MSX2 TECHNICAL HANDBOOK

Edited by: ASCII Systems Division

Published by: ASCII Coprporation - JAPAN

First edition: March 1987

Text file typed by: Nestor Soriano (Konami Man) - SPAIN

October 1997
Changes from the original:

- In Figure 5.2, unused bits are marked as "x", and inverted signals are
marked with "*", for easiest readability.

- Figure 5.17B was added.

- In List 5.4, the last line before the work area, "JR START", has been
corrected to "JR SCAN",

- In Figure 5.18, the addresses for GETPNT y PUTPNT were swapped. They have
been corrected.

- In description of BIOS routines PINLIN and INLIN, "BUF" address has been
corrected from F55DH to F55EH.

- In Figure 5.22 (B), "Arabaic mode display" has been changed to "Arabic or
kana mode display".

- In description of BIOS routine GTTRIG, the input needed for reading B
buttons has been added in the "Input" field.

- In Table 5.5, in the Note 4, "the trigger button of the mouse or the
trigger button" has been changed to "the trigger button of the mouse or the
trigger button of the track ball".

- In Figure 5.29, "1200 or 2400 hours" indication has been corrected to "12
or 24 hours".

- In Figure 5.32, "Register 3 #11" indication has been corrected to "Register
#11".

- In Figure 5.33, "Adjust Y (8 to +7)" has been corrected to "Adjust Y (-8 to
+7) n]

- In description of BIOS routine WRTCLK, the input needed in the A register
has been added in the "Input" field.

CHAPTER 5 - ACCESS TO PERIPHERALS THROUGH BIOS (Parts 1 to 6)

The basic philosophy of MSX is to have a standard interface, independent of
machines or versions, to access peripherals through BIOS. Thus, the user
should get to know about using BIOS first. In chapter 5, accessing
peripherals using BIOS and the structure used for each peripheral are
described.

1. PSG AND SOUND OUTPUT

MSX has the following three kinds of sound output functions, but function (3)
is not installed in the standard MSX, so it is not described in this manual.
This section describes functions (1) and (2).

(1) PSG sound output (3 channels, 8 octaves)
(2) Sound output by 1 bit I/0 port

(3) Sound output by MSX-AUDIO (FM sound generator) not described
in this manual

1.1. PSG functions

An AY-3-8910 compatible LSI is used for the MSX music play function and for
BEEP tone generation. This LSI is referred to as the PSG (Programmable Sound
Generator), and can generate complex music and varios tones. It has the
following features:

* There are three tone generators, each of which can independently specify
4096 scales (equivalent to 8 octaves) and 16 volume levels.

* It can generate piano and organ tones by using envelope patterns. Note
that, since there is only one envelope generator, the tone of only one
channel can be modified fundamentally.

* With the noise generator inside, tones such as the wind or waves can easily
be generated. Note that since there is only one noise generator, only one
channel can generate the noise.

* Any necessary frequency, such as the tone or the envelope, is obtained by

dividing the input clock (in MSX, it is defined that fc = 1.7897725 MHz). So
there is no unsteady pitch or rythm.

Figure 5.1 PSG block diagram

RO, R1 R7 R8

| Tone generator A | --> | | ------ > | Volume control amplifier A |

R | | e +--
| | | Channel A output <--+

R2, R3 | Three | | R9

| Tone generator B | --> | Channel | ---:--> | Volume control amplifier B |

R | | e +--
| Mixer | | Channel B output <--+

R4, R5 | | | R9

-------------------- | | |

| Tone generator C | --> | | ---:--> | Volume control amplifier C |

e eemeemeeeeeeeeeses mmmmmeseeeaaa TS +--

Channel C output <--+

R6 | | R11, R12, R13

The PSG has two additional I/0 (input/output) ports used for other than tone
generating functions, which are omitted in the block diagram above. MSX uses
them as general-purpose I/0 ports to connect to I/0 devices such as joystick,
a touch pad, a paddle, or a mouse. These general-purpose I/0 ports are
described in section 5.

* PSG registers

Since the PSG generates tones, the CPU simply notifies PSG when the tone is
to be changed. This is done by writing values in 16 8-bit registers inside
the PSG as shown in Figure 5.2.

Roles and uses of these registers are described below.

* Setting the tone frequency (RO to R5)

Each tone frequency of channel A, B, and C is set by RO to R5. The input
clock frequency (fc = 1.7897725 MHz) is divided by 16 and the result is the
standard frequency. Each channel divides the standard frequency by the 12-bit
data assigned for each, and the objective pitch is obtained. The following
relation exists between 12-bit data (TP) and the tone frequency to be
generated (ft).

ft = fc/(16 * TP)
0.11186078125/TP [MHz]
111860.78125/TP [Hz]

A 12-bit data TP is specified for each channel by 4 high order bit coarse
tune CT and 8 low order bit fine tune value FT, as shown in Figure 5.3. Table
5.1 shows the register settings to make the scales.

Figure 5.2 PSG register structure

I - I B7| | EG f B5 f B4 | L3 ” B2 ; Bl f BO |

| Register N T

R chamnet Anote |8 ow order bits o
} - _F_{i_ o I Dividing rate ||_ _ _x o x _______ x_ a _X_ - -|- -4- -h_i_g_h_ _o_r-d-e-r- -b-i_t_s_ a _|_ K
R chamnet g note |8 ow order bits L
I o _I_RZ;:_ o I Dividing rate ||_ _ _X o x _______ X_ a _X_ - -|- -4- -h_i_g_h_ _o_r-d-e-r- -b-i_t_s_ ; _|_ K
R chamnel Cnote |8 ow order bits o
i----éé----l Dividing rate “--;-----; ------- i--gg-}-h;hﬁéh-gydgf-ﬁfﬂ;--]--”
__________ g e L x oo

| R6 | Noise div. rate| x X X | |

| | | IN*/0UT | NOISE* | TONE* |

| R7 | Enable* |----------- R R |
| | | I0B | I0A | C | B | A | C | B | A |
[---------- R Fom e +----- e |
| R8 | Chan. A volume | x X x | M | |
[---------- Fommmme e Fomm e e +e---- R |
| R9 | Chan. B volume | x X x | M | |
[---------- e T +e-n-- e |
| R10 | Chan. C volume | X X x | M | |
|---------- Fom e - e I L |
| R11 | | 8 low order bits |
[---------- | Envelope Cycle |--------mmmmmm - |
| R12 | 8 high order bits |
[---------- T L T I |
| R13 | Env. wave shape| X X X x| |
[---------- Fommme e e T L L T |
| R14 | I/0 port A | |

[---------- R e e |
| R15 | I/0 port B | |

NOTE: x = unused bit
= inverted signal

Figure 5.3 Setting the pitch

RO, R2, R4 | 8 bits | --+
___ I
R0, R2, R4 | x X X X | 4 bits | |
___ |
I I
-- + |
I I
v v
| Coarse Tune (CT) | Fine Tune (FT)
I I
e TP mm e +

[Channel A - RO, R1]
[Channel B - R2, R3]
[Channel C - R4, R5]

Table 5.1 Setting the tone frequency (scale data)

| C# | COC | 64E | 327 | 194 | CA | 65 | 32 | 19 |
[------eeee- - +----- +----- +----- R +----- +----- +----- +----- |
| D | BE7 | 5F4 | 2FA | 17D | BE | 5F | 30 | 18 |
I +----- +----- +o---- e +----- +----- +----- +----- [
| D# | B3C | 59E | 2CF | 168 | 84 | 5A | 2D | 16 |
I +----- +----- +----- +----- +----- +----- +----- +----- |
| E | A9B | 54E | 2A7 | 153 | AA | 55 | 2A | 15 |
I +----- +----- +----- +----- +----- +----- +----- +----- |
| F | AG2 | 501 | 281 | 140 | A0 | 50 | 28 | 14 |
|- +----- +----- +o---- +----- +----- +----- +----- +----- |
| F# | 973 | 4BA | 25D | 12E | 97 | 4C | 26 | 13 |
I +----- +----- +----- +----- +----- +----- +----- +----- |
| G | 8EB | 476 | 23B | 11D | 8F | 47 | 24 | 12 |
I +e---- +emmm- +----- +ee- +----- +e---- +em--- +e---- |
| G# | 88B | 436 | 21B | 16D | 87 | 43 | 22 | 11 |
I +e-n-- teennmn e S e +--n-- +e-n-- +eennn- +e---- |
| A | 7F2 | 3F9 | 1IFD | FE | 7F | 40 | 20 | 10 |
[-------------- +----- +----- +----- +----- +----- +----- +----- +----- |
| A# | 780 | 3CO | 1E@ | FO | 78 | 3C | 1E | F |
[---------eee- +----- +----- +----- +----- +----- +----- +----- +----- |
| B | 714 | 38A | 1C5 | E3 | 71 | 39 | 1C | E |

* Setting the noise frequency (R6)

The noise generator is used for synthesizing explosion sounds or wave sounds.
The PSG can send the noise output by the noise generator to channels A to C.
Since there is only one noise generator, the same noise is sent to all
channels. By changing the average frequency, various noise effects can be
obtained and this is done by R6 register settings. The 5 low order bit data
(NP) of this register is divides into the standard frequency (fc/16) and this
determines the average frequency of the noise (fn).

Figure 5.4 Setting the noise frequency

The following relation exists between NP and fn.
fn = fc/(16 * NP)

0.11186078125/NP [MHz]

111860.78125/NP [Hz]

Since the value of NP is from 1 to 31, the average frequency of the noise can
be set from 3.6kHz to 111.9kHz.

