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Abstract

This thesis describes the methods required to implement a matrix multiplication based algorithm
in hardware. It considers complications such as concurrently updating a matrix while it is being
used for calculations, and developing optimisations for special types of matrices. The goal was
to use some of these multiplications to implement a new signal processing algorithm, of which a
floating point MATLAB model had been provided.

The floating-point model needed to be changed to a fixed-point model, and then implemented in
VHDL. The quantisation of the fixed-point model had to not only provide a small enough error
compared to the optimal result, but also be space efficient when implemented in hardware. To
ensure the correctness of the design, an interface was also needed between the MATLAB model
and the VHDL simulator, so that atest bench could compare the input and output values of each
model. A further concern in chip design is power efficiency, and this formed an extension to the
project, once the basic working design had been created.

This project is an extension to the work that was carried out in an industrial experience project,
between December 2001 and February 2002, with Bell Labs Research. That project was to
create a generically sizable VHDL model of a high speed multiplier, with the goal of meeting
the benchmark of what was thought to be an optimal design. That goal was exceeded, and the
design has since been further enhanced for both this project, and the needs of Lucent
Technologies.

Those multipliers have formed the basis of complex number multipliers, which then formed the
basis of several matrix multiplier designs. Those designs were then analysed, and the most
appropriate ideas were combined to form the arithmetic section of this project. A control unit
was then designed to co-ordinate the unit and interface it to the required memories.

The result is a signal processor that is a fast as possible with the given design specifications.
Furthermore, it contains optimisations to minimise power consumption, and is based on a
multiplier circuit for which a patent has been filed. This document presents a set of techniques
which could ultimately be extended to implement and matrix multiplication based algorithm.
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1. Introduction

The motivation to this projed comes from the industrial experiencethat | completed with Bell
Labs Reseach (Lucent Techndogies) between December 2001, and February 2002. The
primary focus of this research groupis wirelesscommunicaions g/stems, and the devel opment
of digital chips to med the demands of the next generation d high performance wireless
techndogies. The focus of my work was multiplicaion circuits, with the dallenge to either
match, o improve on, the speed of a benchmark multiplier that was already in existencein the
Lucent comporent library. This target was excealed, with a design that was 14% faster than the
existing multiplier, and in some caes matched the speed o the nonconfigurable design that
was built i nto the synthesis ftware.

Multiplicaion days many important roles in wireless digital communications, including
filtering, coding and aher signal processng. Furthermore, amulti plier comporent tendstoliein
the aiticd path of a drcuit and consumes a large propation d the power requirements, so it is
important to find afast, power efficient design for use in today’ s high speed applicaions.

However, signa procesgng rarely uses purely red numbers. Use of the cmplex number system
is amost unavoidable, as it allows mathematicd manipulation d variables that would na
otherwise be paosshle. Hence, for a multiplier circuit to be of any use in a signal processng
system, it must be extended to handle complex numbers.

Multiplicaionis not necessarily as smple & the product of two numbers, whether they are red
or complex. In signal processng it is often necessary to multi ply groups of numbers together, in
particular matrices. Implementation o matrix multiplicéion is hard to achieve dficiently in
terms of both time and space bu is a necessary comporent of many signal processng
algorithms.

Signal processng itself is an area of reseach that is constantly undergoing techndogicd
change. In particular, the main focus of the Bell Labs Reseach group in Sydney is the
development of innovations that will be part of the next generations of wireless
communications. Some of the diall enges which facereseachers are ways to improve the rate of
data transfer, reduce the anount of power consumption o wirelessproducts, and deding with
the problems of interferencethat are inherent in many wirelesschannels. These fadors form the
basis of the requirements for this projed.

In particular, a new algorithm as been developed that is planned for usein areseach chip that is
currently under development. The projea of this thesis has thus been to implement that
algorithm in hardware, by writing a VHDL description o a drcuit that can be synthesised into a
chip. The particular nature of the dgorithm is proprietary, but it requires a number of matrix
multi plicaions, using complex numbers. This thesis therefore explores al of the possble
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multi plicaion scenarios, of which a subset has been combined in order to implement the
algorithm.

The following spedfications describe the dhall enge that needed to be met
* Implement the dgorithm in a design that uses 8ns clock cycles
* Itneealsto use asfew clock cycles as posgble for the matrix multi plicaions.
* It nealsto employ optimisationsto use &slittl e power as possble
e Itcanna use an excesgve amourt of spaceonthe chip in which it will be implemented

The design tools which were used included:
e ModelSim VHDL compil er and simulation software
e Cadence and Synopsys g/nthesis software
e TSMC 0.181m techndogy library, used by the synthesis tods to determine the
charaderistics of a “red” circuit.
e Artisan Comporents register file generation tod for creding the memories to hdd
meatrix data.

This document contains adescription d the steps required to achieve this goal.

Chapter 2 outlines the badkgroundknowledge required for understanding the implementation o
the design. The mathematicd badkground (sedion 2.J) to this work includes understanding the
complex number system, matrices, and a spedal type of matrix, Hermitian matrices. A sedion
on dgital circuit design (2.2) describes how modern dgital chips are designed, and some of the
isaues that need to be addressed. Additionally, there ae spedal tedchniques that allow relative
ease of implementation  arithmeticd operations in dgital hardware, as described in sedion
2.3.Finally, the descriptive model of the must be mnverted into an adual circuit to be of any
red use, and sedion 2.4covers this processof synthesis.

The original algorithm was modelled in MATLAB software, and used floating point numbers of
ahigh predsion. To med the neals of simulating a hardware model, the MATLAB code neaded
to be dhanged to implement afixed pdnt model of limited predsion. Chapter 3 reveds some of
the problems and issues that were encourntered whil e working with this smulation.

Chapter 4 provides an overview of the implementation, and ogimisation, d the multiplier
circuit that is the basic comporent of this projed. Sedion 4.1 biefly describes my previous
work on creding a high speed multiplier design, o which more detail can be obtained by
referring to my projed report on this task [12]. During the @urse of this projed, additional
work was dore on techniques to ogtimise the design so that a power saving enable function
could be added withou affeding the aiticd path. This work has resulted in Lucent filing a
patent on my design, and is described in sedion 4.2.Finally, sedion 4.3 ascribes the alaption
of the original multi plier into a design that operates on complex humbers.
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The next step was to investigate designs for matrix multiplication, which is the subjed of
Chapter 5. The first sedion covers a parall el architedure, which requiresalot of circuitry but is
fast. Conversely, the second sedion, ona fully sequential architedure, describes an algorithm
that requires minimal circuitry but takes much longer to complete its operation. Sedion 5.4
describes the achitedure that was chosen, wsing a ompromise between the previously
described extreme ends of the spedrum of passhiliti es. The rest of this chapter then covers
spedal casesthat neal to be aldressed in arder to perform spedal cases of multi pli caions, such
as guaring, and ogimally writi ng the output over one of the source matrices.

Once afavoured architedure for matrix multi pli cation was chosen, it needed to be incorporated
into a design for asignal processor that could hande many diff erent multi pli caions, including
the “problem types’ that are aldressed in Chapter 5. Chapter 6 describes this implementationin
detail, including how the matrix multiplier can be optimised for the spedal types of matrices
that are to be used, and the operation o the various functional blocks of the design.

Chapter 7 concludes this document by describing the results and findings obtained, and
describing possbiliti es for further work onthis projed.

Finally, there anumber of appendix pages are included to provide some insight into the ac¢ual
design work that was implemented:

* Appendix A contains portions of the MATLAB code that was used to simul ate the fixed
point model of the dgorithm

» Appendx B contains flow charts, describing the general operation d the different
stages of the signal procesor.

e Appendix C consists of samples of some of the cde that was written to test the designs
described within this document.
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2. Technical Background

The work described in this document incorporates two distinct comporents. The first of theseis
the mathematicd theoreticd model of how the signal processor is suppased to work. The seaond
is the VHDL implementation, which can then be synthesised for incorporation in future dip
designs.

2.1. Mathematical Background

The spedfied algorithm for this projed involves an equation requiring the manipulation o
matrices. Furthermore, these matrices involve aithmetic of complex numbers. Hence it is
necessary to review the relevant badkgroundtheory to these topics in arder to understand the
detail of the foll owing chapters.

2.1.1. Complex Numbers

[1]

Complex numbers are asuperset of the red number set that is most familiar to people. They

consist of a “red” comporent, X, and an “imaginary” comporent, y, and are written as
Z=X+iy

The symbd “i” designates the imaginary comporent, andis defined as
I =+-1

All further mathematica manipulation, that is required in this projed, can be dore by simply
treding the “i” symbal like any other algebraic variable. Multiplication d complex numbersis
covered in chapter 4.

29/05/02 4
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2.1.2. Matrices

[2]
A matrix is sSmply a table of values, which is typicdly used to represent sets of simultaneous
equations. For example,

Vim st aset . tax,  Dh0 By @ . @, XL
Y2 = &1X1 + dpaXot+ ... + Xn %/25:%21 a, .. aZH%ZE
Ym = niXy + @n2Xo + ...+ GnnXn %E B EELE

EymD @ml am2 amn [

Figure 2-1: Matrices are used to represent sets of simultaneous equations

This g/stem of equation could be then be simplified toy = Ax. The notation used for matricesis
that an m x n matrix has m rows and n columns, and that &; represents the value of the cdl at
row i and column j.

2.1.2.1 Multiplication

[3]
Multi plication d matrices is more involved than addition, and requires the foll owing condtions
for the product C= AB :

e Thenumber of rowsin A isthe same a the number of columnsin B

*  Thenumber or columnsin A isthe same a the number of columnsin C

*  Thenumber of rowsin B isthe same a the number of rowsin B

In summary, (ax b matrix)(b x ¢ matrix) = (ax ¢ matrix).

Givenan| x m matrix A, am x nmatrix B, andal x n matrix C, we can cdculate
- - - - m
Oi,j[lsi<landl< j<n,C, =ZAanj
n=.

That is, for a particular cdl in C, we take the row from A and the lumn from B that
corresponds to that cel’s row and column in C. We then take eat pair of elements one & a
time, starting from the left and top respedively, and multi ply them together. The final value for
the cdl in C isthen the sum of these multi pli caions.

@11 a12 D+ |]:)11 b12 b13 D: wllbll + b21a12 allb12 + b22a12 a11b13 + b13a12 [
B, a,d M, b, b.H b, +ba, ab,+b,a, ab,+ba,b

Matrix multiplicaionis asciative, bu generally not commutative.
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2.1.2.2 Transpose and Adjoint Matrices

[4,9
The transpase of amatrix Q is denoted Q', which can be defined as

DI!J |Qi,j DQ!QTJ'i :Qi,j

Such matrices hold the following spedal property, that can be useful for simplifying matrix
equations:

(AB) =B"A’

A spedal type of transposed matrix isthe aljoint matrix, defined as
A=A

That is, the ajoint of a matrix is made up d the complex conjugate of each element of it’s
transpose:

Ui, J |Qi,j DQ’Q*U :Qi,j
Adjoint matrices also hdd the property:
(AB) =B'A
Note: The MATLAB notation for the aljoint matrix is A’

2.1.3. Hermitian Matrices

[7.8

Hermiti an matrices are spedal matrices, charaderised by the foll owing qualiti es
e Thematrix is guare
e Thematrix is €lf-adjoint. This means that for amatrix Q, if Q(a,b) = x + iy, then Q(b,a)
=X —1iy.

They contain the following spedal properties that often all ows considerable simplificaion o
matrix equations:

e (A) =A
« (A+B)=A"+B
. (kA) =kA

« (AB) =AB
* An addition a multiplication between two Hermitian matrices will produce an answer
that is also Hermitian
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2.2. Digital Circuit Design

[9]

Digital circuit design was once aprocess of manual schematic design, involving seledion o
individual gates, and determining how they shoud be physicdly conreded to ead ather to
achieve the desired function. The problem with this methodisthat it is dow, tedious, and rone
to error. Furthermore, the design of today’s advanced VLSI (very large scde integration) chips,
such as the AMD and Intel microprocessors used to creae this document, would be nea
impossble with such methods.

An dternative, that is used isto describe the intended behaviour and architedure of adesign, is
by using a high level Hardware Description Language (HDL). The two competing standards,
Verilog and VHDL, are HDLs which allow circuit designs to be represented in a way that is
much more intuitive to creae and urderstand. Furthermore, the designs can be aeaed much
more rapidly, and the only errors are likely to be with the logic design, as oppased to wrongly
conreded gates.

HDL designs can then be compil ed into avenda spedfic encoding, for use with simulation and
testing tods. Then, orcethe design is beli eved to work corredly, asynthesistod processesit, to
produce adesign for an ASIC or FPGA chip. The resulting output is analysed for performance
data, the code may be refined and recompil ed, and the processis repeaed.

Cadence

EextEdiLQ[ ,7ModeISim_| |_ PKS _|

Simulate Synthesise
i>CompiIe[> and $ yD ) [>
VHDL Check esign Analyse Final
Coding Results Design

Figure 2-2 : Design processfor digital circuits. ModelSim and Cadence ae spedfic products which
were used in this projed to perform the designated steps in the process

2.2.1. ASICs and FPGAs

[9]
Both Applicaion Spedfic Integrated Circuits (ASICs) and Field Programmable Gate Arrays

(FPGAS) are types of custom chips, which dffer in their properties, cost, and in the way that
they are manufadured. The choice of which to use depends on the required applicaion.
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2.2.1.1 FPGAs

FPGA devices typicdly contain an architedure that is vendar spedfic. A mgjor advantage is
that the designer is then able to quickly program them as required, with no additional
manufaduring necessary. If testing fails, then the design can be changed and ancther device
immediately reprogrammed. In addition, circuit design ouside of the dip can be
simultaneously performed, since the function o FPGA pins can be asdgned before the internal
design is complete. However, FGPA devices cost on average between US$100 to US$200,
making them relatively expensive for massproduction.

2.2.1.2 ASICs

Older style ASIC chipsinitially contained arrays of unconneded transistors, creaed duing the
most complex and costly phase of manufadure. Known as “gate arays’, these mntained a set
of basic cdlsaaossthe dip, which included logic gates, registers, and maao functions such as
multi plexors and comparators. Gate arays may or may nat contain predefined “channels’, used
for routing between the basic cdls.

The most common type of ASIC currently used is the standard cdl format. These contain no
comporents and the time of initial manufadure, and do ne contain any type of basic cdl.
Instead, custom layouts are aeaed for ead part of the design, making more dficient use of the
avail able sili con.

A fina manufaduring processinvolves the mnredion d the generic units to form the spedfied
design, and can take two or more weeks. Individual devices can cost as little & US$10, bu the
initial engineeaing costs can be US$20,000to over US$100,000.

The designs described in this document are targeted for ASIC chips, and make use of the TSMC
0.18um Standard Cell Library.
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2.2.2. Digital Logic Basics

While much o the low level design and ogimisation d a drcuit is dore by the synthesiser,
knowledge of the basic logic gatesis dill required in arder to be ale to understand the output of
the synthesis todls, and to know how to optimise the design configuration. Figure 2-3 oulines
theinpus (A and B), and correspondng outputs (Z) of a number of the common logic gates.

D "oy M) ez

B AND B NAND NOR

PP~ O o>
R OR O|lm
Rk O o>
O rR Rk RN
O O O FIN

B OR B XOR

R RO o>
P OR O|m
el e =]\N
PR O o>
P OPRr O|m
O r B OIN

Figure 2-3 : Truth tables for a number of common logic gates. The inputs A and B will cause the
corresponding output result Z to occur. The values 0 and 1refer to the respedive digital logic levels.

In summary:
* The AND gate has an ouput of 1 (“high”) if al of itsinpus are high
* TheOR gate hasan ouput of 1 if any of itsinpusare high
* The XOR gate hasan ouput of 1if only one of itsinpusis high
* NAND, NOR, and XNOR gates are the same a AND, OR, and XOR, bu with the
outputs inverted.
* Thetrendisthe samefor similar gates with threeor more inpus
* Theoutput of the NOT gate is an inverted copy of theinpu
* A “buffer” isagate where the output is the same atheinpu.
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2.2.3. Implementation of gates

Physical logic gates are built with transistors, and the particular characteristics of an individual
gate depend upon the type of transistors used to implement it. For example, the CMOS
implementation of a NOR gate could be represented by figure 2-4.

