

CONTENTS

1. INTRODUCTION

2. NUMBER SYSTEM

3. CODE CONVERSION

4. BINARY CODES

5. BASIC LOGIC FUNCTIONS AND GATES

6. COMBINATIONAL LOGIC

7. SEQUENTIAL CIRCUITS

8. LATCH AND FLIP-FLOPS

Introduction

 The quantities that are to be measured, monitored, recorded, processed and

controlled are analog and digital, depending on the type of system used. It is important

when dealing with various quantities that we be able to represent their values efficiently

and accurately. There are basically two ways of representing the numerical value of

quantities: analog and digital.

Analog Representation

 Systems which are capable of processing a continuous range of values varying

with respect to time are called analog systems. In analog representation a quantity is

represented by a voltage, current, or meter movement that is proportional to the value of

that quantity. Analog quantities such as those cited above have an important

characteristic: they can vary over a continuous range of values.

Diagram of analog voltage vs time

Digital Representation

 Systems which process discrete values are called digital systems. In digital

representation the quantities are represented not by proportional quantities but by

symbols called digits. As an example, consider the digital watch, which provides the

time of the day in the form of decimal digits representing hours and minutes (and

sometimes seconds). As we know, time of day changes continuously, but the digital

watch reading does not change continuously; rather, it changes in steps of one per

minute (or per second). In other words, time of day digital representation changes in

discrete steps, as compared to the representation of time provided by an analog watch,

where the dial reading changes continuously.

 Below is a diagram of digital voltage vs time: here input voltage changes

from +4 Volts to -4 Volts; it can be converted to digital form by Analog to Digital

converters (ADC). An ADC converts continuous signals into samples per second. Well,

this is an entirely different theory.

Diagram of Digital voltage vs time

 The major difference between analog and digital quantities, then, can be

stated simply as follows:

 Analog = continuous

• Digital = discrete (step by step)

Advantages of Digital Techniques

• Easier to design. Exact values of voltage or current are not important, only the

range (HIGH or LOW) in which they fall.

• Information storage is easy.

• Accuracy and precision are greater.

• Operations can be programmed. Analog systems can also be programmed, but

the available operations variety and complexity is severely limited.

• Digital circuits are less affected by noise, as long as the noise is not large enough

to prevent us from distinguishing HIGH from LOW (we discuss this in detail in

an advanced digital tutorial section).

• More digital circuitry can be fabricated on IC chips.

Limitations of Digital Techniques

 Most physical quantities in real world are analog in nature, and these

quantities are often the inputs and outputs that are being monitored, operated on, and

controlled by a system. Thus conversion to digital format and re-conversion to analog

format is needed.

Numbering System

 Many number systems are in use in digital technology. The most common

are the decimal, binary, octal, and hexadecimal systems. The decimal system is clearly

the most familiar to us because it is a tool that we use every day. Examining some of its

characteristics will help us to better understand the other systems. In the next few pages

we shall introduce four numerical representation systems that are used in the digital

system. There are other systems, which we will look at briefly.

• Decimal

• Binary

• Octal

• Hexadecimal

Decimal System

 The decimal system is composed of 10 numerals or symbols. These 10

symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Using these symbols as digits of a number, we can

express any quantity.

 The decimal system is also called the base-10 system because it has 10 digits.

Binary System

 In the binary system, there are only two symbols or possible digit values, 0

and 1. This base-2 system can be used to represent any quantity that can be represented

in decimal or other base system.

Octal System

 The octal number system has a base of eight, meaning that it has eight possible

digits: 0,1,2,3,4,5,6,7.

Hexadecimal System

 The hexadecimal system uses base 16. Thus, it has 16 possible digit symbols. It

uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols.

Code Conversion

 Converting from one code form to another code form is called code

conversion, like converting from binary to decimal or converting from hexadecimal to

decimal.

Binary-To-Decimal Conversion

 Any binary number can be converted to its decimal equivalent simply by

summing together the weights of the various positions in the binary number which

contain a 1.

Binary Decimal

110112

24+23+01+21+20 =16+8+0+2+1

Result 2710

Decimal-To-Binary Conversion

Convert 2510 to binary

Division Remainder Binary

25/2 = 12+ remainder of 1 1 (Least Significant Bit)

12/2 = 6 + remainder of 0 0

6/2 = 3 + remainder of 0 0

3/2 = 1 + remainder of 1 1

1/2 = 0 + remainder of 1 1 (Most Significant Bit)

Result 2510 = 110012

Binary-To-Octal / Octal-To-Binary Conversion

Octal Digit 0 1 2 3 4 5 6 7

Binary

Equivalent
000 001 010 011 100 101 110 111

Each Octal digit is represented by three binary digits.

Example:

100 111 0102 = (100) (111) (010)2 = 4 7 28

Binary-To-Hexadecimal /Hexadecimal-To-Binary Conversion

Hexadecimal Digit 0 1 2 3 4 5 6 7

Binary Equivalent 0000 0001 0010 0011 0100 0101 0110 0111

Hexadecim

al Digit
8 9 A B C D E F

Binary Equivalent
100

0

100

1

101

0

101

1

110

0

110

1

111

0

111

1

Each Hexadecimal digit is represented by four bits of binary digit.

 Example:

1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16

Decimal to octal

This method uses repeated division by 8.

 Example: Convert 17710 to octal and binary

Division Result Binary

177/8 = 22+ remainder of 1 1 (Least Significant Bit)

22/ 8 = 2 + remainder of 6 6

2 / 8 = 0 + remainder of 2 2 (Most Significant Bit)

Result 17710 = 2618

Binary

= 0101100012

Hexadecimal to Decimal/Decimal to Hexadecimal Conversion

Example:

2AF16 = 2 x (162) + 10 x (161) + 15 x (160) = 68710

Example: convert 37810 to hexadecimal and binary:

Division Result Hexadecimal

378/16 = 23+ remainder of 10 A (Least Significant Bit)23

23/16 = 1 + remainder of 7 7

1/16 = 0 + remainder of 1 1 (Most Significant Bit)

Result 37810 = 17A16

Binary

= 0001 0111 10102

Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion

• Convert Octal (Hexadecimal) to Binary first.

• Regroup the binary number by three bits per group starting from LSB if Octal is

required.

• Regroup the binary number by four bits per group starting from LSB if

Hexadecimal is required.

Example:

Convert 5A816 to Octal.

Hexadecimal Binary/Octal

5A816 = 0101 1010 1000 (Binary)

= 010 110 101 000 (Binary)

Result = 2 6 5 0 (Octal)

Binary Codes

 Binary codes are codes which are represented in binary system with

modification from the original ones. Below we will be seeing the following:

• Weighted Binary Systems

• Non Weighted Codes

Weighted Binary Systems

 Weighted binary codes are those which obey the positional weighting

principles, each position of the number represents a specific weight. The binary counting

sequence is an example

Decimal 8421 2421 5211 Excess-3

0 0000 0000 0000 0011

1 0001 0001 0001 0100

2 0010 0010 0011 0101

3 0011 0011 0101 0110

4 0100 0100 0111 0111

5 0101 1011 1000 1000

6 0110 1100 1010 1001

7 0111 1101 1100 1010

8 1000 1110 1110 1011

9 1001 1111 1111 1100

8421 Code/BCD Code

 The BCD (Binary Coded Decimal) is a straight assignment of the binary

equivalent. It is possible to assign weights to the binary bits according to their positions.

The weights in the BCD code are 8,4,2,1.

Example: The bit assignment 1001 can be seen by its weights to represent the decimal 9

because:

1x8+0x4+0x2+1x1 = 9

2421 Code

This is a weighted code; its weights are 2, 4, 2 and 1. A decimal number is

represented in 4-bit form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the

2421 code represents the decimal numbers from 0 to 9.

5211 Code

This is a weighted code; its weights are 5, 2, 1 and 1. A decimal number is

represented in 4-bit form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the

5211 code represents the decimal numbers from 0 to 9.

Reflective Code

A code is said to be reflective when code for 9 is complement for the code for 0,

and so is for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3

are reflective, whereas the 8421 code is not.

Sequential Codes

A code is said to be sequential when two subsequent codes, seen as numbers in

binary representation, differ by one. This greatly aids mathematical manipulation of

data. The 8421 and Excess-3 codes are sequential, whereas the 2421 and 5211 codes are

not.

Non Weighted Codes

Non weighted codes are codes that are not positionally weighted. That is, each

position within the binary number is not assigned a fixed value.

Excess-3 Code

Excess-3 is a non weighted code used to express decimal numbers. The code

derives its name from the fact that each binary code is the corresponding 8421 code plus

0011(3).

Example: 1000 of 8421 = 1011 in Excess-3

Gray Code

 The gray code belongs to a class of codes called minimum change codes, in

which only one bit in the code changes when moving from one code to the next. The

Gray code is non-weighted code, as the position of bit does not contain any weight. The

gray code is a reflective digital code which has the special property that any two

subsequent numbers codes differ by only one bit. This is also called a unit-distance

code. In digital Gray code has got a special place.

Decimal Number Binary Code Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Binary to Gray Conversion

• Gray Code MSB is binary code MSB.

• Gray Code MSB-1 is the XOR of binary code MSB and MSB-1.

• MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code.

• MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code.

Basic Logical Functions and Gates

While each logical element or condition must always have a logic value of either

"0" or "1", we also need to have ways to combine different logical signals or conditions

to provide a logical result.

For example, consider the logical statement: "If I move the switch on the wall

up, the light will turn on." At first glance, this seems to be a correct statement. However,

if we look at a few other factors, we realize that there's more to it than this. In this

example, a more complete statement would be: "If I move the switch on the wall up and

the light bulb is good and the power is on, the light will turn on."

If we look at these two statements as logical expressions and use logical

terminology, we can reduce the first statement to:

Light = Switch

This means nothing more than that the light will follow the action of the switch,

so that when the switch is up/on/true/1 the light will also be on/true/1. Conversely, if the

switch is own/off/false/0 the light will also be off/false/0.Looking at the second version

of the statement, we have a slightly more complex expression:

Light = Switch and Bulb and Power

Normally, we use symbols rather than words to designate the and function that

we're using to combine the separate variables of Switch, Bulb, and Power in this

expression. The symbol normally used is a dot, which is the same symbol used for

multiplication in some mathematical expressions. Using this symbol, our three-variable

expression becomes:

Light = Switch Bulb Power

When we deal with logical circuits (as in computers), we not only need to deal

with logical functions; we also need some special symbols to denote these functions in a

logical diagram. There are three fundamental logical operations, from which all other

functions, no matter how complex, can be derived. These functions are named and, or,

and not.

A logic gate is an electronic circuit/device which makes the logical decisions. To

arrive at this decisions, the most common logic gates used are OR, AND, NOT, NAND,

and NOR gates. The NAND and NOR gates are called universal gates. The exclusive-

OR gate is another logic gate which can be constructed using AND, OR and NOT gate.

AND Gate

The AND gate performs logical multiplication, commonly known as AND

function. The AND gate has two or more inputs and single output. The output of AND

gate is HIGH only when all its inputs are HIGH (i.e. even if one input is LOW, Output

will be LOW).

 If X and Y are two inputs, then output F can be represented mathematically as F

= X.Y, Here dot (.) denotes the AND operation. Truth table and symbol of the AND gate

is shown in the figure below.

Symbol

Truth Table

X Y F=(X.Y)

0 0 0

0 1 0

1 0 0

1 1 1

Two input AND gate using "diode-resistor" logic is shown in figure below,

where X, Y are inputs and F is the output.

Circuit

If X = 0 and Y = 0, then both diodes D1 and D2 are forward biased and thus both

diodes conduct and pull F low.

 If X = 0 and Y = 1, D2 is reverse biased, thus does not conduct. But D1 is

forward biased, thus conducts and thus pulls F low.

If X = 1 and Y = 0, D1 is reverse biased, thus does not conduct. But D2 is

forward biased, thus conducts and thus pulls F low.

 If X = 1 and Y = 1, then both diodes D1 and D2 are reverse biased and thus both

the diodes are in cut-off and thus there is no drop in voltage at F. Thus F is HIGH.

 Switch Representation of AND Gate

In the figure below, X and Y are two switches which have been connected in

series (or just cascaded) with the load LED and source battery. When both switches are

closed, current flows to LED.

 Three Input AND gate

Since we have already seen how a AND gate works and I will just list the truth

table of a 3 input AND gate. The figure below shows its symbol and truth table.

 Circuit

Truth Table

X Y Z F=X.Y.Z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

 OR Gate

The OR gate performs logical addition, commonly known as OR function. The

OR gate has two or more inputs and single output. The output of OR gate is HIGH only

when any one of its inputs are HIGH (i.e. even if one input is HIGH, Output will be

HIGH).

 If X and Y are two inputs, then output F can be represented mathematically as F

= X+Y. Here plus sign (+) denotes the OR operation. Truth table and symbol of the OR

gate is shown in the figure below.

 Symbol

Truth Table

X Y F=(X+Y)

0 0 0

0 1 1

1 0 1

1 1 1

Two input OR gate using "diode-resistor" logic is shown in figure below, where

X, Y are inputs and F is the output.

 Circuit

If X = 0 and Y = 0, then both diodes D1 and D2 are reverse biased and thus both

the diodes are in cut-off and thus F is low.

 If X = 0 and Y = 1, D1 is reverse biased, thus does not conduct. But D2 is

forward biased, thus conducts and thus pulling F to HIGH.

If X = 1 and Y = 0, D2 is reverse biased, thus does not conduct. But D1 is

forward biased, thus conducts and thus pulling F to HIGH.

If X = 1 and Y = 1, then both diodes D1 and D2 are forward biased and thus both

the diodes conduct and thus F is HIGH.

 Switch Representation of OR Gate

In the figure, X and Y are two switches which have been connected in parallel,

and this is connected in series with the load LED and source battery. When both

switches are open, current does not flow to LED, but when any switch is closed then

current flows.

 Three Input OR gate

Since we have already seen how an OR gate works, I will just list the truth table

of a 3-input OR gate. The figure below shows its circuit and truth table.

Truth Table

X Y Z F=X+Y+Z

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

NOT Gate

The NOT gate performs the basic logical function called inversion or

complementation. NOT gate is also called inverter. The purpose of this gate is to convert

one logic level into the opposite logic level. It has one input and one output. When a

HIGH level is applied to an inverter, a LOW level appears on its output and vice versa.

 If X is the input, then output F can be represented mathematically as F = X', Here

apostrophe (') denotes the NOT (inversion) operation. There are a couple of other ways

to represent inversion, F=! X, here! represents inversion. Truth table and NOT gate

symbol is shown in the figure below.

Symbol

Truth Table

X Y=X'

0 1

1 0

NOT gate using "transistor-resistor" logic is shown in the figure below, where X

is the input and F is the output.

 Circuit

When X = 1, the transistor input pin 1 is HIGH, this produces the forward bias

across the emitter base junction and so the transistor conducts. As the collector current

flows, the voltage drop across RL increases and hence F is LOW.

When X = 0, the transistor input pin 2 is LOW: this produces no bias voltage

across the transistor base emitter junction. Thus Voltage at F is HIGH.

BUF Gate

Buffer or BUF is also a gate with the exception that it does not perform any

logical operation on its input. Buffers just pass input to output. Buffers are used to

increase the drive strength or sometime just to introduce delay. We will look at this in

detail later.

If X is the input, then output F can be represented mathematically as F = X.

Truth table and symbol of the Buffer gate is shown in the figure below.

Symbol

Truth Table

X Y=X

0 0

1 1

NAND Gate

NAND gate is a cascade of AND gate and NOT gate, as shown in the figure

below. It has two or more inputs and only one output. The output of NAND gate is

HIGH when any one of its input is LOW (i.e. even if one input is LOW, Output will be

HIGH).

NAND From AND and NOT

If X and Y are two inputs, then output F can be represented mathematically as F

= (X.Y)', Here dot (.) denotes the AND operation and (') denotes inversion. Truth table

and symbol of the N AND gate is shown in the figure below.

Symbol

Truth Table

X Y F=(X.Y)'

0 0 1

0 1 1

1 0 1

1 1 0

NOR Gate

NOR gate is a cascade of OR gate and NOT gate, as shown in the figure below.

It has two or more inputs and only one output. The output of NOR gate is HIGH when

any all its inputs are LOW (i.e. even if one input is HIGH, output will be LOW).

Symbol

If X and Y are two inputs, then output F can be represented mathematically as F

= (X+Y)'; here plus (+) denotes the OR operation and (') denotes inversion. Truth table

and symbol of the NOR gate is shown in the figure below.

Truth Table

X Y F=(X+Y)'

0 0 1

0 1 0

1 0 0

1 1 0

 XOR Gate

An Exclusive-OR (XOR) gate is gate with two or three or more inputs and one

output. The output of a two-input XOR gate assumes a HIGH state if one and only one

input assumes a HIGH state. This is equivalent to saying that the output is HIGH if

either input X or input Y is HIGH exclusively and LOW when both are 1 or 0

simultaneously.

 If X and Y are two inputs, then output F can be represented mathematically as F

= X Y, Here denotes the XOR operation. XY and is equivalent to X.Y' + X'.Y.

Truth table and symbol of the XOR gate is shown in the figure below.

 XOR from Simple gates

Symbol

Truth Table

X Y F=(X Y)

0 0 0

0 1 1

1 0 1

1 1 0

 XNOR Gate

An Exclusive-NOR (XNOR) gate is gate with two or three or more inputs and

one output. The output of a two-input XNOR gate assumes a HIGH state if all the inputs

assumes same state. This is equivalent to saying that the output is HIGH if both input X

and input Y is HIGH exclusively or same as input X and input Y is LOW exclusively,

and LOW when both are not same.

 If X and Y are two inputs, then output F can be represented mathematically as F

= X Y, Here denotes the XNOR operation. XY and is equivalent to X.Y + X'.Y'.

Truth table and symbol of the XNOR gate is shown in the figure below.

Symbol

Truth Table

X Y F=(X Y)'

0 0 1

0 1 0

1 0 0

1 1 1

Combinational Logic

Combinatorial Circuits are circuits which can be considered to have the

following generic structure.

Whenever the same set of inputs is fed in to a combinatorial circuit, the same

outputs will be generated. Such circuits are said to be stateless. Some simple

combinational logic elements that we have seen in previous sections are "Gates".

All the gates in the above figure have 2 inputs and one output; combinational

elements simplest form are "not" gate and "buffer" as shown in the figure below. They

have only one input and one output.