* Mixing the sound (R7)

R7 is used to select the output of the tone and noise generator, or a mixture
of both. As shown in Figure 5.5, the 3 low order bits (BO® to B2) of R7
control the tone output and the next 3 bits (B3 to B5) control the noise

output. In both cases, when the corresponding bit is 0, the output is ON and,
when 1, it is OFF.

Figure 5.5 Output selection for each channel

R7 | B7 | B6 | B5 | B4 | B3 | B2 | Bl | BO |
I
I
v
B7 B6 B5 B4 B3 B2 Bl BO
Input enable*		Noise enable*		Tone enable*		
-	l	l				
B A /	¢	B	A	I c	8	A
I/0 port Noise output Tone output
Input - 0 ON - 0 ON - 0
OQutput - 1 OFF - 1 OFF - 1

The 2 high order bits of R7 do not affect sound output. These are used to
determine the direction of the data of two I/0 ports which PSG has. When the
corresponding bit is 0, the input mode is selected and, when 0, the output
mode is selected. In MSX, port A is used for the input and port B for the
output, so it should always be set so that bit 6 = "0" and bit 7 = "1".

* Setting the volume (R8 to R10)
R8 to R10 are used to specify the volume of each channel. Two ways can be
selected by these registers: specifying the fixed volume by 4-bit data (0 to

15) and generating sound effects such as vibrato or fade-out by using the
envelope.

Figure 5.6 Setting the volume

R8, R9, R10 | X X x | B4 | B3 | B2 | BL | BO |
| |
| +---------- L ---------- +
|
v
Use envelope:
No - 0 (set volume by the value of L)

Yes - 1 (ignore the value of L)

When bit 4 of these registers is "0", the envelope is not used and the 4 low
order bit value L (0 to 15) of the registers specify the volume. When bit 4
is "1", the volume depends on the envelope signals and the value L is
ignored.

* Setting the envelope cycle (R11l, R12)

R11 and R12 specify the envelope cycle in 16-bit data. The 8 high order bits
are set in R12 and the 8 low order bits are set in R11.

Figure 5.7 Setting the envelope cycle

R11 | | --+
___ |
___ |

R12 | | |
___ |

I
_________________________________ +
I I
Vv v

| Coarse Tune (CT) | Fine Tune (FT)

I I

R R R R R] e +

The following relation exists between the envelope cycle T and 16-bit data
EP.

(256 * EP) / fc
(256 * EP) / 1.787725 [MHz]
143.03493 * EP [micro second]

* Setting the envelope pattern (R13)
R13 sets the envelope pattern by the 4 low order bit data as shown in Figure

5.8. The intervals of T specified in the figure correspond to the envelope
cycle specified by R11 and R12.

Figure 5.8 Setting the wave forms of the envelopes

R13 | x X X x | B3 | B2 | Bl | BO |
|

____________________________________ +
I
v

| | A\

| 0 0 X X |+ A\ |

| I |

I I /: |

| 0 1 X X Y A |

I I |

I | A\ \ o\ A\ o\ \ o\

|
|
	A\
106 0 1	_: \
	A\ / \ / \ / \
10 1 0	_: \/ \ / \ /
l\	
	A\
106 1 1	__: \
I	VR AR A SR SR
1 1 0 0	/ i/ S S S S i
I /	
1 1 0 1	/
	/ \ / \ /N
1 1 1 0	/ \/ N/ \N/
	/:
1 1 1 1	/
+---+

* I/0 port (R14, R15)

R14 and R15 are the ports to send and receive 8-bit data in parallel. MSX
uses these as the general-purpose I/0 interface. For more information, see
section 5.

1.2 Access to the PSG

For access the PSG from assembly language programs, several BIOS routines
described below are available.

* GICINI (O090H/MAIN) . ..vviiiiinnnnnnn. PSG initialization

Input: ---

Output: ---

Function: initializes PSG registers and does the initial settings of

the work area in which PLAY statement of BASIC is executed.
Each register of PSG is set to the value as shown in
Figure 5.9.

Figure 5.9 1Initial values of PSG registers

| Register . | I I I |

| RO | Channel A | © 1 0 1 0 1 0 1 |
ERRRESEEE | R R L |
| R1 | frequency | © 0 0 0 0 0 0 0 |
[---------- R I e |
| R2 | Channel B | © 0 0 0 0 0 0 0 |
EREREESEEE | [|
| R3 | frequency | © 0 0 0 0 0 0 0 |
[---------- e T T e |
| R4 | Channel C | © 0 0 0 0 0 0 0 |
EREEEREEE | [|
| R5 | frequency | © 0 0 0 0 0 0 0 |
| ---------- Fommm e e R |
| R6 | Noise frequency| O 0 06 0 0 0 0 0 |
[---------- T L T I |
| R7 | Channel setting| 1 0 1 1 1 0 0 0 |
[---------- R Ty eyt T |
| R8 | Chan. A volume | 0O 0 06 0 0 0 0 0 |
[---------- Fom e B L I L |
| R9 | Chan. B volume | 0O 0 0 0 0 0 0 0 |
[---------- Fom e B e T |
| R10 | Chan. C volume | 0 0 O 0 0 0 0 0 |
[---------- T B e L |
| R11 | | © 0 O 0 1 0 1 1 |
[---------- | Envelope Cycle |--------mmmmmm oo |
| R12 | | © 0 O 0 0 0 0 0 |
[---------- Fomm e e T e |
| R13 | Env. pattern | © 0 0 0 0 0 0 0 |
[---------- L R e e ISR |
| R14 | I/0 port A | |
[---------- Fommmme e T LI RS R |
| R15 | I/0 port B | |
* WRTPSG (O093H/MAIN)cvvvunnn writing data in PSG registers
Input: A <-- PSG register number

E <-- data to be written
Output: ---

Function: writes the contents of the E register in the PSG register
whose number is specified by the A register.

* RDPSG (OO096H/MAIN)cciuunnnn reading PSG register data
Input: A <-- PSG register number
Output: A <-- contents of the specified register

Function: reads the contents of PSG register whose number is specified
by the A register and stores the value in the A register.

* STRTMS (0099H/MAIN)c.o..... starting the music

Input: (QUEUE) <-- MML which is translated into the intermediate
language

Output: ---

Function: examines whether the music is played as the background task,

and plays the music which is set in the queue, if the music
has not yet been played.

List 5.1 Single tone generation

= 3K 3K 3k ok >k 5K 5k 3k 3k 3k kK 5k 5k 3k 3k >k >k 5k 3k 5k Sk 3k kK 5k 5k Sk ok sk >k 3k 5k ok 5k k ok >k ok ok Sk k ko ok ko k k

: List 5.1 440 Hz tone
:**
WRTPSG EQU 0093H

ORG 0©BOOGH
R program start -----

LD A,7 ;Select Channel

LD E,00111110B ;Channel A Tone := On
CALL WRTPSG

LD A,8 ;Set Volume

LD E, 10

CALL WRTPSG

LD A0 ;Set Fine Tune Channel A
LD E,OFEH ;Data OFEH

CALL WRTPSG

LD Al ;Set Coarse Tune Channel A
LD E,O ;Data OH

CALL WRTPSG

RET

END

1.3 Tone Generation by 1-bit Sound Port
MSX has another sound generator in addition to the PSG. This is a simple one
that generates sound by turning ON/OFF the 1-bit I/0 port output repeatedly
using software.
Figure 5.10 1-bit sound port
bit 7 6 5 4 3 2 1 0

PPI port C (I/0 address OAAH)

1.4 Access to 1-bit Sound Port

To access to the 1-bit sound port, the following BIOS routine is offered.

* CHGSND (0135H/MAIN)

Input: A <-- specification of ON/OFF (0 = OFF, others = ON)

Output:

Function: calling this routine with setting 0 in the A register turns
the bit of the sound port OFF; calling it with another value
turns it ON.

List 5.2 Reading from cassette tape

» 3K K3k ok >k 5k 5k 3k 3k 3k sk >k 5k 5k 3k 3k sk >k 5k 5k 5k 5k 3k >k >k 5k 5k ok 3k 3k >k >k 5k 5k 5k 3k ok >k 5k 5k 5k 5k sk ok >k ok 5k 5k k sk >k ok k ko k k

List 5.2 Read from cassette tape

and run this program.

; Set music tape into tape-recorder
; Then your MSX will replay it.

;**

CHGSNG EQU 0135H

STMOTR EQU O0OF3H
RDPSG EQU 0096H
BREAKX EQU 00B7H
ORG OBOOOGH
R program start ----- Note: Play tape using 1l-bit sound port.
START: LD Al ;motor on
CALL STMOTR
LBLO1: LD A,14 ;register 14
CALL RDPSG ;read PSG
AND 80OH ;check CSAR
CALL CHGSNG ;change SOUND PORT

CALL BREAKX ;check Ctrl-STOP

JR NC,LBLO1

XOR A ;stop cassette motor
CALL STMOTR

RET

END

2. CASSETTE INTERFACE

Cassette tape recorders are the least expensive external storage devices
available for the MSX. Knowledge of the cassette interface is required to
treat information in cassette tapes within assembly language programs. This
section offers the necessary information.

2.1 Baud Rate

The following two baud rates can be used by the MSX cassette interface (see

Table 5.2). When BASIC is invoked, 1200bps is set by default.

Table 5.2 MSX baud rate

| Baud rate | Characteristics |
| -oooeeee U Tt Tt |
| 1200 bps | Low speed / high reliability |
Tt R R T |
| 2400 bps | High speed / low reliability |

The baud rate is specified by the fourth parameter of the SCREEN instruction
or the second parameter of the CSAVE instruction. Once the baud rate is set,
it stays at that value.

