

®

Using Programmable Logic
for Gate Array Designs

January 1996, ver. 1 Application Note 51

Introduction Gate arrays have historically been used for high-volume designs.
However, Altera’s programmable logic devices (PLDs) are an ideal
alternative for prototyping gate array designs and for high-volume
production. PLDs offer a high-capacity, high-speed, cost-competitive
solution for prototyping and production, and provide designers with the
following benefits:

■ Time-to-market advantage—PLD designs offer quick and easy
modification during design debugging. After reprogramming a
device, the new design can be checked immediately. Prototyping
with PLDs allows several design iterations per day. In contrast, a
design iteration for gate arrays can take several weeks or months.

■ Cost—Altera PLDs are cost-competitive with gate arrays when
hidden costs are considered. See the Gate Array vs. Programmable Logic
Cost Analysis White Paper for a detailed cost comparison.

■ Elimination of dedicated inventory—Off-the-shelf PLDs eliminate the
risk of over- or under-stocking devices because they can be used for
any design. In contrast, high inventory risks are inherent in
purchasing application-specific devices such as gate arrays.

■ Elimination of test-vector generation—Altera PLDs are fully tested
during manufacturing and provide guaranteed timing and
functionality. In contrast, gate arrays require you to create test
vectors to detect manufacturing defects. It is difficult to achieve high
fault coverage during gate array testing.

■ In-system development—Hardware engineers can use PLDs to quickly
build a prototype system. Software engineers can use the prototype
to debug their code rather than waiting for the gate arrays to be
fabricated. Prototyping with PLDs allows you to quickly evaluate
whether certain features should be implemented in hardware or
software. Additionally, in-system programmability (ISP) and in-
circuit reconfigurability (ICR) allow you to quickly test different
variations of your design.

■ Design entry with gate array primitives—With the Altera Gate Array-to-
Programmable Logic Conversion Kit, engineers can convert
architecture-specific designs created with gate array library
primitives to designs for Altera PLDs.
Altera Corporation 1

A-AN-051-01

AN 51: Using Programmable Logic for Gate Array Designs

Altera’s MAX+PLUS II development software greatly simplifies the
process of converting and prototyping gate array designs for PLDs. Gate
array designs are typically created with design tools supplied by third-
party EDA vendors. MAX+PLUS II provides interfaces to popular EDA
tools via EDIF 2 0 0 and 3 0 0, and also provides a schematic editor,
hardware description language (HDL) synthesis, and timing simulation.
MAX+PLUS II supports standard file formats, including EDIF 2 0 0 and
3 0 0, VHDL, VHDL Initiative Toward ASIC Libraries (VITAL), Verilog
HDL, and Standard Delay Format (SDF), all of which provide seamless
integration with EDA tools. Additionally, MAX+PLUS II directly
compiles VHDL and Verilog HDL designs, and creates EDIF, VHDL, and
Verilog HDL netlist files for timing simulation. The MAX+PLUS II
software is available for 486- and Pentium-based PCs, as well as Sun
SPARCstation, HP 9000 Series 700, and IBM RISC System/6000
workstations.

This application note describes how to convert and prototype gate array
designs with Altera PLDs. Figure 1 shows the design flow for this
conversion process.

Figure 1. Gate Array-to-PLD Design Flow

MAX+PLUS II
Compiler

EDA Tool

Device
 Programming

Gate Array
Design File

Gate Array
Technology Library

Design
Verification

Library
Mapping
Files

Altera Versions
of Gate Array
Primitives

Conversion Library
2 Altera Corporation

AN 51: Using Programmable Logic for Gate Array Designs

Design Flow The following is a brief description of the gate array to PLD design flow.
Each step of the design flow is discussed in greater detail later in this
application note.

Design Entry

You can directly compile and synthesize VHDL and Verilog HDL designs
with MAX+PLUS II. You can also convert HDL or schematic designs to
EDIF format and import them into MAX+PLUS II.

Design Processing

You can process gate array designs with EDA tools after design entry. You
can also compile designs with the MAX+PLUS II Compiler, which uses
architecture-specific logic synthesis, minimization, and fitting algorithms
to ensure efficient silicon utilization and performance. Design
constraints—such as logic resources and timing—can be passed from the
design source files to the MAX+PLUS II Compiler. MAX+PLUS II
automatically performs place-and-route, and can partition the design into
multiple devices. You can directly control the design implementation
with the MAX+PLUS II Floorplan Editor.