Decoders

A decoder is a multiple-input, multiple-output logic circuit that converts coded

inputs into coded outputs, where the input and output codes are different; e.g. n-to-2n,

BCD decoders. Enable inputs must be on for the decoder to function, otherwise its

outputs assume a single "disabled" output code word.

 Decoding is necessary in applications such as data multiplexing, 7 segment

display and memory address decoding. Figure below shows the pseudo block of a

decoder.

Binary n-to-2n Decoders

A binary decoder has n inputs and 2n outputs. Only one output is active at any

one time, corresponding to the input value. Figure below shows a representation of

Binary n-to-2n decoder

Encoders

An encoder is a combinational circuit that performs the inverse operation of a

decoder. If a device output code has fewer bits than the input code has, the device is

usually called an encoder. e.g. 2n-to-n, priority encoders.

The simplest encoder is a 2n-to-n binary encoder, where it has only one of 2n

inputs = 1 and the output is the n-bit binary number corresponding to the active input.

Multiplexer

A multiplexer (MUX) is a digital switch which connects data from one of n

sources to the output. A number of select inputs determine which data source is

connected to the output. The block diagram of MUX with n data sources of b bits wide

and s bits wide select line is shown in below figure.

MUX acts like a digitally controlled multi-position switch where the binary code

applied to the select inputs controls the input source that will be switched on to the

output as shown in the figure below. At any given point of time only one input gets

selected and is connected to output, based on the select input signal.

De-multiplexers

They are digital switches which connect data from one input source to one of n

outputs. Usually implemented by using n-to-2n binary decoders where the decoder

enable line is used for data input of the de-multiplexer.

The figure below shows a de-multiplexer block diagram which has got s-bits-

wide select input, one b-bits-wide data input and n b-bits-wide outputs.

Adders

Adders are the basic building blocks of all arithmetic circuits; adders add two binary

numbers and give out sum and carry as output. Basically we have two types of adders.

• Half Adder.

• Full Adder.

Half Adder

Adding two single-bit binary values X, Y produces a sum S bit and a carry out

C-out bit. This operation is called half addition and the circuit to realize it is called a half

adder.

Truth Table

X Y SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Symbol

Circuit

 Full Adder

Full adder takes a three-bits input. Adding two single-bit binary values X, Y with

a carry input bit C-in produces a sum bit S and a carry out C-out bit.

Truth Table

X Y Z SUM CARRY

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Sequential Circuits

Digital electronics is classified into combinational logic and sequential logic.

Combinational logic output depends on the inputs levels, whereas sequential logic

output depends on stored levels and also the input levels.

The memory elements are devices capable of storing binary info. The binary info

stored in the memory elements at any given time defines the state of the sequential

circuit. The input and the present state of the memory element determine the output.

Memory elements next state is also a function of external inputs and present state. A

sequential circuit is specified by a time sequence of inputs, outputs, and internal states.

 There are two types of sequential circuits. Their classification depends on the

timing of their signals:

• Synchronous sequential circuits

• Asynchronous sequential circuits

Asynchronous sequential circuit

This is a system whose outputs depend upon the order in which its input

variables change and can be affected at any instant of

time.

Gate-type asynchronous systems are basically combinational circuits with

feedback paths. Because of the feedback among logic gates, the system may, at times,

become unstable. Consequently they are not often used.

Synchronous sequential circuits

This type of system uses storage elements called flip-flops that are employed to

change their binary value only at discrete instants of time. Synchronous sequential

circuits use logic gates and flip-flop storage devices. Sequential circuits have a clock

signal as one of their inputs. All state transitions in such circuits occur only when the

clock value is either 0 or 1 or happen at the rising or falling edges of the clock

depending on the type of memory elements used in the circuit.

 Synchronization is achieved by a timing device called a clock pulse generator.

Clock pulses are distributed throughout the system in such a way that the flip-flops are

affected only with the arrival of the synchronization pulse. Synchronous sequential

circuits that use clock pulses in the inputs are called clocked-sequential circuits. They

are stable and their timing can easily be broken down into independent discrete steps,

each of which is considered separately.

A clock signal is a periodic square wave that indefinitely switches from 0 to 1

and from 1 to 0 at fixed intervals. Clock cycle time or clock period: the time interval

between two consecutive rising or falling edges of the clock.

Clock Frequency = 1 / clock cycle time (measured in cycles per second or Hz)

 Example: Clock cycle time = 10ns clock frequency = 100 MHz

Latches and Flip-Flops

 Latches and Flip-flops are one and the same with a slight variation: Latches

have level sensitive control signal input and Flip-flops have edge sensitive control signal

input. Flip-flops and latches which use this control signals are called synchronous

circuits. So if they don't use clock inputs, then they are called asynchronous circuits.

RS Latch

RS latch have two inputs, S and R. S is called set and R is called reset. The S

input is used to produce HIGH on Q (i.e. store binary 1 in flip-flop). The R input is used

to produce LOW on Q (i.e. store binary 0 in flip-flop). Q' is Q complementary output, so

it always holds the opposite value of Q. The output of the S-R latch depends on current

as well as previous inputs or state, and its state (value stored) can change as soon as its

inputs change. The circuit and the truth table of RS latch is shown below.

S R Q Q+

0 0 0 0

0 0 1 1

0 1 X 0

1 0 X 1

1 1 X 0

The operation has to be analyzed with the 4 inputs combinations together with

the 2 possible previous states.

• When S = 0 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then

output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0.

Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input

applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So it is clear that when

both S and R inputs are LOW, the output is retained as before the application of

inputs. (i.e. there is no state change).

• When S = 1 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then

output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0.

Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input

applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. So in simple words

when S is HIGH and R is LOW, output Q is HIGH.

• When S = 0 and R = 1: If we assume Q = 1 and Q' = 0 as initial condition, then

output Q after input is applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1.

Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input

applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So in simple words

when S is LOW and R is HIGH, output Q is LOW.

• When S = 1 and R =1 : No matter what state Q and Q' are in, application of 1 at

input of NOR gate always results in 0 at output of NOR gate, which results in

both Q and Q' set to LOW (i.e. Q = Q'). LOW in both the outputs basically is

wrong, so this case is invalid.

The waveform below shows the operation of NOR gate based RS Latch.

It is possible to construct the RS latch using NAND gates (of course as seen in

Logic gates section). The only difference is that NAND neither is NOR gate dual form

(Did I say that in Logic gates section?). So in this case the R = 0 and S = 0 case becomes

the invalid case. The circuit and Truth table of RS latch using NAND is shown below.

S R Q Q+

1 1 0 0

1 1 1 1

0 1 X 0

1 0 X 1

0 0 X 1

If you look closely, there is no control signal (i.e. no clock and no enable), so

these kinds of latches or flip-flops are called asynchronous logic elements. Since all the

sequential circuits are built around the RS latch, we will concentrate on synchronous

circuits and not on asynchronous circuits.

D Latch

The RS latch seen earlier contains ambiguous state; to eliminate this condition

we can ensure that S and R are never equal. This is done by connecting S and R together

with an inverter. Thus we have D Latch: the same as the RS latch, with the only

difference that there is only one input, instead of two (R and S). This input is called D or

Data input. D latch is called D transparent latch for the reasons explained earlier. Delay

flip-flop or delay latch is another name used. Below is the truth table and circuit of D

latch.

 In real world designs (ASIC/FPGA Designs) only D latches/Flip-Flops are used.

D Q Q+

1 X 1

0 X 0

Below is the D latch waveform, which is similar to the RS latch one, but with R

removed.

JK Latch

The ambiguous state output in the RS latch was eliminated in the D latch by

joining the inputs with an inverter. But the D latch has a single input. JK latch is similar

to RS latch in that it has 2 inputs J and K as shown figure below. The ambiguous state

has been eliminated here: when both inputs are high, output toggles. The only difference

we see here is output feedback to inputs, which is not there in the RS latch.

J K Q

1 1 0

1 1 1

1 0 1

0 1 0

 T Latch

When the two inputs of JK latch are shorted, a T Latch is formed. It is called T

latch as, when input is held HIGH, output toggles.

T Q Q+

1 0 1

1 1 0

0 1 1

0 0 0

 JK Master Slave Flip-Flop

All sequential circuits that we have seen in the last few pages have a problem

(All level sensitive sequential circuits have this problem). Before the enable input

changes state from HIGH to LOW (assuming HIGH is ON and LOW is OFF state), if

inputs changes, then another state transition occurs for the same enable pulse. This sort

of multiple transition problem is called racing. If we make the sequential element

sensitive to edges, instead of levels, we can overcome this problem, as input is evaluated

only during enable/clock edges.

In the figure above there are two latches, the first latch on the left is called

master latch and the one on the right is called slave latch. Master latch is positively

clocked and slave latch is negatively clocked.

VHDL

CONTENTS

1. INTRODUCTION TO VLSI

2. BASIC COMPONENTS OF A VHDL MODEL

3. BASIC LANGUAGE ELEMENTS

4. MODELING TYPES

5. GENERICS AND CONFIGURATIONS

6. SUBPROGRAMS AND PACKAGES

7. ADVANCED FEATURES

CHAPTER 1

INTRODUCTION TO VLSI

Introduction

Integrated circuits were made possible by experimental discoveries which

showed that semiconductor devices could perform the functions of vacuum tubes, and

by mid-20th-century technology advancements in semiconductor device fabrication. The

integration of large numbers of tiny transistors into a small chip was an enormous

improvement over the manual assembly of circuits using discrete electronic components.

The integrated circuit's mass production capability, reliability, and building-block

approach to circuit design ensured the rapid adoption of standardized ICs in place of

designs using discrete transistors. There are two main advantages of ICs over discrete

circuits - cost and performance. Cost is low because the chips, with all their components,

are printed as a unit by photolithography and not constructed a transistor at a time.

Performance is high since the components switch quickly and consume little power,

because the components are small and close together. As of 2006, chip areas range from

a few square mm to around 250 mm2, with up to 1 million transistors per mm2.

Advances in Integrated circuits

Among the most advanced integrated circuits are the microprocessors, which

control everything from computers to cellular phones to digital microwave ovens.

Digital memory chips are another family of integrated circuit that is crucially important

to the modern information society. While the cost of designing and developing a

complex integrated circuit is quite high, when spread across typically millions of

production units the individual IC cost is minimized. The performance of ICs is high

because the small size allows short traces, which in turn allows low power logic (such as

CMOS) to be used at fast switching speeds.

ICs have consistently migrated to smaller feature sizes over the years, allowing

more circuitry to be packed on each chip. As the feature size shrinks, almost everything

improves - the cost per unit and the switching power consumption go down, and the

speed goes up. However, IC's with nanometer-scale devices are not without their

problems, principal among which is leakage current, although these problems are not

insurmountable and will likely be solved or at least ameliorated by the introduction of

high-k dielectrics. Since these speed and power consumption gains are apparent to the

end user, there is fierce competition among the manufacturers to use finer geometries.

This process, and the expected progress over the next few years, is well described by the

International Technology Roadmap for Semiconductors, or ITRS.

SSI, MSI, LSI

The first integrated circuits contained only a few transistors. Called "Small-

Scale Integration" (SSI), they used circuits containing transistors numbering in the

tens.SSI circuits were crucial to early aerospace projects, and vice-versa. Both the

Minuteman missile and Apollo program needed lightweight digital computers for their

inertially-guided flight computers; the Apollo guidance computer led and motivated the

integrated-circuit technology, while the Minuteman missile forced it into mass-

production.These programs purchased almost all of the available integrated circuits from

1960 through 1963, and almost alone provided the demand that funded the production

improvements to get the production costs from $1000/circuit (in 1960 dollars) to merely

$25/circuit (in 1963 dollars).

The next step in the development of integrated circuits, taken in the late 1960s,

introduced devices which contained hundreds of transistors on each chip, called

“Medium-Scale Integration" (MSI). They were attractive economically because while

they cost little more to produce than SSI devices, they allowed more complex systems to

be produced using smaller circuit boards, less assembly work, and a number of other

advantages. Further development, driven by the same economic factors, led to "Large-

Scale Integration" (LSI) in the mid 1970s, with tens of thousands of transistors per

chip. LSI circuits began to be produced in large quantities around 1970, for computer

main memories and pocket calculators.

VLSI

The final step in the development process, starting in the 1980s and continuing

on, was "Very Large-Scale Integration" (VLSI), with hundreds of thousands of

transistors, and beyond (well past several million in the latest stages). For the first time it

became possible to fabricate a CPU on a single integrated circuit, to create a

microprocessor. In 1986 the first one megabit RAM chips were introduced, which

contained more than one million transistors. Microprocessor chips produced in 1994

contained more than three million transistors. This step was largely made possible by the

codification of "design rules" for the CMOS technology used in VLSI chips, which

made production of working devices much more of a systematic endeavor.

ULSI, WSI, SOC

To reflect further growth of the complexity, the term ULSI that stands for

"Ultra-Large Scale Integration" was proposed for chips of complexity more than 1

million of transistors. However there is no qualitative leap between VLSI and ULSI,

hence normally in technical texts the "VLSI" term covers ULSI as well, and "ULSI" is

reserved only for cases when it is necessary to emphasize the chip complexity, e.g. in

marketing.

The most extreme integration technique is wafer-scale integration (WSI),

which uses whole uncut wafers containing processors as well as memory. Attempts to

take this step commercially in the 1980s (e.g. by Gene Amdahl) failed, mostly because

of defect-free manufacturability problems, and it does not now seem to be a high priority

for industry. The WSI technique failed commercially, but advances in semiconductor

manufacturing allowed for another attack on the IC complexity, known as System-on-

Chip (SOC) design. In this approach, components traditionally manufactured as

separate chips to be wired together on a printed circuit board are designed to occupy a

single chip that contains memory, microprocessor, peripheral interfaces, Input/Output

logic control, data converters, and other components, together composing the whole

electronic system.

Other developments

In the 1980s programmable integrated circuits were developed. These devices

contain circuits whose logical function and connectivity can be programmed by the user,

rather than being fixed by the integrated circuit manufacturer. This allows a single chip

to be programmed to implement different LSI-type functions such as logic gates, adders,

and registers. Current devices named FPGAs (Field Programmable Gate Arrays) can

now implement tens of thousands of LSI circuits in parallel and operate up to 400 MHz.

The techniques perfected by the integrated circuits industry over the last three decades

have been used to create microscopic machines, known as MEMS. These devices are

used in a variety of commercial and defense applications, including projectors, ink jet

printers, and accelerometers used to deploy the airbag in car accidents. In the past,

radios could not be fabricated in the same low-cost processes as microprocessors. But

since 1998, a large number of radio chips have been developed using CMOS processes.

Examples include Intel's DECT cordless phone, or Atheros's 802.11 card.

Moore’s Law

The growth of complexity of integrated circuits follows a trend called

"Moore's Law", first observed by Gordon Moore of In tel. Moore's Law in its

modern interpretation states that the number of transistors in an integrated circuit

doubles every two years. By the year 2000 the largest integrated circuits contained

hundreds of millions of transistors. It is difficult to say whether the trend will

continue.

Popularity of ICs

Only a half century after their development was initiated, integrated circuits have

become ubiquitous. Computers, cellular phones, and other digital appliances are now

inextricable parts of the structure of modern societies. That is, modern computing,

communications, manufacturing and transport systems, including the Internet, all

depend on the existence of integrated circuits. Indeed, many scholars believe that the

digital revolution brought about by integrated circuits was one of the most significant

occurrences in the history of mankind.

Why VLSI?

Integration improves the design:

• Lower parasitic = higher speed.

• Lower power.

• Physically smaller.

• Integration reduces manufacturing cost-no manual assembly.

Challenges in VLSI Design

• Multiple levels of abstraction: transistors to CPUs.

• Multiple and conflicting constraints: low cost and high performances are often at odds.

• Short design time: Late products are often irrelevant.

Dealing with Complexity

Divide-and-conquer: limit the number of components you deal with at any one time.

Group several components into larger components:

• transistors form gates;

• gates form functional units;

• Functional units form processing elements, etc.

Top-down vs. Bottom-up Design

• Top-down design adds functional detail. Create lower levels of abstraction from upper

levels.

• Bottom-up design creates abstractions from low-level behavior.

• Good design needs both top-down and bottom-up efforts.

Design Strategies

IC design productivity depends on the efficiency with which the design may be

converted from concept to architecture, to logic and memory, to circuit and hence to a

physical layout. A good design strategy with a good design system should provide for

consistent descriptions in various abstraction levels. The role of good design strategies is

to reduce complexity, increase productivity, and assure working product.

Design is a continuous trade-off to achieve adequate results for:

• Performance - speed, power, function, flexibility

• Size of die (hence cost of die)

• Time to design

• Ease of test generation and testability

Hardware Description Languages (HDLs)

IEEE standardized Language

• VHDL

• VerilogHDL

What is VHDL?

• VHDL: V HSIC Hardware Description Language

 –VHSIC: V ery High Speed Integrated Circuit

• Developed originally by DARPA

 –for specifying digital systems

• International IEEE standard (IEEE 1076-1993)

• Hardware Description, Simulation, Synthesis

• Practical benefits:

 –a mechanism for digital design and reusable design documentation

 –Model interoperability among vendors

 –Third party vendor support

 –Design re-use.

VHDL vs. C/Pascal

C/Pascal:

–Procedural programming languages.

–Typically describe procedures for computing a math’s function or manipulation of data.

 (e.g., sorting, matrix computing)

–A program is a recipe or a sequence of steps for how to perform a computation or

 manipulate data.

VHDL:

– A language to describe digital systems.

–Purposes: simulation and synthesis of digital systems.

Design Flow

� SPECIFICATION

 This is the stage at which we define what are the important parameters of the

system/design that you are planning to design. A simple example would be: I want to design a

counter; it should be 4 bit wide, should have synchronous reset, with active high enable; when

reset is active, counter output should go to "0".

� HIGH LEVEL DESIGN

 This is the stage at which you define various blocks in the design and how they

communicate. Let's assume that we need to design a microprocessor: high level design

means splitting the design into blocks based on their function; in our case the blocks are

registers, ALU, Instruction Decode, Memory Interface, etc.

� MICRO DESIGN/LOW LEVEL DESIGN

 Low level design or Micro design is the phase in which the designer describes

how each block is implemented. It contains details of State machines, counters, Mux,

decoders, internal registers. It is always a good idea to draw waveforms at various

interfaces. This is the phase where one spends lot of time.

� RTL CODING

 In RTL coding, Micro design is converted into Verilog/VHDL code, using

synthesizable constructs of the language. Normally we like to lint the code, before

starting verification or synthesis.