=
T
| I

Figure 2-4 : CMOS implementation of an AND gate

Since they are built from transistors, logic gates inherit a number of characteristics that are
important to digital design:

» All transistors contain some form of capacitance, which affects the speed of the device,
and the power it dissipates.

e Transistors are only capable of supplying a limited amount of power through their
output pins, and all real logic gates consume an amount of current through their inputs.
Therefore, an output of alogic gate can only reliably drive a limited number of inputs
on other gates, and this number is called the fan-out of the gate.
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2.2.4. Propagation Delays

An additional complexity of digital analysis is that the outputs of logic gates do nd change
instantaneously with the inpus. Each takes a finite anount of time, known as the propagation
delay, which is caused by the capadtances within the logic gates, and by the fad that a paotential
difference cana instantaneously change. Furthermore, different types of gate are constructed
with different configurations of transistors, so they also vary in their propagation celay.

In any reasonably sized digital asynchronous circuit, there ae alarge number of posdble paths
between the inpus and ead of the outputs. The propagation delay for an individual path isthe
sum of the propagation delays of the gates through which it passes. The path that has the highest
delay is known asthe critical path for the drcuit.

2.2.5. Power Consumption in Digital Circuits

The power disdpated by a digital circuit becomes an important issue when it is being designed
for use in a dip. Thisis nat only from the pradicad asped, that a chip can orly withstand a
certain amourt of hea generated from power disspation, bu also from the commercial aspea
that lower power products are more wmpetitive. There ae two broad categories for power
consumption:

» Static power: Thisisthe power used by alogic gate when its output is held at a mnstant
level. It is caused by le&kage aurrents, which are charaderistic to any circuit.

* Dynamic power: Dynamic power is used when a gate is changing state. A small
propation comes from the switching current generated by the dhange, bu the major
part is dueto the charging of the gate' s cgpadtanceto refled the new voltage level.

Of the two, dynamic power is the most significant, and the one that can be influenced by the
logic design. If the number of transitions in the state of a drcuit’s gates can be minimised, then
so will be the power consumption d that circuit. There ae anumber of ways in which this can
be dtempted:

e Disabling unused parts of the drcuit. By pladng an AND gate in front of ead of the
inpus, with ore input attached to an enable signal, then the entire drcuit will remainin
a static state whil st that enable pinisat alow logic level.

* Reducing ditchesin a drcuit. A glitch is smply a temporary change in the logic level
of asignal before it reades its final value. These ae often unrecessary if the logic is
arranged appropriately, and removing them can make significant power improvements.
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2.3. Arithmetic in Digital Logic

There ae many occasions where the acceted standard methods for manual exeaution o
arithmetic operations are highly inefficient when implemented into hardware. Two such
examples are adition and multi pli cation.

2.3.1. Negative Numbers

Binary numbers only have 0's and 1's, so there is no dus or minus sgns. Therefore, to work
with negative numbers, we need a spedal way of representing these values. One such technique
iscdled 2 s complement.

A 2’'s complement number uses the most significant bit asthe “sign hit”, with a “1” indicaing a
negative number, and a “0” representing a positive number. To take the negative value of a2's
complement number, simply:

e Invert al of the bits

e Add ltotheresuit.

2.3.2. Carry Save Arithmetic

One of the major speed enhancement techniques used in modern circuits is the aility to add
numbers with minimal carry propagation. The basic ideaisthat threenumbers can be reduced to
2,in a 3:2 compressor, by doing the aldition while kegoing the caries and the sum separate.
This means that all of the wlumns can be alded in parallel without relying on the result of the
previous column, creding atwo ouput “adder” with atime delay that is independent of the size
of itsinpus.

10111001

00101010

00111001
Sum 10101010
Carry: 00111001
Resul t: 100011100

Figure 2-5 : Example of cary-save aithmetic. A normal adder generates the result at alater stage.

The sum and carry can then be recombined in a normal addition to form the corred result. This
processmay seem more complicated and pantlessin the eove trivial example, bu the power
of thistechnique is that any amount of numbers can be alded together in this manner. It isonly
the final recombination d the final carry and sum that requires a cary propagating addition.
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Figure 2-6, from [10], is cdled a WdlaceTree ad is one method d combining 3:2 cary save
adders to add together 7 numbers, of size k bits.

[0, k1] [0, k~1] [0, k1] [0, k-1]

[0, k1] [0, k1] |

| Kbt csa |

[0, k1]

| k-bit CSA

[0, k—1]

k-bit CSA

[0, k—1]

k-bit CSA
12, k+1 [1, k=11
The index pair
[i, 1 means that [1, k+1]
bit positions
from i\lul) fop Bkl k]
are involved. k-bit CPA
Ee I [2, k+1] 1 10

Figure 2-6 : Wallacetreemethod o carry-save aithmetic [10]

The first level of the tree generates two carries and two sums, as well as the left over term,
which is nat added. Since the caries from any single wlumn adualy means “add ore to the
next column”, the cary bits must be shifted left one paosition before they can be alded to the
result. Hence, they are digned with bitsk downto 1.

The two sum values and the Ieftover term are dl aligned with hits k-1 down to 0, so they can be
fed into another 3:2 compressor to form ancther carry and sum. The three caries can then be
added to form ancther carry and sum, and al of the results are then pushed into the larger carry-
save ader to prodwcethe final carry and sum. A cary propagate alder, usually an adder using
cary look-ahead, produces the final result.

The @ove technique aranged the alder tree so that all of the output bits coud be obtained
while minimising the size of the drcuit. However, in the cae of multipliers, we know what the
expeded ouput size will be, and so we can set all of theinpu and ouput sizesto that value. We
do nd care aou any overflowing sign hits, so they can be discarded and the caries can simply
be shifted |eft to the crred alignment. All of the results can then be grouped together as one
and continually reduced urtil we ae left with two values. Thisis demonstrated by figure 2-7.
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3:2CSA 3:2CSA

3:2CSA

3:2CSA

3:2CSA

Figure 2-7: Carry-save adder tree for when overflowing carries from the MSB do not matter

This method may appear wasteful because alot of bitsin the first stages of the adder tree will be
frozen to zero. However, these will be optimised during synthesis, and this technique seems to
produce more favourable synthesis results than trying to code the design efficiently.

2.3.2.1 3:2 Compressors

The design of the 3:2 compressor is simple, with the following truth table showing that it is
nothing more than a 3 bit adder:

Inputs Outputs

A B C Sum Carry
0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 2-1 : Truth table for the 3:2 compressor. In redlity, it issimply afull adder.

Adding three k-bit numbers together simply involves an array of k 3:2 compressors, each being
independent of each other, and operating on a single bit position:

Ac1bki1Cin AcobyoCh. Ac.3by.2Ck-2 ab,co abic bnCo

N

y
a 4 P R ——— 22| 22| |2
YY VY vy YY vy oy

Carryy Sumy.  Carryi; Sumy. Carmyicz Sumy. Carrys Sum, Carry, Sum;  Carry: Sumo

Figure 2-8: Architecture of the full word 3:2 compressor, using individual bit 3:2 compressors.
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2.3.2.2 4:2 Compressors

The discusson so far has referred orly to 3.2 cary-save alders, bu it is also pcsshle to add
four bitsin this format. In redity, asill ustrated in figure 2-9, there ae acualy five inpus (one

being a cary in), and threeoutputs (two carries and the sum).
A B C D

]
g

Carry Sum
Figure 2-9 : High level view of the 4:2 compressor

Cout < Cin

The dharaderistics of the 4:2 compressor are:
0 Theoutputs represent the sum of the fiveinpus, soitisredly a5 hit adder
0 Both cariesare of equal weighting (i.e. add“1” to the next column)

o Toavoid cary propagation, the value of Cout dependsonly onA, B, CandD. Itis
independent of Cin.

0 The Cout signal formstheinpu to the Cin of a4:2 o the next column.

The behaviour of the 4:2 compressor is described by table 2-2.

Inputs Cin=0 Cin=1
Carry | Sum | Carry | Sum Cout
0 0 0 1 0
0 1 1 0 0

R ORI |O|R|O|O|R|O|O|O|R|O|T

N G R R =R = = R === =1 P
o|lr|r|r|o|lo|kr |k |kr|o|o|r|lo|lo|o|m

RO |IR|[O|FR|O|O|R|R|O|O | |O|Oo|O

1 1 1 0 1 1 1
Table 2-2 : Truth table for the 4:2 compresor cdl
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A k-bit 4:2 word adder isthen formed as shown below, in figure 2-10.

ik-l k-l(ilel A$ZB:C¢D¢ Al Bl Cl Dl
| + 2 |<—

. 2229 1211
+ + vaa S*ﬁ‘h Cirw gmn

Sim. Carrvici Sumi.,

Figure 2-10: Architecture of the full word 4:2 compresr, using individual bit 4:2 compressors.

2.3.3. Booth Multiplication

Booth multiplication is a technique that allows for smaller, faster multiplication circuits, by
reading the numbers that are multiplied. It is the standard technique used in chip design, and
provides sgnificant improvements over the “long multi plication” technique.

2.3.3.1 Shift and Add Multiplication

A standard approadh that might be taken by a novice to perform multiplication is to “shift and
add’, or norma “long multiplication’. That is, for ead column in the multiplier, shift the
multi plicand the gpropriate number of columns and multiply it by the value of the digit in that
column of the multiplier, to oltain a partial product. The partial products are then added to
ohtain the final result, as depicted by figure 2-11.

kO O

O o o o
m O 0O o0 o|lo o
r OO0 R O|r o
O 0o Rr|or
o r o|lo o
N = [
Pk e

0
00
0011010001

Figure 2-11: Sample multi pli cation, using the shift and add technique.

With this g/stem, the number of partia products is exadly the number of columns in the
multi plier.
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2.3.3.2 Reducing the Number of Partial Products

11

I[t is?possibleto reduce the number of partial products by half, by using the technique of radix 4
Booth remding. The basic ideais that, instead of shifting and adding for every column of the
multi plier term and multiplying by 1 or O, we only take every second column, and multiply by
+1,+2, or 0, to oltain the same results. So, to multiply by 7, we can multiply the partial product
aligned against the least significant bit by —1, and multiply the partial product aligned with the
third column by 2:

Partial Product 0 = Multiplicand * -1, shifted left O bits (x —1)

Partial Product 1 = Multiplicand * 2, shifted left 2 bits (x 8)

Thisisthe same result asthe equivalent “shift and add” method

Partial Product 0 = Multiplicand * 1, shifted left O hits (x 1)
Partial Product 1 = Multiplicand * 1, shifted left 1 hits (x 2)
Partial Product 2 = Multiplicand * 1, shifted left 2 hits (x 4)
Partial Product 3 = Multiplicand * 0, shifted left 3 hits (x 0)

The alvantage of this methodis the halving of the number of partial products. Thisisimportant
in circuit design as it relates to the propagation celay in the runring of the drcuit, and the
complexity and paver consumption d itsimplementation.

It isalso important to nae that there is comparatively littl e complexity penalty in multi plying by
0, 1 a 2. All that is needed is a multiplexer or equivalent, which has a delay time that is
independent of the size of the inpus. Negating 2's complement numbers has the alded
complicaion d needing to add a “1” to the LSB, bu this can be overcome by adding a single
corredion term with the necessary “1”sin the @rred positions.

2.3.3.3 Radix-4 Booth Recoding

To Booth recode the multiplier term, we nsider the bits in blocks of threg such that eah
block overlaps the previous block by one bit. Grouping starts from the LSB, and the first block
only uses two hits of the multiplier (sincethereisno pgrevious block to overlap), asill ustrated by
figure 2-12.

0o 1]ol 1 [1]{o 1|0 |10

Figure 2-12 : Grouping of bits from the multiplier term, for use in Booth recding. The least
significant block uses only two hits of the multiplier, and assumes a zeo for the third hit.
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The overlap is necessary so that we know what happened in the last block, as the MSB of the
block acts like asign bit. We then consult the table 2-3 to decide what the encoding will be.

Block Partial Product
000 0

001 1* Multiplicand
010 1* Multiplicand
011 2* Multiplicand

100 -2 * Multiplicand
101 -1* Multiplicand
110 -1* Multiplicand
111 0

Table 2-3 : Booth recoding strategy for each of the possible block values.

Since we use the LSB of each block to know what the sign bit was in the previous block, and
there are never any negative products before the least significant block, the LSB of the first
block is always assumed to be 0. Hence, we would recode our example of 7 (binary 0111) as
such in figure 2-13.

0111
block O: 110 Encoding : * (-1)
block1: 0 1 1 Encoding: * (2)

Figure 2-13 : Booth recoding for the two partia products with a multiplier term of 0111.

In the case where there are not enough bits to obtain a MSB of the last block, asin figure 2-14,
we sign extend the multiplier by one bit.

00111
block O: 110 Encoding : * (-1)
block 1: 011 Encoding: * (2)
block2: 0 0 O Encoding : * (0)

Figure 2-14 : Booth recoding for the multiplier term of 00111. In order to obtain three bits in the last
block, we need to sign extend the multiplier by an extra bit.
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The example from figure 2-11 can then be rewritten in the form of figure 2-15.

001011 , multi plicand
010011 , multi plier
1 1 -1 , bodh encoding of multiplier
1111110100 , hegative term sign extended
001011
001011
00001 , error corredion for negation
0011010001 , discarding the caried high hit

Figure 2-15: An example of a Boath recoded multipli cation.

One possible implementation is in the form of a Boath recoder entity, such as the one in figure
2-16, with its outputs being used to form the partial product:

neg
|

z —>

Bits from mulltiplier 8 zero
Pyl g —>

3 =
S | shift(x2)

@ ———»

Figure 2-16 : Booth Reader and its associated inputs and outputs. [7]

In figure 2-16,
* The zero signa indicates whether the multiplicand is zeroed before being used as a
partial product
e The shift signal is used as the ontrol to a 2:1 multiplexer, to seled whether or nat the
partial product bits are shifted left one position.
* Finaly, the neg signal indicates whether or not to invert al of the bits to creae a
negative product (which must be correded by adding “1” at some |ater stage)

The described operations for boah reamding and partial product generation can be expressed in
terms of logicd operations if desired bu, for synthesis, it was foundto be better to implement
the truth tablesin terms of VHDL case andi f /t hen/el se statements.
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2.3.4. Sign Extension Tricks

Oncethe Booth recded partial products have been generated, they need to be shifted and added
together in the foll owing fashion:

[Partial Product 1]

[Partial Product 2] 0 0
[Partial Product 3] 0000
[Partial Product4 000000

The problem with implementing thisin hardware isthat the first partial product needsto be sign
extended by 6 hits, the second by four bits, and so on.Thisis easily achievable in hardware, but
requires additional logic gates than if those bits could be permanently kept constant, and the
additional |ogic dso consumes more power.

11111110010
000001011
0000100
01110
01111011110

Fortunately, there is atechnique that achieves this:
* Invert the most significant bit (MSB) of ead partia product
* Addanadditiona ‘1 to the MSB of thefirst partial product
* Addanaddtiona ‘1 infront of ead partial product

Thistechnigue dlows any sign hitsto be crredly propagated, withou the need to sign extend
all of the bits.

0101011 (additional “179)
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2.4. Synthesis of Digital Circuits

Synthesis is the process of converting the VHDL model into an actual circuit design, which can
be implemented in a silicon chip. This is done by a software tool, such as those available from
Synopsys or Cadence, which attempts to produce an optimal layout, subject to the design
constraints set by the user.

2.4.1. Combinatorial Designs

To set the specifications for a purely combinatorial design, we need to create a clock signal,
which is used as areference for the target speed of the design.

set_clock clk —waveform {0 4.00} —period 8.0

We can then set the other timing constraints, asillustrated in figure 2-17.

- -
-t

Clock (8ns)

- -
Input Delay (2ns) External
Delay
Constraint Time (5ns) (1ns)

Figure 2-17 : Timing constraints for synthesis of an asynchronous circuit.

set_input_delay —clock clk 0.0 [find —ports  —inputs *]
set_external_delay —clock clk 0.0 [find —ports  —outputs *]

Further constraints that may be set include the fan-out limit, and slew time limit for signals.
With all of these constraints set, the synthesis can begin to optimise both speed and size of the
circuit, with preference given to speed.

2.4.2. Synchronous Designs

Synthesis of synchronous designs is very similar to the combinatorial designs, except that a
clock signal is aready present. The consequence of thisis that we need to make the synthesis
tool aware of this signal, and take stepsto ensure that clock skewing does not occur.

