I I I t ,  there is no match and 'I 00" will be assigned to y. There is no easy fix in this case. 
We must explicitly specify choice expressions in terms of '0' and ' l', as in the original left 
function table of Table 6.3. The correct VHDL code is 
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Use of - ’ as an output value Don’t-care can also be used as an output value and 
assigned to a signal. For example, the function table of Table 6.3 can easily be translated 
to VHDL code: 

sel <= a & b; 
with sel s e l e c t  

y <= ’0’ when t s O O 1 l ,  
’1’ when 1 1 0 1 1 1 ,  
’1’ when l l l O t l ,  
’ - ’  when others;  

The code is syntactically correct. According to the VHDL definition, ’ - ’ , not “0 or 1 ,” will 
be assigned to y if sel is I’ I1 I(. Since a real ’ - ’ does not exist in a physical implementation, 
this symbol cannot be synthesized. During synthesis, some software flags an error, and 
others treat it as a conventional don’t-care and perform optimization accordingly. 

6.4 VHDL SYNTHESIS FLOW 

Synthesizing VHDL code is the process of realizing a VHDL description using the primitive 
logic cells from the target device’s library. It is a complex process. To make it manageable, 
we normally divide VHDL synthesis into steps, including high-level synthesis, RT-level 
synthesis, gate-level synthesis (commonly known as logic synthesis) and cell-level synthesis 
(commonly known as technology mapping). High-level synthesis transforms an algorithm 
into an architecture consisting of a data path and control path. It is substantially different 
from the other three steps and is done by specialized software tools. It is reviewed in 
Section 12.7. 

RT-level synthesis, logic synthesis and technology mapping generate structural netlists 
utilizing generic RT-level components, generic gate-level components and device-dependent 
cells respectively. The detailed flow is shown in Figure 6.6. Basically, the entire circuit is 
transformed and optimized level by level, from an RT-level netlist to a gate-level netlist and 
then to a cell-level netlist, as shown in the left column of the flowchart. Some RT-level com- 
ponents, such as adder and comparator, can be quite complex. They are normally handled 
by a module generator, as shown in the right column of the flowchart. Our current discus- 
sion is limited to the synthesis flow of combinational circuits. It can easily be expanded to 
include sequential circuits, which are discussed in Chapter 8. 

6.4.1 RT-level synthesis 

RT-level synthesis transforms a behavioral VHDL description into a circuit constructed by 
components from a generic RT-level library. The term generic implies that the components 
are common to all technologies and thus the library is not technology dependent. The 
components can be classified into three categories: functional units, routing units and 
storage units. Functional units are used to implement the logic, relational and arithmetic 
operators encountered in VHDL code. Routing units are various multiplexers used to 
construct the routing structure of a VHDL description, as discussed in Chapters 4 and 5 .  
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Figure 6.6 Synthesis flow. 
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Storage units are registers and latches, which are used only in sequential circuits and are 
discussed in Chapter 8. 

RT-level synthesis includes the derivation and optimization of an RT-level netlist. During 
the process, VHDL statements are converted into corresponding structural implementation, 
somewhat similar to the derivation of conceptual diagrams discussed in Chapters 4 and 5 .  
Some optimization techniques, such as operator sharing, common code elimination and 
constant propagation, can be applied to reduce circuit complexity or to enhance perfor- 
mance. Unlike gate- and cell-level synthesis, optimization at the RT level is performed in 
an ad hoc way and its scope is very limited. Good design can drastically alter the RT-level 
structure and help software to derive a more effective implementation. 

6.4.2 Module generator 

After the RT-level synthesis, the initial description is converted to a netlist of generic RT-level 
components. These components have to be transformed into lower-level implementation 
for further processing. Some RT-level components, such as logical operators and multi- 
plexers, are simple and can be mapped directly into gate-level implementation. They are 
known as random logic since they show less regularity and can be optimized later in logic 
synthesis. The other components are quite complex and need special software, known as 
a module generator, to derive the gate-level implementation. These components include 
adder, subtractor, incrementor, decrementor, comparator and, if supported, shifter and mul- 
tiplier as well. They usually show some kind of repetitive structure and sometimes are 
known as regular logic. Regular logic is usually designed in advance. A module generator 
can produce modules in different levels of detail: 

0 Gate-level behavioral description. 
0 Resynthesized gate-level netlist. 
0 Resynthesized cell-level netlist. 

A gate-level behavioral description can be thought of as VHDL code that uses only 
simple signal assignment and logical operators, which can easily be mapped to a gate-level 
netlist. The description is general and independent of underlying device technology. The 
description will be flattened and combined with the random logic to form a single gate-level 
netlist. The merged netlist will be synthesized together later in logic synthesis. Chapter 15 
discusses the generation of some frequently used components. 

