

A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of

Engineering in Computer Engineering at The University of Newcastle, Australia.

ASIC Design for Signal Processing

Geoff Knagge

(9806135)

ASIC Design for Signal Processing

29/05/02 i

Abstract

This thesis describes the methods required to implement a matrix multiplication based algorithm

in hardware. It considers complications such as concurrently updating a matrix while it is being

used for calculations, and developing optimisations for special types of matrices. The goal was

to use some of these multiplications to implement a new signal processing algorithm, of which a

floating point MATLAB model had been provided.

The floating-point model needed to be changed to a fixed-point model, and then implemented in

VHDL. The quantisation of the fixed-point model had to not only provide a small enough error

compared to the optimal result, but also be space efficient when implemented in hardware. To

ensure the correctness of the design, an interface was also needed between the MATLAB model

and the VHDL simulator, so that a test bench could compare the input and output values of each

model. A further concern in chip design is power efficiency, and this formed an extension to the

project, once the basic working design had been created.

This project is an extension to the work that was carried out in an industrial experience project,

between December 2001 and February 2002, with Bell Labs Research. That project was to

create a generically sizable VHDL model of a high speed multiplier, with the goal of meeting

the benchmark of what was thought to be an optimal design. That goal was exceeded, and the

design has since been further enhanced for both this project, and the needs of Lucent

Technologies.

Those multipliers have formed the basis of complex number multipliers, which then formed the

basis of several matrix multiplier designs. Those designs were then analysed, and the most

appropriate ideas were combined to form the arithmetic section of this project. A control unit

was then designed to co-ordinate the unit and interface it to the required memories.

The result is a signal processor that is a fast as possible with the given design specifications.

Furthermore, it contains optimisations to minimise power consumption, and is based on a

multiplier circuit for which a patent has been filed. This document presents a set of techniques

which could ultimately be extended to implement and matrix multiplication based algorithm.

ASIC Design for Signal Processing

29/05/02 ii

Acknowledgements

The opportunity to be able to complete a final year project with a company like Bell Labs

Research has provided highly valuable experience, and has allowed me to extend my knowledge

and skills far beyond what is possible within a university environment. I would like to thank

everyone who has been involved with allowing this to happen, and who assisted me during the

course of my work. In particular:

• Dr Brett Ninness and Dr Steve Weller, of the University of Newcastle, for the time and

effort spent in helping to arrange the industrial experience which later led to the work

described in this thesis.

• Dr Chris Nicol, of Bell Labs Research Sydney, for allowing me to work with his

research team, and especially for the effort in arranging the internship that supported me

for the duration of this project.

• Dr Dave Garrett, of Bell Labs Research Sydney, for providing readily available

guidance and encouragement, as my supervisor for this work.

• Everyone from Bell Labs Research at Lucent Technologies in North Ryde, Sydney.

Almost everyone has provided some form of assistance along the way, and all have

contributed to the great work environment that greatly assisted with working on this

project.

ASIC Design for Signal Processing

29/05/02 iii

Contributions

Work that was contributed by other people:

• The signal processing algorithm, and the associated floating point MATLAB model

• Most of the information provided in Chapter 2. Anything that is not referenced in that

chapter is considered to be general knowledge for this subject matter

• Any other information that is explicitly referenced within this document

• The described patent was based primarily on my own investigations and designs, but

was compiled and filed by Dr Dave Garrett and a Lucent attorney.

Work that I contributed before the commencement of this project:

• Investigation, design, implementation, and testing of various high speed designs for

digital multiplier circuits. The scope of this was only for integers and real numbers.

Work that I contributed as part of this project :

• Generation of the fixed point MATLAB model partly described within this document.

This included all aspects of investigating and resolving the described problems with

quantisation errors and the non-Hermitian nature of quantised matrices.

• Investigation, design, implementation and testing of complex number multiplier circuits

• Enhancements to my existing multiplier designs. This includes the described work on

the designs filed for patent, carried out under the guidance of Dr Dave Garrett and Dr

Chris Nicol.

• Investigation, design, implementation and testing of various matrix multiplier circuits.

While some of the ideas for possible approaches were suggested by my supervisor, Dr

Dave Garrett, the concept behind the design that forms the major part of this project was

entirely my own work.

• All of the described experimentation of varying the parameters of the fixed point model,

and the findings on its behaviour. Much of this work cannot be described within this

document due to the proprietary nature of the algorithm.

• Design, implementation and testing of the signal processing circuit, and the associated

data path and interface. Although not described here, a more general version was also

built, which did not require the matrices to be Hermitian but was slower.

Signed:
 (student : Geoff Knagge) (Date)

Signed:
 (Supervisor at Bell Labs Research : Dr Dave Garrett) (Date)

Signed:
 (Supervisor at University of Newcastle : Dr Brett Ninness) (Date)

ASIC Design for Signal Processing

29/05/02 iv

Table of Contents

���������
	��
� ��� ��� ��� ��� �

���������������������� !�����"� ��� ��� ������������������������������� ���

�������"���%$&�'�(����� ��� ��� ��� �����

)*	��������%+ # �����,���&�"� ��� ��� ����������������������������������� �.-

/ �102�&�3�
���4$%���'����� ��� ��� ��� /

5 �&)*����6�������	���78	����&���
�1$4�&� ��� ��� ������������� 9

2.1. Mathematical Background .. 4
2.1.1. Complex Numbers ..4
2.1.2. Matrices...5

2.1.2.1 Multiplication..5
2.1.2.2 Transpose and Adjoint Matrices ...6

2.1.3. Hermitian Matrices..6

2.2. Digital Circuit Design... 7
2.2.1. ASICs and FPGAs...7

2.2.1.1 FPGAs ...8
2.2.1.2 ASICs ..8

2.2.2. Digital Logic Basics ..9
2.2.3. Implementation of gates ..10
2.2.4. Propagation Delays ...11
2.2.5. Power Consumption in Digital Circuits ..11

2.3. Arithmetic in Digital Logic... 12
2.3.1. Negative Numbers...12
2.3.2. Carry Save Arithmetic...12

2.3.2.1 3:2 Compressors..14
2.3.2.2 4:2 Compressors..15

2.3.3. Booth Multiplication ...16
2.3.3.1 Shift and Add Multiplication ..16
2.3.3.2 Reducing the Number of Partial Products...17
2.3.3.3 Radix-4 Booth Recoding...17

2.3.4. Sign Extension Tricks ...20

2.4. Synthesis of Digital Circuits ... 21
2.4.1. Combinatorial Designs..21
2.4.2. Synchronous Designs ..21
2.4.3. Memories...23

2.5. Corners ... 23

ASIC Design for Signal Processing

29/05/02 v

���������
	����
�������
�������������������! #"%$& (')�*�,+-��	 �.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.� �/�.�.�.�.�/�.�.�.�.�/� 0-1

3.1. Creation of the Fixed Point MATLAB Model 24
3.1.1. Performing the Quantisations..25
3.1.2. The Matrices are Supposed to be Hermitian! ..26

3.1.2.1 Quantisation Error...26
3.1.2.2 Forcing the Hermitian Property ..26

3.2. Experimenting with the Fixed Point MATLAB Model 27
3.2.1. Range and Precision..27
3.2.2. “Unstable Algorithms” ..28

12�������
	����
�������
�����������3��4%��5�������	,�768	9���.�-	:��;-�<�������
=>�.?@;�6,�A� �.�.�.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.�.�/� 0,B

4.1. Beating the Optimal Multiplier .. 29
4.1.1. Recursive Adder Tree using GENERATE statements..................................29
4.1.2. Adder tree using process statement...30
4.1.3. Results...30
4.1.4. Conclusions on multiplier architectures and coding style.............................31
4.1.5. Alternative Algorithms..32

4.2. Filed Patent : Power Optimisations Without Affecting Critical Path33

4.3. Complex Number Multipliers .. 36
4.3.1. Alternative approaches..37

4.4. Testing and verification... 37

C �84��
D<��5��
�<�E�*�-��?F�HGI�768	A���.�-	/����?�=>�/?@;86,�A�JD �.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.�.�/�.�.�.� �/�.�.�.�.�/�.�.�.�.�/�.�.�.�.�/� �,K

5.1. Fully Parallel Matrix Multipliers .. 38

5.2. Fully Sequential Matrix Multiplier ... 40

5.3. Double Buffering Issues.. 41

5.4. Semi Parallel / Semi Sequential Matrix Multipliers............................ 42
5.4.1. Optimising the Memory Configuration...43
5.4.2. Implementation of the design..43

5.4.2.1 Non-conforming matrices...44
5.4.2.2 One matrix doesn’ t conform, and the other needs to be overwritten......45

5.5. Squaring Matrices.. 47

5.6. Multiplying any combination of matrices... 48

5.7. Testing and Verification .. 49

ASIC Design for Signal Processing

29/05/02 vi

���������	��
��

�� ���	����������������
������������� "!#�%$%
%&'&'��! �(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(� �(�(�)�(�(�(�(�)� *,+

6.1. Ensuring that the output matrices are Hermitian.............................. 51

6.2. Taking Advantage of Hermitian Matrices... 52

6.3. Performing multiplications with Hermitian optimisations................ 53
6.3.1. Multiplication of any Hermitian matrices...53

6.4. Signal Processor Architecture.. 54

6.5. The Read Stage ... 55
6.5.1. Mode 0 – Calculating A = B * B* ...57
6.5.2. Final Mode : Multiplying a 4x4 matrix by a 4x1 matrix...............................59
6.5.3. Other modes : Multiplying two 4x4 matrices ...59

6.6. The Delay Stage ... 60

6.7. The Multiplication Stage.. 61
6.7.1. Mode 0 – Calculating A = B * B* ...62
6.7.2. Other Modes..62

6.8. The Recombine and Output Stage ... 63
6.8.1. Clamping overflowed values...63

6.9. Disabling parts of the matrices... 64

6.10. Testing and verification... 64

6.11. Synthesis of Final Design ... 65
6.11.1. Changes to described design...65

- �/.0����$��21/&/�����3&�����465/7���
��3&	�����3& �(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(� �(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)� �%�

7.1. Possible Extensions .. 67

8
/�#
"!#
���$%
%& �(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(� �(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(� �)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)� �%9

: �%��
"��4��;7 : �,< :>=@?A:CB .@�%4%
 �(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(� �(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(�(�)�(�(�(� �)� �	D

A.1. Fixed Point Model.. 69
A.1.1 Fixed Point Data Type...69

A.1.1.1 Staticfixed_pt_matrix ...69
A.1.1.2 ctranspose...70
A.1.1.3 display ..70
A.1.1.4 minus..70
A.1.1.5 mrdivide ...70
A.1.1.6 mtimes..71
A.1.1.7 plus...71
A.1.1.8 valof ..71

A.1.2 Output of test data to a file..72

ASIC Design for Signal Processing

29/05/02 vii

�����������
	���
������������
���
���! "��#%$&	�'
������(����)���� * ��
�,+��-���-./�0	��
� �1�1�1�1�2�1�1�1�1�2�1�1�1�1�2�1�1�1�1�2� 354

B.1. Read Stage... 74
B.1.1 Mode 0 – Multiplication of B * B* ..74
B.1.2 Final Mode : Multiplication of a 4x4 matrix by a 4x1 matrix.......................75
B.1.3 Other Modes : Multiplication of Two 4x4 Hermitian Matrices....................75

B.2. Multiplication Stage... 76
B.2.1 Mode 0 : Multiplication of B * B* ..76
B.2.2 Other modes...77

B.3. Output Stage.. 78

�����������
	��76,��89�� *�:	1��'<;�=?>A@"6B���)� �1�2�1�1�1�1�2�1�1�1�1�2�1�1�1�1�2�1�1�1�1�2�1�1�1�1�2�1�1�1�1� �1�1�1�1�2�1�1�1�1�2�1�1�1�1�2�1�1�1�1�2�1�1�1�1�2� 35C

C.1. Multiplier Testbench.. 79
C.1.1 VHDL Code...79

C.1.1.1 Exhaustive Testbench...79
C.1.1.2 Random Testbench...81

C.1.2 TCL Scripts ...85
C.1.2.1 Exhaustive Testbench...85
C.1.2.2 Random Testbench...85

ASIC Design for Signal Processing

29/05/02 1

1. Introduction

The motivation to this project comes from the industrial experience that I completed with Bell

Labs Research (Lucent Technologies) between December 2001, and February 2002. The

primary focus of this research group is wireless communications systems, and the development

of digital chips to meet the demands of the next generation of high performance wireless

technologies. The focus of my work was multipli cation circuits, with the challenge to either

match, or improve on, the speed of a benchmark multiplier that was already in existence in the

Lucent component library. This target was exceeded, with a design that was 14% faster than the

existing multiplier, and in some cases matched the speed of the non-configurable design that

was built i nto the synthesis software.

Multipli cation plays many important roles in wireless digital communications, including

filtering, coding and other signal processing. Furthermore, a multiplier component tends to lie in

the criti cal path of a circuit and consumes a large proportion of the power requirements, so it is

important to find a fast, power eff icient design for use in today’s high speed applications.

However, signal processing rarely uses purely real numbers. Use of the complex number system

is almost unavoidable, as it allows mathematical manipulation of variables that would not

otherwise be possible. Hence, for a multiplier circuit to be of any use in a signal processing

system, it must be extended to handle complex numbers.

Multipli cation is not necessaril y as simple as the product of two numbers, whether they are real

or complex. In signal processing it is often necessary to multiply groups of numbers together, in

particular matrices. Implementation of matrix multipli cation is hard to achieve eff iciently in

terms of both time and space, but is a necessary component of many signal processing

algorithms.

Signal processing itself is an area of research that is constantly undergoing technological

change. In particular, the main focus of the Bell Labs Research group in Sydney is the

development of innovations that will be part of the next generations of wireless

communications. Some of the challenges which face researchers are ways to improve the rate of

data transfer, reduce the amount of power consumption of wireless products, and dealing with

the problems of interference that are inherent in many wireless channels. These factors form the

basis of the requirements for this project.

In particular, a new algorithm as been developed that is planned for use in a research chip that is

currently under development. The project of this thesis has thus been to implement that

algorithm in hardware, by writing a VHDL description of a circuit that can be synthesised into a

chip. The particular nature of the algorithm is proprietary, but it requires a number of matrix

multipli cations, using complex numbers. This thesis therefore explores all of the possible

ASIC Design for Signal Processing

29/05/02 2

multipli cation scenarios, of which a subset has been combined in order to implement the

algorithm.

The following specifications describe the challenge that needed to be met

• Implement the algorithm in a design that uses 8ns clock cycles

• It needs to use as few clock cycles as possible for the matrix multipli cations.

• It needs to employ optimisations to use as littl e power as possible

• It cannot use an excessive amount of space on the chip in which it will be implemented

The design tools which were used included:

• ModelSim VHDL compiler and simulation software

• Cadence and Synopsys synthesis software

• TSMC 0.18µm technology library, used by the synthesis tools to determine the

characteristics of a “real” circuit.

• Artisan Components register file generation tool for creating the memories to hold

matrix data.

This document contains a description of the steps required to achieve this goal.

Chapter 2 outlines the background knowledge required for understanding the implementation of

the design. The mathematical background (section 2.1) to this work includes understanding the

complex number system, matrices, and a special type of matrix, Hermitian matrices. A section

on digital circuit design (2.2) describes how modern digital chips are designed, and some of the

issues that need to be addressed. Additionally, there are special techniques that allow relative

ease of implementation of arithmetical operations in digital hardware, as described in section

2.3. Finally, the descriptive model of the must be converted into an actual circuit to be of any

real use, and section 2.4 covers this process of synthesis.

The original algorithm was modelled in MATLAB software, and used floating point numbers of

a high precision. To meet the needs of simulating a hardware model, the MATLAB code needed

to be changed to implement a fixed point model of limited precision. Chapter 3 reveals some of

the problems and issues that were encountered while working with this simulation.

Chapter 4 provides an overview of the implementation, and optimisation, of the multiplier

circuit that is the basic component of this project. Section 4.1 briefly describes my previous

work on creating a high speed multiplier design, of which more detail can be obtained by

referring to my project report on this task [12]. During the course of this project, additional

work was done on techniques to optimise the design so that a power saving enable function

could be added without affecting the criti cal path. This work has resulted in Lucent fili ng a

patent on my design, and is described in section 4.2. Finally, section 4.3 describes the adaption

of the original multiplier into a design that operates on complex numbers.

ASIC Design for Signal Processing

29/05/02 3

The next step was to investigate designs for matrix multipli cation, which is the subject of

Chapter 5. The first section covers a parallel architecture, which requires a lot of circuitry but is

fast. Conversely, the second section, on a fully sequential architecture, describes an algorithm

that requires minimal circuitry but takes much longer to complete its operation. Section 5.4

describes the architecture that was chosen, using a compromise between the previously

described extreme ends of the spectrum of possibiliti es. The rest of this chapter then covers

special cases that need to be addressed in order to perform special cases of multipli cations, such

as squaring, and optimally writing the output over one of the source matrices.

Once a favoured architecture for matrix multipli cation was chosen, it needed to be incorporated

into a design for a signal processor that could handle many different multipli cations, including

the “problem types” that are addressed in Chapter 5. Chapter 6 describes this implementation in

detail , including how the matrix multiplier can be optimised for the special types of matrices

that are to be used, and the operation of the various functional blocks of the design.

Chapter 7 concludes this document by describing the results and findings obtained, and

describing possibiliti es for further work on this project.

Finally, there a number of appendix pages are included to provide some insight into the actual

design work that was implemented:

• Appendix A contains portions of the MATLAB code that was used to simulate the fixed

point model of the algorithm

• Appendix B contains flow charts, describing the general operation of the different

stages of the signal processor.

• Appendix C consists of samples of some of the code that was written to test the designs

described within this document.

ASIC Design for Signal Processing

29/05/02 4

2. Technical Background

The work described in this document incorporates two distinct components. The first of these is

the mathematical theoretical model of how the signal processor is supposed to work. The second

is the VHDL implementation, which can then be synthesised for incorporation in future chip

designs.

2.1. Mathematical Background

The specified algorithm for this project involves an equation requiring the manipulation of

matrices. Furthermore, these matrices involve arithmetic of complex numbers. Hence, it is

necessary to review the relevant background theory to these topics in order to understand the

detail of the following chapters.

2.1.1. Complex Numbers

[1]

Complex numbers are a superset of the real number set that is most famili ar to people. They

consist of a “real” component, x, and an “ imaginary” component, y, and are written as

z = x + iy

The symbol “ i” designates the imaginary component, and is defined as

1−=i

All further mathematical manipulation, that is required in this project, can be done by simply

treating the “i” symbol li ke any other algebraic variable. Multipli cation of complex numbers is

covered in chapter 4.