The assumption in any synchronous design is that the clock signals arrive at their destinations
simultaneously. Clock skewing is the phenomenon where some clock signals arrive faster than
others, and therefore some parts of the circuit are enabled by the clock change before others.
The result, amongst other things, is that the circuit may not perform correctly under these
conditions. By requesting that Cadence does not try to optimise certain global signals, we can
ensure this problem does not occur:
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set_dont_modify —network —hier [find —port clk122]
set_dont_modify —network  —hier [find —port rst]

Furthermore, Cadence uses a clock tree structure to ensure that clock skewing does not occur.
The problem with clocks is that several inputs may need to be driven, but the fan out property of
asignal limits how many of these may be directly driven. The solution is then to use the clock to
drive a buffer, and that buffer is then able do drive a number of additional gates, as specified by
its fan out. However, a side-effect of a buffer is to delay the signal, so we need to ensure that
each clock signal passes through the same amount of buffers before reaching the input which it
drives. Thisisthe function of the clock tree, as represented by figure 2-18.

Clk_out

Clk_out

Clk_out

Clk_out

Clk_out

Clk_out

Clk_out

Clk_out

Figure 2-18: The clock tree structure, which ensures that all clock signals reach their destinations at
the same time. This simple example assumes a fan-out of two for both the origina clock, and the
buffers.
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2.4.3. Memories

A register file generation tod from Artisan Comporents creaes the memories used in this
projed. The memories generated are optimised for size and speead for the dhip techndogy that is
used, and can be austomised to suit the requirements of the projed. The options of primary
interest are:

* Instance name, so that the comporent can be referenced from VHDL as a comporent
e Number of memory locaions

*  Number of bitsto be stored in ead location

»  Word-write mask and word partition size

The last of these dlows portions of a memory location to be overwritten with new data, while
the rest remains unchanged. If this feaure is enabled, then the word in ead memory locaionis
split into equally sized partitions of the spedfied size, and ead partition has its own write
enable signal.

The achitecure of the memories themselves consists of:

* Ared pat with an addressline, a data output, and an enable signal

» A separate write port with addressand data inputs, an enable signal, and also partition
enable signalsif that optionis enabled.

e “Activelow” enable signals

* Readsandwrites may occur at the sametime, but reading from an addressthat is being
written to may cause unpredictable resultsif timing constraints are not obeyed.

2.5. Corners

The spead at which a drcuit is able to run depends on its operating environment. The
synthesiser can be set to operate in ore of three predefined operating condtions, cdled
“corners’.

e Slow corner : 125°C operating temperature and 1.63/ suppy. This represents the
slowest posdble operating conditions.

* Typicd corner : 25°C operating temperature and 1.8/ suppy.

» Fast corner : 0°C operating temperature and 1.98/ suppgy.

The adua values are spedfic to the TSMC 0.18um techndogy that has been used for this
projed, bu the mncept remains the same for all techndogies. In most caseswe aeinterested in
the worst case scenario, so designs are usually synthesised in the slow corner.
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3. Implementation of the MATLAB Model

It is important that the behaviour of any proposed circuit or algorithm is corredly modelled
before any implementation is attempted. The reason for this is twofold. Firstly, such a model
verifies that the design will adualy do what is intended, and hence whether it is worth
implementing. Seoondy, it provides a useful tod by which the behaviour of any
implementation can be cmpared against for corredness

The work that had previously been dore on this projed was to the extent that a working
floating-point MATLAB model was available. However, this had little use, other than to
ill ustrate the behaviour of an ided implementation o the dgorithm. In pradice, it wasinfeasible
to creae afloating point implementationin hardware for threeimportant reasons:

* Impradicdity in terms of the physicd spacewhich would be required onthe chip

* The amourt of time required by the drcuit to implement the entire dgorithm would be
toolarge

*  The power consumption d such a drcuit would be undesirably high

The only alternative gproach was to implement a fixed-point model. That is, the
implementation would manipulate pieces of datawith predsion d afixed number of binary bits,
and with a predefined range and number of fradion hts. Hence my task was then to take the
floating point MATLAB model, and modify it to emulate the behaviour of afixed-point model.
When that was dore, it was necessary to examine the dfeds of adjusting the various
parameters, to determine the combination required to belance performance with ease and
simplicity of implementation. Finally, | could then modify the script to generate sets of test data
for use in verifying the VHDL implementation.

3.1. Creation of the Fixed Point MATLAB Model

The requirement of a fixed pdnt model, that emulates the desired performance of a physicd
implementation, is that it stores ead pieceof data within a given nunber of bits. Therefore, it
needs to spedfy:
*  Thenumber of bits avail able in which to store the data
e The desired range of values that the data can take. This all ows us to spedfy how
many bhits give the integer part of the value, by taking the next power of 2 for the
range. For example, the range +3 becomes +4, andis Pedfied by 2 integer bits and
one sign hit
* Therest of the bits are “fradional bits’, the bits that make up the binary equivalent
of dedmal places. If there ae n fradional bits, then the values will be quantised to a
predsion o 2.
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| also neaded to isolate the pieces of data to which this quantisation accurs. Thisis anything that
will be implemented in, a manipulated by, hardware. The spedfic values for ranges and Lt
sizes can be set as constants or inpu parameters, and twedked at a later stage of development
when the needs of the hardware and performance ae better known.

3.1.1. Performing the Quantisations

The next thing that is required is a medhanism for performing the quantisations. A simple
methodfor thiswould beto quantise eab result after it is caculated:

Quanti se(a*b, nunBits, precision)

Such afunction would nead to guantise the result to the required predsion, and then ched that
it is within the dlowed range. A requirement of the operation d the dgorithm is that out of
range values are damped at their maximum all owed size, so the function must also enforcethis.

However, this can become messy, and ore must be caeful not to make the foll owing mistake :
Quanti se(a*b*c, nunBits, precision)

The reason that thisiswrong is because the quantised cdculationis acuall y performing several
steps within ore line. The problem with that is that a hardware implementation is only cgpable
of performing one operation at a time. Eadh multi pli cation, subtradion, and dvision, must be
performed individually, in the corred order, and with ead result being quantised :

Quanti se(a* Quantise(b*c,nunBits, precision), nunBits, precision)

A more degant solutionisto crede aspedal datatype for fixed pdnt values, and doall of the
guantisation work “behind the scenes’ via overloaded MATLAB operators. This also removes
the posdble eror described above, since MATLAB processs the operations one & atime, in
acordanceto standard order of operations rules. After the initial creaion d the data types, the
script can be written as normal, with littl e nead to pay attention to the fixed pdnt caculations.

The latter solution is the one that | have used, and the cde that implements this data type is
listed in Appendix A.1. One point of care that shoud be taken is that the data type preserves
guantisation by using the range and predsion spedfied in the variables used. If variables with
conflicting quantisation are used, then the quantisation o the first one will be preserved and
implemented onthe final answer.
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For example, if A was 24 tswith arange of +64,and B was 16 Lits with arange of +256,then
 AB woud give an answer that is 24 hitswith arange of +64
« (A'B")" would give the same answer, but in 16 btswith arange of +256

For this projed, that did nat prove to be an issue becaise most of the matrices were set to the
same quantisation configuration. Where this was not the cae, conversion was smply a matter
of extending sign hits and padding least significant bits, or cropping data to make it fit into the
required form.

3.1.2. The Matrices are Supposed to be Hermitian!

One of the key properties of this algorithm is that most of the matrices are Hermitian. The
importance of this property is that it allows the simplified versions of the eguation to be used,
and also alows sgnificant simplificaion d the hardware implementation.

However, examination d the original output of the script showed that this was nat the cae.
When run over a small number of iterations, the values on either side of the matrix diagonal
were not quite aonjugates of ead aher, differing by just afew significant figures.

3.1.2.1 Quantisation Error
The method | used for quantisationis to simply crop the value & the required predsion, sinceit

is too expensive to exped hardware to doany type of roundng. The problem with this is that
the negative version d a number will not necessarily have the same magnitude once quantised.

For example,
Take the number 5.25 :0101.01
Its 2's complement is :1010.11
Cropping ead to an integer value, we get :010l1and 1010

Taking the 2's Complement of the second number : 0110

We end upwith the numbers +5 and —6, insteal of the +5 or +6 that we might exped. In effed,
guantising in thisway is smply roundng to the next lowest number, bu for negative numbers
this means increasing the magnitude by one. Thisis the dfea of the flooring function that has
been used.

3.1.2.2 Forcing the Hermitian Property

The quantisation error is not significant, and in pradice makes no ndicedle difference to the
error level of the final result. However, it is enough to destroy the Hermitian property of the
matrices and its advantages to a hardware implementation. A hardware implementation could
work by only cdculating half of the matrix, and use the Hermitian property to assume what the
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other half is suppased to be. However, the MATLAB script would then be modelli ng a diff erent
algorithm and could na be used for comparison with the hardware model.

To overcome thisisaue, | simply nealed to make sure that the script behaves in exadly the same
way as the intended hardware, and wses one half of the matrix to “guess’ the other half. Thisis
easily adhieved by adding code to the “behind the scenes’ requantisation that occurs, and is
represented by the lines 30— 40 d Appendix A.1.1.

3.2. Experimenting with the Fixed Point MATLAB Model

Much o the implementation isdues for the fixed pant model have been discussd in the
previous ®dions. All that was left was to implement a method d writing test data to afile for
later comparison with the VHDL mode (generated by code in Appendix A.1.2), and to
experiment with the model parameters to ensure that it performs corredly.

3.2.1. Range and Precision

Two o the main parameters that | needed to consider were the number of bits that could be used
to store eat type of value in the memories, and hav many of those bits were required to store
the integer part of the value.

The eaiest isaue to resolve was the range required for ead value, which was found ly adding
code to the MATLAB model to keep record of the maximum absolute value that was obtained
for the various values. Several tests were run to ensure that an adequate set of data was
obtained, and the range was st to the next highest power of two.

Once that was st, the only parameter left was the number of bits to use. Since the range was
now fixed, this affeded the predsion d the fradional parts of the values. A technique was in
already in placein the MATLAB script to measure the “quality” of the final result compared to
a “perfed” answer, so this could be used to measure the dfed of the number of bits used. This
number of bits had to be chosen to provide ahigh enowgh quality of result, bu low enough asto
not unrecessarily compli cae the hardware with alarge sized word width.
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3.2.2. “Unstable Algorithms”

One problem that | encountered was that, although a ressonable quality of result was being
produced, accasionally the dgorithm went “unstable” and forced all of the values to nea their
pasitive or negative extremes.

Experimentation indicated that this ssemed to be related to the number of bits used in the
guantisation. However, this explanation was not good enough becaise it did na reved why the
problem was occurring, and whether or not there was another unrelated problem with the
algorithm that needed to be fixed.

My solution was to add additional code that output the matrix valuesto afile & the cdculation
evolved. Thisreveded that the initia values of the dgorithm were too small for the quantisation
used, occupying only afew significant bits. As the dgorithm progressed, the propagation d the
guantisation error was large enough to completely distort the dharaderistics of the matrices, and
therefore cause the instability. The possble solutions were to either increase the number of bits,
or deaease the range. A combination d both was finally chasen since, although some values
did get cropped in the dgorithm, thisdid na seem to affed the quality of the final answer.
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4. Implementation of a Digital Multiplication Circuit

Multiplicaion days many important roles in wireless digital communications, including
filtering, coding and aher signal processng. Furthermore, amulti plier comporent tendstoliein
the aiticd path of a drcuit and consumes a large propation o the power requirements, so it is
important to find afast, power efficient design for use in today’ s high-speed appli cations.

However, signa procesgng rarely uses purely red numbers. Use of the amplex number system
is amost unavoidable, as it allows mathematicd manipulation o variables that would na
otherwise be possble. Hence, for a multiplier circuit to be of any use in a signal processng
system, it must be etended to hande mplex numbers. This chapter documents the
development of such amultiplier.

4.1. Beating the Optimal Multiplier
This dion provides abrief overview of the outcomes of my industrial experience projed with

Bell Labs Reseach. A number of architedures were built and analysed, bu only the final
design is described here.

4.1.1. Recursive Adder Tree using GENERATE statements

Thisdesign, ill ustrated in figure 4-1, is not the one used, bu ill ustrates the concepts used in the
chosen architedure.

Partial Prodirt Generator

4:2 4:2 4:2 4:2 4:2

Reclursive|Adder

Reaursive Adder

Figure 4-1 : Architedure of the “reaursive” design. Instances of the adder entity
may instantiate further instance of the same entity within themselves.
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This architedure works by fealing all of the partial products and corredion terms into a
reaursive aray adder. This adder uses aseriesof VHDL gener at e statements to:

o If there ae5 o moreinpusto add,
0 Creae asmany 4:2 compresorsasit can
o Fed any leftoversinto ancther instance of the aray adder (with 4 a less
inpus)
o Putall of theresultsinto a new array, which forms the inpu to another instance
of the aray adder. Return the results of this new instance

e Otherwise,
0 |If therewere 4 inpus, creae a4:2 compresor and return the results
0 If therewere 3 inpus, creae a3:2 compresor and return the results
o If therewere 2 inpus, return those inpus as the sum and carry
o If therewaslinpu, return it asthe sum, and return a zero carry.

The problem with this technique is that it does nat synthesise well, but this can be overcome by
alternative methods of coding the same concept.

4.1.2. Adder tree using process statement
This design has a similar approac to the first, but uses a pr ocess statement and | oops. It

takes an array of partial products, and continually reduces them with 4:2 and 32 compressors
until there ae only two left.

The inpus to the top level of adders are the size of the output, containing the partial products
shifted to the gpropriate wlumns. The etra bits aroundthe partial product are padded with
zeros, and it is|eft to the synthesiser to remove and ogimise these.

4.1.3. Results

Tables 4-1 and 42 summaries ome of the results on the performance of the final design

Target =2.5rs | Target = 3ns Target = 4ns Target = 5ns
Bits Time | Size Time | Size Time | Size Time Size
10x 10 3.12 13917
16 x 16 <3.7 3.92 41317 | 4.06 35845 | 5.00 23587
24 x 24 4.32 77715 | 4.27 79804 | 5.05 55764
32x32 5.26 141498

Table 4-1 : Synthesis results for the “Together” design, of various szes in the slow corner with no
final adder on the outputs. Time units are nanosemnds, and size units are microns.
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Corner | final | Target = 1.5r8 | Target = 2ns Target = 2.5rs | Target = 3ns
add? | Time | Size Time | Size Time | Size Time | Size
Slow No 3.12 | 13917
Slow Yes 4.20 | 20367
Fast No 1.50 (9477 |1.96 | 6486 | 2.19 | 6303 | 2.31 | 6290
fast Yes |1.82 | 17214 |2.01 | 13133 | 2.50 | 9071
Typicd | No 2.03 | 12424 | 2,50 | 8855 |2.97 | 6829
Typicd | Yes 2.60 | 18887 3.01 | 13575
Table 4-2 : Synthesis results for the 10 x 10 Lt design urder various conditions and target speeds.
The time unit is nanosemnds, and the sizeunit is microns.

These results provide an indicdion d the type of performance that can be expeded uncer
various condtions. Varying the target speed aff eds the synthesis results, as Cadence dtemptsto
optimise bath speed and size.

4.1.4. Conclusions on multiplier architectures and coding style

It was foundthat the speed of a synthesised circuit is dependant on nd only the achitedure
chasen, bu also the ading style used to implement that design.

In particular, the following conclusions were drawn abou the dfed of coding style on the
performance of a design:

* Process satements g/nthesise better than “gener at e”s

* Functioncdls g/nthesise better than entity instantiations

* From a synthesis viewpaoint, it seans to be better to write @mde in more small steps
rather than fewer complex steps

* It seamsto be better to write wasteful code and let Cadence optimise it, rather than to
write it efficiently yourself. For example, the described designs use large arays
containing cdls that are ather never used, o forced to a wnstant value. The original
design was hand-coded hit-by-bit, so that all operations were performed with nowasted
or extravariables.

