

®

Designing with
MAX 9000 Devices

August 1995, ver. 1 Application Note 43

Introduction MAX 9000 devices extend Altera’s third-generation Multiple Array
MatriX (MAX) architecture to 12,000 usable gates, and add enhanced
features to the MAX device architecture, including in-system
programmability (ISP), advanced FastTrack Interconnect, and I/O cells.
All MAX 9000 devices are supported by Altera’s MAX+PLUS II
development system, which uses advanced logic synthesis techniques
and a heuristic fitter to map logic designs into MAX 9000 devices. This
application note provides tips on how to develop efficient designs that
take advantage of the MAX 9000 architecture.

Basic
Architectural
Features

MAX 9000 devices contain 320 to 560 logic cells, arranged in groups of 16
logic cells called Logic Array Blocks (LABs). Each logic cell has a register
and a programmable-AND/fixed-OR array that is used to build
combinatorial logic. The following features increase the flexibility and
capacity of MAX 9000 devices:

■ FastTrack Interconnect—A series of continuous paths that run
throughout the length and width of the device, providing signal
interconnections between different LABs, and between LABs and
pins

■ Register control functions—Clock, Clear, and Preset signals that
control logic cell flipflops

■ Shareable logic expanders—NAND product terms that can be used and
shared by logic cells to implement complex logic functions with
maximum flexibility

■ Parallel expanders—Product terms that can be borrowed by
neighboring logic cells to implement complex logic functions with
minimal additional timing delays

f For more information on the MAX 9000 architecture, refer to the
MAX 9000 Programmable Logic Device Family Data Sheet.
Altera Corporation 1

A-AN-043-01

AN 43: Designing with MAX 9000 Devices

Designing for
Speed &
Density

Engineers often expect varying levels of performance and density from
complex programmable logic devices (CPLDs) and field-programmable
gate arrays (FPGAs). In both CPLD and FPGA architectures, tradeoffs are
made to optimize designs either for speed or for density. With the
MAX 9000 architecture, you can control the speed/density tradeoff to suit
the needs of your application with Altera’s MAX+PLUS II development
system. In addition, you can structure designs to take advantage of the
physical characteristics of the MAX 9000 architecture.

You can easily change your design’s target device family without
manually modifying the design. When you compile a design for
MAX 9000 devices, the MAX+PLUS II Compiler automatically
synthesizes MAX 9000 designs using macrofunctions optimized for the
device family architecture.

Design Entry MAX+PLUS II provides a wide range of design entry methods. For a fast
design cycle, you should describe a design with high-level constructs in a
hardware description language (HDL) such as Verilog HDL, VHDL, or
the Altera Hardware Description Language (AHDL). Although high-level
constructs can simplify the design entry process for complex designs, they
can also limit your control over the physical device implementation.

In general, MAX+PLUS II provides excellent area and performance
results for MAX 9000 designs that are created with an HDL. However, if
a portion of the design must run at a higher performance, you can
describe that portion with primitive gates and registers using HDLs or
schematics (i.e., create a gate-level design). Although gate-level designs
can lengthen the design process, they can also yield higher speeds.
MAX+PLUS II supports the library of parameterized modules (LPM),
which simplifies gate-level design entry and maintains close control over
the target device architecture.

Regardless of your primary design goal, you can select logic options in
MAX+PLUS II to guide the logic synthesis for individual logic functions.
You can also apply logic synthesis styles, which are combinations of logic
option settings saved under a single name. Logic options and logic
synthesis styles allow you to optimize a design for any Altera device
family.

MAX+PLUS II also offers multi-level synthesis, which provides
additional logic options beyond the standard product-term logic
synthesis, gives designers control over the fan-in per logic cell, and allows
complex projects to be processed without user intervention.

f For more information on Altera’s LPM support, logic options, and logic
synthesis styles, go to MAX+PLUS II Help.
2 Altera Corporation

AN 43: Designing with MAX 9000 Devices

General
MAX 9000
Design
Guidelines

The following guidelines will help you take advantage of the MAX 9000
architecture to yield maximum speed, reliability, and device resource
utilization, while minimizing fitting difficulties:

■ Reserve resources in the device for future expansion
■ Allow the Compiler to select pin and logic cell assignments
■ Use global Clock and Clear signals
■ Turn on the XOR Synthesis logic option
■ Use parallel expanders only for speed-critical paths
■ Reduce logic cell fan-in
■ Break down complex logic with LCELL and SOFT buffers
■ Evaluate register packing to increase logic cell efficiency
■ Use pipelining for complex registered logic

Reserve Resources in the Device for Future Expansion

Altera recommends that you reserve 20% of the logic cells and 20% of the
I/O pins in the device to accommodate future design modifications. If the
design uses bidirectional pins, you might want to reserve an even larger
percentage of the I/O pins, because bidirectional pins require one
FastTrack Interconnect routing channel to drive a signal into the device
and another FastTrack Interconnect routing channel to receive the signal
from the logic core.

Allow the Compiler to Select Pin & Logic Cell Assignments

Poorly selected pin and logic cell assignments can limit the MAX+PLUS II
Compiler’s ability to arrange signals efficiently, which reduces the
probability of a successful fit. Therefore, Altera recommends that you
permit the MAX+PLUS II Compiler to automatically choose all pin and
logic cell assignments. During compilation, MAX+PLUS II efficiently
arranges logic cell and I/O pin locations to use the FastTrack Interconnect
resources. Back-annotating pins and logic cells lowers the Compiler’s
flexibility to permute logic cell locations to fit your design. You should
also thoroughly simulate designs before back-annotating the
MAX+PLUS II Compiler’s pin assignments and laying out the printed
circuit board.
Altera Corporation 3

AN 43: Designing with MAX 9000 Devices

Use Global Clock & Clear Signals

MAX 9000 devices have two global Clock signals and one global Clear
signal that can be used for global register control. These global register
control signals can bypass the logic cell array and feed registers directly,
preserving product terms for primary logic cell logic. Global signals also
bypass logic and data path interconnect resources, since each signal has a
dedicated path into the LAB.

Figure 1 shows one method of implementing global control signals by
feeding a pin-driven dedicated input signal through a GLOBAL buffer.
Without using the GLOBAL signals, the design would require product
terms to route the Clock and Clear control signals to the registers, which
would further increase logic and expander product term usage.

Figure 1. Saving Resources with Global Controls

GLOBAL
GCLK

GLOBAL
GCLRN

ACCUM_IN [7..0]

8DFFB

CLK
CLRN
PRN
D [7..0]

Q [7..0]

8FADDB

CIN
A [8..1] COUT
B [8..1]

SUM [8..1]

GND

Settings Resources

With GLOBAL
buffers inserted after
GCLK and GCLRN

Design uses 9 logic
cells and 14 shared
expanders.

Design uses 13
logic cells and 16
shared expanders.

Without
GLOBAL buffers

ACCUM_OUT [7..0]

8-Bit Adder

8-Bit Register
4 Altera Corporation

AN 43: Designing with MAX 9000 Devices

The MAX+PLUS II Compiler can also automatically choose global signals
for the Clock, Clear, and Output Enable controls. You can direct the
MAX+PLUS II Compiler to automatically create global signals with the
Automatic Global options provided in the Global Project Logic Synthesis
dialog box (Assign menu).

Turn on the XOR Synthesis Logic Option

XOR Synthesis is a MAX+PLUS II logic minimization option that controls
the creation of mutually exclusive XOR logic. By default, the
MAX+PLUS II Compiler synthesizes mutually exclusive logic with XOR
gates. When the XOR Synthesis logic option is turned on, the
MAX+PLUS II Compiler minimizes logic by creating new XOR gates that
feed combinatorial logic cells, thus decreasing the number of product
terms needed by each logic cell. However, XOR gates can create static
timing hazards, so you should weigh the tradeoff between logic
utilization and XOR gate usage. Figure 2.