� SIMULATION

 Simulation is the process of verifying the functional characteristics of models at any

level of abstraction. We use simulators to simulate the Hardware models. To test if the RTL

code meets the functional requirements of the specification, we must see if all the RTL blocks

are functionally correct. To achieve this we need to write a test bench, which generates clk,

reset and the required test vectors. We use the waveform output from the simulator to see if the

DUT (Device Under Test) is functionally correct.

� SYNTHESIS

 Synthesis is the process in which synthesis tools like design compiler or Synplify take

RTL in Verilog or VHDL, target technology, and constrains as input and maps the RTL to target

technology primitives. Synthesis tool, after mapping the RTL to gates, also do the minimal

amount of timing analysis to see if the mapped design is meeting the timing requirements.

(Important thing to note is, synthesis tools are not aware of wire delays, they only know of

gate delays).

• Formal Verification: Check if the RTL to gate mapping is correct.

• Scan insertion: Insert the scan chain in the case of A.

� PLACE & ROUTE

 The gate level net list from the synthesis tool is taken and imported into place

and route tool in Verilog net list format. All the gates and flip-flops are placed; clock

tree synthesis and reset is routed. After this each block is routed. The P&R tool

output is a GDS file, used by foundry for fabricating the ASIC.

� GATE LEVEL SIMULATION (OR) SDF/TIMING SIMULATION

There is another kind of simulation, called timing simulation, which is done

after synthesis or after P&R (Place and Route). Here we include the gate delays and wire

delays and see if DUT works at rated clock speed.

� POST SILICON VALIDATION

Once the chip (silicon) is back from fab, it needs to put in real environment and

tested before it can be released into Market. Since the speed of simulation with RTL is

very slow (number clocks per second), there is always possibility to find a bug in Post

silicon validation.

 Note: As design becomes complex, we write SELF CHECKING TESTBENCH , where

test bench applies the test vector, then compares the output of DUT with expected values.

CHAPTER 2

BASIC COMPONENTS OF A VHDL MODEL

The purpose of VHDL descriptions is to provide a model for digital circuits and systems.

This abstract view of the real physical circuit is referred to as entity. An entity normally consists

of five basic elements, or design units.

In VHDL one generally distinguishes between the external view of a module and

its internal description. The external view is reflected in the entity declaration, which

represents an interface description of a 'black box'. The important part of this interface

description consists of signals over which the individual modules communicate with

each other.

The internal view of a module and, therefore, its functionality is described in the

architecture body. This can be achieved in various ways. One possibility is given by

coding a behavioral description with a set of concurrent or sequential statements.

Another possibility is a structural description, which serves as a base for the

hierarchically designed circuit architectures. Naturally, these two kinds of architectures

can also be combined. The lowest hierarchy level, however, must consist of behavioral

descriptions. One of the major VHDL features is the capability to deal with multiple

different architectural bodies belonging to the same entity declaration.

 Being able to investigate different architectural alternatives permits the

development of systems to be done in an efficient top-down manner. The ease of

switching between different architectures has another advantage, namely, quick testing.

In this case, it is necessary to bind one architecture to the entity in order to have a unique

hierarchy for simulation or synthesis. Which architecture should be used for simulation

or synthesis in conjunction with a given entity is specified in the configuration section.

If the architecture body consists of a structural description, then the binding of

architectures and entities of the instantiated submodules, the so-called components, can

also be fixed by the configuration statement.

The package is the last element mentioned here. It contains declarations of frequently

used data types, components, functions, and so on. The package consists of a package

declaration and a package body. The declaration is used, like the name implies, for declaring

the above-mentioned objects. This means, they become visible to other design units. In the

package body, the definition of these objects can be carried out, for example, the definition of

functions or the assignment of a value to a constant. The partitioning of a package into its

declaration and body provides advantages in compiling the model descriptions.

Entity Declaration

An entity declaration specifies the name of an entity and its interface. This

corresponds to the information given by the symbols in traditional design methods based

on drawing schematics. Signals that are used for communication with the surrounding

modules are called ports.

Interface of a full-adder module

Example:

 entity FULLADDER is

 port (A, B, C : in bit ;

 SUM, CARRY : out bit);

 end FULLADDER;

The module FULLADDER has five interface ports. Three of them are the input

ports A, B and C indicated by the VHDL keyword in. The remaining two are the output

ports SUM and CARRY indicated by out. The signals going through these ports are

chosen to be of the type bit. This is one of the predefined types besides integer, real and

others types provided by VHDL. The type bit consists of the two characters '0' and '1'

and represents the binary logic values of the signals.

Every port declaration implicitly creates a signal with the name and type

specified. It can be used in all architectures belonging to the entity in one of the

following port modes:

 in: The port can only be read within the entity and its architectures.

 out: This port can only be written.

 inout: This port can be read and written. This is useful for modeling bus systems.

 buffer: The port can be read and written. Each port must have only one driver.

Syntax :

 entity entity name is

 [generics]

 [ports]

 [declarations (types, constants, signals)]

 [definitions (functions, procedures)]

 [begin -- normally not used

 statements]

 end [entity name] ;

Architecture

The second important component of a VHDL description is the architecture. This

is where the functionality and the internal implementation of a module are described. In

general, a complex hierarchically structured system may have the topology.

Hierarchical circuit design
S: structural description

B: behavioral description

B/S: mixed description

In order to describe such a system both behavioral and structural descriptions are

required. A behavioral description may be of either concurrent or sequential type.

Overall, VHDL architectures can be classified into the three main types:

• Data flow modeling.

• Behavioral modeling.

• Structural modeling.

Syntax :

 architecture architecture name of entity name is

 [arch declarative part]

 begin

 [arch statement part]

 end [architecture name] ;

The architecture specifies the implementation of the entity entity name. A label

architecture name must be assigned to the architecture. In case there are multiple

architectures associated with one entity this label is then used within a configuration

Statement to bind one particular architecture to its entity. The architecture block consists of

two parts: the arch declarative part before the keywords begin and the arch statement part

after the keywords begin. In the declaration part local types, signals, components etc. are

declared and subprograms are defined. The actual model description is done in the statement

part. In contrast to programming languages like C, the major concern of VHDL is describing

hardware which primary works in parallel and not in a sequential manner. Therefore, a special

simulation algorithm is used to achieve a virtual concurrent processing. This algorithm is

explained in the following section.

Configuration :

It is used to create a configuration for an entity. To binding of components used

in the selected architecture body to other entities.

Package Declaration :

It contains a set of declarations that may possibly be shared by many design units.

Package Body :

It contains the behavior of the subprogram and the values of the deferred

constants declared in a package declaration.

CHAPTER 3

BASIC LANGUAGE ELEMENTS

This describes the facilities in VHDL, which are drawn from the familiar

programming language repertoire. If you are familiar with the Ada programming

language, you will notice the similarity with that language. This is both a convenience

and a nuisance. The convenience is that you don’t have much to learn to use these

VHDL facilities. The problem is that the facilities are not as comprehensive as those of

Ada, though they are certainly adequate for most modeling purposes.

Lexical Elements

Comments

Comments in VHDL start with two adjacent hyphens (‘--’) and extend to the end

of the line. They have no part in the meaning of a VHDL description.

Identifiers

Identifiers in VHDL are used as reserved words and as programmer-defined

names. They must conform to the rule:

 Letter { [underline] letter_or_digit }

Note that case of letters is not considered significant, so the identifiers cat and Cat are the

same. Underline characters in identifiers are significant, so This_Name and ThisName are

different identifiers.

Numbers

Literal numbers may be expressed either in decimal or in a base between two and

sixteen. If the literal includes a point, it represents a real number, otherwise it represents

an integer. Decimal literals are defined by:

 integer [integer] [exponent]

Example :

 0 1 123_456_789 987E6 -- integer literals

 0.0 0.5 2.718_28 12.4E-9 -- real literals

Based literal numbers are defined by:

 base # based_integer [based_integer] # [exponent]

The base and the exponent are expressed in decimal. The exponent indicates the power of the

base by which the literal is multiplied. The letters A to F (upper or lower case) are used as

extended digits to represent 10 to 15.

Example :

 2#1100_0100# 16#C4# 4#301#E1 -- the integer 196

 2#1.1111_1111_111#E+11 16#F.FF#E2 -- the real number 4095.0

Characters

Literal characters are formed by enclosing an ASCII character in single-quote

marks.

Example :

 'A' '*' ''' ' '

Strings

Literal strings of characters are formed by enclosing the characters in double-

quote marks. To include a double-quote mark itself in a string, a pair of double-quote

marks must be put together. A string can be used as a value for an object which is an

array of characters.

Example :

 "A string"

 "" -- empty string

 "A string in a string: ""A string"". " -- contains quote marks

Bit Strings

VHDL provides a convenient way of specifying literal values for arrays of type bit.

Syntax :

 base_specifier " bit_value "

Base specifier B stands for binary, O for octal and X for hexadecimal.

Examples :

 B"1010110" -- length is 7

 O"126" -- length is 9, equivalent to B"001_010_110"

 X"56" -- length is 8, equivalent to B"0101_0110"

Data Types and Objects

VHDL provides a number of basic, or scalar, types, and a means of forming composite

types. The scalar types include numbers, physical quantities, and enumerations and there are a

number of standard predefined basic types. The composite types provided are arrays and

records. A data type can be defined by a type declaration:

 type identifier is type_definition ;

Type_definition :

 scalar_type_definition

 composite_type_definition

Scalar_type_definition :

 integer_type_definition

 physical_type_definition

 floating_type_definition

 enumeration_type_definition

Composite_type_definition :

 array_type_definition

 record_type_definition

Integer Types

An integer type is a range of integer values within a specified range.

Syntax :

 type identifier is range range_constraint;

The expressions that specify the range must of course evaluate to integer numbers. Types

declared with the keyword to are called ascending ranges, and those declared with the

keyword downto are called descending ranges. The VHDL standard allows an implementation

to restrict the range, but requires that it must at least allow the range –2147483647 to

+2147483647.

Example :

 type byte_int is range 0 to 255 ;

 type signed_word_int is range –32768 to 32767 ;

 type bit_index is range 31 downto 0 ;

There is a predefined integer type called integer. The range of this type is implementation

defined, though it is guaranteed to include –2147483647 to +2147483647.

Physical Types

A physical type is a numeric type for representing some physical quantity, such

as mass, length, time or voltage. The declaration of a physical type includes the

specification of a base unit, and possibly a number of secondary units, being multiples

of the base unit.

Syntax :

 type identifier is range range_constraint

 units

 base_unit_declaration

 { secondary_unit_declaration }

 end units

Example :

 type length is range 0 to 1E9

 units

 um;

 mm = 1000 um;

 cm = 10 mm;

 m = 1000 mm;

 in = 25.4 mm;

 ft = 12 in;

 yd = 3 ft;

 rod = 198 in;

 chain = 22 yd;

 furlong = 10 chain;

 end units;

 type resistance is range 0 to 1E8

 units

 ohms;

 kohms = 1000 ohms;

 Mohms = 1E6 ohms;

 end units;

The predefined physical type time is important in VHDL, as it is used extensively to specify

delays in simulations. Its definition is:

 type time is range implementation_defined

 units

 fs;

 ps = 1000 fs;

 ns = 1000 ps;

 us = 1000 ns;

 ms = 1000 us;

 sec = 1000 ms;

 min = 60 sec;

 hr = 60 min;

 end units;

Floating Point Types

A floating point type is a discrete approximation to the set of real numbers in a

specified range. The precision of the approximation is not defined by the VHDL

language standard, but must be at least six decimal digits. The range must include at

least –1E38 to +1E38.

Syntax :

 type identifier is range range_constraint ;

Examples :

 type signal_level is range –10.00 to +10.00 ;

 type probability is range 0.0 to 1.0 ;

There is a predefined floating point type called real. The range of this type is implementation

defined, though it is guaranteed to include –1E38 to +1E38.

Enumeration Types

 An enumeration type is an ordered set of identifiers or characters. The identifiers and

characters within a single enumeration type must be distinct, however they may be reused in

several different enumeration types.

Syntax :

 type identifier is (enumeration_literal) ;

Example :

 type logic_level is (unknown, low, undriven, high);

 type alu_function is (disable, pass, add, subtract, multiply, divide);

 type octal_digit is ('0', '1', '2', '3', '4', '5', '6', '7');

There are a number of predefined enumeration types, defined as follows:

 type severity_level is (note, warning, error, failure);

 type boolean is (false, true);

 type bit is ('0', '1');

 type character is (NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS,

 HT, LF, VT, FF, CR, SO, SI, DLE, DC1, DC2, DC3,

 DC4, NAK, SYN, ETB, CAN,EM, SUB, ESC, FSP,

 GSP, RSP, USP, ' ', '!', '"', '#', '$', '%', '&', ''', '(', ')',

 '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

 ':', ';', '<', '=', '>', '?', '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',

 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O','P', 'Q', 'R', 'S', 'T', 'U',

 'V', 'W', 'X', 'Y', 'Z', '[', '\', ']', '^', '_', '`', 'a', 'b', 'c', 'd',

 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',

 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~', DEL);

Note that type character is an example of an enumeration type containing a mixture of

identifiers and characters. Also, the characters '0' and '1' are members of both bit and

character . Where '0' or '1' occur in a program, the context will be used to determine which

type is being used.

Arrays

An array in VHDL is an indexed collection of elements all of the same type.

Arrays may be one-dimensional (with one index) or multidimensional (with a number of

indices). In addition, an array type may be constrained, in which the bounds for an index

are established when the type is defined, or unconstrained, in which the bounds are

established subsequently.

Syntax :
 type identifier is array index_constraint of element_subtype_indication;

Example :

 type word is array (31 downto 0) of bit;

 type memory is array (address) of word;

 type transform is array (1 to 4, 1 to 4) of real;

 type register_bank is array (byte range 0 to 132) of integer;

An example of an unconstrained array type declaration:

 type vector is array (integer range <>) of real;

The symbol ‘<>’ (called a box) can be thought of as a place-holder for the index

range, which will be filled in later when the array type is used. For example, an object

might be declared to be a vector of 20 elements by giving its type as:

 vector(1 to 20)

There are two predefined array types, both of which are unconstrained. They are defined as:

 type string is array (positive range <>) of character;

 type bit_vector is array (natural range <>) of bit;

The types positive and natural are subtypes of integer. The type bit_vector is

particularly useful in modeling binary coded representations of values in simulations of digital

systems. An element of an array object can referred to by indexing the name of the object. For

example, suppose a and b are one and two-dimensional array objects respectively. Then the

indexed names a(1) and b(1, 1) refer to elements of these arrays. Furthermore, a contiguous

slice of a one-dimensional array can be referred to by using a range as an index. For example a

(8 to 15) is an eight-element array which is part of the array . Sometimes you may need to

write a literal value of an array type. This can be done using an array aggregate, which is a list

of element values. Suppose we have an array type declared as:

 type a is array (1 to 4) of character;

and we want to write a value of this type containing the elements 'f', 'o', 'o', 'd' in that order.

We could write an aggregate with positional association as follows:

 ('f', 'o', 'o', 'd')

In this case, the index for each element is explicitly given, so the elements can be in any

order. Positional and named association can be mixed within an aggregate, provided all the

positional associations come first. Also, the word others can be used in place of an index in a

named association, indicating a value to be used for all elements not explicitly mentioned. For

example, the same value as above could be written as:

 ('f', 4 => 'd', others => 'o')

Records

VHDL provides basic facilities for records, which are collections of named

elements of possibly different types.

Syntax :

 type identifier is

 record

 element_declaration

 { element_declaration }

 end record

Example :

 type instruction is

 record

 op_code : processor_op ;

 address_mode : mode ;

 operand1, operand2: integer range 0 to 15 ;

 end record;

When you need to refer to a field of a record object, you use a selected name. For

example, suppose that r is a record object containing a field called f. Then the name r.f refers

to that field. As for arrays, aggregates can be used to write literal values for records. Both

positional and named association can be used, and the same rules apply, with record field

names being used in place of array index names.

Subtypes

The use of a subtype allows the values taken on by an object to be restricted or

constrained subset of some base type.

Syntax :

 subtype identifier is [resolution_function_name] range [constraint] ;

There are two cases of subtypes. Firstly a subtype may constrain values from a scalar

type to be within a specified range.

Example :

 subtype pin_count is integer range 0 to 400;

 subtype digits is character range '0' to '9';

Secondly, a subtype may constrain an otherwise unconstrained array type by specifying

bounds for the indices.

Example :

 subtype id is string(1 to 20);

 subtype word is bit_vector(31 downto 0);

There are two predefined numeric subtypes, defined as:

 subtype natural is integer range 0 to highest_integer ;

 subtype positive is integer range 1 to highest_integer ;

Object Declarations

An object is a named item in a VHDL description which has a value of a

specified type. There are three classes of objects:

• Constants

• Variables

• Signals

Constants

 Declaration and use of constants and variables is very much like their use in

programming languages. A constant is an object which is initialised to a specified value

when it is created, and which may not be subsequently modified.

Syntax :

 constant identifier_list : subtype_indication [:= expression] ;

Constant declarations with the initialising expression missing are called deferred

constants, and may only appear in package declarations. The initial value must be given

in the corresponding package body.

Example :

 constant e : real := 2.71828;

 constant delay : Time := 5 ns;

 constant max_size : natural;

Variables

A variable is an object whose value may be changed after it is created.

Syntax :

 variable identifier_list : subtype_indication [:= expression] ;

The initial value expression, if present, is evaluated and assigned to the variable

when it is created. If the expression is absent, a default value is assigned when the

variable is created. The default value for scalar types is the leftmost value for the type,

that is the first in the list of an enumeration type, the lowest in an ascending range, or the

highest in a descending range. If the variable is a composite type, the default value is the

composition of the default values for each element, based on the element types.

Example :

 variable count : natural := 0;

 variable trace : trace_array;

Assuming the type trace_array is an array of boolean, then the initial value of the variable trace

is an array with all elements having the value false.

Signals

Signals represent wires in a logic circuit. Signals can be declared in all declarative

regions in VHDL except for functions and procedures. Assignments to signals are not

immediate, but scheduled to be executed after a delta delay.

Syntax :

 signal identifier_list : subtype_indication [:= expression] ;

Example :

 signal foo : bit_vector (0 to 5) := B"000000" ;

 signal aux : bit ;

 signal max_value : integer ;

The declaration assigns a name to the signal foo ; a type, with or without a range

restriction (bit_vector(0 to 5)); and optionally an initial value. Initial values on signals are

usually ignored by synthesis. Signals can be assigned values using an assignment statement

(e.g., aux <= ’0’ ;). If the signal is of an array type, elements of the signal’s array can be accessed

and assigned using indexing or slicing methods.