ASIC Design for Signal Processing

29/05/02 5

2.1.2. Matrices

[2]

A matrix is simply a table of values, which is typically used to represent sets of simultaneous

equations. For example,

Figure 2-1: Matrices are used to represent sets of simultaneous equations

This system of equation could be then be simpli fied to y = Ax. The notation used for matrices is

that an m x n matrix has m rows and n columns, and that aij represents the value of the cell at

row i and column j.

2.1.2.1 Multiplication

[3]

Multipli cation of matrices is more involved than addition, and requires the following conditions

for the product C = AB :

• The number of rows in A is the same as the number of columns in B

• The number or columns in A is the same as the number of columns in C

• The number of rows in B is the same as the number of rows in B

In summary, (a x b matrix)(b x c matrix) = (a x c matrix).

Given an l x m matrix A, a m x n matrix B, and a l x n matrix C, we can calculate

∑
=

=≤≤≤≤∀
m

n
njinij BACnjliji

1

 ,1 and 1|,

That is, for a particular cell i n C, we take the row from A and the column from B that

corresponds to that cell ’ s row and column in C. We then take each pair of elements one at a

time, starting from the left and top respectively, and multiply them together. The final value for

the cell i n C is then the sum of these multipli cations.









+++
+++

=







+









222313212222122122211121

121313111222121112211111

232221

131211

2221

1211

abbaabbaabba

abbaabbaabba

bbb

bbb

aa

aa

Matrix multipli cation is associative, but generally not commutative.

y1 = a11x1 + a12x2 + … + a1nxn

y2 = a21x1 + a22x2 + … + a2nxn

…
ym = am1x1 + am2x2 + … + amnxn





































=



















mmnmm

n

n

m x

x

x

aaa

aaa

aaa

y

y

y

...

...

............

...

...

...
2

1

21

22221

11211

2

1

ASIC Design for Signal Processing

29/05/02 6

2.1.2.2 Transpose and Adjoint Matrices

[4,5]

The transpose of a matrix Q is denoted QT, which can be defined as

jiij
T

ji QQQQji ,,, ,|, =∈∀

Such matrices hold the following special property, that can be useful for simpli fying matrix

equations:

() TTT ABAB =

A special type of transposed matrix is the adjoint matrix, defined as
TAA ≡*

That is, the adjoint of a matrix is made up of the complex conjugate of each element of it’ s

transpose:

jiijji QQQQji ,,
*

, ,|, =∈∀

Adjoint matrices also hold the property:

() ***
ABAB =

Note: The MATLAB notation for the adjoint matrix is A’

2.1.3. Hermitian Matrices

[7,8]

Hermitian matrices are special matrices, characterised by the following qualiti es

• The matrix is square

• The matrix is self-adjoint. This means that for a matrix Q, if Q(a,b) = x + iy, then Q(b,a)

= x – iy.

They contain the following special properties that often allows considerable simpli fication of

matrix equations:

• (A*)* = A

• (A + B)* = A* + B*

• () **
AkkA =

• (AB)* = A*B*

• An addition or multipli cation between two Hermitian matrices will produce an answer

that is also Hermitian

ASIC Design for Signal Processing

29/05/02 7

2.2. Digital Circuit Design

[9]
Digital circuit design was once a process of manual schematic design, involving selection of

individual gates, and determining how they should be physically connected to each other to

achieve the desired function. The problem with this method is that it is slow, tedious, and prone

to error. Furthermore, the design of today’s advanced VLSI (very large scale integration) chips,

such as the AMD and Intel microprocessors used to create this document, would be near

impossible with such methods.

An alternative, that is used is to describe the intended behaviour and architecture of a design, is

by using a high level Hardware Description Language (HDL). The two competing standards,

Verilog and VHDL, are HDLs which allow circuit designs to be represented in a way that is

much more intuiti ve to create and understand. Furthermore, the designs can be created much

more rapidly, and the only errors are li kely to be with the logic design, as opposed to wrongly

connected gates.

HDL designs can then be compiled into a vendor specific encoding, for use with simulation and

testing tools. Then, once the design is believed to work correctly, a synthesis tool processes it, to

produce a design for an ASIC or FPGA chip. The resulting output is analysed for performance

data, the code may be refined and recompiled, and the process is repeated.

Figure 2-2 : Design process for digital circuits. ModelSim and Cadence are specific products which

were used in this project to perform the designated steps in the process.

2.2.1. ASICs and FPGAs

[9]
Both Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays

(FPGAs) are types of custom chips, which differ in their properties, cost, and in the way that

they are manufactured. The choice of which to use depends on the required application.

VHDL
Coding

Compile
Simulate

and
Check

Synthesise
Design Analyse

Results

ModelSim
Cadence

PKSText Editor

Final
Design

ASIC Design for Signal Processing

29/05/02 8

2.2.1.1 FPGAs

FPGA devices typically contain an architecture that is vendor specific. A major advantage is

that the designer is then able to quickly program them as required, with no additional

manufacturing necessary. If testing fails, then the design can be changed and another device

immediately reprogrammed. In addition, circuit design outside of the chip can be

simultaneously performed, since the function of FPGA pins can be assigned before the internal

design is complete. However, FGPA devices cost on average between US$100 to US$200,

making them relatively expensive for mass production.

2.2.1.2 ASICs

Older style ASIC chips initiall y contained arrays of unconnected transistors, created during the

most complex and costly phase of manufacture. Known as “gate arrays” , these contained a set

of basic cells across the chip, which included logic gates, registers, and macro functions such as

multiplexors and comparators. Gate arrays may or may not contain predefined “channels” , used

for routing between the basic cells.

The most common type of ASIC currently used is the standard cell format. These contain no

components and the time of initial manufacture, and do not contain any type of basic cell .

Instead, custom layouts are created for each part of the design, making more eff icient use of the

available sili con.

A final manufacturing process involves the connection of the generic units to form the specified

design, and can take two or more weeks. Individual devices can cost as littl e as US$10, but the

initial engineering costs can be US$20,000 to over US$100,000.

The designs described in this document are targeted for ASIC chips, and make use of the TSMC

0.18µm Standard Cell Library.

ASIC Design for Signal Processing

29/05/02 9

2.2.2. Digital Logic Basics

While much of the low level design and optimisation of a circuit is done by the synthesiser,

knowledge of the basic logic gates is still required in order to be able to understand the output of

the synthesis tools, and to know how to optimise the design configuration. Figure 2-3 outlines

the inputs (A and B), and corresponding outputs (Z) of a number of the common logic gates.

A B Z
0 0 0
0 1 0
1 0 0
1 1 1

A B Z
0 0 1
0 1 1
1 0 1
1 1 0

NAND

Z
A

B AND

Z
A

B NOR

Z
A

B

OR
Z

A

B
Z

A

B XOR

A B Z
0 0 1
0 1 0
1 0 0
1 1 0

A B Z
0 0 0
0 1 1
1 0 1
1 1 1

A B Z
0 0 0
0 1 1
1 0 1
1 1 0

NOT

Z A

A Z
0 1
1 0

Figure 2-3 : Truth tables for a number of common logic gates. The inputs A and B will cause the

corresponding output result Z to occur. The values 0 and 1 refer to the respective digital logic levels.

In summary:

• The AND gate has an output of 1 (“high”) if all of its inputs are high

• The OR gate has an output of 1 if any of its inputs are high

• The XOR gate has an output of 1 if only one of its inputs is high

• NAND, NOR, and XNOR gates are the same as AND, OR, and XOR, but with the

outputs inverted.

• The trend is the same for similar gates with three or more inputs

• The output of the NOT gate is an inverted copy of the input

• A “buffer” is a gate where the output is the same as the input.

ASIC Design for Signal Processing

29/05/02 10

2.2.3. Implementation of gates

Physical logic gates are built with transistors, and the particular characteristics of an individual

gate depend upon the type of transistors used to implement it. For example, the CMOS

implementation of a NOR gate could be represented by figure 2-4.

Figure 2-4 : CMOS implementation of an AND gate

Since they are built from transistors, logic gates inherit a number of characteristics that are

important to digital design:

• All transistors contain some form of capacitance, which affects the speed of the device,

and the power it dissipates.

• Transistors are only capable of supplying a limited amount of power through their

output pins, and all real logic gates consume an amount of current through their inputs.

Therefore, an output of a logic gate can only reliably drive a limited number of inputs

on other gates, and this number is called the fan-out of the gate.

A

B

Z

ASIC Design for Signal Processing

29/05/02 11

2.2.4. Propagation Delays

An additional complexity of digital analysis is that the outputs of logic gates do not change

instantaneously with the inputs. Each takes a finite amount of time, known as the propagation

delay, which is caused by the capacitances within the logic gates, and by the fact that a potential

difference cannot instantaneously change. Furthermore, different types of gate are constructed

with different configurations of transistors, so they also vary in their propagation delay.

In any reasonably sized digital asynchronous circuit, there are a large number of possible paths

between the inputs and each of the outputs. The propagation delay for an individual path is the

sum of the propagation delays of the gates through which it passes. The path that has the highest

delay is known as the critical path for the circuit.

2.2.5. Power Consumption in Digital Circuits

The power dissipated by a digital circuit becomes an important issue when it is being designed

for use in a chip. This is not only from the practical aspect, that a chip can only withstand a

certain amount of heat generated from power dissipation, but also from the commercial aspect

that lower power products are more competiti ve. There are two broad categories for power

consumption:

• Static power: This is the power used by a logic gate when its output is held at a constant

level. It is caused by leakage currents, which are characteristic to any circuit.

• Dynamic power: Dynamic power is used when a gate is changing state. A small

proportion comes from the switching current generated by the change, but the major

part is due to the charging of the gate’s capacitance to reflect the new voltage level.

Of the two, dynamic power is the most significant, and the one that can be influenced by the

logic design. If the number of transitions in the state of a circuit’s gates can be minimised, then

so will be the power consumption of that circuit. There are a number of ways in which this can

be attempted:

• Disabling unused parts of the circuit. By placing an AND gate in front of each of the

inputs, with one input attached to an enable signal, then the entire circuit will remain in

a static state whilst that enable pin is at a low logic level.

• Reducing glitches in a circuit. A glitch is simply a temporary change in the logic level

of a signal before it reaches its final value. These are often unnecessary if the logic is

arranged appropriately, and removing them can make significant power improvements.

ASIC Design for Signal Processing

29/05/02 12

2.3. Arithmetic in Digital Logic

There are many occasions where the accepted standard methods for manual execution of

arithmetic operations are highly ineff icient when implemented into hardware. Two such

examples are addition and multipli cation.

2.3.1. Negative Numbers

Binary numbers only have 0’s and 1’s, so there is no plus or minus signs. Therefore, to work

with negative numbers, we need a special way of representing these values. One such technique

is called 2’s complement.

A 2’s complement number uses the most significant bit as the “sign bit” , with a “1” indicating a

negative number, and a “0” representing a positi ve number. To take the negative value of a 2’s

complement number, simply:

• Invert all of the bits

• Add 1 to the result.

2.3.2. Carry Save Arithmetic

One of the major speed enhancement techniques used in modern circuits is the abilit y to add

numbers with minimal carry propagation. The basic idea is that three numbers can be reduced to

2, in a 3:2 compressor, by doing the addition while keeping the carries and the sum separate.

This means that all of the columns can be added in parallel without relying on the result of the

previous column, creating a two output “adder” with a time delay that is independent of the size

of its inputs.

 10111001

 00101010

 00111001

Sum: 10101010

Carry: 00111001

Result: 100011100

Figure 2-5 : Example of carry-save arithmetic. A normal adder generates the result at a later stage.

The sum and carry can then be recombined in a normal addition to form the correct result. This

process may seem more complicated and pointless in the above trivial example, but the power

of this technique is that any amount of numbers can be added together in this manner. It is only

the final recombination of the final carry and sum that requires a carry propagating addition.

ASIC Design for Signal Processing

29/05/02 13

Figure 2-6, from [10], is called a Wallace Tree and is one method of combining 3:2 carry save

adders to add together 7 numbers, of size k bits.

Figure 2-6 : Wallace tree method of carry-save arithmetic [10]

The first level of the tree generates two carries and two sums, as well as the left over term,

which is not added. Since the carries from any single column actually means “add one to the

next column” , the carry bits must be shifted left one position before they can be added to the

result. Hence, they are aligned with bits k down to 1.

The two sum values and the leftover term are all aligned with bits k-1 down to 0, so they can be

fed into another 3:2 compressor to form another carry and sum. The three carries can then be

added to form another carry and sum, and all of the results are then pushed into the larger carry-

save adder to produce the final carry and sum. A carry propagate adder, usually an adder using

carry look-ahead, produces the final result.

The above technique arranged the adder tree so that all of the output bits could be obtained

while minimising the size of the circuit. However, in the case of multipliers, we know what the

expected output size will be, and so we can set all of the input and output sizes to that value. We

do not care about any overflowing sign bits, so they can be discarded and the carries can simply

be shifted left to the correct alignment. All of the results can then be grouped together as one

and continually reduced until we are left with two values. This is demonstrated by figure 2-7.

ASIC Design for Signal Processing

29/05/02 14

Figure 2-7: Carry-save adder tree for when overflowing carries from the MSB do not matter

This method may appear wasteful because a lot of bits in the first stages of the adder tree will be

frozen to zero. However, these will be optimised during synthesis, and this technique seems to

produce more favourable synthesis results than trying to code the design efficiently.

2.3.2.1 3:2 Compressors

The design of the 3:2 compressor is simple, with the following truth table showing that it is

nothing more than a 3 bit adder:

Inputs Outputs

A B C Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 2-1 : Truth table for the 3:2 compressor. In reality, it is simply a full adder.

Adding three k-bit numbers together simply involves an array of k 3:2 compressors, each being

independent of each other, and operating on a single bit position:

Figure 2-8: Architecture of the full word 3:2 compressor, using individual bit 3:2 compressors.

3:2 CSA 3:2 CSA

3:2 CSA

3:2 CSA

3:2 CSA

Carryk Sumk-

1

3:2

ak-1bk1ck-1

Carryk-1 Sumk-

2

3:2

ak-2bk-2ck-

2

Carryk-2 Sumk-

1

3:2

ak-3bk-3ck-3

Carry3 Sum2

3:2

a2 b2 c2

Carry2 Sum1

3:2

a1 b1 c1

Carry1 Sum0

3:2

a0 b0 c0

ASIC Design for Signal Processing

29/05/02 15

2.3.2.2 4:2 Compressors

The discussion so far has referred only to 3:2 carry-save adders, but it is also possible to add

four bits in this format. In reality, as ill ustrated in figure 2-9, there are actually five inputs (one

being a carry in), and three outputs (two carries and the sum).

Figure 2-9 : High level view of the 4:2 compressor

The characteristics of the 4:2 compressor are:

o The outputs represent the sum of the five inputs, so it is really a 5 bit adder

o Both carries are of equal weighting (i.e. add “1” to the next column)

o To avoid carry propagation, the value of Cout depends only on A, B, C and D. It is

independent of Cin.

o The Cout signal forms the input to the Cin of a 4:2 of the next column.

The behaviour of the 4:2 compressor is described by table 2-2.

Inputs Cin = 0 Cin = 1

A B C D Carry Sum Carry Sum

Cout

0 0 0 0 0 0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 1 1 0 0

0 0 1 1
0 1 1 0
1 1 0 0
0 1 0 1
1 0 1 0
1 0 0 1

0 1 1 0 1

0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1

0 1 1 0 1

1 1 1 1 1 0 1 1 1
Table 2-2 : Truth table for the 4:2 compressor cell

4:2

A B C D

Carry Sum

Cin Cout

ASIC Design for Signal Processing

29/05/02 16

A k-bit 4:2 word adder is then formed as shown below, in figure 2-10.

Figure 2-10: Architecture of the full word 4:2 compressor, using individual bit 4:2 compressors.

2.3.3. Booth Multiplication

Booth multipli cation is a technique that allows for smaller, faster multipli cation circuits, by

recoding the numbers that are multiplied. It is the standard technique used in chip design, and

provides significant improvements over the “long multipli cation” technique.

2.3.3.1 Shift and Add Multiplication

A standard approach that might be taken by a novice to perform multipli cation is to “shift and

add” , or normal “ long multipli cation” . That is, for each column in the multiplier, shift the

multipli cand the appropriate number of columns and multiply it by the value of the digit in that

column of the multiplier, to obtain a partial product. The partial products are then added to

obtain the final result, as depicted by figure 2-11.

 0 0 1 0 1 1

 0 1 0 0 1 1

 0 0 1 0 1 1

 0 0 1 0 1 1

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 1 0 1 1

 0 0 1 1 0 1 0 0 0 1

Figure 2-11 : Sample multiplication, using the shift and add technique.

With this system, the number of partial products is exactly the number of columns in the

multiplier.

4:2 4:2 4:2 4:2

Ak-1Bk-1Ck-1Dk-1 Ak-2Bk-2Ck-2Dk-2
A1 B1 C1 D1 A0 B0 C0 D0

Carryk-1 Sumk-2 Sumk-1
Carry2 Sum1 Carry1 Sum0

ASIC Design for Signal Processing

29/05/02 17

2.3.3.2 Reducing the Number of Partial Products

[11]
It is possible to reduce the number of partial products by half, by using the technique of radix 4

Booth recoding. The basic idea is that, instead of shifting and adding for every column of the

multiplier term and multiplying by 1 or 0, we only take every second column, and multiply by

±1, ±2, or 0, to obtain the same results. So, to multiply by 7, we can multiply the partial product

aligned against the least significant bit by –1, and multiply the partial product aligned with the

third column by 2:

Partial Product 0 = Multipli cand * -1, shifted left 0 bits (x –1)

Partial Product 1 = Multipli cand * 2, shifted left 2 bits (x 8)

This is the same result as the equivalent “shift and add” method:

Partial Product 0 = Multipli cand * 1, shifted left 0 bits (x 1)

Partial Product 1 = Multipli cand * 1, shifted left 1 bits (x 2)

Partial Product 2 = Multipli cand * 1, shifted left 2 bits (x 4)

Partial Product 3 = Multipli cand * 0, shifted left 3 bits (x 0)

The advantage of this method is the halving of the number of partial products. This is important

in circuit design as it relates to the propagation delay in the running of the circuit, and the

complexity and power consumption of its implementation.

It is also important to note that there is comparatively littl e complexity penalty in multiplying by

0, 1 or 2. All that is needed is a multiplexer or equivalent, which has a delay time that is

independent of the size of the inputs. Negating 2’s complement numbers has the added

complication of needing to add a “1” to the LSB, but this can be overcome by adding a single

correction term with the necessary “1”s in the correct positions.