Because of the regular and repetitive nature of these components, it is possible to further 
explore their properties and manually derive and synthesize the netlist at the gate level or 
even at the cell level. Manual design can explore this regularity and derive a more efficient 
implementation. The resulting circuit is more efficient than a circuit obtained from logic 
synthesis. When a presynthesized gate- or cell-level netlist is used, it will not be flattened 
and merged with the random logic. The random logic will be independently processed 
through logic synthesis and even technology mapping. The netlist of random logic and the 
netlists of regular components will be merged after these processes. The right column in 
the synthesis flow of Figure 6.6 shows the various possibilities for module generation. 

There are two advantages to the non-flattened approach. First, it can utilize predesigned, 
highly optimized modules. Second, since these modules are extracted from the original 
circuit, the remaining part is smaller and thus is easier to process and optimize. On the 
other hand, the non-flattened modules may isolate the random logic and thus reduce the 
chance for further optimization. For example, the adder of Figure 6.7 separates the random 
logic circuits into two parts and forces them to be processed independently. It may introduce 
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Figure 6.7 Random logic with a regular component. 
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Figure 6.8 Two-level versus multilevel implementation. 

more optimization opportunities if we flatten the adder, merge it with the four random logic 
circuits, and then process and optimize them together. There is no clear-cut rule as to which 
approach is more effective. Some synthesis software allows users to specify the desired 
option. 

6.4.3 Logic synthesis 

Logic synthesis is the process of generating a structural view using an optimal number 
of generic primitive gate-level components, such as a not gate, and gate, nand gate, or 
gate and nor gate. Again, the term generic means that the components are not tied to a 
particular device technology and there is no detailed information about the components’ 
size or propagation delay. At this level, a circuit can be expressed by a Boolean function, and 
these generic components are essentially the operators of Boolean algebra. Logic synthesis 
can be divided into two-level synthesis and multilevel synthesis. 

The most commonly used two-level form is the sum-of-products form, in which the 
first level of logic corresponds to and gates and the second level to or gates. An example 
is shown in Figure 6.8(a). Other two-level forms can easily be derived from the sum-of- 
products form. lbo-level synthesis is to derive an optimal sum-of-products form for a 
Boolean function. The goal of optimization is to reduce the number of product terms (i.e.. 
the number of and gates) and the number of input literals (i.e., the total fan-ins of and gates). 
The well-known Karnaugh map technique is a method to manually obtain the optimal two- 



VHDL SYNTHESIS FLOW 143 

level implementation for a circuit with up to four or five inputs. A more realistic circuit 
may contain dozens or even several hundred inputs and cannot be optimized manually. 
Obtaining the optimal two-level circuit is actually an intractable problem and thus is not 
practical. However, this process is well understood, and many efficient algorithms to obtain 
good, suboptimal circuits have been developed. 

Because of the large number of fan-ins for the and and or gates, the two-level sum- 
of-products form can only be implemented by using a special ASIC structure, known as 
programmable logic array (PLA), and, with some modification, by using programmable 
array logic (PAL)-based CPLD devices. However, the two-level form is a formal way of 
expressing Boolean functions and is frequently used as a basis for processing and manipulat- 
ing logic expressions. Two-level synthesis can reduce the information needed to represent 
a function and theoretically can serve as a staring point of multilevel processing. 

Multilevel representation, as its name indicates, expresses a Boolean function by using 
multiple levels of gates. Its form is far less stringent than that of the two-level form and 
provides several degrees of freedom, leading to better efficiency and more flexibility. The 
implementation may be exploited by optimizing area, by optimizing delay, or even by 
obtaining an optimal area-delay trade-off point. An example of multilevel implementation 
of the previous two-level implementation is shown in Figure 6.8(b). It reduces both the 
number of gates and the number of fan-ins. Modem device technologies are based on 
small cells whose fan-in is limited to a small number. Thus, multilevel synthesis is more 
appropriate. 

Processing and optimizing a multilevel logic are more difficult. Optimization is normally 
based on heuristic methods, which exploit various Boolean or algebraic transformations or 
search and replace circuit patterns according to a rule database. Because of the flexibility 
of multilevel representation, synthesis results vary significantly, and a minor modification 
in initial description may lead to a totally different implementation. 

6.4.4 Technology mapping 

Logic synthesis generates an optimized netlist that utilizes generic components. Technology 
mapping is the process of transforming the netlist using components from the target device’s 
library. These components are commonly referred to as cells, and the technology library is 
normally provided by a semiconductor vendor who manufactured (as in FPGA technology) 
or will manufacture (as in ASIC technology) the device. Whereas a generic component is 
defined by its function, a cell is further characterized by a set of physical parameters, such 
as area, delay, and input and output capacitance load. In the case of ASIC technology, each 
cell is associated with the physical layout or prediffused patterns. 