Expressions and Operators

Expressions in VHDL are much like expressions in other programming

languages. An expression is a formula combining primaries with operators. Primaries

include names of objects, literals, function calls and parenthesized expressions.

Operators and precedence

The logical operators and, or, nand, nor, xor and not operate on values of type bit or

Boolean, and also on one-dimensional arrays of these types. For array operands, the operation

is applied between corresponding elements of each array, yielding an array of the same length

as the result. For bit and Boolean operands, and, or, nand, and nor are ‘short-circuit’

operators, that is they only evaluate their right operand if the left operand does not determine

the result. So and and nand only evaluate the right operand if the left operand is true or '1',

and or and nor only evaluate the right operand if the left operand is false or '0'.

The relational operators =, /=, <, <=, > and >= must have both operands of the same

type, and yield Boolean results. The equality operators (= and /=) can have operands of any

type. For composite types, two values are equal if all of their corresponding elements are

equal. The remaining operators must have operands which are scalar types or one-dimensional

arrays of discrete types.

The sign operators (+ and –) and the addition (+) and subtraction (–) operators have

their usual meaning on numeric operands. The concatenation operator (&) operates on one-

dimensional arrays to form a new array with the contents of the right operand following the

contents of the left operand. It can also concatenate a single new element to an array, or two

individual elements to form an array. The concatenation operator is most commonly used with

strings.

The multiplication (*) and division (/) operators work on integer, floating point and

physical types. The modulus (mod) and remainder (rem) operators only work on integer types.

The absolute value (abs) operator works on any numeric type. Finally, the exponentiation (**)

operator can have an integer or floating point left operand, but must have an integer right

operand. A negative right operand is only allowed if the left operand is a floating point number.

CHAPTER 4

MODELING TYPES

DATAFLOW MODELING

This kind of description specifies a dataflow through the entity based on

concurrent signal assignment statements. A structure of the entity is not explicitly

defined by this description but can be derived from it. As an example, consider the

following implementation of the entity FULLADDER.

Example :

 architecture CONCURRENT of FULLADDER is

 begin

 SUM <= A xor B xor C after 5 ns;

 CARRY <= (A and B) or (B and C) or (A and C) after 3 ns;

 end CONCURRENT;

Two concurrent signal assignment statements describe the model of the entity

FULLADDER. The symbol <= indicates the signal assignment. This means that the

value on the right side of the symbol is calculated and subsequently assigned to the

signal on the left side. A concurrent signal assignment is executed whenever the value of

a signal in the expression on the right side changes. In general, a change of the current

value of a signal is called an event. Due to the fact that all signals used in this example

are declared as ports in the entity declaration.

The arch declarative part remains empty. Information about a possibly existing

delay time of the modeled hardware is provided by the after clause. If there is an event

on one of the inputs A, B or C at time T, the expression A xor B xor C is computed at

this time T, but the target signal (the output SUM) is scheduled to get this new value at

time T + 5 ns. The signal assignment for CARRY is handled in exactly the same way

except for the smaller delay time of 3 ns. If explicit information about the delay time is

missing then it is assumed to be 0 ns by default. Nevertheless, during the VHDL

simulation the signal assignment is executed after an infinitesimally small delay time,

the so-called delta-delay. This means that the signal assignment is executed immediately

after an event on a signal on the right side is detected and the calculation of the new

expression value is performed.

Syntax :

 [label :] signal name <= [transport] expression [after time expression] ;

Up to now the label was not used. With this element it is possible to assign a

label to the statement, which can be useful for documentation. Furthermore, it is

possible to assign several events with different delay times to the target signal. In this

case the values to be assigned and their delay times have to be sorted in ascending order.

The keyword transport affects the handling of multiple signal events coming in short

time one after another.

Example :

 architecture VER1 of MUX is

 begin

 OUTPUT <= A ;

 end VER1;

Conditional Signal Assignment statement

In this case there are different assignment statements related to one target signal.

The selection of one assignment statement is controlled by a set of conditions condition.

The conditional signal assignment statement can be compared with the well-known if -

elsif - else structure.

Syntax :

 [label :] signal name <= expression when condition else

 expression when condition else

 expression ;

The conditional signal assignment is activated as soon as one of the signals belonging to the

condition or expression changes.

Example :

 Z <= A when (X > 3) else

 B when (X < 3) else

 C ;

Each time one signal either in expression or condition changes its value the

complete statement is executed. Starting with the first condition, the first true one selects

the expression that is computed and the resulting value is assigned to the target signal

signal name.

Selected Signal Assignment statement

With this statement a choice between different assignment statements is made.

The selection of the right assignment is done by the value of select expression. The

statement resembles a case structure.

Syntax :

 [label :] with select_expression select

 signal name <= expression when value ,

 expression when value ,

 expression when others ;

The selected signal assignment is activated as soon as one of the signals belonging to the

selection condition or expression changes.

Example :

 with MYSEL select

 Z <= A when 15 ,

 B when 22 ,

 C when others ;

Unaffected Statement

No action to be take place in a sequential statement and execution continues with the

next statement. It is represented by using the keyword unaffected. It is used in a conditional

or selected signal assignment statement where, for certain conditions. It may be useful or

necessary to explicitly specify that no action needs to be performed.

Example :

 with mux_sel select

 Z <= A when “00”,

 B when “01”,

 C when “10”,

 unaffected when others ;

Block statement

A block statement defines an internal block representing a portion of a design.

Blocks may be hierarchically nested to support design decomposition.

In order to efficiently group concurrent assignments, block statements may be

used. A block may contain declarations of data types, signals, and so on, all of which are

locally used. The body of the block statement contains any of the concurrent statements

mentioned previously.

A guarded block contains an additional boolean expression guard expression,

which drives an implicit signal GUARD of boolean type. This signal can be used within

a block for the control of concurrent assignments. If concurrent statements have an

associated GUARD signal, they are known as Guarded Signal Assignments.

Syntax :

 Label : block [(guard expression)]

 [use clause]

 [subprogram decl , subprogram body]

 [type decl]

 [subtype decl]

 [constant decl]

 [signal decl]

 [component decl]

 begin

 [concurrent statements]

 end block [label] ;

Guarded Signal Assignment is a special form of the concurrent assignment. The

assignment is activated after the GUARD signal, which must be of the boolean type, is

evaluated to true. The GUARD signal can be explicitly declared and used; however, it is

more common to use it implicitly within a Guarded Block.

Syntax :

 [label :] signal name <= guarded expression [after time expr] ;

Example :

 U1 : block (clk=‘1’ and not clk’stable)

 signal temp : std_logic ;

 begin

 temp <= guarded D ;

 Q <= temp ;

 Q’ <= not temp

 end block U1 ;

Any declarations appearing within the block are visible only within the block, that is,

between block ……………. end block.

BEHAVIORAL MODELING

Behavioral descriptions are based on the process environment. A process

statement as a whole is treated as a concurrent statement within the architecture.

Therefore, in the simulation time a process is continuously executed and it never gets

finished. The statements within the process are executed sequentially without the

advance of simulation time. To ensure that simulation time can move forward every

process must provide a means to get suspended. Thus, a process is constantly switching

between the two states: the execution phase in which the process is active and the

statements within this process are executed, and the suspended state. The change of state

is controlled by two mutually exclusive implementations:

• With a list of signals in such a manner that an event on one of these signals invokes a

process. This can be compared with the mechanism used in conjunction with concurrent

signal assignment statements. There, the statement is executed whenever a signal on the

right side of the assignment operator <= changes its value. In case of a process, it

becomes active by an event on at least one signal belonging to the sensitivity list. All

statements between the keywords begin and end process are then executed

sequentially.

Syntax :

 [proc label :] process (sensitivity list)

 [proc declarative part]

 begin

 [sequential statement part]

 end process [proc label] ;

The sensitivity list is a list of signal names within round brackets, for Example

 (A, B, C).

• With wait statements in such a way that the process is executed until it reaches a wait

statement. At this instance it gets explicitly suspended. The statements within the

process are handled like an endless loop which is suspended for some time by a wait

statement.

Syntax :

 [process label :] process

 [proc declarative part]

 begin

 [sequential statements]

 wait ...; -- at least one wait statement

 [sequential statements]

 end process [proc label] ;

The structure of a process statement is similar to the structure of an architecture. In

the process declarative part various types, constants and variables can be declared; functions

and procedures can be defined. The sequential statement part contains the description of the

process functionality with ordered sequential statements. An implementation of the full adder

with a sequential behavioral description is given below:

Example :

 architecture SEQUENTIAL of FULLADDER is

 begin

 process (A, B, C)

 variable TEMP : integer;

 variable SUM CODE : bit vector(0 to 3) := "0101";

 variable CARRY CODE : bit vector(0 to 3) := "0011";

 begin

 if A = '1' then

 TEMP := 1;

 else

 TEMP := 0;

 end if;

 if B = '1' then

 TEMP := TEMP + 1;

 end if;

 if C = '1' then

 TEMP := TEMP + 1;

 end if; -- variable TEMP now holds the number of ones

 SUM <= SUM CODE(TEMP);

 CARRY <= CARRY CODE(TEMP);

 end process;

 end SEQUENTIAL;

The functionality of this behavioral description is based upon a temporary

variable TEMP which counts the number of ones on the input signals. With this number

one element, or one bit, is selected from each of the two predefined vectors SUM CODE

and CARRY CODE. The initialization of these two vectors reacts the truthtable of a

full-adder module. The reason for this unusual coding is the attempt to explain the

characteristics of a variable. A variable differs not only in the assignment operator (:=)

from that of a signal (<=). It is also different with respect to time when the new

computed value becomes valid and, therefore, readable to other parts of the model.

Every variable gets the new calculated value immediately, whereas the new

signal value is not valid until the beginning of the next delta-cycle, or until the specified

delay time elapses. If the above example had been coded with a signal as the temporary

counter instead of the variable, then the correct functionality of this architecture as a full

adder could not be ensured. After an event at time T on one of the input signals A, B or

C, which are members of the sensitivity list, the process is executed once. The

simulation continues with executing the second if statement at time T because

computing a sequential statement does not advance the simulation time. Therefore, the

signal TEMP still holds the same value it had before the process activation! This means

that the intended counting of ones does not work with TEMP declared as signal.

In general, signal assignment statements within a process have to be handled with

care, especially if the target signal will be read or rewritten in the following code before the

process gets suspended. If this effect is taken into consideration, the process statement

provides an environment in which a person familiar with programming languages like C or

Pascal can easily generate a VHDL behavioral description. This remark, however, should not be

understood that the process statement is there for people switching to VHDL. In reality, some

functions can be implemented much more easily in a sequential manner.

Example :

 architecture SEQUENTIAL of DFF is

 begin

 process (CLK, NR)

 begin

 if (NR = '0') then

 Q <= (others => '0');

 elsif (CLK'event and CLK = '1') then

 Q <= D;

 end if;

 end process;

 end SEQUENTIAL;

In the above example, the attribute CLK'event is used to detect an edge on the

CLK signal. This is equivalent to an event on CLK. The ability to detect edges on

signals is based upon the storage of all events in event queues for every signal.

Therefore, old values can be compared with the actual ones or even read. In contrast,

variables always get the new assigned value immediately and the old value is not stored.

Subsequently, during the simulation more memory is required for a signal for a variable.

In complex system descriptions this fact should be taken into consideration.

Sequential Signal Assignment statement

The syntax of a sequential signal assignment is very similar to the concurrent

assignment statement, except for a label which can not be used.

Syntax :

 signal name <= [transport] expression [after time expr] ;

Variable Assignment statement

A variable assignment statement is very similar to a signal assignment. As already

mentioned, a variable differs from a signal in that it gets its new value immediately upon

assignment. Therefore, the specification of a delay time in a variable assignment is not

possible. Attention must be paid to the assignment operator which is := for a variable and <=

for a signal.

Syntax :

 variable name := expression ;

Wait statement

This statement may only be used in processes without a sensitivity list. The

purpose of the wait statement is to control activation and suspension of the process.

Syntax :

 Wait [on signal names] ;

 Wait [until condition]

 Wait [for time expression] ;

The arguments of the wait statement have the following interpretations:

• on signal names:

The process gets suspended at this line until there is an event on at least one

signal in the list signal names. The signal names are separated by commas; brackets are

not used. It can be compared to the sensitivity list of the process statement.

• until condition:

The process gets suspended until the condition becomes true.

• for time expression:

The process becomes suspended for the time specified by time expression.

• without any argument:

 The process gets suspended until the end of the simulation.

A sensitivity list of a process is functionally equivalent to the wait on ... appearing at the end of

the process. There are four different ways to use the wait-statement:

 wait on A, B;

suspends a process until an occurrence of a change is registered. Here, execution will

resume when a new event is detected on either signal A or B.

 wait until X > 10;

suspends a process until the condition is satisfied; in this case, until the value of a signal is > 10.

 wait for 10 ns;

suspends a process for the time specified; here, until 10 ns of simulation time elapses.

 wait;

suspends a process indefinitely. . . Since a VHDL-process is always active, this

statement at the end of a process is the only way to suspend it. This technique may be

used to execute initialization processes only once.

The example below models an architecture, which simulates a Producer/Consumer

problem using two processes. The processes are synchronized through a simple

handshake protocol, which has two wires, each with two active states.

Example :

 entity PRO CON is

 ...

 end PRO CON ;

 architecture BEHAV of PRO CON is

 signal PROD: boolean := false; --item produces a semaphore

 signal CONS: boolean := true; --item consumes a semaphore

 begin

 PRODUCER: process producer model

 begin

 PROD <= false;

 wait until CONS; ----produce item

 PROD <= true;

 wait until not CONS;

 end process;

 CONSUMER: process consumer model

 begin

 CONS <= true;

 wait until PROD;

 CONS <= false;

 ...consume item

 wait until not PROD;

 end process;

 end BEHAV;

If-else statement

This branching statement is equivalent to the ones found in other programming

languages and, therefore, needs no further explanation.

Syntax :

 if condition then

 sequential statements ;

 [elsif condition then

 sequential statements ;]

 [else

 sequential statements ;]

 end if ;

Case statement

This statement is also identical to its corresponding equivalent found in other

programming languages.

Syntax :

 case expression is

 when choices => sequential statements ;

 [when others => sequential statements ;]

 end case ;

Either all-possible values of expression must be covered with choices or the case

statement has to be completed with an others branch.

Example :

 case BCD is ------Decoder: BCD to 7-Segment

 when "0000" => LED := "1111110";

 when "0001" => LED := "1100000";

 when "0010" => LED := "1011011";

 when "0011" => LED := "1110011";

 when "0100" => LED := "1100101";

 when "0101" => LED := "0110111";

 when "0110" => LED := "0111111";

 when "0111" => LED := "1100010";

 when "1000" => LED := "1111111";

 when "1001" => LED := "1110111";

 when others => LED := "-------"; ------don't care

 end case;

Null statement

This statement is used for an explicit definition of branches without any further

commands. Therefore, it is used primarily in case statements, and also in if clauses.

Syntax :

 null ;

Loop statement

 This is a conventional loop structure found in other programming languages.

Syntax :

 [loop label :] while condition loop | --controlled by condition

 for identifier in value1 to | downto value2 loop | --with counter

 loop --endless loop

 sequential statements

 end loop [loop label] ;

Example :

 J : = 0 ;

 U1 : while J < 20 loop

 J : = J + 2 ;

 end loop U1 ;

The while...loop statement has a Boolean iteration scheme. If the iteration

condition evaluates true, executes the enclosed statements once. The iteration condition

is then reevaluated. As long as the iteration condition remains true, the loop is

repeatedly executed. When the iteration condition evaluates false, the loop is skipped

and execution continues with the next loop iteration.

 for i in 0 to 3 loop

 Z (i) : = A (i) and B (i) ;

 end loop ;

The for...loop statement has an integer iteration scheme. The integer range determines the

number of repetitions.

 Z : = 2 ; sum : = 1 ;

 V1 : loop

 Z : = Z + 3 ;

 sum : = sum * 5 ;

 exit when sum > 100 ;

 end loop V1 ;

The basic loop statement has no iteration scheme. It executes enclosed statements repeatedly

until it encounters an exit or next statement.

Exit and Next statement

With these two statements a loop iteration can be terminated before reaching the

keyword end loop. With next the remaining sequential statements of the loop are

skipped and the next iteration is started at the beginning of the loop. The exit directive

skips the remaining statements and all remaining loop iterations. In nested loops both

statements skip the innermost enclosing loop if loop label is left out. Otherwise, the loop

labeled loop label is terminated. The optional condition expression can be specified to

determine whether or not to execute these statements.

Syntax :

 next [loop label] [when condition] ;

Example :

 for I in 0 to MAX LIM loop

 if (DONE(I) = true) then

 next; -----Jump to end loop

 end if;

 Q(I) <= A(I);

 end loop;

 L1: while J < 10 loop outer loop

 L2: while K < 20 loop inner loop...

 next L1 when J = K; jump out of the inner loop...

 end loop L2;

 end loop L1; ------jump destination

Syntax :

 exit [loop label] [when condition] ;

Example:

 for I in 0 to MAX LIM loop

 if (Q(I) <= 0) then

 exit; ------jump out of the loop

 end if;

 Q(I) <= (A * I);

 end loop; ------jump destination

STRUCTURAL DESCRIPTION

In structural descriptions the implementation of a system or model is described

as a set of interconnected components, which is similar to drawing schematics. Such a

description can often be generated with a VHDL netlister in a graphical development

tool. Since there are many different ways to write structural descriptions, to explain all

of them in one section would be more confusing than enlightening. Therefore, only one

alternative approach is presented here.

Structural implementation of a full adder

As an introductive example, consider the implementation of a full-adder circuit. The

components HA and XOR are assumed to be predefined elements.

Example :

 architecture STRUCTURAL of FULLADDER is

 signal S1, C1, C2 : bit ;

 component HA

 port (I1, I2 : in bit ; S, C : out bit) ;

 end component ;

 component OR

 port (I1, I2 : in bit ; X : out bit) ;

 end component;

 begin

 INST HA1 : HA port map (I1 => B, I2 => C, S => S1, C => C1) ;

 INST HA2 : HA port map (I1 => A, I2 => S1, S => SUM, C => C2) ;

 INST OR : OR port map (I1 => C2, I2 => C1, X => CARRY) ;

 end STRUCTURAL ;

Component declaration

In the declarative part of the architecture, all objects which are not yet known to

the architecture have to be declared. In the example above, these are the signals S1, C1

and C2 used for connecting the components together, excluding the ports of the entity

FULLADDER. In addition, the components HA and XOR have to be declared. The

declaration of a component consists of declaring its interface ports and generics to the

actual model.