2.3.3.3 Radix-4 Booth Recoding

To Booth recode the multiplier term, we consider the bits in blocks of three, such that each

block overlaps the previous block by one bit. Grouping starts from the LSB, and the first block

only uses two bits of the multiplier (since there is no previous block to overlap), as ill ustrated by

figure 2-12.

 0 1 0 1 1 0 1 0 1 0

Figure 2-12 : Grouping of bits from the multiplier term, for use in Booth recoding. The least

significant block uses only two bits of the multiplier, and assumes a zero for the third bit.

ASIC Design for Signal Processing

29/05/02 18

The overlap is necessary so that we know what happened in the last block, as the MSB of the

block acts like a sign bit. We then consult the table 2-3 to decide what the encoding will be.

Block Partial Product

000 0

001 1 * Multiplicand

010 1 * Multiplicand

011 2 * Multiplicand

100 -2 * Multiplicand

101 -1 * Multiplicand

110 -1 * Multiplicand

111 0
Table 2-3 : Booth recoding strategy for each of the possible block values.

Since we use the LSB of each block to know what the sign bit was in the previous block, and

there are never any negative products before the least significant block, the LSB of the first

block is always assumed to be 0. Hence, we would recode our example of 7 (binary 0111) as

such in figure 2-13.

 0 1 1 1
 block 0 : 1 1 0 Encoding : * (-1)
 block 1 : 0 1 1 Encoding : * (2)

Figure 2-13 : Booth recoding for the two partial products with a multiplier term of 0111.

In the case where there are not enough bits to obtain a MSB of the last block, as in figure 2-14,

we sign extend the multiplier by one bit.

 0 0 1 1 1
 block 0 : 1 1 0 Encoding : * (-1)
 block 1 : 0 1 1 Encoding : * (2)
 block 2 : 0 0 0 Encoding : * (0)

Figure 2-14 : Booth recoding for the multiplier term of 00111. In order to obtain three bits in the last

block, we need to sign extend the multiplier by an extra bit.

ASIC Design for Signal Processing

29/05/02 19

The example from figure 2-11 can then be rewritten in the form of f igure 2-15.

 0 0 1 0 1 1 , multipli cand

 0 1 0 0 1 1 , multiplier

 1 1 -1 , booth encoding of multiplier

 1 1 1 1 1 1 0 1 0 0 , negative term sign extended
 0 0 1 0 1 1

 0 0 1 0 1 1

 0 0 0 0 1 , error correction for negation

 0 0 1 1 0 1 0 0 0 1 , discarding the carried high bit
Figure 2-15: An example of a Booth recoded multiplication.

One possible implementation is in the form of a Booth recoder entity, such as the one in figure

2-16, with its outputs being used to form the partial product:

Figure 2-16 : Booth Recoder and its associated inputs and outputs. [7]

In figure 2-16,

• The zero signal indicates whether the multipli cand is zeroed before being used as a

partial product

• The shift signal is used as the control to a 2:1 multiplexer, to select whether or not the

partial product bits are shifted left one position.

• Finally, the neg signal indicates whether or not to invert all of the bits to create a

negative product (which must be corrected by adding “1” at some later stage)

The described operations for booth recoding and partial product generation can be expressed in

terms of logical operations if desired but, for synthesis, it was found to be better to implement

the truth tables in terms of VHDL case and if/then/else statements.

B
o

ot
h

R
ec

o
de

r neg

zero

shift (x2)

Bits from multiplier

3

ASIC Design for Signal Processing

29/05/02 20

2.3.4. Sign Extension Tricks

Once the Booth recoded partial products have been generated, they need to be shifted and added

together in the following fashion:

[Partial Product 1]

[Partial Product 2] 0 0

[Partial Product 3] 0 0 0 0

[Partial Product 4] 0 0 0 0 0 0

The problem with implementing this in hardware is that the first partial product needs to be sign

extended by 6 bits, the second by four bits, and so on. This is easily achievable in hardware, but

requires additional logic gates than if those bits could be permanently kept constant, and the

additional logic also consumes more power.

 1 1 1 1 1 1 1 0 0 1 0

 0 0 0 0 0 1 0 1 1

 0 0 0 0 1 0 0

 0 1 1 1 0

 0 1 1 1 1 0 1 1 1 1 0

Fortunately, there is a technique that achieves this:

• Invert the most significant bit (MSB) of each partial product

• Add an additional ‘1’ to the MSB of the first partial product

• Add an additional ‘1’ in front of each partial product

This technique allows any sign bits to be correctly propagated, without the need to sign extend

all of the bits.

 0 1 0 1 0 1 1 (additional “1”s)

 0 0 0 1 0

 1 1 0 1 1

 1 0 1 0 0

 1 1 1 1 0

 0 1 1 1 1 0 1 1 1 1 0

ASIC Design for Signal Processing

29/05/02 21

2.4. Synthesis of Digital Circuits

Synthesis is the process of converting the VHDL model into an actual circuit design, which can

be implemented in a silicon chip. This is done by a software tool, such as those available from

Synopsys or Cadence, which attempts to produce an optimal layout, subject to the design

constraints set by the user.

2.4.1. Combinatorial Designs

To set the specifications for a purely combinatorial design, we need to create a clock signal,

which is used as a reference for the target speed of the design.

set_clock clk –waveform {0 4.00} –period 8.0

We can then set the other timing constraints, as illustrated in figure 2-17.

Figure 2-17 : Timing constraints for synthesis of an asynchronous circuit.

set_input_delay –clock clk 0.0 [find –ports –inputs *]

set_external_delay –clock clk 0.0 [find –ports –outputs *]

Further constraints that may be set include the fan-out limit, and slew time limit for signals.

With all of these constraints set, the synthesis can begin to optimise both speed and size of the

circuit, with preference given to speed.

2.4.2. Synchronous Designs

Synthesis of synchronous designs is very similar to the combinatorial designs, except that a

clock signal is already present. The consequence of this is that we need to make the synthesis

tool aware of this signal, and take steps to ensure that clock skewing does not occur.

The assumption in any synchronous design is that the clock signals arrive at their destinations

simultaneously. Clock skewing is the phenomenon where some clock signals arrive faster than

others, and therefore some parts of the circuit are enabled by the clock change before others.

The result, amongst other things, is that the circuit may not perform correctly under these

conditions. By requesting that Cadence does not try to optimise certain global signals, we can

ensure this problem does not occur:

C lock (8ns)

Input D elay (2ns) E xte rna l
D e lay
(1ns)C onstra int Tim e (5ns)

ASIC Design for Signal Processing

29/05/02 22

set_dont_modify –network –hier [find –port clk122]

set_dont_modify –network –hier [find –port rst]

Furthermore, Cadence uses a clock tree structure to ensure that clock skewing does not occur.

The problem with clocks is that several inputs may need to be driven, but the fan out property of

a signal limits how many of these may be directly driven. The solution is then to use the clock to

drive a buffer, and that buffer is then able do drive a number of additional gates, as specified by

its fan out. However, a side-effect of a buffer is to delay the signal, so we need to ensure that

each clock signal passes through the same amount of buffers before reaching the input which it

drives. This is the function of the clock tree, as represented by figure 2-18.

Figure 2-18: The clock tree structure, which ensures that all clock signals reach their destinations at

the same time. This simple example assumes a fan-out of two for both the original clock, and the

buffers.

c lk

C lk_out

C lk_out

C lk_out

C lk_out

C lk_out

C lk_out

C lk_out

C lk_out

ASIC Design for Signal Processing

29/05/02 23

2.4.3. Memories

A register file generation tool from Artisan Components creates the memories used in this

project. The memories generated are optimised for size and speed for the chip technology that is

used, and can be customised to suit the requirements of the project. The options of primary

interest are:

• Instance name, so that the component can be referenced from VHDL as a component

• Number of memory locations

• Number of bits to be stored in each location

• Word-write mask and word partition size

The last of these allows portions of a memory location to be overwritten with new data, while

the rest remains unchanged. If this feature is enabled, then the word in each memory location is

split i nto equally sized partitions of the specified size, and each partition has its own write

enable signal.

The architecture of the memories themselves consists of:

• A read port with an address line, a data output, and an enable signal

• A separate write port with address and data inputs, an enable signal, and also partition

enable signals if that option is enabled.

• “Active low” enable signals

• Reads and writes may occur at the same time, but reading from an address that is being

written to may cause unpredictable results if timing constraints are not obeyed.

2.5. Corners

The speed at which a circuit is able to run depends on its operating environment. The

synthesiser can be set to operate in one of three predefined operating conditions, called

“corners” .

• Slow corner : 125°C operating temperature and 1.62V supply. This represents the

slowest possible operating conditions.

• Typical corner : 25°C operating temperature and 1.8V supply.

• Fast corner : 0°C operating temperature and 1.98V supply.

The actual values are specific to the TSMC 0.18µm technology that has been used for this

project, but the concept remains the same for all technologies. In most cases we are interested in

the worst case scenario, so designs are usually synthesised in the slow corner.

ASIC Design for Signal Processing

29/05/02 24

3. Implementation of the MATLAB Model

It is important that the behaviour of any proposed circuit or algorithm is correctly modelled

before any implementation is attempted. The reason for this is twofold. Firstly, such a model

verifies that the design will actually do what is intended, and hence whether it is worth

implementing. Secondly, it provides a useful tool by which the behaviour of any

implementation can be compared against for correctness.

The work that had previously been done on this project was to the extent that a working

floating-point MATLAB model was available. However, this had littl e use, other than to

ill ustrate the behaviour of an ideal implementation of the algorithm. In practice, it was infeasible

to create a floating point implementation in hardware for three important reasons:

• Impracticality in terms of the physical space which would be required on the chip

• The amount of time required by the circuit to implement the entire algorithm would be

too large

• The power consumption of such a circuit would be undesirably high

The only alternative approach was to implement a fixed-point model. That is, the

implementation would manipulate pieces of data with precision of a fixed number of binary bits,

and with a predefined range and number of fraction bits. Hence, my task was then to take the

floating point MATLAB model, and modify it to emulate the behaviour of a fixed-point model.

When that was done, it was necessary to examine the effects of adjusting the various

parameters, to determine the combination required to balance performance with ease and

simplicity of implementation. Finally, I could then modify the script to generate sets of test data

for use in verifying the VHDL implementation.

3.1. Creation of the Fixed Point MATLAB Model

The requirement of a fixed point model, that emulates the desired performance of a physical

implementation, is that it stores each piece of data within a given number of bits. Therefore, it

needs to specify:

• The number of bits available in which to store the data

• The desired range of values that the data can take. This allows us to specify how

many bits give the integer part of the value, by taking the next power of 2 for the

range. For example, the range ±3 becomes ±4, and is specified by 2 integer bits and

one sign bit

• The rest of the bits are “fractional bits” , the bits that make up the binary equivalent

of decimal places. If there are n fractional bits, then the values will be quantised to a

precision of 2-n.

ASIC Design for Signal Processing

29/05/02 25

I also needed to isolate the pieces of data to which this quantisation occurs. This is anything that

will be implemented in, or manipulated by, hardware. The specific values for ranges and bit

sizes can be set as constants or input parameters, and tweaked at a later stage of development

when the needs of the hardware and performance are better known.

3.1.1. Performing the Quantisations

The next thing that is required is a mechanism for performing the quantisations. A simple

method for this would be to quantise each result after it is calculated:

Quantise(a*b, numBits, precision)

Such a function would need to quantise the result to the required precision, and then check that

it is within the allowed range. A requirement of the operation of the algorithm is that out of

range values are clamped at their maximum allowed size, so the function must also enforce this.

However, this can become messy, and one must be careful not to make the following mistake :

Quantise(a*b*c, numBits, precision)

The reason that this is wrong is because the quantised calculation is actually performing several

steps within one line. The problem with that is that a hardware implementation is only capable

of performing one operation at a time. Each multipli cation, subtraction, and division, must be

performed individually, in the correct order, and with each result being quantised :

Quantise(a* Quantise(b*c,numBits,precision), numBits, precision)

A more elegant solution is to create a special data type for fixed point values, and do all of the

quantisation work “behind the scenes” via overloaded MATLAB operators. This also removes

the possible error described above, since MATLAB processes the operations one at a time, in

accordance to standard order of operations rules. After the initial creation of the data types, the

script can be written as normal, with littl e need to pay attention to the fixed point calculations.

The latter solution is the one that I have used, and the code that implements this data type is

li sted in Appendix A.1. One point of care that should be taken is that the data type preserves

quantisation by using the range and precision specified in the variables used. If variables with

confli cting quantisation are used, then the quantisation of the first one will be preserved and

implemented on the final answer.

ASIC Design for Signal Processing

29/05/02 26

For example, if A was 24 bits with a range of ±64, and B was 16 bits with a range of ±256, then

• AB would give an answer that is 24 bits with a range of ±64

• (ATBT)T would give the same answer, but in 16 bits with a range of ±256

For this project, that did not prove to be an issue because most of the matrices were set to the

same quantisation configuration. Where this was not the case, conversion was simply a matter

of extending sign bits and padding least significant bits, or cropping data to make it fit into the

required form.

3.1.2. The Matrices are Supposed to be Hermitian!

One of the key properties of this algorithm is that most of the matrices are Hermitian. The

importance of this property is that it allows the simpli fied versions of the equation to be used,

and also allows significant simpli fication of the hardware implementation.

However, examination of the original output of the script showed that this was not the case.

When run over a small number of iterations, the values on either side of the matrix diagonal

were not quite conjugates of each other, differing by just a few significant figures.

3.1.2.1 Quantisation Error

The method I used for quantisation is to simply crop the value at the required precision, since it

is too expensive to expect hardware to do any type of rounding. The problem with this is that

the negative version of a number will not necessaril y have the same magnitude once quantised.

For example,

 Take the number 5.25 : 0101.01

 Its 2’s complement is : 1010.11

 Cropping each to an integer value, we get : 0101 and 1010

 Taking the 2’s Complement of the second number : 0110

We end up with the numbers +5 and –6, instead of the ±5 or ±6 that we might expect. In effect,

quantising in this way is simply rounding to the next lowest number, but for negative numbers

this means increasing the magnitude by one. This is the effect of the flooring function that has

been used.

3.1.2.2 Forcing the Hermitian Property

The quantisation error is not significant, and in practice makes no noticeable difference to the

error level of the final result. However, it is enough to destroy the Hermitian property of the

matrices and its advantages to a hardware implementation. A hardware implementation could

work by only calculating half of the matrix, and use the Hermitian property to assume what the

ASIC Design for Signal Processing

29/05/02 27

other half is supposed to be. However, the MATLAB script would then be modelli ng a different

algorithm and could not be used for comparison with the hardware model.

To overcome this issue, I simply needed to make sure that the script behaves in exactly the same

way as the intended hardware, and uses one half of the matrix to “guess” the other half. This is

easily achieved by adding code to the “behind the scenes” requantisation that occurs, and is

represented by the lines 30 – 40 of Appendix A.1.1.

3.2. Experimenting with the Fixed Point MATLAB Model

Much of the implementation issues for the fixed point model have been discussed in the

previous sections. All that was left was to implement a method of writing test data to a file for

later comparison with the VHDL model (generated by code in Appendix A.1.2), and to

experiment with the model parameters to ensure that it performs correctly.

3.2.1. Range and Precision

Two of the main parameters that I needed to consider were the number of bits that could be used

to store each type of value in the memories, and how many of those bits were required to store

the integer part of the value.

The easiest issue to resolve was the range required for each value, which was found by adding

code to the MATLAB model to keep record of the maximum absolute value that was obtained

for the various values. Several tests were run to ensure that an adequate set of data was

obtained, and the range was set to the next highest power of two.

Once that was set, the only parameter left was the number of bits to use. Since the range was

now fixed, this affected the precision of the fractional parts of the values. A technique was in

already in place in the MATLAB script to measure the “quality” of the final result compared to

a “perfect” answer, so this could be used to measure the effect of the number of bits used. This

number of bits had to be chosen to provide a high enough quality of result, but low enough as to

not unnecessaril y complicate the hardware with a large sized word width.

ASIC Design for Signal Processing

29/05/02 28

3.2.2. “ Unstable Algorithms”

One problem that I encountered was that, although a reasonable quality of result was being

produced, occasionally the algorithm went “unstable” and forced all of the values to near their

positi ve or negative extremes.

Experimentation indicated that this seemed to be related to the number of bits used in the

quantisation. However, this explanation was not good enough because it did not reveal why the

problem was occurring, and whether or not there was another unrelated problem with the

algorithm that needed to be fixed.

My solution was to add additional code that output the matrix values to a file as the calculation

evolved. This revealed that the initial values of the algorithm were too small for the quantisation

used, occupying only a few significant bits. As the algorithm progressed, the propagation of the

quantisation error was large enough to completely distort the characteristics of the matrices, and

therefore cause the instabilit y. The possible solutions were to either increase the number of bits,

or decrease the range. A combination of both was finally chosen since, although some values

did get cropped in the algorithm, this did not seem to affect the quality of the final answer.

ASIC Design for Signal Processing

29/05/02 29

4. Implementation of a Digital Multiplication Circuit

Multipli cation plays many important roles in wireless digital communications, including

filtering, coding and other signal processing. Furthermore, a multiplier component tends to lie in

the criti cal path of a circuit and consumes a large proportion of the power requirements, so it is

important to find a fast, power eff icient design for use in today’s high-speed applications.

However, signal processing rarely uses purely real numbers. Use of the complex number system

is almost unavoidable, as it allows mathematical manipulation of variables that would not

otherwise be possible. Hence, for a multiplier circuit to be of any use in a signal processing

system, it must be extended to handle complex numbers. This chapter documents the

development of such a multiplier.

4.1. Beating the Optimal Multiplier

This section provides a brief overview of the outcomes of my industrial experience project with

Bell Labs Research. A number of architectures were built and analysed, but only the final

design is described here.

4.1.1. Recursive Adder Tree using GENERATE statements

This design, ill ustrated in figure 4-1, is not the one used, but ill ustrates the concepts used in the

chosen architecture.

Figure 4-1 : Architecture of the “recursive” design. Instances of the adder entity

may instantiate further instance of the same entity within themselves.

4:2 4:2 4:2 4:2 4:2

Recursive Adder

Partial Product Generator

Recursive Adder

ASIC Design for Signal Processing

29/05/02 30

This architecture works by feeding all of the partial products and correction terms into a

recursive array adder. This adder uses a series of VHDL generate statements to:

• If there are 5 or more inputs to add,

o Create as many 4:2 compressors as it can

o Feed any leftovers into another instance of the array adder (with 4 or less

inputs)

o Put all of the results into a new array, which forms the input to another instance

of the array adder. Return the results of this new instance.