One of main time saving techniques used in the fastest designs is the use of carry-save aldersto
combine the partial products into a final answer. The aility of these to combine threeor four
numbers to two, in a time that is independent of the width of the numbers, is a much more
efficient alternative than using traditional adder. Using these, a cary propagate is only required
for the final addition d the alder tree

These observations have been followed when incorporating the multipliers into complex
multi pliers, which in turn form the basis for the matrix multipliers, and utimately the signal
Processor.
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4.1.5. Alternative Algorithms

Several posdble achitedures were mnsidered and biilt, and the foll owing are two of the more
interesting of the dternative idess:

[15] describes the use of the redundant binary number system for multi plicaion. This
number system uses three values for ead “hit”, being 1, 0,and -1, so that additions
may be caried ou withou propagation delay. However, traditionally, this technique
still requires a cary-propagation in the conversion from RB to namal binary. This
paper claims to have atechnique to overcome this, bu analysis and experimentation
have been ureble to verify this claim. Further investigation has indicaed that this paper
may be fundamentally flawed, bu this has not yet been dficialy confirmed.

[16] usesthe aoncept of |eft-to-right multipli ers to improve the speal o the design. The
concept is that the most significant bits of the answer are known before the lesser
significant hits, so it is possbleto “guess’ two alternatives for what the top helf shoud
be. The bottom half is creaed as normal, with a cary-propagate aldition, andthe cary-
out is used to seled which o the two alternativesis to be used. This technique did na
prove to be afast for synthesised designs, and daes nat off er carry-save outputs.
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4.2. Filed Patent : Power Optimisations Without Affecting Critical Path

In most appli cations multi plier circuits have their inpustied to some form of data bus, and their
outputs are sampled as needed. For much of the time the multi plier output is not needed, bu it
still operates on the cntinually changing data of the inpus. The problem with this is that
changes in the state of logic gates consume ansiderably more power than remaining in a static
state, and so a large anourt of “useless’ data inpus will cause alarge anourt of power to be
wasted in a complex circuit block such asamultiplier.

Hence it is desirable to incorporate an “enable” input which, when na asserted, will effedively
zero the inpus and dacethe mgority of the drcuit into a static, low power, state. A simple
method might be to gate dl of the inpus, as depicted in figure 4-2.

M ulti pli cmdﬂ_
Multi pli er —DJ_

Multiplier —»

Enable

Figure 4-2 : Simple enable pin, by gating both multi pli er inputs

Whil e this method works, it increases the size of the aiticd path, by the adition d an AND
gate. Since the multiplier generally lies in the aiticd path of most circuits, it is desirable to
maximise the speal o this comporent. The dhallenge is then to find a method d adding the
enable function, withou increasing the length of the aiticd path.

Dr Chris Nicol’s US patents #6,275,824and #6,065,032nake use of the fad that neither the
multi plicand, na the NEG boah recoded signal, arein the aitica path of the drcuit. He shows
that by gating both of these, the objedive can be adieved. However, he uses a diff erent form of
boah recoding, as described in [11], which uses x1, x2,and NEG signals. This is different to
my multi pliers, which use x0, x2,and NEG boah recoded signals.

Due to the different form of Boath recoding, thistechnique caxna be diredly used. Close study
of the required implementation logic and synthesis results foundthat my method poved to be
simpler and faster, so it was preferable to use this technique if possble. By using a similar
strategy of examining the comporents containing the aitica paths, the drcuits of figure 4-3
were derived.
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b(0) "Zero" Logic

zero out

XOR2
Figure 4-3(a) : Possible logic for the Booth recoded zero (x0) signal

"Neg" Logic

Neg out

Figure 4-3(b) : Possible logic for the Booth recoded Neg signal

"Shift" Logic

b(1) XOR3

Shift
) )

XOR4
Figure 4-3(c) : Possible logic for the Booth recoded Shift (x2) signal

Zero out

>

multiplicand(0)

enable

»g . Partial Product
bit(0)
) >+
=

\ AND6
AND3

Shift

>

Figure 4-3(d) : Logic for the generation of the least significant bit of the partial product, with enable
logic that is outside of the critical path. The dotted box represents a multiplexer

Zero out

>

multiplicand(k)

enable .
Partial Product

bit(0)
— >

ANDS

signal from ANDS

AND2 gate of
multiplicand(k-1)
>

Shift
L >

Figure 4-3(€) : Logic for al of the other bits of a partial product, with enable logic that is outside of
the critical path. The dotted box represents the multiplexer.
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The key points of this design are

Synthesis analysis has shown that while the shift, neg, and zero logic of figure 4-
3(a),(b), and (c), each theoretically contain two gates, it is the shift logic which has the
longest delay. The other signals are roughly equal in delay.

Figure 4-3(d) contains a critical path through the Neg Out signal from figure 4-3(b), and
through the XOR gate and AND gate.

The enable logic passes through AND4, which is not in, or is at worst equa to, the
critical path. Hence, removing the gating of the zero signal does not improve the critical
path.

For the least significant bit of the partial product, shown in figure 4-3(d), the NEG
signal may also need to be gated, but thisis well outside of the critical path. Thisis not
required for the other bits of the partial product, shown in figure 4-3(€).

Hence, we now have a technique for adding the enable pin without theoretically affecting the
critical delay of the circuit. In practice, the synthesis tools tend to rearrange the logic and issues

such as

fan out limits may affect the results. However, in all cases, synthesis simulations have

shown the enable signal to remain outside of the critical path.

This technique has found to be significantly different enough to the existing patent, and so it has
also been filed for patent. It provides the additional benefits of not requiring gating of the
multiplicand inputs, thus reducing the number of gates and potentially allowing for further
speed increases. The outcome of this patent application is not yet known.
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4.3. Complex Number Multipliers

Once a efficient design for a multiplier had been designed, it could then be extended to
multiply complex numbers. However, since @mplex numbers consist of two componrents,
multi plicaionis more involved.

A typicd complex multiplicationis (a+ ib)(c + id), bu to perform this cdculationin hardware
we ned to separate the two comporents:
(a+ib)(c+id) =(ac—bd) +i(bc+ ad)

This means that four separate multiplicaions are required in total. By observing that the
multi plications can be aranged so that “a” and “b” are dways the multipliers, and“c” and “d”
are dways the multiplicands, we can make some savings in logic. Only two, nd four, boah
recoder sedionsarerequired, as srownin figure 4-2.

c i d d ki c
Booth Reaoder Booth Reaoder
I
h 4 A 4 h 4 ¢ l
Partial Product Negative Partial Partial Product Partial Product
Generator Product Generator Generator Generator
Carry-save ader tree Carry-save ader tree

Carry-save output for red part Carry-save output for imaginary part

Figure 4-2: Architedure for a cmplex multiplier circuit, based on the mmponents of the original
multiplier.

In addition, it is only necessary to have one alder treefor ead comporent of the output. The
only inconsistent part of the design is deding with the subtradion d the “bd” term, bu this can
easily be handed by inverting the NEG boah readed input to the partial product generator.

A further complicaionisthat sometimes, in this particular projed, it is necessary to multi ply by
the conjugate of the value that is read from the inputs. Explicitly taking the cnjugate of those
values would involve the problem of having to add “1" to the result, espedally when we may
need to do so again after the boah reading. Instead, | foundit was easier to incorporate this
feaure into the multiplier, after observing the output of such a cdculation:

(a+ib)(c-id) = (ac+bd)+i(bc - ad)

All that isrequired isto invert the NEG signal for the bd and ad partial prodicts.
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4.3.1. Alternative approaches

There have been numerous designs for complex multiplicaion algorithms. Two particular
approacdes of interest are:

» [13] shows how some of the results can be reused to prevent redundant cd culations. For
(at+ib)(c+id), the red part of the answer is ac— bd. The imaginary part is bc + ad, bu
can also be expressd as (a + b)(c + d) — ac— bd. This requires one lessmultipli cation,
and threemore alditions. The dgorithm involves using lookup tables and full adders to
generate the result, but thistedhnique was nat feasible for this projed.

e The use of the redundant binary number system for complex numbers is described in
[14]. This number system involves the use of threepossble values for eat “hit”, being
-1, Oand 1,to allow for more dficient arithmetic operations. Previous experience with
this number system, for the previous multiplier projed, did nad make this a suitable
candidate.

The most appropriate design was the previously described method d using cary-save alder
trees. Unlike the a&ove methods, this technique dlows data values to be kept in carry-save
format, and manipulated in that form, urtil the norma binary form is required. This proves
particularly useful for matrix multiplication, kecaise the results for an ouput cdl of a matrix
consist of the aldition d several separate multiplications. In these caes, we only need to know
the value of total sum, and nd the individual multipli cations, so thereis no reed to convert the
multi pli cation results out of carry-save form.

4.4. Testing and verification

Eadh o the multiplier designs that | have built have been verified for corredness by use of a
pair of VHDL test benches:

* An exhaustive test covers al passhle inpus for a given multiplier configuration. The
test scripts are set up to run exhaustive tests for 2x2, 3x3, upo 9x9 bt multipliers.

e For larger multipliers, arandam test bench is used to pick arbitrary values for the inpus
to the multipliers.

For eah o the first two tests, the result is compared to the value that is returned from the
VHDL multiplicaion operator. If the results differ, then the simulator will halt with an error
message. The ade for these testsis provided in appendix C1.
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5. Design of Matrix Multiplier Circuits

The seaond major stage to the implementation part of the projed was to investigate posdble
methods for performing matrix multi plicaions. The gproaches | considered can be caegorised
into threegroupngs:
e Fully pardlé€l: all multiplications are performed simultaneously
* Fully sequentia: Thereis only one hardware multiplier, and all the multi pli caions are
performed ore & atime
* Semi parallel/semi sequential: There ae a number of multipliers, so severa
cdculations can be dore & once, bu several steps are needed to oltain the full result

| have implemented all designsin VHDL for comparison, and also for the reason that they may
later prove useful for other projeds. Each design is briefly described in the following sedions,
and the integration d most appropriate design into the are part of the signal processor is
described in chapter 6.

5.1. Fully Parallel Matrix Multipliers

The parallel matrix multiplier contains one multiplier instance for every multiplication that is
required, as depicted in figures 5-1 and 52 onthe next page. Therefore, multiplying an (m x n)
matrix by an (n X p) matrix would require:

e nmultiplicaions for ead cdl in the output matrix

e An ouput matrix of size (mx p)

» A total of mnp multiplications.

The advantages of such an architedure include:
» All of theresults are avail able together
» Itisthefastest possble achitedure. Since dl multiplications are dore simultaneously,
and ead cdl’ s results are talli ed together simultaneously, we only need the time taken
to perform one multi pli cation and coll ate the results for an individual cel

However, there ae dso mgjor disadvantages:

e It requires mnp instances of the multiplier circuit. For any matrices much bigger than
2x2, and with more than a few bits in ead matrix cdl, the surface aearequired to
implement the drcuit ona chip would be unreasonably huge.

e All inpu data must be available simultaneously, so this technique is nat suited to
norma memories where only one or two words of data may be read at one time. An
aternative might be to latch the data into the inputs, but in most cases thiswould defed
the purpose of performing a parallel caculation by the time required to load the latches
from memories.
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Multiplication Multiplication Multiplication Multiplication
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Figure 5-1 : Architecture of a cell generator entity for the parallel multiplication C = AB, where C, A,
and B are 4x4 matrices
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Figure 5-2 : Architecture for the parallel matrix multiplier. Each generator corresponds to an instance
of the entity in figure 5-1, with the outputs omitted for clarity.
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5.2. Fully Sequential Matrix Multiplier

The fully sequential design contains a single multiplier, and hence must calculate each cell one
at a time. The consequence of this is that al of the results must be stored in some kind of
readable memory, and the design also needs to be synchronous.

This allows the use of pipelining in the design, which can significantly shorten the time required
by the matrix multiplication. Hence, the clock cycle length only needs to be as long as the
slowest pipeline stage, but several cycles are required for the entire operation. In summary, the
required stages are:

1. Read the data from memory. Two separate memories hold the two matrices, so
that they can both be read at once.

2. Wait for the data to arrive from the memory. This is required because the

memories that are to be used have clocked outputs, meaning that the read

address will be latched into the memory at the start of this stage, but the data

will not be latched to the output until the start of the next stage.

Perform the multiplication

Add the multiplication result to the tally

Resolve from carry-save into normal binary form

Write the result to memory

o gk~ w

Combining stages could further optimise the design, but the specific nature of these adjustments
depends on the required implementation. Combining stages means that less pipeline registers
are required, and one clock cycle of operating time is saved for each stage that is merged.
However, one must be careful that the new combined stage does not have the longest delay over
any of the other stages, otherwise the clock cycle time may need to be increased.

In addition, the pipeline registers prevent the changing output signals of each stage from
reaching the next stage until they are at their final value. Removing a pipeline register between
two stages will not affect the accuracy of the result if the clock cycle is long enough, but it is
likely that the logic gates in the second stage will undergo more state transitions than
previously. The consequence of this is that the device may consume more power because, as
aready outlined in chapter 2, logic gates that undergo a state transition consume more power
than gates which remain at a static level.

In summary, the advantages of this design are:
* Thereisonly one multiplier, so comparatively small surface area required on the chip
* Inputs are only required one at a time, which could minimise complexities with routing
the input signals around the chip.
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The main disadvantage is that a fully sequential matrix multiplier takes the most time to
complete its operation. Multiplying two 4x4 matrices would require at least 64 clock cycles. (16
cells x 4 multiplications for each)

5.3. Double Buffering Issues

One of the issues that has needed addressing in this project is the situation when the memory
which provides the input matrix is also the destination for the output matrix, such as the
calculation A = B*A. A simple approach is to simply use a double buffering approach where we
use a different memory for the output, effectively creating two different versions of A.

The double buffering technique may not always be a desirabl e approach:
» The additional memory requires surface area on the silicon chip
* In an implementation where the same matrix was used severa times, logic would be
required to keep track of which version of A isthe current one, and multiplexers would
be required to switch between the two.

By studying the ordering in which values are read and written, we can devise an aternative
approach. Considering the calculation C = AB,
* For each cell of C, we need to
0 Readarow of cellsfrom A
0 Read acolumn of cellsfrom B
» The most efficient method of generating C isto calculate each cell one at atime, either
working across the rows one at atime, or down the columns one at atime
e For each cell in agiven column of C, we require the same column from B. That column
from B is not required for calculation of cellsin any other column of C.
» For each cell in agiven row of C, we require the same row from A. That row from A is
not required for calculation of cellsin any other row of C.

Therefore,
*  Once we have generated any given column of C, we no longer need the corresponding
column from B.
*  Once we have generated any given row of C, we no longer need the corresponding row
fromA.

Thisisillustrated in figure 5-3, for the case of generating columns of C at one time.
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X = X =
1 5,

X = X =
2 6.
2 X = - X =
4. X - 8 X -

Figure 5-3 : Order in which rows and columns are read when the output matrix is written by working
down the columns. The output cells are in the same column of the output matrix as the cells that are
being read from the second input matrix. When the column of the output matrix is complete, we no
longer need the corresponding column from the input matrix.

The solution to the problem is then
* If Cand A are the same, then for every row of C,
0 Readinthe appropriate row of A for thefirst cell in that row of C
o Latchit, and use the latched value for al other cellsin that row of C
0 The values that are output will go to the row of C/A that is latched, so the
original values can still be used for the time that they are needed.
» If Cand B arethe same, then for every column of C,
0 Readinthe appropriate column of B for thefirst cell in that column of C
o Latchit, and use the latched value for al other cellsin that column of C
0 The values that are output will go to the column of C/B that is latched, so the
original values can still be used for the time that they are needed.

However, only one of these solutions can be used at one time.
5.4. Semi Parallel / Semi Sequential Matrix Multipliers

Each of the cases described so far has a major disadvantage that prevents it being suitable for
use within this signal processor. The parallel architecture requires excessive surface area in
order to implement the required amount of the multipliers. The sequential design is efficient in
terms of surface area, but is too slow for the requirements of the signal processor. Hence, a
technique is required that uses a small amount of multipliers, but operates over a small enough
number of clock cycles.
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The approach that was finally decided upon was based on the fact that most of the matricesin
the device are of size 4x4. It was decided to attempt to use four multipliersin such away that an
entire output cell could be calculated at once, as was previously described in figure 5-1.

5.4.1. Optimising the Memory Configuration

In order to perform the four multiplications simultaneously, the appropriate row and column
must first be loaded from each of the source matrices. It is useless to simply try to load values
one at a time from each of the memories, because this would still require four read cycles for
each output cell, giving the same total of 64 cyclesthat limits the fully sequential designs.