Figure 2. XOR Synthesis

NOT

A
B
S

Y

21MUX

OUT

A1

A2

A3

A4

A5

A7

A8

B1

A6

1 logic cell with 1 shared
expander product term
(2 product terms with an
additional level of logic)

XOR_SYNTHESIS=OFF
PARALLEL_EXPANDERS=OFF

Settings Resources

1 logic cell with 4 borrowed
parallel expander product
terms (9 product terms)

1 logic cell (2 product
terms)

XOR_SYNTHESIS=OFF
PARALLEL_EXPANDERS=ON

XOR_SYNTHESIS=ON

Multiplexer
Altera Corporation 5

AN 43: Designing with MAX 9000 Devices

You can incorporate the XOR Synthesis logic option into the default logic
synthesis style for an entire project using the Define Synthesis Style
dialog box that is accessible from the Global Project Logic Synthesis
dialog box (Assign menu) in any MAX+PLUS II application. You can also
apply it on a logic cell-by-logic cell basis with the Logic Options
command (Assign menu) in any MAX+PLUS II application.

Use Parallel Expanders Only for Speed-Critical Paths

Altera recommends that you use parallel expanders for those parts of
your project that require maximum performance. Parallel expanders
cause the MAX+PLUS II Compiler to have difficulties in finding and
optimizing a fit if pin or logic cell assignments exist for the project.
Figure 3 illustrates how parallel expanders are used within an LAB.
Where they are not required, the MAX+PLUS II Compiler can implement
complex logic by using shared expanders or other logic cells, both of
which provide more fitting flexibility than parallel expanders.

The MAX 9000 LABs are composed of two groups of 8 logic cells, forming
two chains that can lend or borrow parallel expanders within the same
group. The MAX+PLUS II Compiler transparently places logic cells in a
location that allow them to lend and borrow parallel expanders
appropriately.
6 Altera Corporation

AN 43: Designing with MAX 9000 Devices

Figure 3. Parallel Expanders

You can use the Define Synthesis Style dialog box to incorporate the
Parallel Expanders logic option into a logic synthesis style. You can then
specify this style for the entire project with the Global Project Logic
Synthesis command, or on a logic cell-by-logic cell basis with the
Logic Options command. All of these commands are available from the
Assign menu in any MAX+PLUS II application.

Logic Cell 1

Logic Cell 2

Logic Cell 3

Logic Cell 4

Logic Cell 5

Logic Cell 6

Logic Cell 7

Logic Cell 8

Logic Cell 9

Logic Cell 10

Logic Cell 11

Logic Cell 12

Logic Cell 13

Logic Cell 14

Logic Cell 15

Logic Cell 16

Borrows up to 15 parallel
expanders from the 3 logic cells
immediately above it.

Borrows up to 5 parallel
expanders from the first
logic cell.

Cannot borrow any
parallel expanders.

Borrows up to 10
parallel expanders from
the first and second
logic cell.

LAB A

Borrows up to 15 parallel
expanders from the 3 logic cells
immediately above it.

Borrows up to 5 parallel
expanders from the first
logic cell.

Cannot borrow any
parallel expanders.

Borrows up to 10
parallel expanders from
the first and second
logic cell.
Altera Corporation 7

AN 43: Designing with MAX 9000 Devices

Reduce Logic Cell Fan-In

Logic cells with high fan-in can cause more placement problems for the
MAX+PLUS II Compiler than those with low fan-in. When the Compiler
places logic cells, it ensures that the fan-in per LAB does not exceed 33. By
reducing the fan-in per logic cell, you give the MAX+PLUS II Compiler
more flexibility to place logic cells with existing pin assignments. You can
control the fan-in for an entire project by choosing the Multi-Level
Synthesis option in the Global Project Logic Synthesis dialog box. The
Multi-Level Synthesis option allows you to choose the maximum fan-in for
all logic cells in a project; by default, the maximum fan-in is 33.
Additionally, you can control the fan-in per logic cell with the Customize
option in the Compiler’s Fitter Settings dialog box (Processing menu).
The Multi-Level Synthesis option can help you avoid problems that
generate error messages such as:

Logic Array Block <name> requires too many <number>/<number>
inputs from row FastTrack Interconnect

Inserting LCELL buffers (or pipelining schemes in sequential designs) can
also reduce logic cell fan-in. Figure 4 shows a 16-bit counter design in
which a carry look-ahead register reduces the fan-in by seven in the upper
eight counter bits. By inserting the look-ahead register before the Enable
input to the second counter, you can maintain the performance of your
design and make it easier to fit than if the logic were implemented in
multiple LABs.

