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Abstract 
 

This thesis describes the methods required to implement a matrix multiplication based algorithm 

in hardware. It considers complications such as concurrently updating a matrix while it is being 

used for calculations, and developing optimisations for special types of matrices. The goal was 

to use some of these multiplications to implement a new signal processing algorithm, of which a 

floating point MATLAB model had been provided.  

 

The floating-point model needed to be changed to a fixed-point model, and then implemented in 

VHDL. The quantisation of the fixed-point model had to not only provide a small enough error 

compared to the optimal result, but also be space efficient when implemented in hardware. To 

ensure the correctness of the design, an interface was also needed between the MATLAB model 

and the VHDL simulator, so that a test bench could compare the input and output values of each 

model. A further concern in chip design is power efficiency, and this formed an extension to the 

project, once the basic working design had been created. 

 

This project is an extension to the work that was carried out in an industrial experience project, 

between December 2001 and February 2002, with Bell Labs Research. That project was to 

create a generically sizable VHDL model of a high speed multiplier, with the goal of meeting 

the benchmark of what was thought to be an optimal design. That goal was exceeded, and the 

design has since been further enhanced for both this project, and the needs of Lucent 

Technologies.  

 

Those multipliers have formed the basis of complex number multipliers, which then formed the 

basis of several matrix multiplier designs. Those designs were then analysed, and the most 

appropriate ideas were combined to form the arithmetic section of this project. A control unit 

was then designed to co-ordinate the unit and interface it to the required memories. 

 

The result is a signal processor that is a fast as possible with the given design specifications. 

Furthermore, it contains optimisations to minimise power consumption, and is based on a 

multiplier circuit for which a patent has been filed. This document presents a set of techniques 

which could ultimately be extended to implement and matrix multiplication based algorithm. 
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1. Introduction 
 

The motivation to this project comes from the industrial experience that I completed with Bell 

Labs Research (Lucent Technologies) between December 2001, and February 2002. The 

primary focus of this research group is wireless communications systems, and the development 

of digital chips to meet the demands of the next generation of high performance wireless 

technologies. The focus of my work was multipli cation circuits, with the challenge to either 

match, or improve on, the speed of a benchmark multiplier that was already in existence in the 

Lucent component library. This target was exceeded, with a design that was 14% faster than the 

existing multiplier, and in some cases matched the speed of the non-configurable design that 

was built i nto the synthesis software. 

 

Multipli cation plays many important roles in wireless digital communications, including 

filtering, coding and other signal processing. Furthermore, a multiplier component tends to lie in 

the criti cal path of a circuit and consumes a large proportion of the power requirements, so it is 

important to find a fast, power eff icient design for use in today’s high speed applications. 

 

However, signal processing rarely uses purely real numbers. Use of the complex number system 

is almost unavoidable, as it allows mathematical manipulation of variables that would not 

otherwise be possible. Hence, for a multiplier circuit to be of any use in a signal processing 

system, it must be extended to handle complex numbers. 

 

Multipli cation is not necessaril y as simple as the product of two numbers, whether they are real 

or complex. In signal processing it is often necessary to multiply groups of numbers together, in 

particular matrices. Implementation of matrix multipli cation is hard to achieve eff iciently in 

terms of both time and space, but is a necessary component of many signal processing 

algorithms. 

 

Signal processing itself is an area of research that is constantly undergoing technological 

change. In particular, the main focus of the Bell Labs Research group in Sydney is the 

development of innovations that will be part of the next generations of wireless 

communications. Some of the challenges which face researchers are ways to improve the rate of 

data transfer, reduce the amount of power consumption of wireless products, and dealing with 

the problems of interference that are inherent in many wireless channels. These factors form the 

basis of the requirements for this project. 

 

In particular, a new algorithm as been developed that is planned for use in a research chip that is 

currently under development. The project of this thesis has thus been to implement that 

algorithm in hardware, by writing a VHDL description of a circuit that can be synthesised into a 

chip. The particular nature of the algorithm is proprietary, but it requires a number of matrix 

multipli cations, using complex numbers. This thesis therefore explores all of the possible 
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multipli cation scenarios, of which a subset has been combined in order to implement the 

algorithm.  

 

The following specifications describe the challenge that needed to be met 

• Implement the algorithm in a design that uses 8ns clock cycles 

• It needs to use as few clock cycles as possible for the matrix multipli cations.  

• It needs to employ optimisations to use as littl e power as possible 

• It cannot use an excessive amount of space on the chip in which it will be implemented 

 

The design tools which were used included: 

• ModelSim VHDL compiler and simulation software 

• Cadence and Synopsys synthesis software 

• TSMC 0.18µm technology library, used by the synthesis tools to determine the 

characteristics of a “real” circuit. 

• Artisan Components register file generation tool for creating the memories to hold 

matrix data. 

 

This document contains a description of the steps required to achieve this goal.  

 

Chapter 2 outlines the background knowledge required for understanding the implementation of 

the design. The mathematical background (section 2.1) to this work includes understanding the 

complex number system, matrices, and a special type of matrix, Hermitian matrices. A section 

on digital circuit design (2.2) describes how modern digital chips are designed, and some of the 

issues that need to be addressed. Additionally, there are special techniques that allow relative 

ease of implementation of arithmetical operations in digital hardware, as described in section 

2.3. Finally, the descriptive model of the must be converted into an actual circuit to be of any 

real use, and section 2.4 covers this process of synthesis. 

 

The original algorithm was modelled in MATLAB software, and used floating point numbers of 

a high precision. To meet the needs of simulating a hardware model, the MATLAB code needed 

to be changed to implement a fixed point model of limited precision. Chapter 3 reveals some of 

the problems and issues that were encountered while working with this simulation. 

 

Chapter 4 provides an overview of the implementation, and optimisation, of the multiplier 

circuit that is the basic component of this project. Section 4.1 briefly describes my previous 

work on creating a high speed multiplier design, of which more detail can be obtained by 

referring to my project report on this task [12]. During the course of this project, additional 

work was done on techniques to optimise the design so that a power saving enable function 

could be added without affecting the criti cal path. This work has resulted in Lucent fili ng a 

patent on my design, and is described in section 4.2. Finally, section 4.3 describes the adaption 

of the original multiplier into a design that operates on complex numbers. 
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The next step was to investigate designs for matrix multipli cation, which is the subject of 

Chapter 5. The first section covers a parallel architecture, which requires a lot of circuitry but is 

fast. Conversely, the second section, on a fully sequential architecture, describes an algorithm 

that requires minimal circuitry but takes much longer to complete its operation. Section 5.4 

describes the architecture that was chosen, using a compromise between the previously 

described extreme ends of the spectrum of possibiliti es. The rest of this chapter then covers 

special cases that need to be addressed in order to perform special cases of multipli cations, such 

as squaring, and optimally writing the output over one of the source matrices. 

 

Once a favoured architecture for matrix multipli cation was chosen, it needed to be incorporated 

into a design for a signal processor that could handle many different multipli cations, including 

the “problem types” that are addressed in Chapter 5. Chapter 6 describes this implementation in 

detail , including how the matrix multiplier can be optimised for the special types of matrices 

that are to be used, and the operation of the various functional blocks of the design. 

 

Chapter 7 concludes this document by describing the results and findings obtained, and 

describing possibiliti es for further work on this project. 

 

Finally, there a number of appendix pages are included to provide some insight into the actual 

design work that was implemented: 

 

• Appendix A contains portions of the MATLAB code that was used to simulate the fixed 

point model of the algorithm 

 

• Appendix B contains flow charts, describing the general operation of the different 

stages of the signal processor. 

 

• Appendix C consists of samples of some of the code that was written to test the designs 

described within this document. 
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2.  Technical Background 
 

The work described in this document incorporates two distinct components. The first of these is 

the mathematical theoretical model of how the signal processor is supposed to work. The second 

is the VHDL implementation, which can then be synthesised for incorporation in future chip 

designs. 

 

 

2.1. Mathematical Background 
 

The specified algorithm for this project involves an equation requiring the manipulation of 

matrices. Furthermore, these matrices involve arithmetic of complex numbers. Hence, it is 

necessary to review the relevant background theory to these topics in order to understand the 

detail of the following chapters. 

 

2.1.1. Complex Numbers 
 

[1] 

Complex numbers are a superset of the real number set that is most famili ar to people. They 

consist of a “real” component, x, and an “ imaginary” component, y, and are written as 

z = x + iy 

 

The symbol “ i” designates the imaginary component, and is defined as 

1−=i  
 

All further mathematical manipulation, that is required in this project, can be done by simply 

treating the “i” symbol li ke any other algebraic variable. Multipli cation of complex numbers is 

covered in chapter 4. 
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2.1.2. Matrices 
 

[2] 

A matrix is simply a table of values, which is typically used to represent sets of simultaneous 

equations. For example, 

 

 

 

 

 

 
Figure 2-1: Matrices are used to represent sets of simultaneous equations 

 

This system of equation could be then be simpli fied to y = Ax. The notation used for matrices is 

that an m x n matrix has m rows and n columns, and that aij represents the value of the cell at 

row i and column j. 

 

2.1.2.1 Multiplication 
 

[3] 

Multipli cation of matrices is more involved than addition, and requires the following conditions 

for the product C = AB : 

• The number of rows in A is the same as the number of columns in B 

• The number or columns in A is the same as the number of columns in C 

• The number of rows in B is the same as the number of rows in B 

 

In summary, (a x b matrix)(b x c matrix) = (a x c matrix). 

  

Given an l x m matrix A, a m x n matrix B, and a l x n matrix C, we can calculate 

∑
=

=≤≤≤≤∀
m

n
njinij BACnjliji

1

 ,1 and 1|,
 

That is, for a particular cell i n C, we take the row from A and the column from B that 

corresponds to that cell ’ s row and column in C. We then take each pair of elements one at a 

time, starting from the left and top respectively, and multiply them together. The final value for 

the cell i n C is then the sum of these multipli cations. 

 









+++
+++

=







+









222313212222122122211121

121313111222121112211111

232221

131211

2221

1211

abbaabbaabba

abbaabbaabba

bbb

bbb

aa

aa

 

Matrix multipli cation is associative, but generally not commutative. 

y1 = a11x1 + a12x2 + … + a1nxn 

y2 = a21x1 + a22x2 + … + a2nxn 

… 
ym = am1x1 + am2x2 + … + amnxn 
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2.1.2.2 Transpose and Adjoint Matrices 
 

[4,5] 

The transpose of a matrix Q is denoted QT, which can be defined as 

jiij
T

ji QQQQji ,,, ,|, =∈∀
 

 

Such matrices hold the following special property, that can be useful for simpli fying matrix 

equations: 

( ) TTT ABAB =  
 

A special type of transposed matrix is the adjoint matrix, defined as 
TAA ≡*

 
 

That is, the adjoint of a matrix is made up of the complex conjugate of each element of it’ s 

transpose: 

jiijji QQQQji ,,
*

, ,|, =∈∀  

 

Adjoint matrices also hold the property: 

( ) ***
ABAB =  

 

Note: The MATLAB notation for the adjoint matrix is A’  

 

2.1.3. Hermitian Matrices 
 

[7,8] 

Hermitian matrices are special matrices, characterised by the following qualiti es 

• The matrix is square 

• The matrix is self-adjoint. This means that for a matrix Q, if Q(a,b) = x + iy, then Q(b,a) 

= x – iy. 

 

They contain the following special properties that often allows considerable simpli fication of 

matrix equations: 

• (A*)* = A 

• (A + B)* = A* + B* 

• ( ) **
AkkA =  

• (AB)* = A*B* 

• An addition or multipli cation between two Hermitian matrices will produce an answer 

that is also Hermitian 
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2.2. Digital Circuit Design 
 
[9] 
Digital circuit design was once a process of manual schematic design, involving selection of 

individual gates, and determining how they should be physically connected to each other to 

achieve the desired function. The problem with this method is that it is slow, tedious, and prone 

to error. Furthermore, the design of today’s advanced VLSI (very large scale integration) chips, 

such as the AMD and Intel microprocessors used to create this document, would be near 

impossible with such methods. 

 

An alternative, that is used is to describe the intended behaviour and architecture of a design, is 

by using a high level Hardware Description Language (HDL). The two competing standards, 

Verilog and VHDL, are HDLs which allow circuit designs to be represented in a way that is 

much more intuiti ve to create and understand. Furthermore, the designs can be created much 

more rapidly, and the only errors are li kely to be with the logic design, as opposed to wrongly 

connected gates.  

 

HDL designs can then be compiled into a vendor specific encoding, for use with simulation and 

testing tools. Then, once the design is believed to work correctly, a synthesis tool processes it, to 

produce a design for an ASIC or FPGA chip. The resulting output is analysed for performance 

data, the code may be refined and recompiled, and the process is repeated. 

 
Figure 2-2 : Design process for digital circuits. ModelSim and Cadence are specific products which 

were used in this project to perform the designated steps in the process. 

 
 
2.2.1. ASICs and FPGAs 
 
[9] 
Both Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays 

(FPGAs) are types of custom chips, which differ in their properties, cost, and in the way that 

they are manufactured. The choice of which to use depends on the required application. 
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2.2.1.1 FPGAs 
 
FPGA devices typically contain an architecture that is vendor specific. A major advantage is 

that the designer is then able to quickly program them as required, with no additional 

manufacturing necessary. If testing fails, then the design can be changed and another device 

immediately reprogrammed. In addition, circuit design outside of the chip can be 

simultaneously performed, since the function of FPGA pins can be assigned before the internal 

design is complete. However, FGPA devices cost on average between US$100 to US$200, 

making them relatively expensive for mass production. 

 
 
2.2.1.2 ASICs 
 
Older style ASIC chips initiall y contained arrays of unconnected transistors, created during the 

most complex and costly phase of manufacture. Known as “gate arrays” , these contained a set 

of basic cells across the chip, which included logic gates, registers, and macro functions such as 

multiplexors and comparators. Gate arrays may or may not contain predefined “channels” , used 

for routing between the basic cells. 

 

The most common type of ASIC currently used is the standard cell format. These contain no 

components and the time of initial manufacture, and do not contain any type of basic cell . 

Instead, custom layouts are created for each part of the design, making more eff icient use of the 

available sili con. 

 

A final manufacturing process involves the connection of the generic units to form the specified 

design, and can take two or more weeks. Individual devices can cost as littl e as US$10, but the 

initial engineering costs can be US$20,000 to over US$100,000.  

 

The designs described in this document are targeted for ASIC chips, and make use of the TSMC 

0.18µm Standard Cell Library. 
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2.2.2. Digital Logic Basics 
 
While much of the low level design and optimisation of a circuit is done by the synthesiser, 

knowledge of the basic logic gates is still required in order to be able to understand the output of 

the synthesis tools, and to know how to optimise the design configuration. Figure 2-3 outlines 

the inputs (A and B), and corresponding outputs (Z) of a number of the common logic gates. 

 
 

A B Z 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

A B Z 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

NAND 

Z 
A 

B AND 

Z 
A 

B NOR 

Z 
A 

B 

OR 
Z 

A 

B 
Z 

A 

B XOR 

A B Z 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

A B Z 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

A B Z 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

NOT 

Z A 

A Z 
0 1 
1 0 

 
Figure 2-3 : Truth tables for a number of common logic gates. The inputs A and B will cause the 

corresponding output result Z to occur. The values 0 and 1 refer to the respective digital logic levels. 

 
In summary: 

• The AND gate has an output of 1 (“high” ) if all of its inputs are high 

• The OR gate has an output of 1 if any of its inputs are high 

• The XOR gate has an output of 1 if only one of its inputs is high 

• NAND, NOR, and XNOR gates are the same as AND, OR, and XOR, but with the 

outputs inverted. 

• The trend is the same for similar gates with three or more inputs 

• The output of the NOT gate is an inverted copy of the input 

• A “buffer” is a gate where the output is the same as the input. 
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2.2.3. Implementation of gates 
 
Physical logic gates are built with transistors, and the particular characteristics of an individual 

gate depend upon the type of transistors used to implement it. For example, the CMOS 

implementation of a NOR gate could be represented by figure 2-4. 

 
Figure 2-4 : CMOS implementation of an AND gate 

 

Since they are built from transistors, logic gates inherit a number of characteristics that are 

important to digital design: 

 

• All transistors contain some form of capacitance, which affects the speed of the device, 

and the power it dissipates. 

 

• Transistors are only capable of supplying a limited amount of power through their 

output pins, and all real logic gates consume an amount of current through their inputs. 

Therefore, an output of a logic gate can only reliably drive a limited number of inputs 

on other gates, and this number is called the fan-out of the gate. 

 

A

B

Z
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2.2.4. Propagation Delays 
 
An additional complexity of digital analysis is that the outputs of logic gates do not change 

instantaneously with the inputs. Each takes a finite amount of time, known as the propagation 

delay, which is caused by the capacitances within the logic gates, and by the fact that a potential 

difference cannot instantaneously change. Furthermore, different types of gate are constructed 

with different configurations of transistors, so they also vary in their propagation delay. 