• Otherwise,

o If there were 4 inputs, create a 4:2 compressor and return the results

o If there were 3 inputs, create a 3:2 compressor and return the results

o If there were 2 inputs, return those inputs as the sum and carry

o If there was 1 input, return it as the sum, and return a zero carry.

The problem with this technique is that it does not synthesise well , but this can be overcome by

alternative methods of coding the same concept.

4.1.2. Adder tree using process statement

This design has a similar approach to the first, but uses a process statement and loops. It

takes an array of partial products, and continually reduces them with 4:2 and 3:2 compressors

until there are only two left.

The inputs to the top level of adders are the size of the output, containing the partial products

shifted to the appropriate columns. The extra bits around the partial product are padded with

zeros, and it is left to the synthesiser to remove and optimise these.

4.1.3. Results

Tables 4-1 and 4-2 summaries some of the results on the performance of the final design

 Target = 2.5ns Target = 3ns Target = 4ns Target = 5ns
Bits Time Size Time Size Time Size Time Size
10 x 10 3.12 13917
16 x 16 <3.7 3.92 41317 4.06 35845 5.00 23587
24 x 24 4.32 77715 4.27 79804 5.05 55764
32 x 32 5.26 141498

Table 4-1 : Synthesis results for the “Together” design, of various sizes in the slow corner with no

final adder on the outputs. Time units are nanoseconds, and size units are microns.

ASIC Design for Signal Processing

29/05/02 31

Target = 1.5ns Target = 2ns Target = 2.5ns Target = 3ns Corner final
add? Time Size Time Size Time Size Time Size

Slow No 3.12 13917
Slow Yes 4.20 20367
Fast No 1.50 9477 1.96 6486 2.19 6303 2.31 6290
fast Yes 1.82 17214 2.01 13133 2.50 9071
Typical No 2.03 12424 2.50 8855 2.97 6829
Typical Yes 2.60 18887 3.01 13575

Table 4-2 : Synthesis results for the 10 x 10 bit design under various conditions and target speeds.

The time unit is nanoseconds, and the size unit is microns.

These results provide an indication of the type of performance that can be expected under

various conditions. Varying the target speed affects the synthesis results, as Cadence attempts to

optimise both speed and size.

4.1.4. Conclusions on multiplier architectures and coding style

It was found that the speed of a synthesised circuit is dependant on not only the architecture

chosen, but also the coding style used to implement that design.

In particular, the following conclusions were drawn about the effect of coding style on the

performance of a design:

• Process statements synthesise better than “generate”s

• Function calls synthesise better than entity instantiations

• From a synthesis viewpoint, it seems to be better to write code in more small steps

rather than fewer complex steps

• It seems to be better to write wasteful code and let Cadence optimise it, rather than to

write it eff iciently yourself. For example, the described designs use large arrays

containing cells that are either never used, or forced to a constant value. The original

design was hand-coded bit-by-bit, so that all operations were performed with no wasted

or extra variables.

One of main time saving techniques used in the fastest designs is the use of carry-save adders to

combine the partial products into a final answer. The abilit y of these to combine three or four

numbers to two, in a time that is independent of the width of the numbers, is a much more

eff icient alternative than using traditional adder. Using these, a carry propagate is only required

for the final addition of the adder tree.

These observations have been followed when incorporating the multipliers into complex

multipliers, which in turn form the basis for the matrix multipliers, and ultimately the signal

processor.

ASIC Design for Signal Processing

29/05/02 32

4.1.5. Alternative Algorithms

Several possible architectures were considered and built , and the following are two of the more

interesting of the alternative ideas:

• [15] describes the use of the redundant binary number system for multipli cation. This

number system uses three values for each “bit” , being 1, 0, and –1, so that additions

may be carried out without propagation delay. However, traditionally, this technique

still requires a carry-propagation in the conversion from RB to normal binary. This

paper claims to have a technique to overcome this, but analysis and experimentation

have been unable to verify this claim. Further investigation has indicated that this paper

may be fundamentally flawed, but this has not yet been off iciall y confirmed.

• [16] uses the concept of left-to-right multipliers to improve the speed of the design. The

concept is that the most significant bits of the answer are known before the lesser

significant bits, so it is possible to “guess” two alternatives for what the top half should

be. The bottom half is created as normal, with a carry-propagate addition, and the carry-

out is used to select which of the two alternatives is to be used. This technique did not

prove to be as fast for synthesised designs, and does not offer carry-save outputs.

ASIC Design for Signal Processing

29/05/02 33

4.2. Filed Patent : Power Optimisations Without Affecting Critical Path

In most applications multiplier circuits have their inputs tied to some form of data bus, and their

outputs are sampled as needed. For much of the time the multiplier output is not needed, but it

still operates on the continually changing data of the inputs. The problem with this is that

changes in the state of logic gates consume considerably more power than remaining in a static

state, and so a large amount of “useless” data inputs will cause a large amount of power to be

wasted in a complex circuit block such as a multiplier.

Hence, it is desirable to incorporate an “enable” input which, when not asserted, will effectively

zero the inputs and place the majority of the circuit into a static, low power, state. A simple

method might be to gate all of the inputs, as depicted in figure 4-2.

Figure 4-2 : Simple enable pin, by gating both multiplier inputs

While this method works, it increases the size of the criti cal path, by the addition of an AND

gate. Since the multiplier generally lies in the criti cal path of most circuits, it is desirable to

maximise the speed of this component. The challenge is then to find a method of adding the

enable function, without increasing the length of the criti cal path.

Dr Chris Nicol’s US patents #6,275,824 and #6,065,032 make use of the fact that neither the

multipli cand, nor the NEG booth recoded signal, are in the criti cal path of the circuit. He shows

that by gating both of these, the objective can be achieved. However, he uses a different form of

booth recoding, as described in [11], which uses x1, x2, and NEG signals. This is different to

my multipliers, which use x0, x2, and NEG booth recoded signals.

Due to the different form of Booth recoding, this technique cannot be directly used. Close study

of the required implementation logic and synthesis results found that my method proved to be

simpler and faster, so it was preferable to use this technique if possible. By using a similar

strategy of examining the components containing the criti cal paths, the circuits of f igure 4-3

were derived.

Figure 7: Simple method of gating inputs with an enable pin

Multiplicand

Multiplier

Enable

Multiplier

ASIC Design for Signal Processing

29/05/02 34

XOR1

XOR2

OR1

b(0)

b(1)

b(2)
zero out

"Zero" Logic

"Neg" Logic

NAND1
AND1

b(0)

b(1)

b(2)

Neg out

XOR3

XOR4

b(0)

b(1)

b(2)

"Shift" Logic

Shif t

multiplicand(k)

enable

Zero out

Neg out

XOR5

Shif t

Partial P roduct
bit(0)

A ND 4

A ND 2

signal f rom
AND2 gate o f

multiplicand(k-1)

AND5

AND6

OR2

multiplicand(0)

enable

Zero out

Neg out

XOR5

Shif t

Partial Product
bit(0)

AND3

AND4

AND2
AND5

AND6

OR2

Figure 4-3(a) : Possible logic for the Booth recoded zero (x0) signal

Figure 4-3(b) : Possible logic for the Booth recoded Neg signal

Figure 4-3(c) : Possible logic for the Booth recoded Shift (x2) signal

Figure 4-3(d) : Logic for the generation of the least significant bit of the partial product, with enable

logic that is outside of the critical path. The dotted box represents a multiplexer

Figure 4-3(e) : Logic for all of the other bits of a partial product, with enable logic that is outside of

the critical path. The dotted box represents the multiplexer.

ASIC Design for Signal Processing

29/05/02 35

The key points of this design are

• Synthesis analysis has shown that while the shift, neg, and zero logic of figure 4-

3(a),(b), and (c), each theoretically contain two gates, it is the shift logic which has the

longest delay. The other signals are roughly equal in delay.

• Figure 4-3(d) contains a critical path through the Neg Out signal from figure 4-3(b), and

through the XOR gate and AND gate.

• The enable logic passes through AND4, which is not in, or is at worst equal to, the

critical path. Hence, removing the gating of the zero signal does not improve the critical

path.

• For the least significant bit of the partial product, shown in figure 4-3(d), the NEG

signal may also need to be gated, but this is well outside of the critical path. This is not

required for the other bits of the partial product, shown in figure 4-3(e).

Hence, we now have a technique for adding the enable pin without theoretically affecting the

critical delay of the circuit. In practice, the synthesis tools tend to rearrange the logic and issues

such as fan out limits may affect the results. However, in all cases, synthesis simulations have

shown the enable signal to remain outside of the critical path.

This technique has found to be significantly different enough to the existing patent, and so it has

also been filed for patent. It provides the additional benefits of not requiring gating of the

multiplicand inputs, thus reducing the number of gates and potentially allowing for further

speed increases. The outcome of this patent application is not yet known.

ASIC Design for Signal Processing

29/05/02 36

4.3. Complex Number Multipliers

Once an eff icient design for a multiplier had been designed, it could then be extended to

multiply complex numbers. However, since complex numbers consist of two components,

multipli cation is more involved.

A typical complex multipli cation is (a + ib)(c + id), but to perform this calculation in hardware

we need to separate the two components:

 (a + ib)(c + id) = (ac – bd) + i(bc + ad)

This means that four separate multipli cations are required in total. By observing that the

multipli cations can be arranged so that “a” and “b” are always the multipliers, and “c” and “d”

are always the multipli cands, we can make some savings in logic. Only two, not four, booth

recoder sections are required, as shown in figure 4-2.

Figure 4-2: Architecture for a complex multiplier circuit, based on the components of the original

multiplier.

In addition, it is only necessary to have one adder tree for each component of the output. The

only inconsistent part of the design is dealing with the subtraction of the “bd” term, but this can

easily be handled by inverting the NEG booth recoded input to the partial product generator.

A further complication is that sometimes, in this particular project, it is necessary to multiply by

the conjugate of the value that is read from the inputs. Explicitl y taking the conjugate of those

values would involve the problem of having to add “1” to the result, especially when we may

need to do so again after the booth recoding. Instead, I found it was easier to incorporate this

feature into the multiplier, after observing the output of such a calculation:

 (a + ib)(c - id) = (ac + bd) + i(bc - ad)

All that is required is to invert the NEG signal for the bd and ad partial products.

Booth Recoder Booth Recoder

Partial Product
Generator

Negative Partial
Product Generator

Partial Product
Generator

Partial Product
Generator

c a d d c b

Carry-save adder tree Carry-save adder tree

Carry-save output for real part Carry-save output for imaginary part

ASIC Design for Signal Processing

29/05/02 37

4.3.1. Alternative approaches

There have been numerous designs for complex multipli cation algorithms. Two particular

approaches of interest are:

• [13] shows how some of the results can be reused to prevent redundant calculations. For

(a+ib)(c+id), the real part of the answer is ac – bd. The imaginary part is bc + ad, but

can also be expressed as (a + b)(c + d) – ac – bd. This requires one less multipli cation,

and three more additions. The algorithm involves using lookup tables and full adders to

generate the result, but this technique was not feasible for this project.

• The use of the redundant binary number system for complex numbers is described in

[14]. This number system involves the use of three possible values for each “bit” , being

–1, 0 and 1, to allow for more eff icient arithmetic operations. Previous experience with

this number system, for the previous multiplier project, did not make this a suitable

candidate.

The most appropriate design was the previously described method of using carry-save adder

trees. Unlike the above methods, this technique allows data values to be kept in carry-save

format, and manipulated in that form, until the normal binary form is required. This proves

particularly useful for matrix multipli cation, because the results for an output cell of a matrix

consist of the addition of several separate multipli cations. In these cases, we only need to know

the value of total sum, and not the individual multipli cations, so there is no need to convert the

multipli cation results out of carry-save form.

4.4. Testing and verification

Each of the multiplier designs that I have built have been verified for correctness, by use of a

pair of VHDL test benches:

• An exhaustive test covers all possible inputs for a given multiplier configuration. The

test scripts are set up to run exhaustive tests for 2x2, 3x3, up to 9x9 bit multipliers.

• For larger multipliers, a random test bench is used to pick arbitrary values for the inputs

to the multipliers.

For each of the first two tests, the result is compared to the value that is returned from the

VHDL multipli cation operator. If the results differ, then the simulator will halt with an error

message. The code for these tests is provided in appendix C1.

ASIC Design for Signal Processing

29/05/02 38

5. Design of Matrix Multiplier Circuits

The second major stage to the implementation part of the project was to investigate possible

methods for performing matrix multipli cations. The approaches I considered can be categorised

into three groupings:

• Fully parallel: all multipli cations are performed simultaneously

• Fully sequential: There is only one hardware multiplier, and all the multipli cations are

performed one at a time

• Semi parallel/semi sequential: There are a number of multipliers, so several

calculations can be done at once, but several steps are needed to obtain the full result

I have implemented all designs in VHDL for comparison, and also for the reason that they may

later prove useful for other projects. Each design is briefly described in the following sections,

and the integration of most appropriate design into the core part of the signal processor is

described in chapter 6.

5.1. Fully Parallel Matrix Multipliers

The parallel matrix multiplier contains one multiplier instance for every multipli cation that is

required, as depicted in figures 5-1 and 5-2 on the next page. Therefore, multiplying an (m x n)

matrix by an (n x p) matrix would require:

• n multipli cations for each cell i n the output matrix

• An output matrix of size (m x p)

• A total of mnp multipli cations.

The advantages of such an architecture include:

• All of the results are available together

• It is the fastest possible architecture. Since all multipli cations are done simultaneously,

and each cell ’ s results are talli ed together simultaneously, we only need the time taken

to perform one multipli cation and collate the results for an individual cell

However, there are also major disadvantages:

• It requires mnp instances of the multiplier circuit. For any matrices much bigger than

2x2, and with more than a few bits in each matrix cell , the surface area required to

implement the circuit on a chip would be unreasonably huge.

• All i nput data must be available simultaneously, so this technique is not suited to

normal memories where only one or two words of data may be read at one time. An

alternative might be to latch the data into the inputs, but in most cases this would defeat

the purpose of performing a parallel calculation by the time required to load the latches

from memories.

ASIC Design for Signal Processing

29/05/02 39

Figure 5-1 : Architecture of a cell generator entity for the parallel multiplication C = AB, where C, A,

and B are 4x4 matrices

Figure 5-2 : Architecture for the parallel matrix multiplier. Each generator corresponds to an instance

of the entity in figure 5-1, with the outputs omitted for clarity.

M ultiplicatio n M ultiplicatio n M ultiplicatio n M ultiplicatio n

A (1,1) B (1,1) A (1,2) B (2,1) A (1,3) B (3,1) A (1,4) B (4,1)

C
arry

S
um

C
arry

S
um

C
arry

S
um

C
arry

S
um

4:2 Co m presso r

C
arry

S
um

4:2 Co m presso r

C
arry

S
um

4:2 Co m presso r

C
arry

S
um

Carry Lo o kahead
Adder

C(1,1)

B
(1,1)

B
(2,1)

B
(3,1)

B
(4,1)

G enerato r fo r
C(1,1)

A (1,1)
A (1,2)

A (1,3)

A (1,4)

A (2,1)

A (2,2)

A (2,3)

A (2,4)

A (3,1)

A (3,2)

A (3,3)

A (3,4)

A (4,1)

A (4,2)

A (4,3)

A (4,4)

G enerato r fo r
C(4,1)

G enerato r fo r
C(3,1)

G enerato r fo r
C(2,1)

B
(1,2)

B
(2,2)

B
(3,2)

B
(4,2)

G enerato r fo r
C(1,2)

G enerato r fo r
C(4,2)

G enerato r fo r
C(3,2)

G enerato r fo r
C(2,2)

B
(1,3)

B
(2,3)

B
(3,3)

B
(4,3)

G enerato r fo r
C(1,3)

G enerato r fo r
C(4,3)

G enerato r fo r
C(3,3)

G enerato r fo r
C(2,3)

B
(1,4)

B
(2,4)

B
(3,4)

B
(4,4)

G enerato r fo r
C(1,4)

G enerato r fo r
C(4,4)

G enerato r fo r
C(3,4)

G enerato r fo r
C(2,4)

B
(1,1)

B
(2,1)

B
(3,1)

B
(4,1)

B
(1,2)

B
(2,2)

B
(3,2)

B
(4,2)

B
(1,3)

B
(2,3)

B
(3,3)

B
(4,3)

B
(1,4)

B
(2,4)

B
(3,4)

B
(4,4)

A(1,1)

A (1,2)

A (1,3)

A (1,4)

A (2,1)

A (2,2)

A (2,3)

A (2,4)

A (3,1)
A (3,2)

A (3,3)

A (3,4)

A (4,1)

A (4,2)

A (4,3)

A (4,4)

ASIC Design for Signal Processing

29/05/02 40

5.2. Fully Sequential Matrix Multiplier

The fully sequential design contains a single multiplier, and hence must calculate each cell one

at a time. The consequence of this is that all of the results must be stored in some kind of

readable memory, and the design also needs to be synchronous.

This allows the use of pipelining in the design, which can significantly shorten the time required

by the matrix multiplication. Hence, the clock cycle length only needs to be as long as the

slowest pipeline stage, but several cycles are required for the entire operation. In summary, the

required stages are:

1. Read the data from memory. Two separate memories hold the two matrices, so

that they can both be read at once.

2. Wait for the data to arrive from the memory. This is required because the

memories that are to be used have clocked outputs, meaning that the read

address will be latched into the memory at the start of this stage, but the data

will not be latched to the output until the start of the next stage.

3. Perform the multiplication

4. Add the multiplication result to the tally

5. Resolve from carry-save into normal binary form

6. Write the result to memory

Combining stages could further optimise the design, but the specific nature of these adjustments

depends on the required implementation. Combining stages means that less pipeline registers

are required, and one clock cycle of operating time is saved for each stage that is merged.

However, one must be careful that the new combined stage does not have the longest delay over

any of the other stages, otherwise the clock cycle time may need to be increased.

In addition, the pipeline registers prevent the changing output signals of each stage from

reaching the next stage until they are at their final value. Removing a pipeline register between

two stages will not affect the accuracy of the result if the clock cycle is long enough, but it is

likely that the logic gates in the second stage will undergo more state transitions than

previously. The consequence of this is that the device may consume more power because, as

already outlined in chapter 2, logic gates that undergo a state transition consume more power

than gates which remain at a static level.

In summary, the advantages of this design are:

• There is only one multiplier, so comparatively small surface area required on the chip

• Inputs are only required one at a time, which could minimise complexities with routing

the input signals around the chip.