SCREEN ,, ,<baud rate>
CSAVE "filename",<baud rate>
(<baud rate> is 1 for 1200bps, 2 for 2400 bps)

2.2 One bit composition

One bit data, the basis of I/0, is recorded as shown in Figure 5.11. The
pulse width is determined by counting the T-STATE of the CPU, so, while the
cassette interface is active, any interrupt is inhibited.

The bit data from the cassette can be read through the seventh bit of port B

of the general-purpose I/0 interface (register 15 of the PSG). This function
was used in the program example of List 5.3, section 1 of chapter 5.

Figure 5.11 One bit composition

[----------- R I e R |
| I LR T |

| | © | | | (1200Hz x 1) |

I 1200 | S I I I

| | -<----- SRR LPLPEEPEPEE TR TP LIPEPEPERTRTPTIPEPE |

| baud | | ¢ eeeeee e

I | 1 | I I I | (2400Hz x 2) |

I I I — I I
[----------- +--mm - - T P |
| I IR

| 0 | | | (2400Hz x 1) |

| 2400 | I = I

| |---e-- SRR PR R TR EREES |

| baud | | R : |

| | 1 | |]| (4800Hz x 2) |

I

|+ : | 2963 T-states (833 micro-sec)

| o | 1491 T-states (417 micro-sec)
+--i-i----4

| : | 746 T-states (208 micro-sec)

+--1-+

| | 373 T-states (104 micro-sec)

+--+

2.3 One byte composition
One byte data is recorded in the array of bits as shown in Figure 5.12. There

is one "0" bit as the start bit, followed by the 8-bit data body from LSB to
MSX and by two "1" bit as the stop bits, so 11 bits are used.

Figure 5.12 One byte composition

LSB MSB
| o | X [X | x | X [X | X | X | X | 1 1
| | | |
+----- B Fommm e +
Start bit Data Stop bit

2.4 Header Composition

The header is the portion where the signal of the specific frequency is
recorded on the tape for a certain period. This allows the cassette tape
speed to stabilize after it is started, or divides two files. There is a
long header and a short header. The long header is used to wait until the
motor is stabilized. The baud rate at reading the tape is determined by
reading the long header. The short header is used to divide file bodies.
Table 5.3 shows the compositions of both.

Table 5.3 Header composition

| Baud rate | Header | Header composition |

|- e B |

| | Long header | 2400 Hz x 16000 (about 6.7 sec) |

| 1200 baud |-------------- R R R PP |

| | Short header | 2400 Hz x 4000 (about 1.7 sec) |

[-----mmmmmm - S PR B T ey |
| Long header | 4800 Hz x 32000 (about 6.7 sec) |

I
| 2400 baud |-------------- e |
| | Short header | 4800 Hz 8000 (about 1.7 sec) |

X

2.5 File Formats

MSX BASIC supports the following three kinds of cassette format files.

(1) BASIC text file

BASIC programs saved with the CSAVE command are recorded in this format. The

file is divided into the preceding file header and the succeeding the body.

Figure 5.13 Binary file format

6.7 sec 10 bytes 6 bytes
| | _ |
| Long header | OD3H x 10 | File name |
| I I |
| I
e + o e mm e e e e e eeeeo +
| |
| File header |] File body |
| |
B + Hommm - +
| |
_____________________________________ \ _______________________________-
| Short | /7
| header | BASIC program A\ | O0H x 7
| | AN |
_____________________________________ \ ________________________________
1.7 sec Any length 7 bytes

In the file header, ten bytes each of the value OD3H follow after the long

header and six bytes containing the file name are placed after them. In the
file body, program body follows the short header and the end of the file is
indicated by seven bytes of 0OH.

(2) ASCII text file

BASIC programs saved in ASCII format by the SAVE command and data files
created by the OPEN command are recorded in this format.

Figure 5.14 ASCII file format

6.7 sec 10 bytes 6 bytes
I I | |
| Long header | OEAH x 10 | File name |
| I I |
| I
Fommmm e + R e +
| I
| File header [] File body |
I I
L + +--mm-- +
| I
___ \ ______________________
/7	Last		
Block 1	Block 2	Block 3 AN . block
	I I /7 I		
--- LU P			
I I			
Fommm e + R + CTRL+Z (EOF)			
	is included in data		
Short			
header	Data	
	I		
1.7 sec 256 bytes

(3) Machine code file

Machine code files saved by the BSAVE command are recorded in the following
format. In the file header, 10 bytes each of the value ODOH follow after the
long header and 6 bytes containing the file name are placed after them.

In the file body, the starting address, the end address, and the entry
address are recorded in order after the short header, and the machine codes
follow after them. Since the amount of data can be calculated from the
starting and ending addresses, there is no special mark for the end of the
file. The entry address is the address where the program is executed when the
R option of the BLOAD command is used.

Figure 5.15 Machine code file format

6.7 sec 10 bytes 6 bytes

I
| Long header | ODOH x 10 | File name |

| File header |] File body |
| I
R e + +------ +
| I
| Short | Top | End | Starting | |
| header | address | address | address | Program body
| | | | | I
1.7 sec 2 bytes 2 bytes 2 bytes

2.6 Access to cassette files

The following BIOS routines are offered to access cassette files.

* TAPION (OOELIH/MAIN) OPEN for read

Input: ---

Output: CY flag = ON at abnormal terminations

Function: starts the motor of the tape recorder and reads the long

header or the short headet. At the same time, the baud rate
in which the file is recorded is detected and the work area
is set according to it. Interrupts are inhibited.

* TAPIN (OOE4H/MAIN)ccvvuunn. read one byte

Input: ---

Output: A <-- data which has been read
CY flag = ON at abnormal terminations

Function: reads one byte of data from the tape and stores it in the A
register.

* TAPIOF (OOE7H/MAIN)ccouun.. CLOSE for read

Input: ---

Output: ---

Function: ends reading from the tape. At this point, interrupts are
allowed.

* TAPOON (OOEAH/MAIN)c.cvuvunn.. OPEN for write

Input: A <-- type of header (0 = short header, others = long header)

Output: CY flag = ON at abnormal terminations

Function: starts the motor of the tape recorder and writes the header

of the type specified in the A register to the tape.
Interrupts are inhibited.

* TAPOUT (OOEDH/MAIN)c.vvunnn write one byte

Input: A <-- data to be written
Output: CY flag = ON at abnormal terminations
Function: writes the contents of the A register to the tape.

* TAPOOF (OOFOH/MAIN) CLOSE writing

Input: ---

Output: ---

Function: ends writing the tape. At this point, interrupts are allowed.

* STMOTR (OOF3/MAIN) specify the actions of the motor

Input: A <-- action (0 = stop, 1 = start, 255 = reverse the current
status)

Output: ---

Function: sets the status of the motor according to the value specified

in the A register.

When READ/WRITE routines for the cassette files are created using these BIOS
calls, only READ or WRITE, without any other action, should be done. For
example, reading data from the tape and displaying it on the CRT might cause
a READ error.

List 5.3 is a sample program which uses BIOS routines.

List 5.3 Listing names of files saved in the cassette

= 5Kk 3k ok >k 5k 5k Ok 3k 3k ok ok 5k 5k ok ok >k >k ok 5k 5k 5k Sk >k ok ok ok 5k 5k >k >k ok 5k 5k 5k ok >k >k 5k 5k 5k 5k ok sk >k ok 5k ok ok >k sk ok ok ok ok ok ok k kok

List 5.3 Cassette files

Then all the names and attributes of the programs

; Set cassette tape into recorder and run this program.
; in that tape will be listed.

;**

CHPUT EQU 0OA2H

TAPION EQU OOE1H
TAPIN EQU OOE4H
TAPIOF EQU OOE7H
ORG OCOOOGH
e program start ----- Note: View program names on cassette tape.
START: CALL TAPION ;motor on and read header

LD B, 16

LD HL , WORK ;work area address

LBLO1: PUSH HL
PUSH BC
CALL TAPIN ;read a byte of data from tape
POP BC
POP HL
JR C,ERROR ;set carry flag if read error
LD (HL) ,A
INC HL
DINZ LBLO1

LD HL, FILNAM ;write file name
CALL PUTSTR

LD HL,WORK+10

CALL PUTSTR

CALL CRLF
LD A, (WORK) ;check file attributes
LD HL,BINFIL
CcpP OD3H ;check binary file
JR Z,LBLO3
LD HL,ASCFIL
CpP OEAH ;check ascii file
JR Z,LBLO3
LD HL,MACFIL
CcP ODOH ;check machine code file
JR Z,LBL0O3
ERROR: LD HL, ERRSTR
LBLO3: CALL PUTSTR
CALL TAPIOF
RET
e put CRLF -----

CRLF: LD HL,STCRLF
CALL PUTSTR

RET
HEER R put string -----
PUTSTR: LD A, (HL) ;get a character from strings
CcP '$! ;check end of strings
RET Z
CALL CHPUT ;write a character to CRT
INC HL
JR PUTSTR

j----- strings data -----

FILNAM: DB 'FILE NAME :$'

ASCFIL: DB 'ASCII FILE',ODH,0AH,'$'
BINFIL: DB 'BINARY FILE',ODH,0Ah,'$'
MACFIL: DB 'BSAVE FILE',0ODH,0AH,'$'

ERRSTR: DB 'TAPE READ ERROR',0DH,0QAH,'$’
STCRLF: DB ©ODH,0AH,'$'

jee--- WORK AREA -----

WORK: DS 16,0
DB '$! ;end of strings
END

3. KEYBOARD INTERFACE

Altough the MSX2 keyboard has the same design as that of the MSX1, it is more
convenient to use because of the Romand-to-kana translation available for
kana input. This chapter describes the keyboard interface of the MSX2.