The MAX+PLUS II Compiler uses Library Mapping Files (.lmf) to map
proprietary symbol and pin names from industry-standard EDA tools to
MAX+PLUS II macrofunctions and basic gate library elements. LMFs
allow you to convert your logic designs for PLDs without having to
restructure architecture-specific design files.

Design Verification

The MAX+PLUS II Simulator allows you to perform full timing
simulation, and the Timing Analyzer allows you to examine registered
performance, propagation delay, and setup and hold times for the design.
MAX+PLUS II can also create EDIF, Verilog HDL, and VHDL netlist files
that contain complete timing information for device- and system-level
verification with industry-standard simulation tools. These netlist files
enable efficient in-system verification.
Altera Corporation 3

AN 51: Using Programmable Logic for Gate Array Designs

Device Programming

MAX+PLUS II creates files for device programming and configuration.
All Altera EPROM-, EEPROM-, and FLASH-based PLDs, as well as
Configuration EPROMs for SRAM-based devices can be programmed
with standard programming hardware. The EEPROM-based MAX 7000S
and MAX 9000 devices also offer ISP, and the SRAM-based FLEX devices
offer ICR for on-the-fly design changes. FLASH-based FLASHlogic
devices offer both ISP and ICR.

Design Entry MAX+PLUS II can support your design flow whether you prefer creating
gate array designs with schematic capture or HDL design entry.

■ You can use one of the schematic capture tools summarized in
Table 1 below to generate an EDIF netlist file. Altera provides design
interface kits for major EDA tools so you do not have to recreate your
design with an Altera-specific primitive library. You can also
prototype a gate array design that has been captured with gate array
primitives.

■ You have several options if you create a design with an HDL:
– Create an EDIF netlist file from the synthesized netlist file that

targets the gate array technology library.
– Using Altera synthesis libraries, resynthesize the HDL design

with the same tool that you used with the gate array design.
– Compile a VHDL or Verilog HDL design directly with

MAX+PLUS II.
■ You can combine schematic and HDL files into a hierarchical design

in MAX+PLUS II. For example, a design with multiple state machines
can be defined in multiple Verilog HDL design files, while the top-
level structure can be defined with a schematic design file.

Table 1. EDA Support for Gate Array Designs

Vendor Schematic
Capture

Synthesis Simulation

Cadence Composer
Concept

Synergy Verilog-XL
Leapfrog
RapidSIM

Mentor Graphics Design Architect AutoLogic
AutoLogic II

QuickSim II
QuickVHDL

Synopsys Design Analyzer
Design Compiler
DesignWare

VSS
4 Altera Corporation

AN 51: Using Programmable Logic for Gate Array Designs

Design
Processing

Schematic Design Guidelines

To compile a schematic design in MAX+PLUS II, you must first create an
EDIF netlist file with the schematic capture tool. When you enter the
design, use primitives from the gate array technology library of your
choice. Choose the appropriate MAX+PLUS II library for the technology
library that the design uses. The Gate Array-to-Programmable Logic
Conversion Kit contains these MAX+PLUS II libraries. Configure
MAX+PLUS II, compile the design, and then generate EDIF, VHDL, or
Verilog HDL netlist files for simulation.

1 See the Gate Array-to-Programmable Logic Conversion Kit User
Guide for specific information on technology libraries.

The method of creating files from a schematic varies depending on the
tool you use. See “References” on page 12 of this application note for a list
of Altera-supplied documents on configuring gate array designs to Altera
devices.

HDL Design Guidelines

You can easily retarget a behavioral HDL design to Altera devices and
instantiate primitives specific to a particular gate array vendor (e.g.,
output drivers). Although MAX+PLUS II cannot directly interpret these
primitives, they can be mapped to MAX+PLUS II macrofunctions. The
mapping method varies depending on how the design is processed.

EDIF Netlist Files

You can create an EDIF netlist file from an HDL design file that uses a gate
array technology library; this design process does not require you to
resynthesize the design. The Altera Gate Array-to-Programmable Logic
Conversion Kit allows you to map all gate array primitives to the
equivalent Altera macrofunctions. You can also create conversion
libraries for unsupported gate array technologies.