However, there is no reason why we can read only one value at a time from each memory. In
fact, for the calculation C=AB, the following technigue allows the entire row of a 4x4 matrix,
A, to beread in one clock cycle.

o0 Thememory for A consists of, not 16, but only 4 addressable locations.

o Eachlocation represents one row, and islogically partitioned into the 4 columns

0 The write enable pin of the memory is replaced by a write mask, that selects which of
the partitions are overwritten in a write operation. Therefore, the whole memory
location does not have to have its contents specified at the one time.

o0 Anentirerow of A can beread in one operation

o0 Ansingle cell of A can be written in one operation, without affecting the other cellsin

that row.
Memory Address | Bits31-24 Bits 23-16 Bits 15-8 Bits 7-0
00 A(L,1) A(L,2) A(L3) A(1,4)
01 A(21) A(2,2) A(2,3) A(2,9)
10 A(31) A(3,2) A(3,3) A(3,9)
11 A(4,1) A(4,2) A(4,3) A(4,9)

Table 5-1 : Configuration for a memory containing a 4x4 matrix A with 8 bits in each cell. Each
memory location contains one row of data, but individual cells can be written by placing a write
mask on the separate partitions.

A similar approach can be made for matrix B, by storing the locations in groups of columns
instead of rows. The only problem that remainsis that a matrix can only be stored in thisway in
either rows or columns, but some matrices may need to be used in both configurations. One
workaround is to simply read each memory location, and use a multiplexor to select the correct
part of the data. A more elegant solution to this problem is described in the implementation of
the signal processor in Chapter 6, which ensured that this problem never arose.

5.4.2. Implementation of the design
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With these memory optimizations, it is possible to create a multiplier of two 4x4 matrices that
takes only 16 clock cycles, plus the additional cycles required to clear the pipeline. For the
operation C=AB, the pipeline stages are

1

o U A~ WD

As with

Read arow from A, and a column from B

Delay so that data has time to arrive from the latched memory outputs
Perform the multiplications

Tally the multiplication outputs into two carry-save results

Resolve the carry-save results into a standard binary form

Output result to memory

the sequential design, if C isthe same as A or B, then the appropriate row or column

may be latched when it isfirst read.

5.4.2.1 Non-conforming matrices
If the memory locations representing the matrix B, in C=AB, do not contain columns of data,
then the data can be read as such:

(0]

For each column of output cells,
0 Read each cell for the appropriate column in B, simultaneously reading one of
the rows of A (4 read cycles)
0 Storethe column that has been read and perform the multiplications as normal
0 Read each of the other three rows and perform the calculations for the
respective cells of C, using the remembered column (3 read cycles)

This technique requires only 7 reads per output column, giving a total of 7*4 columns=28
cyclesfor the operation, plus the time required to clear the pipeline.
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5.4.2.2 One matrix doesn’t conform, and the other needs to be overwritten

One problem which arose with the original design was an equation d the form B = AB, where
both A and B needed to be stored in memory cdls containing columns. It is wasteful to simply
store the answer in a diff erent memory, and this can further compli cae other parts of the design.

o

Clealy

For the problem of reading and writing the same matrix in the sequential design, we
would simply store the aurrent column from B whil e we used its contents and overwrote
those values in the memory. We would write B by working down the lumns,
remembering the wlumn inpu from B and reading cdls from ead row of A asrequired

For the problem of matrix A not conforming to containing a cwmplete row in ore
memory locaion, we dedded to read in the row from A, and store it in a latch so that
we would na have to repea those four read operations. We would then work aaossthe
rows of the output matrix

thereisamajor clash in these two solutions —we caina cdculate the output matrix by

working aaossbath the rows and the wlumns at the same time!

The most criticd problem with B = AB isthat the output is the same & one of itsinpus, so this
must be aldressed first. The isaue of the cdls of A being grouped in columns instead of rows
requires additional real cycles, bu does nat affed the output. The solutionis then:

o

Rea the four locdions in order to oltain the require row of A. At an appropriate time,
real in the column from B that is to be overwritten, and also read in the same @lumn
from A. Store bath columns, sincethe second matrix will be overwritten and we want to
save some read cycles from the first matrix. (4 read cycles)

Perform the multi pli caions as normal for that cdl
For the other cdlsin the same wlumn of the output matrix, use the stored column of B.

For A, we have dso stored ore @mlumn, so we dready know one value from the next
row. Rea the other columnsin order to oktain the rest of the row (threereals)

0 After ead set of 3reads, perform the cdculations as normal

This processisill ustrated by figure 5-4.
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Figure 5-4: Order in which matrix cells are read, for the calculation of the third column of the output
matrix, for the case where both matrices are stored with columns in each address. The cells of the
first row need to be read one at a time (a,b,d), but at an appropriate time we read and store the
required column for both matrices (c). For the rest of the cells in that output column, we then only
need to read the cells from the columns that were not stored (e,f,g for row 2, and h,i for row 3)

This givesatotal of 4+3*3=13 read cycles for each column of the output matrix, with atotal of
52 cycles to perform the entire operation. The time required is 1.85 times more than the 28
cycles that would be needed by doing the following, if space permitted:

0 using an extra memory to eliminate the problem of reading and writing to the same
memory

0 using the previously described solution to handle the fact that the contents of A are
stored in columns instead of rows.
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5.5. Squaring Matrices

A further problem is that faa that some of the multi pli cations that are required involve the same
matrix on bah inpus. Whil e the solutionsin sedion 5.4.2.lensure that we can work aroundthe
problem of the matrix na conforming to bah the row and columns format, it canna ded with
the problem of neeading to real two dfferent memory addresses at the same time. One simple
approach may be to insert an extra real cycle into the pipeline, bu it may not always be
desirable to increases the pipeline length in this way. Fortunately, even in the dsence of dual
read pat memories, there exists a solution that does not require additional clock cycles.

As an example, take the 4x4 matrix A, which is gored with an entire clumn in ead memory
locaion. To perform the cdculation o one output cdl, we nedl to read an entire row and an
entire clumn, as depicted by figure 5-5.

X =

Figure 5-5 : The row and column required for the cdculaiion of agiven output cdl

Figure 5-6 demonstrates that, sincethat row and column are sourced from the same matrix, they
overlap by one cdl: 5

Figure 5-6 : The row and column required from a single matrix that is to be squared, required to
cdculate the output cdl.

The required row can be read ore cdl at atime. However, since we adualy need to rea the
whaole olumn in order to oltain that value, at some stage the entire @wlumn that is required will
also be red. In this way, we can oltain the column “for free”, the same & if it had been read
from a separate memory.

SRERAR" =

Figure 5-7 : If the matrix of figure 5-5 is gored so that ead addresscontains an entire clumn, then
to real the row we nedl to read ead column at atime and extrad the relevant data for the row. One
of these reads will also allow usto oltain the required column “for free”.

Further optimizations may also be obtained by storing a row or column to prevent the neal to
reread data, as described in section 5.4.2.1.The result is a squaring operation that can be
performed in the same amourt of time a an equivalent two matrix multi pli caion.
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5.6. Multiplying any combination of matrices

In summary, this chapter has described methods that would allow the multiplication of any
combination of matrices, as described by table 5-2. In all cases, the sources are 4x4 matrices,
but these methods could easily be adapted for any size, and not just square matrices. This
assumes that the matrices are stored with either entire rows, or entire columns, in each memory
address. For multiplications where there is one cell per memory address, see section 5.2.

Calculation | Cycles | Sections | Comments

C=AB 16 54.2 A is stored with rows in each memory address, B with
columnsin each memory address

C=AB 28 5421 Both A and B are stored with rows in each memory address,
or with columns in each memory address.

B=AB 52 54.22 | A and B are both stored with columns in each memory
address. The same method can be adapted for rows, by
latching the columns one cell at atime

A=AB 52 54.22 | Same as B=AB, but the output is calculated by working
across the rows, rather than down the columns.

B=A’ 52 55 A is stored with columns in each memory address, but the
same method can be adapted for if A contained rowsin each
address.

A=A’ Not possible. The described method, for when the destination

is also one of the sources, is that we calculate the answer by
working across either rows or columns of the output, while
remembering the corresponding contents of the original.
Since squaring requires both rows and columns, this cannot
be done unless we use the form B = A,

Table 5-2 : Multiplications for 4x4 matrices can be done for ailmost any configuration. Where a letter
A or B appearstwice in asingle calculation, it is referring to the same matrix.
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5.7. Testing and Verification

| have implemented and tested the threetypes of designs with a series of VHDL test benches:

The first step was to verify the crred operation o the matrix multiplier logic, withou
having to be acncened with the aditional complicaion d memory accesses. To
achieve this, the test bench aded as a set of dummy memories that were guaranteed to
work. In addition, these multiplications used ony integers. The wntrol logic of the
design was then the only comporent under test, as the multipliers were dready
guaranteead to work and the requantisation logic was nat used.

Next, the requantisation logic needed to be tested, by using fixed pdnt red numbersin
the tests.

The final step was to build a redistic memory interfacefor the multiplier circuits, and
coordinate reads and writes between that, the test bench, and multiplier design. This
involved testing of both the interface and the read/write logic of the multiplier design.

In order to test the mrrednessof the designs, a known acarate result was required. This was
obtained from a MATLAB script, which ran arandam multiplication d quantised matrices and
output the results to a file. The adual test bench consisted of a number of modes, eath
performing a separate function:

1. Initialise test bench and read data from the test file, including the number of
tests and configuration d the matrices. Change to mode 2 after 1 cycle

2. Red in all of the data from the test file for one test. This consists of the red
and imaginary parts of the inpu and ouput matrices. Change to mode 3 after 1
cycle

3. Initialise the memories of the matrix multiplier. Write one aldress in eadh
matrix per cycle, and change to mode 4 when finished

4. Reset the matrix multiplier, telling it to start cdculating. Change to mode 5

5. Wait one gycle for the multiplier's sgnals to read the test bench. Change to
mode 6

6. Wait until the multiplier’s“busy” signal becomes deasserted. When this occurs,
prepare the output memory for reading of the first value and change to mode 8

7. Red the data onthe memory’s output line and store it in the test bench. If there
are more values left, then prepare the memory for the next read and change to
mode 8, aherwise change to mode 9.

8. Wait for a o/cle whil e the datais read from the memory and becomes latched to
its outputs. Change to more 7

9. Compare the data read from the output memory with the answer read from the
test file. If they differ, generate afailure message. If there ae more tests left,
then go to mode 2.
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6. Implementation of the Signal Processor

In order to implement the algorithm, the signal processor needs to perform the following
additional types of operations:

A multiplication A =B * B", where B isa 4 x 128 matrix

A number of multiplications of pairs 4x4 Hermitian matrices, of the configuration types
that were covered in Chapter 5.

A multiplication of a4x4 Hermitian matrix by a 4x1 matrix

The matrix multiplier that was chosen to form the core of the design is the semi-paralel
architecture described in section 5.4. Only the fina design, which takes advantage of the
Hermitian properties, is described here, but an earlier version for general matrix multiplications
was also built on the same principles and techniques outlines in chapter 5.

The challenge that forms the key part of the architecture was to solve the following

complic
1.

ations:

Thereis only enough physical space to implement the one matrix multiplier. This means
that as much of the architecture as possible must be common for each multiplication
that is to be performed

Some matrices appear as the first term in some multiplications, and the second term in
others. Since the matrices can only be stored as either columns or rows, and not both,
this means that these matrices will be in the wrong form for some of the calculations.
The results of the matrix multiplications must be Hermitian when required. As already
discussed in section 3.1.2, the simple cropping techniques that are used in hardware do
not allow this.

The first problem is simply a design constraint that needs to be adhered to when addressing the
other issues, while the third problem is the easiest to solve.
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6.1. Ensuring that the output matrices are Hermitian

The gproad to the solution of this problem has already been spedfied by the fixed pant
MATLAB model, which is to cdculate the top dagonal half of the matrix, and guessthe other

half. It is necessary to follow exadly the same gproach so that the two models may be chedked
for acaragy.

On this occasion, the design spedficaions work in favour of the problem, providing a ssimple
method d implementation. The key isin haw the matrix cdlsare aldressed, ill ustrated in figure
6-1.

0000 | 0001 |0010 |O0011
0100 | 0101 |0110 |O0111
1000 |[1001 |1010 |1011
1100 |1101 | 1110 |1111
Figure 6-1 : Memory addresses for the cdlsin a4x4 matrix, in binary form

Each ouput matrix is of size 4x4,and ead cdl is given afour bit address The least significant
2 bits correspondto the physicd memory addressthat is used to store the value, and the most
significant two hits match the partition number within the memory write mask.

Physicd Bits Bits Bits Bits

Address | 31-24 | 2316 158 7-0
00 1100 1000 0100 | 0000
01 1101 1001 0101 | o001
10 1110 1010 0110 | 0010
11 1111 1011 0111 | o011

Table 6-1 : Mapping of logicd memory addressesto pasiti ons within the physicad memory locaions.

The trick to writing Hermiti an matrices is to ndice the simil arity between the aldresses of cdls
that are mirrored aadossthe main dagonal. Such pairs of cdls are 0100and 0001, 100%nd
0110, 100Gnd 0010gtc. In all cases, if the least significant two hits are swapped with the most
significant two hits, then the aldressof that cdl’s partner is formed.

Therefore, the dgorithm for writing these matricesis smple:
0 Writethe cdl inthetop helf of the matrix with the cdculated value
0 Swap thetwo halves of the address and take the conjugate of the cdculated value.
0 Writethe new value to the modified address

The problem which this leaves is that only one write can be dore per clock cycle, so this needs
to be onsidered in the rest of the design. However, the need to wait for an extra dock cycle
also gives the drcuit time to form the mnjugate of the original cdculation.
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6.2. Taking Advantage of Hermitian Matrices

A further property of the dgorithm’s matrices all ows a simplificaion that solves the second d
the design problems. If it can be asaured, by sedion 6.1,that the input matrices are Hermiti an,
then they will be of the foll owing form:

A B C D
/B E F G
/C I F H I
/ D /G /1 J

Figure 6-2 : Form of the 4x4 Hermiti an matrix. “/B" means “conjugate of B”

The key observation is that for any row n, the correspondng column n contains the conjugates
of the same values. The diagonal cortains entirely red numbers, which are cnjugates of
themselves.

In addition, the complex multiplier has already been designed to allow multiplicaion by the
conjugate of its inpus, to caer for the cdculation d A*A’. This provides the necessary
comporents to implement the foll owing simple solution:

0 Implement al matrices by storing them in the form of one wlumn within eac memory
address

0 When a olumnis needed, simply real the gpropriate aldress

o0 When a row is nealed, read the aldress of the wrrespondng column, and set the
multi plier to use the onjugate of itsinpu value.

This lution further simplifies the hardware implementation die to the fad that every matrix
multi pli cation requires the reading of rows from one of the matrices. Therefore, the multipliers
will always be taking the mnjugate of one of the inpus, and the signal that controls this
function will be constantly asserted. The synthesis toadl will reamgnise this, and ogdimise the
circuit to remove the redundant case.
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6.3. Performing multiplications with Hermitian optimisations

Using the technique described in sedion 6.1,when we cdculate aty nondiagonal cdl of the
output matrix the mnjugate value is also written to its correspondng cdl onthe other side of the
diagonal. Therefore, orcethe first row of the output matrix has been cdculated, the first column
has also been assgned new values. The next cdl to be cdculated is then in the seaondrow and
the second column. This pattern continues, and the output matrix is completed in the manner
depicted by figure 6-3.

Figure 6-3 : Order in which the Hermitian matrices are filled in. Dark squares represent the cdls
currently being written, and light squares represent the cdl s aready cdculated.

This information is helpful for performing the squaring of Hermitian matrices. Since the rows
and columns come from the same matrix, it may first appea that it is necessary to perform two
reals per output cdl. However, oncloser inspedion, that is nat necessary.

The key observationin figure 6-3 is that the first cdl to be explicitly written onead row of the
output matrix lies on the diagonal. That means that the row and column required for that
cdculation have the same memory address For the matrix squaring, by sedion 6.2,the first
locaion real for ead ouput row contains both the data for the row to be read, and the column
required for the first cdculation. All that is required is to store that row’ s data, and for the other
output cdlsin that row, read ead column as required and use the stored row.

For general Hermiti an matrix multi pli cations, exadly the same technique can be used. Althowgh
it is not necessary to remember the row data in this case, it is more @nsistent to do so and
allows for simpler circuitry.

