UPnP Forum and Gateway committee overview March 15, 2010

Mika Saaranen – Nokia UPnP Gateway Chair Mark Baugher – Cisco UPnP Gateway Vice-Chair

Introduction

- This is a public presentation of the the UPnP Forum's Gateway work
- The contents of this presentation are
 - UPnP Forum overview
 - Foundation of UPnP technology
 - Overview of UPnP InternetGateway v1 features
 - Overview of UPnP InternetGateway v2 features
 - NAT Traversal changes & IPv6 Firewall Control
 - DeviceProtection v1 Security Service (for all DCPs)
 - Updates to the UDA IPv6 Annes
 - Detailed technical presentation of all UPnP IGD:2 new features are in the "backup" section of this presentation

What is UPnP Technology

- 1. UPnP Technology is an open international ISO/IEC standard for device & service discovery & control of devices on an IP-based home network supporting interoperability independent of underlying physical network technology.
- 2. UPnP standards are adopted and used by many global standards organizations including DLNA, Broadband Forum, OpenIPTV Forum and CEA.
- 3. The UPnP Forum has 606 certified device implementations from 66 companies. Additionally, DLNA has certified more than 6,000 products.
- 4. Hundreds of millions of UPnP devices are already deployed (internet gateways, TVs, PCs, game consoles, mobile phones, Blu-ray players, and others)

ABI Research reports DLNA deployed devices: 250 million in 2009, and projects about 1 billion in 2012, about 2 billion in 2014

Diversity of UPnP Vendors & Products

DTVs

Cameras

Digital

Media

Adapters

Game consoles

Networked Storage

Blu-ray Players

Wireless printers

DVD Players

Cell Phones

Routers

Gateways

Lighting Control

A/V Receivers

Multi-room Audio

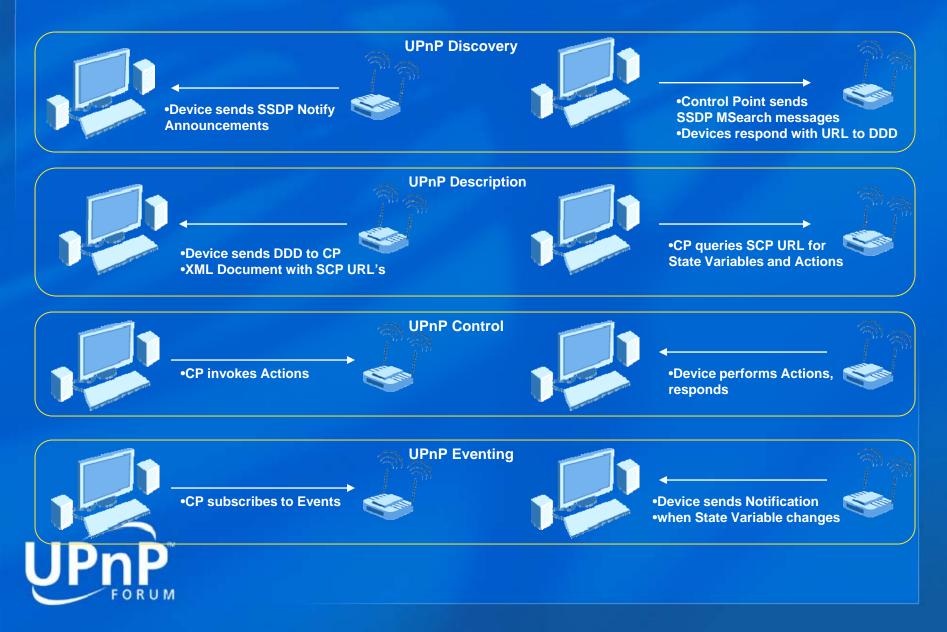
- 1. Acer Aspire Laptop PC series
- 2. Buffalo HS-DS Network Attached Storage (NAS) series
- 3. Canon Digital Camera DS585784
- 4. Cisco-Linksys Network Media Hub
- 5. Corega 802.11N AP/Router
- 6. Denon iPod/Networking Client dock ASD-3W
- 7. Digeo MOXI HD DVR
- 8. Epson All-In-One Printers
- 9. HP Photosmart Plus All-in-One
- 10. Hitachi LCD TV UT Series
- 11. I-O Data AVeL LinkPlayer AV-LS300DW DVD Player/Recorder
- 12. Iomega Home Media Network Hard Drive
- 13. LG Electronics Media Station and BD Player
- 14. NEC Valuestar/LaVie PC series
- 15. ONKYO Receivers
- Panasonic Blu-ray Disc Recorder DMR-BW730
- 17. Nokia N95/N85/N78 mobile phones
- Philips 42PFL9603D/10 Flat TV, NP1100 DMA, Wi-Fi Photo Frame 8FF3WMI
- Promise Technology Network Attached Storage - SmartStor NS2300N
- 20. Pioneer Flat Screen TV series and AV Receiver VSX-94TXH
- 21. Samsung HDTV LN40 Series and SGH-i900 Smart Phone
- 22. Seagate NAS
- 23. Sharp AQUOS LC-46RX5 LCD TV
- 24. Sony Bravia KDL Series HDTV and Playstation 3
- 25. Sony-Ericsson Mobile Communications C905/C705 mobile phones
- 26. Thomson TG787g Residential Gateway NAS
- 27. Toshiba Laptops and REGZA TVs
- 28. Western Digital NAS
- 29. Yamaha DSP-AX3900/RX-V3900 AV Player/Receiver
- 30. Zyxel DMA-1000 Digital Media Adapter and NAS-220