 
In any reasonably sized digital asynchronous circuit, there are a large number of possible paths 

between the inputs and each of the outputs. The propagation delay for an individual path is the 

sum of the propagation delays of the gates through which it passes. The path that has the highest 

delay is known as the critical path for the circuit. 

 
 
2.2.5. Power Consumption in Digital Circuits 
 
The power dissipated by a digital circuit becomes an important issue when it is being designed 

for use in a chip. This is not only from the practical aspect, that a chip can only withstand a 

certain amount of heat generated from power dissipation, but also from the commercial aspect 

that lower power products are more competiti ve. There are two broad categories for power 

consumption: 

 

• Static power: This is the power used by a logic gate when its output is held at a constant 

level. It is caused by leakage currents, which are characteristic to any circuit. 

 

• Dynamic power: Dynamic power is used when a gate is changing state. A small 

proportion comes from the switching current generated by the change, but the major 

part is due to the charging of the gate’s capacitance to reflect the new voltage level.  

 

Of the two, dynamic power is the most significant, and the one that can be influenced by the 

logic design. If the number of transitions in the state of a circuit’s gates can be minimised, then 

so will be the power consumption of that circuit. There are a number of ways in which this can 

be attempted: 

 

• Disabling unused parts of the circuit. By placing an AND gate in front of each of the 

inputs, with one input attached to an enable signal, then the entire circuit will remain in 

a static state whilst that enable pin is at a low logic level. 

 

• Reducing glitches in a circuit. A glitch is simply a temporary change in the logic level 

of a signal before it reaches its final value. These are often unnecessary if the logic is 

arranged appropriately, and removing them can make significant power improvements. 
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2.3. Arithmetic in Digital Logic 
 

There are many occasions where the accepted standard methods for manual execution of 

arithmetic operations are highly ineff icient when implemented into hardware. Two such 

examples are addition and multipli cation. 

 

2.3.1. Negative Numbers 
 

Binary numbers only have 0’s and 1’s, so there is no plus or minus signs. Therefore, to work 

with negative numbers, we need a special way of representing these values. One such technique 

is called 2’s complement. 

 

A 2’s complement number uses the most significant bit as the “sign bit” , with a “1” indicating a 

negative number, and a “0” representing a positi ve number. To take the negative value of a 2’s 

complement number, simply: 

• Invert all of the bits 

• Add 1 to the result. 

 

2.3.2. Carry Save Arithmetic 
 

One of the major speed enhancement techniques used in modern circuits is the abilit y to add 

numbers with minimal carry propagation. The basic idea is that three numbers can be reduced to 

2, in a 3:2 compressor, by doing the addition while keeping the carries and the sum separate. 

This means that all of the columns can be added in parallel without relying on the result of the 

previous column, creating a two output “adder” with a time delay that is independent of the size 

of its inputs. 

 
 10111001 

 00101010 

 00111001 

Sum:  10101010 

Carry: 00111001    

Result: 100011100 

 
Figure 2-5 : Example of carry-save arithmetic. A normal adder generates the result at a later stage. 

 
The sum and carry can then be recombined in a normal addition to form the correct result. This 

process may seem more complicated and pointless in the above trivial example, but the power 

of this technique is that any amount of numbers can be added together in this manner. It is only 

the final recombination of the final carry and sum that requires a carry propagating addition. 
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Figure 2-6, from [10], is called a Wallace Tree and is one method of combining 3:2 carry save 

adders to add together 7 numbers, of size k bits. 

 
Figure 2-6 : Wallace tree method of carry-save arithmetic [10] 

 
The first level of the tree generates two carries and two sums, as well as the left over term, 

which is not added. Since the carries from any single column actually means “add one to the 

next column” , the carry bits must be shifted left one position before they can be added to the 

result. Hence, they are aligned with bits k down to 1. 

 
The two sum values and the leftover term are all aligned with bits k-1 down to 0, so they can be 

fed into another 3:2 compressor to form another carry and sum. The three carries can then be 

added to form another carry and sum, and all of the results are then pushed into the larger carry-

save adder to produce the final carry and sum. A carry propagate adder, usually an adder using 

carry look-ahead, produces the final result. 

 
The above technique arranged the adder tree so that all of the output bits could be obtained 

while minimising the size of the circuit. However, in the case of multipliers, we know what the 

expected output size will be, and so we can set all of the input and output sizes to that value. We 

do not care about any overflowing sign bits, so they can be discarded and the carries can simply 

be shifted left to the correct alignment. All of the results can then be grouped together as one 

and continually reduced until we are left with two values. This is demonstrated by figure 2-7. 
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Figure 2-7: Carry-save adder tree for when overflowing carries from the MSB do not matter 
 
This method may appear wasteful because a lot of bits in the first stages of the adder tree will be 

frozen to zero. However, these will be optimised during synthesis, and this technique seems to 

produce more favourable synthesis results than trying to code the design efficiently. 

 

2.3.2.1 3:2 Compressors 
 

The design of the 3:2 compressor is simple, with the following truth table showing that it is 

nothing more than a 3 bit adder: 

 
Inputs Outputs 

A B C Sum Carry 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Table 2-1 : Truth table for the 3:2 compressor. In reality, it is simply a full adder. 
 
Adding three k-bit numbers together simply involves an array of k 3:2 compressors, each being 

independent of each other, and operating on a single bit position: 

 

 

 

 

 
Figure 2-8: Architecture of the full word 3:2 compressor, using individual bit 3:2 compressors. 

 

 

3:2 CSA 3:2 CSA 

3:2 CSA 

3:2 CSA 

3:2 CSA 

Carryk Sumk-

1 

3:2 

ak-1bk1ck-1 

Carryk-1 Sumk-

2 

3:2 

ak-2bk-2ck-

2 

Carryk-2 Sumk-

1 

3:2 

ak-3bk-3ck-3 

Carry3 Sum2 

3:2 

a2 b2 c2 

Carry2 Sum1 

3:2 

a1 b1 c1 

Carry1 Sum0 

3:2 

a0 b0 c0 
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2.3.2.2 4:2 Compressors 
 
The discussion so far has referred only to 3:2 carry-save adders, but it is also possible to add 

four bits in this format. In reality, as ill ustrated in figure 2-9, there are actually five inputs (one 

being a carry in), and three outputs (two carries and the sum). 

 
 
 
 
 
 

 
Figure 2-9 : High level view of the 4:2 compressor 

 

The characteristics of the 4:2 compressor are: 

 

o The outputs represent the sum of the five inputs, so it is really a 5 bit adder 

 

o Both carries are of equal weighting (i.e. add “1” to the next column) 

 

o To avoid carry propagation, the value of Cout depends only on A, B, C and D. It is 

independent of Cin. 

 

o The Cout signal forms the input to the Cin of a 4:2 of the next column. 

 

The behaviour of the 4:2 compressor is described by table 2-2. 

 
Inputs Cin = 0 Cin = 1 

A B C D Carry Sum Carry Sum 
 

Cout 

0 0 0 0 0 0 0 1 0 
0 0 0 1 
0 0 1 0 
0 1 0 0 
1 0 0 0 

0 1 1 0 0 

0 0 1 1 
0 1 1 0 
1 1 0 0 
0 1 0 1 
1 0 1 0 
1 0 0 1 

0 1 1 0 1 

0 1 1 1 
1 1 1 0 
1 1 0 1 
1 0 1 1 

0 1 1 0 1 

1 1 1 1 1 0 1 1 1 
Table 2-2 : Truth table for the 4:2 compressor cell  

4:2 

A     B     C     D 

Carry  Sum 

Cin Cout 
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A k-bit 4:2 word adder is then formed as shown below, in figure 2-10. 

 
 
 
 
 
 
 

 
Figure 2-10: Architecture of the full word 4:2 compressor, using individual bit 4:2 compressors. 

 

 

2.3.3. Booth Multiplication 
 

Booth multipli cation is a technique that allows for smaller, faster multipli cation circuits, by 

recoding the numbers that are multiplied. It is the standard technique used in chip design, and 

provides significant improvements over the “long multipli cation” technique. 

 

2.3.3.1 Shift and Add Multiplication 
 

A standard approach that might be taken by a novice to perform multipli cation is to “shift and 

add” , or normal “ long multipli cation” . That is, for each column in the multiplier, shift the 

multipli cand the appropriate number of columns and multiply it by the value of the digit in that 

column of the multiplier, to obtain a partial product. The partial products are then added to 

obtain the final result, as depicted by figure 2-11. 

 
           0 0 1 0 1 1 

         0 1 0 0 1 1 

         0 0 1 0 1 1 

       0 0 1 0 1 1 

     0 0 0 0 0 0 

   0 0 0 0 0 0 

 0 0 1 0 1 1          

 0 0 1 1 0 1 0 0 0 1 

Figure 2-11 : Sample multiplication, using the shift and add technique. 

 

With this system, the number of partial products is exactly the number of columns in the 

multiplier. 

4:2 4:2 4:2 4:2 

Ak-1Bk-1Ck-1Dk-1 Ak-2Bk-2Ck-2Dk-2 
A1    B1     C1    D1 A0    B0     C0    D0 

Carryk-1  Sumk-2 Sumk-1 
Carry2  Sum1 Carry1  Sum0 
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2.3.3.2 Reducing the Number of Partial Products 
 

[11] 
It is possible to reduce the number of partial products by half, by using the technique of radix 4 

Booth recoding. The basic idea is that, instead of shifting and adding for every column of the 

multiplier term and multiplying by 1 or 0, we only take every second column, and multiply by 

±1, ±2, or 0, to obtain the same results. So, to multiply by 7, we can multiply the partial product 

aligned against the least significant bit by  –1, and multiply the partial product aligned with the 

third column by 2: 

Partial Product 0 = Multipli cand * -1, shifted left 0 bits (x –1) 

Partial Product 1 = Multipli cand * 2, shifted left 2 bits (x 8) 

 

This is the same result as the equivalent “shift and add” method: 

 

Partial Product 0 = Multipli cand * 1, shifted left 0 bits (x 1) 

Partial Product 1 = Multipli cand * 1, shifted left 1 bits (x 2) 

Partial Product 2 = Multipli cand * 1, shifted left 2 bits (x 4) 

Partial Product 3 = Multipli cand * 0, shifted left 3 bits (x 0) 

 

The advantage of this method is the halving of the number of partial products. This is important 

in circuit design as it relates to the propagation delay in the running of the circuit, and the 

complexity and power consumption of its implementation.   

 

It is also important to note that there is comparatively littl e complexity penalty in multiplying by 

0, 1 or 2. All that is needed is a multiplexer or equivalent, which has a delay time that is 

independent of the size of the inputs. Negating 2’s complement numbers has the added 

complication of needing to add a “1” to the LSB, but this can be overcome by adding a single 

correction term with the necessary “1”s in the correct positions. 

 

2.3.3.3 Radix-4 Booth Recoding 
 

To Booth recode the multiplier term, we consider the bits in blocks of three, such that each 

block overlaps the previous block by one bit. Grouping starts from the LSB, and the first block 

only uses two bits of the multiplier (since there is no previous block to overlap), as ill ustrated by 

figure 2-12. 

  
         0  1  0  1  1  0  1  0  1  0  

 
Figure 2-12 : Grouping of bits from the multiplier term, for use in Booth recoding. The least 

significant block uses only two bits of the multiplier, and assumes a zero for the third bit. 
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The overlap is necessary so that we know what happened in the last block, as the MSB of the 

block acts like a sign bit. We then consult the table 2-3 to decide what the encoding will be. 

 
Block Partial Product 

000  0 

001  1 * Multiplicand 

010  1 * Multiplicand 

011  2 * Multiplicand 

100  -2 * Multiplicand 

101  -1 * Multiplicand 

110  -1 * Multiplicand 

111  0 
Table 2-3 : Booth recoding strategy for each of the possible block values. 

 
Since we use the LSB of each block to know what the sign bit was in the previous block, and 

there are never any negative products before the least significant block, the LSB of the first 

block is always assumed to be 0. Hence, we would recode our example of 7 (binary 0111) as 

such in figure 2-13. 

 
   0 1 1 1       
 block 0 :     1 1 0  Encoding : * (-1)  
 block 1 :  0 1 1   Encoding :  * (2)  

 

Figure 2-13 : Booth recoding for the two partial products with a multiplier term of 0111. 

 
In the case where there are not enough bits to obtain a MSB of the last block, as in figure 2-14, 

we sign extend the multiplier by one bit. 

 
      0 0 1 1 1      
 block 0 :         1 1 0  Encoding : * (-1)  
 block 1 :      0 1 1      Encoding :  * (2)  
 block 2 :   0 0 0        Encoding :  * (0)  
 

Figure 2-14 : Booth recoding for the multiplier term of 00111. In order to obtain three bits in the last 

block, we need to sign extend the multiplier by an extra bit. 
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The example from figure 2-11 can then be rewritten in the form of f igure 2-15. 

 

         0 0 1 0 1 1  , multipli cand 

         0 1 0 0 1 1  , multiplier 

        1   1  -1  , booth encoding of multiplier 

 1 1 1 1 1 1 0 1 0 0  , negative term sign extended 
       0 0 1 0 1 1 

  0 0 1 0 1 1 

             0 0 0 0 1  , error correction for negation 

 0 0 1 1 0 1 0 0 0 1    , discarding the carried high bit 
Figure 2-15: An example of a Booth recoded multiplication. 

 

One possible implementation is in the form of a Booth recoder entity, such as the one in figure 

2-16, with its outputs being used to form the partial product: 

 

 

 

 

 

 

 
Figure 2-16 : Booth Recoder and its associated inputs and outputs. [7] 

 

In figure 2-16, 

• The zero signal indicates whether the multipli cand is zeroed before being used as a 

partial product 

• The shift signal is used as the control to a 2:1 multiplexer, to select whether or not the 

partial product bits are shifted left one position. 

• Finally, the neg signal indicates whether or not to invert all of the bits to create a 

negative product (which must be corrected by adding “1” at some later stage) 

 

The described operations for booth recoding and partial product generation can be expressed in 

terms of logical operations if desired but, for synthesis, it was found to be better to implement 

the truth tables in terms of VHDL case and if/then/else statements.  
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2.3.4. Sign Extension Tricks 
 

Once the Booth recoded partial products have been generated, they need to be shifted and added 

together in the following fashion: 

 

[Partial Product 1] 

[Partial Product 2] 0 0 

[Partial Product 3] 0 0 0 0 

[Partial Product 4] 0 0 0 0 0 0 

 

The problem with implementing this in hardware is that the first partial product needs to be sign 

extended by 6 bits, the second by four bits, and so on. This is easily achievable in hardware, but 

requires additional logic gates than if those bits could be permanently kept constant, and the 

additional logic also consumes more power.  

 
   1 1 1 1 1 1 1 0 0 1 0 

   0 0 0 0 0 1 0 1 1 

   0 0 0 0 1 0 0 

   0 1 1 1 0    

   0 1 1 1 1 0 1 1 1 1 0  

 

Fortunately, there is a technique that achieves this: 

• Invert the most significant bit (MSB) of each partial product 

• Add an additional ‘1’ to the MSB of the first partial product 

• Add an additional ‘1’ in front of each partial product 

 

This technique allows any sign bits to be correctly propagated, without the need to sign extend 

all of the bits. 

 

   0 1 0 1 0 1 1   (additional “1”s) 

               0 0 0 1 0 

           1 1 0 1 1 

       1 0 1 0 0 

   1 1 1 1 0    

   0 1 1 1 1 0 1 1 1 1 0  
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2.4. Synthesis of Digital Circuits 
 

Synthesis is the process of converting the VHDL model into an actual circuit design, which can 

be implemented in a silicon chip. This is done by a software tool, such as those available from 

Synopsys or Cadence, which attempts to produce an optimal layout, subject to the design 

constraints set by the user. 

 

2.4.1. Combinatorial Designs 
 

To set the specifications for a purely combinatorial design, we need to create a clock signal, 

which is used as a reference for the target speed of the design.  

 
set_clock clk –waveform {0 4.00} –period 8.0  

 

We can then set the other timing constraints, as illustrated in figure 2-17. 

Figure 2-17 : Timing constraints for synthesis of an asynchronous circuit. 

 
set_input_delay –clock clk 0.0 [find –ports –inputs *]  

set_external_delay –clock clk 0.0 [find –ports –outputs *]  

 

Further constraints that may be set include the fan-out limit, and slew time limit for signals. 

With all of these constraints set, the synthesis can begin to optimise both speed and size of the 

circuit, with preference given to speed. 

