9. Writing Test Benches

As you become
proficient with
simulation, you will
find that your VHDL
simulator becomes
your primary design
tool.

While much of this book has focused on the uses of VHDL for
synthesis, one of the primary reasons to use VHDL is its
power as a test stimulus language. As logic designs become
more complex, comprehensive, up-front verification becomes
critical to the success of a design project. In fact, as you be-
come proficient with simulation, you will quickly find that
your VHDL simulator becomes your primary design develop-
ment tool. When simulation is used right at the start of the
project, you will have a much easier time with synthesis, and
you will spend far less time re-running time-intensive pro-
cesses, such as FPGA place-and-route tools and other synthe-
sis-related software.

To simulate your project, you will need to develop an addi-
tional VHDL program called a test bench. (Some VHDL
simulators include a command line stimulus language, but
these features are no replacement for a true test bench.) Test
benches emulate a hardware breadboard into which you will
“install" your synthesizable design description for the purpose
of verification. Test benches can be quite simple, applying a
sequence of inputs to the circuit over time. They can also be
quite complex, perhaps even reading test data from a disk file

229

http://www.a-pdf.com/?product-split-demo

9. Writing Test Benches

Figure 9-1: A test
bench can be thought
of as a *virtual tester”
into which you plug
your design for
verification.

230

and writing test results to the screen and to a report file. A
comprehensive test bench can, in fact, be more complex and
lengthy (and take longer to develop) than the synthesizable
circuit being tested. As you will begin to appreciate while
reading this chapter, test bench development will be where
you make use of the full power of VHDL and your own skills
as a VHDL “coder”.

Depending on your needs (and whether timing information
related to your target device technology is available), you may
develop one or more test benches to verify the design func-
tionally (with no delays), to check your assumptions about
timing relationships (using estimates or unit delays), or to
simulate with annotated post-route timing information so you
can verify that your circuit will operate in-system at speed.

During simulation, the test bench will be the top level of a
design hierarchy. To the simulator, there is no distinction
between those parts of the design that are being tested and the
test bench itself. In your own mind, however, you can think of
the test bench as a separate circuit, analogous to a large auto-
mated tester (Figure 9-1).

In most of this book, we have been emphasizing those aspects
of the VHDL language that are synthesizable. In doing so, we
have actually seen only a subset of the VHDL language in the
examples presented. When writing test benches, you will
most likely use a broader range of language features. You may
use records and multi-dimensional arrays to describe test

A Simple Test Bench

stimuli, write loops, create subprograms to simplify repetitive
actions, and/or use VHDL's text I/O features to read and
write files of data.

A Simple Test Bench

The simplest test
benches apply some
sequence of inputs to
the circuit...

The simplest test benches are those that apply some sequence
of inputs to the circuit being tested (the Unit Under Test, or
UUT) so that its operation can be observed in simulation.
Waveforms are typically used to represent the values of sig-
nals in the design at various points in time. Such a test bench
must consist of a component declaration corresponding to the
unit under test, and a description of the input stimulus being
applied to the UUT.

The following example demonstrates the simplest form of a
test bench, and tests the operation of a NAND gate:

library ieee; -- Load the ieee 1164 library
use ieee.std_logic_1164.all; -- Make the package 'visible'
use work.nandgate; -- We'll use the NAND gate model from 'work’

-- The top level entity of the test bench has no ports...
entity testnand is
end testnand;

architecture stimulus of testnand is
-- First, declare the lower-level entity...
component nand
port (A,B: in std_logic;
Y: out std_logic);
end component;

-- Next, declare some local signals to assign values to and observe...
signal A,B: std_logic;
signal Y: std_logic;

begin

-- Create an instance of the comparator circuit...
NAND1: nandgate port map(A =>A,B => B,Y => Y);

231

9. Writing Test Benches

-- Now define a process to apply some stimulus over time...

process
constant PERIOD: time := 40 ns;
begin
A<="1,
B <="'1"
wait for PERIOD;
assert (Y ='0')
report "Test failed!" severity ERROR;
A<="1"
B <='0
wait for PERIOD;
assert (Y ='1")
report "Test failed!" severity ERROR;
A <="0"
B <=1
wait for PERIOD;
assert (Y ='1")
report "Test failed!" severity ERROR;
A <="'0"
B <=0
wait for PERIOD;
assert (Y ='1")
report "Test failed!" severity ERROR;
wait;

end process;
end stimulus;

Reading from the top of this test bench, we see:

¢ Library and use statements making the standard logic
package available for use (our lower-level NAND gate
model has been described using standard logic).

¢ An optional use statement referencing the lower-level
design unit nand from the work library.

e An entity declaration for the test bench. Note that test
benches do not generally include an interface (port)
list, as they are the highest-! vel design unit when
simulated.

e An architecture declaration, containing:

232

Using Assert Statements

A component declaration corresponding to the unit
under test.

Signal declarations for A, B, and Y. These local signals
will be used to (1) apply inputs to the unit under test,
and (2) observe the behavior or the output during
simulation.

A component instantiation statement and correspond-
ing port map statement that associates the top-level
signals A, B and Y with their equivalent ports in the
lower-level entity. Note that the component name used
(UUT) is not significant; any valid component name
could have been chosen.

A process statement describing the inputs to the circuit
over time. This process has been written without the
use of a sensitivity list. It uses wait statements to
provide a specific amount of delay (defined using
constant PERIOD) between each new combination of
inputs. Assert statements are used to verify that the
circuit is operating correctly for each combination of
inputs. Finally, a wait statement without any condition
expression is used to suspend simulation indefinitely
after the desired inputs have been applied. (In the
absence of the final wait statement, the process would
repeat forever, or for as long as the simulator had been
instructed to run.)