ASIC Design for Signal Processing

29/05/02 41

The main disadvantage is that a fully sequential matrix multiplier takes the most time to

complete its operation. Multiplying two 4x4 matrices would require at least 64 clock cycles. (16

cells x 4 multiplications for each)

5.3. Double Buffering Issues

One of the issues that has needed addressing in this project is the situation when the memory

which provides the input matrix is also the destination for the output matrix, such as the

calculation A = B*A. A simple approach is to simply use a double buffering approach where we

use a different memory for the output, effectively creating two different versions of A.

The double buffering technique may not always be a desirable approach:

• The additional memory requires surface area on the silicon chip

• In an implementation where the same matrix was used several times, logic would be

required to keep track of which version of A is the current one, and multiplexers would

be required to switch between the two.

By studying the ordering in which values are read and written, we can devise an alternative

approach. Considering the calculation C = AB,

• For each cell of C, we need to

o Read a row of cells from A

o Read a column of cells from B

• The most efficient method of generating C is to calculate each cell one at a time, either

working across the rows one at a time, or down the columns one at a time

• For each cell in a given column of C, we require the same column from B. That column

from B is not required for calculation of cells in any other column of C.

• For each cell in a given row of C, we require the same row from A. That row from A is

not required for calculation of cells in any other row of C.

Therefore,

• Once we have generated any given column of C, we no longer need the corresponding

column from B.

• Once we have generated any given row of C, we no longer need the corresponding row

from A.

This is illustrated in figure 5-3, for the case of generating columns of C at one time.

ASIC Design for Signal Processing

29/05/02 42

Figure 5-3 : Order in which rows and columns are read when the output matrix is written by working

down the columns. The output cells are in the same column of the output matrix as the cells that are

being read from the second input matrix. When the column of the output matrix is complete, we no

longer need the corresponding column from the input matrix.

The solution to the problem is then

• If C and A are the same, then for every row of C,

o Read in the appropriate row of A for the first cell in that row of C

o Latch it, and use the latched value for all other cells in that row of C

o The values that are output will go to the row of C/A that is latched, so the

original values can still be used for the time that they are needed.

• If C and B are the same, then for every column of C,

o Read in the appropriate column of B for the first cell in that column of C

o Latch it, and use the latched value for all other cells in that column of C

o The values that are output will go to the column of C/B that is latched, so the

original values can still be used for the time that they are needed.

However, only one of these solutions can be used at one time.

5.4. Semi Parallel / Semi Sequential Matrix Multipliers

Each of the cases described so far has a major disadvantage that prevents it being suitable for

use within this signal processor. The parallel architecture requires excessive surface area in

order to implement the required amount of the multipliers. The sequential design is efficient in

terms of surface area, but is too slow for the requirements of the signal processor. Hence, a

technique is required that uses a small amount of multipliers, but operates over a small enough

number of clock cycles.

X = X =

X = X =

X = X =

X = X =

1.

2.

3.

4.

5.

6.

7.

8.

ASIC Design for Signal Processing

29/05/02 43

The approach that was finally decided upon was based on the fact that most of the matrices in

the device are of size 4x4. It was decided to attempt to use four multipliers in such a way that an

entire output cell could be calculated at once, as was previously described in figure 5-1.

5.4.1. Optimising the Memory Configuration

In order to perform the four multiplications simultaneously, the appropriate row and column

must first be loaded from each of the source matrices. It is useless to simply try to load values

one at a time from each of the memories, because this would still require four read cycles for

each output cell, giving the same total of 64 cycles that limits the fully sequential designs.

However, there is no reason why we can read only one value at a time from each memory. In

fact, for the calculation C=AB, the following technique allows the entire row of a 4x4 matrix,

A, to be read in one clock cycle.

o The memory for A consists of, not 16, but only 4 addressable locations.

o Each location represents one row, and is logically partitioned into the 4 columns

o The write enable pin of the memory is replaced by a write mask, that selects which of

the partitions are overwritten in a write operation. Therefore, the whole memory

location does not have to have its contents specified at the one time.

o An entire row of A can be read in one operation

o An single cell of A can be written in one operation, without affecting the other cells in

that row.

Memory Address Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

00 A(1,1) A(1,2) A(1,3) A(1,4)

01 A(2,1) A(2,2) A(2,3) A(2,4)

10 A(3,1) A(3,2) A(3,3) A(3,4)

11 A(4,1) A(4,2) A(4,3) A(4,4)
Table 5-1 : Configuration for a memory containing a 4x4 matrix A with 8 bits in each cell. Each

memory location contains one row of data, but individual cells can be written by placing a write

mask on the separate partitions.

A similar approach can be made for matrix B, by storing the locations in groups of columns

instead of rows. The only problem that remains is that a matrix can only be stored in this way in

either rows or columns, but some matrices may need to be used in both configurations. One

workaround is to simply read each memory location, and use a multiplexor to select the correct

part of the data. A more elegant solution to this problem is described in the implementation of

the signal processor in Chapter 6, which ensured that this problem never arose.

5.4.2. Implementation of the design

ASIC Design for Signal Processing

29/05/02 44

With these memory optimizations, it is possible to create a multiplier of two 4x4 matrices that

takes only 16 clock cycles, plus the additional cycles required to clear the pipeline. For the

operation C=AB, the pipeline stages are

1. Read a row from A, and a column from B

2. Delay so that data has time to arrive from the latched memory outputs

3. Perform the multiplications

4. Tally the multiplication outputs into two carry-save results

5. Resolve the carry-save results into a standard binary form

6. Output result to memory

As with the sequential design, if C is the same as A or B, then the appropriate row or column

may be latched when it is first read.

5.4.2.1 Non-conforming matrices
If the memory locations representing the matrix B, in C=AB, do not contain columns of data,

then the data can be read as such:

o For each column of output cells,

o Read each cell for the appropriate column in B, simultaneously reading one of

the rows of A (4 read cycles)

o Store the column that has been read and perform the multiplications as normal

o Read each of the other three rows and perform the calculations for the

respective cells of C, using the remembered column (3 read cycles)

This technique requires only 7 reads per output column, giving a total of 7*4 columns=28

cycles for the operation, plus the time required to clear the pipeline.

ASIC Design for Signal Processing

29/05/02 45

5.4.2.2 One matrix doesn’t conform, and the other needs to be overwritten

One problem which arose with the original design was an equation of the form B = AB, where

both A and B needed to be stored in memory cells containing columns. It is wasteful to simply

store the answer in a different memory, and this can further complicate other parts of the design.

o For the problem of reading and writing the same matrix in the sequential design, we

would simply store the current column from B while we used its contents and overwrote

those values in the memory. We would write B by working down the columns,

remembering the column input from B and reading cells from each row of A as required

o For the problem of matrix A not conforming to containing a complete row in one

memory location, we decided to read in the row from A, and store it in a latch so that

we would not have to repeat those four read operations. We would then work across the

rows of the output matrix

Clearly there is a major clash in these two solutions – we cannot calculate the output matrix by

working across both the rows and the columns at the same time!

The most criti cal problem with B = AB is that the output is the same as one of its inputs, so this

must be addressed first. The issue of the cells of A being grouped in columns instead of rows

requires additional read cycles, but does not affect the output. The solution is then:

o Read the four locations in order to obtain the require row of A. At an appropriate time,

read in the column from B that is to be overwritten, and also read in the same column

from A. Store both columns, since the second matrix will be overwritten and we want to

save some read cycles from the first matrix. (4 read cycles)

o Perform the multipli cations as normal for that cell

o For the other cells in the same column of the output matrix, use the stored column of B.

For A, we have also stored one column, so we already know one value from the next

row. Read the other columns in order to obtain the rest of the row (three reads)

o After each set of 3 reads, perform the calculations as normal

This process is ill ustrated by figure 5-4.

ASIC Design for Signal Processing

29/05/02 46

Figure 5-4: Order in which matrix cells are read, for the calculation of the third column of the output

matrix, for the case where both matrices are stored with columns in each address. The cells of the

first row need to be read one at a time (a,b,d), but at an appropriate time we read and store the

required column for both matrices (c). For the rest of the cells in that output column, we then only

need to read the cells from the columns that were not stored (e,f,g for row 2, and h,i for row 3)

This gives a total of 4+3*3=13 read cycles for each column of the output matrix, with a total of

52 cycles to perform the entire operation. The time required is 1.85 times more than the 28

cycles that would be needed by doing the following, if space permitted:

o using an extra memory to eliminate the problem of reading and writing to the same

memory

o using the previously described solution to handle the fact that the contents of A are

stored in columns instead of rows.

X X X

X X X

X X X

a. b. c.

d. e. f.

g. h. i.

ASIC Design for Signal Processing

29/05/02 47

5.5. Squaring Matrices

A further problem is that fact that some of the multipli cations that are required involve the same

matrix on both inputs. While the solutions in section 5.4.2.1 ensure that we can work around the

problem of the matrix not conforming to both the row and columns format, it cannot deal with

the problem of needing to read two different memory addresses at the same time. One simple

approach may be to insert an extra read cycle into the pipeline, but it may not always be

desirable to increases the pipeline length in this way. Fortunately, even in the absence of dual

read port memories, there exists a solution that does not require additional clock cycles.

As an example, take the 4x4 matrix A, which is stored with an entire column in each memory

location. To perform the calculation of one output cell , we need to read an entire row and an

entire column, as depicted by figure 5-5.

Figure 5-5 : The row and column required for the calculation of a given output cell

Figure 5-6 demonstrates that, since that row and column are sourced from the same matrix, they

overlap by one cell:

Figure 5-6 : The row and column required from a single matrix that is to be squared, required to

calculate the output cell .

The required row can be read one cell at a time. However, since we actually need to read the

whole column in order to obtain that value, at some stage the entire column that is required will

also be read. In this way, we can obtain the column “ for free”, the same as if it had been read

from a separate memory.

Figure 5-7 : If the matrix of figure 5-5 is stored so that each address contains an entire column, then

to read the row we need to read each column at a time and extract the relevant data for the row. One

of these reads will also allow us to obtain the required column “ for free”.

Further optimizations may also be obtained by storing a row or column to prevent the need to

reread data, as described in section 5.4.2.1. The result is a squaring operation that can be

performed in the same amount of time as an equivalent two matrix multipli cation.

X =

2

=

ASIC Design for Signal Processing

29/05/02 48

5.6. Multiplying any combination of matrices

In summary, this chapter has described methods that would allow the multiplication of any

combination of matrices, as described by table 5-2. In all cases, the sources are 4x4 matrices,

but these methods could easily be adapted for any size, and not just square matrices. This

assumes that the matrices are stored with either entire rows, or entire columns, in each memory

address. For multiplications where there is one cell per memory address, see section 5.2.

Calculation Cycles Sections Comments

C = AB 16 5.4.2 A is stored with rows in each memory address, B with

columns in each memory address

C = AB 28 5.4.2.1 Both A and B are stored with rows in each memory address,

or with columns in each memory address.

B = AB 52 5.4.2.2 A and B are both stored with columns in each memory

address. The same method can be adapted for rows, by

latching the columns one cell at a time

A = AB 52 5.4.2.2 Same as B=AB, but the output is calculated by working

across the rows, rather than down the columns.

B = A2 52 5.5 A is stored with columns in each memory address, but the

same method can be adapted for if A contained rows in each

address.

A = A2 Not possible. The described method, for when the destination

is also one of the sources, is that we calculate the answer by

working across either rows or columns of the output, while

remembering the corresponding contents of the original.

Since squaring requires both rows and columns, this cannot

be done unless we use the form B = A2.
Table 5-2 : Multiplications for 4x4 matrices can be done for almost any configuration. Where a letter

A or B appears twice in a single calculation, it is referring to the same matrix.

ASIC Design for Signal Processing

29/05/02 49

5.7. Testing and Verification

I have implemented and tested the three types of designs with a series of VHDL test benches:

• The first step was to verify the correct operation of the matrix multiplier logic, without

having to be concerned with the additional complication of memory accesses. To

achieve this, the test bench acted as a set of dummy memories that were guaranteed to

work. In addition, these multipli cations used only integers. The control logic of the

design was then the only component under test, as the multipliers were already

guaranteed to work and the requantisation logic was not used.

• Next, the requantisation logic needed to be tested, by using fixed point real numbers in

the tests.

• The final step was to build a realistic memory interface for the multiplier circuits, and

coordinate reads and writes between that, the test bench, and multiplier design. This

involved testing of both the interface, and the read/write logic of the multiplier design.

In order to test the correctness of the designs, a known accurate result was required. This was

obtained from a MATLAB script, which ran a random multipli cation of quantised matrices and

output the results to a file. The actual test bench consisted of a number of modes, each

performing a separate function:

1. Initiali se test bench and read data from the test file, including the number of

tests and configuration of the matrices. Change to mode 2 after 1 cycle

2. Read in all of the data from the test file for one test. This consists of the real

and imaginary parts of the input and output matrices. Change to mode 3 after 1

cycle

3. Initiali se the memories of the matrix multiplier. Write one address in each

matrix per cycle, and change to mode 4 when finished

4. Reset the matrix multiplier, telli ng it to start calculating. Change to mode 5

5. Wait one cycle for the multiplier’s signals to reach the test bench. Change to

mode 6

6. Wait until the multiplier’s “busy” signal becomes deasserted. When this occurs,

prepare the output memory for reading of the first value and change to mode 8

7. Read the data on the memory’s output line and store it in the test bench. If there

are more values left, then prepare the memory for the next read and change to

mode 8, otherwise change to mode 9.

8. Wait for a cycle while the data is read from the memory and becomes latched to

its outputs. Change to more 7

9. Compare the data read from the output memory with the answer read from the

test file. If they differ, generate a failure message. If there are more tests left,

then go to mode 2.

ASIC Design for Signal Processing

29/05/02 50

6. Implementation of the Signal Processor

In order to implement the algorithm, the signal processor needs to perform the following

additional types of operations:

• A multiplication A = B * B*, where B is a 4 x 128 matrix

• A number of multiplications of pairs 4x4 Hermitian matrices, of the configuration types

that were covered in Chapter 5.

• A multiplication of a 4x4 Hermitian matrix by a 4x1 matrix

The matrix multiplier that was chosen to form the core of the design is the semi-parallel

architecture described in section 5.4. Only the final design, which takes advantage of the

Hermitian properties, is described here, but an earlier version for general matrix multiplications

was also built on the same principles and techniques outlines in chapter 5.

The challenge that forms the key part of the architecture was to solve the following

complications:

1. There is only enough physical space to implement the one matrix multiplier. This means

that as much of the architecture as possible must be common for each multiplication

that is to be performed

2. Some matrices appear as the first term in some multiplications, and the second term in

others. Since the matrices can only be stored as either columns or rows, and not both,

this means that these matrices will be in the wrong form for some of the calculations.

3. The results of the matrix multiplications must be Hermitian when required. As already

discussed in section 3.1.2, the simple cropping techniques that are used in hardware do

not allow this.

The first problem is simply a design constraint that needs to be adhered to when addressing the

other issues, while the third problem is the easiest to solve.

ASIC Design for Signal Processing

29/05/02 51

6.1. Ensuring that the output matrices are Hermitian

The approach to the solution of this problem has already been specified by the fixed point

MATLAB model, which is to calculate the top diagonal half of the matrix, and guess the other

half. It is necessary to follow exactly the same approach so that the two models may be checked

for accuracy.

On this occasion, the design specifications work in favour of the problem, providing a simple

method of implementation. The key is in how the matrix cells are addressed, ill ustrated in figure

6-1.

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

Figure 6-1 : Memory addresses for the cells in a 4x4 matrix, in binary form

Each output matrix is of size 4x4, and each cell i s given a four bit address. The least significant

2 bits correspond to the physical memory address that is used to store the value, and the most

significant two bits match the partition number within the memory write mask.

Table 6-1 : Mapping of logical memory addresses to positions within the physical memory locations.

The trick to writing Hermitian matrices is to notice the similarity between the addresses of cells

that are mirrored across the main diagonal. Such pairs of cells are 0100 and 0001, 1001 and

0110, 1000 and 0010, etc. In all cases, if the least significant two bits are swapped with the most

significant two bits, then the address of that cell ’ s partner is formed.

Therefore, the algorithm for writing these matrices is simple:

o Write the cell i n the top half of the matrix with the calculated value

o Swap the two halves of the address, and take the conjugate of the calculated value.

o Write the new value to the modified address.

The problem which this leaves is that only one write can be done per clock cycle, so this needs

to be considered in the rest of the design. However, the need to wait for an extra clock cycle

also gives the circuit time to form the conjugate of the original calculation.

Physical
Address

Bits
31-24

Bits
23-16

Bits
15-8

Bits
7-0

00 1100 1000 0100 0000
01 1101 1001 0101 0001
10 1110 1010 0110 0010
11 1111 1011 0111 0011

ASIC Design for Signal Processing

29/05/02 52

6.2. Taking Advantage of Hermitian Matrices

A further property of the algorithm’s matrices allows a simpli fication that solves the second of

the design problems. If it can be assured, by section 6.1, that the input matrices are Hermitian,

then they will be of the following form:

A B C D

/B E F G

/C /F H I

/D /G /I J

Figure 6-2 : Form of the 4x4 Hermitian matrix. “ /B” means “conjugate of B”

The key observation is that for any row n, the corresponding column n contains the conjugates

of the same values. The diagonal contains entirely real numbers, which are conjugates of

themselves.

In addition, the complex multiplier has already been designed to allow multipli cation by the

conjugate of its inputs, to cater for the calculation of A*A*. This provides the necessary

components to implement the following simple solution:

o Implement all matrices by storing them in the form of one column within each memory

address.

o When a column is needed, simply read the appropriate address

o When a row is needed, read the address of the corresponding column, and set the

multiplier to use the conjugate of its input value.

This solution further simpli fies the hardware implementation due to the fact that every matrix

multipli cation requires the reading of rows from one of the matrices. Therefore, the multipliers

will always be taking the conjugate of one of the inputs, and the signal that controls this

function will be constantly asserted. The synthesis tool will recognise this, and optimise the

circuit to remove the redundant case.

ASIC Design for Signal Processing

29/05/02 53

6.3. Performing multiplications with Hermitian optimisations

Using the technique described in section 6.1, when we calculate any non-diagonal cell of the

output matrix the conjugate value is also written to its corresponding cell on the other side of the

diagonal. Therefore, once the first row of the output matrix has been calculated, the first column

has also been assigned new values. The next cell to be calculated is then in the second row and

the second column. This pattern continues, and the output matrix is completed in the manner

depicted by figure 6-3.

Figure 6-3 : Order in which the Hermitian matrices are fill ed in. Dark squares represent the cells

currently being written, and light squares represent the cells already calculated.