HDL Design Resynthesis

You can resynthesize the HDL design with the same EDA tool using
Altera synthesis libraries instead of gate array synthesis libraries. When
using this method, the Altera Gate Array-to-Programmable Logic
Conversion Kit allows you to map instantiations of gate array primitives.
Standard EDA synthesis tools—such as AutoLogic, Exemplar Logic,
Synergy, Design Compiler, and FPGA Compiler—support this method,
which provides better speed and area results than using the gate array
technology library. For example, the Synopsys synthesis libraries include
libraries for DesignWare, giving optimal results for adders and counters.
Altera Corporation 5

AN 51: Using Programmable Logic for Gate Array Designs

If you resynthesize a design with Altera synthesis libraries, MAX+PLUS II
can use both the LMF that maps the gate array primitives and the LMF
that is designed for use with the Altera synthesis libraries. Using LMFs
together with the libraries in the Altera Gate Array-to-Programmable
Logic Conversion Kit is an efficient method of mapping gate array
primitives that are instantiated in the HDL design.

VHDL Design

You can open a VHDL design directly in MAX+PLUS II. This method
gives better speed and area results than using an EDIF netlist file. This
approach works best with purely behavioral VHDL because it does not
require you to map technology-specific cells. Search for “MAX+PLUS II
VHDL Support” in Help for information on which VHDL constructs are
supported by MAX+PLUS II.

If gate array primitives are referenced in the VHDL design, you will need
to use Altera macrofunctions that represent the gate array primitives.
LMFs do not work with VHDL files.

Without an LMF, a distinct macrofunction is required for every gate array
primitive. It is impossible to share macrofunctions between primitives
because each macrofunction must have the same name and port names as
the gate array primitive.

Verilog HDL

You can use Altera’s Verilog HDL synthesis tool to read a Verilog HDL
design in MAX+PLUS II. This method gives better speed and area results
than using the output from gate array synthesis. However, minor syntax
changes can be required. This approach works best with purely
behavioral Verilog HDL because it does not require you to map
technology-specific cells.

Altera’s Verilog HDL package generates an Altera Hardware Description
Language (AHDL) Text Design File (.tdf) file containing references to any
gate array primitives that are in the Verilog HDL file. To compile the
design, you need to use MAX+PLUS II macrofunctions that represent the
gate array primitives; these macrofunctions are supplied by Altera or
created by the designer. MAX+PLUS II does not require special settings to
use Verilog HDL. Because LMFs will not work with AHDL TDFs, a
distinct macrofunction is required for every gate array primitive. It is not
possible for primitives to share macrofunctions because each
macrofunction must have the same name and port names as the gate array
primitive.
6 Altera Corporation

AN 51: Using Programmable Logic for Gate Array Designs

For VHDL and Verilog HDL designs, you can enter timing constraints in
the original design if the design is synthesized with Synopsys design
tools.

f Go to the Synopsys & MAX+PLUS II Software Interface Guide for more
information on timing analysis and timing constraints with Synopsys
tools. For more information on how to create a custom library, search for
“Library Mapping File Format” in MAX+PLUS II Help.

Design
Compilation

After you set up the EDIF Netlist Reader and user libraries,
MAX+PLUS II can compile the design. To compile the current design,
choose the Start button in the MAX+PLUS II Compiler window.

MAX+PLUS II offers many features that support gate array conversion
and prototyping, including the following:

■ Logic synthesis—MAX+PLUS II performs architecture-specific logic
synthesis on all designs.

■ Design-rule checking—MAX+PLUS II provides a design-rule checker
called the Design Doctor. Once a design is implemented in a device,
the Design Doctor looks for potential problems—such as static
hazards, race conditions, and complex logic feeding control signals
on flipflops—and suggests possible solutions. Search for “Design
Doctor utility” in MAX+PLUS II Help for more information.

■ Timing-driven compilation—With timing-driven compilation, you can
optimize individual speed paths by specifying timing constraints
(e.g., required Clock frequency). These constraints can be specified
with the following methods.
– MAX+PLUS II can read timing assignments that have been

entered with Synopsys tools, allowing for a complete
architecture-independent design.

– You can use the Global Project Timing Requirements or
Timing Requirements commands (Assign menu) to enter a
variety of timing assignments directly in MAX+PLUS II.

■ Multi-device partitioning—If a design is too large to fit into one device,
MAX+PLUS II can partition the design into multiple devices
automatically, or according to your specifications. Search for
“Partitioning a Project” in MAX+PLUS II Help for more information.