Although technology mapping can be done by simple translation between generic com- 
ponents and logic cells, the resulting circuit is not very efficient since the translation does 
not exploit the functionalities, areas and delays of the cells. Obtaining optimal mapping is a 
very difficult process, which involves intractable problems. Again, heuristic and rule-based 
algorithms are used to find suboptimal solutions. The following subsections use two simple 
examples to illustrate the technology mapping process of a hypothetical standard-cell ASIC 
library and a 5-input look-up table (LUT)-based FPGA. 

Standard-cell technology A library from standard-cell technology normally consists 
of several dozen to several hundred cells, including combinational, sequential and interface 
cells. Combinational cells consist of simple gates, such as and, or, nand, nor, xor etc., 
and sometimes slightly complex circuits, such as 1-bit full adder, 1-bit 2-to-1 multiplexer 
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Figure 6.9 Simple hypothetical ASIC cell library. 

etc. A simple hypothetical technology library with seven cells is shown in Figure 6.9. The 
columns are the name of the cell, its relative area (cost), its symbol and its normal form. 
The n o w 1  fom, which represents a cell using 2-input nand gates and inverters, is used to 
facilitate the mapping process. 

The cells of a technology library are optimized and tuned for a particular technology. 
They are manually designed from scratch at the transistor level rather than being based on 
simple logic gates. For example, if the aoi cell is implemented using the simpler nand2 
and not cells, its area is 11, which is about four times the area of the nand2 cell. However, 
if it is implemented directly at the transistor level, its area is 5 ,  which is about twice the area 
of the nand2 cell. This explains why there are many different primitive cells in a typical 
standard-cell library. Furthermore, since fine adjustments can be made at the transistor 
level, multiple cells of different area-delay trade-offs may exist for the same logic function. 

The mapping can best be illustrated by the example shown in Figure 6.10. The initial 
mapping in Figure 6.10(a) is a trivial one-to-one gate-to-cell translation and its area is 31. 
The better one, in Figure 6.10(b), is optimized and its area is reduced to 17. Although 
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Figure 6.10 Standard-cell technology mapping example. 
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Figure 6.11 LUT-based FPGA technology mapping example. 

this is a simple example, it demonstrates the importance of good mapping as well as the 
complexity of the technology mapping process. 

LUT-based FPGA technology Because an FPGA device is prefabricated in advance, 
its technology library normally consists of only a single cell. This cell can, however, be 
"programmed" or configured to perform different logic functions. The most commonly 
used construction is based on a small look-up table (LUT). We can program a LUT by 
specifying its contents, as in a truth table description of a logic function. If a LUT can 
accommodate 2n rows (i.e., n inputs), it can be used to realize any combinational function 
with n or fewer inputs. A typical FPGA cell consists of a 4-, 5-, or 6-input LUT and a 
D-type flip-flop. 

An example of technology mapping using 5-input LUT cells is shown in Figure 6.11. 
Since a LUT cell concerns only the number of inputs, the netlist does not need to be 
converted into normal form. The mapping in Figure 6.1 l(a) is a trivial one-to-one gate- 
to-cell translation, and it requires four LUT cells. The mapping in Figure 6.1 l(b) is more 
efficient and reduces the number to only two LUT cells. 

Precaution with FPGA technology From technology mapping's point of view, one 
difference between ASIC and FPGA technologies is the size of the cells. The cell size 
of an ASIC device is very small, and thus any minor adjustment will be reflected in the 
implementation. For example, the previous standard-cell library has 2-, 3- and 4-input nand 
cells. If we can improve our design by eliminating one input of a product term in the logic 
expression, we can use a smaller nand cell and reduce the circuit area by a small amount. 

On the other hand, the cell size of a FPGA device is relatively large. A 5-input LUT-based 
cell can implement any 1-, 2-, 3-, 4- or 5-input logic function, regardless of the complexity 
of the function. A wide range of functions can be implemented by this cell, and all of them 
are considered to have the same area under the FPGA technology. For example, both the 
a . b and a @ b @ c @ d @ e expressions can be mapped into a single LUT cell. Although 
the internal utilizations of the cells are very different, the two expressions are considered to 
have the same area. This may cause an unexpected result when we synthesize a circuit using 
FPGA technology. This phenomenon will be further amplified if we take into consideration 
the built-in flip-flop within a logic cell. For example, we can construct a 1-bit counter and 
its area remains a single cell. 
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Figure 6.12 Discontinuity of LUT cell-based implementation. 

The PGA-based implementation may also exhibit a “discontinuity” phenomenon. For 
example, let us use a 4-input LUT logic cell to implement an odd-parity circuit, which has 
an expression of 

A simple cascading chain implementation and mapping is shown in Figure 6.12(a). The 
number of logic cells needed for different input size (i.e., n) is plotted in Figure 6.12(b). It 
looks like a staircase and exhibits discontinuities (i.e., a sudden change) at certain points. 
For example, if we increase the input size from 6 to 7, there is no change in the number of 

a1 @ a2 @ a3 @ * * @a, 
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logic cells, and thus the area remains unchanged. But if we change the input size from 7 
to 8, the number of logic cells increases from 2 to 3, and thus the area increases 50%. 