Figure 4. Carry Look-Ahead Counter

NOT

ENA

CLK

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

COUNT8

Q [7..0]

ENA

CLK

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

COUNT8

Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15

Q [15..8]

PR

CLRN

D Q

DFFE

ENA

CLK

ENA
8 Altera Corporation

AN 43: Designing with MAX 9000 Devices

Break Down Complex Logic with LCELL & SOFT Buffers

Complex logic, such as multi-level XOR gates, must often be implemented
with more than one logic cell. In this case, MAX+PLUS II automatically
allocates sharable expanders or additional logic cells (called synthesized
logic cells) to supplement the logic resources that are available in a single
logic cell. You can also break down complex logic by inserting LCELL and
SOFT buffers in the project to reduce the total number of sharable
expanders needed. This manual insertion of LCELL or SOFT buffers can
provide greater control over speed-critical paths in your design and can
also decrease the overall logic cell and sharable expander count.

LCELL buffers provide more control over logic synthesis than SOFT
buffers. A good location to insert LCELL buffers is where a single complex
logic expression feeds multiple destinations in your design. You can insert
an LCELL buffer just after the complex expression; the MAX+PLUS II
Compiler extracts this complex expression and places it in a separate logic
cell. Rather than duplicating all the logic for each destination,
MAX+PLUS II feeds the single output from the logic cell to all
destinations.

Alternatively, use SOFT buffers if you anticipate that the logic before or
after the buffer will increase in complexity when you make revisions to
your design. If the logic that drives the SOFT buffer is complex, then
MAX+PLUS II treats the SOFT buffer the same way it would treat an
LCELL buffer—it places the logic driving the SOFT buffer into a separate
logic cell. However, if the logic that drives the SOFT buffer is simple,
MAX+PLUS II ignores the SOFT buffer and combines the logic that drives
that SOFT buffer with the logic in the destination logic cells.

Figure 5 illustrates the insertion of an LCELL buffer after a complex
combinatorial expression that feeds multiple destinations (commonly
referred to as duplicate logic extraction by MAX+PLUS II). Without the
buffer, the design requires 17 logic cells and 16 shared expanders; with the
buffer, the design requires only 10 logic cells and 3 shared expanders.

When the Multi-Level Synthesis option (available from the Global Project
Logic Synthesis dialog box) is turned on, the Compiler can identify
duplicate logic and can automatically insert LCELL buffers in
advantageous locations. The Compiler can also provide advanced
synthesis features—such as subfactor extraction and register
optimization—to improve the logic cell and shareable expander
utilization of your design.When compiling the design in Figure 5 with the
Multi-Level Synthesis option turned on, MAX+PLUS II automatically
inserts an LCELL buffer after the 74684 equality comparator output,
which gives the same results as manually inserting an LCELL buffer.
Altera Corporation 9

AN 43: Designing with MAX 9000 Devices
1 For more information on multi-level synthesis, see
MAX+PLUS II Help.

Figure 5. Breaking Down Complex Logic with LCELL Insertion

P7
Q7
P6
Q6
P5
Q5
P4
Q4
P3
Q3
P2
Q2
P1
Q1
P0
Q0

EQUALN
P_GR_QN

74684

PRN

CLRN

D Q OUT0

PRN

CLRN

D Q OUT1

PRN

CLRN

D Q OUT2

PRN

CLRN

D Q

DFFE

OUT3

SEL
A1
B1
A2
B2
A3
B3
A4
B4
GN

Y1
Y2
Y3
Y4

74157

A5
B5
A4
B4
A3
B3
A2
B2
A1
B1
A0
B0

ENA

ENA

ENA

ENA

SER_IN
PARALLEL0

PARALLEL1

PARALLEL2

PARALLEL3

CLK

DFFE

DFFE

DFFE

GLOBAL

Insert LCELL buffer here.

Settings Resources

With LCELL buffer
inserted

Design uses 10 logic
cells and 3 shared
expanders.

Design uses 17
logic cells and 16
shared expanders.