Descriptions of the key aarangement are based on the Japanese keyboard
standard; note that data is slightly different for the international MSX
versions.

3.1 Key Scanning

MSX uses the key matrices as shown in Figure 5.16, Figure 5.17 and Figure
5.17B. The key status can be obtained in real time by examining this key

matrix and is available for reading input.

Scanning the key matrix is done by the following BIOS routine.

* SNSMAT (0141H/MAIN)ccvvvunnn reads the specified line of the
key matrix
Input: A <-- key matrix line to be read (0 to 10)
Output: A <-- status of the specified line of the key matrix
(when pressed, the bit of the key is 0)
Function: specifies a line of the key matrix shown in Figure 5.16,

Figure 5.17 or Figure 5.17B and stores its status in the
A register. The bit corresponding with the key being pressed
is "0", and "1" for the key not being pressed.

Figure 5.16 MSX USA version key matrix

MSB LSB
7 6 5 4 3 2 1 0

o | B | L | I/ 11 s [X |, |

[------- R Fommmm e tommmm o Fomm e tommmm o Fommm - tommmm o |
L v 13 |= | e A | C [N |

[------- R +ommm e - tommme o tommm e tommmm o Fommmmm - tommmm o |
2 |6 |8 O |1 [wW [F [Z [M |

[------- R Fommm e m - tomee o tommm e tommm o Fommmmm - Fommmm o |
3 T | |~ 15 12 [|D U |\ |

[------- e R tommeo- temmmme - tomeme - S tommme o |
5 15 (e [9 [[[4 [E Y | |

[------- R Fommmm e tommmm o Fomm e tommmm o Fommm - tommmm o |
6 | F3 | F2 | F1 | CODE | CAPS | GRAPH | CTRL | SHIFT |

------- R e e e T P PR
7 | RETURN| SELECT| BS | STOP | TAB | ESC |F5 | F4 |

------- e r I S e e e
8 | RIGHT | DOWN | UP | LEFT | DEL | INS | HOME | SPACE |

[TEN KEY]
9 | 4 | 3 | 2 | 1 | O | option| option| option]|

[------- +--mmm-- teommmm - temmma-- temmmm - +emmmm - tommmm-- Fommma -
o . I, I- 19 18 |7 |6 [5 |

Figure 5.17 MSX International version key matrix

MSB LSB
7 6 5 4 3 2 1 0

0 | B | L | deadkey | / | 1 | S | X | |

[------- e R tommeo- temmmme - tomeme - S tommme o |
1 v 13 1~ 11 1Q |A |C [N |

[------- R Fommmm e tommmm o Fomm e tommmm o Fommm - tommmm o |
2 |6 |8 o [[[wW [F [Z [M |

[------- R +ommm e - tommme o tommm e tommmm o Fommmmm - tommmm o |
3 T | |~ 15 12 |D U [\ |

[------- R Fommm e m - tomee o tommm e tommm o Fommmmm - Fommmm o |
4 |6 | K [P | |13 R |7 |H |

|------- R Fommm - tomemm o tommmm o tommm o Fommmmm - tommm o |
5 15 |06 |9 |e |4 [|E Y | I

[------- R R - o tommmm o tommm o L tommmm o |
6 | F3 | F2 | F1 | CODE | CAPS | GRAPH | CTRL | SHIFT |

[------- Femmmma- S tommmaaa tommmea tommmaa tommmm- tommmaaa |
7 | RETURN| SELECT| BS | STOP | TAB | ESC |F5 | F4 |

[------- Fommmma- toeeaean- temmeaa S . toemmma- toemmaaa
8 | RIGHT | DOWN | UP | LEFT | DEL | 1INS | HOME | SPACE |

[TEN KEY]
9 | 4 | 3 | 2 | 1 | © | option| option| option|

[------- R +ommm e - tommme o tommm e tommmm o Fommmmm - tommmm o
o . 1, - 19 I8 |7 |6 |5 |

MSB LSB

[------- e R Fommmme - temmmme - tomeme - S tommme o |
2 | B | A | accent] / | . | | |

[------- R Fommmm e Fommmm e Fomm e tommmm o Fommm - tommmm o |
33 |1 |H |G |F |E |D |C |

[------- R +ommm e - Fomm - tommm e tommmm o Fommmmm - tommmm o |
4 |[R Q@ [P O [N |M |JL |K |

[------- R Fommm e m - Fommm e - tommm e tommm o Fommmmm - Fommmm o |
5 |z |y | X [w v U |T [|sSs |

|------- R Fommm - R tommmm o tommm o Fommmmm - tommm o |
6 | F3 | F2 | F1 | CODE | CAPS | GRAPH | CTRL | SHIFT |

[------- R R Fomm - - tommmm o tommm o L tommmm o |
7 | RETURN| SELECT| BS | STOP | TAB | ESC |F5 | F4 |

[------- Femmmma- S temmmma- tommmea tommmaa tommmm- tommmaaa
8 | RIGHT | DOWN | UP | LEFT | DEL | INS | HOME | SPACE |

[TEN KEY]
9 | 4 | 3 | 2 | 1 | © | option| option| option|

[------- R Fommmm e Fommmm e Fomm e tommmm o Fommm - tommmm o
o . 1, - 19 I8 |7 |6 |5 |

List 5.4 Use of the key scanning routine

= 3Kk 3k 3k 3K 3K 3Kk 3k 3k k3K 5k 3k Sk 3k kK 3k 5k 5k Sk sk sk >k 3k 5k Sk 3k sk >k >k 5k 5k 5k 3k >k K 3k 5k 5k 3k 3k kK ok ok 5k k kR kR ok k >k

; List 5.4 scan key-matrix and display it

w33k 3k 3k 3k 3k 3K ok 3k 3k sk 3k ok Sk Sk Sk sk 3k 3k 3k ok Sk ko sk sk 3k 5k Sk Sk 3k sk 3k 5k 3k 5k k sk K ok 3k ok sk ko kK 3k ok ok k sk kK k ki k >k

’

CHPUT EQU 0OA2H

BREAKX EQU ©O0B7H
POSIT EQU 00C6H
SNSMAT EQU ©0141H
ORG OBOOOH
j--- program start ----- Note: read key matrix and display key
pattern.
SCAN: LD c,0 ;C := line of key matrix
SC1l: LD A,C
CALL SNSMAT ;Read key matrix
LD B,8
LD HL, BUF ;HL @ = buffer address
SC2: LD D,'.'
RLA ;Check bit
JR C,scC3
LD D, '#'
SC3: LD (HL),D ;store '.' or '#' to buffer

INC HL

DINZ SC2

LD H, O5H ;X =5
LD L,C 3y = C+1
INC L
CALL POSIT ;set cursor position
LD B,8 ;put out bit patterns to CRT
LD HL, BUF
SC4: LD A, (HL)
CALL CHPUT
INC HL
DINZ SC4
CALL BREAKX ;check Ctrl-STOP
RET C
INC C ;line No. increment
LD A,C
CcP 09
JR NZ,SC1
JR SCAN
HER work area -----
BUF: DS 8
END

3.2 Character Input

MSX scans the key matrix every 1/60 second using the timer interrupt and,
when a key is pressed, stores the character code in the keyboard buffer as
shown in Figure 5.18. Key input to MSX is generally done by reading this
keyboard buffer.

Figure 5.18 Keyboard ring buffer

T Cmmmemeemmeciieaeeeeaeascciasaecesasaaa—a- +
| KEYBUF (FBFOH, 40) |
| e [J e |
+>| D | E | F | G | | AN | I A | B | C |-+
______________________________________ / /________________________________
I
[PUTPNT] [GETPNT]

GETPNT (F3FAH, 2) points to the next character to be obtained in CHGET
routine.

PUTPNT (F3F8H, 2) points to the next location for the character to be put
when the keyboard is pressed next time.

BIOS routines having functions for key input using this keyboard buffer and
functions related to it are described below. Inhibiting the timer interrupt
renders them useless, of course.

* CHSNS (OO09CH/MAIN)cceiuunnn checks the keyboard buffer

Input: ---

Output: Z flag = ON when the buffer is empty

Function: examines whether any characters remain in the keyboard buffer

and sets the Z flag when the buffer is empty.

* CHGET (O09FH/MAIN)ccvvuun.. one character input from the keyboard
buffer

Input: ---

Output: A <-- character code

Function: reads one character from the keyboard buffer and stores it in

the A register. When the buffer is empty, it displays the
cursor and waits for a key input. While a key input is waited
for, the CAP lock, KANA lock, and Roman-to-kana translation
lock are valid. The related work area is listed below. In the
list, since SCNCNT and REPCNT are initialised after the
execution of CHGET routine, this area should be set at each
CHGET call to change the interval of the auto-repeat.

Work area

CLIKSW (F3DBH, 1) key click sound (0@ = OFF, others = ON)
SCNCNT (F3F6H, 1) key scanning interval (1, normally)
REPCNT (F3F7H, 1) delay until beginning auto-repeat

(50, normally)
CSTYLE (FCAAH, 1) figure of the cursor

(0 = block, others = underline)
CAPST (FCABH, 1) CAPS lock (0 = OFF, others = ON)
DEADST (FCACH, 1) dead key lock

0 = on preceding dead key
1 = dead key
2 = shifted dead key
3 = code dead key
4 = code shift dead key
* KILBUF (O156H/MAIN) empty the keyboard buffer
Input: ---
Output: ---
Function: empties the keyboard buffer.