For a larger, more complex circuit, we can expect that the cell utilization and discontinuity 
will average out and the result is more like that of an ASIC device. Nevertheless, occasional 
fluctuations and randomness are unavoidable, and targeting an FPGA device still introduces 
a new dimension of complication in synthesis. Although the discussion in the remainder 
of the book can be applied equally to both ASIC and FPGA devices, we target the design 
using ASIC devices for the area and performance data. 

6.4.5 Effective use of synthesis software 

Despite its fundamental limitation, synthesis software is still a powerful and necessary tool, 
which can automate many design tasks and perform certain tedious and repetitive compu- 
tations. A good designer should understand the capabilities and limitation of software, and 
know what this tool can and cannot do as well as when to compromise. 

VHDL description of logical operators In general, synthesis software is very effec- 
tive in performing logic synthesis and technology mapping for a small to moderate-sized 
circuit whose complexity is around 5000 to 50,000 equivalent gates. Although optimization 
involves intractable problems, these problems have been studied thoroughly and many good 
heuristics and searching procedures have been developed. Furthermore, although a circuit 
is processed at the gate or cell level, even a very simple design consists of hundreds or 
thousands of components. It is not practical to manipulate the design manually at this level. 

VHDL logical operators can be mapped directly to gate-level components. Their imple- 
mentations are simple and straightforward. Since synthesis is very effective at this level, 
we need not worry about the sharing and optimization of logical operators in a VHDL 
description. 

VHDL description of arithmetic and relational operators Optimization at the 
RT level involves complex arithmetic and relational operators and routing structure. It 
is not well developed and is frequently done on an ad hoc basis. Human intervention 
is required, and we have to specify explicitly the desired design in a VHDL description. 
Simple modifications on code frequently can improve circuit efficiency significantly. 

There is no comprehensive procedure or algorithm to detect sharing and to perform 
optimization for arithmetic and relational operators. It frequently depends on the designer’s 
insight and knowledge of a circuit. VHDL is a good vehicle to explore design at this level. 
Sections 7.2 and 7.3 provide a comprehensive array of examples for this topic. 

VHDL description of layout and routing structure Routing structure indicates 
how “data” propagate through various parts of the system, from input ports to output ports. 
Although a VHDL program cannot explicitly specify the placement of components or the 
layout of a design, it implicitly describes the routing structure and, to some degree, the shape 
of the implementation. Recall that each VHDL statement can be considered as a circuit part, 
and a VHDL program implicitly connects these parts. Although all parts of a combinational 
circuit operate concurrently, some outputs of these parts are not valid initially. The valid 
value can be thought of as data that propagates from one part to another and eventually 
to the circuit output. The data flow forms a routing structure, which, in turn, implicitly 
determines the shape or layout of the physical circuit. 

Regardless of the shape of the initial VHDL description, the placement and routing 
process will eventually implement the circuit on a two-dimensional silicon chip. If the 
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Figure 6.13 Routing structures of an odd-parity circuit. 

shape of the initial description resembles the shape of the chip, the description can help the 
placement and routing process and make the final implementation smaller and faster. Two 
routing structures of a simple example of an odd-parity circuit are shown in Figure 6.13. 
The one in Figure 6.13(a) is a cascading-chain structure described by the statement 

y<=(((((((a xor b) xor c )  xor d )  xor e )  xor f) xor g) xor h); 

and the one in Figure 6.13(b) has a tree structure described by the statement 

y<=((a xor b) x o r  ( c  xor d ) )  xor ( ( e  xor f) xor (g xor h)); 

Both structures use the same number of xor gates, but the propagation delay is much smaller 
in the tree structure. 

Although synthesis software can recognize a few specific patterns and rearrange the 
routing structure on a local basis, it cannot make any major global change. Good VHDL 
coding can outline the basic “skeleton” of the implementation and provide a framework 
for synthesis. It has a greater impact than the local optimization performed by synthesis 
software. The coding technique is discussed in detail in Section 7.4 . 

6.5 TIMING CONSIDERATIONS 

A digital circuit cannot respond instantaneously, and the output is actually a function of 
time. The most important time-domain characteristic is the propagation delay, which is 
the time required for the circuit to generate a valid, stabilized output value after an input 
change. It is one of the major design criteria for a circuit. 

Another time-domain phenomenon, known as a hazard, is the possible occurrence of 
unwanted fluctuations of an output signal before it is stabilized. Although a hazard is a 
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transient response, it may cause circuit malfunction in a poorly conceived design. The 
following subsections examine the propagation delay and hazard in more detail and discuss 
several timing issues that have an impact on synthesis. 

6.5.1 Propagation delay 

It takes a digital circuit a certain amount of time to reach a valid stable output response after 
an input change. In digital design, we treat this time as the delay required to propagate a 
signal from the input port to the output port, and call it propagation delay or simply delay. 
A digital system normally has multiple input and output ports, and each input-output path 
may exhibit a different delay. We consider the worst-case scenario and use the largest 
input-output delay as the system’s propagation delay. 