Often used components could be selected from a library of gates defined in a

package and linked to the design. In this case the declaration of components usually is

done in the package, which is visible to the entity. Therefore, no further declaration of

the components is required in the architecture declarative part.

The actual structural description is done in the statement part of the architecture

by the instantiation of components. The components' reference names INST HA1, INST

HA2 and INST XOR, also known as instance names, must be unique in the architecture.

The port maps specify the connections between different components, and between the

components and the ports of the entity. Thus, the components' ports (so-called formals)

are mapped to the signals of the architecture (so-called actuals) including the signals of

the entity ports. For example, the input port I1 of the half adder INST HA1 is connected

to the entity input signal B, input port I2 to C, and so on. The instantiation of a

component is a concurrent statement. This means that the order of the instances within

the VHDL code is of no importance.

Syntax :

 component component name

 [generic (generic list : type name [:= expression] ; |

 generic list : type name [:= expression]) ;]

 [port (signal list : mode type name ;

 signal list : mode type name);]

 end component ;

Component instantiation

A component instantiation statement defines a subcomponent of the design entity

in which it appears, associates signals or values with the ports of that subcomponent,

and associates values with generics of that subcomponent. This subcomponent is one

instance of a class of components defined by a corresponding component declaration,

design entity, or configuration declaration.

Syntax :

 component label : component name port map (Association-list) ;

The Association of ports to the connecting signals during the instantiation can be

done through the positional notation. Alternatively, it may be done by using the named

notation, using the already familiar format

Two types of association

• Positional Association

• Named Association

Positional Association

 Each actual in the component instantiation is mapped by position with each port in the

component declaration. The ordering of the actuals is therefore important.

An association-list form

 actual1, actual2 , actual3, ………… actualn

Example :

 V1 : nand2 port map (S1, S2, S3) ;

If a port in a component instantiation is not connected to any signal. This purpose the

keyword Open is used.

 V1 : nand2 port map (S1, open, S3) ;

Named Association

 The ordering of the association is not important since the mapping between the

actuals and formals is explicitly specified

An association-list form

 formal1 => actual1, formal2 => actual2 ,……. formaln => actualn

Example :

 component nand2

 port (A, B : in std_logic ;

 C : out std_logic) ;

 end component ;

 begin

 V1: nand2 port map (A => S1, B =>S2, C => S3) ;

It is important to note that the symbol '=>' is used within a port map in contrast to the

symbol '<=' used for concurrent or sequential signal assignment statements. If one of the

ports has no signal connected to it, a reserved word open may be used. A function call

can replace the signal name. This allows direct type conversions at the component

instantiation.

CHAPTER 5

GENERICS AND CONFIGURATIONS

GENERICS

It allow static information to be communicated to a block from its environment for all

architectures of a design unit. These include timing information like setup, hold, delay times,

part sizes, and other parameters.

Syntax :

 [generic (list-of-generics-and-their-types) ;]

It can be declared any one of the following :

• Entity Declaration

• Component Declaration

• Component Instantiation

• Configuration Specification

• Configuration Declaration

The generic size can be used inside the entity and in the architecture that matches the

entity. In this example, the generic size is defined as an integer with an initial value 8.

The sizes of the input and output ports of the entity increment are set to be 8 bits unless

the value of the generic is overwritten by a generic map statement in the component

instantiation of the entity.

Example : entity increment is

 generic (size : integer := 8) ;

 port (ivec : in bit_vector (0 to size-1) ;

 ovec : out bit_vector (0 to size-1)) ;

 end increment ;

The other ways of specifying the value of a generic are in a component instantiation.

 U1 : and2 generic map (10) port map (D, S1) ;

 U2 : or2 generic map (M=>8) port map (C, S2) ;

CONFIGURATIONS

 Used to bind component instances to design entities and collect architectures to

make, typically, a simulatable test bench. One configuration could create a functional

simulation while another configuration could create the complete detailed logic design.

With an appropriate test bench the results of the two configurations can be compared.

A configuration does not have any simulation semantics associated with it; it

only specifies how a top-level entity is organized in terms of lower-level entities. The

component names and the entity names, as well as the port names and their order, are

different. The binding information can be specified using a configuration.

Two types of binding

• Configuration Specification

• Configuration Declaration

Configuration specification

 To bind component instantiations to specific entities stored in design libraries. It

appears in the declarations part of the architecture or block in which the components are

instantiated

Syntax :

 for list-of-comp-labels : component-name binding-indication ;

The binding-indication specifies the entity represented by the entity-architecture

pair, and the generic and port bindings, and one of its forms is

 use entity entity-name [(architecture-name)]

 [generic map (generic-association-list)]

 [port map (port-association-list)] - - - - - - Form 1

The list of component labels may be replaced with the keyword all to denote all

instance of a component; it may also be the keyword others to specify all as yet unbound

instances of a component. The generic map is used to specify the values for the generics or

provide the mapping between the generic parameters of the component and the entity to

which it is bound. The port map is used to specify the port bindings between the component

and the bound entity.

Example : Library ieee;

 use ieee.std_logic_1164.all ;

 entity HA

 port (A, B : in std_logic ;

 Sum,Ca : out std_logic) ;

 end HA ;

 architecture HA_str of HA is

 component xor2

 port (A, B : in std_logic ;

 C : out std_logic) ;

 end component ;

 component and2

 port (A, B : in std_logic ;

 C : out std_logic) ;

 end component ;

 for X1 : xor2 use entity work.xor2 (xor_arch);

 for A1 : and2 use entity work.and2 (and_arch);

 begin

 X1 : xor2 port map (A, B, Sum) ;

 A1 : and2 port map (A, B, Ca) ;

 end HA_str ;

Configuration declarations

The binding of component instances to design entities is performed by

configuration specifications; such specifications appear in the declarative part of the

block in which the corresponding component instances are created. In certain cases,

however, it may be appropriate to leave unspecified the binding of component instances

in a given block and to defer such specification until later. A configuration declaration

provides the mechanism for specifying such deferred bindings.

Syntax :

 configuration identifier of entity_name is

 configuration_declarative_part

 use_clause

 | attribute_specification

 block_configuration

 end [configuration] [configuration_simple_name] ;

The entity name identifies the name of the entity declaration that defines the

design entity at the apex of the design hierarchy. For a configuration of a given design

entity, both the configuration declaration and the corresponding entity declaration must

reside in the same library. If a simple name appears at the end of a configuration

declaration, it must repeat the identifier of the configuration declaration.

NOTES

—A configuration declaration achieves its effect entirely through elaboration. There are no

behavioral semantics associated with a configuration declaration.

—A given configuration may be used in the definition of another, more complex

configuration.

Example :

 — An architecture of a microprocessor:

 architecture Structure_View of Processor is

 component ALU port (•••); end component;

 component MUX port (•••); end component;

 component Latch port (•••); end component;

 begin

 A1: ALU port map (•••) ;

 M1: MUX port map (•••) ;

 M2: MUX port map (•••) ;

 M3: MUX port map (•••) ;

 L1: Latch port map (•••) ;

 L2: Latch port map (•••) ;

 end Structure_View ;

— A configuration of the microprocessor:

 library TTL, Work ;

 configuration V_config of Processor is

 use Work.all ;

 for Structure_View

 for A1: ALU use configuration TTL.SN74LS181 ;

 end for ;

 for M1,M2,M3: MUX use entity Multiplex4 (Behavior) ;

 end for ;

 for all: Latch

 end for ; — use defaults

 end for ;

 end configuration V_config ;

A block configuration defines the binding of components in a block, where a block may

be an architecture body, a block statement, or a generate statement.

 Syntax of Block configuration :

 for block-name

 component-configurations

 block-configurations

 end for ;

A block-name is the name of an architecture body, a block statement label, or a generate

statement label.

Syntax of Component-configuration :

 for list-of-comp-labels : component-name

 [binding-indication ;]

 [block-configurations]

 end for ;

There are two other forms of binding indication

 use configuration configuration-name - - - - - - Form 2

 use open - - - - - - Form 3

 In Form 2, the binding indication specifies that the component instance are to be

bound to a configuration of a lower-level entity as specified by the configuration name. In Form

3,the binding indication specifies that the binding is not yet specified and is to be deferred.

Both these forms of binding indication may also be used in a configuration specification.

Example : Library TTL ;

 configuration HA_config of HA is

 for HA_XA

 for X1 : xor2

 use entity work.Xor2 (xor_2) ;

 end for ;

 for A1 : and2

 use entity work.and2 (and_2) ;

 end for ;

 end for ;

 end HA_config ;

Direct Instantiation

It is possible to directly instantiate the entity-architecture pair or a configuration in a

component instantiation statement. This saves the additional binding step necessary when

using components. Two additional forms of the component instantiation statement that can be

used to directly instantiate an entity or a configuration.

Syntax :

 Component-label : entity entity-name

 [(architecture-name)]

 [generic map (generic-association-list)]

 [port map (port-association-list)] ;

 Component-label : configuration config-name

 [generic map (generic-association-list)]

 [port map (port-association-list)] ;

NOTE

No configuration declaration is necessary or possible in this case, since the component

instantiations directly instantiate the appropriate entity-architecture pairs or

configurations. No components declarations are necessary or possible.

Example :

 architecture HA_str of HA is

 begin

 X1 : entity work.xor2 (xor2) port map (A, B, S) ;

 A1 : configuration TTL.and2 port map (A, B,C) ;

 end HA_str ;

CHAPTER 6

SUBPROGRAMS AND PACKAGES

SUBPROGRAMS

 There are two kinds of subprograms: procedures and functions. Both

procedures and functions written in VHDL must have a body and may have

declarations.

 Procedures perform sequential computations and return values in global

objects or by storing values into formal parameters.

 Functions perform sequential computations and return a value as the value of

the function. Functions do not change their formal parameters.

 Subprograms may exist as just a procedure body or a function body.

Subprograms may also have a procedure declarations or a function declaration. When

subprograms are provided in a package, the subprogram declaration is placed in the

package declaration and the subprogram body is placed in the package body.

Procedure Declaration

Syntax :

 procedure identifier [(formal parameter list)] ;

 Formal parameters are separated by semicolons in the formal parameter list.

Each formal parameter is essentially a declaration of an object that is local to the

procedure. The type definitions used in formal parameters must be visible at the place

where the procedure is being declared. No semicolon follows the last formal parameter

inside the parenthesis. Formal parameters may be constants, variables, signals or files.

The default is variable. Formal parameters may have modes in, inout and out Files do

not have a mode. The default is in.If no type is given and a mode of in is used, constant

is the default.

Example :
 procedure build (A : in integer;

 B : inout signal bit_vector;

 C : out real;

 D : file) ;

Procedure Body

Syntax :

 procedure identifier [(formal parameter list)] is

 subprogram declaration

 | subprogram body

 | type declaration

 | subtype declaration

 | constant, object declaration

 | variable, object declaration

 | alias declaration

 | use clause

 begin

 sequential statement(s)

 end procedure identifier ;

 The procedure body formal parameter list is defined above in Procedure

Declaration. When a procedure declaration is used then the corresponding procedure

body should have exactly the same formal parameter list.

Example :

 type op_code is (add, sub, mul, div) ;

 procedure ALU (A, B : in integer ;

 p : in op_code ;

 Z : out integer ;) is

 Begin

 case op is

 when add => Z <= A + B ;

 when sub => Z <= A - B ;

 when mul => Z <= A * B ;

 when others => Z <= A / B ;

 end case ;

Procedure Call

Procedures are invoked by using procedure calls.

Syntax :

 [Label] procedure-name (list-of-actuals) ;

The actuals specify the expressions, signals, variables, or files, that are to be

passed into the procedure and the names of objects that are to receive the computed

values from the procedure.

Example :

 CheckTiming (tPLH, tPHL, Clk, D, Q);

Function Declaration

Syntax :

 function identifier [(formal parameter list)] return a_type ;

 Formal parameters are separated by semicolons in the formal parameter list.

Each formal parameter is essentially a declaration of an object that is local to the

function. The type definitions used in formal parameters must be visible at the place

where the function is being declared. No semicolon follows the last formal parameter

inside the parenthesis.

 Formal parameters may be constants, signals or files. The default is constant.

Formal parameters have the mode in. Files do not have a mode.

 The reserved word function may be preceded by nothing, implying pure, pure

or impure . A pure function must not contain a reference to a file object, slice,

subelement, shared variable or signal with attributes such as 'delayed, 'stable, 'quiet,

'transaction and must not be a parent of an impure function.

Note -- The inout and out are not allowed for functions. The default is in.

Example :

 function random return float ;

 function is_even (A : integer) return boolean ;

Function Body

Syntax :

 function identifier [(formal parameter list)] return a_type is

 subprogram declaration

 | subprogram body

 | type declaration

 | subtype declaration

 | constant, object declaration

 | variable, object declaration

 | alias declaration

 | use clause

 begin

 sequential statement(s)

 return some_value; -- of type a_type

 end function identifier ;

 The function body formal parameter list is defined above in Function

Declaration. When a function declaration is used then the corresponding function body

should have exactly the same formal parameter list.

Example :

 function random return float is

 variable X : float;

 begin

 return X; -- compute X

 end function random ;

Function Call

A function call is an expression and can also be used in large expressions.

Syntax :

 f unction-name (list-of-actuals)

The actuals may be associated by position or using named association.

 sum : = sum + largest (max_coins, collection) ;

PACKAGES

A package is used as a collection of often used data types, components,

functions, and so on. Once these object are declared and defined in a package, they can

be used by different VHDL design units. In particular, the definition of global

information and important shared parameters in complex designs or within a project

team is recommended to be done in packages. It is possible to split a package into a

declaration part and the so-called body. The advantage of this splitting is that after

changing definitions in the package body only this part has to be recompiled and the rest

of the design can be left untouched. Therefore, a lot of time consumed by compiling can

be saved.

Package declarations

A package declaration defines the interface to a package. The scope of a

declaration within a package can be extended to other design units.

Syntax :

 package package_name is

 package_declarative_part :

 subprogram_declaration

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | signal_declaration

 | alias_declaration

 | component_declaration

 | attribute_declaration & specification

 | use_clause

 end [package] [package_name] ;

If a name appears at the end of the package declaration, it must repeat the name of the

package declaration. If a package declarative item is a type declaration, then that

protected type definition must not be a protected type body. Items declared immediately

within a package declaration become visible by selection within a given design unit

wherever the name of that package is visible in the given unit. Such items may also be

made directly visible by an appropriate use clause.

NOTE—Not all packages will have a package body. In particular, a package body is

unnecessary if no subprograms, deferred constants, or protected type definitions are

declared in the package declaration.

Example :

 — A package declaration that needs no package body:

 package TimeConstants is

 constant tPLH : Time := 10 ns;

 constant tPHL : Time := 12 ns;

 constant tPLZ : Time := 7 ns;

 end TimeConstants ;

 — A package declaration that needs a package body:

 package MY PACK is

 type SPEED is (STOP, SLOW, MEDIUM, FAST);

 component HA

 port (I1, I2 : in bit; S, C : out bit);

 end component;

 constant DELAY TIME : time;

 function INT2BIT VEC (INT VALUE : integer) return bit vector;

 end MY PACK;

Package bodies

A package body defines the bodies of subprograms and the values of deferred

constants declared in the interface to the package.

Syntax :

 package body package_name is

 package_body_declarative_part

 subprogram_declaration

 | subprogram_body

 | type_declaration

 | subtype_declaration

 | constant_declaration

 | alias_declaration

 | use_clause

 end [package body] [package_name] ;

The name at the start of a package body must repeat the same name. In addition

to subprogram body and constant declarative items, a package body may contain certain

other declarative items to facilitate the definition of the bodies of subprograms declared

in the interface.

Items declared in the body of a package cannot be made visible outside of the

package body. If a given package declaration contains a deferred constant declaration,

then a constant declaration with the same identifier must appear as a declarative item in

the corresponding package body. This object declaration is called the full declaration of

the deferred constant. The subtype indication given in the full declaration must conform

to that given in the deferred constant declaration. Within a package declaration that

contains the declaration of a deferred constant, and within the body of that package, the

use of a name that denotes the deferred constant is only allowed in the default

expression for a local generic, local port, or formal parameter. The result of evaluating

an expression that references a deferred constant before the elaboration of the

corresponding full declaration is not defined by the language.

Example :

 package body MY PACK is

 constant DELAY TIME : time := 1.25 ns;

 function INT2BIT VEC (INT VALUE : integer)return bit vector is

 begin

 -- sequential behavioral description

 end INT2BIT VEC;

 end MY PACK;

The binding between the package declaration and the body is established by using the same

name. In the above example it is the package name MY PACK.

Packages must be made visible before their contents can be used. The USE clause makes

packages visible to entities, architectures, and other packages.

Syntax :

 Use library_name . Package_name . all ;

Example :

 -- use only the binary and add_bits3 declarations

 USE work .my_stuff.binary, my_stuff.add_bits3;

 ... ENTITY declaration...

 ... ARCHITECTURE declaration ...

 -- use all of the declarations in package my_stuff

 USE work .my_stuff.ALL;

 ... ENTITY declaration...

 ... ARCHITECTURE declaration...

CHAPTER 7

ADVANCED FEATURES

• Generate Statements

• Aliases

• Attributes

GENERATE STATEMENTS

Concurrent statements can be conditionally selected or replicated during the

elaboration phase. The generate Statement provides for a compact description of regular

structures such as memories, registers, and counters.

Two forms of the Generate Statement

• For-generation Scheme

• If-generation Scheme

For-Generation

Concurrent statements can be replicated a predetermined number of times.

Syntax :

 generate-label : for generate-identifier in discrete-range generate

 [block-declarations

 begin]

 concurrent statements

 end generate [generate-label] ;

The values in the discrete range must be globally static, that is, they must be computable at

elaboration time. These statements can also use the generate identifier in their

expressions, and its value would be substituted during elaboration for each replication.

The type of identifier is defined by the discrete range. Declarations, if present, declare items

that are visible only within the generate statement.

Example :

 U1 : for F in 3 downto 0 generate

 sum (F) <= A (F) xor B (F) xor C (F)

 ca (F + 1) <= A (F) and B (F) and C (F)

 end generate U1 ;

If-Generation

Concurrent statements can be conditionally elaborated.