This information is helpful for performing the squaring of Hermitian matrices. Since the rows

and columns come from the same matrix, it may first appear that it is necessary to perform two

reads per output cell . However, on closer inspection, that is not necessary.

The key observation in figure 6-3 is that the first cell to be explicitl y written on each row of the

output matrix lies on the diagonal. That means that the row and column required for that

calculation have the same memory address. For the matrix squaring, by section 6.2, the first

location read for each output row contains both the data for the row to be read, and the column

required for the first calculation. All that is required is to store that row’s data, and for the other

output cells in that row, read each column as required and use the stored row.

For general Hermitian matrix multipli cations, exactly the same technique can be used. Although

it is not necessary to remember the row data in this case, it is more consistent to do so and

allows for simpler circuitry.

6.3.1. Multiplication of any Hermitian matrices

The technique described in this section allows for the calculation of any of the cases from table

5-2 in 16 cycles, when all of the source matrices are known to be Hermitian. When one, or none

of the source matrices are Hermitian, then the techniques described in section 5.6 may be used.

Hence, we now have a way for multipli cation of almost any combination of valid matrices, so

the next step was to build the signal processor that demonstrated an implementation of this

theory.

ASIC Design for Signal Processing

29/05/02 54

6.4. Signal Processor Architecture

Once the design problems had been resolved, it was possible to fully develop the processor data

path and control sequence. The concept behind how each type of multiplication works is the

same, and the general sequence of events for the generation of each matrix cell is summarised in

figure 6-4.

Figure 6-4 : The four stages required for performing matrix multiplication. Each piece of data read

from the memories passes through each stage, and these stages can be pipelined to improve the

circuit performance.

The system can be divided into four pipeline stages, providing the following functionality:

1. The Read stage generates the address of the row or column that is to be read from

each matrix, and the address of the cell that will be written to the output matrix with

the results of this newly addressed data.

2. The delay stage waits for the data to become available from the memories

3. The Multiplication stage performs the four multiplications, and tallies the results

together in carry-save format.

4. Finally, the results are resolved into standard binary form and written to the

destination memory.

Several of the original stages described in the semi-parallel architecture have been merged in the

final design, mainly because propagation delay was not an issue. One reason for this is that the

merged stages easily fit within the specified 8ns clock cycle time. Another advantage is that

reducing the number of clock cycles between the read and write stages removes complications

with timing synchronisation and read-after-write dependencies.

An overview of the processor architecture is provided by figure 6-5. The control unit, as

described within this chapter, generates one set of addresses and data, which is sent to each of

the memories. The data read from each of the memories is fed into multiplexors, to select which

pieces of data are currently required by the controller. A separate set of signals is used for the

special mode 0 memory, which is of a different size to the others.

Stage 2:

W ait for data to
be read from

memories

Stage 1:

G enerate read
addresses for

memories

Stage 3:

Perform
M ultip lications

Stage 4:

Add results to
ta lly and/or output

to ta l to m em ory

ASIC Design for Signal Processing

29/05/02 55

In addition, the outside environment of the signal processor can also access the memories when

the control unit is not using them. It is the job of the interface unit to coordinate this, with the

aid of the “busy” indicator from the control unit. The outside circuitry also needs to provide data

to initiali se the memories, and variable aspects of the processor configuration.

Figure 6-5 : Overview of the system architecture

6.5. The Read Stage

The primary purpose of this stage is to generate the addresses for the reading and writing of

matrices. However, in order to do this in the most eff icient and accurate manner, this stage also

requires additional control logic, making it the stage that is most aware of the state of the

processor.

This effectively makes the read stage circuitry the main state machine controller, with each

mode representing a different matrix multipli cation. The mode counter is used by the read stage,

and other stages, to adjust their control signals accordingly.

The read stage can be summarised by the models in figure 6-6 and table 6-2.

M UX

M o de 0 M emory

Co ntro l Unit

Interface

R
ea

d
A

dd
re

ss
W

rit
e

A
dd

re
ss

W
rit

e
D

at
a

R
ea

d
D

at
a

Other M emories

R
ea

d
A

dd
re

ss

W
rit

e
A

dd
re

ss

W
rit

e
D

at
a

R
ea

d
D

at
a

In
di

vi
du

al
 W

rit
e

E
na

bl
e

S
ig

na
ls

R
ea

d
D

at
a

W
rit

e
A

dd
re

ss

R
ea

d
A

dd
re

ss

W
rit

e
D

at
a

In
di

vi
du

al
 W

rit
e

E
na

bl
e

S
ig

na
ls

M
od

e
0

R
ea

d
A

dd
re

ss

M
od

e
0

W
rit

e
A

dd
re

ss
M

od
e

0
W

rit
e

D
at

a

M
od

e
0

R
ea

d
D

at
aC

lk

R
st

S
tart

Initialisation
Data

C lk

Rst

S ta rt

M emory
Addresses
and Data

Results and
Other Data

S
om

e
In

iti
al

is
at

io
n

D
at

a

B
U

S
Y

ASIC Design for Signal Processing

29/05/02 56

Figure 6-6 : Conceptual view of the pipeline read stage. Numbers in parentheses represent the bus

size, while others are one bit signals.

Signal Type Description
Clk Input 8ns system clock signal
Rst Input When set low, resets the processor
Restart Input When asserted high on a rising clock edge, signals the processor to

begin calculating the equation, using the current input values.
Running Input Signal which indicates whether or not the processor should be doing

anything. If low, everything is disabled.
Mode0_address1 Internal First address to read for a calculation in mode 0
Mode0_address2 Internal Second address to read for a calculation in mode 0
Mode0_read_Address Output Address to be read from memory on next clock cycle
Int_out_addr Output Address of the output matrix cell which is to be calculated from the

data that is currently being addressed.
Diagonal Output If high, then the cell addressed by int_out_addr is one the diagonal of

the output matrix.
Do_wrt Output If high then, when the data which was addressed in the previous clock

cycle reaches the output stage, the result is to be written to memory.
Mode Output The mode of the state machine. Allows control of multiplexors to

correctly direct data to/from memories.
Mode0_counter Output Used for when stage 0 needs to read two addresses for each set of data,

by counting how many reads have been done.
Read_delay Internal When low, stalls the pipeline for one cycle. This is because the output

stage sometimes requires two clock cycles, to write to both halves of
the Hermitian matrix.

Mode0_delayed Internal Similar to read_delay, but specific to mode 0
Table 6-2 : Summary of signals for pipeline read stage.

The read addresses for memories, other than those used by mode 0, can be obtained directly

from the output address, since the row and column required for reading correspond directly to

the row and column of the cell that is to be written:

For example, Cell to be written : 0111

Row to be read : 01

Column to be written : 11

Clk

Rst

Restart

Running

Mode0_read_address (7)

Diagonal

Do_wrt

Int_out_addr (4)

Delay_running

Read Stage

Mode

Mode0_counter

ASIC Design for Signal Processing

29/05/02 57

6.5.1. Mode 0 – Calculating A = B * B*

The distinguishing features about mode 0 is that

o The input matrix is not square. For this analysis, it is considered to be 4x128, but the

width could be any power of two that is larger than 4.

o The multipli cation is of the matrix B, with the conjugate transpose of itself

In order to perform a matrix multipli cation of this type, we need to read a row and a column as

normal. The difference is that there are more than four multipli cations necessary for the

calculation of each output cell . In fact, the exact number will be the width of the input matrix B,

which is a multiple of 4 if the above constraints are met.

For the 4x128 matrix, this will require 128 multipli cations to obtain each output cell , using only

the 4 available multipliers. It is therefore clear that, for each output cell , 32 sets of 4 values must

be read, multiplied, and talli ed. When all 32 sets of data have been processed, the result can be

written to the output memory and the tally is cleared. The nature of this arrangement means that

it is best to structure the memory so that each address contains four values that are adjacent in

the same row of the matrix. Part of this matrix is shown in Figure 6-7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0000000 0000001 0000010 0000011

2 0100000 0100001 0100010 0100011

3 1000000 1000001 1000010 1000011

4 1100000 1100001 1100010 1100011
Figure 6-7 : Depiction of the 16 leftmost columns of a 4x128 matrix, and the memory locations

which contain their values.

However, there is a further complication. The problem is that the columns from the “second”

matrix of the multipli cation are really rows from the same matrix that is acting as the “first”

matrix of the multipli cation. Since the widths are much larger than four, it is not feasible to use

the techniques of remembering previously read data, that has been previously described. The

only practical solution is to alternately read data from the two different rows. Table 6-3

ill ustrates this process for calculating the output cell i n the first row and third column of the

output matrix.

Clock Cycle +0 +1 +2 +3 +4 +5 … +60 +61 +62 +63

Mode0_address1 0 1 2 … 30 31

Mode0_address2 64 65 66 … 94 95

Mode0_read_address 0 64 1 65 2 66 … 30 94 31 95

Mode0_counter 0 1 0 1 0 1 … 0 1 0 1

Do_wrt 1 0 0 0 0 0 …. 0 0 0 0
Table 6-3: Signal values for multiplication involving two different rows of the input matrix

ASIC Design for Signal Processing

29/05/02 58

However, for output cells on the diagonal, the two sets of rows that are read are the same.

Therefore, as shown in table 6-4, there is no need to waste clock cycles by performing two reads

for each pair of four values.

Clock cycle +0 +1 +2 +3 … +29 +30 +31

Mode0_address1 32 33 34 35 … 61 62 63

Mode0_address2 32 33 34 35 … 61 62 63

Mode0_read_address 32 33 34 35 … 61 62 63

Mode0_counter 0 0 0 0 … 0 0 0

Do_wrt 1* 0 0 0 … 0 0 0
Table 6-4 : Signal values for multiplications involving one row of the input matrix. * : For the first

row, Do_wrt is initially low because that is the first calculation of the mode.

It is also convenient that the cells which only require one read for each pair of four values, the

diagonals, are also the ones which only require one write cycle. This makes some calculations

take more cycles than others, but no pipeline delays are required because there is at least a 31

cycle delay between writes, and the output stage is the only stage that would be affected by this

situation. The next mode is not affected either, because the final cell only requires a single write

cycle.

Using this information, we can calculate how many cycles are required for each stage of the

operations. Table 6-5 ill ustrates the start cycle of the calculation of each of the output values,

after which the signals take on one values in one of the above tables, as appropriate.

Clock Cycle 0 32 96 160 224 256 320 384 416 480 512

Mode0_address1 0 32 64 96 32 64 96 64 96 96 next

Mode0_address2 0 0 0 0 32 32 32 64 64 96 mode

Mode0_base1 0 0 0 0 32 32 32 64 64 96

Diagonal 1 0 0 0 1 0 0 1 0 1 1
Table 6-5 : Signal values for the first clock cycle of the start of the calculation of each output cell .

ASIC Design for Signal Processing

29/05/02 59

6.5.2. Final Mode : Multiplying a 4x4 matrix by a 4x1 matrix

This mode involves the multiplication of the matrix stored in one of the memories, by a 4x1

matrix that is latched in from the inputs at the start of the calculation of the output matrix. The

output matrix is a 4x1 matrix, so each column of the 4x4 input only needs to be read once.

Clock Cycle 0 1 2 3 4

Int_out_addr 0000 0100 1000 1100 next

Diagonal 1 1 1 1 mode
Table 6-6 : Signal values for the first clock cycle of the start of the calculation of each output cell.

The memory read addresses are obtained directly from the int_out_addr signal, as previously

described.

6.5.3. Other modes : Multiplying two 4x4 matrices

All of the other modes involve multiplying together two 4x4 Hermitian matrices, which can be

achieved using the principles described in sections 5.4.2.1, 5.5, and 6.2. The timing of the read

cycle then becomes as shown in table 6-7.

Clock Cycle 0 1 2 3 4 5 6 7

Int_out_addr 0000 0001 0001 0010 0010 0011 0011 0101

Read_delay 1 0 1 0 1 0 1 1

Diagonal 1 0 0 0 0 0 0 1

Clock Cycle 8 9 10 11 12 13 14 15 16

Int_out_addr 0110 0110 0111 0111 1010 1011 1011 1111 next

Read_delay 1 0 1 0 1 0 1 1 mode

Diagonal 0 0 0 0 1 0 0 1

Table 6-7 : Signal values for the first clock cycle of the start of the calculation of each output cell.

The memory read addresses are obtained directly from the int_out_addr signal, as previously

described.

ASIC Design for Signal Processing

29/05/02 60

6.6. The Delay Stage

The purpose of this stage is simply to delay the control signals from reaching the multiplier

stage for one cycle, while the memory data is being read.

Figure 6-8 : Conceptual view of the delay stage. The dotted lines indicate which inputs are assigned

to the outputs at the rising edge of each clock cycle.

Figure 6-8 shows how the input and output signals are related. The only unusual case is how the

finished_del signal eventually becomes the mul_finished output. All other signals are simply

assigned directly to their corresponding output.

The finished_del signal is asserted by the read stage on the final read cycle of the final

multipli cation of the equation. Its purpose is to eventually allow the control of the “busy” signal,

when it reaches the output stage. However, if it is simply delayed once at each pipeline stage,

then it will change the busy signal on the last write cycle. Since the busy signal is used by the

memory interface to determine whether to allow writing to memories from the signal processor

or an external source, this means that the last write cycle will not execute correctly. If the signal

is delayed by one extra cycle, this will still not work because the actual memory write does not

take place until the cycle after the output stage. Therefore, the “finished_del” signal must be

delayed by two cycles to ensure accuracy.

Clk

Rst

Restart

Running
Delay Stage

Delay_running

Finished_del

Finished_del2

Int_out_addr(4)

Diagonal
Finished

Mode0_counter

Finished_del2

Finished

Mul_addrout(4)

Mul_diagonal
Mul_finished

Mode0_second_stage

multiplier_running

Mode Multiplier_mode

ASIC Design for Signal Processing

29/05/02 61

6.7. The Multiplication Stage

The multiplication stage receives four pairs of numbers from the memories, multiplies them,

and adds the results together to form the value for the appropriate output cell. For mode 0, there

are more than four multiplications to be done, so the result must be added to a tally by the

output stage until all values have been calculated.

Figure 6-9 : Conceptual View of the multiplication pipeline stage.

Most of the input signals come from either the delay stage, or are global control signals (clk, rst,

restart, and running) The only exceptions are

• The data that is read from the memories, after being addressed by the read stage

• The do_wrt signal. This signal indicates whether the results of the multiplication stage

are to be written to memory, or tallied for later use. For simplicity of code, it is

generated by the read stage at the start of the calculation of the next result. Hence, it is

generated a cycle later than required, and bypasses the delay stage in order to regain

synchronisation.

Most of the output signals are simply copies of the input signals, as indicated by figure 6-8. The

only thing that is generated by this stage is the results of the multiplication.

Data from memories

Clk

Rst

Restart

Running

Multiplication
Stage

multiplier_running

Mul_addrout(4)

Mul_diagonal
Mul_Finished

Mode0_second_stage

Comb_addrout(4)

comb_diagonal
comb_finished

output_running

Multiplier_Mode comb_mode

Chanel_mask

Do_wrt

Results of multiplication

comb_wrt
comb_twowrites

ASIC Design for Signal Processing

29/05/02 62

6.7.1. Mode 0 – Calculating A = B * B*

The main difference of this mode from others is that there is the situation where two reads need

to be done before the multipli cation can take place. The mechanism for coping with this is

simple:

• On the first cycle, store the data in a register

• On the second cycle retrieve that data and use it as one of the inputs to each multiplier.

The other inputs come directly from the memory data that was just read.

For the case where only one read is required, we can simply direct the data read from the

memory to both multiplier inputs. This works because the multipliers are set up to automatically

take the conjugate of the second input, so no further manipulation is required. Appendix B2.2.1,

and figure 6-10, summarise this process.

Figure 6-10: Data path for multiplication mode 0. Where we require data from two different rows of

the input matrix, it is stored in the register on the first read, for use in the multiplier when data is

available from the second read. Where both pieces of data come from the same row (i.e. the same

piece of data), both value are taken directly from the incoming data stream.

6.7.2. Other Modes

The technique used to perform these multipli cations has already been outlined in section 6.3,

and this is fairly simple to implement:

• If the output cell being calculated is on the diagonal, then read both multiplier inputs

from memory and store the row for later use.

• Otherwise, use the remembered row as one input, and read the column from the

appropriate memory.

• For the multipli cation by a 4x1 matrix, we do not use the stored the row but read it from

memory. The column is read from a latched direct input.

In the above, a “row” is actually a column of the Hermitian matrix, of which the conjugate is

taken. The flowchart for this mode is provided in Appendix B2.2.2

a x b
b

a
X

Z
b

a
2:1

da ta

resu lt

R eg is te r

ASIC Design for Signal Processing

29/05/02 63

6.8. The Recombine and Output Stage

The final stage in the pipeline, presented in figure 6-11, involves converting the carry-save

components into standard binary numbers.

Figure 6-11: Conceptual view of the output pipeline stage.

Details of the implementation are ill ustrated in Appendix B5.

6.8.1. Clamping overflowed values

When a multipli cation between two signed 16 bit numbers occurs, the result is a 31 bit value.

That is, twice the number of integer bits, twice the number of fractional bits, and one sign bit.

However, numbers of this size are too big to be stored in the memories, and so they must be

cropped in some way. Furthermore, since some of the results are to be reused in the

calculations, they need to be cropped so that they keep the original number of fractional and

integer bits.

The fractional bits can simply be cropped, with no further processing necessary. However, this

is not the case with the integer bits. In particular, we need to deal with the case where the value

of the result is outside of the allowed range.

For example, consider an 8 bit integer result, with an allowed range of ±16. That range consists

of the least significant 5 bits, so designate the 5th least significant bit as the “cropped sign bit” .

Now consider four examples:

5 : 00000101 17 : 00001011

-5 : 11111011 -17 : 11110101

Output to memory

Addr_out

Clk

Rst

Restart

Running

Recombine
and Output

Stage

Comb_addrout(4)

comb_diagonal
comb_finished

output_running

comb_mode

Results of multiplication

comb_wrt
comb_twowrites

wrt

ASIC Design for Signal Processing

29/05/02 64

The examples 5 and –5 are within the allowed range, while 17 and –17 are not. Examination of

the binary encoding of these numbers will reveal that, for the numbers within the allowed range,

all of the bits from the cropped sign bit to the original sign bit are the same. This is not the case

for numbers that are not within range. Hence, we have a mechanism for detecting range

overflows.

The technique for clamping is then:

• Check if all of the bits above the clamping point are the same

• If they are, simply crop the number

• If not,

o Set the sign bit of the cropped number to the original sign bit

o Set all of the other bits to the inverse of the sign bit.