Design
Verification

After design compilation, you can verify the design’s functionality and
timing with the MAX+PLUS II Simulator and Timing Analyzer.
Altera Corporation 7

AN 51: Using Programmable Logic for Gate Array Designs

Timing Analyzer

The MAX+PLUS II Timing Analyzer shows the worst-case delays in the
design. It operates in three modes:

■ Registered performance—Shows the maximum speed of a design. If the
design has multiple or internally generated Clocks, the Registered
Performance analysis shows the maximum speed for each individual
Clock.

■ Setup/hold matrix—Shows the setup and hold times for each pin.
■ Delay matrix—Shows delays from point to point. This mode can be

used to look at pin-to-pin delays, such as combinatorial delays or
clock-to-output delays. It can also look at node-to-node delays
internal to the design.

f For more information on how to use the Timing Analyzer, go to
MAX+PLUS II Help.

MAX+PLUS II Simulator

The MAX+PLUS II Simulator verifies the function of the design and
supports full timing simulation. MAX+PLUS II also exports EDIF, Verilog
HDL, VHDL, VITAL, and SDF files for simulation in standard EDA
simulators. See Table 2.

For more information on MAX+PLUS II support for simulation tools, see
“References” on page 12 of this application note.

Table 2. MAX+PLUS II Support for Simulation Tools

Vendor Simulation Tool

Cadence RapidSIM
Leapfrog
Verilog-XL

Mentor Graphics QuickSim II
QuickVHDL

Synopsys VSS

Viewlogic ViewSim
PROsim
PROvhdl
Vantage-VHDL
VCS
8 Altera Corporation

AN 51: Using Programmable Logic for Gate Array Designs

Device
Programming

Traditionally, designers have used programming hardware to program
EPROM- and EEPROM-based PLDs before they are mounted on printed
circuit boards (PCBs). MAX+PLUS II automatically creates programming
files that support industry-standard programming hardware. For more
information on device programming, search for “Programmer” in
MAX+PLUS II Help.

Both ICR and ISP can shorten development time by allowing the board
layout to be completed earlier in the design cycle; thus, accelerating the
time-to-market. ICR and ISP allow you to perform more extensive board-
level testing, and allow you to perform remote field upgrades to installed
systems. See Table 3. In addition, Altera supports the following methods
that allow devices to be programmed or configured after they are
mounted on a PCB:

■ ICR allows SRAM-based devices to be configured during normal
system operation. ICR capability enables quick and easy on-board
design iterations during prototyping, which provides a mechanism
for exhaustive testing that would otherwise be impossible in software
simulation. ICR capability has stimulated the growth of
reconfigurable hardware applications because it allow you to
implement software algorithms in hardware, and change them on-
the-fly. ICR makes reconfigurable hardware products a viable
solution for reconfigurable computing and algorithm acceleration.

■ ISP allows EEPROM- and FLASH-based devices to be programmed
during the system manufacturing flow. ISP capability reduces the
cost and complexity of manufacturing, prevents lead damage, and
enables in-system debugging.

Table 3. ICR & ISP Comparison

Feature ICR ISP

Reconfigurable element SRAM EEPROM, FLASH

On-board device
programming

Yes Yes

Programming speed Fastest (measured in ms) Fast (measured in s)

Serial programming Yes Yes

Parallel programming Yes No

Memory volatility Volatile Non-volatile

Number of
reconfigurations

Unlimited < 100

On-the-fly reconfiguration
during normal system
operation

Yes No
Altera Corporation 9

AN 51: Using Programmable Logic for Gate Array Designs

Table 4 provides information on ICR and ISP availability for Altera
devices.

For high-volume designs, Altera’s Mask-Programmed Logic Device
(MPLD) program offers a low-cost migration path. This fully-automated
path guarantees function- and pin-compatibility with the original
programmable logic design. Refer to the MPLD Conversion Information &
Order Forms, available from your local Altera representative.

MAX+PLUS II
Conversion
Libraries

MAX+PLUS II uses conversion libraries to interpret the gate array
primitives in an EDIF netlist file. Conversion libraries consist of an LMF
and a library that includes the Altera versions of gate array primitives.
Altera provides LSI Logic, Fujitsu, NEC, and Toshiba conversion
libraries. Consult Altera for availability.