Syntax :

 generate-label : if expression generate

 [block-declarations

 begin]

 concurrent statements

 end generate [generate-label] ;

This statement allows for conditional selection of concurrent statements based on the value of

an expression. This expression must be a globally static expression, that is, the value must be

computable at elaboration time. Any declarations present are again local to the generate

statement.

Example :

 V1 : if User = low_Dly generate

 Z <= A after 2 ns ;

 end generate V1 ;

 V2 : if User = high_Dly generate

 Z <= A after 25 ns ;

 end generate V2 ;

ALIASES

An alias is an alternate name for an existing object. By using an alias of an object, you

actually use the object to which it refers. By assigning to an alias, you actually assign to the

object to which the alias refers.

Syntax :

 alias identifier : subtype_indication is name ;

A reference to an alias is interpreted as a reference to the object or part corresponding to the

alias.

Example :

 variable instr : bit_vector(31 downto 0);

 alias op_code : bit_vector(7 downto 0) is instr(31 downto 24);

declares the name op_code to be an alias for the left-most eight bits of instr.

 signal vec : std_logic_vector (4 downto 0) ;

 alias mid_bit : std_logic is vec(2) ;

 -- Assignment :

 mid_bit <= ’0’ ;

 -- is the same as

 vec(2) <= ’0’ ;

Aliases are often useful in unbound function calls. For instance, if you want to

make a function that takes the AND operation of the two left most bits of an arbitrary

array parameter. If you want to make the function general enough to handle arbitrary

sized arrays, this function could look like this:

 function left_and (arr: std_logic_vector) return std_logic is

 begin

 return arr(arr’left) and arr(arr’left-1) ;

 end left_and ;

 ---- Function does not work for ascending index ranges of arr.

This function will only work correctly if the index range of arr is descending

(downto). Otherwise, arr’left-1 is not a valid index number. VHDL does not have a

simple attribute that will give the one-but-leftmost bit out of an arbitrary vector, so it

will be difficult to make a function that works correctly both for ascending and

descending index ranges. Instead, you could make an alias of arr, with a known index

range, and operate on the alias:

 function left_and (arr : std_logic_vector) return std_logic is

 alias aliased_arr : std_logic_vector (0 to arr’length-1) is arr ;

 begin

 return aliased_arr(0) and aliased_arr(1) ;

 end left_and ;

 ---- Function works for both ascending and descending index ranges of arr.

ATTRIBUTES

It is a value, function, type, range, signal, or constant that can associated with certain

names. Such as an entity name, an architecture name, a label, or a signal

User-defined Attributes

User-defined attributes are constants of any type, except access or file type. They are

declared using attribute declarations User-defined attributes are useful for annotating

language models with tool-specific information.

Attribute Declarations

 It declares the name of the attribute and its type.

Syntax & Example :

 attribute attribute-name : value-type ;

 type Farads is range 0 to 5000 ;

 units

 pf ;

 end units ;

 attribute capacitance : Farads ;

These user-defined attribute with a name and to assign a value to the attribute.

Attribute Specification

 It is used to associate a user-defined attribute with a name and to assign a value to the

attribute.

Syntax :

 attribute attribute-name of item-names : name-class is expression ;

The item-names is a list of one or more names of an entity, architecture,

configuration, component, label, signal, variable, constant, type, subtype, package,

procedure, or function. The name-class indicates the class type, that is, whether it is an

entity, architecture, label, or others. The expression, whose value must belong to the type of

attribute, specifies the value of the attribute.

Example : attribute length of RX_Rdy : signal is 3 micron ;

 attribute capacitance of clk, rst : signal is 20 pf ;

 The item-name in the attribute specification can also be replaced with the keyword all

to indicate all names belonging to that name-class.

Example :

 attribute capacitance of all : variable is 10 pf ;

 After having created an attribute and then associated it with a name, the value of the

attribute can then be used in an expression. An attribute indicates a specific property of the

signal, and is of a defined type. Using attributes at the right places creates a very flexible style

of writing VHDL code.

Syntax :

 item-name ‘ attribute-name

Example :

 signal vector_up : bit_vector (4 to 9) ;

 signal vector_dwn : bit_vector (25 downto 0) ;

 vector_dwn’LEFT -- returns integer 25

 vector_dwn’RANGE -- returns range 25 to 0

 X'EVENT -- TRUE when there is an event on signal X

 Y'HIGH -- returns the highest value in the range of Y

 vector_up’RIGHT -- returns integer 9

 vector_up’RANGE -- returns range 4 to 9

 TEST BENCHES

Testbenches have become the standard method to verify High-Level Language

designs. Typically, testbenches perform the following tasks:

• Instantiate the design under test (DUT)

• Stimulate the DUT by applying test vectors to the model

• Output results to a terminal or waveform window for visual inspection

• Optionally compare actual results to expected results

Testbenches are written in the industry-standard VHDL or Verilog hardware

description languages. Testbenches invoke the functional design, then stimulate it.

Complex testbenches perform additional functions—for example, they contain logic to

determine the proper design stimulus for the design or to compare actual to expected

results. The remaining sections of this note describe the structure of a well-composed

testbench, and provide an example of a self-checking testbench—one that automates the

comparison of actual to expected testbench results.

• Stimuli transmitter to testvectors

• Needs not to be synthesizable

• No ports to the outside

• Environment for DUT

• Verification and validation of the design

• Several output methods and input methods

Syntax :

 Entity testbench_name is

 end testbench_name ;

 architecture testbench_archname of testbench_name is

 signal declarations

 component declarations

 begin

 UUT : component instantiation;

 stimuli;

 end testbench_archname ;

Example :

 library ieee; use ieee.std_logic_1164.all;

 entity testnand is

 end testnand;

 architecture testgate of testnand is

 component my_nand is

 port (A, B : in std_logic; Y : out std_logic);

 end component;

 signal A, B, Y : std_logic;

 begin

 UUT : my_nand port map (A, B, Y);

 process

 begin

 A <= ‘0';wait for 20 ns;

 B <= ‘0‘; wait for 20 ns;

 end process;

 process

 begin

 A <= ‘0';wait for 20 ns;

 B <= ‘1‘; wait for 20 ns;

 end process;

 process

 begin

 A <= ‘0';wait for 20 ns;

 B <= ‘0‘; wait for 20 ns;

 end process;

 process

 begin

 A <= ‘0';wait for 20 ns;

 B <= ‘1‘; wait for 20 ns;

 end process;

 End testgate;

A testbench that instantiates and provides stimulus to the shift register.

library IEEE;

use IEEE.std_logic_1164.all;

entity testbench is

end entity testbench;

architecture test_reg of testbench is

component shift_reg is

port (clock : in std_logic;

reset : in std_logic;

load : in std_logic;

sel : in std_logic_vector(1 downto 0);

data : in std_logic_vector(4 downto 0);

shiftreg : out std_logic_vector(4 downto 0));

end component;

signal clock, reset, load: std_logic;

signal shiftreg, data: std_logic_vector(4 downto 0);

signal sel: std_logic_vector(1 downto 0);

constant ClockPeriod : TIME := 50 ns;

begin

UUT : shift_reg port map (clock => clock, reset => reset,

load => load, data => data,

shiftreg => shiftreg);

process begin

clock <= not clock after (ClockPeriod / 2);

end process;

process begin

reset <= ’1’;

data <= "00000";

load <= ’0’;

set <= "00";

wait for 200 ns;

reset <= ’0’;

load <= ’1’;

wait for 200 ns;

data <= "00001";

wait for 100 ns;

sel <= "01";

load <= ’0’;

wait for 200 ns;

sel <= "10";

wait for 1000 ns;

end process;

end architecture test_reg;

PROGRAMS

--Design Unit : 4X1 Mux

--File Name : MUX.vhd

--Program for AND gate

library ieee;

use ieee.std_logic_1164.all;

entity and3 is

port(a,b,c : in std_logic;

 d: out std_logic);

end and3 ;

architecture data of and3 is

begin

d <=a and b and c;

end data;

--Program for OR gate

library ieee;

use ieee.std_logic_1164.all;

entity or4 is

port(a,b,c,d : in std_logic;

 e: out std_logic);

end or4 ;

architecture data of or4 is

begin

e <=a or b or c or d;

end data;

--Program for NOT gate

library ieee;

use ieee.std_logic_1164.all;

entity inv is

port(a : in std_logic;

 b: out std_logic);

end inv ;

architecture data of inv is

begin

b <=not a;

end data;

--

--Program for 4x1 MUX

library ieee;

use ieee.std_logic_1164.all;

entity mux4x1 is

port(a,b,c,d,sel_1,sel_2 : in std_logic;

 muxout : out std_logic);

end mux4x1 ;

architecture str of mux4x1 is

component and3

port(a,b,c : in std_logic;

 d: out std_logic);

end component;

component or4

port(a,b,c,d : in std_logic;

 e: out std_logic);

end component;

component inv

port(a : in std_logic;

 b: out std_logic);

end component;

signal a1,a2,a3,a4,inv1,inv2 : std_logic;

begin

n1 : inv port map (sel_1,inv1);

n2 : inv port map (sel_2,inv2);

u1 : and3 port map (a,inv1,inv2,a1);

u2 : and3 port map (b,inv1,sel_2,a2);

u3 : and3 port map (c,sel_1,inv2,a3);

u4 : and3 port map (d,sel_1,sel_2,a4);

u5 : or4 port map (a1,a2,a3,a4,muxout);

end str ;

--Design Unit: 3 bit counter

--File Name :counter.vhd

--Program for AND gate

library ieee;

use ieee.std_logic_1164.all;

entity and2 is

port(a,b : in std_logic;

 c: out std_logic);

end and2 ;

architecture data of and2 is

begin

c <=a and b;

end data;

--Program for T flipflop

library ieee;

use ieee.std_logic_1164.all;

entity tff is

port(reset,clock,t : in std_logic;

 q,q1 : inout std_logic);

end tff ;

architecture beh of tff is

begin

 q1 <= not q;

process(reset,clock,t)

begin

if (reset='1')then

 q <= '0';

elsif (clock'event and clock='1') then

 if (t='0') then

 q <= q;

 else

 q <= not q ;

end if; end if;

 end process;

 end beh;

--Program for counter

library ieee;

use ieee.std_logic_1164.all;

entity count3bit is

port(rst,clk : in std_logic;

 count : inout std_logic_vector(2 downto 0));

end count3bit ;

architecture str of count3bit is

component and2

port(a,b : in std_logic;

 c: out std_logic);

end component;

component tff

port(reset,clock,t : in std_logic;

 q,q1 : inout std_logic);

end component;

signal a1 : std_logic;

signal high : std_logic := '1';

begin

u1 : and2 port map (count(1),count(0),a1);

u2 : tff port map (rst,clk,a1,count(2));

u3 : tff port map (rst,clk,count(0),count(1));

u4 : tff port map (rst,clk,high,count(0));

end str ;

--Design Unit : Mealy machine

--File Name : mealy.vhd

library ieee;

use ieee.std_logic_1164.all;

Entity mealy is

port(clk,in1,reset:in std_logic;

out1 : out std_logic_vector(1 downto 0));

end mealy;

Architecture mealy of mealy is

type state_type is (s0,s1,s2,s3);

signal state:state_type;

begin

p1: process(clk.reset)

begin

if reset='1' then state<=s0 ;

elsif clk'event and clk='1' then

case state is

when s0=>if in1='1' then state<=s1;

end if;

when s1=>if in1='0' then state<=s2;

end if;

when s2=>if in1='1' then state<=s3;

end if;

when s3=>if in1='0' then state<=s0;

end if; end case; end if;

end process;

p2: process(state,in1)

begin

case state is

when s0=>if in1='1' then out1<="01";

 else out1<="00";

end if;

when s1=>if in1='0' then out1<="10";

 else out1<="01";

end if;

when s2=>if in1='1' then out1<="11";

 else out1<="10";

end if;

when s3=>if in1='0' then out1<="00";

 else out1<="11";

end if: end case;

end process; end mealy;

--Design Unit : Comparator

--File Name : compar.vhd

library IEEE;

use IEEE.std_logic_1164.all;

entity comparator is

port(x,y:in std_logic_vector(3 downto 0);

 eq,gr,le:out std_logic);

end entity comparator;

architecture iterative of comparator is

begin

 process(x,y)

 variable eqi:std_logic;

begin

 if (x<y)then

 le<=’1’;

elsif (x>y)then

 gr<=’1’;

 if (x=y)then

eq<=’1’; end process;

end architecture iterative;

--Design Unit : 16x7 ROM

--File Name : Rom.vhd

library ieee;

use ieee.std_logic_1164.all;

entity rom16X7 is

 port (address : in INTEGER range 0 to 15;

 data : out std_logic_vector (6 downto 0));

end entity rom16X7;

architecture sevenseg of rom16X7 is

 type rom_array is array (0 to 15) of std_logic_vector(6 downto 0);

 constant rom : rom_array := ("1110111",

 "0010010",

 "1011101",

 "1011011",

 "0111010",

 "1101011",

 "1101111",

 "1010010",

 "1111111",

 "1111011",

 "1101101",

 "1101101",

 "1101101",

 "1101101",

 "1101101",

 "1101101");

 begin

 data <= rom(address);

 end architecture sevenseg;

--Design Unit : Shift Register

--File Name : shiftreg.vhd

--Program for D flipflop

library ieee; use ieee.std_logic_1164.all;

entity dff is

port (d,clk : in std_logic ;

 q : out std_logic);

end dff ;

architecture beh of dff is

begin

process(clk,d)

begin

wait until clk'event and clk='1' ;

q <= d;

end process;

end beh;

--

--Program for Shift Register using generate statement

library ieee;

use ieee.std_logic_1164.all;

entity shift is

 port(din,clk: in std_logic;

 qout: out std_logic);

end shift;

Architecture gen_shift of shift is

component dff

 port(d,clk:in std_logic;

 q:out std_logic);

 end dff;

 signal qsh:std_logic_vector(0 to 7);

 begin

 qsh(0)<=din;

 g1:for i in 0 to 6 generate

 dffx:dff port map(qsh(i),clk,qsh(i+1));

 end generate;

 qout<=qsh(4);

end;

--Design Unit : JK flipflop

--File Name : JKff.vhd

library ieee;

use ieee.std_logic_1164.all;

entity JK_FF is

 port (J,K,Clock,Reset: in std_logic;

 q,qbar : out std_logic);

end entity JK_FF;

architecture sig of JK_ff is

 signal state:std_logic;

begin

p0: process(Clock,Reset) is

 begin

 if (Reset = '0') then

 state <='0';

 elsif rising_edge(Clock) then

 case std_logic_vector'(J,K)is

 when "11" =>

 state <=not state;

 when "10" =>

 state <= '1';

 when "01" =>

 state <= '0';

 when others =>

 null;

 end case;

 end if;

 end process p0;

q <= state;

qbar <= not state;

end architecture sig;

--Design Unit : ALU

--File Name : Alu.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic _arith.all;

use ieee.std_logic _unsigned.all;

entity alu is

 port(reset:in std_logic;

 b, sel :in std_logic_vector(3 downto 0);

 acc, prod :inout std_logic_vector(7 downto 0);

 flag :inout std_logic_vector(1 downto 0);

end alu;

architecture Behavioral of alu is

signal count:std_logic_vector(3 downto 0);

begin

 Process(count,prod)

 begin

 case sel is

 when "0000"=>--addition

 acc<=acc+b;

 when "0001"=>--subtration

 acc<=acc-b;

 when "0010"=>--multiplication

 if(count< b)then

 acc<=acc+prod; count<=count+'1';

 end if;

 when "0011"=>--divion

 if(prod>=b)then

 prod<=prod-b;

 acc<="0000"&count+'1';

 count<=count+'1';

 end if;

 when "0100"=>--increment

 acc<=acc+'1';

 when "0101"=>--decrement

 acc<=acc-'1';

 when "0110"=> --compare

 if(acc<b)then

 flag(1) <='1';

 elsif(acc >=b) then

 flag(1) <='0';

 end if;

 if(acc=b) then

 flag(0) <='0';

 else

 flag(0) <='1';

 end if;

 when "1000" =>--and

 acc <= acc and prod;

 when "1001"=>--or

 acc<= acc or prod;

 when "1010"=>--nand

 acc<= acc nand prod;

 when "1011"=>--nor

 acc<= acc nor prod;

 when "1100"=>--xor

 acc<= acc xor prod;

 when "1101"=>--xnor

 acc<= acc xnor prod;

 when "1110"=>--not

 acc<=not acc;

 when others => acc <= acc;

 end case;

 if(reset'event and reset='1') then

 acc <= "00000000";

 end if;

 if(sel'event and sel = "0011") then

 prod <=acc;

 acc <= "00000000";

 count <="0000";

 end if;

 if(sel'event and sel = "0010") then

 acc <= "00000000";

 prod <= acc;

 count <= "0000";

 end if;

 if(sel (3) ='1') then

 prod <= "0000" & b;

 end if; end process;

 end Behavioral;

--Design Unit : Pseudo Random Bit Sequence Generator

--File Name : prbs_gen.vhd

entity prbsgen is

 generic(length : Positive := 8; tap1 : Positive := 8; tap2 : Positive := 4);

 port(clk, reset : in Bit; prbs : out Bit);

end prbsgen;

 architecture v2 of prbsgen is

 signal prreg : Bit_Vector(length downto 0);

begin

 prreg <= (0 => '1', others=> '0') when reset = '1' else

 (prreg((length - 1) downto 0) & (prreg(tap1) xor prreg(tap2)))

 when clk'event and clk = '1' else

 prreg;

 prbs <= prreg(length);

 end v2;

--Design Unit : 7-Segment Decoder

--File Name : segdec.vhd

library ieee;

use ieee.std_logic_1164.all;

entity adcout is port(nib0: in std_logic_vector(3 downto 0);

 nib1: in std_logic_vector(3 downto 0);

 clk: in bit;

 dis0: out bit;

 dis1: out bit;

 ssdout: out std_logic_vector(7 downto 0));

end adcout;

architecture arch_adc of adcout is

signal tmp : std_logic_vector(3 downto 0);

begin

-- a

-- --

-- f| | b

-- -- -- seven segment display format (.gfedcba)