Using Assert Statements

Assert statements
provide a quick and
easy way lo check
expected values...

VHDL's assert statement provides a quick and easy way to
check expected values and display messages from your test
bench. An assert statement has the following general format:

assert condition_expression
report text_string
severity severity_level ;

233

9. Writing Test Benches

When analyzed (either during execution as a sequential
statement, or during simulator initialization in the case of a
concurrent assert statement), the condition expression is
evaluated. As in an if statement, the condition expression of
an assert statement must evaluate to a boolean (true or false)
value. If the condition expression is false (indicating the
assertion failed), the text that you have specified in the op-
tional report statement clause is displayed in your simulator’s
transcript (or other) window. The severity statement clause
then indicates to the simulator what action (if any) should be
taken in response to the assertion failure (or assertion violation,
to use the language of the VHDL specification).

The severity level can be specified using one of the following
predefined severity levels: NOTE, WARNING, ERROR, or
FAILURE. The actions that result from the use of these sever-
ity levels will depend on the simulator you are using, but you
can generally expect the simulator to display a file name and
line number associated with the assert statement, keep track
of the number of assertion failures, and print a summary at
the end of the simulation run. Assert statements that specify
FAILURE in their severity statement clauses will normally
result in the simulator halting.

Displaying Complex Strings in Assert Statements

VHDL’s built-in
support for formatted
strings is somewhat
limited...

234

A common use of assert and report statements is to display
information about signals or variables dynamically during a
simulation run. Unfortunately, VHDL's built-in support for
this is somewhat limited. The problem is twofold: first, the
report clause only accepts a single string as its argument, so it
is necessary to either write multiple assert statements to
output multiple lines of information (as when formatting and
displaying a table), or you must make use of the string concat-
enation operator & and the special character constant CR
(carriage return) and/or LF (line feed) to describe a single,
multi-line string as shown below:

A conversion function
can be used to display
an array as a format-
ted string.

Using Assert Statements

assert false
report “This is the first line of the message.” & CR & LF &
“This is the second line of the message.”;

The second, more serious limitation of the report statement
clause is that it only accepts a string, and there is no built-in
provision for formatting various types of data (such as arrays,
integers and the like) for display. This means that to display
such data in an assert statement, you must provide type
conversion functions that will convert from the data types you
are using to a formatted string. The following example (which
is described in more detail later in this chapter) demonstrates
how you might write a conversion function to display a
std_logic_vector array value as a string of characters:

architecture stimulus of testfib is

function vec2str(vec: std_logic_vector) return string is
variable stmp: string(vec’left+1 downto 1);
begin
for i in vec’reverse_range loop
if (vec(i) = ‘U’) then

stmp(i+1) := ‘U’;
elsif (vec(i) = X’) then
stmp(i+1) := ‘X;
elsif (vec(i) = ‘0’) then
stmp(i+1) := ‘0’;
elsif (vec(i) = ‘1") then
stmp(i+1) := 1%
elsif (vec(i) = ‘Z') then
stmp(i+1) := ‘Z’;
elsif (vec(i) = ‘W’) then
stmp(i+1) .= ‘W’;
elsif (vec(i) = L) then
stmp(i+1) :=‘L;
elsif (vec(i) = ‘H’) then
stmp(i+1) .= ‘H’;
else
stmp(i+1) :=*';
end if;
end loop;
return stmp;

end;

235

9. Writing Test Benches

signal S: std_logic_vector(15 downto 0);

signal S_expected: std_logic_vector(15 downto 0);
begin

process

begin

assert (S /= S_expected) -- report an error if different
report “Vector failure!” & CR & LF &
“Expected S to be “ & vec2str(S_expected) & CR & LF &
“but its value was “ & vec2str(S)
severity ERROR,;

In this example, a type conversion function has been written
(vec2str) that converts an object of type std_logic_vector to a
string of the appropriate format and size for display. As you
develop more advanced test benches, you will probably find it
useful to collect such type conversion functions into a library
for use in future test benches.

As we will see later in this chapter, there are other, more
powerful ways to display formatted output, using the built-in
text I/O features of the language.

Using Loops and Multiple Processes

Loops can dramati-
cally simplify a test
bench.

236

Test benches can be dramatically simplified through the use of
loops, constants and other more advanced features of VHDL.
Using multiple concurrent processes in combination with
loops can result in very concise descriptions of complex input
and expected output conditions.

The following example demonstrates how a loop (in this case
a while loop) might be used to create a background clock in
one process, while other loops (in this case for loops) are used
to apply inputs and monitor outputs over potentially long
periods of time:

Clock1: process
variable clktmp: std_logic :='1";
begin

Using Loops and Multiple Processes

while done /= true loop
wait for PERIOD/2;
clktmp := not clktmp;
Clk <= clktmp;
end loop;
wait;
end process;

Stimulus1: Process
Begin
Reset <="'1";
wait for PERIOD;
Reset <="'0";
Mode <="'0";
wait for PERIOD;
Data <= (others =>'1");
wait for PERIOD;
Mode <="'1";

-- Check to make sure we detect the vertical sync...
Data <= (others =>'0');
foriin 0to 127 loop

wait for PERIOD;

assert (VS ='1")

report "VS went high at the wrong place!" severity ERROR;
end loop;
assert (VS ="1")
report "VS was not detected!" severity ERROR;

-- Load in the test counter value to check the end of frame detection...
TestLoad <= '1';
wait for PERIOD;
TestLoad <="'0";
for i in O to 300 loop

Data <= RandombData();

wait for PERIOD;
end loop;
assert (EOF ='1)

report "EOF was not detected!" severity ERROR;

done <= true;
wait;

End Process;

End stimulus;

237

9. Writing Test Benches

In this example, the process labeled Clock1 uses a local vari-
able (clktmp) to describe a repeating clock with a period
defined by the constant PERIOD. This clock is described with
a while loop statement, and it runs independent of all other
processes in the test bench until the done signal is asserted
true. The second process, Stimulus1, describes a sequence of
inputs to be applied to the unit under test. It also makes use of
loops—in this case for loops—to describe lengthy repeating
stimuli and expected value checks.