List 5.5 Use of one character input routine

;**
’

; List 5.5 get key code

’

’

this routine doesn't wait for key hit

’
;**

CHSNS EQU 009CH ;check keyboard buffer
CHGET EQU OO09FH ;get a character from buffer
CHPUT EQU O0O0A2H ;put a character to screen
BREAKX EQU 00B7H ;check Ctrl-STOP
KILBUF EQU 0156H ;Clear keyboard buffer
REPCNT EQU OF3F7H ;time interval until key-repeat
KEYBUF EQU OFBFOH ; keyboard buffer address
ORG OBOOOGH
e prgram start ----- Note: Real-time input using CHGET
KEY: CALL CHSNS ;check keyboard buffer
JR C,KEY1
LD Al
LD (REPCNT) ,A ;not to wait until repeat
CALL CHGET ;get a character (if exists)
JR KEY2
KEY1: LD A, - JA =t
KEY2: CALL CHPUT ;put the character
CALL KILBUF ;Clear keyboard buffer
CALL BREAKX ;check Ctrl-STOP
JR NC,KEY
END
* CNVRCHR (OOAB/MAIN)civuvninn... graphic character operation
Input: A <-- character code
Output: A <-- translated graphic character

(normal characters are not translated)

CY flag = OFF (input was the graphic header byte 01H)

CY flag = ON, Z flag = ON (input was the graphic character
and was translated)

CY flag = ON, Z flag = OFF (input was the normal character

and was not translated)

Function: executing CNVCHR after CHGET causes the graphic character
to be translated to one byte code as shown in Figure 5.19
and causes other character not to be translated and to be
returned. Since the graphic character is represented by
irregular 2-byte code with the graphic header byte (01H),
annoying procedures are required for the character
operations; this routine makes it somewhat easy.

Figure 5.19 Graphic character translation chart

| conversion | conversion | conversion | conversion |
| R REEEEEEEEEE |
	0150H --> 50H
0141H --> 41H	0151H --> 51H
0142H --> 42H	0152H --> 52H
0143H --> 43H	0153H --> 53H
0144H --> 44H	0154H --> 54H
0145H --> 45H	0155H --> 55H
0146H --> 46H	0156H --> 56H
0147H --> 47H	0157H --> 57H
0148H --> 48H	0158H --> 58H
0149H --> 49H	0159H --> 59H
014AH --> 4AH	015AH --> 5AH
014BH --> 4BH	015BH --> 5BH
014CH --> 4CH	015CH --> 5CH
014DH --> 4DH	015DH --> 5DH
014EH --> 4EH	015EH --> 5EH
014FH --> 4FH	015FH --> 5FH
* PINLIN (OOAEH/MAIN) one line input
Input: ---
Output: HL <-- F55DH

[F55EH] <-- input string (the end of te line is represented

by 00H)

CY flag <-- terminated by STOP=0ON, terminated by RETURN=0FF

function: stores input string in the line buffer BUF (F55EH). All
functions of the screen editing are available at the string
input. Pressing RETURN or STOP causes the input to be
finished. The work area is listed below.

Work area
BUF (F55EH, 258) the line buffer where the string is stored
LINTTB (FBB2H, 24) 00H when the one physiscal line is the
succession of the line above
* INLIN (OOBIH/MAIN)civvvennn one line input (prompt available)
Input: ---
Output: same as PINLIN

Function: stores input string in the line buffer BUF (F55EH), as
PINLIN routine. Note that the portion before the cursor
location at the time when the routine begins to execute is
not received. List 5.6 shows the difference between PINLIN
and INLIN.

List 5.6 Difference between INLIN and PINLIN

» 3K 3K 3k ok >k 5k 5k 5k 3k 3k ok >k 5k 5k 5k 3k ok >k 5k 5k 5k 5k k ok >k 5k 5k Sk ok 3k >k 5k 5k ok ok sk ok >k 5k 5k 5k sk k k ok ko k k

; List 5.6 INLIN and PINLIN

;**

CHPUT EQU

00A2H
INLIN EQU 0OBIH
PINLIN EQU OOAEH
KILBUF EQU 0156H
BUF EQU F55EH
ORG ©BOOGH

; program start

LD
CALL
CALL
LD
CALL

HL, PRMPT1
PUTMSG
INLIN
HL,BUF
PUTMSG

LD
CALL
CALL
LD
CALL

HL, PRMPT2
PUTMSG
PINLIN
HL, BUF
PUTMSG

RET

a string

PUTMSG: LD
CcP
RET
CALL
INC
JR

A, (HL)
I$I

z
CHPUT
HL
PUTMSG

; string data

PRMPT1: DB ODH,OQAH, 'INLIN:$'
PRMPT2: DB ODH,0AH, 'PINLIN:$'

END

;put prompt message

;use INLIN routine

;put prompt message
;use PINLIN routine

3.3 Function Keys

MSX has ten function keys, which can be defined by the user at will. A 16
byte work area is allocated for the definition of each key. The following

list shows their addresses.

FNKSTR (F87FH, 16)
+ 10H (F88FH, 16)
+ 20H (F89FH, 16)
+ 30H (F8AFH, 16)
+ 40H (F8BFH, 16)
+ 50H (F8CFH, 16)
+ 60H (F8DFH, 16)

definition
definition
definition
definition
definition
definition
definition

key
key
key
key
key
key
key

address
address
address
address
address
address
address

+ 70H (F8EFH, 16) F8 key definition address
+ 80H (F8FFH, 16) F9 key definition address
+ 90H (F9OFH, 16) F10 key definition address

Pressing a function key causes the string defined in that key to be stored in
[KEYBUF]. The end of the string is indicated by 00H and a maximum of 15
keystrokes can be defined for one function key (definitions longer than 16
keystrokes are defined over more than one function key definition area). To
restore the initial settings of the function keys, use the following BIOS
routine.

* INIFNK (OO3EH/MAIN) initialize function keys
Input: ---

Output: ---

Function: restores the function key definition to the setting when

BASIC starts.

3.4 STOP Key During Interrupts

CHGET, the one-character input routine described in 3.3, determines the
pressed key in the timer interrupt routine. Thus, when the timer interrupt is
inhibited, such as during cassette data I/0, pressed keys cannot be detected.
By using the BIOS routine described below, the CTRL key + STOP key
combination can be detected even when interrupts are inhibited.

* BREAKX (OOB7H/MAIN) CTRL + STOP detection
Input: ---
Output: CY flag = ON, when CTRL + STOP is pressed

Function: scans keys and decides whether CTRL key and STOP key are
pressed at the same time. When both are pressed, this routine
sets "1" to the CY flag and returns. Otherwise, it resets "0"
to the CY flag and returns. This routine is available while
interrupts are inhibited.

4. PRINTER INTERFACE

This section describes how to access the MSX printer interface from assembly
language. The information described here is helpful if the printer is going
to be used to print bit image graphics.

4.1 Print Interface Overview

The printer interface is supported by BIOS and BASIC. MSX drives the printer
through an 8-bit parallel output port and uses a handshaking method with BUSY
and STROBE signals. The standard connector is also defined (Amphenol 14-pin,
female side to the machine). Figure 5.20 shows the signal lines.

Figure 5.20 Printer interface

Printer interface pin connections

\ | (7)] (6) | (5) | (4) | (3) | (2) | (1) | /
A LR T /
\ | | /
A e L T T /
\ | (14)| (13)| (12)| (11)| (11)| (10)] (9) | /
A e T /
(1) STROBE*
(2) to (9) Data (b0 to b7)
(11) BUSY
(14) BGND
I/0 port (91H) | X | X | X | X | X | X | X | X
Data
I/0 port (90H; at WRITE) | | | | | X
STROBE* (send data when "0") ----+
I/0 port (90H; at READ) | | | | | | | X

0: Printer READY |
S
1: Printer BUSY

4.2 Output to the MSX Standard Printer

If data is sent from MSX to the printer, the action depends on whether the
printer receiving the data is of the MSX standard. The use of MSX standard
printers is described in this section. Descriptions about other printers are
in the next section.

An MSX standard printer can print any character that can be displayed on the
screen. Special graphic characters corresponding to character codes n = O1H
to 1FH can be also printed by sending the code 40H + n after the graphic
character header (01H). In addition to these, the control codes shown in
Table 5.4 can be used with MSX standard printers (see the manual of the
printer for controlling a printer which has other functions such as printing
Chinese characters).

To feed lines in MSX standard printers, send ODH and OAH successively. To
print the bit image, send nnnn bytes data, where nnnn means four decimal
figures, after the escape sequence ESC + "Snnnn". Note that, MSX has a
function to transform the tab code (09H) to the adequate number of space
codes (20H) for printers not having a tab function. This transformation is
normally done. To print a bit image which includes the value 09H correctly,

change the following work area.

* RAWPRT (F418H, 1)vviiinnnnnn replaces a tab by spaces when the
contents are 00H, othereise not.

Table 5.4 Control codes of the printer

| code | function

S SRREEEEREEEEE, b |
| ©AH | line feed |

R RERRREEEEEEEEE P L L P e EEEEEREE |
| OCH | form feed |

SR RRARREEEEEEEE b |
| ODH | carriage return |
oo o |
| ESC + "A" | normal line spacing |
| | (spaces between lines; characters are read easily) |
ESREIEEEEREE T T S T |
| ESC + "B" line spacing for graphics (no space between lines)

4.3 Access to the printer

To send output to the printer, the following BIOS routines are offered.

* LPTOUT (OOA5H/MAIN)

Input: A register <-- character code
Output: CY flag = ON at abnormal termination
Function: sends a character specified by the A register to the printer.

* LPTSTT (OOA8/MAIN)

Input: ---
Output: A register <-- printer status
Function: examines the current printer status. After calling this

routine, the printer can be used when the A register is 255
and the Z flag is 0; when the A register is 0 and the Z flag
is 1, the printer cannot be used.