-- e| g | c

-- --

-- d

process(clk,tmp,nib0,nib1)

 begin

 if clk = '0' then

 tmp <= nib0;

 dis0 <= '0';

 dis1 <= '1';

 elsif clk = '1' then

 tmp <= nib1;

 dis0 <= '1';

 dis1 <= '0';

end if;

 if tmp = "0000" then

 ssdout <= "11000000";

 elsif tmp = "0001" then

 ssdout <= "11111001";

 elsif tmp = "0010" then

 ssdout <= "10100100";

 elsif tmp = "0011" then

 ssdout <= "10110000";

 elsif tmp = "0100" then

 ssdout <= "10011001";

 elsif tmp = "0101" then

 ssdout <= "10010010";

 elsif tmp = "0110" then

 ssdout <= "10000010";

 elsif tmp = "0111" then

 ssdout <= "11111000";

 elsif tmp = "1000" then

 ssdout <= "10000000";

 elsif tmp = "1001" then

 ssdout <= "10010000";

 elsif tmp = "1010" then

 ssdout <= "10001000";

 elsif tmp = "1011" then

 ssdout <= "10000011";

 elsif tmp = "1100" then

 ssdout <= "11000110";

 elsif tmp = "1101" then

 ssdout <= "10100001";

 elsif tmp = "1110" then

 ssdout <= "10000110";

 elsif tmp = "1111" then

 ssdout <= "10001110";

 end if;

 end process;

end arch_adc;

--Design Unit : 3-bit 1-of-9 Priority Encoder

--File Name : prienc.vhd

.library ieee;

use ieee.std_logic_1164.all;

entity priority is

port (sel : in std_logic_vector (7 downto 0);

 code :out std_logic_vector (2 downto 0));

end priority;

architecture archi of priority is

begin

 code <= "000" when sel(0) = '1' else

 "001" when sel(1) = '1' else

 "010" when sel(2) = '1' else

 "011" when sel(3) = '1' else

 "100" when sel(4) = '1' else

 "101" when sel(5) = '1' else

 "110" when sel(6) = '1' else

 "111" when sel(7) = '1' else

 "---";

end archi;

--Design Unit : Fibonacci series

--File Name : Fibo.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity Fibonacci is

port

(

 Reset : in std_logic;

 Clock : in std_logic;

 Number : out unsigned(31 downto 0)

);

end entity Fibonacci;

architecture fibo_arch of Fibonacci is

 signal Previous : natural;

 signal Current : natural;

 signal Next_Fib : natural;

begin

 Adder:

 Next_Fib <= Current + Previous;

 Registers: process (Clock, Reset) is

 begin

 if Reset = '1' then

 Previous <= 1;

 Current <= 1;

 elsif rising_edge(Clock) then

 Previous <= Current;

 Current <= Next_Fib;

 end if;

 end process Registers;

 Number <= to_unsigned(Previous, 32);

end architecture fibo_arch;

Verilog

CONTENTS

1. INTRODUCTION

2. HISTORY OF VERILOG

3. VERILOG HDL SYNTAX AND SEMATICS

4. GATE LEVEL MODELLING

5. VERILOG OPERATORS

6. BEHAVIOUR LEVEL MODELLING

7. TASK AND FUNCTIONS

INTRODUCTION

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). A hardware

description Language is a language used to describe a digital system, for example, a

microprocessor or a memory or a simple flip-flop. This just means that, by using a HDL one

can describe any hardware (digital) at any level.

Verilog is one of the HDL languages available in the industry for designing the

Hardware. Verilog allows us to design a Digital design at Behavior Level, Register Transfer

Level (RTL), Gate level and at switch level. Verilog allows hardware designers to express

their designs with behavioral constructs, deterring the details of implementation to a later

stage of design in the final design.

Abstraction Levels of Verilog

Verilog supports a design at many different levels of abstraction. Three of them are

very important:

 Behavioral level

 Register-Transfer Level

 Gate Level

Behavioral level

This level describes a system by concurrent algorithms (Behavioral). Each

algorithm itself is sequential, that means it consists of a set of instructions that are

executed one after the other. Functions, Tasks and Always blocks are the main elements.

There is no regard to the structural realization of the design.

Register-Transfer Level

Designs using the Register-Transfer Level specify the characteristics of a circuit

by operations and the transfer of data between the registers. An explicit clock is used.

RTL design contains exact timing possibility, operations are scheduled to occur at

certain times. Modern definition of a RTL code is "Any code that is synthesizable is

called RTL code".

Gate Level

Within the logic level the characteristics of a system are described by logical links

and their timing properties. All signals are discrete signals. They can only have definite

logical values (`0', `1', `X', `Z`). The usable operations are predefined logic primitives

(AND, OR, NOT etc gates). Using gate level modeling might not be a good idea for any

level of logic design. Gate level code is generated by tools like synthesis tools and this net

list is used for gate level simulation and for backend.

History of Verilog

Verilog was started initially as a proprietary hardware modeling language by

Gateway Design Automation Inc. around 1984. It is rumored that the original

language was designed by taking features from the most popular HDL language of

the time, called Hilo as well as from traditional computer language such as C. At that

time, Verilog was not standardized and the language modified itself in almost all the

revisions that came out within 1984 to 1990.

Verilog simulator was first used beginning in 1985 and was extended

substantially through 1987.The implementation was the Verilog simulator sold by

Gateway. The first major extension was Verilog-XL, which added a few features and

implemented the infamous "XL algorithm" which was a very efficient method for

doing gate-level simulation.

The time was late 1990. Cadence Design System, whose primary product at

that time included thin film process simulator, decided to acquire Gateway

Automation System. Along with other Gateway product, Cadence now became the

owner of the Verilog language, and continued to market Verilog as both a language

and a simulator. At the same time, Synopsys was marketing the top- down design

methodology, using Verilog. This was a powerful combination.

In 1990, Cadence recognized that if Verilog remained a closed language, the

pressures of standardization would eventually cause the industry to shift to VHDL.

Consequently, Cadence organized Open Verilog International (OVI), and in 1991

gave it the documentation for the Verilog Hardware Description Language. This was

the event which "opened" the language.

OVI did a considerable amount of work to improve the Language Reference

Manual (LRM), clarifying things and making the language specification as vendor-

independent as possible. In 1990 soon it was realized, that if there were too many

companies in the market for Verilog, potentially everybody would like to do what

Gateway did so far - changing the language for their own benefit. This would defeat

the main purpose of releasing the language to public domain. As a result in 1994, the

IEEE 1364 working group was formed to turn the OVI LRM into an IEEE standard.

This effort was concluded with a successful ballot in 1995, and Verilog became an

IEEE standard in December, 1995.

When Cadence gave OVI the LRM, several companies began working on

Verilog simulators. In 1992, the first of these were announced, and by 1993 there

were several Verilog simulators available from companies other than Cadence. The

most successful of these was VCS, the Verilog Compiled Simulator, from

Chronologic Simulation. This was a true compiler as opposed to an interpreter, which

is what Verilog-XL was. As a result, compile time was substantial, but simulation

execution speed was much faster.

In the meantime, the popularity of Verilog and PLI was rising exponentially.

Verilog as a HDL found more admirers than well-formed and federally funded VHDL.

It was only a matter of time before people in OVI realized the need of a more

universally accepted standard. Accordingly, the board of directors of OVI requested

IEEE to form a working committee for establishing Verilog as an IEEE standard. The

working committee 1364 was formed in mid 1993 and on October 14, 1993, it had its

first meeting. The standard, which combined both the Verilog language syntax and

the PLI in a single volume, was passed in May 1995 and now known as IEEE Std.

1364-1995.

After many years, new features have been added to Verilog, and new version is

called Verilog 2001. This version seems to have fixed lot of problems that Verilog

1995 had. This version is called 1364-2000. Only waiting now is that all the tool

vendors implementing it.

Verilog HDL Syntax and Semantics

Lexical Conventions

The basic lexical conventions used by Verilog HDL are similar to those in the

C programming language. Verilog HDL is a case-sensitive language. All keywords are

in lowercase.

White Space

White space can contain the characters for blanks, tabs, newlines, and form

feeds. These characters are ignored except when they serve to separate other tokens.

However, blanks and tabs are significant in strings.

White space characters are:

Blank spaces

Tabs

Carriage returns

New-line

Form-feeds

Comments

There are two forms to introduce comments.

Single line comments begin with the token // and end with a carriage return

Multi Line comments begin with the token /* and end with the token*/

 few verilog */

module addbit (
a,
b,
ci,
sum,
co);
// Input Ports
input a;
input b;
input ci;
// Output ports
output sum;
output co;
// Data Types

wire a;
wire b;
wire ci;
wire sum;
wire co;

Examples of Comments

/* 1-bit adder example for showing

Case Sensitivity

Verilog HDL is case sensitive

Lower case letters are unique from upper case letters

All Verilog keywords are lower case

Examples of unique names

input // a Verilog

Keyword wire // a Verilog

Keyword

WIRE // a unique name (not a keyword)

Wire // a unique name (not a keyword)

Identifiers

Identifiers are names used to give an object, such as a register or a module, a

name so that it can be referenced from other places in a description.

Identifiers must begin with an alphabetic character or the underscore

character (a-z A-Z _).Identifiers may contain alphabetic characters, numeric

characters, the underscore, and the dollar sign (a-z A-Z 0-9 _ $) Identifiers can be

up to 1024 characters long.

Escaped Identifiers

Verilog HDL allows any character to be used in an identifier by escaping

the identifier. Escaped identifiers provide a means of including any of the printable

ASCII characters in an identifier (the decimal values 33 through 126, or 21

through 7E in hexadecimal). Escaped identifiers begin with the back slash (\)

Entire identifier is escaped by the back slash Escaped identifier is terminated by

white space o Characters such as commas, parentheses, and semicolons become

part of the escaped identifier unless preceded by a white space. Terminate escaped

identifiers with white space, otherwise characters that should follow the identifier

are considered as part of it.

Numbers in Verilog

You can specify constant numbers in decimal, hexadecimal, octal, or binary

format. Negative numbers are represented in 2's complement form. When used in a

number, the question mark (?) character is the Verilog alternative for the z character.

The underscore character (_) is legal anywhere in a number except as the first

character, where it is ignored.

Integer Numbers

Verilog HDL allows integer numbers to be specified as Sized or unsized

numbers (Unsized size is 32 bits) In a radix pf binary, octal, decimal, or hexadecimal

Radix is case and hex digits (a,b,c,d,e,f) are insensitive Spaces are allowed between the

size, radix and value.

Syntax: <size>'<radix><value>

Verilog expands <value> to be fill the specified <size> by working from right-to-left

When <size> is smaller than <value>, then left-most bits of <value> are truncated

When <size> is larger than <value>, then left-most bits are filled, based on the

value of the left-most bit in <value>.

Left most '0' or '1' are filled with '0', 'Z' are filled with 'Z' and 'X' with 'X'

Example of integer numbers

8’hCA 11001010

16’bZ filled with 16 Z's

Real Numbers

Verilog supports real constants and variables

Verilog converts real numbers to integers by rounding

Real Numbers can not contain 'Z' and 'X'

Real numbers may be specified in either decimal or scientific notation

 <value>.<value>

<mantissa>E<exponent>

Real numbers are rounded off to the nearest integer.

Example of Real Numbers

1.2,0.6

Signed and Unsigned Numbers

Verilog supports both the type of numbers, but with certain restrictions. Like

in C language we don't have int and unint types to say if a number is signed integer or

unsigned integer.

Any number that does not have negative sign prefix is a positive number. Or

indirect way would be "Unsigned".

Negative numbers can be specified by putting a minus sign before the size

for a constant number, thus become signed numbers. Verilog internally represents

negative numbers in 2's compliment format. An optional signed specifier can be

added for signed arithmetic.

Examples

32'hDEAD_BEEF Unsigned or signed positive Number

 -14'h1234 Signed negative number

Ports:

Ports allow communication between a module and its environment. All but the

top-level modules in a hierarchy have ports. Ports can be associated by order or by

name.

You declare ports to be input, output or inout. The port declaration syntax is :

input [range_val:range_var] list_of_identifiers;

output [range_val:range_var] list_of_identifiers;

inout [range_val:range_var] list_of_identifiers;

Examples: Port Declaration

input clk ; // clock input

input [15:0] data_in ; // 16 bit data input bus

output [7:0] count ; // 8 bit counter output

inout data_bi ; // Bi-Directional data bus

Examples : A complete Example in Verilog

Data Types

Verilog Language has two primary data types

Nets - represents structural connections between components.

Registers - represent variables used to store data.

Every signal has a data type associated with it:

Explicitly declared with a declaration in your Verilog code.

Implicitly declared with no declaration but used to connect structural

building blocks in your code.

Implicit declaration is always a net of type wire and is one bit wide.

Types of Nets

Each net type has functionality that is used to model different types of

hardware (such as PMOS, NMOS, CMOS, etc)

Net Data Type Functionality

wire tri Interconnecting wire - no special

resolution function

wor trior
Wired outputs OR together (models ECL)

wand triand Wired outputs AND together (models

open-collector)

tri0 tri1 Net pulls-down or pulls-up when not

driven

supply0 supply1 Net has a constant logic 0 or logic 1

(supply strength)

Register Data Types

Registers store the last value assigned to them until another assignment

statement changes their value. Registers represent data storage constructs. You can

create arrays of the regs called memories. register data types are used as variables in

procedural blocks. A register data type is required if a signal is assigned a value within

a procedural block. Procedural blocks begin with keyword initial and always.

Data types Functionality
reg Unsigned variable
integer Signed variable - 32 bits
time Unsigned integer - 64 bits
real Double precision floating point variable

Strings

A string is a sequence of characters enclosed by double quotes and all

contained on a single line. Strings used as operands in expressions and assignments

are treated as a sequence of eight-bit ASCII values, with one eight-bit ASCII value

representing one character. To declare a variable to store a string, declare a register

large enough to hold the maximum number of characters the variable will hold. Note

that no extra bits are required to hold a termination character; Verilog does not store a

string termination character. Strings can be manipulated using the standard operators.

When a variable is larger than required to hold a value being assigned, Verilog pads

the contents on the left with zeros after the assignment. This is consistent with the

padding that occurs during assignment of non-string values.

Certain characters can be used in strings only when preceded by an

introductory character called an escape character. The following table lists these

characters in the right-hand column with the escape sequence that represents the

character in the left-hand column.

Special characters in string

\n New line character

\t Tab character

\\ Backslash (\) character

\" Double quote (") character

\ddd A character specified in 1-3 octal digits (0 <= d <= 7)

%% Percent (%) character

Example

reg [8*17:0] version ; // Declare a register variable that is 18 bytes

initial

version = "model version 1.0";

Port Connection Rules

Inputs : internally must always be type net, externally the inputs can be

connected to variable reg or net type.

Outputs : internally can be type net or reg, externally the outputs

must be connected to a variable net type.

Inouts : internally or externally must always be type net, can only be

connected to a variable net type.

Width matching: It is legal to connect internal and external ports of different sizes.

But beware, synthesis tools could report problems.

Unconnected ports: unconnected ports are allowed by using a "," The net data

types are used to connect structure

A net data type is required if a signal can be driven a structural connection.

Gate Level Modeling

Introduction

Verilog has built in primitives like gates, transmission gates, and switches. This

are rarely used for in design work, but are used in post synthesis world for modeling the

ASIC/FPGA cells, this cells are then used for gate level simulation or what is called as

SDF simulation.

Gate Primitives

The gates have one scalar output and multiple scalar inputs. The 1st terminal in the list of

gate terminals is an output and the other terminals are inputs.

 And N-input and gate

Nand N-input nand gate

Or N-input or gate

Nor N-input nor gate

Xor N-input xor gate

Xnor N-input xnor gate

Examples

and U1(out,in);

and U2(out,in1,in2,in3,in4);

xor U3(out,in1,in2,in3);

 N-output invertor.
 N-output buffer.
 Tri-state buffer, Active low en.
 Tri-state buffer, Active high en.
 Tristate inverter, Low en.

notif1

Tristate inverter, High en.

Transmission Gate Primitives

not

buf

bufif0

bufif1

notif0

Examples

bufif0 U1(data_bus,data_drive, data_enable_low);

buf U2(out,in);

not U3(out,in);

Switch Primitives

1

pmos Uni-directional PMOS switch
rpmos Resistive PMOS switch

2

nmos Uni-directional NMOS switch

rnmos Resistive NMOS switch

3

cmos Uni-directional CMOS switch

rcmos Resistive CMOS switch

4

tranif1 Bi-directional transistor (High)
tranif1 Resistive transistor (High)

5

tranif0 Bi-directional transistor (Low)
rtranif1 Resistive Transistor (Low)

6

tran Bi-directional pass transistor
rtran Resistive pass transistor

 zero, low, false
 1 one, high, true

z or Z high impendence, floating
 x or X unknown, uninitialized, contention

Strength
Level

Strength
Specification

Keyword

 7 Supply Drive supply0 supply1
 6 Strong Pull strong0 strong1

 pull0 pull1 Pull Drive

 Small Capacitance small
 0 Hi Impedance highz0 highz1

Syntax: keyword unique_name (inout1, inout2, control);

tranif0 my_gate1 (net5, net8, cnt);

rtranif1 my_gate2 (net5, net12, cnt);

Transmission gates tran and rtran are permanently on and do not have a

control line. Tran can be used to interface two wires with separate drives, and rtran

can be used to weaken signals. Resistive devices reduce the signal strength which

appears on the output by one level. All the switches only pass signals from source to

drain, incorrect wiring of the devices will result in high impedance outputs.

Logic Values and signal Strengths

The Verilog HDL has got four logic values

0

Verilog Strength Levels

 5

4 Large Capacitance large
 3 Weak Drive weak0 weak1

2 Medium Capacitance medium
 1

Examples

Designing Using Primitives

Two buffers that has output

A : Pull 1

B : Supply 0

Since supply 0 is stronger then pull

1, Output C takes value of B.

Two buffers that has output

A : Supply 1

B : Large 1

Since Supply 1 is stronger then

Large 1, Output C takes the value

of A

AND Gate from NAND Gate

Verilog code

// Structural model of AND gate from two NANDS

module and_from_nand(X, Y, F);

input X, Y;

output F;

wire W;

// Two instantiations of the module NAND

nand U1(X, Y, W);

nand U2(W, W, F);

endmodule

D-Flip flop from NAND Gate

Verilog Code

module dff(Q,Q_BAR,D,CLK);

output Q,Q_BAR;

input D,CLK;

nand U1 (X,D,CLK) ;

nand U2 (Y,X,CLK) ;

nand U3 (Q,Q_BAR,X);

nand U4 (Q_BAR,Q,Y);

endmodule

Multiplexer from primitives

Verilog Code

 //Module 4-2 Mux
 module mux (c0,c1,c2,c3,A,B,Y);
 input c0,c1,c2,c3,A,B;
 ouput Y;
 //Invert the sel signals
 not (a_inv, A);
 not (b_inv, B);
 // 3-input AND gate
 and (y0,c0,a_inv,b_inv);
 and (y1,c1,a_inv,B);
 and (y2,c2,A,b_inv);
 and (y3,c3,A,B);
 // 4-input OR gate
 or (Y, y0,y1,y2,y3);

endmodule

Gate and Switch delays

In real circuits , logic gates haves delays associated with them. Verilog

provides the mechanism to associate delays with gates.