This will t hen ensure that and out of range numbers will be cropped to their upper or lower

extreme, as appropriate.

6.9. Disabling parts of the matrices

An extension to the design was to consider ways of “disabling” certain rows and columns of the

matrix, so that the 4x4 matrices would behave li ke 3x3, or 2x2 matrices. The disabled rows and

columns would simply contain zeroes. This proved to be a simple matter of:

• Disabling the appropriate multiplier. Due to the technique of reading in columns or

rows at a time, it happens that each multiplier always operates on data from the same

row or column. (The only exception is for mode 0.)

• Initiali se the appropriate rows or columns to zero at the start of the algorithm.

The result is that the matrices behave as if the disabled sections were not present. Furthermore,

the power consumption will also approach the levels as if the disabled sections were missing,

since the disabled multiplier saves power by preventing any glitches from propagating through

it. The calculation will still use the same number of clock cycles, but this is not an issue for this

design.

6.10. Testing and verification

The testing of the final design made use of test benches that were heavily based on those used

for the matrix multiplier designs. Similar testing steps were followed, but were modified as

required to suit the algorithm. The only additional steps were to vary the various model

parameters, such as quantisation bits and range, to ensure that the design would match the

MATLAB model for all combinations.

ASIC Design for Signal Processing

29/05/02 65

6.11. Synthesis of Final Design

Synthesis of the signal processor was performed using the Synopsys software, since the

Cadence PKS license was not available for the time that it would be required. Since this

software is not believed have as accurate timing as Cadence PKS, the initial target was set to

7ns clock cycles. This was to ensure that the design would comfortably meet the timing

requirements of 8.2ns. A summary of results is given in table 6-8.

Timing Target

(ns)

Required Time (ns) Worst Path time (ns) Size (mm2)

7 6.61 6.62 2.45

8.2 7.72 7.71 2.00

Table 6-8 : Synthesis results for the signal processor, using Synopsys software.

Although the result for the 7ns target is reported as having violated the timing constraint (6.62 >

6.61), this is not a concern because it is merely the result of rounding errors and significant

digits. Simply reducing the target further would allow the worst path to fit within 6.61ns.

The size is an indicator of the physical space that the circuit would require on a silicon chip, and

includes the four 20x20 bit multipliers, the memories, and the control logic. As the results

indicate, the synthesis tool will attempt to optimise the circuit to provide a trade-off between

size and speed. As the timing constraint is relaxed to 8.2ns, it is able to reduce the size by using

slower, but more compact, logic.

6.11.1. Changes to described design

The initial synthesis indicated that the design may not quite fit within the design constraints, or

would at least be uncomfortably close to exceeding them. Analysis of the synthesis data

revealed that the worst path was through the multipliers, so this was the stage that had to be

modified.

A simple solution was applied, involving splitting this stage into two pipeline stages. The work

involved was simply the addition of a pipeline register in the manner that was described for the

delay stage. For the purposes of this thesis, it is more intuitive to describe these two stages as

one block. However, further splitting of pipeline stages would introduce read-after-write

hazards, and would be a more complicated process.

ASIC Design for Signal Processing

29/05/02 66

7. Conclusions and Extensions

This project has involved the implementation of a signal processing algorithm in a VHDL

model, which successfully matches the output of a corresponding MATLAB model with the

same quantisation configuration. This thesis has generalised the algorithm by describing a set of

techniques that can be applied to multiply almost any configuration of matrices, whether they

are Hermitian or not. A subset of these techniques was required for the signal processor,

demonstrating the practicality of implementation.

In particular, steps that I have completed to achieve this goal included:

• Research, design, implementation, and testing of high speed architectures for the

digital multiplication of numbers. This work is the only part which had been done

prior to the commencement of the project.

• Enhancing these multipliers with power saving optimisations, that disable the

multiplier circuit without increasing the critical delay. This technique has since been

filed for patent by Lucent Technologies.

• Research into alternative methods for implementing complex number multipliers

• Design, implementation, and testing of a complex number multiplier design

• Research, design, implementation, and testing of various architectures for the

multiplication of matrices, as described by chapter 5. Consequently, I have devised

methods for hardware multiplication of various combinations of matrices, as

summarised in 5.6 and 6.3.1

• Conversion of a floating point MATLAB model of the algorithm into a fixed point

quantised model, which emulates the desired performance of a hardware

implementation. This includes analysing the effects of adjusting the various model

parameters, and selecting the most appropriate combination.

• Incorporating the most appropriate matrix multiplier design into a control unit, to

produce the signal processor detailed by chapter 6.

All stages of the hardware implementations additionally required:

• Design of testing mechanisms to verify the correctness of the implementations

• Synthesis of the designs, and analysis of these results to determine the best way in

which to arrange the code.

• All of the multipliers have been written in a form that makes them generically sizable to

any width of input.

ASIC Design for Signal Processing

29/05/02 67

The result is a signal processor that performs the required calculations, meeting the following

specifications:

• It operates within 8ns clock cycles

• By use of optimisations specific to Hermitian matrices, the result is calculated in the

least number of cycles possible. This time is limited only by the number of reads and

writes that are required.

• It saves power, by performing as few calculations as needed. This includes taking the

conjugate of already calculated results (section 6.1) for the output matrices, and the

disabling of multipliers that are not in use (section 6.9).

• An appropriate amount of quantisation has been chosen to balance the physical size

with performance of the design.

7.1. Possible Extensions

This project has been built for a specific purpose, so all of the foreseen requirements of the

design have already been fulfill ed. Furthermore, I believe that the number of clock cycles

required for the algorithm is almost, if not exactly, minimal for the design constraints that have

been set. Therefore, any further extension to this project would involve only optimisation of the

various components of the design.

One obvious area would be further optimisation of the multiplier circuit, and this is an area that

is under constant research. The designs described in this document have been built for synthesis

by a tool such as Cadence PKS and Synopsys. However, experimentation by staff at Bell Labs

Research has shown that a “full -custom” design of the circuit and associated layout on the chip

has the potential to offer significant savings in surface area and speed.

One possibilit y could then be the generation of custom multipliers in much the same way as the

Artisan Components tool generates the memories used by this project. This would then allow

for the use of larger word widths in the processor, generating a better quality of result.

Furthermore, it would also allow the implementation of other architecture of multiplier, which

failed to produce their claimed benefits under normal synthesis.

In a similar way, other components of the design could also be optimised, but overall there is

littl e scope for extension to this project.

ASIC Design for Signal Processing

29/05/02 68

References

[1] http://mathworld.wolfram.com/ComplexNumber.html

[2] http://mathworld.wolfram.com/Matrix.html

[3] http://mathworld.wolfram.com/MatrixMultipli cation.html

[4] http://mathworld.wolfram.com/Transpose.html

[5] http://mathworld.wolfram.com/AdjointMatrix.html

[6] http://mathworld.wolfram.com/TraceMatrix.html

[7] http://mathworld.wolfram.com/HermitianMatrix.html

[8] Howard Anton & Chris Rorres, Elementary Linear Algebra Applications Version, John

Wiley & Sons Inc., 1994, 7th Edition, pp559-562,

[9] Douglas J. Smith, HDL Chip Design, Madison, AL, USA: Doone Publications, 1996, pp3-5

[10] Behrooz Parhami, “Computer Arithmetic” , Oxford Press, 2000, pp131

[11] Weste, Neil H.E. and Eshraghian, Kamran, Principles of CMOS VLSI Design: A systems

perspective, Addison-Wesley Publishing Company, 2nd ed., 1993, pp547-555.

[12] G. Knagge, “High Speed Multiplier Architectures” ,

http://geoffknagge.com/fyp/info.shtml#dl

[13] Y. B. Mahdy, S. A. Ali , K. M. Shaaban, “Algorithm and Two Eff icient Implementations

for Complex Multiplier” , Proceedings of ICECS ’99, vol 2, 1999, pp949-952

[14] Kyung-Wook Shin; Bang-Sup Song, “A complex multiplier architecture based on

redundant binary arithmetic”, Proceedings of 1997 IEEE International Symposium on

Circuits and Systems. Circuits and Systems in the Information Age. ISCAS 97, pp 1944-

1947.

[15] Yun Kim, Bang-Sup Song, John Grosspietsch, Steven F. Gilli g, “A carry-free 54b x 54b

Multiplier Using Equivalent Bit Conversion Algorithm”, IEEE Journal of Solid State

Circuits, Vol 36, No. 10, October 2001, pp1538

[16] Ravi K. Kolagotla, Hosahalli R. Srinivas, Geoffrey F. Burns, “VLSI Implementation of a

200-MHz 16x16 Left-to-Right Carry-Free Multiplier in 0.35µm CMOS Technology for

next-generation DSPs” , Proceedings of the IEEE Custom Integrated Circuits Conference,

1997, pp469-472

ASIC Design for Signal Processing

29/05/02 69

$SSHQGL � $� 0$7/
��� �

RGH

A.1. Fixed Point Model

A.1.1 Fixed Point Data Type
A.1.1.1 Staticfixed_pt_matrix

1 function fp = staticfixed_pt_matrix(range, bits, va lue, makeHermitian)
2 % staticfixed_pt_matix(range, bit, value)
3 % creates a staticfixed_pt_matix, a matrix which does not change
4 % in precision or range when mathematical operations are carried
5 % out on it.
6 % range = range of the integer part of the value. If not a power of two,
7 % the value given will be increased to the next power of two. The
8 % positive and negative extreme is the same magnitude, whichever of
9 % the given values is bigger.
10 % bits = number of bits fo r the entire number (sign bit, integer bit,

faction bits)
11 % value = initial value, which should be a 2D matrix
12 if ndims(value)~=2
13 err('input matrix should be 2 - dimensional');
14 end
15
16 siz = size(value);
17 check_range(range,'');
18 fp.range_bits = ceil(log2(max(abs(range)))); % - 1 for the sign bit
19 fp.frac_bits = bits - fp.range_bits - 1;
20 fp.range = [- 2^fp.range_bits 2^fp.range_bits];
21 fp.bits = bits;
22 fp.step = 1 / (2^fp.frac_bits);
23 fp.value = value;
24 fp.value = floor(value / fp.step) * f p.step;
25
26 if (nargin<4)
27 makeHermitian=1;
28 end
29 % makeHermitian=0;
30 if (makeHermitian==1) & (siz(1)==siz(2))
31 for cnt=1:siz(1)
32 for cnt2=1:siz(2)
33 if (cnt==cnt2)
34 fp.value(cnt2,cnt) = real(fp.value(cnt, cnt2));
35 else
36 fp.value(cnt2,cnt) = real(fp.value(cnt,cnt2)) -

imag(fp.value(cnt,cnt2))*j;
37 end
38 end
39 end
40 end
41
42 for cnt = 1:siz(1)
43 for cnt2 = 1:siz(2)
44 real_part = real(fp.va lue(cnt,cnt2));
45 imag_part = imag(fp.value(cnt,cnt2));
46 if (real_part > max(fp.range) - fp.step)
47 real_part = max(fp.range) - fp.step;
48 end
49 if (real_part < min(fp.range))
50 real_part = min(fp.range) ;
51 end
52 if (imag_part > max(fp.range) - fp.step)
53 imag_part = max(fp.range) - fp.step;
54 end
55 if (imag_part < min(fp.range))
56 imag_part = min(fp.range);
57 end

ASIC Design for Signal Processing

29/05/02 70

58 fp.value(cnt,cnt2) = re al_part + j * imag_part;
59 end
60 end
61
62 fp = class(fp,'staticfixed_pt_matrix');
63
64 return

A.1.1.2 ctranspose
1 function fp = ctranspose(a)
2 bits = a.bits;
3 range = a.range;
4 value = a.value';
5 fp = staticfixed_pt_matrix(range,bits,value);
6 return;

A.1.1.3 display

1 fun ction display(fp)
2 disp(' ');
3 disp(['Static Fixed point Matrix ',inputname(1),' = ']);
4 disp(' ');
5 disp(fp.value)
6 disp(' ');
7 return

A.1.1.4 minus
1 function fp = minus(p,q)
2 if (~isa(p,'staticfixed_pt_matrix'))
3 if (~isa(q,'staticfixed_pt_matrix'))
4 err('At least one term in multiplication must be of

staticfixed_pt_matrix type.');
5 else
6 bits = q.bits;
7 range = q.range;
8 value = p - q.value;
9 fp = staticfixed_pt_matrix(range,bits,value);
10 end
11 els e
12 if (~isa(q,'staticfixed_pt_matrix'))
13 bits = p.bits;
14 range = p.range;
15 value = p.value - q;
16 fp = staticfixed_pt_matrix(range,bits,value);
17 else
18 bits = p.bits;
19 range = p.range;
20 value = p.value - q.value;
21 fp = staticfixed_pt_matrix(range,bits,value);
22 end
23 end
24 return

A.1.1.5 mrdivide

1 function fp = mrdivide(p,q)
2 if (~isa(p,'staticfixed_pt_matrix'))
3 err('The first term in the divide must be of staticfixed_pt _matrix

type.');
4 else
5 if (~isa(q,'staticfixed_pt_matrix'))
6 bits = p.bits;
7 range= p.range;
8 value = p.value / q;
9 fp = staticfixed_pt_matrix(range,bits,value);
10 else

ASIC Design for Signal Processing

29/05/02 71

11 err('The first term in the d ivide must NOT be of
staticfixed_pt_matrix type.');

12 end
13 end
14 return

A.1.1.6 mtimes
1 function fp = mtimes(p,q)
2 if (~isa(p,'staticfixed_pt_matrix'))
3 if (~isa(q,'staticfixed_pt_matrix'))
4 err('At least one term in the multiplication must be of

staticfixed_pt_matrix type.');
5 else
6 bits = q.bits;
7 range = q.range;
8 value = p * q.value;
9 fp = staticfixed_pt_matrix(range,bits,value);
10 end
11 else
12 if (~isa(q,'staticfixed_pt_matrix'))
13 bits = p.bits;
14 range= p.range;
15 value = p.value * q;
16 fp = staticfixed_pt_matrix(range,bits,value);
17 else
18 % use p's constraints
19 bits = p.bits;
20 range = p.range;
21 value = p.value * q.value;
22 fp = staticfixed_pt_matrix(range,bits,value);
23 end
24 end
25 return

A.1.1.7 plus
1 function fp = plus(p,q)
2 if (~isa(p,'staticfixed_pt_matrix'))
3 if (~isa(q,'staticfixed_pt_matrix'))
4 err('At least one terms in multiplication must be of

st aticfixed_pt_matrix type.');
5 else
6 bits = q.bits;
7 range = q.range;
8 value = p + q.value;
9 fp = staticfixed_pt_matrix(range,bits,value);
10 end
11 else
12 if (~isa(q,'staticfixed_pt_matrix'))
13 bits = p.bits;
14 range = p.range;
15 value = p.value + q;
16 fp = staticfixed_pt_matrix(range,bits,value);
17 else
18 % both are of fixed type, use p's constraints
19 bits = p.bits;
20 range = p.range;
21 value = p.value + q.value;
22 fp = staticfixed_pt_matrix(range,bits,value);
23 end
24 end
25 return

A.1.1.8 valof
1 function fp = valOf(p)
2 if (~isa(p,'staticfixed_pt_matrix'))
3 err('Input matrix must be of staticfixed_pt_matrix type.');
4 end
5 fp = p.value;
6 return

ASIC Design for Signal Processing

29/05/02 72

A.1.2 Output of test data to a file

This function writes the contents of a matrix to a file, in text format. It works by generating the

integer value of the binary number that represents the data. For example, the number 5.25,

encoded as 010101 would be written to the file as 21.

1 function output_matrix(fid, matrix, a_bits, a_frac, desc)
2
3 if ndims(matrix) ~= 2
4 err('Input matrix must be two dimensional for file output!');
5 end
6 fprintf(fid,' ---------------------- ');
7 fprintf(fid,desc);
8 fprintf(fid,' \ r \ n');
9 siz = size(matrix);
10 a_height = siz(1);
11 a_width = siz(2);
12 a = ones(a_height, a_width);
13 for rows = 1:a_height,
14 fprintf(fid,' ');
15 for columns=1:a_width,
16 %-- a(rows,columns) = matrix(rows,columns)*2^(a_bits - a_frac) -

2^(a_bits - a_frac - 1);
17 fprintf(fid,'%8.0f ',floor(matrix(rows,columns)*2^a_frac));
18 end
19 fprintf(fid,' \ r \ n');
20 end
21 fprintf(fid,' \ r \ n');
22
23 for rows = 1:a_height,
24 fprintf(fid,' ');
25 for columns=1:a_width,
26 % a(rows,columns) = a(rows,columns) + j*(rand*2^(a_bits - a_frac)

- 2^(a_bits - a_frac - 1));
27 fprintf(fid,'%8.0f

',floor(imag(matrix(rows,columns)*2^a_frac)));
28 end
29 fprintf(fid,' \ r \ n');
30 end
31 fprintf(fid,' \ r \ n');
32
33 return
34

ASIC Design for Signal Processing

29/05/02 73

$SSHQGL� %�)ORZFKDUW � R
�

6LJQD � 3URFHVVR � ([HFXWLRQ

The signal processor architecture is made up of four pipeline stages:

• read data from memory

• delay to allow data to arrive from memory

• Multipli cation of data

• Output of results and/or tall ying data for later use

Each of the four stages consists of the following basic design:

The behaviour of the specific signals are described in chapter 6. The following sections of this

appendix detail the flowcharts for each of the pipeline stages.

NOTE: Although flowcharts are sequential by nature, a feature of VHDL is that signal

assignments within a process statement do not occur until either

• The end of the process statement is reached

• A time delay or wait statement is reached

Hence, assignments of the form a<= b in these flow charts should be read as “b is the value that

will be assigned to a, but the assignment will not take place until the termination point of this

flow chart” .