Writing Test Vectors

Test vectors are
sequences of inputs
and corresponding
outputs expressed in
tabular form.

238

Another approach to creating test stimuli is to describe the test
bench in terms of a sequence of fixed input and expected
output values. This sequence of values (sometimes called fest
vectors) could be described using multi-dimensional arrays or
using arrays of records. The following example makes use of a
record data type, test_record, which consists of the record
elements CE, Set, Din and CRC_Sum. An array type
(test_array) is then declared, representing an unconstrained
array of test_record type objects. The constant test_vectors, of
type test_array, is declared and assigned values corresponding
to the inputs and expected output for each desired test vector.

The test bench operation is described using a for loop within a
process. This for loop applies the input values Set and Din
(from the test record corresponding to the current iteration of
the loop) to the unit under test. (The CE input is used within
the test bench to enable or disable the clock, and is not passed
into the unit under test.) After a certain amount of time has
elapsed (as indicated by a wait statement), the CRC_Sum
record element is compared against the corresponding output
of the unit under test, using an assert statement.

library ieee;
use ieee.std_logic_1164.all;

use work.crc8s; -- Get the design out of library ‘work'

Record data types
can be useful for
representing test
vector data.

Writing Test Vectors

entity testcrc is
end testcrc;

architecture stimulus of testcre is

component crc8s
port (Clk,Set,Din: in std_logic;
CRC_Sum: out std_logic_vector(15 downto 0));
end component;

signal CE: std_logic;

signal Clk,Set: std_logic;

signal Din: std_logic;

signal CRC_Sum: std_logic_vector(15 downto 0);
signal vector_cnt: integer := 1;

signal error_flag: std_logic := 0"

type test_record is record -- Declare a record type
CE: std_logic; -- Clock enable
Set: std_logic; -- Register preset signal
Din: std_logic; -- Serial Data input

CRC_Sum: std_logic_vector (15 downto 0); -- Expected result
end record;

type test_array is array(positive range <>) of test_record: -- Collect them
--in an array

-- The following constant declaration describes the test vectors to be
-- applied to the design during simulation, and the expected result after a
-- rising clock edge.
constant test_vectors : test_array := (
-- CE, Set, Din, CRC_Sum

(10", 1", 0", "eemmemermeeee "), - Reset
(1,0, 0, "remeememmeeee), -~ H'

R L —— "),

R — "),

R —— "),

R L — "),

L —),

A A ——),

(1','0, ‘0", "0010100000111100"), -- x283C
L ——— "), - ‘¢

N LA ———— "),

IV LS — "),

U R L ———),

239

9. Writing Test Benches

('1','0", "0’ "emmmmrmmmmenees ",
("1,'0, "', "emmmemmmeeees ",
L P I "),
(1,0, '1', "1010010101101001"), -- xA569
G R A ", =T
L B i R "),
("1','0", "1, "emmmmme s "),
O P A),
G B i "),
('1','0", "1, "emmmmmmmmmeeeee "),
('1','0", 0", "emmmmmmemmmmeen "),
(‘1','0", '0', "0010000101100101"), -- x2165
('1','0','0', "-mermmmmmmmnnaee M, -l
("1','0", ", Memmmemmmmmeeeee ",
L B R ",
L I N B "),
G B R B "),
G B I B ",
("1','0', 0, "ermmmmmmmmmeeeas "),
(1,'0,'0", "1111110001101001"), -- xFC69
('1','0",'0', "-mmmmmmeemmneee ", - 'o'
('1','0", "1, "ermmmmmmmeeeean "),
G B ¢ I B ",
G B R ¢ "),
G B R B "),
G A ¢ T B "),
G B R B ",
(1,'0, '1", "1101101011011010") -- xDADA
)
begin

-- instantiate the component
UUT: cre8s port map(Clk,Set,Din,CRC_Sum);

-- provide stimulus and check the resuit

testrun: process
variable vector : test_record;
begin
for index in test_vectors'range loop
vector_cnt <= index;
vector := test_vectors(index); -- Get the current test vector
-- Apply the input stimulus...

240

Reading and Writing Files with Text I/0

CE <= vector.CE;
Set <= vector.Set;
Din <= vector.Din;

-- Clock (low-high-low) with a 100 ns cycle...

Clk <=0

wait for 25 ns;

if CE = '1' then

Clk <="'1";

end if;

wait for 50 ns;

Clk <="'0"

wait for 25 ns;

-- Check the results...
if (vector.CRC_Sum /= "--=meremmeeeeeee "
and CRC_Sum /= vector.CRC_Sum) then
error_flag <=1,
assert false
report "Output did not match!"
severity WARNING:
else
error_flag <= '0";
end if;
end loop;
wait;
end process;
end stimulus;

Note:

VHDL 1076-1993 broadens the scope of bit string literals somewhat,
making it possible to enter std_logic_vector data in non-binary forms, as
in the constant hexadecimal value x"283C".

Reading and Writing Files with Text I/O

The text I/O features of VHDL make it possible to open one or

more data files, read lines from those files, and parse the lines
Text /O features allow to form individual data elements, such as elements in an array
s t/(r); ;Zau‘i ?gs‘;' Wite or record. To support the use of files, VHDL has the concept of
bench. a file data type, and includes standard, built-in functions for

opening, reading from, and writing to file data types. (These

21

9. Writing Test Benches

data types and functions were described in Chapter 3, Explor-
ing Objects and Data Types.) The textio package, which is
included in the standard library, expands on the built-in file
type features by adding text parsing and formatting functions,
functions and special file types for use with interactive
(“std_input” and “std_output”) I/O operations, and other
extensions.