 

2.4.2. Synchronous Designs 
 

Synthesis of synchronous designs is very similar to the combinatorial designs, except that a 

clock signal is already present. The consequence of this is that we need to make the synthesis 

tool aware of this signal, and take steps to ensure that clock skewing does not occur. 

 

The assumption in any synchronous design is that the clock signals arrive at their destinations 

simultaneously. Clock skewing is the phenomenon where some clock signals arrive faster than 

others, and therefore some parts of the circuit are enabled by the clock change before others. 

The result, amongst other things, is that the circuit may not perform correctly under these 

conditions. By requesting that Cadence does not try to optimise certain global signals, we can 

ensure this problem does not occur: 

C lock (8ns)

Input D elay (2ns) E xte rna l
D e lay
(1ns)C onstra int Tim e  (5ns)
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set_dont_modify –network –hier [find –port clk122]  

set_dont_modify –network –hier [find –port rst]  

 

Furthermore, Cadence uses a clock tree structure to ensure that clock skewing does not occur. 

The problem with clocks is that several inputs may need to be driven, but the fan out property of 

a signal limits how many of these may be directly driven. The solution is then to use the clock to 

drive a buffer, and that buffer is then able do drive a number of additional gates, as specified by 

its fan out. However, a side-effect of a buffer is to delay the signal, so we need to ensure that 

each clock signal passes through the same amount of buffers before reaching the input which it 

drives. This is the function of the clock tree, as represented by figure 2-18. 

Figure 2-18: The clock tree structure, which ensures that all clock signals reach their destinations at 

the same time. This simple example assumes a fan-out of two for both the original clock, and the 

buffers. 
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2.4.3. Memories 
 

A register file generation tool from Artisan Components creates the memories used in this 

project. The memories generated are optimised for size and speed for the chip technology that is 

used, and can be customised to suit the requirements of the project. The options of primary 

interest are: 

 

• Instance name, so that the component can be referenced from VHDL as a component 

• Number of memory locations 

• Number of bits to be stored in each location 

• Word-write mask and word partition size 

 

The last of these allows portions of a memory location to be overwritten with new data, while 

the rest remains unchanged. If this feature is enabled, then the word in each memory location is 

split i nto equally sized partitions of the specified size, and each partition has its own write 

enable signal. 

 

The architecture of the memories themselves consists of: 

 

• A read port with an address line, a data output, and an enable signal 

• A separate write port with address and data inputs, an enable signal, and also partition 

enable signals if that option is enabled. 

• “Active low” enable signals 

• Reads and writes may occur at the same time, but reading from an address that is being 

written to may cause unpredictable results if timing constraints are not obeyed. 

 

2.5. Corners 
 

The speed at which a circuit is able to run depends on its operating environment. The 

synthesiser can be set to operate in one of three predefined operating conditions, called 

“corners” . 

 

• Slow corner : 125°C operating temperature and 1.62V supply. This represents the 

slowest possible operating conditions. 

• Typical corner : 25°C operating temperature and 1.8V supply. 

• Fast corner : 0°C operating temperature and 1.98V supply. 

 

The actual values are specific to the TSMC 0.18µm technology that has been used for this 

project, but the concept remains the same for all technologies. In most cases we are interested in 

the worst case scenario, so designs are usually synthesised in the slow corner. 
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3. Implementation of the MATLAB Model 
 

It is important that the behaviour of any proposed circuit or algorithm is correctly modelled 

before any implementation is attempted. The reason for this is twofold. Firstly, such a model 

verifies that the design will actually do what is intended, and hence whether it is worth 

implementing. Secondly, it provides a useful tool by which the behaviour of any 

implementation can be compared against for correctness. 

 

The work that had previously been done on this project was to the extent that a working 

floating-point MATLAB model was available. However, this had littl e use, other than to 

ill ustrate the behaviour of an ideal implementation of the algorithm. In practice, it was infeasible 

to create a floating point implementation in hardware for three important reasons: 

 

• Impracticality in terms of the physical space which would be required on the chip 

• The amount of time required by the circuit to implement the entire algorithm would be 

too large 

• The power consumption of such a circuit would be undesirably high 

 

The only alternative approach was to implement a fixed-point model. That is, the 

implementation would manipulate pieces of data with precision of a fixed number of binary bits, 

and with a predefined range and number of fraction bits. Hence, my task was then to take the 

floating point MATLAB model, and modify it to emulate the behaviour of a fixed-point model. 

When that was done, it was necessary to examine the effects of adjusting the various 

parameters, to determine the combination required to balance performance with ease and 

simplicity of implementation. Finally, I could then modify the script to generate sets of test data 

for use in verifying the VHDL implementation. 

 

 

 

3.1. Creation of the Fixed Point MATLAB Model 
 

The requirement of a fixed point model, that emulates the desired performance of a physical 

implementation, is that it stores each piece of data within a given number of bits. Therefore, it 

needs to specify: 

• The number of bits available in which to store the data 

• The desired range of values that the data can take. This allows us to specify how 

many bits give the integer part of the value, by taking the next power of 2 for the 

range. For example, the range ±3 becomes ±4, and is specified by 2 integer bits and 

one sign bit 

• The rest of the bits are “fractional bits” , the bits that make up the binary equivalent 

of decimal places. If there are n fractional bits, then the values will be quantised to a 

precision of 2-n. 
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I also needed to isolate the pieces of data to which this quantisation occurs. This is anything that 

will be implemented in, or manipulated by, hardware. The specific values for ranges and bit 

sizes can be set as constants or input parameters, and tweaked at a later stage of development 

when the needs of the hardware and performance are better known. 

 

3.1.1. Performing the Quantisations 
 

The next thing that is required is a mechanism for performing the quantisations. A simple 

method for this would be to quantise each result after it is calculated: 

 
Quantise(a*b, numBits, precision) 

 

Such a function would need to quantise the result to the required precision, and then check that 

it is within the allowed range. A requirement of the operation of the algorithm is that out of 

range values are clamped at their maximum allowed size, so the function must also enforce this. 

 

However, this can become messy, and one must be careful not to make the following mistake : 

 
Quantise(a*b*c, numBits, precision) 

 

The reason that this is wrong is because the quantised calculation is actually performing several 

steps within one line. The problem with that is that a hardware implementation is only capable 

of performing one operation at a time. Each multipli cation, subtraction, and division, must be 

performed individually, in the correct order, and with each result being quantised : 

 
Quantise(a* Quantise(b*c,numBits,precision), numBits, precision) 

 

A more elegant solution is to create a special data type for fixed point values, and do all of the 

quantisation work “behind the scenes” via overloaded MATLAB operators. This also removes 

the possible error described above, since MATLAB processes the operations one at a time, in 

accordance to standard order of operations rules. After the initial creation of the data types, the 

script can be written as normal, with littl e need to pay attention to the fixed point calculations. 

 

The latter solution is the one that I have used, and the code that implements this data type is 

li sted in Appendix A.1. One point of care that should be taken is that the data type preserves 

quantisation by using the range and precision specified in the variables used. If variables with 

confli cting quantisation are used, then the quantisation of the first one will be preserved and 

implemented on the final answer.  
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For example, if A was 24 bits with a range of ±64, and B was 16 bits with a range of ±256, then 

• AB would give an answer that is 24 bits with a range of ±64 

• (ATBT)T would give the same answer, but in 16 bits with a range of ±256 

 

For this project, that did not prove to be an issue because most of the matrices were set to the 

same quantisation configuration. Where this was not the case, conversion was simply a matter 

of extending sign bits and padding least significant bits, or cropping data to make it fit into the 

required form. 

 

3.1.2. The Matrices are Supposed to be Hermitian! 
 

One of the key properties of this algorithm is that most of the matrices are Hermitian. The 

importance of this property is that it allows the simpli fied versions of the equation to be used, 

and also allows significant simpli fication of the hardware implementation. 

 

However, examination of the original output of the script showed that this was not the case. 

When run over a small number of iterations, the values on either side of the matrix diagonal 

were not quite conjugates of each other, differing by just a few significant figures.  

 

3.1.2.1 Quantisation Error 
 

The method I used for quantisation is to simply crop the value at the required precision, since it 

is too expensive to expect hardware to do any type of rounding. The problem with this is that 

the negative version of a number will not necessaril y have the same magnitude once quantised. 

For example, 

 Take the number 5.25      : 0101.01 

 Its 2’s complement is      : 1010.11 

 Cropping each to an integer value, we get  : 0101 and 1010 

 Taking the 2’s Complement of the second number : 0110 

 

We end up with the numbers +5 and –6, instead of the ±5 or ±6 that we might expect. In effect, 

quantising in this way is simply rounding to the next lowest number, but for negative numbers 

this means increasing the magnitude by one. This is the effect of the flooring function that has 

been used. 

 

3.1.2.2 Forcing the Hermitian Property 
 

The quantisation error is not significant, and in practice makes no noticeable difference to the 

error level of the final result. However, it is enough to destroy the Hermitian property of the 

matrices and its advantages to a hardware implementation. A hardware implementation could 

work by only calculating half of the matrix, and use the Hermitian property to assume what the 
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other half is supposed to be. However, the MATLAB script would then be modelli ng a different 

algorithm and could not be used for comparison with the hardware model. 

 

To overcome this issue, I simply needed to make sure that the script behaves in exactly the same 

way as the intended hardware, and uses one half of the matrix to “guess” the other half. This is 

easily achieved by adding code to the “behind the scenes” requantisation that occurs, and is 

represented by the lines 30 – 40 of Appendix A.1.1.  

  

3.2. Experimenting with the Fixed Point MATLAB Model 
 

Much of the implementation issues for the fixed point model have been discussed in the 

previous sections. All that was left was to implement a method of writing test data to a file for 

later comparison with the VHDL model (generated by code in Appendix A.1.2), and to 

experiment with the model parameters to ensure that it performs correctly. 

 

3.2.1. Range and Precision 
 

Two of the main parameters that I needed to consider were the number of bits that could be used 

to store each type of value in the memories, and how many of those bits were required to store 

the integer part of the value. 

 

The easiest issue to resolve was the range required for each value, which was found by adding 

code to the MATLAB model to keep record of the maximum absolute value that was obtained 

for the various values. Several tests were run to ensure that an adequate set of data was 

obtained, and the range was set to the next highest power of two. 

 

Once that was set, the only parameter left was the number of bits to use. Since the range was 

now fixed, this affected the precision of the fractional parts of the values. A technique was in 

already in place in the MATLAB script to measure the “quality” of the final result compared to 

a “perfect” answer, so this could be used to measure the effect of the number of bits used. This 

number of bits had to be chosen to provide a high enough quality of result, but low enough as to 

not unnecessaril y complicate the hardware with a large sized word width. 
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3.2.2. “ Unstable Algorithms”  
 

One problem that I encountered was that, although a reasonable quality of result was being 

produced, occasionally the algorithm went “unstable” and forced all of the values to near their 

positi ve or negative extremes.  

 

Experimentation indicated that this seemed to be related to the number of bits used in the 

quantisation. However, this explanation was not good enough because it did not reveal why the 

problem was occurring, and whether or not there was another unrelated problem with the 

algorithm that needed to be fixed. 

 

My solution was to add additional code that output the matrix values to a file as the calculation 

evolved. This revealed that the initial values of the algorithm were too small for the quantisation 

used, occupying only a few significant bits. As the algorithm progressed, the propagation of the 

quantisation error was large enough to completely distort the characteristics of the matrices, and 

therefore cause the instabilit y. The possible solutions were to either increase the number of bits, 

or decrease the range. A combination of both was finally chosen since, although some values 

did get cropped in the algorithm, this did not seem to affect the quality of the final answer. 
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4. Implementation of a Digital Multiplication Circuit 
 

Multipli cation plays many important roles in wireless digital communications, including 

filtering, coding and other signal processing. Furthermore, a multiplier component tends to lie in 

the criti cal path of a circuit and consumes a large proportion of the power requirements, so it is 

important to find a fast, power eff icient design for use in today’s high-speed applications. 

 

However, signal processing rarely uses purely real numbers. Use of the complex number system 

is almost unavoidable, as it allows mathematical manipulation of variables that would not 

otherwise be possible. Hence, for a multiplier circuit to be of any use in a signal processing 

system, it must be extended to handle complex numbers. This chapter documents the 

development of such a multiplier. 

 

4.1. Beating the Optimal Multiplier 
 

This section provides a brief overview of the outcomes of my industrial experience project with 

Bell Labs Research. A number of architectures were built and analysed, but only the final 

design is described here. 

 

 

4.1.1. Recursive Adder Tree using GENERATE statements 
 
This design, ill ustrated in figure 4-1, is not the one used, but ill ustrates the concepts used in the 

chosen architecture. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4-1 : Architecture of the “recursive” design. Instances of the adder entity  

may instantiate further instance of the same entity within themselves. 
 

 
4:2 4:2 4:2 4:2 4:2 

Recursive Adder 

Partial Product Generator 

Recursive Adder 
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This architecture works by feeding all of the partial products and correction terms into a 

recursive array adder. This adder uses a series of VHDL generate statements to: 

 

• If there are 5 or more inputs to add, 

o Create as many 4:2 compressors as it can 

o Feed any leftovers into another instance of the array adder (with 4 or less 

inputs) 

o Put all of the results into a new array, which forms the input to another instance 

of the array adder. Return the results of this new instance. 

 

• Otherwise, 

o If there were 4 inputs, create a 4:2 compressor and return the results 

o If there were 3 inputs, create a 3:2 compressor and return the results 

o If there were 2 inputs, return those inputs as the sum and carry 

o If there was 1 input, return it as the sum, and return a zero carry. 

 

The problem with this technique is that it does not synthesise well , but this can be overcome by 

alternative methods of coding the same concept. 

 
4.1.2. Adder tree using process statement 
 
This design has a similar approach to the first, but uses a process statement and loops. It 

takes an array of partial products, and continually reduces them with 4:2 and 3:2 compressors 

until there are only two left. 

 

The inputs to the top level of adders are the size of the output, containing the partial products 

shifted to the appropriate columns. The extra bits around the partial product are padded with 

zeros, and it is left to the synthesiser to remove and optimise these. 

 

4.1.3. Results 
 

Tables 4-1 and 4-2 summaries some of the results on the performance of the final design 

 

 
 Target = 2.5ns Target = 3ns Target = 4ns Target = 5ns 
Bits Time Size Time Size Time Size Time Size 
10 x 10  3.12 13917       
16 x 16  <3.7  3.92 41317 4.06 35845 5.00 23587 
24 x 24    4.32 77715 4.27 79804 5.05 55764 
32 x 32        5.26 141498 

Table 4-1 : Synthesis results for the “Together” design, of various sizes in the slow corner with no 

final adder on the outputs. Time units are nanoseconds, and size units are microns. 
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Target = 1.5ns Target = 2ns Target = 2.5ns Target = 3ns Corner final 
add? Time Size Time Size Time Size Time Size 

Slow No     3.12 13917   
Slow Yes       4.20 20367 
Fast No 1.50 9477 1.96 6486 2.19 6303 2.31 6290 
fast Yes 1.82 17214 2.01 13133 2.50 9071   
Typical No   2.03 12424 2.50 8855 2.97 6829 
Typical Yes   2.60 18887   3.01 13575 

Table 4-2 : Synthesis results for the 10 x 10 bit design under various conditions and target speeds. 

The time unit is nanoseconds, and the size unit is microns. 

 

These results provide an indication of the type of performance that can be expected under 

various conditions. Varying the target speed affects the synthesis results, as Cadence attempts to 

optimise both speed and size. 

 

4.1.4. Conclusions on multiplier architectures and coding style 
 

It was found that the speed of a synthesised circuit is dependant on not only the architecture 

chosen, but also the coding style used to implement that design. 

 
In particular, the following conclusions were drawn about the effect of coding style on the 

performance of a design: 

 

• Process statements synthesise better than “generate”s 

• Function calls synthesise better than entity instantiations 

• From a synthesis viewpoint, it seems to be better to write code in more small steps 

rather than fewer complex steps

• It seems to be better to write wasteful code and let Cadence optimise it, rather than to 

write it eff iciently yourself. For example, the described designs use large arrays 

containing cells that are either never used, or forced to a constant value. The original 

design was hand-coded bit-by-bit, so that all operations were performed with no wasted 

or extra variables.

 

One of main time saving techniques used in the fastest designs is the use of carry-save adders to 

combine the partial products into a final answer. The abilit y of these to combine three or four 

numbers to two, in a time that is independent of the width of the numbers, is a much more 

eff icient alternative than using traditional adder. Using these, a carry propagate is only required 

for the final addition of the adder tree. 