Without
LCELL buffer

8-Bit Comparator

Multiplexer
10 Altera Corporation

AN 43: Designing with MAX 9000 Devices
Evaluate Register Packing to Increase Logic Cell Efficiency

Register packing allows two logic functions—a combinatorial logic
function and a register with a single data input—to be implemented in the
same logic cell. Combinatorial logic signals passing through the XOR gate
can bypass the logic cell’s register. The signals are routed either to the rest
of the LAB via the local array feedback, or to the rest of the device via the
FastTrack Interconnect. A single product term drives the D input of the
logic cell’s register, and then drives out to the LAB or the FastTrack
Interconnect. See Figure 6.

Figure 6. MAX 9000 Register Packing

Register packing can result in improved logic cell utilization, although it
consumes more FastTrack Interconnect resources because both outputs of
the logic cell are used. Packed logic cells always use the LAB local array
feedback and the FastTrack routing resources. However, logic cells that
are not packed can use either the local array feedback to reach logic cells
within the same LAB, or FastTrack routing to reach logic cells in other
LABs and I/O pins. FastTrack routing resources are conserved when a
logic cell uses only the LAB local array feedback, making it easier for
MAX+PLUS II to fit the design. You should explore the tradeoffs for your
design between improved logic cell utilization and tighter fitting
constraints for the MAX+PLUS II Compiler.

PRN

CLRN

D Q

Preset

ENA

Clock

Enable

Clear

to Row/Column
FastTrack
Interconnect

to LAB
Local Array

Product-Term
Select Matrix
Altera Corporation 11

AN 43: Designing with MAX 9000 Devices
To select register packing for the entire design, turn on the Automatic
Register Packing option in the Global Project Logic Synthesis dialog box
(Assign menu). Once register packing is turned on, MAX+PLUS II packs
registers that can use a single product term for their D input.

Use Pipelining for Complex Registered Logic

Maintaining the system Clock speed at or above a certain frequency is
often a major goal in a circuit design. For example, if you have a fully
synchronous system that must run at 25 MHz, the longest delay path from
the output of any register to the input(s) of the register(s) it feeds must be
less than 40 ns. Maintaining system Clock speed can be difficult if there
are long delay paths through the more complex logic. To reduce delays
through complex logic, pipeline these blocks of combinatorial logic by
inserting flipflops between them. Although pipelining can consume
device resources, it also lowers the propagation delay between registers,
allowing you to maintain high system Clock speeds.

The benefits of pipelining can be demonstrated with a 4-bit pipelined
adder that adds two 4-bit numbers. The adder is based on two 2-bit adders
with outputs that are registered using D flipflops. Figure 7 shows one of
the 2-bit pipelined adders. The function 2ADD is the 2-bit adder that feeds
both sum bits (SUM1 and SUM2) and a carry bit (COUT) to the D flipflops in
4REG.

Figure 7. 2-Bit Pipelined Adder (2REGADD)

2ADD

D1
D2
D3
D4
CLK

Q1
Q2
Q3
Q4

4REGCIN
A0
B0
A1
B1

CLOCK

SUM1
SUM2
COUT

Carry-Out to Carry-In of Next Stage

CIN
A1
B1
A2
B2

SUM1
SUM2
COUT
12 Altera Corporation

AN 43: Designing with MAX 9000 Devices
Figure 8 shows two 2-bit adders (2REGADD) that are combined to form a
4-bit pipelined adder. The most significant bits (MSBs) of the 4-bit adder
(A3, B3, A2, and B2) require the carry from the least significant bits (LSBs)
to complete the sum. Because the time it takes to generate the carry varies,
the carry-in and the MSB data inputs arrive at different times. Pipelining
this design ensures that the MSBs are presented to the adder’s inputs
along with the carry-out signal from the previous stage. In Figure 8, both
sets of LSBs (A0, B0, A1, and B1) are added in the first Clock cycle, while
the other bits (A2, B2, A3, and B3) are added in the following Clock cycle.

Figure 8. Pipelined Adder

Fitting
Techniques

Occasionally, a design requires more interconnect resources than the
device has available. When a design does not fit, the MAX+PLUS II
Compiler issues one or more error messages. In many cases, the
MAX+PLUS II Compiler lets you insert LCELL buffers, or change the
compilation settings, pin assignments, and logic cell assignments to adjust
the fit during compilation.

f Go to MAX+PLUS II Help for more information on error messages.