Text I/0O is one area in which the 1076-1987 and 1076-1993
language specifications differ. The file and text I/O features of
VHDL changed in the 1076-1993 standard, making it necessary
to explicitly open a file before reading data from it. We will
show how file I/O can be described using both the 1987 and
1993 language standards.

VHDL 1076-1987 File I/O

To use the text I/O
features of the
standard library, you
must include a use
reference to package
std.textio.

242

The following example demonstrates how you can use the text
I/0 features of VHDL to read test data from an ASCII file,
using the VHDL 1076-1987 standard text I/O features.

This test bench reads lines from an ASCII file and applies the
data contained in each line as a test vector to stimulate and
test a simple Fibonacci sequence generator circuit. It begins
with our by-now-familiar entity-architecture pair:

-- Test bench for Fibonacci sequence generator.

library ieee;

use ieee.std_logic_1164.all;

use std.textio.all; -- Use the text I/O features of the standard library
use work.fib; -- Get the design out of library ‘work’

entity testfib is -- Entity; once again we have no ports

end testfib;

architecture stimulus of testfib is
component fib -- Create one instance of the fib design unit
port (CIk,Cir: in std_logic;
Load: in std_logic;
Data_in: in std_logic_vector(15 downto 0);
S: out std_logic_vector(15 downto 0));
end component;

Reading and Writing Files with Text /O

-- Define some local conversion functions. These will be used to:
-- (&) convert strings of characters read from the file into arrays
-- of values
- (b) convert arrays of std_logic to strings for display purposes
function str2vec(str: string) return std_logic_vector is
variable vtmp: std_logic_vector(str'range);
begin

for i in str'range loop

if (str(i) = ‘1°) then

vtmp(i) := 1";
elsif (str(i) = ‘0’) then
vtmp(i) := ‘0’;
else
vimp(i) := ‘X’;
end if;
end loop;
return vtmp;

end;

function vec2str(vec: std_logic_vector) return string is
variable stmp: string(vec’left+1 downto 1);
begin
for i in vec’reverse_range loop
if (vec(i) = ‘1’) then

stmp(i+1) :=“1";
elsif (vec(i) = ‘0’) then
stmp(i+1) := ‘0’;
else
stmp(i+1) = ‘X’;
end if;
end loop;
return stmp;
end;
signal Clk,Clr: std_logic; -- Declares local signals

signal Load: std_logic;

signal Data_in: std_logic_vector(15 downto 0);
signal S: std_logic_vector(15 downto 0);
signal done: std_logic := ‘0’;

constant PERIOD: time := 50 ns;

for UUT: fib use entity work.fib(behavior); -- Configuration
-- specification

243

9. Writing Test Benches

244

begin

UUT: fib port map(Clk=>Clk,Clr=>Clir,Load=>Load, -- Creates one
Data_in=>Data_in,S=>5); -- instance

Clock: process
variable c: std_logic := ‘0’; -- Clock process, just like the last one
begin
while (done = ‘0’) loop -- The done flag indicates that we
wait for PERIOD/2; -- are finished and can stop the clock.
c:=notgc;
Clk <=¢;
end loop;
end process,

-- Process ‘read_input’ loops through all the lines in the file and
-- extracts the test vector data. This process makes use of functions
-- in the text I/O library (provided with IEEE Standard 1076) as well as
-- the two conversion functions declared earlier in this architecture.
-- Each line of the test vector file contains two fields: the input vector
-- and the expected output values.
Read_input: process
file vector_file: text is in “testfib.vec”; -- Declare and open the
-- file (1076-1987 style).
variable stimulus_in: std_logic_vector(33 downto 0); -- inputs
variable S_expected: std_logic_vector(15 downto 0); -- Outputs

variable str_stimulus_in: string(34 downto 1); -- The vector string
variable err_cnt: integer := 0; -- Error counter
variable file_line: line; -- Text line buffer; ‘line’is a
-- standard type (textio library).
begin
wait until rising_edge(CIk); -- Synchronize with first clock
while not endfile(vector_file) loop -~ Loop through lines in the file
readline (vector_file file_line); -- Read one complete line
-- into file_line.
read (file_line,str_stimulus_in) ; -- Extract the first field from
-- file_line.
stimulus_in := str2vec(str_stimulus_in); -- Convert the input
-- string to a vector
wait for 1 ns; -- Delay for a nanosecond
Clr <= stimulus_in(33), -- Get each input’s
Load <= stimulus_in(32); -- value from the test
Data_in <= stimulus_in(31 downto 16); -- vector array and

-- assigns the values

Using file I/O for test
data can reduce the
time required to add
or modify test data.

Reading and Writing Files with Text I/O

-- Put the output side (expected values) into a variable:
S_expected := stimulus_in(15 downto 0);

wait until falling_edge(Clk); -- Wait until the clock goes
-- back to ‘0’ (midway through
-- the clock cycle)

-- Check the expected value against the results in S:
if (S /= S_expected) then

err_cnt:=err_cnt + 1; -- Increment the error counter and

assert false -- report an error if different
report “Vector failure!” & if &
“Expected S to be “ & vec2str(S_expected) & If &
“but its value was “ & vec2str(S) & If
severity note;

end if;
end loop; -- Continue looping through the file
done <=‘1’; -- Set a flag when we are finished; this
-- will stop the clock.
wait; -- Suspend the simulation

end process;
end stimulus;

This test bench reads files of text “dynamically” during simu-
lation, so the test bench does not have to be recompiled when
test stimulus is added or modified. This is a big advantage for
very large designs.

