Mobile Wireless Sensor Network enables convergence of ubiquitous sensor services

Dr. Jian Ma, Principal Scientist Nokia Research Center, Beijing

Outline

- Introduction to mobile enabled wireless sensor network (mWSN)
 - Backgrounds about WSN
 - Motivations towards mWSN
- Opportunities and Challenges in mWSN
 - Mobility, heterogeneity, and self-organization
 - Design principles and Tradeoffs

Backgrounds about WSN

- Many critical issues facing science, government, and the society call for *high-fidelity* and *real-time* observations and manipulations of the physical world
 - Embedded Networked Sensing will reveal previously unobservable phenomena
- Multi-disciplinary technologies have enabled Wireless Sensor Network (WSN)
 - Embedded, Networked, Sensing & Control
 - Networking, Communications, Signal Processing, Databases, Embedded Systems, Controls, Optimization
 - Biology, Geology, Biochemistry, Structural Engineering, Education, Environmental Engineering

• .

- Typical Sensing Applications
 - Periodic Majority of operation
 - Data Collection, Network Maintenance
 - Triggered Events Infrequently occurs
 - Detection, Notification
- · From military to civil and social applications
 - Environmental/building Monitoring
 - Biosensing, Precise Agriculture
 - Education, Entertainment, Health care

• ...

WSN System Model

• Emergence of Application-Driven (not Application-Specific) Common System Model

WSN Services, Tools, and Advance

- Reusable, Modular, Flexible, Well-characterized Services & Tools:
 - MAC, Topology Management, Routing, Transport
 - Time synchronization, Localization
 - In-network Processing: Sample Collection, Triggering, Tasking, Fault Tolerance
 - Programming abstractions, Network querying
 - Simulation/Emulation, Self-test and Debugging tools
 - Visualization/Management tools
 - Data cleaning, modeling, fusion, interpretation, inference
 - ...
- Experience with large and long-term deployments
 - Experimental system
 - Industry automation
- Mobility and Heterogeneity are being re-considered
 - Connectivity and Scalability
 - Cluster and Overlay

Motivations for mobile WSN

- Mobile phone has been the most popular computing platform continually carried by people
- Diverse RFID (Radio Frequency Identification) tags are believed to be massively deployed in daily life
 - RFID and other tags as lowest layer in sensor network
- To cope with the increasing demand for ubiquitous computing and ambient intelligence, it is becoming imperious to
 - design heterogeneous multi-hop mobile WSNs in order for mobile users to harvest information anywhere and at any time
- As the *agents* of mobile users, mobile phones will by nature be qualified for the tasks of gathering info from surrounding RFID tags and sensors
- Interactions between user *profiles* and wireless *context* will facilitate better mobile experiences and create new opportunities for future lives

mWSN Architecture

Heterogeneity and Mobility

- Heterogeneity: radio, computing, energy, type, ...
 - Radio link heterogeneity leads to hierarchy/overlay, more scalable
 - Energy heterogeneity suggests routing optimization, not shortest-path-first
 - Computing heterogeneity partitions whole network to different roles
 - Actor/Actuator nodes with decision unit
 - Provide greater functionality than sensor nodes: make decisions and perform actions
 - Example: WSAN feedback closed loop
 - Mobile phones have multiple radios, and will become powerful computing devices besides communication devices
- Mobility: information mining on-the-fly
 - One mobile sink equals virtually multiple sinks
 - Example: Networked Info-Mechanical Systems (NIMS)
 - Reduce path length, energy consumption, energy dissipation non-uniformity
 - Enhance coverage, connectivity, and relocability
 - Realize adaptive resource provision and fidelity-driven sampling
 - Mobile phones can gather and process information on-the-fly, realizing interactions with ambient intelligence

Self-Configuration

- Self-Organization behavior can be observed in
 - Chemistry, Physics, Economy, Biology, Social Sciences, etc
 - IP networking, ALOHA protocol, TCP congestion control, etc
- Self-Organization is an inter-disciplinary and heterogeneous field, with merits such as *Adaptive, flexible, failure-robust, scalable*
 - SOS Related Definition
 - Organized a system has a certain structure and functionality
 - Self-organized a system is organized without any external or central dedicated control entity
- The main current scientific theory related to self-organization is *Complexity Theory*, which states:
 - Critically interacting components self-organize to form potentially evolving structures exhibiting a hierarchy of emergent system properties
- mWSN may be applied in Universal Plug and Play (UPnP), Pervasive Networking, Emotional Computing, etc

Advantages and features of mWSN

- Multi-Radio heterogeneity in wireless networks can be leveraged to construct small world networks
- Introduction of mobile sink can reduce path length and energy dissipation non-uniformity
- Sensor mobility can be exploited to compensate for the lack of sensors or sensor failures and improve network coverage

- Emerging of Multi-Radio mobile terminals enables the possibility of combining the role of Sink and Sensor
- Classical definitions and scenarios of WSN may be modified for potential mobile applications

Summary

- Emerging of Multi-Radio mobile terminals builds gateway for people to access any WSN services
- mWSN enables convergence of ubiquitous sensor services
- Multi-Radio heterogeneity in wireless networks can be leveraged to connect small world networks
- mWSN enables innovative ubiquitous applications

Thank you