 

These observations have been followed when incorporating the multipliers into complex 

multipliers, which in turn form the basis for the matrix multipliers, and ultimately the signal 

processor. 
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4.1.5. Alternative Algorithms 
 

Several possible architectures were considered and built , and the following are two of the more 

interesting of the alternative ideas: 

 

• [15] describes the use of the redundant binary number system for multipli cation. This 

number system uses three values for each “bit” , being 1, 0, and –1, so that additions 

may be carried out without propagation delay. However, traditionally, this technique 

still requires a carry-propagation in the conversion from RB to normal binary. This 

paper claims to have a technique to overcome this, but analysis and experimentation 

have been unable to verify this claim. Further investigation has indicated that this paper 

may be fundamentally flawed, but this has not yet been off iciall y confirmed. 

 

• [16] uses the concept of left-to-right multipliers to improve the speed of the design. The 

concept is that the most significant bits of the answer are known before the lesser 

significant bits, so it is possible to “guess” two alternatives for what the top half should 

be. The bottom half is created as normal, with a carry-propagate addition, and the carry-

out is used to select which of the two alternatives is to be used. This technique did not 

prove to be as fast for synthesised designs, and does not offer carry-save outputs. 
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4.2. Filed Patent : Power Optimisations Without Affecting Critical Path 
 

In most applications multiplier circuits have their inputs tied to some form of data bus, and their 

outputs are sampled as needed. For much of the time the multiplier output is not needed, but it 

still operates on the continually changing data of the inputs. The problem with this is that 

changes in the state of logic gates consume considerably more power than remaining in a static 

state, and so a large amount of “useless” data inputs will cause a large amount of power to be 

wasted in a complex circuit block such as a multiplier. 

 

Hence, it is desirable to incorporate an “enable” input which, when not asserted, will effectively 

zero the inputs and place the majority of the circuit into a static, low power, state. A simple 

method might be to gate all of the inputs, as depicted in figure 4-2. 

 

 

 

 
 

 

 
Figure 4-2 : Simple enable pin, by gating both multiplier inputs 

 

While this method works, it increases the size of the criti cal path, by the addition of an AND 

gate. Since the multiplier generally lies in the criti cal path of most circuits, it is desirable to 

maximise the speed of this component. The challenge is then to find a method of adding the 

enable function, without increasing the length of the criti cal path. 

 

Dr Chris Nicol’s US patents #6,275,824 and #6,065,032 make use of the fact that neither the 

multipli cand, nor the NEG booth recoded signal, are in the criti cal path of the circuit. He shows 

that by gating both of these, the objective can be achieved. However, he uses a different form of 

booth recoding, as described in [11], which uses x1, x2, and NEG signals. This is different to 

my multipliers, which use x0, x2, and NEG booth recoded signals. 

 

Due to the different form of Booth recoding, this technique cannot be directly used. Close study 

of the required implementation logic and synthesis results found that my method proved to be 

simpler and faster, so it was preferable to use this technique if possible. By using a similar 

strategy of examining the components containing the criti cal paths, the circuits of f igure 4-3 

were derived. 

 
 
 
 
 
 

Figure 7: Simple method of gating inputs with an enable pin 
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Multiplier 
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Figure 4-3(a) : Possible logic for the Booth recoded zero (x0) signal 

Figure 4-3(b) : Possible logic for the Booth recoded Neg signal 

Figure 4-3(c) : Possible logic for the Booth recoded Shift (x2) signal 

Figure 4-3(d) : Logic for the generation of the least significant bit of the partial product, with enable 

logic that is outside of the critical path. The dotted box represents a multiplexer 

Figure 4-3(e) : Logic for all of the other bits of a partial product, with enable logic that is outside of 

the critical path. The dotted box represents the multiplexer. 
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The key points of this design are 

• Synthesis analysis has shown that while the shift, neg, and zero logic of figure 4-

3(a),(b), and (c), each theoretically contain two gates, it is the shift logic which has the 

longest delay. The other signals are roughly equal in delay. 

 

• Figure 4-3(d) contains a critical path through the Neg Out signal from figure 4-3(b), and 

through the XOR gate and AND gate. 

 

• The enable logic passes through AND4, which is not in, or is at worst equal to, the 

critical path. Hence, removing the gating of the zero signal does not improve the critical 

path. 

 

• For the least significant bit of the partial product, shown in figure 4-3(d), the NEG 

signal may also need to be gated, but this is well outside of the critical path. This is not 

required for the other bits of the partial product, shown in figure 4-3(e). 

 

Hence, we now have a technique for adding the enable pin without theoretically affecting the 

critical delay of the circuit. In practice, the synthesis tools tend to rearrange the logic and issues 

such as fan out limits may affect the results. However, in all cases, synthesis simulations have 

shown the enable signal to remain outside of the critical path. 

 

This technique has found to be significantly different enough to the existing patent, and so it has 

also been filed for patent. It provides the additional benefits of not requiring gating of the 

multiplicand inputs, thus reducing the number of gates and potentially allowing for further 

speed increases. The outcome of this patent application is not yet known. 
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4.3. Complex Number Multipliers 
 

Once an eff icient design for a multiplier had been designed, it could then be extended to 

multiply complex numbers. However, since complex numbers consist of two components, 

multipli cation is more involved. 

 

A typical complex multipli cation is (a + ib)(c + id), but to perform this calculation in hardware 

we need to separate the two components: 

  (a + ib)(c + id)  = (ac – bd) + i(bc + ad) 

 

This means that four separate multipli cations are required in total. By observing that the 

multipli cations can be arranged so that “a” and “b” are always the multipliers, and “c” and “d” 

are always the multipli cands, we can make some savings in logic. Only two, not four, booth 

recoder sections are required, as shown in figure 4-2. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-2: Architecture for a complex multiplier circuit, based on the components of the original 

multiplier. 

 

In addition, it is only necessary to have one adder tree for each component of the output. The 

only inconsistent part of the design is dealing with the subtraction of the “bd” term, but this can 

easily be handled by inverting the NEG booth recoded input to the partial product generator. 

 

A further complication is that sometimes, in this particular project, it is necessary to multiply by 

the conjugate of the value that is read from the inputs. Explicitl y taking the conjugate of those 

values would involve the problem of having to add “1” to the result, especially when we may 

need to do so again after the booth recoding. Instead, I found it was easier to incorporate this 

feature into the multiplier, after observing the output of such a calculation: 

 

 (a + ib)(c - id)  = (ac + bd) + i(bc - ad) 

 

All that is required is to invert the NEG signal for the bd and ad partial products. 
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4.3.1. Alternative approaches 
 

There have been numerous designs for complex multipli cation algorithms. Two particular 

approaches of interest are: 

 

• [13] shows how some of the results can be reused to prevent redundant calculations. For 

(a+ib)(c+id), the real part of the answer is ac – bd. The imaginary part is bc + ad, but 

can also be expressed as (a + b)(c + d) – ac – bd. This requires one less multipli cation, 

and three more additions. The algorithm involves using lookup tables and full adders to 

generate the result, but this technique was not feasible for this project. 

 

• The use of the redundant binary number system for complex numbers is described in 

[14]. This number system involves the use of three possible values for each “bit” , being 

–1, 0 and 1, to allow for more eff icient arithmetic operations. Previous experience with 

this number system, for the previous multiplier project, did not make this a suitable 

candidate. 

 

The most appropriate design was the previously described method of using carry-save adder 

trees. Unlike the above methods, this technique allows data values to be kept in carry-save 

format, and manipulated in that form, until the normal binary form is required. This proves 

particularly useful for matrix multipli cation, because the results for an output cell of a matrix 

consist of the addition of several separate multipli cations. In these cases, we only need to know 

the value of total sum, and not the individual multipli cations, so there is no need to convert the 

multipli cation results out of carry-save form. 

 

4.4. Testing and verification 
 

Each of the multiplier designs that I have built have been verified for correctness, by use of a 

pair of VHDL test benches: 

 

• An exhaustive test covers all possible inputs for a given multiplier configuration. The 

test scripts are set up to run exhaustive tests for 2x2, 3x3, up to 9x9 bit multipliers. 

 

• For larger multipliers, a random test bench is used to pick arbitrary values for the inputs 

to the multipliers. 

 

For each of the first two tests, the result is compared to the value that is returned from the 

VHDL multipli cation operator. If the results differ, then the simulator will halt with an error 

message. The code for these tests is provided in appendix C1. 
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5. Design of Matrix Multiplier Circuits 
 

The second major stage to the implementation part of the project was to investigate possible 

methods for performing matrix multipli cations. The approaches I considered can be categorised 

into three groupings: 

• Fully parallel: all multipli cations are performed simultaneously 

• Fully sequential: There is only one hardware multiplier, and all the multipli cations are 

performed one at a time 

• Semi parallel/semi sequential: There are a number of multipliers, so several 

calculations can be done at once, but several steps are needed to obtain the full result 

 

I have implemented all designs in VHDL for comparison, and also for the reason that they may 

later prove useful for other projects. Each design is briefly described in the following sections, 

and the integration of most appropriate design into the core part of the signal processor is 

described in chapter 6. 

 

5.1. Fully Parallel Matrix Multipliers 
 

The parallel matrix multiplier contains one multiplier instance for every multipli cation that is 

required, as depicted in figures 5-1 and 5-2 on the next page. Therefore, multiplying an (m x n) 

matrix by an (n x p) matrix would require: 

• n multipli cations for each cell i n the output matrix 

• An output matrix of size (m x p) 

• A total of mnp multipli cations. 

 

The advantages of such an architecture include: 

• All of the results are available together 

• It is the fastest possible architecture. Since all multipli cations are done simultaneously, 

and each cell ’ s results are talli ed together simultaneously, we only need the time taken 

to perform one multipli cation and collate the results for an individual cell  

 

However, there are also major disadvantages: 

• It requires mnp instances of the multiplier circuit. For any matrices much bigger than 

2x2, and with more than a few bits in each matrix cell , the surface area required to 

implement the circuit on a chip would be unreasonably huge. 

• All i nput data must be available simultaneously, so this technique is not suited to 

normal memories where only one or two words of data may be read at one time. An 

alternative might be to latch the data into the inputs, but in most cases this would defeat 

the purpose of performing a parallel calculation by the time required to load the latches 

from memories. 
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Figure 5-1 : Architecture of a cell generator entity for the parallel multiplication C = AB, where C, A, 

and B are 4x4 matrices 

 

Figure 5-2 : Architecture for the parallel matrix multiplier. Each generator corresponds to an instance 

of the entity in figure 5-1, with the outputs omitted for clarity. 
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5.2. Fully Sequential Matrix Multiplier 
 

The fully sequential design contains a single multiplier, and hence must calculate each cell one 

at a time. The consequence of this is that all of the results must be stored in some kind of 

readable memory, and the design also needs to be synchronous.  

 

This allows the use of pipelining in the design, which can significantly shorten the time required 

by the matrix multiplication. Hence, the clock cycle length only needs to be as long as the 

slowest pipeline stage, but several cycles are required for the entire operation. In summary, the 

required stages are: 

 

1. Read the data from memory. Two separate memories hold the two matrices, so 

that they can both be read at once. 

2. Wait for the data to arrive from the memory. This is required because the 

memories that are to be used have clocked outputs, meaning that the read 

address will be latched into the memory at the start of this stage, but the data 

will not be latched to the output until the start of the next stage. 

3. Perform the multiplication 

4. Add the multiplication result to the tally 

5. Resolve from carry-save into normal binary form 

6. Write the result to memory 

 

Combining stages could further optimise the design, but the specific nature of these adjustments 

depends on the required implementation. Combining stages means that less pipeline registers 

are required, and one clock cycle of operating time is saved for each stage that is merged. 

However, one must be careful that the new combined stage does not have the longest delay over 

any of the other stages, otherwise the clock cycle time may need to be increased.  

 

In addition, the pipeline registers prevent the changing output signals of each stage from 

reaching the next stage until they are at their final value. Removing a pipeline register between 

two stages will not affect the accuracy of the result if the clock cycle is long enough, but it is 

likely that the logic gates in the second stage will undergo more state transitions than 

previously. The consequence of this is that the device may consume more power because, as 

already outlined in chapter 2, logic gates that undergo a state transition consume more power 

than gates which remain at a static level.  

 

In summary, the advantages of this design are: 

• There is only one multiplier, so comparatively small surface area required on the chip 

• Inputs are only required one at a time, which could minimise complexities with routing 

the input signals around the chip. 
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The main disadvantage is that a fully sequential matrix multiplier takes the most time to 

complete its operation. Multiplying two 4x4 matrices would require at least 64 clock cycles. (16 

cells x 4 multiplications for each) 

 

5.3. Double Buffering Issues 
 

One of the issues that has needed addressing in this project is the situation when the memory 

which provides the input matrix is also the destination for the output matrix, such as the 

calculation A = B*A. A simple approach is to simply use a double buffering approach where we 

use a different memory for the output, effectively creating two different versions of A.  

 

The double buffering technique may not always be a desirable approach: 

• The additional memory requires surface area on the silicon chip 

• In an implementation where the same matrix was used several times, logic would be 

required to keep track of which version of A is the current one, and multiplexers would 

be required to switch between the two. 

 

By studying the ordering in which values are read and written, we can devise an alternative 

approach. Considering the calculation C = AB, 

• For each cell of C, we need to  

o Read a row of cells from A 

o Read a column of cells from B 

• The most efficient method of generating C is to calculate each cell one at a time, either 

working across the rows one at a time, or down the columns one at a time 

• For each cell in a given column of C, we require the same column from B. That column 

from B is not required for calculation of cells in any other column of C. 

• For each cell in a given row of C, we require the same row from A. That row from A is 

not required for calculation of cells in any other row of C. 

 

Therefore, 

• Once we have generated any given column of C, we no longer need the corresponding 

column from B. 

• Once we have generated any given row of C, we no longer need the corresponding row 

from A. 

 

This is illustrated in figure 5-3, for the case of generating columns of C at one time. 
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Figure 5-3 : Order in which rows and columns are read when the output matrix is written by working 

down the columns. The output cells are in the same column of the output matrix as the cells that are 

being read from the second input matrix. When the column of the output matrix is complete, we no 

longer need the corresponding column from the input matrix. 

 

The solution to the problem is then 

• If C and A are the same, then for every row of C, 

o Read in the appropriate row of A for the first cell in that row of C 

o Latch it, and use the latched value for all other cells in that row of C 

o The values that are output will go to the row of C/A that is latched, so the 

original values can still be used for the time that they are needed. 

• If C and B are the same, then for every column of C, 

o Read in the appropriate column of B for the first cell in that column of C 

o Latch it, and use the latched value for all other cells in that column of C 

o The values that are output will go to the column of C/B that is latched, so the 

original values can still be used for the time that they are needed. 

 

However, only one of these solutions can be used at one time. 

 

5.4. Semi Parallel / Semi Sequential Matrix Multipliers 
 

Each of the cases described so far has a major disadvantage that prevents it being suitable for 

use within this signal processor. The parallel architecture requires excessive surface area in 

order to implement the required amount of the multipliers. The sequential design is efficient in 

terms of surface area, but is too slow for the requirements of the signal processor. Hence, a 

technique is required that uses a small amount of multipliers, but operates over a small enough 

number of clock cycles. 
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The approach that was finally decided upon was based on the fact that most of the matrices in 

the device are of size 4x4. It was decided to attempt to use four multipliers in such a way that an 

entire output cell could be calculated at once, as was previously described in figure 5-1. 

 

5.4.1. Optimising the Memory Configuration 
 

In order to perform the four multiplications simultaneously, the appropriate row and column 

must first be loaded from each of the source matrices. It is useless to simply try to load values 

one at a time from each of the memories, because this would still require four read cycles for 

each output cell, giving the same total of 64 cycles that limits the fully sequential designs. 

 

However, there is no reason why we can read only one value at a time from each memory. In 

fact, for the calculation C=AB, the following technique allows the entire row of a 4x4 matrix, 

A, to be read in one clock cycle. 

 

o The memory for A consists of, not 16, but only 4 addressable locations. 

o Each location represents one row, and is logically partitioned into the 4 columns 

o The write enable pin of the memory is replaced by a write mask, that selects which of 

the partitions are overwritten in a write operation. Therefore, the whole memory 

location does not have to have its contents specified at the one time. 

o An entire row of A can be read in one operation 

o An single cell of A can be written in one operation, without affecting the other cells in 

that row. 

 

Memory Address Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0 

00 A(1,1) A(1,2) A(1,3) A(1,4) 

01 A(2,1) A(2,2) A(2,3) A(2,4) 

10 A(3,1) A(3,2) A(3,3) A(3,4) 

11 A(4,1) A(4,2) A(4,3) A(4,4) 
Table 5-1 :  Configuration for a memory containing a 4x4 matrix A with 8 bits in each cell. Each 

memory location contains one row of data, but individual cells can be written by placing a write 

mask on the separate partitions.  

 

 

A similar approach can be made for matrix B, by storing the locations in groups of columns 

instead of rows. The only problem that remains is that a matrix can only be stored in this way in 

either rows or columns, but some matrices may need to be used in both configurations. One 

workaround is to simply read each memory location, and use a multiplexor to select the correct 

part of the data. A more elegant solution to this problem is described in the implementation of 

the signal processor in Chapter 6, which ensured that this problem never arose. 