6.3.1. Multiplication of any Hermitian matrices

The technique described in this ®dion allows for the cdculation d any of the caes from table
5-2in 16cycles, when all of the source matrices are known to be Hermitian. When ore, or nore
of the source matrices are Hermiti an, then the techniques described in sedion 5.6may be used.
Hence we now have away for multiplicaion o amost any combination d valid matrices, so
the next step was to buld the signal processor that demonstrated an implementation d this
theory.
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6.4. Signal Processor Architecture

Once the design problems had been resolved, it was possible to fully develop the processor data
path and control sequence. The concept behind how each type of multiplication works is the
same, and the general sequence of events for the generation of each matrix cell is summarised in
figure 6-4.

Stage 1: Stage 2: Stage 3: Stage 4:
) Generate read N Wait for data to i N Add results to )
addresses for be read from P.er.forn.] tally and/or output %
: . Multiplications
memories memories total to memory

Figure 6-4 : The four stages required for performing matrix multiplication. Each piece of data read
from the memories passes through each stage, and these stages can be pipelined to improve the
circuit performance.

The system can be divided into four pipeline stages, providing the following functionality:

1. The Read stage generates the address of the row or column that is to be read from
each matrix, and the address of the cell that will be written to the output matrix with
the results of this newly addressed data.

2. Thedelay stage waits for the data to become available from the memories

3. The Multiplication stage performs the four multiplications, and tallies the results
together in carry-save format.

4. Findly, the results are resolved into standard binary form and written to the
destination memory.

Several of the original stages described in the semi-parallel architecture have been merged in the
final design, mainly because propagation delay was not an issue. One reason for thisis that the
merged stages easily fit within the specified 8ns clock cycle time. Another advantage is that
reducing the number of clock cycles between the read and write stages removes complications
with timing synchronisation and read-after-write dependencies.

An overview of the processor architecture is provided by figure 6-5. The control unit, as
described within this chapter, generates one set of addresses and data, which is sent to each of
the memories. The data read from each of the memoriesisfed into multiplexors, to select which
pieces of data are currently required by the controller. A separate set of signalsis used for the
specia mode O memory, which is of a different size to the others.
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In addition, the outside environment of the signal procesor can also accessthe memories when
the @ntrol unit is not using them. It is the job d the interfaceunit to coordinate this, with the
aid o the “busy” indicaor from the control unit. The outside drcuitry also needsto provide data
to initi ali se the memories, and variable aspeds of the processor configuration.
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Figure 6-5 : Overview of the system architedure

6.5. The Read Stage

The primary purpose of this dage is to generate the addresses for the reading and writing of
matrices. However, in arder to dothis in the most efficient and acarate manner, this gage dso
requires additional control logic, making it the stage that is most aware of the state of the

processor.

This effedively makes the read stage drcuitry the main state machine antroller, with eah
mode representing a diff erent matrix multi pli cation. The mode courter isused by the read stage,
and aher stages, to adjust their control signals acardingly.

Thereal stage can be summarised by the modelsin figure 6-6 and table 6-2.
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Clk

Rst

Restart

Running

Mode0_read address (7)
Int_out_addr (4)
Diagonal
Read Stage [oowm
‘ Delay_running
Mode

ModeQ_counter

Figure 6-6 : Conceptual view of the pipeline read stage. Numbers in parentheses represent the bus
size, while others are one bit signals.

Signal Type Description

Clk I nput 8ns system clock signal

Rst I nput When set low, resets the processor

Restart Input When asserted high on a rising clock edge, signals the processor to
begin calculating the equation, using the current input values.

Running Input Signal which indicates whether or not the processor should be doing
anything. If low, everything is disabled.

Mode0_addressl Internal | First addressto read for a calculation in mode O

Mode0_address2? Internal | Second address to read for a calculation in mode O

ModeO_read Address | Output | Addressto be read from memory on next clock cycle

Int_out_addr Output | Address of the output matrix cell which is to be calculated from the
datathat is currently being addressed.

Diagona Output | If high, then the cell addressed by int_out_addr is one the diagonal of
the output matrix.

Do_wrt Output | If high then, when the data which was addressed in the previous clock
cycle reaches the output stage, the result is to be written to memory.

Mode Output | The mode of the state machine. Allows control of multiplexors to
correctly direct data to/ffrom memories.

ModeQ_counter Output | Used for when stage 0 needs to read two addresses for each set of data,
by counting how many reads have been done.

Read_delay Internal | When low, stalls the pipeline for one cycle. This is because the output
stage sometimes requires two clock cycles, to write to both halves of
the Hermitian matrix.

ModeO delayed Internal | Similar to read delay, but specific to mode O

Table 6-2 : Summary of signals for pipeline read stage.

The read addresses for memories, other than those used by mode 0, can be obtained directly
from the output address, since the row and column required for reading correspond directly to
the row and column of the cell that is to be written:

For example,

Cell to be written
Row to beread

;0111
101

Column to be written : 11
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6.5.1. Mode 0 — Calculating A=B * B’

The distinguishing feaures abou mode 0 is that
0 Theinpu matrix is nat square. For this analysis, it is considered to be 4x128, bt the
width could be any power of two that islarger than 4.
0 Themultiplicaionisof the matrix B, with the cnjugate transpose of itself

In order to perform a matrix multiplicaion o this type, we need to read arow and a wlumn as
normal. The difference is that there ae more than four multiplicaions necessary for the
cdculation d ead ouput cdl. Infad, the exad number will be the width of the input matrix B,
which isamultiple of 4 if the bove mnstraints are met.

For the 4x128matrix, thiswill require 128 multiplicationsto oltain ead ouput cdl, using only
the 4 avail able multipliers. It istherefore dea that, for ead ouput cdl, 32sets of 4 values must
be read, multi plied, and tallied. When all 32 sets of data have been processed, the result can be
written to the output memory and the tally is cleared. The nature of this arrangement means that
it is best to structure the memory so that ead address contains four values that are adjacent in
the same row of the matrix. Part of this matrix is iown in Figure 6-7

1\2\3\4 5‘6‘7‘8 9\10\11\12 13‘14‘15‘16
1 0000000 0000001 0000010 0000011
2 0100000 0100001 0100010 0100011
3 1000000 1000001 1000QL0 1000011
4 1100000 1100001 1100010 1100011

Figure 6-7 : Depiction of the 16 leftmost columns of a 4x128 matrix, and the memory locations
which contain their values.

However, there is a further complicaion. The problem is that the @wlumns from the “second’
matrix of the multiplicaion are redly rows from the same matrix that is ading as the “first”
matrix of the multi plication. Since the widths are much larger than four, it is not feasible to use
the techniques of remembering previously read data, that has been previously described. The
only pradicd solution is to aternately read data from the two dfferent rows. Table 6-3
ill ustrates this process for cdculating the output cdl in the first row and third column of the

output matrix.
Clock Cycle +0 +1 +2 43 +4 +5 ... +60 +61 +62 +63
ModeQ addressl 0 1 2 ... 30 31
ModeO_addres2 64 65 66 .. 94 95
ModeO read address 0 64 1 65 2 66 ... 30 94 31 95
ModeO_courter o 1 o0 1 o0 1 .. 0 1 0 1
Do_wrt 1 0 0O O 0 o .. 0 0 0 O

Table 6-3: Signal values for multipli caion involving two dff erent rows of the input matrix
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However, for output cdls on the diagonal, the two sets of rows that are read are the same.
Therefore, as own in table 6-4, thereis no real to waste dock cycles by performing two reads
for eath pair of four values.

Clock cycle +0 +1 +2 +3 ... +29 +30 +31
ModeO_addressl 32 33 34 3 .. 61 62 63
ModeO_addres2 32 33 34 3 .. 61 62 63
ModeO _read address 32 33 34 35 ... 61 62 63
ModeQ_courter 0 0O 0 O ... 0 0 O
Do_wrt 7 0 0 O ... 0 0 O

Table 6-4 : Signal values for multiplications involving one row of the input matrix. ~ : For the first
row, Do_wrt isinitially low because that is the first cdculation of the mode.

It is also convenient that the cdls which orly require one read for ead pair of four values, the
diagonals, are dso the ones which orly require one write ¢ycle. This makes some cdculations
take more g/cles than ahers, bu no ppeline delays are required because there is at least a 31
cycle delay between writes, and the output stage is the only stage that would be dfeded by this
situation. The next mode is nat aff eded either, because the fina cdl only requires asingle write
cycle.

Using this information, we can cdculate how many cycles are required for ead stage of the
operations. Table 6-5 ill ustrates the start cycle of the cdculation d ead o the output values,
after which the signalstake on ore valuesin ore of the dove tables, as appropriate.

Clock Cycle 0 32 96 160 224 256 320 384 416 480 512
Mode0_addressl 0O 32 64 9 32 64 96 64 96 96 next
0
0

ModeO_addres2 0 0 0 32 32 32 64 64 96 mode
ModeO hasel 0 0 0 32 32 32 64 64 96
Diagonal 1 0 0 0 1 0 0 1 0 1 1

Table 6-5: Signal valuesfor the first clock cycle of the start of the cdculation of ead output cdl.
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6.5.2. Final Mode : Multiplying a 4x4 matrix by a 4x1 matrix

This mode involves the multiplication of the matrix stored in one of the memories, by a 4x1
matrix that is latched in from the inputs at the start of the calculation of the output matrix. The
output matrix is a4x1 matrix, so each column of the 4x4 input only needs to be read once.

Clock Cycle 0 1 2 3 4
Int_out_addr 0000 0100 1000 1100 next
Diagona 1 1 1 1 mode

Table 6-6 : Signal valuesfor the first clock cycle of the start of the calculation of each output cell.

The memory read addresses are obtained directly from the int_out_addr signal, as previously
described.

6.5.3. Other modes : Multiplying two 4x4 matrices

All of the other modes involve multiplying together two 4x4 Hermitian matrices, which can be
achieved using the principles described in sections 5.4.2.1, 5.5, and 6.2. The timing of the read
cycle then becomes as shown in table 6-7.

Clock Cycle 0 1 2 3 4 5 6 7
Int_ out addr 0000 0001 0001 0010 0010 0011 0011 0101
Read delay 1 o0 1 o 1 o 1 1
Diagonal 1 0 O O O O o0 1

ClockCycle 8 9 10 11 12 13 14 15 16
Int_out_addr 0110 0110 0111 0111 1010 1011 1011 1111 next
Read delay 1 0 1 0 1 0 1 1 mode
Diagonal O 0o O O 1 o0 o0 1

Table 6-7 : Signal valuesfor the first clock cycle of the start of the calculation of each output cell.

The memory read addresses are obtained directly from the int_out_addr signal, as previously
described.
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6.6. The Delay Stage

The purpose of this gage is smply to delay the control signals from reading the multiplier
stage for one gycle, whil e the memory datais being real.

Clk
Rst
Restart
~ Delay Stage
Delay_running multiplier_runnng
T Fnished | T [Finished_cg2
T Rnished_dd2| T Finished
©ntoutadd(e)| T [ Mul_addrout(4)
Diagona | T TTTTTTTTTTTTT Mul_diagonal
Finished Mul_finished
© ModeO courter| T | ModeO_second_stage
T Mode| T | Multiplier_mode

Figure 6-8 : Conceptual view of the delay stage. The dotted lines indicate which inputs are assgned
to the outputs at the rising edge of ead clock cycle.

Figure 6-8 shows how the input and ouput signals are related. The only unusual caseis how the
finished del signal eventually becomes the mul_finished output. All other signals are simply
assgned dredly to their correspondng outpu.

The finished del signal is asserted by the read stage on the final read cycle of the final
multi plicaion d the equation. Its purpose isto eventualy all ow the cntrol of the “busy” signal,
when it readies the output stage. However, if it is Smply delayed orce d ead pipeline stage,
then it will change the busy signal on the last write g/cle. Since the busy signal is used by the
memory interfaceto determine whether to all ow writing to memories from the signal processor
or an external source this means that the last write o/cle will not exeaute arredly. If the signal
isdelayed by one extra gycle, thiswill still not work because the adual memory write does not
take placeurtil the gscle dter the output stage. Therefore, the “finished del” signal must be
delayed by two cyclesto ensure acaragy.
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6.7. The Multiplication Stage

The multiplication stage receives four pairs of numbers from the memories, multiplies them,
and adds the results together to form the value for the appropriate output cell. For mode O, there
are more than four multiplications to be done, so the result must be added to a tally by the
output stage until all values have been cal cul ated.

Clk
Rst] .. :
— = Multiplication
Running| St ag e
multiplier_running output_running

Data from memories
Results of multiplication

Mul_addrout(4) "Comb_addrout(d)
Mul_diagona| ~~ " comb_diagonal
Mul_Finished comb_finished

Mode0_second stage| ] —
Multiplier_Mode comb_mode
Chanel_mask comb_twowrites
Do_wrt ' comb_wrt

Figure 6-9 : Conceptual View of the multiplication pipeline stage.

Most of the input signals come from either the delay stage, or are global control signals (clk, rst,
restart, and running) The only exceptions are
* Thedatathat isread from the memories, after being addressed by the read stage
* Thedo_wrt signal. This signal indicates whether the results of the multiplication stage
are to be written to memory, or tallied for later use. For simplicity of code, it is
generated by the read stage at the start of the calculation of the next result. Hence, it is
generated a cycle later than required, and bypasses the delay stage in order to regain
synchronisation.

Most of the output signals are simply copies of the input signals, asindicated by figure 6-8. The
only thing that is generated by this stage is the results of the multiplication.
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6.7.1. Mode 0 — Calculating A=B * B’

The main difference of this mode from others is that there is the situation where two reads need
to be dore before the multiplicaion can take place The mechanism for coping with this is
simple:
* Onthefirst cycle, storethe datain aregister
» Onthe semndcycle retrieve that data and wse it as one of the inpus to ead multiplier.
The other inpus come diredly from the memory data that was just read.

For the cae where only one rea is required, we can simply dired the data read from the
memory to bah multi plier inpus. This works because the multi pliers are set up to automaticaly
take the conjugate of the secondinput, so nofurther manipulationis required. Appendix B2.2.1,
and figure 6-10, summarise this process

2:1

a
Z

a result

data b
\

Figure 6-10: Data path for multiplication mode 0. Where we require data from two dfferent rows of
the input matrix, it is gored in the register on the first read, for use in the multiplier when data is
avail able from the second read. Where bath pieces of data cwme from the same row (i.e. the same
pieceof data), both value ae taken diredly from the incoming data stream.

6.7.2. Other Modes

The technique used to perform these multi plicaions has already been oulined in sedion 6.3,
andthisisfairly simple to implement:
» If the output cdl being cdculated is on the diagonal, then read bah multiplier inpus
from memory and store the row for later use.
* Otherwise, use the remembered row as one inpu, and read the cwlumn from the
appropriate memory.
»  For the multi plicaion by a4x1 matrix, we do nd use the stored the row but read it from
memory. The wlumnisread from alatched dred inpu.

In the dove, a “row” is adualy a olumn o the Hermitian matrix, of which the cnjugate is
taken. The flowchart for this mode is provided in Appendix B2.2.2

29/05/02 62



ASIC Designfor Signal Processng

6.8. The Recombine and Output Stage

The final stage in the pipeline, presented in figure 6-11, involves converting the cary-save
comporents into standard binary numbers.

Clk
Rst

] Recombine
Running and OUtpUt
___output_runring Stage

Results of multiplicaion

Output to memory

_ Comb_addrout(4) Add_out
comb_dagonal it
___comb_finished|
comb_mode

comb_twowrites
comb_wr{

Figure 6-11: Conceptual view of the output pipeline stage.

Detail s of the implementation areill ustrated in Appendix B5.
6.8.1. Clamping overflowed values

When a multiplication between two signed 16 bt numbers occurs, the result is a 31 Lt value.
That is, twice the number of integer hits, twice the number of fradional bits, and ore sign hit.
However, numbers of this §ze ae too g to be stored in the memories, and so they must be
cropped in some way. Furthermore, since some of the results are to be reused in the
cdculations, they neal to be aopped so that they keep the original number of fradional and
integer bits.

The fradional bits can simply be aopped, with nofurther processng necessary. However, this
isnat the cae with the integer bits. In particular, we need to ded with the cae where the value
of the result is outside of the dl owed range.

For example, consider an 8 Iit integer result, with an all owed range of +16. That range mnsists
of the least significant 5 hits, so designate the 5™ least significant bit as the “cropped sign hit”.
Now consider four examples:

5 :00000D1 17 :00001011

-5 :11111011 -17 :11110101
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The examples 5 and -5 are within the dl owed range, while 17 and—17 are not. Examination
the binary encoding of these numberswill reved that, for the numbers within the dl owed range,
all of the hits from the aopped sign hit to the original sign kit are the same. Thisis nat the cae
for numbers that are not within range. Hence, we have a mechanism for deteding range
overflows.