Rise, Fall and Turn-off delays.

Minimal, Typical, and Maximum delays.

Rise Delay

The rise delay is associated with a gate output transition to 1 from another

value (0,x,z).

Fall Delay :

The fall delay is associated with a gate output transition to 0 from another

value (1,x,z).

Turn-off Delay

The fall delay is associated with a gate output transition to z from another

value (0,1,x).

Min Value

The min value is the minimum delay value that the gate is expected to

have.

Max Value

The max value is the maximum delay value that the gate is expected to

have.

Examples

// Delay for all transitions

or #5 u_or (a,b,c);

// Rise and fall delay

and #(1,2) u_and (a,b,c);

// Rise, fall and turn off delay

nor # (1,2,3) u_nor (a,b,c);

//One Delay, min, typ and max

nand #(1:2:3) u_nand (a,b,c);

//Two delays, min,typ and max

buf #(1:4:8,4:5:6) u_buf (a,b);

//Three delays, min, typ, and max

notif1 #(1:2:3,4:5:6,7:8:9) u_notif1 (a,b,c);

Gate Delay Code Example

module not_gate (in,out);
 input in;
 output out;

 not #(5) (out,in);

endmodule

Gate Delay Code Example

module not_gate (in,out);
 input in;
 output out;

 not #(2,3) (out,in);

endmodule

Normally we can have three models of delays, typical, minimum and

maximum delay. During compilation of a modules one needs to specify the

delay models to use, else Simulator will use the typical model.

N-Input Primitives

The and, nand, or, nor, xor, and xnor primitives have one output and any

number of inputs

The single output is the first terminal

All other terminals are inputs

Examples

// Two input AND gate

and u_and (out, in1, in2);

// four input AND gate

and u_and (out, in1, in2, in3, in4);

// three input XNOR gate

xnor u_xnor (out, in_1, in_2, in_3);

N-Output Primitives

The buf and not primitives have any number of outputs and one input

The output are in first terminals listed.

The last terminal is the single input.

Examples

// one output Buffer gate

buf u_buf (out,in);

// four output Buffer gate

buf u_buf (out_0, out_1, out_2, out_3, in);

// three output Invertor gate

not u_not (out_a, out_b, out_c, in);

Verilog Operators

Arithmetic Operators

Binary: +, -, *, /, % (the modulus operator)

Unary: +, -

Integer division truncates any fractional part

The result of a modulus operation takes the sign of the first operand

If any operand bit value is the unknown value x, then the entire result

value is x

Register data types are used as unsigned values

o negative numbers are stored in two’s complement form

Relational Operators

a<b a less than b a>b

 a greater than b

a<=b a less than or equal to b a>=b

 a greater than or equal to b

The result is a scalar value:

0 if the relation is false

1 if the relation is true

x if any of the operands has unknown x bits

Note: If a value is x or z, then the result of that test is false

Equality Operators

a === b a equal to b, including x and z

a !== b a not equal to b, including x and z

a == b a equal to b, resulting may be unknown

a != b a not equal to b, result may be unknown

Logical Operators

! logic negation

&& logical and

|| logical or

Expressions connected by && and || are evaluated from left to right

Evaluation stops as soon as the result is known

The result is a scalar value:

• 0 if the relation is false

• 1 if the relation is true

• x if any of the operands has unknown x bits

Bit-wise Operators

~ negation

& and

| inclusive or

^ exclusive or

^~ or ~^ exclusive nor (equivalence)

Computations include unknown bits, in the following way:

• ~x = x

• 0&x = 0

• 1&x = x&x = x

• 1|x = 1

• 0|x = x|x = x

• 0^x = 1^x = x^x = x

• 0^~x = 1^~x = x^~x = x

When operands are of unequal bit length, the shorter operand is zero-filled in the most

significant bit positions

Reduction Operators

& and
~& nand

| or
~| nor
^ xor

^~ or ~^ xnor

Reduction operators are unary.

Shift Operators

 << left shift

 >> right shift

The left operand is shifted by the number of bit positions given by the right operand.

The vacated bit positions are filled with zeroes.

Concatenation Operator

Concatenations are expressed using the brace characters { and }, with commas

separating the expressions within

Examples

{a, b[3:0], c, 4'b1001} // if a and c are 8-bit numbers, the results has 24 bits

Unsized constant numbers are not allowed in concatenations

Repetition multipliers that must be constants can be used:

{3{a}} // this is equivalent to {a, a, a} Nested

concatenations are possible:

 {b, {3{c, d}}} // this is equivalent to {b, c, d, c, d, c, d}

Conditional Operator

The conditional operator has the following C-like format:

 cond_expr ? true_expr : false_expr

The true_expr or the false_expr is evaluated and used as a result depending on

whether cond_expr evaluates to true or false

Example

out = (enable) ? data : 8'bz; // Tri state buffer

Operator precedence

Operator Symbols

Unary, Multiply, Divide,

Modulus
+ - ! ~ * / %

Add, Subtract, Shift. +, - , <<, >>

Relation, Equality <,>,<=,>=,==,!=,===,!===

Reduction &, !&,^,^~,|,~|

Logic &&, ||

Conditional ?:

Behavioral Modeling

Verilog HDL Abstraction Levels

Behavioral Models: Higher level of modeling where behavior of logic is modeled.

RTL Models: Logic is modeled at register level

Structural Models: Logic is modeled at both register level and gate level.

Procedural Blocks

Verilog behavioral code is inside procedures blocks, but there is a exception, some

behavioral code also exist outside procedures blocks. We can see this in detail as

we make progress.

There are two types of procedural blocks in Verilog

initial : initial blocks execute only once at time zero (start execution at time

zero).

always : always blocks loop to execute over and over again, in other words as name

means, it executes always.

Example : initial and always

initial always @ (posedge clk)

begin begin : D_FF

clk = 0; if (reset == 1)

reset = 0; q <= 0;

enable = 0; else

data = 0; q <=d;

end end

Procedural Assignment Statements

Procedural assignment statements assign values to registers and can not assign

values to nets (wire data types)

You can assign to the register (reg data type) the value of a net

(wire), constant, another register, or a specific value.

Example : Bad and Good procedural assignment

wire clk, reset; reg clk, reset;

reg enable, data; reg enable, data;

initial initial

begin begin

clk = 0; clk = 0;

reset = 0; reset = 0;

enable = 0; enable = 0;

data = 0; data = 0;

end end

Procedural Assignment Groups

If a procedure block contains more then one statement, those statements must be

enclosed within

Sequential begin - end block

Parallel fork - join block

When using begin-end, we can give name to that group. This is called named

blocks.

Example : "begin-end" and "fork - join"

initial initial

begin fork

#1 clk = 0; #1 clk = 0;

#5 reset = 0; #5 reset = 0;

#5 enable = 0; #5 enable = 0;

#2 data = 0; #2 data = 0;

end join

Begin : clk gets 0 after 1 time unit, reset gets 0 after 6 time units, enable after 11 time

units, data after 13 units. All the statements are executed in sequentially.

Fork : clk gets value after 1 time unit, reset after 5 time units, enable after

5 time units, data after 2 time units. All the statements are executed in

parallel.

The Conditional Statement if-else

The if - else statement controls the execution of other statements, In

programming language like c, if - else controls the flow of program.

if (condition)

statements;

if (condition)

statements;

else

statements;

if (condition)

statements;

else if (condition)

statements;

................

................

else

statements;

Example

// Simple if statement

if (enable)

q <= d;

// One else statement

if (reset == 1'b1)

q <= 0;;

else

q <= d;

// Nested if-else-if statements

if (reset == 1'b0)

counter <= 4'b0000;

else if (enable == 1'b1 && up_en == 1'b1)

counter <= counter + 1'b1;

else if (enable == 1'b1 && down_en == 1'b1);

counter <= counter - 1'b0;

else

counter <= counter; // Redundant code

The Case Statement

The case statement compares a expression to a series of cases and executes the

statement or statement group associated with the first matching case

Case statement supports single or multiple statements. Group multiple

statements using begin and end keywords.

case (<expression>)

<case1> : <statement>

<case2> : <statement>

.....

default : <statement>

endcase

Example

module mux (a,b,c,d,sel,y);
 input a, b, c, d;
 input [1:0] sel;
 output y;
 reg y;
 always @ (a or b or c or d or sel)
 case (sel)
 0 : y = a;
 1 : y = b;
 2 : y = c;
 3 : y = d;
 default : $display("Error in SEL");
 endcase

endmodule

The Verilog case statement does an identity comparison (like the === operator),

One can use the case statement to check for logic x and z values

Example with z and x

case(enable)

1'bz : $display ("enable is floating");

1'bx : $display ("enable is unknown");

default : $display ("enable is %b",enable);

endcase

The casez and casex statement

Special versions of the case statement allow the x ad z logic values to be used as

"don't care"

casez uses the z as the don't care instead of as a logic value casex uses either the x

or the z as don't care instead of as logic values

Example casez

casez(opcode)

4'b1zzz : out = a; // don't care about lower 3 bits

4'b01??: out = b; //the ? is same as z in a number

4'b001?: out = c;

default : out = $display ("Error xxxx does matches 0000");

endcase

Looping Statements

Looping statements appear inside a procedural blocks only, Verilog has four looping

statements like any other programming language.

forever

repeat

while

for

The forever statement

The forever loop executes continually, the loop never ends

syntax : forever <statement>

Example : Free running clock generator

initial begin

clk = 0;

forever #5 clk = !clk;

end

The repeat statement

The repeat loop executes statement fixed <number> of times

syntax : repeat (<number>) <statement>

Example:

if (opcode == 10) //perform rotate

repeat (8) begin

temp = data[7];

data = {data<<1,temp};

end

The while loop statement

The while loop executes as long as an <expression> evaluates as true

syntax : while (<expression>) <statement>

Example :

loc = 0;

if (data = 0) // example of a 1 detect shift value

loc = 32;

else while (data[0] == 0); //find the first set bit

begin

loc = loc + 1;

data = data << 1;

end

The for loop statement

The for loop is same as the for loop used in any other programming language.

Executes an <initial assignment> once at the start of the loop. Executes the loop as

long as an <expression> evaluates as true. Executes a <step assignment> at the end of

each pass through the loop.

syntax : for (<initial assignment>; <expression>, <step assignment>)

<statement>

Example :

for (i=0;i<=63;i=i+1)

ram[i] <= 0; // Inialize the RAM with 0

Continuous Assignment Statements

Continuous assignment statements drives nets (wire data type). They represent

structural connections.

They are used for modeling Tri-State buffers.

They can be used for modeling combinational logic.

They are outside the procedural blocks (always and initial blocks).

The continuous assign overrides and procedural assignments.

The left-hand side of a continuous assignment must be net data

type.

syntax : assign (strength, strength) # delay net = expression;

Example: 1-bit Adder

module adder (a,b,sum,carry);
input a, b;
output sum, carry;
assign #5 {carry,sum} = a+b;

endmodule

Example: Tri-State Buffer

module tri_buf(a,b,enable);

input a, enable;

output b;

assign b = (enable) ? a : 1'bz;

endmodule

Propagation Delay

Continuous Assignments may have a delay specified, Only one delay for all

transitions may be specified. A minimum:typical:maximum delay range may be

specified.

Example : Tri-State Buffer

module tri_buf(a,b,enable);

input a, enable;

output b;

assign #(1:2:3) b = (enable) ? a : 1'bz;

endmodule

Procedural Block Control

Procedural blocks become active at simulation time zero, Use level sensitive

even controls to control the execution of a procedure.

always @ (d or enable)
if (enable)
 q = d;

An event sensitive delay at the begining of a procedure, any change in either d or

enable satisfies the even control and allows the execution of the statements in the

procedure. The procedure is sensitive to any change in d or enable.

Combo Logic using Procedural Coding

To model combinational logic, a procedure block must be sensitive to any change on

the input.

Example : 1-bit Adder

module adder (a,b,sum,carry);
input a, b;
output sum, carry;
reg sum, carry;

always @ (a or b)

begin

{carry} = a + b;

endmodule

The statements within the procedural block work with entire vectors at a time.

Example : 4-bit Adder

module adder (a,b,sum,carry);
input [3:0] a, b;
output [3:0] sum;

output carry;

reg [3:0] sum;

reg carry;

always @ (a or b)

begin

endmodule

A procedure can't trigger itself

Once cannot trigger the block with the variable that block assigns value or

drive's.

always @ (clk)
 #5 clk = !clk;

Procedural Block Concurrency

If we have multiple always blocks inside one module, then all the blocks (i.e. all the

always blocks) will start executing at time 0 and will continue to execute

concurrently. Sometimes this is leads to race condition, if coding is not done proper.

module procedure (a,b,c,d);
 input a,b;
 output c,d;

 always @ (c)
 a = c;

 always @ (d or a)
 b = a &d;

endmodule

Procedural Timing Control

Procedural blocks and timing controls.

Delays controls.

Edge-Sensitive Event controls

Level-Sensitive Event controls-Wait statements

Named Events

Delay Controls

Delays the execution of a procedural statement by specific simulation time.

#<time> <statement>;

Example :

module clk_gen (clk,reset);
 output clk,reset;
 reg clk, reset;
 initial begin
 clk = 0;
 reset = 0;
 #2 reset = 1;
 #5 reset = 0;
 end
 always
 #1 clk = !clk;
endmodule

Waveform

Edge sensitive Event Controls

Delays execution of the next statement until the specified transition on a signal.

@ (<posedge>|<negedge> signal) <statement>;

Example :

always @ (posedge enable)
begin
 repeat (5) // Wait for 5 clock cycles
 @ (posedge clk) ;
 trigger = 1;
end

Waveform

Level-Sensitive Even Controls (Wait statements)

Delays execution of the next statement until the <expression> evaluates as true

syntax: wait (<expression>) <statement>;

Example :

while (mem_read == 1'b1) begin
 wait (data_ready) data = data_bus;
 read_ack = 1;
end

Intra-Assignment Timing Controls

Intra-assignment controls evaluate the right side expression right always

and assigns the result after the delay or event control.

In non-intra-assignment controls (delay or event control on the left side)

right side expression evaluated after delay or event control.

Example :

initial begin
 a = 1;
 b = 0;
 a = #10 0;
 b = a;
end

Waveform

Modeling Combinational Logic with Continuous Assignments

Whenever any signal changes on the right hand side, the entire right-hand side is re-evaluated

and the result is assigned to the left hand side

Example : Tri-state buffer

module tri_buf (data_in,data_out, pad,enable);
 input data_in, enable;
 output data_out;
 inout pad;
 wire pad, data_out;
 assign pad = (enable) ? data_in : 1'bz;
 assign data_out = pad;
endmodule

Waveform

Example : 2:1 Mux

module mux2x1 (data_in_0,data_in_1, sel, data_out);
 input data_in_0, data_in_1;
 output data_out;
 input sel;
 wire data_out;
 assign data_out = (sel) ? data_in_1 : data_in_0;
endmodule

Waveform

Task and Function

Task

Tasks are used in all programming languages, generally known as Procedures or sub

routines. Many lines of code are enclosed in task....end task brackets. Data is passed to the

task, the processing done, and the result returned to a specified value. They have to be

specifically called, with data in and outs, rather than just “wired in” to the general netlist.

Included in the main body of code they can be called many times, reducing code repetition.

Task are defined in the module in which they are used. it is possible to define task in

separate file and use compile directive 'include to include the task in the file which

instantiates the task.

Task can include timing delays, like posedge, negedge, # delay. task can have any

number of inputs and outputs.

The variables declared within the task are local to that task. The

order of declaration within the task defines how the variables passed to the task by the

caller are used.

Task can take drive and source global variables, when no local variables are

used. When local variables are used, it basically assigned output only at the end of task

execution. Task can call another task or function.

Task can be used for modeling both combinational and sequential logic.

A task must be specifically called with a statement, it cannot be used within an

expression as a function can.

Syntax

Task begins with keyword task and end's with keyword endtask input and output are

declared after the keyword task.

Local variables are declared after input and output declaration.

Example : Simple Task

task convert;
 input [7:0] temp_in;
 output [7:0] temp_out;
 begin
 temp_out = (9/5) *(temp_in + 32)
 end
endtask

Example : Task using Global Variables

task convert;
 begin
 temp_out = (9/5) *(temp_in + 32);
 end
endtask

Calling a Task

Lets assume that task in example 1 is stored in a file called mytask.v. Advantage of coding

task in separate file is that, it can be used in multiple module's.

module temp_cal (temp_a, temp_b,
temp_c, temp_d);

 input [7:0] temp_a, temp_c;
 output [7:0] temp_b, temp_d;
 reg [7:0] temp_b, temp_d;
 `include "mytask.v"

 always @ (temp_a)
 convert (temp_a, temp_b);

 always @ (temp_c)
 convert (temp_c, temp_d);

endmodule

Function

A Verilog HDL function is same as task, with very little difference, like function

cannot drive more then one output, can not contain delays.

Function is defined in the module in which they are used. it is possible to define

function in separate file and use compile directive. Include to include the function in the file

which instantiates the task.

Function cannot include timing delays, like posedge, negedge, # delay. Which means

that function should be executed in "zero" time delay.

Function can have any number of inputs and but only one output.The variables declared

within the function are local to that function. The order of declaration within the function

defines how the variables passed to the function by the caller are used.

Function can take drive and source global variables, when no local variables are

used. When local variables are used, it basically assigned output only at the end of function

execution. Function can be used for modeling combinational logic. Function can call other

functions, but cannot call task.

Syntax

Function begins with keyword function and end's with keyword endfunction

input are declared after the keyword function. Ouputs are delcared.

Example : Simple Function

function myfunction;
 input a, b, c, d;
 begin
 myfunction = ((a+b) + (c-d));
 end
endfunction

Calling a Function

Lets assume that function in above example is stored in a file called myfunction.v. Advantage

of coding function in separate file is that, it can be used in multiple module's.

module func_test(a, b, c, d, e, f);

 input a, b, c, d, e ;
 output f;
 wire f;
 `include "myfunction.v"

 assign f = (myfunction (a,b,c,d)) ? e :0;

endmodule