The propagation delay reflects how fast a system can operate and is usually considered 
as the performance or the speed of the system. Combined with the circuit size (area), they 
are the two most important design criteria of a digital system. 

To compute the delay of a system, we first determine the delays of individual components 
and identify all possible paths between input and output ports. We then calculate the delay 
of each path by summing up the individual component delays of the path and eventually 
determine the system delay. 

The system delay calculation clearly depends on the information of its underlying com- 
ponents. The best estimation can be obtained at the cell level since the netlist is final, and 
the accurate physical and electrical characteristics of cells are provided. The least accu- 
rate estimation is at the RT level since the components must be further transformed and 
optimized. 

Propagation delay at the cell level To determine the exact time-domain behavior 
of a cell, we have to examine and analyze it at the transistor level, which is modeled 
by transistors, resistors and capacitors. The delay is due mainly to parasitic capacitance, 
which occurs at two overlapping layers and thus exists everywhere. When a transistor 
changes state, these capacitors have to be charged or discharged and thus introduce a delay. 
Analyzing a cell at this level is extremely complex and can be done only at a small scale. 
The analysis provides basic data for cell-level modeling. 

To manage the complexity, timing analysis at the cell level has to rely on a much simpler 
model. One commonly used approach is a simplified linear model, in which all parasitic 
capacitance is lumped as a single capacitor and only the first-order effect is considered. In 
this model, the delay of a cell is expressed as 

delay = dintrinsic + r * Cload 
The first term in the expression, dzntrznsic, is associated with the internal circuit of the 
cell. It models the time required for transistors to change state (i.e., switch on or off). The 
second term is associated with the external circuits driven by the cell. The parameter Cload 

is the total capacitive load driven by this cell, which includes the input capacitance of cells 
connected to the output of current cell and the parasitic capacitance of the interconnect wires. 
An example is shown in Figure 6.14. The load is the summation of the input capacitance 
of three cells driven by the and gate (Cgl, Cg2 and Cg3) and parasitic capacitances of three 
interconnect wires (Cul, C,,,Z and Cu3). 

The r parameter represents the driver capability of the cell and can loosely be considered 
as the output impedance of the cell. When r is small, the cell can allow more current (i.e., 
larger driver capability) and thus can charge or discharge the capacitance load in a shorter 
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Figure 6.14 Delay estimation at the cell level. 

period, leading to a smaller delay. At the transistor level, we can reduce the delay by using 
a larger transistor to increase the driver capability. 

Impact of wiring on cell-level delay estimation The accuracy of cell-level delay 
estimation depends on several factors. The first factor is the accuracy of the parameters 
used in delay calculation. We can obtain fairly accurate values for dint,.inszc, T ,  and input 
capacitance from the manufacturer’s data sheet. After technology mapping, fan-out of each 
cell can be obtained from the netlist, and thus the total input capacitance load can easily 
be determined. The wire capacitance, on the other hand, depends on the actual length and 
location of each wire. Since this information is not available at the synthesis stage, software 
sometimes uses a statistical model to provide a rough estimation. Accurate information can 
only be extracted after place and routing is performed. This is one reason that the system 
has to be simulated and verified again after the placement and routing process. 

The second factor is the accuracy of the model. The linear cell-level model is only 
an approximation and ignores higher-order effects. In some circumstances, these effects 
become more dominant, and more sophisticated models have to be used. For example, a 
more complex distributed RC model can be used to obtain better estimation than a simple 
lumped circuit. Some models for a wire between points a and b are shown in Figure 6.15(b) - 

When the transistor geometry is relatively large, the wire capacitance and higher-order 
effects do not contribute much to the overall delay and can safely be ignored. Accurate 
timing information can be obtained in the synthesis stage. However, as the transistor 
becomes smaller and submicron technology becomes available, the wiring delay gradually 
becomes the dominant part and the high-order effects have more impact. This makes the 
design process harder since we need to do placement and routing to obtain accurate timing 
information. 

In addition to the inherent errors of approximation, the fabrication process and operation 
environment (such as temperature) affect the delay characteristics as well. In general, there 
is no way that we can control the exact delay of a cell. A device manufacturer can only 
guarantee the boundary of operation, normally in terms of the maximal propagation delay. 
While VHDL incorporates the timing aspect in the language, it is primarily for modeling 
purposes. For example, we can specify an and gate with a 2-ns delay as: 

(4. 
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Figure 6.15 Wiring models. 
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Figure 6.16 Topological critical path. 

f <= b and c a f t e r  2 n s ;  

During synthesis, the timing part will be completely ignored since there is no technology 
that can produce a gate with an exact 2 4 s  delay. 