What does the test vector file that this test bench reads look
like? The following file (testfib.vec) describes one possible
sequence of tests that could be performed using this test
bench:

1000000000000000000000000000000000
0000000000000000000000000000000001
0000000000000000000000000000000001
0000000000000000000000000000000010
0000000000000000000000000000000011
0000000000000000000000000000000101
0000000000000000000000000000001000

245

9. Writing Test Benches

Test data stored in
files can be modified
with any text editor,
and no recompile is
required when the
data are changed.

0000000000000000000000000000001101
0000000000000000000000000000010101
0000000000000000000000000000100010
0000000000000000000000000000110111
000000000000000000000000000101 1001
0000000000000000000000000010010000
0000000000000000000000000011101001
0000000000000000000000000101111001
0000000000000000000000001001100010
0000000000000000000000001111011011
0000000000000000000000011000111101
0000000000000000000000101000011000
0000000000000000000001000001010101
0000000000000000000001101001101101
0000000000000000000010101011000010
0000000000000000000100010100101111
0000000000000000000110111111110001
0000000000000000001011010100100000
0000000000000000000010010100010001
0000000000000000000000000000000001
0000000000000000000000000000000001
0000000000000000000000000000000010
0000000000000000000000000000000011
0000000000000000000000000000000101
0000000000000000000000000000001000

This file could have been entered manually, using a text editor.
Alternatively, it could have been generated from some other
software package or from a program written in C, Basic or any
other language. Reading text from files opens many new
possibilies for testing and for creating interfaces between
different design tools.

Although test vectors are quite useful for tabular test data,
they are not particularly readable. In the last example of this
chapter, we will describe how you can read and process test
stimulus files that are more command-oriented, rather than
simply being tables of binary values.

VHDL 1076-1993 File I/O

246

Before leaving the above example, let’s see how it might look
when coded using the 1076-1993 language features. In this
version of the same test bench, we have modified the VHDL

Reading and Writing Files with Text I/O

source file to reflect changes in the 1076-1993 standard. In
addition to adding various syntax enhancements (such as
allowing an is keyword to be used in a component declara-
tion) for readability and consistency, the 1993 specification
adds additional features for better control over the opening
and closing of files. In the following source file, we use the
file_open built-in function to open the test vector file.

-- Test bench, VHDL ‘93 style

library icee;

use ieee.std_logic_1164.all;

use std.textio.all;

use work.fib; -- Get the design out of fibrary 'work'

entity testfib is
end entity testfib;

architecture stimulus of testfib is
component fib is
port (Clk,Clr: in std_logic;
Load: in std_ulogic;
Data_in: in std_ulogic_vector(15 downto 0);
S: out std_ulogic_vector(15 downto 0));
end component fib;

function str_to_stdvec(inp: string) return std_ulogic_vector is
variable temp: std_ulogic_vector(inp'range) := (others => 'X');
begin
for i in inp'range loop
if (inp(i) ='1') then

temp(i) :="1";
elsif (inp(i) = '0') then
temp(i) :='0";
end if;
end loop;

return temp;
end function str_to_stdvec;

function stdvec_to_str(inp: std_ulogic_vector) return string is
variable temp: string(inp'left+1 downto 1) := (others => 'X");
begin
for i in inp'reverse_range loop
if (inp(i) = '1') then

247

9. Writing Test Benches

248

temp(i+1) := "1
elsif (inp(i) = '0') then
temp(i+1) :="'0}
end if;
end loop;

return temp;
end function stdvec_to_str;

signal CIk,Clr: std_ulogic;

signal Load: std_ulogic;

signal Data_in: std_ulogic_vector(15 downto 0);
signal S: std_ulogic_vector(15 downto 0);
signal done: std_ulogic :='0';

constant PERIOD: time := 50 ns;

begin

UUT: fib port map(Clk=>ClIk,Clr=>Clr,Load=>Load,
Data_in=>Data_in,S=>8S);

Clock: process
variable c: std_ulogic :='0";
begin
while (done = '0') loop
wait for PERIOD/2;
c:=notc;
Clk <=c;
end loop;
end process Clock;

Read_input: process
file vector_file: text;

variable stimulus_in: std_ulogic_vector(33 downto 0);
variable S_expected: std_ulogic_vector(15 downto 0);
variable str_stimulus_in: string(34 downto 1);
variable err_cnt: integer := 0;
variable file_line: line;

begin
file_open(vector_file,"tfib93.vec",READ_MODE);
wait until rising_edge(CIk);

while not endfile(vector_file) loop

Reading and Writing Files with Text I/O

readline (vector_filefile_line);

read (file_line,str_stimulus_in) ;

assert (false)
report "Vector: " & str_stimulus_in
severity note;

stimulus_in := str_to_stdvec (str_stimulus_in);

wait for 1 ns;

--Get input side of vector...

CIr <= stimulus_in(33);

Load <= stimulus_in(32);

Data_in <= stimulus_in(31 downto 16);

--Put output side (expected values) into a variable...
S_expected := stimulus_in(15 downto 0);

wait until falling_edge(ClIk);

-- Check the expected value against the results...
if (S /= S_expected) then
err_cnt:=err_cnt + 1;
assert false
report "Vector failure!" & If &
"Expected S to be " & stdvec_to_str(S_expected) & If &
"but its value was " & stdvec_to_str(S) & If
severity note;
end if;
end loop;

file_close(vector_file);
done <="1";

if (err_cnt = 0) then
assert false
report "No errors." & If & If
severity note;
else
assert false
report “There were errors in the test." & If
severity note;
end if;
wait;

end process Read_input;

249

9. Writing Test Benches

end architecture stimulus;

-- Add a configation statement. This statement actually states the
-- default configuration, and so it is optional.
configuration build1 of testfib is
for stimulus
for DUT: fib use entity work.fib(behavior)
port map(Clk=>Clk,Clr=>ClIr,Load=>Load,
Data_in=>Data_in,S=>85);
end for;
end for;
end configuration build1;

Reading Non-tabular Data from Files

The standard text I/O
features do not
include functions for
reading and writing
standard logic data

types.