Begin

End

rst = '1'

rising clock
edge

restart= '0''

running

stage_running

do mode/stage specific operations
next_stage_running <= true;

next_stage_running <= false;

reset to state o f first
cycle o f first
operation

true

true
false

false

truefalse

true

yes

false

no

reset certain
signals

ASIC Design for Signal Processing

29/05/02 74

B.1. Read Stage

B.1.1 Mode 0 – Multiplication o f B * B*

Begin

mode0_delayed
mode0_delayed <= false;
do_wrt <= '0'; T rue

mode0_do two=
mode0_counter

False

do_wrt <= '0';
mode0_counter <= '1';
mode0_read_address <= mode0_address2;

mode0_address1
=xx11111

do_wrt='1';

mode0_address2=
1111111

FalseTrue

True

mode0_address1 <= mode0_base1 + "0100000";
mode0_address2 <= mode0_base1 + "0100000";
mode0_read_address <= mode0_base1 + "0100000";
mode0_base1 <= mode0_base1 + "0100000";
diagonal <= true;

mode0_address1
=1111111

True

mode <= "001";
rtog_delayed <= q_toggle xo r '1';
delay_running <= true;
mode0_delayed <=false;
outbase <= "0000";
int_out_addr <= "0000";
read_delay <= '1';

outbase <= outbase + "0101";
int_out_addr <= outbase + "0101";
mode0_delayed <= true;
delay_running <= false;

True

False

mode0_address1 <= mode0_base1;
mode0_address2 <= mode0_address2 + "0000001";
mode0_read_address <= mode0_base1;
diagonal <= false;
int_out_addr <= int_out_addr + "0001";

do_wrt <= '0';
mode0_address1 <= mode0_address1 + "0000001";
mode0_address2 <= mode0_address2 + "0000001";
mode0_read_address <= mode0_address1 + "0000001";

False

False

End

mode0_counter <= '0';

ASIC Design for Signal Processing

29/05/02 75

B.1.2 Final Mode : Multiplication of a 4x4 matrix by a 4x1 matrix

This mode does not require a flowchart, since it simply consists of the following statement:

Int_out_addr <= int_out_addr + “0100”;

B.1.3 Other Modes : Multiplication of Two 4x4 Hermitian Matrices

Begin

read_delay='1'

End

int_out_addr=
"xx11"

tmp2 := int_out_addr(3 downto 2);
tmp2 := tmp2 + "01";
int_out_addr <= tmp2 & tmp2;
diagonal <= true;
read_delay <= '1';

int_out_addr <= int_out_addr + "0001";
diagonal <= false;
read_delay <= '0';

T rue False

True

int_out_addr=
"1111"

mode <= mode + "001";

mode="11"

rtog_delayed <= q_toggle xo r '1';
mem2_rd_addr <= "00"; -- initial memory
int_out_addr <= "0000";
 read_delay <= '1';
 int_out_base <= "0000";
diagonal <= true;

iteration_num =
to tal_iterations

iteration_num <= (o thers=>'0');
f inished_del <= true;
f iltering <= '1';

iteration_num <= iteration_num + iteration_inc;
mode <= "001";

True False

True

True

False

False

read_delay <= '1';

False

ASIC Design for Signal Processing

29/05/02 76

B.2. Multiplication Stage

B.2.1 Mode 0 : Multiplication of B * B*

Begin M ultiplier
M o de 0

End M ultiplier
M o de 0

Set multiplier
enable pins
(see 6.7.1)

mul_diagonal

enable multiplicatio n
input data1 := data from memory
input data2 := data from memory

enable multiplicatio n
input data1 := sto red data
input data2 := data from memory

mo de0_second
_stage

disable multiplication
sto red data <= data fro m memo ry

true false

true false

ASIC Design for Signal Processing

29/05/02 77

B.2.2 Other modes

Begin M ultiplier
M o de

End M ultiplier
M o de

Set multiplier
enable pins
(see 6.7.1)

mul_diagonal

input data2 := data from memory
sto red_ro w <= input data2

input data2 := data from inputs

multiplier_mode
=final mode

input data 2 := sto red_row

false true

false false

enable multiplicatio n
input data1 := data from memory

ASIC Design for Signal Processing

29/05/02 78

B.3. Output Stage

Begin Output S tage

End Output M ode

comb_second_
out = '1'

out_real and out_imag := conjugate o f sto red values

comb_mode =
"000"

Add results to tally

comb_wrt= '1'

set out_real, out_imag
clear tallies
comb_second_out <= comb_diagonal

sto re tallies

comb_second_out <= comb_diagonal
perfo rm mode specific manipulations
set out_real and out_imag

sto re out_real and out_imag
create second write address

out_real o r
out_imag out o f

range

clamp out-o f-range
components at
max/min value

W rite to the
appropriate

memory

ASIC Design for Signal Processing

29/05/02 79

$SSHQGL � &� 7HVWL ��� 9+' � &RGH

C.1. Multiplier Testbench

C.1.1 VHDL Code

The multiplier test benches were based on a design that had already been built for the original

10x10 multiplier. However, it required extensive modification in order to work for my

generically sizable multipliers.

C.1.1.1 Exhaustive Testbench

1 --- ------------------

2 -- exhaustive_testbench.vhd, Testbench for recursive booth multiplier (recmult).
3 -- Author : Geoff Knagge
4 -- Created : 11 DEC 2001
5 -- Modified : 13 DEC 2001
6 --
7 -- This testbench exhaustively tests all combinations of input for the given word
8 -- sizes. The simulator needs to run for (20 * 2^data_width_a + s^data_width_b

+20) ns
9 ---

10
11
12 library IEEE;
13
14 use IEEE.std_logic_1164.all;
15 use IEEE.std_logic_arith.a ll;
16 use ieee.std_logic_signed.all;
17 use ieee.std_logic_unsigned.all;
18 use std.textio.all;
19
20 library work;
21
22 entity exhaustive_testbench is
23 generic(data_width_a : integer :=5;
24 data_width_b : integer :=10;
25 carry_save : std_logic :='1 ');
26 end exhaustive_testbench;
27
28 architecture behaviour of exhaustive_testbench is
29
30 constant outwidth : integer := data_width_a + data_width_b - 1;
31
32
33 component arrmult
34 generic (data_width_a : integer:=10; -- number of bits in input a
35 data_width_b : integer:=10; -- number of bits in input b
36 carry_save : STD_LOGIC:='1'); -- whether or not to use the

final adder
37
38 port (signal in0 : in signed(data_width_a - 1 downto 0);
39 signal in1 : in sign ed(data_width_b - 1 downto 0);
40 signal ena : in STD_LOGIC;
41 signal sum : out signed(data_width_a + data_width_b - 2 downto 0);
42 signal carry : out signed(data_width_a + data_width_b - 2 downto 0));
43
44 end component;
45
46 signal clk : std_logic := '0';
47

ASIC Design for Signal Processing

29/05/02 80

48 signal in0 : signed(data_width_a - 1 downto 0) := (others => '0');
49 signal in1 : signed(data_width_b - 1 downto 0) := (others => '0');
50
51 signal precheck,preresult : signed(data_width_a+data_width_b - 1 downto 0) :=

(other s => '0');
52 signal result, chk_result : signed(data_width_a+data_width_b - 2 downto 0);
53
54 signal sum : signed(outwidth - 1 downto 0) := (others => '0');
55 signal carry : signed(outwidth - 1 downto 0) := (others => '0');
56 signal high : STD_LOGIC := '1' ;
57
58
59 function limit(bits:integer) return integer is
60 begin
61 if (bits = 0) then
62 return 0;
63 else
64 if (bits = 1) then
65 return 1;
66 else
67 return 2*limit(bits - 1);
68 end if;
69 end if;
70 end limi t;
71
72
73 begin -- behaviour
74
75 clk <= not clk after 10 ns;
76
77 mult0 : arrmult
78 generic map (data_width_a, data_width_b, carry_save)
79 port map (in0=>in0,
80 in1=>in1,
81 ena=>high,
82 sum=>sum,
83 carry=>carry);
84
85 do_check s: process
86
87 variable temp_carry : signed(outwidth downto 0);
88 variable st0,en0,cnt0,inc0 : signed(data_width_a - 1 downto 0);
89 variable st1,en1,cnt1,inc1 : signed(data_width_b - 1 downto 0);
90 variable doloop0,doloop1 : boolean;
91
92 begin -- process
93 doloop0 := true;
94
95 make_a: for i in data_width_a - 1 downto 0 loop
96 st0(i) := '0';
97 en0(i) := '1';
98 if i=0 then
99 inc0(i) := '1';
100 else
101 inc0(i) := '0';
102 end if;
103 end loop make_a ;
104
105 make_b: for i in data_width_b - 1 downto 0 loop
106 st1(i) := '0';
107 en1(i) := '1';
108 if i=0 then
109 inc1(i) := '1';
110 else
111 inc1(i) := '0';
112 end if;
113 end loop make_b;
114 cnt0 := st0;
115
116 do_in0 : while (doloop0) loop
117 doloop1 := true;
118 cnt1 := st1;
119 in0 <= cnt0;
120 do_in1: while (doloop1) loop

ASIC Design for Signal Processing

29/05/02 81

121 in1 <= cnt1;
122 wait until clk'event and clk='0';
123 temp_carry(outwidth - 1 downto 1) := carry(outwidth - 2 downto 0);
124 t emp_carry(outwidth) := '0';
125 temp_carry(0) := '0';
126
127
128 preresult <= sum + temp_carry;
129 result(outwidth - 1 downto 0) <= preresult(outwidth - 1 downto 0); -- strip

off the unwanted extra bit...
130
131 precheck <= cnt0*cnt1;
132 chk_r esult(outwidth - 1 downto 0) <= precheck(outwidth - 1 downto 0);
133
134 assert result = chk_result report "Calculation Failed" severity error;
135 wait until clk'event and clk='1';
136 if cnt1=en1 then
137 doloop1 := false;
138 else
139 cnt1 := cnt1 + inc1;
140 end if;
141
142 end loop do_in1;
143
144 if cnt0 = en0 then
145 doloop0 := false;
146 else
147 cnt0 := cnt0 + inc0;
148 end if;
149 end loop do_in0;
150
151 end process do_checks;
152
153 end beha viour;

C.1.1.2 Random Testbench

1 ---

2 -- random_testbench.vhd, Testbench for booth multiplier (arrmult).
3 -- Author : Geoff Knagge
4 -- Created : 11 DEC 2001
5 -- Modified : 22 JAN 200 2
6 --
7 -- This testbench randomly picks values for testing the multiplier. There is

an 80%
8 -- chance on each input that it will pick one of the extreme values
9 ---

10
11
12 library IEEE ;
13
14 use IEEE.std_logic_1164.all;
15 use IEEE.std_logic_arith.all;
16 use ieee.std_logic_signed.all;
17 use ieee.std_logic_unsigned.all;
18 use std.textio.all;
19
20 library work;
21
22
23 entity random_testbench is
24 generic(data_width_a : integer :=5;
25 data_width_b : integer :=10;
26 carry_save : std_logic :='1';
27 seedin : integer :=7);
28 end random_testbench;
29
30 architecture behaviour of random_testbench is
31

ASIC Design for Signal Processing

29/05/02 82

32 constant outwidth : integer := data_width_a + data_width_b - 1;
33
34
35 component arrmult
36 generic (data_width_a : integer:=10; -- number of bits in input a
37 data_width_b : integer:=10; -- number of bits in input b
38 carry_save : STD_LOGIC:='1'); -- whether or not to use the

final adder
39
40 port (sig nal in0 : in signed(data_width_a - 1 downto 0);
41 signal in1 : in signed(data_width_b - 1 downto 0);
42 signal ena : in STD_LOGIC;
43 signal sum : out signed(data_width_a + data_width_b - 2 downto 0);
44 signal carry : out signed(data_width_a + data_width_b - 2 downto

0));
45
46 end component;
47
48 signal clk : std_logic := '0';
49
50 signal in0 : signed(data_width_a - 1 downto 0) := (others => '0');
51 signal in1 : signed(data_width_b - 1 downto 0) := (others => '0');
52
53 signal precheck,preresult : signed(data_width_a+data_width_b - 1 downto

0) := (others => '0');
54 signal result, chk_result : signed(data_width_a+data_width_b - 2 downto 0);
55
56 signal sum : signed(outwidth - 1 downto 0) := (others => '0');
57 signal high: STD_LOGIC := '1';
58 signal carry : signed(outwidth - 1 downto 0) := (others => '0');
59
60 function limit(bits:integer) return integer is
61 begin
62 if (bits = 0) then
63 return 0;
64 else
65 if (bits = 1) then
66 return 1;
67 else
68 return 2*limit(bits - 1);
69 end if;
70 end if;
71 end limit;
72
73 -- random number generator taken from

http://home.europa.com/~celiac/archive/tidbit13.txt
74 procedure RANDOM (variable Seed: inout integer; variable X_real: out re al)

is
75 --
76 -- Random Number generator from:
77 -- The Art of Computer Systems Performance Analysis, R.Jain 1991 (p443)
78 -- x(n) := 7^5x(n - 1) mod (2^31 - 1)
79 -- This has period 2^31 - 2, and it works with odd or even seeds
80 -- This code does not overflow for 32 bit integers.
81 --
82 constant a_int : integer := 16807; -- multiplier 7**5
83 constant m_int : integer := 2147483647; -- modulus 2**31 - 1
84 constant q_int : integer := 127773; -- m DIV a
85 constant r_int : integer := 2836; -- m MOD a
86 constant m_real : real := real(M_int);
87
88 variable seed_div_q : i nteger;
89 variable seed_mod_q : integer;
90 variable new_seed : integer;
91
92 begin
93 seed_div_q := seed / q_int; -- truncating integer division
94 seed_mod_q := seed MOD q_int; -- modulus
95 new_seed := a_int * seed_mod_q - r _int * seed_div_q;
96 if (new_seed > 0) then
97 seed := new_seed;
98 else
99 seed := new_seed + m_int;
100 end if;

ASIC Design for Signal Processing

29/05/02 83

101 X_real := (real(seed) / m_real)*100.0;
102 end RANDOM;
103
104 begin -- behaviour
105
106 clk <= not clk after 10 ns;
107
108 mult0 : arrmult
109 generic map (data_width_a, data_width_b, '1')
110 port map (in0=>in0,
111 in1=>in1,
112 ena=>high,
113 sum=>sum,
114 carry=>carry);
115
116 checker: process
117 variable unf1,unf2,unf3,unf4,unf5,unf6: real; -- Uniform :=

Ini tUniform(7, - 100.0, 100.0);
118 variable seed: integer;
119 variable temp_carry : signed(outwidth downto 0);
120 variable st0,en0,cnt0 : signed(data_width_a - 1 downto 0);
121 variable st1,en1,cnt1 : signed(data_width_b - 1 downto 0);
122
123 begin -- process
124 make_a: for i in data_width_a - 1 downto 0 loop
125 if i = data_width_a - 1 then
126 st0(i) := '0';
127 else
128 st0(i) := '1';
129 end if;
130 en0(i) := '1';
131 end loop make_a;
132
133 make_b: for i in data_width_b - 1 downto 0 loop
134 if i = data_width_b - 1 then
135 st1(i) := '0';
136 else
137 st1(i) := '1';
138 end if;
139 en1(i) := '1';
140 end loop make_b;
141 cnt0 := st0;
142 seed := seedin;
143
144 do_checks: while (true) loop
145 RANDOM(seed,unf1);
146 RANDOM(seed,unf2);
147 RANDOM(seed,unf3);
148 RANDOM(seed,unf4);
149 RANDOM(seed,unf5);
150 RANDOM(seed,unf6);
151 if (unf1 > 80.0) then
152 if (unf2 > 50.0) then
153 cnt0 := st0;
154 else
155 cnt0 := en0;
156 end if;
157 else
158 make_in0: for i in data_width_a - 1 downto 0 loop
159 RANDOM(seed,unf3);
160 if (unf3 > 50.0) then
161 cnt0(i) := '0';
162 else
163 cnt0(i) := '1';
164 end if;
165 end loop make_in0;
166 end if;
167
168 if (unf4 > 80.0) then
169 if (unf5 > 50.0) then
170 cnt1 := st1;
171 else
172 cnt1 := en1;
173 end if;

ASIC Design for Signal Processing

29/05/02 84

174 else
175 make_in1: for i in data_width_b - 1 downto 0 loo p
176 RANDOM(seed,unf6);
177 if (unf6>50.0) then
178 cnt1(i) := '0';
179 else
180 cnt1(i) := '1';
181 end if;
182 end loop make_in1;
183 end if;
184
185 in0 <= cnt0;
186 in1 <= cnt1;
187 wait unti l clk'event and clk='0';
188 temp_carry(outwidth - 1 downto 1) := carry(outwidth - 2 downto 0);
189 temp_carry(outwidth) := ‘0’;
190 temp_carry(0) := ‘0’;
191 pre_result <= sum + temp_carry;
192 result(outwidth - 1 downto 0) <= preresult(outwidth - 1 downto 0);
193 precheck <= cnt0 * cnt1;
194 chk_result(outwidth - 1 downto 0) <= precheck(outwidth - 1 downto 0);
195
196 assert result= chk_result report “Calculation Failed” severity failure;
197 wait until clk’event and clk=’1’;
198 end loop do_checks;
199 end process checker;
200 end behaviour;

ASIC Design for Signal Processing

29/05/02 85

C.1.2 TCL Scripts

These scripts are used to run the ModelSim simulation tool, to automatically run the test

benches over various multiplier configurations.

C.1.2.1 Exhaustive Testbench

1 # This scripts runs tests on multipliers f rom size 2x2 up to 64x64
2 #
3 # Switch off the arithmetic package warnings...
4 set IgnoreWarning 1
5 # Run the exhaustive testbench on 3x3, ... 9x9 bit multipliers
6 for {set x 3} {$x<10} {incr x} {
7 echo Attempting to load simulation for $x x $x bit multiplier.. .
8 vsim - Gdata_width_a=$x - Gdata_width_b=$x - Gcarry_save='1'

work.exhaustive_testbench
9 set dw 1
10 set wid 1
11 while {$wid<=$x} {
12 set wid [expr $wid+1]
13 set dw [expr $dw *2]
14 }
15 set IgnoreWarning 1
16 set time [expr 20*$dw*$dw]
17 add wave sim :/exhaustive_testbench/*
18 echo Exhaustively testing $x x $x bit multiplier for $time ns...
19 run $time ns
20 echo Completed testing of $x x $x bit multiplier.
21 }

C.1.2.2 Random Testbench

1 # Switch off the arithmetic package warnings...
2 set IgnoreWarning 1
3 # Run th e random testbench on 10x10, 11x11, ... 64x64 bit multipliers
4 for {set x 10} {$x<64} {incr x} {
5 echo Attempting to load simulation for $x x $x bit multiplier...
6 #
7 # randomly pick a random seed for the testbench, to improve its randomness
8 set seed [expr {int(rand()*1001)+2}];
9 #
10 # do one test, with no final adder on the carry - save outputs
11 vsim - Gdata_width_a=$x - Gdata_width_b=$x - Gcarry_save='1' - Gseedin=$seed

work.random_testbench
12 set IgnoreWarning 1
13 #
14 # display all signals so that we can examine them if something goes wrong
15 add wave sim:/random_testbench/*
16 echo Randomly testing $x x $x bit multiplier for 1ms...
17 run 1 ms
18 echo Completed testing of $x x $x bit multiplier.
19 }