System delay Once cell delays are known, we can calculate the delay of a path by 
adding the individual cell delays along the path. A digital system typically has many paths 
between input and output ports, and their delays are different. Since the system has to 
accommodate the worst-case scenario, the system delay is defined as the longest delay. The 
corresponding path is considered as the longest path and is known as the critical path. 

A simple method of determining the critical path is to treat the netlist as a graph, extract 
all possible paths and then determine the longest path accordingly. An example is shown in 
Figure 6.16. Since the topology of the system alone determines the critical path, it is also 
known as the topologically critical path. 

Using the topologically critical path to determine the system delay may occasionally 
overestimate the actual value because of a false path, a path along which no signal transition 
can propagate. An example of a false path is shown in Figure 6.17. The topologically critical 
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input output 

Figure 6.17 False path. 

path is the route that includes the circuit with 40- and 60-ns delays. However, in realty, the 
input signal can propagate through either the top part (when the select signal is '1') or the 
bottom part (when the select signal is '0') but never the topologically critical path. Since 
no signal actually passes through the false paths, they should be excluded from system delay 
calculation. To determine the true critical path is much harder since the analysis involves 
not only the topology but also the internal logic operations. 

Because of the large number of cells in a system, cell-level timing analysis is always 
done by software. This feature is normally integrated into the synthesis software. Most 
software uses the topological critical path to determine the system delay. Some software 
allows users manually to exclude potential false paths. 

Delay estimation at the RT level We can apply the same principle to analyze and 
calculate the propagation delay at the RT level. The accuracy of the calculation depends on 
the components used in the RT-level diagram. If an RT-level diagram consists primarily of 
simple logical operators and is mainly random logic, the circuit is subjected to a significant 
amount of transformation and optimization during logic synthesis and technology mapping. 
Since the final circuit may not resemble the original RT-level diagram, the RT-level delay 
calculation will not faithfully reflect delay in the synthesized circuit. 

On the other hand, if an RT-level diagram consists of many complex operators and func- 
tion blocks, these components become the dominating part of a delay calculation. Further- 
more, since these components are presdesigned and optimized, their delay characteristics 
will not change significantly during synthesis. Thus, the delay calculation will be much 
more accurate for this type of circuit. Calculating RT-level delay allows us to identify the 
critical path and thus better understand the performance of the circuit, and eventually helps 
to derive an efficient design and VHDL code with the desired area-delay characteristics. 
RT-level delay estimation is shown in many design examples in the subsequent chapters. 
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Figure 6.18 Area-delay trade-off curve. 
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Figure 6.18 Area-delay trade-off curve. 
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Figure 6.19 Delay constraint implementation. 

6.5.2 Synthesis with timing constraints 

The circuit area and system delay are two major design criteria. In most applications, we 
cannot find a design or an implementation that is optimized for both criteria. A faster 
circuit normally is more complex and needs more silicon real estate, and a smaller circuit 
normally has to sacrifice some performance. For the same application, there frequently 
exist multiple implementations that exhibit different area-delay characteristics. A typical 
area-delay curve is shown in Figure 6.18, in which each point is a possible implementation. 
Of course, the trade-off can be achieved only in a limited range. We cannot reduce the area 
or increase the performance indefinitely. 

Multilevel logic synthesis is quite flexible, and it is possible to add additional gates to 
achieve shorter delay. An example is shown in Figure 6.19. The circuit performs three xor 
operations. The diagram in Figure 6.19(a) is the initial design, which is optimized for area. 
The critical path is from a(0) or a(1) to ~ ( 3 ) .  and the system delay is three times the 
delay of an xor gate. The diagram in Figure 6.19(b) is the revised circuit. It shortens the 
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Figure 6.20 Synthesis iterations and the impact of RT-level change. 

critical path by adding an extra xor gate, and the system delay is reduced to twice the delay 
of an xor gate. 

The synthesis procedure discussed in Section 6.4 focuses on minimizing the circuit area. 
A combinational system is normally part of a larger system. To meet a certain performance 
goal, we sometimes have to add a specific timing constraint for synthesis. As we discussed 
earlier, it is impossible to synthesize a circuit with an exact propagation delay. Instead, 
the timing constraint is specified in terms of maximal allowable propagation delay. Since 
the system delay depends only on the delay of the critical path, it is not wise to blindly 
optimize all paths. Synthesis with a timing constraint utilizes an iterative procedure. First, 
the minimal-area implementation is obtained from regular synthesis. The implementation 
will be analyzed to determine the critical path and the system delay. If the delay exceeds 
the constraint, extra gates will be provided to speed up the critical path. The revised 
implementation will be analyzed again for the critical path (which is the second longest path 
in the original implementation) and checked to see whether the new system delay is within 
the constraint. The process may repeat several times until a satisfactory implementation is 
found. The iteration process in an area-delay space is shown in Figure 6.20. 