The tedhnique for clamping is then:
e Chedc if all of the bits above the clamping point are the same
« If they are, simply crop the number
e |f nat,
0 Set the sign hit of the aopped number to the original sign hit
0 Set dl of the other bitsto the inverse of the sign hit.

This will then ensure that and ou of range numbers will be cropped to their upper or lower
extreme, as appropriate.

6.9. Disabling parts of the matrices

An extension to the design was to consider ways of “disabling” certain rows and columns of the
matrix, so that the 4x4 matrices would behave like 3x3, a 2x2 matrices. The disabled rows and
columns would simply cortain zeroes. This proved to be asimple matter of:

» Disabling the gpropriate multiplier. Due to the technique of reading in columns or
rows at atime, it happens that ead multiplier always operates on data from the same
row or column. (The only exceptionisfor mode 0.)

« Initialisethe gpropriate rows or columns to zero at the start of the dgorithm.

The result is that the matrices behave @ if the disabled sedions were not present. Furthermore,
the power consumption will also approach the levels as if the disabled sedions were missng,
since the disabled multiplier saves power by preventing any glitches from propagating through
it. The cdculationwill still use the same number of clock cycles, but thisisnat anissue for this
design.

6.10. Testing and verification

The testing of the final design made use of test benches that were heavily based onthose used
for the matrix multiplier designs. Similar testing steps were followed, bu were modified as
required to suit the dgorithm. The only additional steps were to vary the various model
parameters, such as quantisation kts and range, to ensure that the design would match the
MATLAB model for all combinations.
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6.11. Synthesis of Final Design

Synthesis of the signal processor was performed using the Synopsys software, since the
Cadence PKS license was not available for the time that it would be required. Since this
software is not believed have as accurate timing as Cadence PKS, the initial target was set to
7ns clock cycles. This was to ensure that the design would comfortably meet the timing
regquirements of 8.2ns. A summary of resultsis given in table 6-8.

Timing Target | Required Time (ns) Worst Path time (ns) Size (mm’)
(ns)

7 6.61 6.62 2.45

8.2 7.72 7.71 2.00

Table 6-8 : Synthesis results for the signal processor, using Synopsys software.

Although the result for the 7ns target is reported as having violated the timing constraint (6.62 >
6.61), this is not a concern because it is merely the result of rounding errors and significant
digits. Simply reducing the target further would allow the worst path to fit within 6.61ns.

Thesizeisan indicator of the physical space that the circuit would require on asilicon chip, and
includes the four 20x20 bit multipliers, the memories, and the control logic. As the results
indicate, the synthesis tool will attempt to optimise the circuit to provide a trade-off between
size and speed. Asthetiming constraint is relaxed to 8.2ns, it is able to reduce the size by using
slower, but more compact, logic.

6.11.1. Changes to described design

The initial synthesis indicated that the design may not quite fit within the design constraints, or
would at least be uncomfortably close to exceeding them. Analysis of the synthesis data
revealed that the worst path was through the multipliers, so this was the stage that had to be
modified.

A simple solution was applied, involving splitting this stage into two pipeline stages. The work
involved was simply the addition of a pipeline register in the manner that was described for the
delay stage. For the purposes of this thesis, it is more intuitive to describe these two stages as
one block. However, further splitting of pipeline stages would introduce read-after-write
hazards, and would be a more complicated process.
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7. Conclusions and Extensions

This project has involved the implementation of a signal processing algorithm in a VHDL
model, which successfully matches the output of a corresponding MATLAB model with the
same guantisation configuration. This thesis has generalised the algorithm by describing a set of
techniques that can be applied to multiply ailmost any configuration of matrices, whether they
are Hermitian or not. A subset of these techniques was required for the signal processor,
demonstrating the practicality of implementation.

In particular, steps that | have completed to achieve this goal included:

Research, design, implementation, and testing of high speed architectures for the
digital multiplication of numbers. This work is the only part which had been done
prior to the commencement of the project.

Enhancing these multipliers with power saving optimisations, that disable the
multiplier circuit without increasing the critical delay. This technique has since been
filed for patent by Lucent Technologies.

Research into alternative methods for implementing complex number multipliers
Design, implementation, and testing of a complex number multiplier design

Research, design, implementation, and testing of various architectures for the
multiplication of matrices, as described by chapter 5. Consequently, | have devised
methods for hardware multiplication of various combinations of matrices, as
summarised in 5.6 and 6.3.1

Conversion of a floating point MATLAB model of the algorithm into a fixed point
quantised model, which emulates the desired performance of a hardware
implementation. This includes analysing the effects of adjusting the various model
parameters, and sel ecting the maost appropriate combination.

Incorporating the most appropriate matrix multiplier design into a control unit, to
produce the signal processor detailed by chapter 6.

All stages of the hardware implementations additionally required:

Design of testing mechanisms to verify the correctness of the implementations
Synthesis of the designs, and analysis of these results to determine the best way in

which to arrange the code.

All of the multipliers have been written in aform that makes them generically sizable to
any width of input.
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The result is a signal processor that performs the required cdculations, meding the foll owing
spedficaions:

* |t operates within 8rs clock cycles

* By use of optimisations edfic to Hermitian matrices, the result is cdculated in the
least number of cycles possble. This time is limited oy by the number of reads and
writesthat are required.

» It saves power, by performing as few cdculations as needed. This includes taking the
conjugate of already cdculated results (sedion 6.1 for the output matrices, and the
disabling of multipliersthat are nat in use (sedion 6.9.

* An appropriate anourt of quantisation has been chosen to belance the physicd size
with performance of the design.

7.1. Possible Extensions

This projed has been built for a spedfic purpose, so al of the foreseen requirements of the
design have dready been fulfilled. Furthermore, | believe that the number of clock cycles
required for the dgorithm is aimost, if not exadly, minimal for the design constraints that have
been set. Therefore, any further extension to this projed would involve only optimisation d the
various comporents of the design.

One obvious areawould be further optimisation o the multiplier circuit, and thisis an areathat
isunder constant research. The designs described in this document have been built for synthesis
by atod such as Cadence PKS and Synopsys. However, experimentation by staff at Bell Labs
Reseach has shown that a “full-custom” design of the drcuit and associated layout on the dchip
has the patential to dffer significant savingsin surfacearea and sped.

One posshility could then be the generation d custom multipli ers in much the same way as the
Artisan Comporents tod generates the memories used by this projed. This would then all ow
for the use of larger word widths in the processor, generating a better quality of result.
Furthermore, it would also allow the implementation o other architecure of multiplier, which
failed to producetheir claimed benefits under normal synthesis.

In a similar way, other comporents of the design could also be optimised, bu overall there is
littl e scope for extensionto this projed.
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Appendix A. MATLAB Code

A.l. Fixed Point Model

A.1.1 Fixed Point Data Type
A.1.1.1 Staticfixed_pt_matrix

POoO~NOURAWNE

function fp = staticfixed_pt_matrix(range, bits, va
% staticfixed_pt_matix(range, bit, value)

lue, makeHermitian)

% creates a staticfixed_pt_matix, a matrix which does not change
% in precision or range when mathematical operations are carried

% out on it.
% range = range of the integer part of

the value. If not a power of two,

% the value given will be increased to the next power of two. The
% positive and negative extreme is the same magnitude, whichever of

% the given values is bigger.
% bits = number of bits fo
faction bits)

% value = initial value, which should be a 2D matrix

if ndims(value)~=2
err(input matrix should be 2
end

siz = size(value);
check_range(range,");
fp.range_bits
fp.frac_bits = bits
fp.range = [
fp.bits = bits;
fp.step = 1/ (2"fp.frac_bits);
fp.value = value;

fp.value = floor(value / fp.step) * f

- fp.range_bits

if (nargin<4)
makeHermitian=1;
end
% makeHermitian=0;
if (makeHermitian==1) & (siz(1)==siz(2))
for cnt=1:siz(1)
for cnt2=1:siz(2)
if (cnt==cnt2)

= ceil(log2(max(abs(range)))); %

- 2Mp.range_bits 2"fp.range_bits];

r the entire number (sign bit, integer bit,

- dimensional');

- 1 for the sign bit

1

p.step;

fp.value(cnt2,cnt) = real(fp.value(cnt, cnt2));

else

fp.value(cnt2,cnt) = real(fp.value(cnt,cnt2)) -

imag(fp.value(cnt,cnt2))*j;
end
end
end
end

for cnt = 1:siz(1)
for cnt2 = 1:siz(2)
real_part = real(fp.va

if (real_part > max(fp.range)
real_part = max(fp.range)

end

if (real_part < min(fp.range))
real_part = min(fp.range)

end

if (imag_part > max(fp.range)
imag_part = max(fp.range)

end

if (imag_part < min(fp.range))
imag_part = min(fp.range);

end

lue(cnt,cnt2));
imag_part = imag(fp.value(cnt,cnt2));

- fp.step)
- fp.step;

- fp.step)
- fp.step;

29/05/02



ASIC Design for Signal Processing

58 fp.value(cnt,cnt2) = re al_part +j * imag_part;
59 end

60 end

61

62 fp = class(fp,'staticfixed_pt_matrix’);

63

64 return

A.1.1.2 ctranspose

1 function fp = ctranspose(a)

2 bits = a.bits;

3 range = a.range;

4 value = a.value’;

5 fp = staticfixed_pt_matrix(range,bits,value);

6 return;

A.1.1.3 display

1 fun ction display(fp)

2 disp(' );

3 disp(['Static Fixed point Matrix ',inputname(1),' = );

4 disp( ");

5 disp(fp.value)

6 disp(");

7 return

A.1.1.4 minus

1 function fp = minus(p,q)

2 if (~isa(p, 'staticfixed_pt_matrix’))

3 if (~isa(q, staticfixed_pt_matrix’))

4 err(At  least one term in  multiplication  must be of
staticfixed_pt_matrix type.");

5 else

6 bits = q.bits;

7 range = g.range;

8 value = p - g.value;

9 fp = staticfixed_pt_matrix(range,bits,value);

10 end

11 els e

12 if (~isa(q, staticfixed_pt_matrix’))

13 bits = p.bits;

14 range = p.range;

15 value = p.value -

16 fp = staticfixed_pt_matrix(range,bits,value);

17 else

18 bits = p.bits;

19 range = p.range;

20 value = p.value - g.value;

21 fp = staticfixed_pt_matrix(range,bits,value);

22 end

23 end

24 return

A.1.1.5 mrdivide

1 function fp = mrdivide(p,q)

2 if (~isa(p, 'staticfixed_pt_matrix’))

3 err('The first term in the divide must be of staticfixed_pt _matrix
type.”);

4 else

5 if (~isa(q, staticfixed_pt_matrix’))

6 bits = p.bits;

7 range= p.range;

8 value = p.value / q;

9 fp = staticfixed_pt_matrix(range,bits,value);

10 else
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11 err(The first term in  the d ivide must NOT be of
staticfixed_pt_matrix type.");

12 end

13 end

14 return

A.1.1.6 mtimes

1 function fp = mtimes(p,q)

2 if (~isa(p, 'staticfixed_pt_matrix’))

3 if (~isa(q, staticfixed_pt_matrix’))

4 err(At least one term in the multiplication must be of
staticfixed_pt_matrix type.");

5 else

6 bits = q.bits;

7 range = g.range;

8 value = p * g.value;

9 fp = staticfixed_pt_matrix(range,bits,value);

10 end

11 else

12 if (~isa(q, staticfixed_pt_matrix’))

13 bits = p.bits;

14 range= p.range;

15 value = p.value * q;

16 fp = staticfixed_pt_matrix(range,bits,value);

17 else

18 % use p's constraints

19 bits = p.bits;

20 range = p.range;

21 value = p.value * g.value;

22 fp = staticfixed_pt_matrix(range,bits,value);

23 end

24 end

25 return

A.1.1.7 plus

1 function fp = plus(p,q)

2 if (~isa(p, 'staticfixed_pt_matrix’))

3 if (~isa(q, staticfixed_pt_matrix’))

4 err(At  least one terms in  multiplication must be of
st aticfixed_pt_matrix type.");

5 else

6 bits = g.bits;

7 range = g.range;

8 value = p + g.value;

9 fp = staticfixed_pt_matrix(range,bits,value);

10 end

11 else

12 if (~isa(q, staticfixed_pt_matrix’))

13 bits=  p.bits;

14 range = p.range;

15 value = p.value + q;

16 fp = staticfixed_pt_matrix(range,bits,value);

17 else

18 % both are of fixed type, use p's constraints

19 bits = p.bits;

20 range = p.range;

21 value = p.value + g.value;

22 fp = staticfixed_pt_matrix(range,bits,value);

23 end

24 end

25 return

A.1.1.8 valof

1 function fp = valOf(p)

2 if (~isa(p, 'staticfixed_pt_matrix’) )

3 err('Input matrix must be of staticfixed_pt_matrix type.");

4 end

5 fp=p.value;

6 return
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A.1.2 Output of test data to a file

This function writes the contents of a matrix to afile, in text format. It works by generating the
integer value of the binary number that represents the data. For example, the number 5.25,
encoded as 010101 would be written to the file as 21.

©Co~NOOO~WNE

function output_matrix(fid, matrix, a_bits, a_frac, desc)

if ndims(matrix) ~= 2

err('Input matrix must be two dimensional for file output!’);
end
fprintf(fid,’ —--memeemmeeee ;
fprintf(fid,desc);
fprintf(fid,’ \r\n;
siz = size(matrix);
a_height = siz(1);
a_width = siz(2);
a = ones(a_height, a_width);
for rows = 1:a_height,

fprintf(fid," ),

for columns=1:a_width,

%- a(rows,columns) = matrix(rows,columns)*2”(a_bits - a_frac) -
2Ma_bits -a_frac -1);
fprintf(fid,'%8.0f ' floor(matrix(rows,columns)*2”*a_frac));

end

fprintf(fid,’ \r\n;
end
fprintf(fid,’ \r\n);

for rows = 1:a_height,
fprintf(fid," );
for columns=1:a_width,
% a(rows,columns) = a(rows,columns) + j*(rand*2"\(a_bits - a_frac)
- 2Ma_bits -a_frac -1));
fprintf(fid,'%8.0f

" floor(imag(matrix(rows,columns )*2"a_frac)));
end
fprintf(fid,’ \r\n;
end
fprintf(fid,’ \r\n);
return
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Appendix B. Flowcharts of Signal Processor Execution

The signal processor architedure is made up d four pipeline stages:
e real datafrom memory
e delay to alow datato arrive from memory
e Multiplicaion d data
e Output of results and/or tallying data for later use

Each o the four stages consists of the foll owing basic design:

rst="1' true

rising clock
edge

false reset to state of first
cycle of first true
operation

next_stage_running <= false;

do mode/stage specific operations
next_stage_running <= true;

alse

reset certain
signals

—{]

—]

=]

End

The behaviour of the spedfic signals are described in chapter 6. The following sedions of this
appendix detail the flowcharts for ead of the pipeline stages.