250

You can use VHDL's text I/O features to read and write many
different built-in data types, including such data types as
characters, strings, and integers. This is a powerful feature of
the language that you will make great use of as you become
proficient with the language.

VHDL's text I/O features are somewhat limited, however,
when it comes to reading data that is not expressed as one of
the built-in types defined in Standard 1076. The primary
example of this is when you wish to read or write standard
logic data types. In the previous example (the Fibonacci
sequence generator), we made use of type coversion functions
to read standard logic input data as characters. This method
works fine, but it is somewhat clumsy. A better way to ap-
proached this common problem is to develop a reusable
package of functions for reading and writing standard logic
data. Writing a comprehensive package of such functions is
not a trivial task. It would probably require a few days of
coding and debugging.

Fortunately, one such package already exists and is in wide-
spread use. This package, std_logic_textio, was originally
developed by Synopsys. Synopsys allows the package to be
used and distributed without restriction. We will use the

Special type conver-
sion functions are
required to read and
write data in hexa-
decimal format.

Reading Non-tabular Data from Files

std_logic_textio package to demonstrate how you might read
data fields from a file and write other data to another file (or,
in this case, to the console or simulator transcript window).

The circuit that we will be testing with our test bench is a 32-
bit adder-subtractor unit, the complete source code for which
is provided on the companion CD-ROM. The test bench that
we wish to write will read information from a file in the form
of hexadecimal numeric values. The data file, which we will
name TST_ADD.DAT, will include both the inputs and the
expected outputs for the circuit. A listing of TST_ADD.DAT,
containing a small number of test lines, is shown below:

0 00000001 00000001 00000002 O

0 00000002 00000002 00000004 0

0 00000004 00000004 00000008 0O

0 FFFFFFFF FFFFFFFF FFFFFFFE 1
0 O000AAAA AAAA0000 AAAAAAAA 0
0 158D7129 E4C28B56 FA4FFC7F 0
1 00000001 00000001 00000000 0

1 A4F67B92 00000001 5B09846F 0

1 FFFFFFFF FFFFFFFE FFFFFFFF O
1 FFFFFFFE FFFFFFFF 00000001 1
1 00000002 00000004 00000002 1

The standard text I/O features defined in VHDL standard
1076 do not include procedures to read data in hexadecimal
format, so we will make use of the hread procedure provided
in the Synopsys std_logic_textio package. Hread accepts the
same arguments as the standard read procedure, but allows
values to be expressed in hexadecimal format. We will use
hread to read the second, third and fourth fields in each line of
the file, as these fields are represented in hexadecimal format.

Because the first and last fields of the data file are single-bit
values of type std_ulogic, we will also make use of an over-
loaded read procedure provided in std_logic_textio. VHDL's
built-in read procedure is not capable of reading std_ulogic
values, so the std_logic_textio package includes additional
read procedure definitions that extend read for these values.

251

9. Writing Test Benches

The std_logic_textio
package provided by

Synopsys helps when
reading standard logic
data values from files.

252

Finally, we wish to display the results of simulation in the
simulator’s transcript window, so we use the hwrite and
overloaded write procedures provided in std_logic_textio to
format and display the data values. Once again, these are
procedures that are not provided in the standard VHDL text
I/0 package.

library ieee;

use ieee.std_logic_1164.all;
use work.all;

use std.textio.all;

library textutil; -- Synposys Text I/O package
use textutil.std_logic_textio.all;

entity tst_add is
end tst_add;

architecture readhex of tst_add is
component adder32 is
port (cin: in std_ulogic;

a,b: in std_ulogic_vector(31 downto 0);
sum: out std_ulogic_vector(31 downto 0);
cout: out std_ulogic);

end component;

for all: adder32 use entity work.adder32(structural);

signal Clk: std_ulogic;

signal x, y: std_ulogic_vector(31 downto 0);

signal sum: std_ulogic_vector(31 downto 0);

signal cin, cout: std_ulogic;

constant PERIOD: time := 200 ns;

begin
UUT: adder32 port map (cin, x, y, sum, cout);

readcmd: process

-- This process loops through a file and reads one line
-- at a time, parsing the line to get the values and
-- expected result.

-- The file format is C! A B SUM CO, with A, B and SUM
-- expressed as hexadecimal values.

Reading Non-tabular Data from Files

file cmdfile: TEXT; -- Define the file ‘handie’
variable line_in,line_out: Line; -- Line buffers
variable good: boolean; -- Status of the read operations

variable CI, CO: std_ulogic;

variable A,B: std_ulogic_vector(31 downto 0);
variable S: std_ulogic_vector(31 downto 0);
constant TEST_PASSED: string := "Test passed:";
constant TEST_FAILED: string := "Test FAILED:";

-- Use a procedure to generate one clock cycle...
procedure cycle (n: in integer) is
begin
foriin 1tonloop
Clk <='0";
wait for PERIOD / 2;
Clk <="1"
wait for PERIOD / 2;
end loop;
end cycle;

begin
-- Open the command file...
FILE_OPEN(cmdfile,"TST_ADD.DAT",READ_MODE);
loop

if endfile(cmdfile) then -- Check EOF
assert false
report "End of file encountered; exiting."
severity NOTE;
exit;
end if;

readline(cmdfile,line_in); -- Read a line from the file
next when line_in'length = 0; -- Skip empty lines

read(line_in,Cl,good); -- Read the Cl input

assert good

report "Text I/O read error"

severity ERROR,;
hread(line_in,A,good); -- Read the A argument as hex value
assert good