The previous iteration procedure is done at the gate or cell level and thus is too tedious 
for human designers. However, it is possible to apply the procedure in at the RT level. 
A block diagram shows the basic routing structure and the locations of complex RT-level 
modules. Since the delays of the complex modules constitute the major portion of the 
system delay, we can identify the paths that contain these modules, estimate the rough 
delays of these paths, and determine the critical path accordingly. This kind of analysis 
helps us to explore various architectural alternatives and eventually to derive a more efficient 
design. Our understanding of the system and insight can lead to “global” optimization, and 
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it is normally much more effective than gate- or cell-level optimization done by synthesis 
software. The impact of an innovative RT-level architectural change on the area-delay 
space is shown in Figure 6.20. 

6.5.3 Timing hazards 

The propagation delay of a system is the time required to generate a valid, steady-state 
output value. Timing hazards are the fluctuations occurring during the transient period. In 
a digital system, many paths may lead to the same output port. Since each path’s delay is 
different, signals may propagate to the output port at different times. Before the output port 
produces a steady-state value, it may fluctuate several times. The fluctuations are one or 
more short undesired pulses, known as glitches. We say that a circuit has timing hazards 
if it can produce glitches. The following subsections discuss the two types of hazards and 
how to deal with them. 

Static hazards A static hazard is the condition that a circuit’s output produces a glitch 
when it should remain at a steady value. It is further divided into static-1 hazard and static-0 
hazard. A static-1 hazard occurs when a circuit’s output produces a ’0’ glitch. An example 
is shown in Figure 6.21. The Karnaugh map of a function and its implementation are shown 
in Figure 6.21(a). The corresponding Boolean function is 

Assume that a and c are ’1’’ and that b changes from ’1’ to ’0’. Regular analysis, which is 
based on Boolean algebra and deals with steady-state value, predicts that the output should 
be ’1’ all the time. However, if we consider transient behavior, there are two converging 
paths with different delays. Assume that the delay of inverter is Tnot and the delay of the 
and gate and or gate is Tand and the wire delays are 0. The timing diagram and the sequence 
of events are shown in Figure 6.21(b). An unwanted ’0’ glitch of width Tnot occurs at the 
output because the signal in the bottom path propagates faster than that in the top path. 

Similarly, a static-0 hazard is the condition that a circuit’s output produces a ’ 1 ’ glitch 
when Boolean algebra analysis predicts that the output should be a steady ’0’. 

Dynamic hazards A dynamic hazard is the condition that a circuit’s output produces a 
glitch when it changes from ’ 1’ to ’0’ or ’0’ to ’ 1’. An example of a circuit with a dynamic 
hazard is shown in Figure 6.22(a). Assume that a, c and d are ’1’ and that b changes from 
’1’ to ’0’. The timing diagram in Figure 6.22(b) shows that there is a ’1’ glitch when the 
dh output changes from ’0’ to ’1’. The glitch is due to the different propagation delays of 
the converging paths. 

Dealing with hazards There are some techniques to eliminate hazards caused by a 
single input change. For example, we can add a redundant product term to eliminate the 
previous static hazard: 

The revised Karnaugh map and circuit are shown in Figure 6.21(c). Although deriving a 
hazard-free circuit is possible, this approach is problematic if the design is later processed 
by synthesis software. The problems are discussed in detail in the next section. 

In a real-world application, the hazard situation will become even more complicated 
because of the possibility of multiple input signal transitions. If the inputs of a combinational 

sh = a b’ + b * c + a * c 
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(c) Revised Kamaugh map and schematic to eliminate hazards 

Figure 6.21 Static hazards example. 
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Figure 6.22 Dynamic hazards example. 

circuit are connected to the outputs of an edge-triggered register, the register’s outputs may 
change almost simultaneously at the transition edge of the clock signal. For example, when a 
4-bit counter circulates from “1 1 1 1” to “OOOO”, four input bits change almost simultaneously. 
Multiple changes will activate several paths at the same time and frequently lead to glitches 
in an output signal. Unless we utilize a specialized counter, which is normally not practical, 
it is impossible to eliminate hazards. 

Since there is no easy way to eliminate hazards, we have to live with them. In a com- 
binational circuit, the most effective way to handle hazards is to ignore the output during 
the transient period. Recall that the propagation delay is the time for an input signal to 
propagate through the longest path in a system. If there is a glitch, it will occur within this 
period of time. After that, the output will always be a valid, steady-state value. As long as 
we know when to examine the output, the existence of glitches does not matter. This “wait 
until the output is stabilized” idea is one of the motivations behind the synchronous design 
methodology, in which a clock signal “samples” input signals at the proper time and stores 
the values in a register. The synchronous design methodology is elaborated in Chapter 8. 