* OUTDLP (014DH,MAIN)

Input: A register <-- character code

Output: CY flag = ON at abnormal termination

Function: sends a character specified by the A register to the printer.
Differences between this routine and LPTOUT routine is as
following:

* prints corresponding number of spaces for TAB code
* transforms hiragana to katakana for printers other than

MSX standard
* returns Device I/0 error at abnormal termination

5. UNIVERSAL I/0 INTERFACE

As described in section 1, the PSG used by MSX has two 8-bit I/O0 ports, port
A and port B, in addition to the sound output function. In MSX, these two
ports are connected to the universal I/0 interface (joystick port) and are
used to exchange data with the joystick or the paddle (see Figure 5.21).
Various devices to be connected to this universal I/0 interface have the
necessary BIOS routine in ROM, so they are easily accessbile.

In this section, the funtion of each I/0 device and the method for accessing
with BIOS routines are described.
Figure 5.21 Universal I/0 interface

Universal input/output interface -1

| (1) (2) (3) (4) (5) -+- +5V Switching
signal <---+
| | (6) | (7) | (8) | (9) ----- +- GND (to port B:b6) |
O O | | |
I I I Y O |
| | | | | +---:--> To port B:b4 -----ommmmmiiiii |
N | | |
R L EE T I PP T | |]
| Switcher |--+
R LI toeeaean- T | |
+---i-- > To port B:b5 ----cmmmi i

Universal input/output interface -2

5.1 Functions of the Ports

Two I/0 ports of PSG are used as shown in Figure 5.22.

Figure 5.22 (A) Functions of PSG port A

Port A (PSG#14)

| | | | | +--> 1st terminal | connected
| | | | | S > 2nd terminal | to

| | | R T T T — > 3rd terminal | universal
| | | oo > 4th terminal | 1/0

| | o > 6th terminal | interface
| Fmm e e e > 7th terminal |

| --+

mm o m e e e e e eeeeeeoaooo- > Data input from the cassette tape

Figure 5.22 (B) Functions of PSG port B

Port B (PSG#15)

I/0 interface 1
I/0 interface 2

1: bO-b5 of port A to be connected to univ. I/0 interface 2

I I I I +o---- oo - +--> Unused

I } I l---> Connected to 8th terminal of univ.

| | Fommmm - > Connected to 8th terminal of univ.

I l---> 0: bO-b5 of port A to be connected to univ. I/0 interface 1
|

Fommmeea - > 0: Arabic or kana mode display lamp on
1: Arabic or kana mode display lamp off

5.2 Joystick Use

Figure 5.23 shows the joystick circuit. As the circuit shows, sending "0" to
the 8th terminal and reading the 1st to 4th and 6th to 7th terminals enable
information about the stick and the trigger buttons to be obtained. However,
it is advisable to use BIOS for accessing the joystick, in order to give

portability to the program.

figure 5.23 Joystick circuit

\
(1) O-------mee e - 0 O------------ e Front
|
\ I
(2) 0-------mmmmmo- 0 O------------ o Back
I
\ I
(3) O0--------mmmm--- 0 O0------------ 2 Left
I
\ |
(4) O------------m-- 0 O------------ A Right
|
I
\ I
(6) O-------meem - 0 O------------ e Trigger A
I
\ I

(7) O0------mmmmmo - 0 O------------ A Trigger B

The following BIOS routines are offered for accessing the joystick. These
routines have similar functions to the STICK function and STRIG function of
BASIC. The status of the cursor keys or the space bar, in addition to the
joystick, can be read in real time.

* GTSTCK (OOD5H/MAIN), read joystick

Input: A <-- joystick number (0 = cursor key, 1 and 2 = joystick)
Output: A <-- direction of joystick or cursor key

Function: returns the current status of the joystick or the cursor keys

in the A register. The value is the same as the STICK
function in BASIC.

* GTTRIG (OOD8H/MAIN)ccuiuunnnn read trigger button
Input: A <-- trigger button number (0 = space bar,
1 and 2 = trigger button A, 3 and 4 = trigger button B)
Output: A <-- status of trigger button or space bar
(OFFH = pressed, 00H = released)
Function: returns the current status of the trigger buttons or the

space bar in the A register. The value is OFFH when the
trigger is pressed, otherwise it is 0.

List 5.7 Joystick use

;**
’

; List 5.7 Joystick and trigger access

’
;**

CHPUT EQU 0OA2H

BREAKX EQU 00B7H
GTSTCK EQU 0OD5H
GTTRIG EQU 0ODS8H
ORG ODOGH
HEEEE program start ----- Note: display joystick status
STICK: LD Al ;choose joystick 1
CALL GTSTCK ;read joystick status
LD (WK1) ,A
LD Al ;choose joystick 1
CALL GTTRIG ;read trigger status
OR A

JR Z,STCK1
LD HL,WDON ;trigger ON

JR STCK2

STCK1: LD HL ,WDOFF ;trigger OFF
STCK2: CALL PUTSTR
LD A, (WK1)
OR A
JR Z,BRKCHO ;do not use joystick
LD C,0
STCK3: DEC A
JR NZ,STCK4
INC C
JR STCK3
STCK4: SLA C ;C = C*16
SLA C
SLA C
SLA C
LD B,0 ;Accounting Strings data address
LD HL ,WDSTK
ADD HL,BC
CALL PUTSTR
BRKCHO: LD A,QDH ;put carriage return
CALL CHPUT ;code := ODH
BRKCHK: CALL BREAKX ;break check
RET C
JR STICK

e put strings to screen -----

PUTSTR: LD A, (HL)

P
RET Z

INC HL
CALL CHPUT
JR PUTSTR

e string area -----

WDON: DB ‘Trigger ON: $'
WDOFF: DB 'Trigger OFF: $'
WDSTK: DB "UP only ',0DH,0AH, '$"'
DB '"Up and Right ',0DH,0AH,"'$’
DB 'Right only ',0DH,0AH, '$"
DB 'Right & Down ',0DH,0AH,'$’
DB 'Down only ',0DH,0AH, '$"
DB 'Down and Left',ODH,0AH,'$"’
DB 'Left only ',0DH,0AH, '$"
DB 'Left and Up ',0DH,0AH,'$’

WK1: DW 0

END

5.3 Paddle Use

Figure 5.24 shows the paddle circuit. Sending a pulse to the 8th terminal
causes the single stable multi-vibrator to generate a pulse with a specified
interval. This interval depends on the value of the variable register which
can range from 10 to 3000 microseconds (0.01 to 3.00 ms). Measuring the pulse
length enables the value in the variable register and the turning angle to be
obtained.

Figure 5.24 Paddle circuit

-—t--
I
<_
> 150K0hm Variable Resistor
<
0.04 uF |
+--] |---+
I I
i +---
I |
I\ I I
I\ I
(8) ----- | >0----0] A Q |------------- (1) (For 2, 3, 4, 6, or 7,
|/ | | a similar circuit
|/ | | would apply)
| I
I I
Fomme e | B |
| | | _ ,
| | | (One-shot trigger IC, LS123 compatible)
I I I
+5V | e
-t | 0
| |
+----- o e e e aaa oo +
Inpygt to8 o+
Qutpupt tor ...
|<------- 10 us to 3 ms ------- >|

BIOS routines for accessing the paddle are described below.

* GTPDL (OODEH/MAIN)ccvuiunnnnn read paddle information

Input: A <-- paddle number (1 to 12)

Output: A <-- turning angle (0 to 255)

Function: examines the status of the paddle specified in the A register

and returns the result in the A register.

5.4 Use of Touch Panel, Light Pen, Mouse, and Track Ball

The touch panel, light pen, mouse, and track ball (cat) are accessible using
the same BIOS routine. This routine is described below.

* GTPAD (OODBH/MAIN)cvvivvivunnn access to various I/0 devices
Input: A <-- device ID (0 to 19)
Output: A <-- objective information

Function: obtains various information as shown in Table 5.5 according
to the value specified in the A register. This is the same
as the PAD function of BASIC. "XXX1" in the table means the
"XXX" device connected to the universal I/0 interface 1;
"XXX2" means the one connected to the universal I/0 interface
#2.

Table 5.5 GTPAD BIOS Function

| 1 | | X-coordinate (0 to 255) |
[------------- | Touch panel 1 - -
| 2 | | Y-coordinate (0 to 255) |
EREREEEEEERES | [|

| 3 | | OFFH when button is pressed, |

| | | ©O0H when not |
[-----mmmmm - R R e
I 4 I I I

EEEEEEEREREEE | | |

I 5 I I I

[-----mmmmmm - | Touch panel 2 | Same as above

I 6 I I I

EREREEEREERES | | |

| 7 I | |

[--------=----- R R e R
| 8 | | OFFH: valid data, |

| | | OOH: invalid data |
EEREEEEEEREEE | [|

| 9 | | X-coordinate (0 to 255) |
[--------aa--- | Light pen [=- - s m

| 10 | | Y-coordinate (0 to 255) |
EEREETEEEEEEE | [|

| 11 | | OFFH when switch is pressed, |

| | | ©O0H when not |
[-------eeeo - R R e
| 12 | | Always OFFH |

| | | (used to request for input) |

| 13 | Mouse 1 or | X-coordinate (0 to 255) |
[-----mmmmmm - | track ball 1 R e e R
| 14 | | Y-coordinate (0 to 255) |

I
| 15 | | Always OOH |
| | | (no meaning) |

[-------eeeo - R R e
I 16 I I I

EEREEEREEEEEE | | |

| 17 | Mouse 2 or

[------meea - | track ball 2 | Same as above

I 18 I I I

EEREEEEEEREEE | | |

I 19 | | I

Note 1: Though information of the coordinate of the light pen (A =9, 10) and
the switch (A = 11) are read at the same time when BIOS is called
with A = 8, other values are valid only when the result is OFFH.
In the case that the result of BIOS which is called with A = 8 is
00H, the coordinate values and the status of the switch contained
after that are meaningless.