253

9. Writing Test Benches

report "Text I/O read error"
severity ERROR;

hread(line_in,B,good); -- Read the B argument
assert good

report “Text I/O read error"

severity ERROR,;

hread(line_in,S,good); -- Read the Sum expected resuited
assert good

report "Text I/O read error”

severity ERROR;

Overloaded read and read(line_in,CO,good); -- Read the CO expected resulted

hread procedures assert good
accept arguments of report "“Text I/O read error”
severity ERROR;
type
std_logic_vector. cin <= CI:
X <= A;
y<=B;

wait for PERIOD; -- Give the circuit time to stabilize

if (sum = S) then

write(line_out, TEST_PASSED);
else

write(line_out, TEST_FAILED);
end if;
write(line_out,CI,RIGHT,2);
hwrite(line_out,A,RIGHT,9);
hwrite(line_out,B,RIGHT,9);
hwrite(line_out,sum,RIGHT,9);
write(line_out,cout,RIGHT,2);
writeline(OUTPUT,line_out); -- write the message

end loop;
wait;
end process;

end architecture readhex;

254

Creating a Test Language

Creating a Test Language

VHDL is a robust
programming lan-
guage with features
that go well beyond
what is needed to
describe logic...

As you can see, VHDL is a robust programming language with
features that go well beyond what is needed to describe logic.
In this, our final example, we will show how you can use the
features of VHDL to describe a more complex test bench that
reads non-tabular, command-oriented information from a text
file, parses that information to determine the appropriate test
inputs, and performs output value checking as specified in the
file. This example will make use of a number of built-in
functions for file and text manipulation, as well as text I/O
functions for the parsing and display of a variety of different
data types, including strings, characters and numeric values.

We'll use the language features of VHDL 1076-1993 for this
test bench example, although the features of VHDL 1076-1987
could also be used to perform the same tasks, with some
minor modifications.

The design we will be testing is a driving game that was
inspired by the “ChipTrip” example first described by Altera
Corporation using their AHDL PLD language. In our version
of the design (which is described in more detail in Electronic
Design Automation for Windows: a User’s Guide, published in
1995 by Prentice Hall), the objective is to create a sequence of
test inputs that will cause an imaginary work-weary engineer
to proceed from his office to the beach, as quickly as possible,
without getting a speeding ticket. To make the trip more
interesting, our hero must stop and pick up a pizza on the
way. The map of Figure 9-2 illustrates the possible routes that
can be taken.

This map shows three different types of roads: freeways,
commercial streets, and residential roads. The car being driven
has only two possible speeds, fast and slow. When the car is
driven slowly, it advances from one point on the map (say,
from Ramp1 to Ramp2) in a given period of time. When
driven fast, the car proceeds twice as far. There is no speed
limit on the freeway, so the car can travel at full speed without
fear of getting a ticket. On commercial streets, the car may

255

9. Writing Test Benches

Figure 9-2: The
driving game (inspired
from Altera’s ChipTrip
design example)
simulates a drive
across town. The goal:
get from the office to
the beach (and pick
up a pizza on the way)
in the shortest amount
of time without getting
a ticket. Surf’s up!

256

Work Pizza Shack
Freeway e
Commercial
Residential

exceed the speed limit just once and get away with it. On
residential roads, any attempt to drive fast will result in a
ticket.

In our simulation, and in the underlying design description, a
fixed period of time is represented by a single clock cycle.
Inputs for the speed and initial direction of travel are repre-
sented by signals Speed and Dir. The location of the car at any
point is represented internally to the circuit by a state ma-
chine, but it is kept hidden at the top level of the design and in
the test bench itself. The current status and success or failure
of a trip are observed on the signals DriveTime, Tickets, and
Party, which tell the player how long the drive has taken, how
many traffic tickets have accrued, and whether he or she has
yet arrived at the beach with the pizza. The block diagram of
Figure 9-3 shows the general layout of the elements of this

Figure 9-3: The
driving game is
composed of two state
machines, a counter
(repeated twice) and
some random logic.

Creating a Test Language

design, which consists of two state machines, two counters
and some additional logic. (The VHDL source files for the
entire design are listed in Appendix F)

Dir navigate Party
Speed
Reset —I®— counter Tickets
Clock]
trap
DriveTime
counter

Test Bench Requirements

The test bench that we have written for this design reads
symbolic test commands from a file, allowing the game to be
easily tested and various driving scenarios to be described.
There are three basic commands allowed in the test input file:
RESET, DRIVE and CHECK.

The RESET command causes the game to be reset to its initial
state. When this command is encountered in the input file, the
DriveTime and Tickets counters are reset to zero, and the
state machine that controls the drive is internally reset to state
Office.

The DRIVE command has two additional arguments for
direction and speed. It also specifies where the car should go,
and how far, in one clock cycle. When DRIVE is encountered
in the input file, the direction and speed arguments are
parsed, the appropriate inputs (Dir and Speed) are assigned,
and a single clock pulse is generated to advance the car to the
next symbolic location on the map. In the test input file, the

257

9. Writing Test Benches

The command
language we have
defined allows
comment lines, and
uses English-like
keywords to describe
the test sequence.

258

direction is represented by the values NORTH, SOUTH,
EAST and WEST, while the speed is represented by the values
FAST and SLOW.

The CHECK command allows the value of signal Party or
signal Tickets to be checked at any time to verify that the
drive has proceeded as expected, and to allow the design to be
tested for various sequences of directions and speeds.