 

5.4.2. Implementation of the design 
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With these memory optimizations, it is possible to create a multiplier of two 4x4 matrices that 

takes only 16 clock cycles, plus the additional cycles required to clear the pipeline. For the 

operation C=AB, the pipeline stages are 

1. Read a row from A, and a column from B 

2. Delay so that data has time to arrive from the latched memory outputs 

3. Perform the multiplications 

4. Tally the multiplication outputs into two carry-save results 

5. Resolve the carry-save results into a standard binary form 

6. Output result to memory 

 

As with the sequential design, if C is the same as A or B, then the appropriate row or column 

may be latched when it is first read. 

 

5.4.2.1 Non-conforming matrices 
If the memory locations representing the matrix B, in C=AB, do not contain columns of data, 

then the data can be read as such: 

 

o For each column of output cells, 

o Read each cell for the appropriate column in B, simultaneously reading one of 

the rows of A (4 read cycles) 

o Store the column that has been read and perform the multiplications as normal 

o Read each of the other three rows and perform the calculations for the 

respective cells of C, using the remembered column (3 read cycles) 

 

This technique requires only 7 reads per output column, giving a total of 7*4 columns=28 

cycles for the operation, plus the time required to clear the pipeline. 
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5.4.2.2 One matrix doesn’t conform, and the other needs to be overwritten 
 

One problem which arose with the original design was an equation of the form B = AB, where 

both A and B needed to be stored in memory cells containing columns. It is wasteful to simply 

store the answer in a different memory, and this can further complicate other parts of the design. 

 

o For the problem of reading and writing the same matrix in the sequential design, we 

would simply store the current column from B while we used its contents and overwrote 

those values in the memory. We would write B by working down the columns, 

remembering the column input from B and reading cells from each row of A as required 

 

o For the problem of matrix A not conforming to containing a complete row in one 

memory location, we decided to read in the row from A, and store it in a latch so that 

we would not have to repeat those four read operations. We would then work across the 

rows of the output matrix 

 

Clearly there is a major clash in these two solutions – we cannot calculate the output matrix by 

working across both the rows and the columns at the same time! 

 

The most criti cal problem with B = AB is that the output is the same as one of its inputs, so this 

must be addressed first. The issue of the cells of A being grouped in columns instead of rows 

requires additional read cycles, but does not affect the output. The solution is then: 

 

o Read the four locations in order to obtain the require row of A. At an appropriate time, 

read in the column from B that is to be overwritten, and also read in the same column 

from A. Store both columns, since the second matrix will be overwritten and we want to 

save some read cycles from the first matrix. (4 read cycles) 

 

o Perform the multipli cations as normal for that cell  

 

o For the other cells in the same column of the output matrix, use the stored column of B. 

For A, we have also stored one column, so we already know one value from the next 

row. Read the other columns in order to obtain the rest of the row (three reads) 

 

o After each set of 3 reads, perform the calculations as normal 

 

This process is ill ustrated by figure 5-4. 
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Figure 5-4: Order in which matrix cells are read, for the calculation of the third column of the output 

matrix, for the case where both matrices are stored with columns in each address. The cells of the 

first row need to be read one at a time (a,b,d), but at an appropriate time we read and store the 

required column for both matrices (c). For the rest of the cells in that output column, we then only 

need to read the cells from the columns that were not stored (e,f,g for row 2, and h,i for row 3) 

 

 

This gives a total of 4+3*3=13 read cycles for each column of the output matrix, with a total of 

52 cycles to perform the entire operation. The time required is 1.85 times more than the 28 

cycles that would be needed by doing the following, if space permitted: 

 

o using an extra memory to eliminate the problem of reading and writing to the same 

memory 

o using the previously described solution to handle the fact that the contents of A are 

stored in columns instead of rows. 

 

X X X 

X X X 

X X X 
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d. e. f. 

g. h. i. 
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5.5. Squaring Matrices 
 

A further problem is that fact that some of the multipli cations that are required involve the same 

matrix on both inputs. While the solutions in section 5.4.2.1 ensure that we can work around the 

problem of the matrix not conforming to both the row and columns format, it cannot deal with 

the problem of needing to read two different memory addresses at the same time. One simple 

approach may be to insert an extra read cycle into the pipeline, but it may not always be 

desirable to increases the pipeline length in this way. Fortunately, even in the absence of dual 

read port memories, there exists a solution that does not require additional clock cycles. 

 

As an example, take the 4x4 matrix A, which is stored with an entire column in each memory 

location. To perform the calculation of one output cell , we need to read an entire row and an 

entire column, as depicted by figure 5-5. 

 

 

 
Figure 5-5 : The row and column required for the calculation of a given output cell  

 

Figure 5-6 demonstrates that, since that row and column are sourced from the same matrix, they 

overlap by one cell:  

 

 

 
Figure 5-6 : The row and column required from a single matrix that is to be squared, required to 

calculate the output cell . 

 

The required row can be read one cell at a time. However, since we actually need to read the 

whole column in order to obtain that value, at some stage the entire column that is required will 

also be read. In this way, we can obtain the column “ for free”, the same as if it had been read 

from a separate memory. 

 

 

 

 
Figure 5-7 : If the matrix of figure 5-5 is stored so that each address contains an entire column, then 

to read the row we need to read each column at a time and extract the relevant data for the row. One 

of these reads will also allow us to obtain the required column “ for free”. 

 

Further optimizations may also be obtained by storing a row or column to prevent the need to 

reread data, as described in section 5.4.2.1. The result is a squaring operation that can be 

performed in the same amount of time as an equivalent two matrix multipli cation. 

X = 

2 

= 
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5.6. Multiplying any combination of matrices 
 

In summary, this chapter has described methods that would allow the multiplication of any 

combination of matrices, as described by table 5-2. In all cases, the sources are 4x4 matrices, 

but these methods could easily be adapted for any size, and not just square matrices. This 

assumes that the matrices are stored with either entire rows, or entire columns, in each memory 

address. For multiplications where there is one cell per memory address, see section 5.2. 

 

Calculation Cycles Sections Comments 

C = AB 16 5.4.2 A is stored with rows in each memory address, B with 

columns in each memory address 

C = AB 28 5.4.2.1 Both A and B are stored with rows in each memory address, 

or with columns in each memory address. 

B = AB 52 5.4.2.2 A and B are both stored with columns in each memory 

address. The same method can be adapted for rows, by 

latching the columns one cell at a time 

A = AB 52 5.4.2.2 Same as B=AB, but the output is calculated by working 

across the rows, rather than down the columns. 

B = A2 52 5.5 A is stored with columns in each memory address, but the 

same method can be adapted for if A contained rows in each 

address. 

A = A2   Not possible. The described method, for when the destination 

is also one of the sources, is that we calculate the answer by 

working across either rows or columns of the output, while 

remembering the corresponding contents of the original. 

Since squaring requires both rows and columns, this cannot 

be done unless we use the form B = A2. 
Table 5-2 : Multiplications for 4x4 matrices can be done for almost any configuration. Where a letter 

A or B appears twice in a single calculation, it is referring to the same matrix. 
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5.7. Testing and Verification 
 

I have implemented and tested the three types of designs with a series of VHDL test benches: 

• The first step was to verify the correct operation of the matrix multiplier logic, without 

having to be concerned with the additional complication of memory accesses. To 

achieve this, the test bench acted as a set of dummy memories that were guaranteed to 

work. In addition, these multipli cations used only integers. The control logic of the 

design was then the only component under test, as the multipliers were already 

guaranteed to work and the requantisation logic was not used. 

• Next, the requantisation logic needed to be tested, by using fixed point real numbers in 

the tests. 

• The final step was to build a realistic memory interface for the multiplier circuits, and 

coordinate reads and writes between that, the test bench, and multiplier design. This 

involved testing of both the interface, and the read/write logic of the multiplier design. 

 

In order to test the correctness of the designs, a known accurate result was required. This was 

obtained from a MATLAB script, which ran a random multipli cation of quantised matrices and 

output the results to a file. The actual test bench consisted of a number of modes, each 

performing a separate function: 

 

1. Initiali se test bench and read data from the test file, including the number of 

tests and configuration of the matrices. Change to mode 2 after 1 cycle 

2. Read in all of the data from the test file for one test. This consists of the real 

and imaginary parts of the input and output matrices. Change to mode 3 after 1 

cycle 

3. Initiali se the memories of the matrix multiplier. Write one address in each 

matrix per cycle, and change to mode 4 when finished 

4. Reset the matrix multiplier, telli ng it to start calculating. Change to mode 5 

5. Wait one cycle for the multiplier’s signals to reach the test bench. Change to 

mode 6 

6. Wait until the multiplier’s “busy” signal becomes deasserted. When this occurs, 

prepare the output memory for reading of the first value and change to mode 8 

7. Read the data on the memory’s output line and store it in the test bench. If there 

are more values left, then prepare the memory for the next read and change to 

mode 8, otherwise change to mode 9. 

8. Wait for a cycle while the data is read from the memory and becomes latched to 

its outputs. Change to more 7 

9. Compare the data read from the output memory with the answer read from the 

test file. If they differ, generate a failure message. If there are more tests left, 

then go to mode 2. 
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6. Implementation of the Signal Processor 
 

In order to implement the algorithm, the signal processor needs to perform the following 

additional types of operations: 

• A multiplication A = B * B*, where B is a 4 x 128 matrix 

• A number of multiplications of pairs 4x4 Hermitian matrices, of the configuration types 

that were covered in Chapter 5. 

• A multiplication of a 4x4 Hermitian matrix by a 4x1 matrix 

 

The matrix multiplier that was chosen to form the core of the design is the semi-parallel 

architecture described in section 5.4. Only the final design, which takes advantage of the 

Hermitian properties, is described here, but an earlier version for general matrix multiplications 

was also built on the same principles and techniques outlines in chapter 5.  

 

The challenge that forms the key part of the architecture was to solve the following 

complications: 

1. There is only enough physical space to implement the one matrix multiplier. This means 

that as much of the architecture as possible must be common for each multiplication 

that is to be performed 

2. Some matrices appear as the first term in some multiplications, and the second term in 

others. Since the matrices can only be stored as either columns or rows, and not both, 

this means that these matrices will be in the wrong form for some of the calculations. 

3. The results of the matrix multiplications must be Hermitian when required. As already 

discussed in section 3.1.2, the simple cropping techniques that are used in hardware do 

not allow this. 

 

The first problem is simply a design constraint that needs to be adhered to when addressing the 

other issues, while the third problem is the easiest to solve. 
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6.1. Ensuring that the output matrices are Hermitian 
 

The approach to the solution of this problem has already been specified by the fixed point 

MATLAB model, which is to calculate the top diagonal half of the matrix, and guess the other 

half. It is necessary to follow exactly the same approach so that the two models may be checked 

for accuracy. 

 

On this occasion, the design specifications work in favour of the problem, providing a simple 

method of implementation. The key is in how the matrix cells are addressed, ill ustrated in figure 

6-1. 

 
0000 0001 0010 0011 

0100 0101 0110 0111 

1000 1001 1010 1011 

1100 1101 1110 1111 

Figure 6-1 : Memory addresses for the cells in a 4x4 matrix, in binary form 

 

Each output matrix is of size 4x4, and each cell i s given a four bit address. The least significant 

2 bits correspond to the physical memory address that is used to store the value, and the most 

significant two bits match the partition number within the memory write mask. 

 

 

 

 

 

 
Table 6-1 : Mapping of logical memory addresses to positions within the physical memory locations. 

 

The trick to writing Hermitian matrices is to notice the similarity between the addresses of cells 

that are mirrored across the main diagonal. Such pairs of cells are 0100 and 0001, 1001 and 

0110, 1000 and 0010, etc. In all cases, if the least significant two bits are swapped with the most 

significant two bits, then the address of that cell ’ s partner is formed. 

 

Therefore, the algorithm for writing these matrices is simple: 

o Write the cell i n the top half of the matrix with the calculated value 

o Swap the two halves of the address, and take the conjugate of the calculated value. 

o Write the new value to the modified address. 

 

The problem which this leaves is that only one write can be done per clock cycle, so this needs 

to be considered in the rest of the design. However, the need to wait for an extra clock cycle 

also gives the circuit time to form the conjugate of the original calculation.  

Physical 
Address 

Bits 
31-24 

Bits 
23-16 

Bits 
15-8 

Bits 
7-0 

00 1100 1000 0100 0000 
01 1101 1001 0101 0001 
10 1110 1010 0110 0010 
11 1111 1011 0111 0011 
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6.2. Taking Advantage of Hermitian Matrices 
 

A further property of the algorithm’s matrices allows a simpli fication that solves the second of 

the design problems. If it can be assured, by section 6.1, that the input matrices are Hermitian, 

then they will be of the following form: 

 
A B C D 

/B E F G 

/C /F H I 

/D /G /I J 

Figure 6-2 : Form of the 4x4 Hermitian matrix. “ /B” means “conjugate of B”  

 

The key observation is that for any row n, the corresponding column n contains the conjugates 

of the same values. The diagonal contains entirely real numbers, which are conjugates of 

themselves. 

 

In addition, the complex multiplier has already been designed to allow multipli cation by the 

conjugate of its inputs, to cater for the calculation of A*A*. This provides the necessary 

components to implement the following simple solution: 

 

o Implement all matrices by storing them in the form of one column within each memory 

address. 

o When a column is needed, simply read the appropriate address 

o When a row is needed, read the address of the corresponding column, and set the 

multiplier to use the conjugate of its input value. 

 

This solution further simpli fies the hardware implementation due to the fact that every matrix 

multipli cation requires the reading of rows from one of the matrices. Therefore, the multipliers 

will always be taking the conjugate of one of the inputs, and the signal that controls this 

function will be constantly asserted. The synthesis tool will recognise this, and optimise the 

circuit to remove the redundant case. 
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6.3. Performing multiplications with Hermitian optimisations 
 

Using the technique described in section 6.1, when we calculate any non-diagonal cell of the 

output matrix the conjugate value is also written to its corresponding cell on the other side of the 

diagonal. Therefore, once the first row of the output matrix has been calculated, the first column 

has also been assigned new values. The next cell to be calculated is then in the second row and 

the second column. This pattern continues, and the output matrix is completed in the manner 

depicted by figure 6-3. 

 

 

 

 

 

 

 

 
Figure 6-3 : Order in which the Hermitian matrices are fill ed in. Dark squares represent the cells 

currently being written, and light squares represent the cells already calculated. 

 

This information is helpful for performing the squaring of Hermitian matrices. Since the rows 

and columns come from the same matrix, it may first appear that it is necessary to perform two 

reads per output cell . However, on closer inspection, that is not necessary. 

 

The key observation in figure 6-3 is that the first cell to be explicitl y written on each row of the 

output matrix lies on the diagonal. That means that the row and column required for that 

calculation have the same memory address. For the matrix squaring, by section 6.2, the first 

location read for each output row contains both the data for the row to be read, and the column 

required for the first calculation. All that is required is to store that row’s data, and for the other 

output cells in that row, read each column as required and use the stored row. 

 

For general Hermitian matrix multipli cations, exactly the same technique can be used. Although 

it is not necessary to remember the row data in this case, it is more consistent to do so and 

allows for simpler circuitry. 

 

6.3.1. Multiplication of any Hermitian matrices 
 

The technique described in this section allows for the calculation of any of the cases from table 

5-2 in 16 cycles, when all of the source matrices are known to be Hermitian. When one, or none 

of the source matrices are Hermitian, then the techniques described in section 5.6 may be used. 

Hence, we now have a way for multipli cation of almost any combination of valid matrices, so 

the next step was to build the signal processor that demonstrated an implementation of this 

theory. 
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6.4. Signal Processor Architecture 
 

Once the design problems had been resolved, it was possible to fully develop the processor data 

path and control sequence. The concept behind how each type of multiplication works is the 

same, and the general sequence of events for the generation of each matrix cell is summarised in 

figure 6-4. 

 
Figure 6-4 : The four stages required for performing matrix multiplication. Each piece of data read 

from the memories passes through each stage, and these stages can be pipelined to improve the 

circuit performance. 

 

The system can be divided into four pipeline stages, providing the following functionality: 

1. The Read stage generates the address of the row or column that is to be read from 

each matrix, and the address of the cell that will be written to the output matrix with 

the results of this newly addressed data. 

2. The delay stage waits for the data to become available from the memories 

3. The Multiplication stage performs the four multiplications, and tallies the results 

together in carry-save format. 

4. Finally, the results are resolved into standard binary form and written to the 

destination memory. 