UPnP Working Committees

- UPnP protocols are developed in UPnP Working Committees
- There are many past and present WCs including
 - Audio/Video Server and Renderer (referenced by DLNA)
 - Gateway
 - Device Management
 - QoS
 - Remote Access
 - Telephony
 - HVAC
 - Lighting Controls
 - Security Camera
 - Scanner, Printer and many other device controls

What is UPnP?

•UPnP Addressing •UPnP Discovery •UPnP Description •UPnP Control •UPnP Eventing


 Any number of (authorized) Control Points can interact with a device

•UPnP uses standard web protocols such as IP, TCP, UDP, HTTP Unicast, HTTP Multicast, XML, and SOAP

•Device Control Protocols (DCPs) define the specifics for a given subject area (e.g. A/V, Telephony, QoS, etc.)

UDA Overview

The Risks of Home Networking

•

Home networks are vulnerable to malware and war drivers

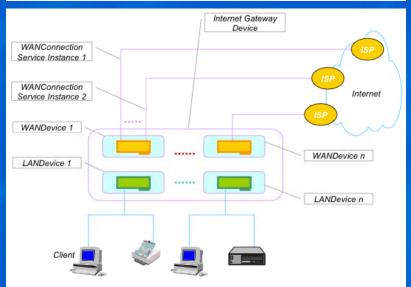


Figure 1: InternetGatewayDevice with LAN and WAN Interfaces

The UPnP Forum is developing a device protection service for UPnP IGD and other Device Control Protocols

Home networks face risks

- Well-known admin passwords
- Little authentication of services
- Viruses are common on home computers
- Malware is biggest threat (viruses, Flash-based attacks)
 - War Driving is another

Gateway V1 overview

- Manage and configure physical connections e.g. connect or disconnect
- Automatic and seamless configuration of Internet access among networked devices
- Status and events on connections like External IP address
- Control NAT traversal

Security in Gateway V1

- IGD and other UPnP DCPs have had the option of using UPnP Device Security for the past 6 years
 - This is a high-grade security service
 - No significant flaws were found in UPnP Device Security
 - Still, vendors have not chosen to ship Device Security
- The Security Task Force considered the technical factors that might have made deployment so hard
 - These are addressed in UPnP Device Protection

Gateway v2 overview

- Enhanced security by new DeviceProtection service applied to all IGD variables and actions
- Enhanced portmapping by new action giving any free portmapping if requested mapping is not free
 - Policy changes e.g. no infinite portmappings
- New service for controlling IPv6 firewalls
- Clarifications for UPnP IPv6 support

Addressing Security in V2

- Threats: Malicious edits to critical configuration variables
 - DeviceProtection service uses public (unauthenticated), basic and admin (authenticated) access controls
- Risks: Bypassing device admin-level access controls
 - DeviceProtection applies access controls to all vulnerable services and data and uses stronger authentication for admin
- Protection of Assets
 - DeviceProtection allows vendors as well as users to limit access to specific services and data

Security in Gateway V2

- Gateway v2 will use UPnP Device Protection
 - Does not require a third-device as a security console
 - Uses X.509 certificates and SSL/TLS services
 - Uses WiFi Protected Setup means of enrollment
- IGD & other DCPs can use UPnP Device Protection
 - Device Protection is a UPnP service for all DCPs
 - DP provides an extensible authorization framework
- IGD has applied Device Protection to its needs
 - Three-levels of authorization and authentication
 - Admin, Basic and Public