Note 2: Mouse and track ball are automatically distinguished.

Note 3: To obtain the coordinate value of the mouse or the track ball, do the
input request call (A = 12 or A = 16), then execute the call to
obtain the coordinate value actually. In this case, the interval of
these two calls must be minimized as possible. Too much interval
between the input request and the coordinate input causes the
obtained data to be unreliable.

Note 4: To obtain the status of the trigger button of the mouse or the
trigger button of the track ball, use GTTRIG (QOD8H/MAIN), not GTPAD
routine.

List 5.8 Touch panel use

w3k 3K K ok 5K 3k oK K >k 5k 3k >k 5k >k 5k 3k >k 5k >k Sk >k >k Sk >k 5k >k 5k 5k >k Sk >k ok 3k >k 5k >k ok k 5k 5k >k ok kK k >k k k

; List 5.8 touch pad access

= 5Kk 3k ok >k 5K 5k 5k 3k 3k >k >k 5k 5k 5k ok ok >k ok 5k 5k 5k sk >k ok 5k 5k ok ok >k >k 5k 5k ok 5k k kK 5k 5k ok ok ok ok ok ok k ok

’

éREAKX EQU 00B7H

GTPAD EQU 0OD8H
WRTVRM EQU 004DH
ORG 0BOOGH
jo---- program start ----- Note: Displays "*" at position specified
by touch pad.
PAD: XOR A ;check sense
CALL GTPAD
OR A
JR NZ,PAD1
LD A,3
CALL GTPAD ;break check
OR A
RET NZ

JR PAD

PAD1: LD Al ;get X axis

CALL GTPAD
SRL A A = A/8
SRL A
SRL A
LD (WORK) , A ;reserve X axis
LD A2 ;get Y axis
CALL GTPAD
LD L,A ;HL := Y data (0-255)
LD H,0
LD C,A
LD B,0
ADD HL,BC ;HL := HL*3 (HL := 0-767)
ADD HL,BC
LD AL
AND 11100000B
LD L,A
LD A, (WORK)
ADD A,L
LD L,A
LD BC, 1800H ;VRAM start address
ADD HL,BC
LD A,2AH
CALL WRTVRM ;write VRAM
LD A3
CALL GTPAD ;break check
OR A
RET NZ
JR PAD
HE work area -----
WORK: DW 0 ;work
END

List 5.9 Mouse and track ball use

= KKk ok >k 5K 5k K 3k 3k sk ok ok 5k Sk ok >k >k ok 5k 5k 5k kK ok 5k 5k Sk ok >k >k ok 5k ok 5k sk >k ok 5k 5k 5k ok ok ok ok ok k ok

; List 5.9 mouse and track ball access

;**

GTPAD EQU OODBH

WRTVRM EQU 004DH
RDVRM EQU 0©04AH
BREAKX EQU 00B7H
ORG ODOOOGH
s program start ----- Note: Displays "*" at position specified

by mouse or track ball.

TEST: CALL VADR ;Put old data
LD A, (WKOLD)
CALL WRTVRM

LD A,12
CALL GTPAD ;Request mouse/track ball data
LD A,13
CALL GTPAD ;Read X val.
LD (WKXVAL) , A
LD A,14
CALL GTPAD ;Read Y val.
LD (WKYVAL) ,A
LD A, (WKX)
LD B,A
LD A, (WKXVAL)
ADD A,B
CcP 245 1 X<07?
JR C,TESTO1
XOR A s X=0
JR TESTO2
TESTO1: CP 32 i X>317
JR C,TESTO02
LD A,31
TESTO2: LD (WKX),A
LD A, (WKY)
LD B,A
LD A, (WKYVAL)
ADD A,B
CcP 245 1 Y<07?
JR C,TESTO3
XOR A ;Y=0
JR TESTO4
TESTO3: CP 24 1Y>237?
JR C,TESTO4
LD A,23
TESTO4: LD (WKY),A
CALL VADR
CALL RDVRM ;Read old data
LD (WKOLD) ,A
CALL VADR
LD A,2AH
CALL WRTVRM ;Put cursor ("*").
CALL BREAKX ;:Break check
RET C
CALL WAIT

JR TEST

VADR: LD
LD
LD
SRL
RR
SRL
RR
SRL
RR
LD
ADD
LD
LD BC, 1800H ; VRAM start address
ADD HL,BC
RET

=
)
=

(;Make SCREEN Address:
A ; From X,Y axis on WORK AREA
0 ; To HU reg.

r>»>>r IrIrIrIzT>

~ ~ 0~

(
L ;o Y=32+X
A

WAIT: LD

WLP1: INC
LD
LD
LD
JR
RET

,0 ;WAIT routine

, (IX+0)
, (IX+0)
, (IX+0)
Z,WLP1

ZWWowW>>

EEEEE data -----

WKX: DB 10 ;X axis

WKY: DB 10 ;Y axis

WKOLD: DB 0 ;Character code on (X,Y)
WKXVAL: DB 0 ;X variable

WKYVAL: DB 0 ;Y variable

END

6. CLOCK AND BATTERY-POWERED MEMORY

MSX2 uses a CLOCK-IC to for its timer function. Since this IC is
battery-powered, it remains active even after MSX2 is turned off. MSX2 uses a
small amount of RAM inside to set the PASSWORD or to set the screen mode at
startup automatically, in addition to the CLOCK functions.

6.1 CLOCK-IC Functions

This IC has the following three functions:

* CLOCK function

- set/read the settings of "year, month, day, day of week, hour,
minute, second"

- for the expression of time, 24-hour clock/12-hour clock available

- for months, months of 31 days and of 30 days are distinguished
(leap years are also recognised)

* Alarm functi

on

- when the time for alarm is set, CLOCK generates signals
at that time.
- the time for alarm is set as "XXday XXhour XXminute".

* Battery-powe

- has 26

red memory function

sets of 4-bit memory, and can be battery-powered.

- MSX2 stores the following data in this memory:

oNOOUTE WN -

6.2 Structure

adjustment value of CRT display width and height
initial values of SCREEN, WIDTH, colour

BEEP tone and volume

title screen colour

country code

password -+
BASIC prompt | (one of 6 to 8)
title caption --+

of the CLOCK-IC

The CLOCK-IC has four blocks inside as shown in Figure 5.25. Each block

consists of 13

sets of 4-bit registers, which are specified by addresses from

0 to 12. In addition, it has three 4-bit registers for selecting the block or

controlling fu

The registers

nctions; they are specified by the addresses from 13 to 15.

inside the block (#0 to #12) and the MODE register (#13) can be

read from and written to. The TEST register (#14) and RESET register (#15)

can only be wr

Figure 5.25

BLOCK 0O
(CLOCK)

|
0 | 1st decimal | |
|

place)

1 | 2nd decimal | |

| place)

itten to.

Clock IC structure

BLOCK 1 BLOCK 2 BLOCK 2
(ALARM) (RAM-1) (RAM-2)
Seconds (the | | | | [[|
,,,,,,,, | | I I
I | I |
o I - :
| Seconds (the | | | | [[|
,,,,,,,, | | I I
I | I |
I R I S |
Any data | | Any data |

| Year (the

12| 2nd decimal | |

| place)

i<-- 4 bits -->: i<-- 4 bits -->: i<-- 4 bits -->: i<-- 4 bits -->:

13 | MODE |
-------------- | --+
14 | TEST | |
—————————————— | |-- Write only
15 | RESET | |
________________ - -4

i<-- 4 bits -->:

6.3 MODE Register Functions

The MODE register has the following 3 functions:

* Selecting block

To read from or write to registers from #0 to #12, select the block to be
used and then access the objective address. The 2 low order bits of the MODE
register are used to select the block.

Registers from #13 to #15 are accessible whichever block is selected.

* Alarm output ON/OFF

To switch the alarm input ON/OFF, use bit 2 of the MODE register. Since the
standard MSX2 does not support the alarm, modifying this bit causes nothing
to happen in general.

* Terminating CLOCK count

By writing "0" in bit 3 of the MODE register, the count in seconds is stopped
(the stages before the seconds are not stopped) and the clock function is
terminated. By writing "1" in bit 3, the count is resumed.

Figure 5.26 MODE register functions

| TE | AE | M1 : M0 | MODE register (#13)
| | 00: select block 0
| | 01: select block 1
| +----> 10: select block 2
| 11: select block 3

|

oo > 0: alarm output OFF
1: alarm output ON

oo > 0: CLOCK count stop (in seconds)
1: CLOCK count start

6.4 TEST Register functions
The TEST register (#14) is used to increment the upper counter quickly and to

confirm that date and time carries are done correctly. Setting "1" in each

bit of the register, the pulse of 2714 (=16384)[Hz] is directly set in day,
hour, minute, and second counters.

Figure 5.27 TEST register functions

| T3 | T2 | T1 | TO | TEST register (#14)

| | I |
| Hours | Seconds the location for the pulse to be placed
Day Minutes

6.5 RESET Register Functions

The RESET register (#15) has the following functions:

* Resetting the alarm

Setting "1" in bit 0 causes all alarm registers to be reset to 0.

* Setting the seconds

Setting "1" in bit 1 causes the stage before the seconds to be reset. Use
this function to set the seconds correctly.

* Clock pulse ON/OFF

Setting "1" in bit 2 turns the 16Hz clock pulse output ON, and setting "0" in
bit 3 turns the 1Hz clock pulse output ON. Note that both are not supported
by the MSX2 standard.