NOTE: Although flowcharts are sequential by nature, a feaure of VHDL is that signa
assgnments within a process satement do nd occur urtil either

* The end d the process satement is readied

» Atimedelay or wait statement is readed
Hence assgnments of the form a<= b in these flow charts $oud be read as “b is the value that
will be asdgned to a, bu the asdgnment will nat take placeurtil the termination pant of this
flow chart”.
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B.1. Read Stage

B.1.1 Mode 0 — Multiplication of B * B’

mode0_delayed <= false;

— do_wrt<="0"
mode0_counte False
do_wrt<="0";
- False - i
=xx11111 mode0_counter <= '1';
True mode0_read_address <= mode0_address2;
do_wrt <="'0";
do wrt="1" mode0_address1 <= mode0_address1 + "0000001";
- mode0_address2 <= mode0_address2 + "0000001";
mode0_read_address <= mode0O_address1 + "0000001";
ode0_address2= False
1111111
True
mode0_address1 <= mode0_basel + "0100000"; mode0_address1 <= mode0_basel;
mode0_address2 <= mode0_basel + "0100000"; mode0_address2 <= mode0_address2 + "0000001";
mode0_read_address <= mode0_basel + "0100000"; | |mode0_read_address <= mode0_basel;
mode0_basel <= mode0_basel + "0100000"; diagonal <= false;
diagonal <= true; int_out_addr <= int_out_addr + "0001";
ode0_address
True =1111111
False
mode <="001";
rtog_delayed <= q_toggle xor '1';
delay_running <= true; outbase <= outbase + "0101";
mode0_delayed <=false; int_out_addr <= outbase + "0101";
outbase <= "0000"; mode0_delayed <= true;
int_out_addr <= "0000"; delay_running <= false;
read_delay <=1}
T 1
\—l—‘—{ modeO_counter <='0"; }7
[ |
1 L‘J

End
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B.1.2 Final Mode : Multiplication of a 4x4 matrix by a 4x1 matrix

This mode does not require aflowchart, since it simply consists of the following statement:

Int_out addr <=int_out_addr + “0100";

B.1.3 Other Modes : Multiplication of Two 4x4 Hermitian Matrices

read_delay="1"
False
False
tmp2 := int_out_addr(3 downto 2);
tmp2 := tmp2 + "01"; int_out_addr <= int_out_addr + "0001";
int_out_addr <= tmp2 & tmp2; diagonal <= false;
diagonal <= true; read_delay <='0';

read_delay <="1%

read_delay <=1

mode <= mode + "001";

mode="11"

False

True
|

rtog_delayed <= q_toggle xor '1";
mem2_rd_addr <= "00"; -- initial memory
int_out_addr <= "0000";

read_delay <=1

int_out_base <= "0000"; False
diagonal <= true;

iteration_num <= (others=>'0");
finished_del <= true;
filtering <= 1"

iteration_num <= iteration_num + iteration_inc;
mode <= "001";

1
\_'_1

End
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B.2. Multiplication Stage

B.2.1 Mode O : Multiplication of B * B

Begin Multiplier
Mode 0

Set multiplier
enable pins
(see 6.7.1)

mul_diagonal false

enable multiplication
false input datal := data from memory
input data2 := data from memory

enable multiplication
input datal := stored data
input data2 := data from memory

disable multiplication
stored data <= data from memory

I
I
End Multiplier
Mode 0

29/05/02
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B.2.2 Other modes
Begin Multiplier

Set multiplier
enable pins
(see 6.7.1)

enable multiplication
input datal := data from memory

false mul_diagonal true -

false

=final mode

false input data2 := data from memory
stored_row <= input data2

input data2 := data from inputs input data 2 := stored_row

ull
|

End Multiplier
Mode
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B.3. Output Stage

Begin Output Stage

omb_second>
out="1"

out_real and out_imag := conjugate of stored values Add results to tally

comb_second_out <= comb_diagonal

perform mode specific manipulations
set out_real and out_imag

set out_real, out_imag
clear tallies store tallies

comb_second_out <= comb_diagonal
|
store out_realand out_imag L

create second write address

— |

clamp out-of-range
components at
max/min value

Write to the
appropriate
memory

End Output Mode

29/05/02

78



ASIC Design for Signal Processing

Appendix C. Testing VHDL Code

C.1. Multiplier Testbench

C.1.1 VHDL Code

The multiplier test benches were based on a design that had already been built for the original
10x10 multiplier. However, it required extensive modification in order to work for my
generically sizable multipliers.

C.1.1.1 Exhaustive Testbench

oO~NO OB WN =

©

-- exhaustive_testbench.vhd, Testbench for recursive booth multiplier (recmult).
- Author : Geoff Knagge
-- Created : 11 DEC 2001
--  Modified : 13 DEC 2001

-- This testbench exhaustively tests all combinations of input for the given word
-- sizes. The simulator needs to run for (20 * 2"data_width_a + s"data_width_b
+20) ns

library IEEE;

use |EEE.std_logic_1164.all;

use |EEE.std_logic_arith.a Il;
use ieee.std_logic_signed.all;

use ieee.std_logic_unsigned.all;

use std.textio.all;

library work;
entity exhaustive_testbench is
generic(data_width_a : integer :=5;
data_width_b : integer :=10;
carry_save : std_logic :='1 Y
end exhaustive_testbench;
architecture behaviour of exhaustive_testbench is

constant outwidth : integer := data_width_a + data_width_b -1,

component arrmult

generic (data_width_a : integer:=10; --number of bits in input a
data_width_b : integer:=10; -~ number of bits in input b
carry_save : STD_LOGIC:='1"; -~ whether or not to use the

final adder

port (signal in0 :in signed(data_width_a - 1 downto 0);

signal inl1 :in sign ed(data_width_b - 1 downto 0);

signal ena :in STD_LOGIC;

signal sum : out signed(data_width_a + data_width_b - 2 downto 0);
signal carry : out signed(data_width_a + data_width_b - 2 downto 0));

end component;

signal  clk : std_logic :='0";
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signal in0 : signed(data_width_a - 1 downto 0) := (others =>"'0");
signal inl : signed(data_width_b - 1 downto 0) := (others =>'0");
signal precheck,preresult : signed(data_width_a+data_width_b

(other s=>"0";
signal result, chk_result : signed(data_width_a+data_width_b

signal sum : signed(outwidth - 1 downto 0) := (others =>"'0");
signal carry : signed(outwidth - 1 downto 0) := (others =>"'0");
signal high : STD_LOGIC :='1' ;

function limit(bits:integer) return integer is
begin
if (bits = 0) then
return O;
else
if (bits = 1) then
return 1,
else
return 2*limit(bits -1);
end if;
end if;
end limi

begin -~ behaviour
clk <= not clk after 10 ns;

multO : arrmult
generic map (data_width_a, data_width_b, carry_save)
port map (in0=>in0,
in1=>in1,
ena=>high,
sum=>sum,
carry=>carry);

do_check s: process

variable temp_carry : signed(outwidth downto 0);

- 1downto 0) :=

- 2 downto 0);

variable st0,en0,cnt0,incO : signed(data_width_a - 1 downto 0);
variable stl,enl,cntl,incl : signed(data_width_b - 1 downto 0);

variable doloop0,doloopl : boolean;

begin -~ process
doloopO := true;

make_a: for i in data_width_a - 1 downto O loop
stO(i) :='0"
en0(i) := "1
if i=0 then
incO(i) := "1
else
incO(i) :="'0";
end if;
end loop make_a ;
make_b: for i in data_width_b - 1 downto O loop
stl(i) :='04
enl(i) := "1}
if i=0 then
incl(i) :="1"
else
incl(i) :='0"
end if;
end loop make_b;
cnt0 := st0;

do_inO : while (doloopO) loop
doloopl := true;
cntl :=stl;
in0 <= cntO;
do_in1: while (doloopl) loop
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121 inl <= cntl;

122 wait until clk'event and clk="0";

123 temp_carry(outwidth - 1 downto 1) := carry(outwidth - 2 downto 0);

124 t emp_carry(outwidth) := '0";

125 temp_carry(0) :='0";

126

127

128 preresult <= sum + temp_carry;

129 result(outwidth - 1 downto 0) <= preresult(outwidth - 1 downto 0); - strip
off the unwanted extra bit...

130

131 precheck <= cntO*cntl;

132 chk_r esult(outwidth - 1 downto 0) <= precheck(outwidth - 1 downto 0);

133

134 assert result = chk_result report "Calculation Failed" severity error;

135 wait until clk'event and clk="1";

136 if cntl=enl then

137 doloopl :=false;

138 else

139 cntl :=cntl +incl,;

140 end if;

141

142 end loop do_in1;

143

144 if cnt0 = enO then

145 doloopO := false;

146 else

147 cntO := cntO + incO;

148 end if;

149 end loop do_inO;

150

151 end process do_checks;

152

153 end beha viour;

C.1.1.2 Random Testbench

1

2 -- random_testbench.vhd, Testbench for booth multiplier (arrmult).

3 -~ Author : Geoff Knagge

4 -~ Created : 11 DEC 2001

5 --  Modified : 22 JAN 200 2

6 -

7 - This testbench randomly picks values for testing the multiplier. There is

an 80%

8 -- chance on each input that it will pick one of the extreme values

9

10

11

12 library IEEE ;

13

14 use |IEEE.std_logic_1164.all;

15 use |IEEE.std_logic_arith.all;

16 use ieee.std_logic_signed.all;

17 use ieee.std_logic_unsigned.all;

18 use std.textio.all;

19

20 library work;

21

22

23 entity random_testbench is

24 generic(data_width_a : integer :=5;

25 data_width_b . integer :=10;

26 carry_save : std_logic :='1

27 seedin : integer :=7);

28 end random_testbench;

29

30 architecture behaviour of random_testbench is

31
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32 constant outwidth : integer := data_width_a + data_width_b -1;

33

34

35 component arrmult

36 generic (data_width_a : integer:=10; --number of bits in input a

37 data_width_b : integer:=10; -~ number of bits in input b

38 carry_save : STD_LOGIC:="1"); -- whether or not to use the
final adder

39

40 port (sig  nalin0 :in signed(data_width_a - 1 downto 0);

41 signal inl :in signed(data_width_b - 1 downto 0);

42 signal ena :in STD_LOGIC;

43 signal sum : out signed(data_width_a + data_width_b - 2 downto 0);

44 signal carry : out signed(data_width_a + data_width_b -2 downto
0));

45

46 end component;

47

48 signal clk : std_logic :="'0";

49

50 signal in0 : signed(data_width_a - 1 downto 0) := (others =>'0");

51 signal inl : signed(data_width_b - 1 downto 0) := (others =>'0");

52

53 signal precheck,preresult : signed(data_width_a+data_width_b - 1 downto
0) := (others =>"'0");

54 signal result, chk_result : signed(data_width_a+data_width_b - 2 downto 0);

55

56 signal sum : signed(outwidth - 1 downto 0) := (others =>'0");

57 signal high: STD_LOGIC :='1";

58 signal carry : signed(outwidth - 1 downto 0) := (others =>'0");

59

60 function limit(bits:integer) return integer is

61 begin

62 if (bits = 0) then

63 return O;

64 else

65 if (bits = 1) then

66 return 1;

67 else

68 return 2*limit(bits -1);

69 end if;

70 end if;

71 end limit;

72

73 -~ random number generator taken from
http://home.europa.com/~celiac/archive/tidbit13.txt

74 procedure RANDOM (variable Seed: inout integer; variable X_real: out re al)
is

75

76 -- Random Number generator from:

77 -- The Art of Computer Systems Performance Analysis, R.Jain 1991 (p443)

78 - x(n) := 775x(n -1) mod (2731 - 1)

79 - This has period 2731 - 2, and it works with odd or even seeds

80 - This code does not overflow for 32 bit integers.

81

82 constant a_int : integer := 16807; -~ multiplier 7**5

83 constant m_int : integer := 2147483647, -~ modulus 2**31 -1

84 constant g_int : integer := 127773, -- mDIVa

85 constant r_int : integer := 2836; -- mMOD a

86 constant m_real : real := real(M_int);

87

88 variable seed_div_q :i nteger;

89 variable seed_mod_q : integer;

90 variable new_seed : integer;

91

92 begin

93 seed_div_q :=seed/qg_int; -- truncating integer division

94 seed_mod_q := seed MOD ¢_int; -- modulus

95 new_seed := a_int * seed_mod_q - r_int*seed_div_g;

96 if (new_seed > 0) then

97 seed := new_seed;

98 else

99 seed := new_seed + m_int;

100 end if;
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101 X_real := (real(seed) / m_real)*100.0;

102 end RANDOM,;

103

104 begin - behaviour

105

106 clk <= not clk after 10 ns;

107

108 multO : arrmult

109 generic map (data_width_a, data_width_b, '1")

110 port map (in0=>in0,

111 in1=>inl,

112 ena=>high,

113 sum=>sum,

114 carry=>carry);

115

116 checker: process

117 variable unfl,unf2,unf3,unf4,unf5,unf6: real; --  Uniform :=
Ini tUniform(7, -100.0, 100.0);

118 variable seed: integer;

119 variable temp_carry : signed(outwidth downto 0);

120 variable st0,en0,cnt0 : signed(data_width_a - 1 downto 0);

121 variable stl,enl,cntl : signed(data_width_b - 1 downto 0);

122

123 begin  -- process

124 make_a: for i in data_width_a - 1 downto O loop

125 if i = data_width_a -1then

126 stO(i) := '0";

127 else

128 sto(i) := "1

129 end if;

130 en0(i) := "1}

131 end loop make_a;

132

133 make_b: for i in data_width_b -1 downto O loop

134 if i = data_width_b - 1then

135 stl(i) :='05

136 else

137 stl(i) := "1

138 end if;

139 enl(i) :='1}

140 end loop make_b;

141 cnt0 := sto;

142 seed := seedin;

143

144 do_checks: while (true) loop

145 RANDOM(seed,unfl);

146 RANDOM(seed,unf2);

147 RANDOM(seed,unf3);

148 RANDOM(seed,unf4);

149 RANDOM(seed,unf5);

150 RANDOM(seed,unf6);

151 if (unfl > 80.0) then

152 if (unf2 > 50.0) then

153 cnt0 := sto;

154 else

155 cnt0 := enO;

156 end if;

157 else

158 make_inO: for i in data_width_a - 1 downto O loop

159 RANDOM(seed,unf3);

160 if (unf3 > 50.0) then

161 cntO(i) :='0%

162 else

163 cnto(i) := 1%

164 end if;

165 end loop make_in0;

166 end if;

167

168 if (unf4 > 80.0) then

169 if (unf5 > 50.0) then

170 cntl ;= stl;

171 else

172 cntl :=enl;

173 end if;
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174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

else
make_inl: foriin data_width_b - 1 downto O loo p
RANDOM(seed,unf6);
if (unf6>50.0) then
cntl(i) :="'0"
else
cntl(i) := "1}
end if;
end loop make_in1;
end if;

in0 <= cnt0;
inl <=cntl;
wait unti | clk'event and clk="0";
temp_carry(outwidth - 1 downto 1) := carry(outwidth - 2 downto 0);
temp_carry(outwidth) := ‘0’;
temp_carry(0) := ‘0’;
pre_result <= sum + temp_carry;

result(outwidth - 1 downto 0) <= preresult(outwidth -1downto 0);
precheck <= cnt0 * cntl;
chk_result(outwidth - 1 downto 0) <= precheck(outwidth - 1 downto 0);

assert result= chk_result report “Calculation Failed” severity failure;
wait until clk’event and clk="1";

end loop do_checks;

199 end process checker;
200 end behaviour;
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C.1.2 TCL Scripts

These scripts are used to run the ModelSim simulation tool, to automatically run the test
benches over various multiplier configurations.

C.1.2.1 Exhaustive Testbench

1 # This scripts runs tests on multipliers f rom size 2x2 up to 64x64

2 #

3 # Switch off the arithmetic package warnings...

4 set IgnoreWarning 1

5 # Run the exhaustive testbench on 3x3, ... 9x9 bit multipliers

6 for {set x 3} {$x<10} {incr x} {

7 echo Attempting to load simulation for $x x $x bit multiplier..

8 vsim - Gdata_width_a=$x - Gdata_width_b=$x - Gcarry_save='1'
work.exhaustive_testbench

9 setdw 1

10 set wid 1

11 while {$wid<=$x} {

12 set wid [expr $wid+1]

13 set dw [expr $dw *2]

14

15 set IgnoreWarning 1

16 set time [expr 20*$dw*$dw]

17 add wave sim :/exhaustive_testbench/*

18 echo Exhaustively testing $x x $x bit multiplier for $time ns...

19 run $time ns

20 echo Completed testing of $x x $x bit multiplier.

21 }

C.1.2.2 Random Testbench

1 # Switch off the arithmetic package warnings...

2 set IgnoreWarning 1

3 #Runth e random testbench on 10x10, 11x11, ... 64x64 bit multipliers

4 for {set x 10} {$x<64} {incr x} {

5 echo Attempting to load simulation for $x x $x bit multiplier...

6 #

7 # randomly pick a random seed for the testbench, to improve its randomness

8 setseed [  expr {int(rand()*1001)+2}];

9 #

10 # do one test, with no final adder on the carry - save outputs

11 vsim - Gdata_width_a=$x - Gdata_width_b=$x - Gcarry_save='1' - Gseedin=%seed
work.random_testbench

12 set IgnoreWarning 1

13 #

14 # display all signals so that we can examine them if something goes wrong

15 add wave sim:/random_testbench/*

16 echo Randomly testing $x x $x bit multiplier for 1ms...

17 run 1 ms

18 echo Completed testing of $x x $x bit multiplier.

19 }
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