Access Controls in IGD:2

Table 3: WANIPConnection:2 Actions

Name	Access level	Description	
SetConnectionType()	<u>Admin</u>	Impacts connectivity for all applications	
GetConnectionTypeInfo()	<u>Public</u>	Allows retrieving information	
RequestConnection()	<u>Basic</u>	Starting a connection is normal operation and should not require strict security, but <u>Basic</u> authentication is RECOMMENDED	
RequestTermination()	<u>Admin</u>	Ending connection impacts connectivity for all applications	
ForceTermination()	<u>Admin</u>	See previous	
<u>SetAutoDisconnectTime()</u>	<u>Admin</u>	IGD configuration – not part of normal usage	
<u>SetIdleDisconnectTime()</u>	<u>Admin</u>	IGD configuration – not part of normal usage	
<u>SetWarnDisconnectDelay()</u>	<u>Admin</u>	IGD configuration – not part of normal usage	
<u>GetStatusInfo()</u>	<u>Public</u>	Allows retrieving information – does not change operation	
<u>GetAutoDisconnectTime()</u>	<u>Public</u>	Allows retrieving information – does not change operation	
<u>GetWarnDisconnectDelay()</u>	<u>Public</u>	Allows retrieving information – does not change operation	
<u>GetNATRSIPStatus()</u>	<u>Public</u>	Allows retrieving information – does not change operation	
GetGenericPortMappingEntry()	Public for CP's IP address and ports greater than or equal to 1024	Allows retrieving information on device's own port mappings when ports <i>are not</i> well-known ports	
	Basic for CP's IP address and ports lower than or equal to 1023	Allows retrieving information on device's own port mappings when ports <i>are</i> well-known ports	

Access control is defined

For all IGD Actions

Three levels of access

- Admin
- Basic
- Public

Better overall security

- Least privilege
- Privilege separation

UDA Annex A IPv6 Changes

- IPv6 support in UDA 1.0 and 1.1 evolved with the evolving standard
 - Deprecation of site-local addressing
 - Development of unique local addressing
 - Publication of RFC 3484 address selection policies
- Allow routed home networks using ULAs
 - 802.14.5 uses a 64-bit address means that it cannot be bridged to Wi-Fi, Ethernet, MoCA, or other LANs.
 - Accommodate routed private networks with site-routing without resorting to globally-routable addresses.

Time table

This presentation covers on-going work and may change before publication. Target timeline is:

- WANIPConnection:2 Q4/2010
- DeviceProtection:1 Q4/2010
- IPv6 update and firewall control: Q4/2010

<u>Summary</u>

- IGD:2 introduces two new services:
 - DeviceProtection :1 to enable authentication and access control
 - WANIPv6firewallControl:1 for controlling IPv6 firewalls
- There is new and enhanced portmapping
 experience with WANIPConnection:2 service
- A number of policy changes that improves security and resource usage
- This presentation covers on-going work and may change before publication.

Technical details

WANIPCONNECTION:2

Key Use Cases

- Use case #1 Add portmapping
 - User has an application that needs to be contacted from the internet
 - Usually, no user interaction is needed: Application uses IGD control point to make required portmappings (or a UI can be used)
 - It is possible to get any free portmapping or request a specific one
- Use case #2 delete portmappings
 - Applications may remove portmappings automatically or user may use UI to delete specific mappings
 - It is possible to remove single items or ranges
- Use case #3 find out existing portmappings
 - Control point UI allows user to retrieve list of portmappings for diagnostic or other purposes

List of Key changes Features actions

- DeletePortMappingRange() allows removing a range of portmappings
- GetListOfPortmappings() allows retrieving a list of existing portmappings.
- AddAnyPortMapping() allows requesting specific external port and if the port is not free the gateway assign a free port. Policy how to determine the assigned port is left to vendors

<u>List of Key changes Features New</u> <u>– state variables</u>

- SystemUpdateID is used to track changes in NAT portmappings
- A_ARG_TYPE_MANAGE is a parameter used in new actions
- A_ARG_TYPE_PortListing is a data structure used to return a list of portmappings

List of Key changes Features – policy changes

- PortmappingLeaseTime can have values between 1 to 604800 seconds
- If control point uses value 0 to indicate infinite lease time mapping, it is required that gateway uses maximum value instead
- In IGD there is access control feature introduced.
- If a Control point has not been authenticated and authorized as defined in the DeviceProtection service, control points may request portmappings only for their own IP address
- If a Control point has not been authenticated and authorized, the External port value must be >1023
- It is not possible to require that ExternalPort must be equal to InternalPort