 

Several of the original stages described in the semi-parallel architecture have been merged in the 

final design, mainly because propagation delay was not an issue. One reason for this is that the 

merged stages easily fit within the specified 8ns clock cycle time. Another advantage is that 

reducing the number of clock cycles between the read and write stages removes complications 

with timing synchronisation and read-after-write dependencies. 

 

An overview of the processor architecture is provided by figure 6-5. The control unit, as 

described within this chapter, generates one set of addresses and data, which is sent to each of 

the memories. The data read from each of the memories is fed into multiplexors, to select which 

pieces of data are currently required by the controller. A separate set of signals is used for the 

special mode 0 memory, which is of a different size to the others.  
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In addition, the outside environment of the signal processor can also access the memories when 

the control unit is not using them. It is the job of the interface unit to coordinate this, with the 

aid of the “busy” indicator from the control unit. The outside circuitry also needs to provide data 

to initiali se the memories, and variable aspects of the processor configuration. 

 
Figure 6-5 : Overview of the system architecture 

 

6.5.  The  Read Stage 
 
The primary purpose of this stage is to generate the addresses for the reading and writing of 

matrices. However, in order to do this in the most eff icient and accurate manner, this stage also 

requires additional control logic, making it the stage that is most aware of the state of the 

processor.  

 
This effectively makes the read stage circuitry the main state machine controller, with each 

mode representing a different matrix multipli cation. The mode counter is used by the read stage, 

and other stages, to adjust their control signals accordingly.  

 

The read stage can be summarised by the models in figure 6-6 and table 6-2. 
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Figure 6-6 : Conceptual view of the pipeline read stage. Numbers in parentheses represent the bus 

size, while others are one bit signals. 

 
Signal Type Description 
Clk Input 8ns system clock signal 
Rst Input When set low, resets the processor 
Restart Input When asserted high on a rising clock edge, signals the processor to 

begin calculating the equation, using the current input values. 
Running Input Signal which indicates whether or not the processor should be doing 

anything. If low, everything is disabled. 
Mode0_address1 Internal First address to read for a calculation in mode 0 
Mode0_address2 Internal Second address to read for a calculation in mode 0 
Mode0_read_Address Output Address to be read from memory on next clock cycle 
Int_out_addr Output Address of the output matrix cell which is to be calculated from the 

data that is currently being addressed. 
Diagonal Output If high, then the cell addressed by int_out_addr is one the diagonal of 

the output matrix. 
Do_wrt Output If high then, when the data which was addressed in the previous clock 

cycle reaches the output stage, the result is to be written to memory. 
Mode Output The mode of the state machine. Allows control of multiplexors to 

correctly direct data to/from memories. 
Mode0_counter Output Used for when stage 0 needs to read two addresses for each set of data, 

by counting how many reads have been done. 
Read_delay Internal When low, stalls the pipeline for one cycle. This is because the output 

stage sometimes requires two clock cycles, to write to both halves of 
the Hermitian matrix. 

Mode0_delayed Internal Similar to read_delay, but specific to mode 0 
Table 6-2 : Summary of signals for pipeline read stage. 

 

The read addresses for memories, other than those used by mode 0, can be obtained directly 

from the output address, since the row and column required for reading correspond directly to 

the row and column of the cell that is to be written: 

 

For example, Cell to be written : 0111 

Row to be read  : 01 

Column to be written : 11 
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6.5.1. Mode 0 – Calculating A = B * B* 
 

The distinguishing features about mode 0 is that 

o The input matrix is not square. For this analysis, it is considered to be 4x128, but the 

width could be any power of two that is larger than 4. 

o The multipli cation is of the matrix B, with the conjugate transpose of itself 

 

In order to perform a matrix multipli cation of this type, we need to read a row and a column as 

normal. The difference is that there are more than four multipli cations necessary for the 

calculation of each output cell . In fact, the exact number will be the width of the input matrix B, 

which is a multiple of 4 if the above constraints are met.  

 

For the 4x128 matrix, this will require 128 multipli cations to obtain each output cell , using only 

the 4 available multipliers. It is therefore clear that, for each output cell , 32 sets of 4 values must 

be read, multiplied, and talli ed. When all 32 sets of data have been processed, the result can be 

written to the output memory and the tally is cleared. The nature of this arrangement means that 

it is best to structure the memory so that each address contains four values that are adjacent in 

the same row of the matrix. Part of this matrix is shown in Figure 6-7 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0000000 0000001 0000010 0000011 

2 0100000 0100001 0100010 0100011 

3 1000000 1000001 1000010 1000011 

4 1100000 1100001 1100010 1100011 
Figure 6-7 : Depiction of the 16 leftmost columns of a 4x128 matrix, and the memory locations 

which contain their values. 

 

However, there is a further complication. The problem is that the columns from the “second” 

matrix of the multipli cation are really rows from the same matrix that is acting as the “first” 

matrix of the multipli cation. Since the widths are much larger than four, it is not feasible to use 

the techniques of remembering previously read data, that has been previously described. The 

only practical solution is to alternately read data from the two different rows. Table 6-3 

ill ustrates this process for calculating the output cell i n the first row and third column of the 

output matrix. 

Clock Cycle  +0 +1 +2 +3 +4 +5 … +60 +61 +62 +63 

Mode0_address1  0  1  2  … 30  31 

Mode0_address2  64  65  66  … 94  95 

Mode0_read_address 0 64 1 65 2 66 … 30 94 31 95 

Mode0_counter  0 1 0 1 0 1 … 0 1 0 1 

Do_wrt   1 0 0 0 0 0 …. 0 0 0 0 
Table 6-3: Signal values for multiplication involving two different rows of the input matrix 
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However, for output cells on the diagonal, the two sets of rows that are read are the same. 

Therefore, as shown in table 6-4, there is no need to waste clock cycles by performing two reads 

for each pair of four values. 

 

Clock cycle  +0 +1 +2 +3 … +29 +30 +31 

Mode0_address1  32 33 34 35 … 61 62 63 

Mode0_address2  32 33 34 35 … 61 62 63 

Mode0_read_address 32 33 34 35 … 61 62 63 

Mode0_counter  0 0 0 0 … 0 0 0 

Do_wrt   1* 0 0 0 … 0 0 0 
Table 6-4 : Signal values for multiplications involving one row of the input matrix. * : For the first 

row, Do_wrt is initially low because that is the first calculation of the mode. 

 

It is also convenient that the cells which only require one read for each pair of four values, the 

diagonals, are also the ones which only require one write cycle. This makes some calculations 

take more cycles than others, but no pipeline delays are required because there is at least a 31 

cycle delay between writes, and the output stage is the only stage that would be affected by this 

situation. The next mode is not affected either, because the final cell only requires a single write 

cycle. 

 

Using this information, we can calculate how many cycles are required for each stage of the 

operations. Table 6-5 ill ustrates the start cycle of the calculation of each of the output values, 

after which the signals take on one values in one of the above tables, as appropriate. 

 

Clock Cycle  0 32 96 160 224 256 320 384 416 480 512 

Mode0_address1  0 32 64 96 32 64 96 64 96 96 next 

Mode0_address2  0 0 0 0 32 32 32 64 64 96 mode 

Mode0_base1  0 0 0 0 32 32 32 64 64 96  

Diagonal   1 0 0 0 1 0 0 1 0 1 1 
Table 6-5 : Signal values for the first clock cycle of the start of the calculation of each output cell . 
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6.5.2. Final Mode : Multiplying a 4x4 matrix by a 4x1 matrix 
 

This mode involves the multiplication of the matrix stored in one of the memories, by a 4x1 

matrix that is latched in from the inputs at the start of the calculation of the output matrix. The 

output matrix is a 4x1 matrix, so each column of the 4x4 input only needs to be read once. 

 

Clock Cycle  0 1 2 3 4 

Int_out_addr  0000 0100 1000 1100 next 

Diagonal   1 1 1 1 mode 
Table 6-6 : Signal values for the first clock cycle of the start of the calculation of each output cell. 

 
The memory read addresses are obtained directly from the int_out_addr signal, as previously 

described. 

 
6.5.3. Other modes : Multiplying two 4x4 matrices 
 

All of the other modes involve multiplying together two 4x4 Hermitian matrices, which can be 

achieved using the principles described in sections 5.4.2.1, 5.5, and 6.2. The timing of the read 

cycle then becomes as shown in table 6-7. 

 

Clock Cycle 0 1 2 3 4 5 6 7 

Int_out_addr 0000 0001 0001 0010 0010 0011 0011 0101  

Read_delay 1 0 1 0 1 0 1 1  

Diagonal  1 0 0 0 0 0 0 1 

 

Clock Cycle 8 9 10 11 12 13 14 15 16 

Int_out_addr 0110 0110 0111 0111 1010 1011 1011 1111 next 

Read_delay 1 0 1 0 1 0 1 1 mode 

Diagonal  0 0 0 0 1 0 0 1  

 
Table 6-7 : Signal values for the first clock cycle of the start of the calculation of each output cell. 

 
The memory read addresses are obtained directly from the int_out_addr signal, as previously 

described. 
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6.6. The Delay Stage 
 
The purpose of this stage is simply to delay the control signals from reaching the multiplier 

stage for one cycle, while the memory data is being read. 

 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 6-8 : Conceptual view of the delay stage. The dotted lines indicate which inputs are assigned 

to the outputs at the rising edge of each clock cycle. 

 
Figure 6-8 shows how the input and output signals are related. The only unusual case is how the 

finished_del signal eventually becomes the mul_finished output. All other signals are simply 

assigned directly to their corresponding output. 

 

The finished_del signal is asserted by the read stage on the final read cycle of the final 

multipli cation of the equation. Its purpose is to eventually allow the control of the “busy” signal, 

when it reaches the output stage. However, if it is simply delayed once at each pipeline stage, 

then it will change the busy signal on the last write cycle. Since the busy signal is used by the 

memory interface to determine whether to allow writing to memories from the signal processor 

or an external source, this means that the last write cycle will not execute correctly. If the signal 

is delayed by one extra cycle, this will still not work because the actual memory write does not 

take place until the cycle after the output stage. Therefore, the “finished_del” signal must be 

delayed by two cycles to ensure accuracy. 
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6.7. The Multiplication Stage 
 
The multiplication stage receives four pairs of numbers from the memories, multiplies them, 

and adds the results together to form the value for the appropriate output cell. For mode 0, there 

are more than four multiplications to be done, so the result must be added to a tally by the 

output stage until all values have been calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-9 : Conceptual View of the multiplication pipeline stage. 

 

Most of the input signals come from either the delay stage, or are global control signals (clk, rst, 

restart, and running) The only exceptions are 

• The data that is read from the memories, after being addressed by the read stage 

• The do_wrt signal. This signal indicates whether the results of the multiplication stage 

are to be written to memory, or tallied for later use. For simplicity of code, it is 

generated by the read stage at the start of the calculation of the next result. Hence, it is 

generated a cycle later than required, and bypasses the delay stage in order to regain 

synchronisation. 

 

Most of the output signals are simply copies of the input signals, as indicated by figure 6-8. The 

only thing that is generated by this stage is the results of the multiplication. 
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6.7.1. Mode 0 – Calculating A = B * B* 
 

The main difference of this mode from others is that there is the situation where two reads need 

to be done before the multipli cation can take place. The mechanism for coping with this is 

simple: 

• On the first cycle, store the data in a register 

• On the second cycle retrieve that data and use it as one of the inputs to each multiplier. 

The other inputs come directly from the memory data that was just read. 

 

For the case where only one read is required, we can simply direct the data read from the 

memory to both multiplier inputs. This works because the multipliers are set up to automatically 

take the conjugate of the second input, so no further manipulation is required. Appendix B2.2.1,  

and figure 6-10, summarise this process. 

 

Figure 6-10: Data path for multiplication mode 0.  Where we require data from two different rows of 

the input matrix, it is stored in the register on the first read, for use in the multiplier when data is 

available from the second read. Where both pieces of data come from the same row (i.e. the same 

piece of data), both value are taken directly from the incoming data stream. 

 

6.7.2. Other Modes 
 

The technique used to perform these multipli cations has already been outlined in section 6.3, 

and this is fairly simple to implement: 

• If the output cell being calculated is on the diagonal, then read both multiplier inputs 

from memory and store the row for later use. 

• Otherwise, use the remembered row as one input, and read the column from the 

appropriate memory. 

• For the multipli cation by a 4x1 matrix, we do not use the stored the row but read it from 

memory. The column is read from a latched direct input. 

 

In the above, a “row” is actually a column of the Hermitian matrix, of which the conjugate is 

taken. The flowchart for this mode is provided in Appendix B2.2.2 
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6.8. The Recombine and Output Stage 
 
The final stage in the pipeline, presented in figure 6-11, involves converting the carry-save 

components into standard binary numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-11: Conceptual view of the output pipeline stage. 

 

Details of the implementation are ill ustrated in Appendix B5. 

 

6.8.1. Clamping overflowed values 
 

When a multipli cation between two signed 16 bit numbers occurs, the result is a 31 bit value. 

That is, twice the number of integer bits, twice the number of fractional bits, and one sign bit. 

However, numbers of this size are too big to be stored in the memories, and so they must be 

cropped in some way. Furthermore, since some of the results are to be reused in the 

calculations, they need to be cropped so that they keep the original number of fractional and 

integer bits. 

 

The fractional bits can simply be cropped, with no further processing necessary. However, this 

is not the case with the integer bits. In particular, we need to deal with the case where the value 

of the result is outside of the allowed range. 

 

For example, consider an 8 bit integer result, with an allowed range of ±16. That range consists 

of the least significant 5 bits, so designate the 5th least significant bit as the “cropped sign bit” . 

Now consider four examples: 

5 : 00000101   17 : 00001011 

-5 : 11111011   -17 : 11110101 
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The examples 5 and –5 are within the allowed range, while 17 and –17 are not. Examination of 

the binary encoding of these numbers will reveal that, for the numbers within the allowed range, 

all of the bits from the cropped sign bit to the original sign bit are the same. This is not the case 

for numbers that are not within range. Hence, we have a mechanism for detecting range 

overflows. 

 

The technique for clamping is then:  

• Check if all of the bits above the clamping point are the same 

• If they are, simply crop the number 

• If not,  

o Set the sign bit of the cropped number to the original sign bit 

o Set all of the other bits to the inverse of the sign bit. 
 

This will t hen ensure that and out of range numbers will be cropped to their upper or lower 

extreme, as appropriate. 

 

6.9. Disabling parts of the matrices 
 

An extension to the design was to consider ways of “disabling” certain rows and columns of the 

matrix, so that the 4x4 matrices would behave li ke 3x3, or 2x2 matrices. The disabled rows and 

columns would simply contain zeroes. This proved to be a simple matter of: 

 

• Disabling the appropriate multiplier. Due to the technique of reading in columns or 

rows at a time, it happens that each multiplier always operates on data from the same 

row or column. (The only exception is for mode 0.) 

• Initiali se the appropriate rows or columns to zero at the start of the algorithm. 

 

The result is that the matrices behave as if the disabled sections were not present. Furthermore, 

the power consumption will also approach the levels as if the disabled sections were missing, 

since the disabled multiplier saves power by preventing any glitches from propagating through 

it. The calculation will still use the same number of clock cycles, but this is not an issue for this 

design. 

 

6.10. Testing and verification 
 
The testing of the final design made use of test benches that were heavily based on those used 

for the matrix multiplier designs. Similar testing steps were followed, but were modified as 

required to suit the algorithm. The only additional steps were to vary the various model 

parameters, such as quantisation bits and range, to ensure that the design would match the 

MATLAB model for all combinations. 
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6.11. Synthesis of Final Design 
 

Synthesis of the signal processor was performed using the Synopsys software, since the 

Cadence PKS license was not available for the time that it would be required. Since this 

software is not believed have as accurate timing as Cadence PKS, the initial target was set to 

7ns clock cycles. This was to ensure that the design would comfortably meet the timing 

requirements of 8.2ns. A summary of results is given in table 6-8. 

 

Timing Target 

(ns) 

Required Time (ns) Worst Path time (ns) Size (mm2) 

7 6.61 6.62 2.45 

8.2 7.72 7.71 2.00 

Table 6-8 : Synthesis results for the signal processor, using Synopsys software. 

 

Although the result for the 7ns target is reported as having violated the timing constraint (6.62 > 

6.61), this is not a concern because it is merely the result of rounding errors and significant 

digits. Simply reducing the target further would allow the worst path to fit within 6.61ns. 

 

The size is an indicator of the physical space that the circuit would require on a silicon chip, and 

includes the four 20x20 bit multipliers, the memories, and the control logic. As the results 

indicate, the synthesis tool will attempt to optimise the circuit to provide a trade-off between 

size and speed. As the timing constraint is relaxed to 8.2ns, it is able to reduce the size by using 

slower, but more compact, logic. 

 

6.11.1. Changes to described design 
 

The initial synthesis indicated that the design may not quite fit within the design constraints, or 

would at least be uncomfortably close to exceeding them. Analysis of the synthesis data 

revealed that the worst path was through the multipliers, so this was the stage that had to be 

modified. 