Note:

To simplify the text field parsing in this example, we have intentionally
made all commands read from the file the same size, in terms of the number
of characters read for a given keyword. This includes the keywords “EAST “
and “WEST ”, “FAST “ and “SLOW “, which in this implementation have
an extra space appended onto them. To read string data (keywords) of
random size, we would have to write a more complex token parser that reads
the input line one character at a time, looking forward one character to
identify delimiters such as spaces, tabs, and so on. This is not a difficult
thing to do in VHDL, but it would clutter up an otherwise concise example.

The following sequence of test commands, entered into a file
named Tstpizza.cmd, describes a number of possible test
sequences for this game. Notice that the test file includes
comments fields which are ignored by the test bench when the
file is read:

-- Test command file for getpizza example.
-- First try a winning game...

RESET

DRIVE NORTH SLOW -- Cruise from work to Ramp 1
DRIVE NORTH FAST -- No speed limit here!
DRIVE SOUTH FAST -- Speed along the beach (1 warning)

DRIVE NORTH SLOW -- Got the pizza; back to the beach!
CHECK PARTY 1
CHECKTICKS 0

-- Try getting some tickets this time...

RESET

DRIVE NORTH FAST -- Speed through the residential area
DRIVE SOUTH SLOW -- Cruise south to downtown
DRIVE EAST SLOW -- Cruise to the beach

Creating a Test Language

DRIVE WEST FAST -- Speed back through town
DRIVE EAST FAST -- Speed back to the beach
DRIVE SOUTH SLOW -- Go get the pizza

DRIVE NORTH SLOW -- Party time!

CHECK PARTY 1

CHECK TICKS 3

Test Bench Source File

The following source file, with explanatory comments, reads
in the test file as described above and applies the necessary
input stimuli to make the game proceed. Assert statements are
used to verify that the test commands are properly entered,
and to display errors when the CHECK command indicates a
value for Tickets or Party other than those calculated during
simulation.

-- This test bench tests the getpizza driving game. It is

-- written with 1076-1993 features, and it makes use of

-- IEEE 1076.3 and the standard text I/O packages.

-- The test bench reads commands from a file (tstpizza.cmd)
-- to determine how the game should be "played"”.

use std.textio.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; -- This design uses ‘unsigned'
use work.game_types.all; -- Contains types and constants

use work.pizzatop;

entity testgame is
end entity testgame;

architecture parser of testgame is
component pizzatop is
port(Clk,Reset: in std_logic;
Speed: in tSpeed;
Dir: in tDirection;
Party: out std_logic;

259

9. Writing Test Benches

Tickets: out std_logic_vector(3 downto 0);
DriveTime: out std_logic_vector(3 downto 0));
end component pizzatop;

signal Reset,Clk: std_logic;

signal Dir: tDirection; -- std_logic_vector(1 to 2)
signal Speed: t{Speed; -- std_logic

signal Party: std_logic;

signal DriveTime, Tickets: std_logic_vector(3 downto 0);

constant PERIOD: time := 40 ns;

begin
UUT: pizzatop port map (Clk,Reset,Speed,Dir,Party, Tickets,DriveTime);
readcmd: process

-- This process loops through a file and reads one line
-- at a time, parsing the line to get the commands.

file cmdfile: TEXT: -- Define the file ‘'handle’
variable L: Line; -- Define the line buffer

variable keyword: string (1 to 5); -- Used to get a keyword
variable c: character; -- Used to read a single character
variable value: integer; -- Used to read a numeric value
variable good: boolean; -- For optional text /O error checks

-- Use a procedure to generate one clock cycle...
procedure cycle (n: in integer) is
begin
foriin 1 tonloop
Clk <=0,
wait for PERIOD / 2;
Clk <=1
wait for PERIOD / 2;
end loop;
end cycle;

begin
-- Open the command file...

file_open(cmdfile,"tstpizza.cmd",READ_MODE);

260

Creating a Test Language

LOOP1: loop

if endfile(cmdfile) then -- Check EOF
assert false
report "End of file encountered; exiting."
severity NOTE;
exit LOOP1;
end if;

readline(cmdfile,L); -- Read the line
next LOOP1 when L'length = 0; -- Skip empty lines

read(L, keyword,good); -- Read the command keyword
assert good
report "Text I/O read error"
severity ERROR,;
case keyword is -- Parse the command...
when "RESET" =>
Reset <='1";
cycle(1);
Reset <="'0";
when "DRIVE" =>
read(L,c); -- Eat the white space
read(L keyword); -- Read the direction
case keyword is
when "NORTH" =>
Dir <= North;
when "SOUTH" =>
Dir <= South;
when "EAST " => -- Note the extra space
Dir <= East;
when "WEST " =>
Dir <= West;
when others =>
assert false
report "Unknown direction*
severity ERROR;
end case,
read(L,c); -- Eat the white space
read(L,keyword); -- Read the speed
case keyword is
when "SLOW " =>
Speed <= SLOW;
when "FAST " =>
Speed <= FAST,
when others =>

261

9. Writing Test Benches

assert false
report "Unknown speed"
severity ERROR,;
end case;
cycle(1);
when "CHECK" =>
read(L,c); -- Eat the white space
read(L,keyword); -- Read the signal word
case keyword is
when "PARTY" =>
read(L,value); -- Geta value
if value = 0 then
assert (Party ='0')
report "Check failed on Party!"
severity ERROR,;
else
assert (Party ='1')
report "Check failed on Party!"

severity ERROR;
end if;
when "TICKS" =>
read(L,value); -- Get a value

assert (UNSIGNED(Tickets) = value)
report "Check failed on Ticket count!"
severity ERROR,;
when others =>

null;
end case;
when others => -- Only comments are valid here...
assert keyword(1 to 2) = "--" -- Comment?

report "Unknown keyword"
severity ERROR,;
end case;
end loop LOOP1;
wait;

end process;

end architecture parser;

262