DeviceProtection:1

Vic Lortz (Intel) chair of UPnP Gateway security Task Force

Mika Saaranen (Nokia), Chair of UPnP Gateway committee

Background

• Ease of use is generally at odds with secure use

- People find that passwords and other authentication methods are a challenge to manage on home networks
- Easily defining authorizations is also a big challenge
- There needs to be user involvement in both
- UPnP DeviceProtection work was initiated to create a security solution that
 - Is easy to use and can be attached to other mechanisms namely Wifi Protected setup
 - Has industry support
 - Provides adequate level of security
 - Supports legacy services

Basic Security Requirements

- 1. Simple to understand and use
- 2. Mutual authentication
- 3. Access control
- 4. Privacy
- 5. Align with widely-supported security mechanisms
- 6. Decentralized trust model
- 7. Both Device Identities and User Identities

Device Protection Properties

1. Trust based on physical proximity and access

- Such as reading a PIN
- Pushing a button,
- NFC touch, etc.

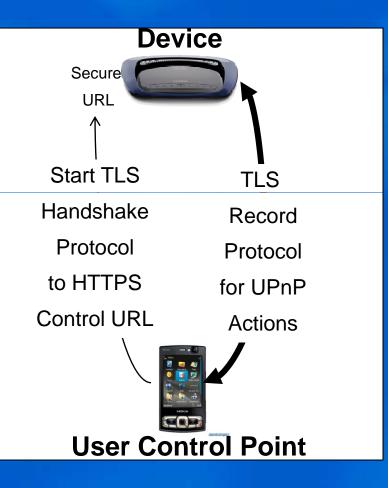
2. Bootstraps strong cryptographic secrets

- X.509 Server and Client certificates (2048 RSA)
- Password-based User login uses PKCS#5, protected by HTTPS
- 3. Role-based per-device access control lists

Note: data plane protection is out of scope

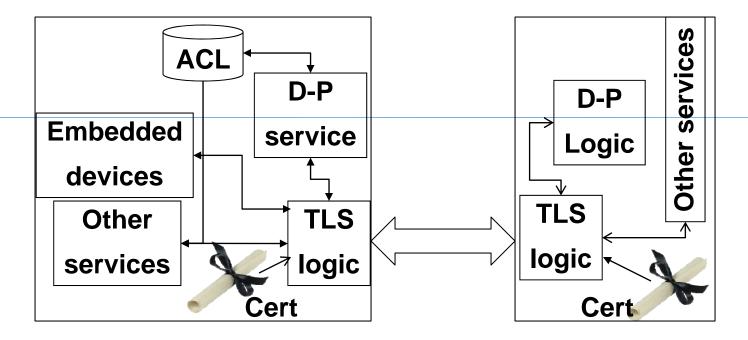
Trust Boostrapping by Introduction

1.


Pair-wise introduction

- A. PIN-based, run once
- B. Establishes trust in selfsigned certs of both Device and CP
- c. Successful introduction establishes default Role for CP
- 2. "Gossip" introduction

Β.


- A. With AddIdentityList(), authorized CPs propagate other CP Identities to devices on network
 - "Gossip" model only propagates Identity information, not authorization