 

A simple solution was applied, involving splitting this stage into two pipeline stages. The work 

involved was simply the addition of a pipeline register in the manner that was described for the 

delay stage. For the purposes of this thesis, it is more intuitive to describe these two stages as 

one block. However, further splitting of pipeline stages would introduce read-after-write 

hazards, and would be a more complicated process. 
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7. Conclusions and Extensions 
 

This project has involved the implementation of a signal processing algorithm in a VHDL 

model, which successfully matches the output of a corresponding MATLAB model with the 

same quantisation configuration. This thesis has generalised the algorithm by describing a set of 

techniques that can be applied to multiply almost any configuration of matrices, whether they 

are Hermitian or not. A subset of these techniques was required for the signal processor, 

demonstrating the practicality of implementation. 

 

In particular, steps that I have completed to achieve this goal included: 

 

• Research, design, implementation, and testing of high speed architectures for the 

digital multiplication of numbers. This work is the only part which had been done 

prior to the commencement of the project. 

• Enhancing these multipliers with power saving optimisations, that disable the 

multiplier circuit without increasing the critical delay. This technique has since been 

filed for patent by Lucent Technologies. 

• Research into alternative methods for implementing complex number multipliers 

• Design, implementation, and testing of a complex number multiplier design 

• Research, design, implementation, and testing of various architectures for the 

multiplication of matrices, as described by chapter 5. Consequently, I have devised 

methods for hardware multiplication of various combinations of matrices, as 

summarised in 5.6 and 6.3.1 

• Conversion of a floating point MATLAB model of the algorithm into a fixed point 

quantised model, which emulates the desired performance of a hardware 

implementation. This includes analysing the effects of adjusting the various model 

parameters, and selecting the most appropriate combination. 

• Incorporating the most appropriate matrix multiplier design into a control unit, to 

produce the signal processor detailed by chapter 6. 

 

All stages of the hardware implementations additionally required: 

 

• Design of testing mechanisms to verify the correctness of the implementations 

• Synthesis of the designs, and analysis of these results to determine the best way in 

which to arrange the code. 

• All of the multipliers have been written in a form that makes them generically sizable to 

any width of input. 
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The result is a signal processor that performs the required calculations, meeting the following 

specifications: 

 

• It operates within 8ns clock cycles 

• By use of optimisations specific to Hermitian matrices, the result is calculated in the 

least number of cycles possible. This time is limited only by the number of reads and 

writes that are required. 

• It saves power, by performing as few calculations as needed. This includes taking the 

conjugate of already calculated results (section 6.1) for the output matrices, and the 

disabling of multipliers that are not in use (section 6.9). 

• An appropriate amount of quantisation has been chosen to balance the physical size 

with performance of the design. 

 

 

7.1. Possible Extensions 
 

This project has been built for a specific purpose, so all of the foreseen requirements of the 

design have already been fulfill ed. Furthermore, I believe that the number of clock cycles 

required for the algorithm is almost, if not exactly, minimal for the design constraints that have 

been set. Therefore, any further extension to this project would involve only optimisation of the 

various components of the design. 

 

One obvious area would be further optimisation of the multiplier circuit, and this is an area that 

is under constant research. The designs described in this document have been built for synthesis 

by a tool such as Cadence PKS and Synopsys. However, experimentation by staff at Bell Labs 

Research has shown that a “full -custom” design of the circuit and associated layout on the chip 

has the potential to offer significant savings in surface area and speed.  

 

One possibilit y could then be the generation of custom multipliers in much the same way as the 

Artisan Components tool generates the memories used by this project. This would then allow 

for the use of larger word widths in the processor, generating a better quality of result. 

Furthermore, it would also allow the implementation of other architecture of multiplier, which 

failed to produce their claimed benefits under normal synthesis. 

 

In a similar way, other components of the design could also be optimised, but overall there is 

littl e scope for extension to this project. 
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A.1. Fixed Point Model 
 

A.1.1 Fixed Point Data Type 
A.1.1.1 Staticfixed_pt_matrix 
 
1 function fp = staticfixed_pt_matrix(range, bits, va lue, makeHermitian)  
2   % staticfixed_pt_matix(range, bit, value)  
3   % creates a staticfixed_pt_matix, a matrix which does not change  
4   % in  precision or range when mathematical operations are carried  
5   % out on it.  
6   % range = range of the integer part of the value. If not a power of two,  
7   %         the value given will be increased to the next power of two. The  
8   %         positive and negative extreme is the same magnitude, whichever of  
9   %         the given values is bigger.  
10   % bits = number of bits fo r the entire number (sign bit, integer bit, 

faction bits)  
11   % value = initial value, which should be a 2D matrix  
12   if ndims(value)~=2  
13       err('input matrix should be 2 - dimensional');  
14   end  
15    
16   siz = size(value);  
17   check_range(range,'');  
18   fp.range_bits = ceil(log2(max(abs(range)))); % - 1 for the sign bit  
19   fp.frac_bits = bits -  fp.range_bits -  1;  
20   fp.range = [ - 2^fp.range_bits 2^fp.range_bits];  
21   fp.bits = bits;  
22   fp.step = 1 / (2^fp.frac_bits);  
23   fp.value = value;  
24   fp.value = floor(value / fp.step) * f p.step;  
25    
26   if (nargin<4)  
27       makeHermitian=1;  
28   end  
29 %  makeHermitian=0;  
30   if (makeHermitian==1) & (siz(1)==siz(2))  
31       for cnt=1:siz(1)  
32           for cnt2=1:siz(2)  
33               if (cnt==cnt2)  
34                   fp.value(cnt2,cnt) = real(fp.value(cnt, cnt2));  
35               else  
36                   fp.value(cnt2,cnt) = real(fp.value(cnt,cnt2)) -  

imag(fp.value(cnt,cnt2))*j;  
37               end  
38           end  
39       end  
40   end  
41  
42   for cnt = 1:siz(1)  
43       for cnt2 = 1:siz(2)        
44           real_part = real(fp.va lue(cnt,cnt2));  
45           imag_part = imag(fp.value(cnt,cnt2));  
46           if (real_part > max(fp.range) - fp.step)  
47               real_part = max(fp.range) - fp.step;  
48           end  
49           if (real_part < min(fp.range))  
50               real_part = min(fp.range) ;  
51           end  
52           if (imag_part > max(fp.range) - fp.step)  
53               imag_part = max(fp.range) - fp.step;  
54           end  
55           if (imag_part < min(fp.range))  
56               imag_part = min(fp.range);  
57           end  
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58          fp.value(cnt,cnt2) = re al_part + j * imag_part;  
59    end  
60   end  
61  
62   fp = class(fp,'staticfixed_pt_matrix');  
63    
64 return  

 

A.1.1.2 ctranspose 
1 function fp = ctranspose(a)  
2   bits = a.bits;  
3   range = a.range;  
4   value = a.value';  
5   fp = staticfixed_pt_matrix(range,bits,value);  
6 return;  

 

A.1.1.3 display 
 
1 fun ction display(fp)  
2   disp(' ');  
3   disp(['Static Fixed point Matrix ',inputname(1),' = ']);  
4   disp(' ');  
5   disp(fp.value)  
6   disp(' ');  
7 return  

 

A.1.1.4 minus 
1 function fp = minus(p,q)  
2   if (~isa(p,'staticfixed_pt_matrix'))  
3       if (~isa(q,'staticfixed_pt_matrix'))  
4           err('At least one term in multiplication must  be of  

staticfixed_pt_matrix type.');  
5       else  
6           bits = q.bits;  
7           range = q.range;  
8           value = p -  q.value;  
9           fp = staticfixed_pt_matrix(range,bits,value);  
10       end  
11   els e 
12       if (~isa(q,'staticfixed_pt_matrix'))  
13           bits = p.bits;  
14           range = p.range;  
15           value = p.value -  q;  
16           fp = staticfixed_pt_matrix(range,bits,value);  
17       else  
18           bits = p.bits;  
19           range = p.range;  
20           value = p.value -  q.value;  
21           fp = staticfixed_pt_matrix(range,bits,value);  
22       end  
23   end  
24 return  
 
 

A.1.1.5 mrdivide 
 
1 function fp = mrdivide(p,q)  
2   if (~isa(p,'staticfixed_pt_matrix'))  
3            err('The first term in the divide  must be of staticfixed_pt _matrix 

type.');  
4    else  
5       if (~isa(q,'staticfixed_pt_matrix'))  
6           bits = p.bits;  
7           range= p.range;  
8           value = p.value / q;  
9           fp = staticfixed_pt_matrix(range,bits,value);  
10       else  
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11            err('The first term in the d ivide must NOT be of  
staticfixed_pt_matrix type.');  

12       end  
13   end  
14 return  
 

A.1.1.6 mtimes 
1 function fp = mtimes(p,q)  
2   if (~isa(p,'staticfixed_pt_matrix'))  
3       if (~isa(q,'staticfixed_pt_matrix'))  
4           err('At least one term in the multiplication must be  of  

staticfixed_pt_matrix type.');  
5       else  
6           bits = q.bits;  
7           range = q.range;  
8           value = p * q.value;  
9           fp = staticfixed_pt_matrix(range,bits,value);  
10       end  
11   else  
12       if (~isa(q,'staticfixed_pt_matrix'))  
13           bits  = p.bits;  
14           range= p.range;  
15           value = p.value * q;  
16           fp = staticfixed_pt_matrix(range,bits,value);  
17       else  
18           % use p's constraints  
19           bits = p.bits;  
20           range = p.range;  
21           value = p.value * q.value;  
22           fp = staticfixed_pt_matrix(range,bits,value);  
23       end  
24   end  
25 return  
 

A.1.1.7 plus 
1 function fp = plus(p,q)  
2   if (~isa(p,'staticfixed_pt_matrix'))  
3       if (~isa(q,'staticfixed_pt_matrix'))  
4           err('At least one terms in multiplication must  be of  

st aticfixed_pt_matrix type.');  
5       else  
6           bits = q.bits;  
7           range = q.range;  
8           value = p + q.value;  
9           fp = staticfixed_pt_matrix(range,bits,value);  
10       end  
11   else  
12       if (~isa(q,'staticfixed_pt_matrix'))  
13           bits = p.bits;  
14           range = p.range;  
15           value = p.value + q;  
16           fp = staticfixed_pt_matrix(range,bits,value);  
17       else  
18           % both are of fixed type, use p's constraints  
19           bits = p.bits;  
20           range = p.range;  
21           value  = p.value + q.value;  
22           fp = staticfixed_pt_matrix(range,bits,value);  
23       end       
24   end  
25 return  
 

A.1.1.8 valof 
1 function fp = valOf(p)  
2   if (~isa(p,'staticfixed_pt_matrix') )  
3       err('Input matrix must be of staticfixed_pt_matrix type.');  
4   end  
5   fp = p.value;  
6 return  
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A.1.2 Output of test data to a file 
 

This function writes the contents of a matrix to a file, in text format. It works by generating the 

integer value of the binary number that represents the data. For example, the number 5.25, 

encoded as 010101 would be written to the file as 21. 

 
1 function output_matrix(fid, matrix, a_bits, a_frac, desc)  
2  
3       if ndims(matrix) ~= 2  
4           err('Input matrix must be two dimensional for file output!');  
5       end  
6       fprintf(fid,' ---------------------- ');  
7       fprintf(fid,desc);  
8       fprintf(fid,' \ r \ n');  
9       siz = size(matrix);  
10       a_height = siz(1);  
11       a_width = siz(2);  
12       a = ones(a_height, a_width);  
13       for rows = 1:a_height,  
14           fprintf(fid,'      ');  
15           for columns=1:a_width,  
16              %--  a(rows,columns) =  matrix(rows,columns)*2^(a_bits - a_frac) -  

2^(a_bits - a_frac - 1);  
17               fprintf(fid,'%8.0f ',floor(matrix(rows,columns)*2^a_frac));  
18           end  
19           fprintf(fid,' \ r \ n');  
20       end  
21       fprintf(fid,' \ r \ n');  
22  
23       for rows = 1:a_height,  
24           fprintf(fid,'      ');  
25           for columns=1:a_width,  
26              % a(rows,columns) = a(rows,columns) +  j*(rand*2^(a_bits - a_frac) 

-  2^(a_bits - a_frac - 1));  
27               fprintf(fid,'%8.0f 

',floor(imag(matrix(rows,columns )*2^a_frac)));  
28           end  
29           fprintf(fid,' \ r \ n');  
30       end  
31       fprintf(fid,' \ r \ n');  
32    
33 return  
34  
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The signal processor architecture is made up of four pipeline stages: 

• read data from memory 

• delay to allow data to arrive from memory 

• Multipli cation of data 

• Output of results and/or tall ying data for later use 

 

Each of the four stages consists of the following basic design: 

The behaviour of the specific signals are described in chapter 6. The following sections of this 

appendix detail the flowcharts for each of the pipeline stages. 

 

NOTE: Although flowcharts are sequential by nature, a feature of VHDL is that signal 

assignments within a process statement do not occur until either 

• The end of the process statement is reached 

• A time delay or wait statement is reached 

Hence, assignments of the form a<= b in these flow charts should be read as “b is the value that 

will be assigned to a, but the assignment will not take place until the termination point of this 

flow chart” . 

Begin

End

rst = '1'

rising clock
edge

restart= '0''

running

stage_running

do  mode/stage specific operations
next_stage_running <= true;

next_stage_running <= false;

reset to  state o f first
cycle o f first
operation

true

true
false

false

truefalse

true

yes

false

no

reset certain
signals
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B.1. Read Stage 
 

B.1.1 Mode 0 – Multiplication o f B * B* 

 

Begin

mode0_delayed
mode0_delayed <= false;
do_wrt <= '0'; T rue

mode0_do two=
mode0_counter

False

do_wrt <= '0';
mode0_counter <= '1';
mode0_read_address <= mode0_address2;

mode0_address1
=xx11111

do_wrt='1';

mode0_address2=
1111111

FalseTrue

True

mode0_address1 <= mode0_base1 + "0100000";
mode0_address2 <= mode0_base1 + "0100000";
mode0_read_address <= mode0_base1 + "0100000";
mode0_base1 <= mode0_base1 + "0100000";
diagonal <= true;

mode0_address1
=1111111

True

mode <= "001";
rtog_delayed <= q_toggle xo r '1';
delay_running <= true;
mode0_delayed <=false;
outbase <= "0000";
int_out_addr <= "0000";
read_delay <= '1';

outbase <= outbase + "0101";
int_out_addr <= outbase + "0101";
mode0_delayed <= true;
delay_running <= false;

True

False

mode0_address1 <= mode0_base1;
mode0_address2 <= mode0_address2 + "0000001";
mode0_read_address <= mode0_base1;
diagonal <= false;
int_out_addr <= int_out_addr + "0001";

do_wrt <= '0';
mode0_address1 <= mode0_address1 + "0000001";
mode0_address2 <= mode0_address2 + "0000001";
mode0_read_address <= mode0_address1 + "0000001";

False

False

End

mode0_counter <= '0';
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B.1.2 Final Mode : Multiplication of a 4x4 matrix by a 4x1 matrix 
 

This mode does not require a flowchart, since it simply consists of the following statement: 

 
Int_out_addr <= int_out_addr + “0100”;  

 

B.1.3 Other Modes : Multiplication of Two 4x4 Hermitian Matrices 

Begin

read_delay='1'

End

int_out_addr=
"xx11"

tmp2 := int_out_addr(3 downto  2);
tmp2 := tmp2 + "01";
int_out_addr <= tmp2 & tmp2;
diagonal <= true;
read_delay <= '1';

int_out_addr <= int_out_addr + "0001";
diagonal <= false;
read_delay <= '0';

T rue False

True

int_out_addr=
"1111"

mode <= mode + "001";

mode="11"

rtog_delayed <= q_toggle xo r '1';
mem2_rd_addr <= "00"; -- initial memory
int_out_addr <= "0000";
 read_delay <= '1';
 int_out_base <= "0000";
diagonal <= true;

iteration_num =
to tal_iterations

iteration_num <= (o thers=>'0');
f inished_del <= true;
f iltering <= '1';

iteration_num <= iteration_num + iteration_inc;
mode <= "001";

True False

True

True

False

False

read_delay <= '1';

False
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B.2. Multiplication Stage 
 

B.2.1 Mode 0 : Multiplication of B * B* 

 

 

 

Begin M ultiplier
M o de 0

End M ultiplier
M o de 0

Set multiplier
enable pins
(see 6.7.1)

mul_diagonal

enable multiplicatio n
input data1 := data from memory
input data2 := data from memory

enable multiplicatio n
input data1 := sto red data
input data2 := data from memory

mo de0_second
_stage

disable multiplication
sto red data <= data fro m memo ry

true false

true false
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B.2.2 Other modes 

 

 

Begin M ultiplier
M o de

End M ultiplier
M o de

Set multiplier
enable pins
(see 6.7.1)

mul_diagonal

input data2 := data from memory
sto red_ro w <= input data2

input data2 := data from inputs

multiplier_mode
=final mode

input data 2 :=  sto red_row

false true

false false

enable multiplicatio n
input data1 := data from memory
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B.3. Output Stage 
 

 

 

 

Begin Output S tage

End Output M ode

comb_second_
out = '1'

out_real and out_imag := conjugate o f  sto red values

comb_mode =
"000"

Add results to  tally

comb_wrt= '1'

set out_real, out_imag
clear tallies
comb_second_out <= comb_diagonal

sto re tallies

comb_second_out <= comb_diagonal
perfo rm mode specific manipulations
set out_real and out_imag

sto re out_real and out_imag
create second write address

out_real o r
out_imag out o f

range

clamp out-o f-range
components at
max/min value

W rite to  the
appropriate

memory
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C.1. Multiplier Testbench 
 

C.1.1 VHDL Code 
 

The multiplier test benches were based on a design that had already been built for the original 

10x10 multiplier. However, it required extensive modification in order to work for my 

generically sizable multipliers. 