If you have followed the design guidelines in this application note and
your project does not fit, here are several techniques to help the
MAX+PLUS II Compiler fit your project:

If you are willing to discard your pin assignments, you can let the
MAX+PLUS II Compiler automatically ignore all the assignments, the
minimum number of assignments, or specific assignments.

CIN
A1
B1
A2
B2
CLOCK

SUM1
SUM2
COUT

2REGADD

CIN
A0
B0
A1
B1

CLOCK

D1
D2
D3
D4
CLOCK

Q1
Q2
Q3
Q4

4REG

A2
B2
A3
B3

SUM1
SUM2

D1
D2
CLOCK

Q1
Q2

2REG

2REGADD
CIN
A1
B1
A2
B2
CLOCK

SUM1
SUM2
COUT

SUM3
SUM4
COUT
Altera Corporation 13

AN 43: Designing with MAX 9000 Devices
If you need to maintain your pin assignments, Altera recommends
the following techniques, in the order listed below:

1. Delete logic cell assignments or allow the Compiler to ignore
them.

2. Turn on the Multi-Level Synthesis option in the Global Project
Logic Synthesis dialog box. Do not change the default fan-in
per logic cell. If the project still does not fit, reduce the
maximum fan-in per logic cell in the Fitter Settings dialog box.
Make sure the Multi-Level Synthesis option is turned on.

3. If a row input pin has a high degree of fan-out, reduce the fan-
out by inserting LCELL buffers between the pin and some of its
destinations.

4. Turn off the Multi-Level Synthesis option in the Global Project
Logic Synthesis dialog box. Select the Advanced Try
Harder/Longer Compilation fitting option in the Fitter Settings
dialog box. If your project still does not fit, select the Advanced
Try Harder/Longer Compilation fitting option with the Multi-Level
Synthesis option turned on.

f Refer to MAX+PLUS II Help for information on entering pin and
logic cell assignments, adjusting the fit during compilation, and
improving MAX 9000 fitting.

Conclusion Altera’s MAX+PLUS II software allows you to quickly enter new
designs or re-target existing designs for MAX 9000 devices. The
MAX+PLUS II Compiler automatically optimizes your design for the
MAX 9000 architecture. In addition, MAX+PLUS II design entry
methods provide control over physical device implementation so
you can use your knowledge of the MAX 9000 architecture to achieve
the performance and density goals for your design.

Altera, MAX, MAX+PLUS, and FLEX are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: MAX+PLUS II, AHDL, and FLEX 10K. Altera acknowledges the
trademarks of other organizations for their respective products or services mentioned in this document,
specifically: Verilog and Verilog-XL are registered trademarks of Cadence Design Systems, Inc. Mentor
Graphics is a registered trademark of Mentor Graphics Corporation. Synopsys is a registered trademark of
Synopsys, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera
warrants performance of its semiconductor products to current specifications in accordance with Altera’s
standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in
writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing
orders for products or services.

Copyright  1996 Altera Corporation. All rights reserved.

2610 Orchard Parkway
San Jose, CA 95134-2020
(408) 894-7000
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 894-7104
Literature Services:
(408) 894-7144

®

14

Printed on Recycled Paper.
Altera Corporation

	Contents
	AN 43: Designing with MAX 9000 Devices
	Introduction
	Basic Architectural Features
	Designing for Speed & Density
	Design Entry
	General MAX 9000 Design Guidelines
	Reserve Resources in the Device for Future Expansi...
	Allow the Compiler to Select Pin & Logic Cell Assi...
	Use Global Clock & Clear Signals
	Turn on the XOR Synthesis Logic Option
	Use Parallel Expanders Only for Speed-Critical Pat...
	Reduce Logic Cell Fan-In
	Break Down Complex Logic with LCELL & SOFT Buffers...
	Evaluate Register Packing to Increase Logic Cell E...
	Use Pipelining for Complex Registered Logic

	Fitting Techniques
	Conclusion