Figure 5.28 RESET register function

| C1 | C16| CR | AR | RESET register (#15)

|
| | +--> When "1", all alarm registers are reset
|

Fommmaas > When "1", fractions smaller than a second are reset
Fmmmm e > When "0", 16[Hz] clock pulse is ON
mmm e e eeioos > When "0", 1[Hz] clock pulse is ON

6.6 Setting the Clock and Alarm

* Setting date and time

Block 0 is used to set the clock. Selecting block 0 in the MODE register

and writing data in the objective register causes the date and the time to be
set. The current time is acquired by reading the contents of the register.
See Figure 5.29 for the meaning of the register and its address.

Block 1 is used to set the alarm. Note that the time of the alarm can be set
only in days, hours, and minutes. Nothing happens, in general, when the time
of the clock meets the time of the alarm.

In the clock, the year is represented by 2 digits (registers #11 and #12). In
MSX-BASIC, the 2 low order digits of the year is represented by adding the
offset 80 to this value. For example, after setting register #11 to 0 and
register #12 to 0, the year would be 80, as "80/XX/XX", when the date is read
by using the GET DATE instruction of BASIC.

The day of the week is represented by 0 to 6. This is only a mod 7 counter
which is renewed alomg with the date, and the correspondence between the
actual day of the week and the number value 0 to 6 is not defined.

Figure 5.29 Setting the CLOCK and ALARM

block 0 : CLOCK

| | B3 | B2 | Bl | BO |

[e RRRRRREETEEEERTRT |
0 | Seconds | |

| (the 1st decimal place) | X X X X

[s e s EGLOLCETPCPEREP |
1 | Seconds | |

| (the 2nd decimal place) | . X X X |

RETTEECEEEEREPEEPIRTRER ASRTRRELTELPLPTRTREPIEPDPS |
2 | Minutes | I

| (the 1st decimal place) | X X X X

R At s SCOLELELTEPCRLPLETE |
3 | Minutes | |

| (the 2nd decimal place) | . X X X |

R ECRCEITTET L ESLAICISLCELPEEREP |
4 | Hours | |

| (the 1st decimal place) | X X X X |

[oo bo |
5 | Hours | |

| (the 2nd decimal place) | . . X X |

R ERRLOTEETLREPCRLPIETE |
6 | Day of | |

| the week | X X X |

RETECIOIUREREPIEIRREREPETES ESRTRLELPRLPLPEREEEPRRPEI |
7 | Day | |

| (the 1st decimal place) | X X X X

[bo |
8 | Day I |

| (the 2nd decimal place) | . . X X

R ATt L ACAICIRECELPLPEREPS |
9 | Month | |

| (the 1st decimal place) | X X X X |

10 | Month | |

| (the 2nd decimal place) | . . . X |

R ettt LS EERL R PECP LI TR EREPREPOP |
11 | Year | |

| (the 1st decimal place) | X X X X

[L RRRLEETETTEELEEEEPTRTS |
12 | Year | |

| (the 2nd decimal place) | X X X X |

block 1 : ALARM

| | B3 | B2 | Bl | BO |

[LR R RUAGREEELEEEEE |
L I I

I I - I

[L EEEEEEEEEEEREEEEEE |
L I I

I | : |

R EEEEREREEEEE LS e RREEEEEEEEEPEEEREEEE |
2 | Minutes | |

| (the 1st decimal place) | X X X X |

oo R SRREEEEEEEEEEEREREEEE |
3 | Minutes | |

| (the 2nd decimal place) | . X X X |

[L RRAREEEEEEEEEEEREREEEE |
4 | Hours | |

| (the 1st decimal place) | X X X X |

[L RRREEEEEEEEEEEREREEEE |
5 | Hours | |

| (the 2nd decimal place) | . . X) G

[SREREEEEEEEEEEEREREEEE |
6 | Day of | |

| the week | X X X |

R AR EEEELEEEEE R RREEEEEEEEEEEEEEEEEE |
7 | Day I |

| (the 1st decimal place) | X X X X |

[L ACRRRREREEEEEEEEREE |
8 | Day I I

| (the 2nd decimal place) | . . X X |

R REEEEEE L AREEEEEEEEEEEREEEEEE |
°ol - I I

I | : |

SR RRREEEEEEEEEEPELEEREE e |
10 | 12 or | |

| 24 hours | X |

[R RREERLEEEEEEEREEEEEE |
11 | Leap year | |

| counter | . . X X

[o |

12 |

Bits indicated by an "." are always 0 and cannot be modified.

* Selecting 12-hour clock/24-hour clock

Two clocks can be selected; one is a 24-hour clock which represents one
o'clock in the afternoon as 13 o'clock, and the other is a 12-hour clock
which represents it as 1 p.m. Register #10 is used to select between them. As
shown in Figure 5.30, the 12-hour clock is selected when B0 is "0" and the
24-hour clock when BO is "1".

Figure 5.30 Selecting 12-hour clock/24-hour clock

| .| . | B0 | Register #10 (block 1)

+--> 0: 12-hour clock
1: 24-hour clock

Figure 5.31 Morning/afternoon flag for 12-hour clock

| . . | Bl | X | register #5 (block 0)

Fommema > 0: before noon
1: after noon

* Leap year counter

Register #11 of block 1 is a mod 4 counter which is renewed along with the
count of the year. When the 2 low order bits of this register are 00H, that
is considered as a leap year and 29 days are counted in February.

Figure 5.32 Leap year determination

6.7 Contents of the Battery-powered Memory
Blocks 2 and 3 of the CLOCK-IC are used as the battery-powered 4-bit x 13
memory blocks. MSX2 uses this area as shown below.

* Contents of block 2

Figure 5.33 Contents of block 2

0 | ID |

o Adjust X (-8 to +7) | |
N Adjust Y (-8 to +7) | |
s | i ace mode | Sereen mode |
W T WIDTH value (Lo) | |
o I WIDTH value (W) | |
o Foreground cotor | |
o Background color | |
" Border color | |
o | Casserie speed | Printer mode | Key click | Key ON/OFF |
| T BEEP tone . e votme T
o B T Title colour |
12 I ____________________ N -a-t_i_v_e"c_o_d_é"_""""_""""l ________________ l

* Contents of block 3

Block 3 has three functions, depending on the contents of the ID value
(register #0). Figure 5.34 shows the functions.

Figure 5.34 Contents of block 3

ID=0: displays the title (within 6 characters) on the initial screen

Usage ID=1

| |
| |
2 | Usage ID=2 |
| |
| |

3 Usage ID=3
R e LR R TR TP LI PP P LR TP TP LI CEPE PR LRLPEIPEPTE |
4 | Password --+ |
| I
5 | Password | Password data is stored |
| | -- compressed in 4bits x 4 bits |
6 | Password | |
| I |
7 | Password - -+ |

9 | Key cartridge value |
10 I Key cartridge value | |
11 I Key cartridge value | |
12 I Key cartridge value | |

6.8 Access to the CLOCK-IC

The following BIOS routines are offered to access the clock and the
battery-powered memory. Since these routines reside in SUB-ROM, they are
called by using the inter-slot call.

* REDCLK (O15FH/SUB) read CLOCK-IC data
Input: C <-- CLOCK-IC address (see Figure 5.35)
Output: A <-- data obtained (only 4 low order bits valid)

Function: reads CLOCK-IC register in the address specified by the
C register and stores in the A register. Since the address
specification includes the block selection information as

shown in Figure 5.35, it is not necessary to set the MODE
register and then read the objective register.

Figure 5.35 CLOCK-IC register specification method

C register | | | ML : MO | A3 : A2 : Al : AOQ |
| | |
Fomm e - P +
Block to be Register
selected address
* WRTCLK (O1F9H/SUB)cc.u.... write CLOCK-IC data
Input: C <-- CLOCK-IC address (see Figure 5.35)
A <-- data to be written (4 low order bits)
Output: ---
Function: write the contents of the A register in the CLOCK-IC at the

address specified by the C register. The address is specified
in the format shown in Figure 5.35 as REDCLK.

List 5.10 shows an example of this BIOS routine.

List 5.10 Setting the prompt

= 3K 3K 3k ok >k 3K 5k 5k 3k 3k ok >k 5k 5k 3k 3k kR 5k 3k 5k 5k k kK 5k 5k 3k 3k 3k >k 5k 5k ok ok k kK 5k 5k Sk k sk kR Rk k

; List 5.10 set prompt message

» 3Kk 3k 3k 3K 3K 3Kk 3k 3k kK ok 5k Sk 3k kK 3k 3k 5k Sk sk kK 5k 5k kk kK 3k 5k 5k ok k kK 3k 3k Sk sk k kR ok ki k

’

WRTCLK: EQU ©1F9H
EXTROM: EQU O15FH

ORG OBOOGH
e program start ----- ;Note: Set prompt message for BASIC.
START LD C,00110000B ;address data
LD A2 ;ID := prompt mode
CALL WRTRAM ;write to back-up RAM
LD B,6 ; loop counter
LD HL, STRING ;prompt data
LO1l: LD A, (HL) ;read string data
AND OFH ;A 1= hi 4 bit
INC C ;increment address
CALL WRTRAM ;write data to back-up RAM
LD A, (HL)
RRCA
RRCA

RRCA

RRCA

AND OFH

INC C ;increment address

CALL WRTRAM ;write low 4 bits
INC HL

DINZ LO1

RET

HE write data to back-up RAM -----

WRTRAM: PUSH HL
PUSH BC
LD IX,WRTCLK
CALL EXTROM ;use interslot call
POP BC
POP HL
RET

jo---- string data -----
STRING: DB 'Ready?’

END