 

C.1.1.1 Exhaustive Testbench 
 
1 --------------------------------------------------------------- ------------------

---  
2 --  exhaustive_testbench.vhd, Testbench for recursive booth multiplier (recmult).  
3 --  Author   : Geoff Knagge  
4 --  Created  : 11 DEC 2001  
5 --  Modified : 13 DEC 2001  
6 --  
7 --  This testbench exhaustively tests all combinations of input for the  given word  
8 --  sizes. The simulator needs to run for (20 *  2^data_width_a + s^data_width_b  

+20) ns  
9 ---------------------------------------------------------------------------------

---  
10  
11  
12 library IEEE;  
13  
14 use IEEE.std_logic_1164.all;  
15 use IEEE.std_logic_arith.a ll;  
16 use ieee.std_logic_signed.all;  
17 use ieee.std_logic_unsigned.all;  
18 use std.textio.all;  
19  
20 library work;  
21  
22 entity exhaustive_testbench is  
23     generic(data_width_a : integer :=5;  
24             data_width_b : integer :=10;  
25             carry_save : std_logic :='1 ');  
26 end exhaustive_testbench;  
27  
28 architecture behaviour of exhaustive_testbench is  
29  
30  constant outwidth : integer := data_width_a + data_width_b - 1;  
31  
32  
33      component arrmult  
34         generic (data_width_a : integer:=10;   --  number of bits in input a  
35                  data_width_b : integer:=10;   --  number of bits in input b  
36                  carry_save   : STD_LOGIC:='1');  --  whether or not to use the  

final adder  
37  
38         port (signal in0   : in  signed(data_width_a -  1 downto 0);  
39        signal in1   : in  sign ed(data_width_b -  1 downto 0);  
40          signal ena   : in STD_LOGIC;  
41        signal sum   : out signed(data_width_a + data_width_b - 2 downto 0);  
42          signal carry : out signed(data_width_a + data_width_b - 2 downto 0));  
43      
44     end component;  
45  
46     signal clk : std_logic := '0';  
47  
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48     signal in0 : signed(data_width_a - 1 downto 0) := (others => '0');  
49     signal in1 : signed(data_width_b - 1 downto 0) := (others => '0');     
50  
51     signal precheck,preresult  : signed(data_width_a+data_width_b -  1 downto 0) :=  

(other s => '0');  
52     signal result, chk_result : signed(data_width_a+data_width_b - 2 downto 0);  
53  
54     signal sum : signed(outwidth - 1 downto 0) := (others => '0');  
55     signal carry : signed(outwidth - 1 downto 0) := (others => '0');  
56     signal high : STD_LOGIC := '1' ;  
57  
58  
59     function limit(bits:integer) return integer is  
60     begin  
61       if (bits = 0) then  
62         return 0;  
63       else  
64         if (bits = 1) then  
65           return 1;  
66         else  
67           return 2*limit(bits - 1);  
68         end if;  
69       end if;  
70     end limi t;  
71  
72  
73 begin  --  behaviour     
74      
75     clk <= not clk after 10 ns;  
76  
77     mult0 : arrmult  
78       generic map (data_width_a, data_width_b, carry_save)  
79  port map (in0=>in0,  
80     in1=>in1,  
81                   ena=>high,  
82     sum=>sum,  
83     carry=>carry);  
84  
85     do_check s: process  
86  
87  variable temp_carry : signed(outwidth downto 0);  
88         variable st0,en0,cnt0,inc0 : signed(data_width_a - 1 downto 0);  
89         variable st1,en1,cnt1,inc1 : signed(data_width_b - 1 downto 0);  
90         variable doloop0,doloop1 : boolean;  
91  
92     begin   --  process  
93     doloop0 := true;  
94  
95      make_a: for i in data_width_a - 1 downto 0 loop  
96         st0(i) := '0';  
97         en0(i) := '1';  
98         if i=0 then  
99            inc0(i) := '1';  
100          else  
101             inc0(i) := '0';  
102          end if;  
103        end loop make_a ;  
104   
105       make_b: for i in data_width_b - 1 downto 0 loop  
106          st1(i) := '0';  
107          en1(i) := '1';  
108          if i=0 then  
109             inc1(i) := '1';  
110          else  
111             inc1(i) := '0';  
112          end if;  
113        end loop make_b;  
114       cnt0 := st0;  
115   
116       do_in0 : while (doloop0) loop  
117         doloop1 := true;  
118         cnt1 := st1;  
119         in0 <= cnt0;  
120         do_in1: while (doloop1) loop  
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121           in1 <= cnt1;  
122           wait until clk'event and clk='0';  
123    temp_carry(outwidth - 1 downto 1) := carry(outwidth - 2 downto 0);  
124    t emp_carry(outwidth) := '0';  
125    temp_carry(0) := '0';  
126   
127   
128    preresult <= sum + temp_carry;  
129           result(outwidth - 1 downto 0) <= preresult(outwidth - 1 downto 0);  --  strip 

off the unwanted extra bit...  
130                   
131    precheck <= cnt0*cnt1;  
132           chk_r esult(outwidth - 1 downto 0) <= precheck(outwidth - 1 downto 0);  
133                   
134    assert result = chk_result report "Calculation Failed" severity error;  
135           wait until clk'event and clk='1';  
136           if cnt1=en1 then  
137             doloop1 := false;  
138           else  
139             cnt1 := cnt1 + inc1;  
140           end if;  
141   
142          end loop do_in1;  
143   
144         if cnt0 = en0 then  
145           doloop0 := false;  
146         else  
147           cnt0 := cnt0 + inc0;  
148         end if;  
149       end loop do_in0;  
150    
151    end process do_checks;  
152       
153  end beha viour;  

 

C.1.1.2 Random Testbench 
 
1 -----------------------------------------------------------------------------

-------  
2 --  random_testbench.vhd, Testbench for booth multiplier (arrmult).  
3 --  Author   : Geoff Knagge  
4 --  Created  : 11 DEC 2001  
5 --  Modified : 22 JAN 200 2 
6 --  
7 --  This testbench randomly picks values for testing the multiplier. There  is 

an 80%  
8 --  chance on each input that it will pick one of the extreme values  
9 -----------------------------------------------------------------------------

-------  
10  
11  
12 library IEEE ;  
13  
14 use IEEE.std_logic_1164.all;  
15 use IEEE.std_logic_arith.all;  
16 use ieee.std_logic_signed.all;  
17 use ieee.std_logic_unsigned.all;  
18 use std.textio.all;  
19  
20 library work;  
21  
22  
23 entity random_testbench is  
24     generic(data_width_a : integer :=5;  
25             data_width_b : integer :=10;  
26             carry_save : std_logic :='1';  
27             seedin : integer :=7);  
28 end random_testbench;  
29  
30 architecture behaviour of random_testbench is  
31  
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32  constant outwidth : integer := data_width_a + data_width_b - 1;  
33  
34  
35      component arrmult  
36         generic (data_width_a : integer:=10;   --  number of bits in input a  
37                  data_width_b : integer:=10;   --  number of bits in input b  
38                  carry_save   :  STD_LOGIC:='1'); --  whether or not to use the  

final adder  
39  
40         port (sig nal in0   : in  signed(data_width_a -  1 downto 0);  
41        signal in1   : in  signed(data_width_b -  1 downto 0);  
42            signal ena   : in STD_LOGIC;  
43        signal sum   : out signed(data_width_a + data_width_b - 2 downto 0);  
44            signal carry : out signed(data_width_a + data_width_b - 2 downto  

0));  
45      
46     end component;  
47  
48     signal clk : std_logic := '0';  
49  
50     signal in0 : signed(data_width_a - 1 downto 0) := (others => '0');  
51     signal in1 : signed(data_width_b - 1 downto 0) := (others => '0');     
52  
53     signal precheck,preresult : signed(data_width_a+data_width_b -  1 downto 

0) := (others => '0');  
54     signal result, chk_result : signed(data_width_a+data_width_b - 2 downto 0);  
55  
56     signal sum : signed(outwidth - 1 downto 0) := (others => '0');  
57     signal high:  STD_LOGIC := '1';  
58     signal carry : signed(outwidth - 1 downto 0) := (others => '0');  
59      
60     function limit(bits:integer) return integer is  
61     begin  
62       if (bits = 0) then  
63         return 0;  
64       else  
65         if (bits = 1) then  
66           return 1;  
67         else  
68           return 2*limit(bits - 1);  
69         end if;  
70       end if;  
71     end limit;  
72  
73   --  random number generator taken from 

http://home.europa.com/~celiac/archive/tidbit13.txt  
74   procedure RANDOM (variable Seed: inout integer; variable X_real: out re al) 

is  
75      ----------------------------------------------------------------------  
76      --  Random Number generator from:  
77      --  The Art of Computer Systems Performance Analysis, R.Jain 1991 (p443)  
78      --    x(n) := 7^5x(n - 1) mod (2^31 -  1)  
79      --    This has period 2^31 -  2, and it works with odd or even seeds  
80      --    This code does not overflow for 32 bit integers.  
81      ----------------------------------------------------------------------  
82      constant a_int : integer := 16807;     --  multiplier 7**5  
83      constant m_int : integer := 2147483647; --  modulus    2**31 -  1 
84      constant q_int : integer := 127773;    --  m DIV a  
85      constant r_int : integer := 2836;      --  m MOD a 
86      constant m_real : real := real(M_int);  
87       
88      variable seed_div_q  : i nteger;  
89      variable seed_mod_q  : integer;  
90      variable new_seed : integer;  
91       
92   begin  
93      seed_div_q := seed / q_int;         --  truncating integer division  
94      seed_mod_q := seed MOD q_int;       --  modulus  
95      new_seed := a_int * seed_mod_q -  r _int * seed_div_q;  
96      if (new_seed > 0) then  
97         seed := new_seed;  
98      else  
99         seed := new_seed + m_int;  
100       end if;  
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101       X_real := (real(seed) / m_real)*100.0;  
102    end RANDOM; 
103   
104  begin  --  behaviour     
105       
106      clk <= not clk after 10 ns;  
107   
108      mult0 : arrmult  
109        generic map (data_width_a, data_width_b, '1')  
110   port map (in0=>in0,  
111      in1=>in1,  
112                    ena=>high,  
113      sum=>sum,  
114      carry=>carry);  
115   
116      checker: process  
117          variable unf1,unf2,unf3,unf4,unf5,unf6: real; --  Uniform := 

Ini tUniform(7, - 100.0, 100.0);  
118          variable seed: integer;  
119   variable temp_carry : signed(outwidth downto 0);  
120          variable st0,en0,cnt0 : signed(data_width_a - 1 downto 0);  
121          variable st1,en1,cnt1 : signed(data_width_b - 1 downto 0);  
122   
123      begin  --  process  
124       make_a: for i in data_width_a - 1 downto 0 loop  
125          if i = data_width_a - 1 then  
126             st0(i) := '0';  
127          else  
128             st0(i) := '1';  
129          end if;  
130          en0(i) := '1';  
131       end loop make_a;  
132   
133       make_b: for i in data_width_b - 1 downto 0 loop  
134          if i = data_width_b - 1 then  
135             st1(i) := '0';  
136          else  
137             st1(i) := '1';  
138          end if;  
139          en1(i) := '1';  
140       end loop make_b;  
141       cnt0 := st0;  
142       seed := seedin;  
143   
144      do_checks: while (true) loop  
145         RANDOM(seed,unf1);  
146         RANDOM(seed,unf2);  
147         RANDOM(seed,unf3);  
148         RANDOM(seed,unf4);  
149         RANDOM(seed,unf5);  
150         RANDOM(seed,unf6);  
151          if (unf1 > 80.0) then  
152           if (unf2 > 50.0) then  
153              cnt0 := st0;  
154           else  
155              cnt0 := en0;  
156           end if;  
157         else  
158           make_in0: for i in data_width_a - 1 downto 0 loop  
159             RANDOM(seed,unf3);  
160             if (unf3 > 50.0) then  
161               cnt0(i) := '0';  
162             else  
163               cnt0(i) := '1';  
164             end if;  
165           end loop make_in0;  
166         end if;  
167   
168         if (unf4 > 80.0) then  
169           if (unf5 > 50.0) then  
170              cnt1 := st1;  
171           else  
172              cnt1 := en1;  
173           end if;  
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174         else  
175           make_in1: for i in data_width_b - 1 downto 0 loo p 
176             RANDOM(seed,unf6);  
177             if (unf6>50.0) then  
178               cnt1(i) := '0';  
179             else  
180               cnt1(i) := '1';  
181             end if;  
182           end loop make_in1;  
183         end if;  
184   
185         in0 <= cnt0;  
186         in1 <= cnt1;  
187         wait unti l clk'event and clk='0';  
188    temp_carry(outwidth - 1 downto 1) := carry(outwidth - 2 downto 0);  
189      temp_carry(outwidth) := ‘0’;  
190         temp_carry(0) := ‘0’;  
191         pre_result <= sum + temp_carry;  
192         result(outwidth - 1 downto 0) <= preresult(outwidth - 1 downto  0);  
193         precheck <= cnt0 * cnt1;  
194         chk_result(outwidth - 1 downto 0) <= precheck(outwidth - 1 downto 0);  
195    
196         assert result= chk_result report “Calculation Failed” severity failure;  
197         wait until clk’event and clk=’1’;  
198     end loop do_checks;  
199   end process checker;  
200  end behaviour;  
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C.1.2 TCL Scripts 
 

These scripts are used to run the ModelSim simulation tool, to automatically run the test 

benches over various multiplier configurations. 

 

C.1.2.1 Exhaustive Testbench 
 
1 # This scripts runs tests on multipliers f rom size 2x2 up to 64x64  
2 # 
3 # Switch off the arithmetic package warnings...  
4 set IgnoreWarning 1  
5 # Run the exhaustive testbench on 3x3, ... 9x9 bit multipliers  
6 for {set x 3} {$x<10} {incr x} {  
7   echo Attempting to load simulation for $x x $x bit multiplier.. .  
8   vsim - Gdata_width_a=$x - Gdata_width_b=$x - Gcarry_save='1' 

work.exhaustive_testbench  
9   set dw 1  
10   set wid 1  
11   while {$wid<=$x} {  
12      set wid [expr $wid+1]  
13      set dw [expr $dw *2]  
14     }  
15   set IgnoreWarning 1  
16   set time [expr 20*$dw*$dw]  
17   add wave sim :/exhaustive_testbench/*  
18   echo Exhaustively testing $x x $x bit multiplier for $time ns...  
19   run $time ns  
20   echo Completed testing of $x x $x bit multiplier.  
21 }  

 

C.1.2.2 Random Testbench 
 
1 # Switch off the arithmetic package warnings...  
2 set IgnoreWarning 1  
3 # Run th e random testbench on 10x10, 11x11, ... 64x64 bit multipliers  
4 for {set x 10} {$x<64} {incr x} {  
5   echo Attempting to load simulation for $x x $x bit multiplier...  
6   # 
7   # randomly pick a random seed for the testbench, to improve its randomness  
8   set seed [ expr {int(rand()*1001)+2}];  
9   # 
10   # do one test, with no final adder on the carry - save outputs  
11   vsim - Gdata_width_a=$x - Gdata_width_b=$x - Gcarry_save='1' - Gseedin=$seed 

work.random_testbench  
12   set IgnoreWarning 1  
13   # 
14   # display all signals so that we can  examine them if something goes wrong  
15   add wave sim:/random_testbench/*  
16   echo Randomly testing $x x $x bit multiplier for 1ms...  
17   run 1 ms  
18   echo Completed testing of $x x $x bit multiplier.  
19 }  