6.5.4 Delay-sensitive design and its dangers 

In a digital system, most theoretical studies and design methodologies are based on steady- 
state analysis. Boolean algebra, the theoretical foundation of digital logic, conveys no 
time-domain information. When we use Boolean algebra to describe a digital circuit, we 
actually implicitly describe its steady-state behavior. Modeling and analyzing the transient 
behavior can be very hard, and most of the time we choose not to deal with it directly. 
Instead, we determine when the transient period ends and ignore the responses within the 
period. This approach is embedded in the concept of system delay, which specifies the time 
needed to reach the steady state in the worst-case scenario. Most design methodologies 
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Figure 6.23 Delay-sensitive edge detection circuit. 

and synthesis algorithms, such as time-constrained optimization, are based on system delay 
rather than the exact transient behavior. 

In a few circumstances, we need to consider the transient behavior to understand a 
circuit’s function and operation. We use the term delay-sensitive design to describe this 
type of circuit. 

One example is the hazard elimination circuit in Figure 6.21. If we examine only the 
steady-state behavior, Boolean algebra shows that the a c term does not serve any useful 
purpose and that the a - b‘ + b . c + a . c and a b‘ + b c expressions are equivalent. The 
circuit is meaningful only if the transient behavior is considered. 

One old, commonly used delay-sensitive design trick is to use cascading gates to generate 
a delay. An example is shown in Figure 6.23. The purpose of this circuit is to generate a 
short pulse when the input a switches from ’0’ to ’ 1’. The inverter introduces a small delay 
and causes a monetary ’1’ pulse, as shown on the timing diagram. If we use steady-state 
analysis, the a.a’ expression can be reduced to ’0’, and the circuit becomes a wire connected 
to ground. Again, this circuit makes sense only if we consider its transient behavior. 

Although a delay-sensitive design can be useful in a few special situations, we should 
avoid using VHDL description and synthesis software to construct this kind of circuit. 
Transformation and optimization algorithms used in synthesis software are based on the 
model of steady-state value and propagation delay, and cannot interpret or process transient- 
related information. 

Deriving VHDL code for a delay-sensitive circuit is not very difficult. For example, we 
can revise the VHDL code from 

sh  <= ( a  and ( n o t  b)) or (b and c ) ;  

to 

sh  <= ( a  and ( n o t  b)) or (b and c )  or (a and c ) ;  

to describe the hazard-free circuit in Figure 6.21, and can use the statement 

p u l s e  <= a and ( n o t  a > ;  

to describe the pulse generation circuit in Figure 6.23. However, it is unlikely that the 
desired effect can be preserved during the synthesis process. The potential complications 
are as follows: 

0 During logic synthesis, the logic expressions will be rearranged and optimized. Re- 
dundant product terms, if they exist, will be removed during the optimization process. 
It is unlikely that the original expression can be preserved. 

0 If we assume that the logic expression remains unchanged after logic synthesis, the 
netlist may be converted to other cells during technology mapping. Again, the original 
logic expression will be altered. 
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0 If we assume that the original logic expression survives after technology mapping, 
wire delays will be changed after the placement and routing process. The change 
will alter the delay of the path and may invalidate the previous analysis. 

0 If we assume that the circuit is synthesized according to the specification, the design 
may hinder other steps in the verification and testing process. For example, the 
redundant product term used in the logic expression will complicate the test vector 
generation or even make the circuit untestable. 

In summary, VHDL-based synthesis is not feasible for delay-sensitive design. If this kind 
of circuit is really needed, as in an asynchronous sequential circuit, we should construct the 
circuit manually using cells from the target device library. We may even need to manually 
perform the placement and routing to ensure that wire delay is within a tolerable range. 
Since our focus is on RT-level HDL synthesis, we will not discuss this approach in the 
remainder of the book. 

6.6 SYNTHESIS GUIDELINES 

0 Be aware of the theoretical limitation of synthesis software. 

0 Be aware of the hardware complexity of different VHDL operators. 

0 Isolate tri-state buffers from other logic and code them in a separate segment. 

0 Unless there is a compelling reason, use a multiplexer instead of an internal tri-state 

0 Avoid using the ’ - ’ value of the std-logic data type as an input value. 

0 In RT-level description, there is no effective way to eliminate glitches from a combi- 
national circuit. We should deal with the glitches rather than attempting to derive a 
glitch-free combinational circuit. 

bus. 

0 Do not use delay-sensitive design in RT-level description. 

6.7 BIBLIOGRAPHIC NOTES 

Synthesis is a complicated process and involves many difficult computation problems. The 
texts, Synthesis and Optimization of Digital Circuits by G. De Micheli, and Logic Synthesis 
by S .  Devadas et al., provide comprehensive coverage of the theoretical foundations and 
relevant algorithms. 

Because most software vendors do not allow users to publish benchmark information, 
there is very little documentation on the “behavior” of synthesis tools. The article, W- 
sualizing the Behavior of Logic Synthesis Algorithms of SNUG (Synopsys Users Group 
Conference) 1998, by H. A. Landman, presents an interesting study of the relationship 
between the circuit area and timing constraints. 

Problems 

6.1 Determine the order (big-0) of the following functions: 
(a) 1.5 
(b) 2n + 103n2 