Securing the Control Plane

D-P Functional Block Diagram

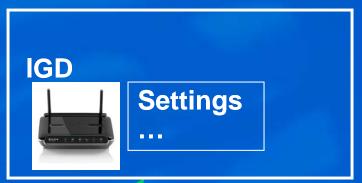
DEVICE

CONTROL POINT

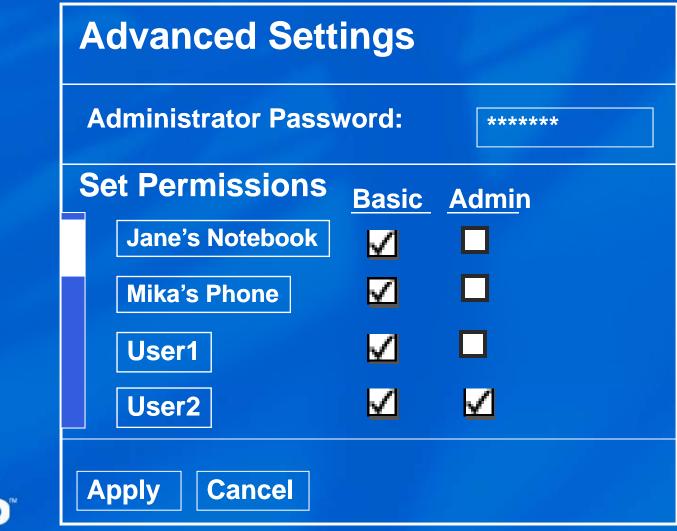
IGD User Experience Scenario

IGD Scenario

Control Point


- CP on laptop and IGD are already connected to an IP network (may be wired or wireless)
- User introduces CP to IGD (IGD and CP exchange certs)
- IGD automatically assigns new CP a default role of "Basic"
- Basic is recommended, but Device MAY have different policy
- Gaining Admin rights to a device or asserting a User identity requires login with username/ password

Example Setup UI Flow


Administrator Login (rarely needed)

TLS connection

	RouterXYZ	8 2
		GET
Configuration UI	The server requi	res a username and password.
	<u>U</u> ser name:	8 •
Advanced Settings	Password:	Remember my password
JPnP [®] Done		OK Cancel

Concept UI of Administrative CP

SOAP Actions & Roles for the D-P Service

- <u>SendSetupMessage() [Public]</u>
- GetSupportedProtocols() [Public]
- GetAssignedRoles() [Public]
- GetRolesForAction() [Basic or Admin]
- GetUserLoginChallenge() [Basic or Admin]
- UserLogin() [Basic or Admin]
- <u>UserLogout() [Basic or Admin]</u>
- GetACLData() [Basic or Admin]
- <u>AddIdentityList() [Basic or Admin]</u>
- <u>Removeldentity() [Admin-only]</u>
- <u>SetUserLoginPassword() [Basic or Admin]</u>
- <u>AddRolesForIdentity() [Admin-only]</u>

RemoveRolesForIdentity() [Admin-only]

<u>Summary</u>

- 1. CPs and Devices authenticate each other using certificates, users of shared CPs can also authenticate with Username/password over TLS
 - A. Device uses ACL to identify trusted CPs
 - B. CP *may* maintain list of trusted Devices
- 2. Unauthenticated CP (or attacker) has only Public role unless its cert is added to ACL through introduction process
- 3. Remaining threats
 - A. TLS renegotiation attack (fixed in initial release by prohibiting renegotiation)
 - B. Malware (virus) on trusted CP
 - c. Weak introduction methods (label-based PIN, push-button)
 - D. Denial-of-service on initial UPnP Discovery layer
 - E. Eventing layer
 - F. Flaws in access control policies (of vendor or UPnP committee)
 - G. Others? Please help us find them.

WANIPv6FirewallControl:1

Mika Saaranen, Nokia Fabrice Fontaine, Orange Mark Baugher, Cisco

Introduction

- It is expected that massive roll-outs of IPv6 will start in next couple of years
- In IPv6, we likely won't have NATs, but it seems that business considerations require IPv6 firewalls
- There is a need to open transport addresses (pinholes) for unsolicited packets from the exterior for a duration as requested by the control point
- WANIPv6Firewall control is a service that allows hosts to:
 - Create pinholes into firewall
 - Delete pinholes

Check if a pinhole works (optional)

Key use cases

• Use case #1 Add pinhole

- User has an application that needs to be contacted from the internet
- Usually, no user interaction is needed, but application uses IGD control point to make required pinhole, but UI can be used to verify validity of request
- Use case #2 Delete pinholes
 - Applications may remove its pinholes automatically or user may use UI to delete pinholes
- Use case #3 find out if specified pinhole works
 - Optional feature

State variables

- FirewallEnabled : is firewall enabled
- InboundPinholeAllowed : Can pinholes be created
- OutboundPinholeTimeout : How long a pinhole created by sending traffic out remains
- And argument types for actions

Actions

- GetFirewallStatus() : returns information if the firewall is active and new pinholes can be created
- GetOutboundPinholeTimeout() : returns timeout value for automatic pinholes
- AddPinhole(): Creates a pinhole with specified arguments e.g. remote host, local host, expiration
- UpdatePinhole(): Allows extending life of a pinhole

Summary

• IGD:2 has release target in Q4/2010 including:

- WANIPConnection:2
- DeviceProtection:1
- WANIPv6Firewall control:1
- Pre-published specifications are available for all UPnP Forum members

TM FORUM

For the interconnected lifestyle