If your design contains primitives that are not included in an Altera
conversion library, you can create these primitives and add them to the
library. Creating or modifying a conversion library involves creating an
LMF and Altera versions of the gate array primitives. MAX+PLUS II uses
LMFs and Altera functions when compiling a design.

To create a conversion library:

1. Examine each gate array primitive to determine which Altera
primitive or macrofunction corresponds to the gate array primitive.
If no exact match is available, create a MAX+PLUS II design file to
match the functionality of the gate array primitive.

2. Create an LMF that maps the gate array primitives to Altera
equivalents or to user-created functions. You can also edit a copy of
an Altera-supplied LMF to incorporate additional functions.

Table 4. ICR & ISP Availability in Altera Devices

Family Usable Gates ICR ISP

FLEX 10K 10,000 to 100,000 v

FLEX 8000 2,500 to 16,000 v

MAX 9000 6,000 to 12,000 v

MAX 7000S 600 to 5,000 v

FLASHlogic 800 to 3,200 v v
10 Altera Corporation

AN 51: Using Programmable Logic for Gate Array Designs

LMF Information

An LMF maps gate array primitives in an EDIF netlist file to Altera
macrofunctions and primitives. It lists the port names for each EDIF cell
that represents a gate array primitive and relates them to the port names
of the appropriate Altera macrofunction or primitive.

f Search for “Library Mapping File Format” in MAX+PLUS II Help for
more information.

Creating Altera Equivalents of Gate Array Primitives

MAX+PLUS II includes over 300 macrofunctions and primitives. Most
gate array primitives can be directly mapped to one of these built-in
macrofunctions or primitives by using an LMF. However, some gate
array primitives (e.g., gate array AND_OR cell) might not have an exact
match in MAX+PLUS II. Therefore, you must create a design file for this
primitive.

You can create a design file for a gate array primitive in a variety of
formats, including Verilog HDL, VHDL, EDIF, MAX+PLUS II Graphic
Design File (.gdf), or Text Design File (.tdf) format. For example, the
following AHDL file creates an AND_OR primitive:

SUBDESIGN and_or
(in0, in1, in2, in3 : INPUT;
out : OUTPUT;)

BEGIN
out = (in0 & in1) # (in2 & in3);

END;

The Subdesign Section of the TDF defines the inputs and outputs of the
design file. The Logic Section defines the Boolean equations that describe
the design. In the equation shown above, the ampersand (&) represents a
logical AND, and the pound symbol (#) represents a logical OR. See
MAX+PLUS II AHDL Help for more information.

Conclusion Altera PLDs are an efficient and cost-effective solution for converting
gate array designs. Altera provides many tools for prototyping gate array
designs and for high-volume production. You can use MAX+PLUS II
together with EDA development tools to create your design. In addition,
Altera LMFs provide easy mapping of gate array primitives to Altera
MAX+PLUS II functions. The Altera Gate Array-to-Programmable Logic
Conversion Kit provides design libraries for quick and easy conversion
of gate array designs to programmable logic. Moreover, Altera’s
application engineers can answer any questions about PLDs,
MAX+PLUS II, or the conversion process.
Altera Corporation 11

AN 51: Using Programmable Logic for Gate Array Designs

References The list below summarizes Altera-supplied literature that provides
Altera, MAX, MAX+PLUS, and FLEX are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: MAX+PLUS II, AHDL, FLEX 10K, FLEX 8000, MAX 9000, MAX 7000S, MAX
7000, FLASHlogic, MAX 5000, and Classic. Altera acknowledges the trademarks of other organizations for their
respective products or services mentioned in this document, specifically: Fujitsu is a trademark of Fujitsu. LSI
Logic is a trademark of LSI Logic, Inc. NEC is a trademark of NEC Electronics Inc. Mentor Graphics is a
registered trademark of Mentor Graphics Corporation. Pentium is a trademark of International Business
Machines Corporation. SPARCstation is a trademark of SPARC International, Inc. and is licensed exclusively
to Syn Microsystems, Inc. Sun is a trademark of Sun Microsystems, Inc. Synopsys is a registered trademark of
Synopsys, Inc. Toshiba is a trademark of Toshiba Corporation. Verilog and Verilog-XL are registered
trademarks of Cadence Design Systems, Inc. Powerview and Viewlogic are registered trademarks of Viewlogic
Systems, Inc. Altera products are protected under numerous U.S. and foreign patents and pending applications,
maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as
expressly agreed to in writing by Altera Corporation. Altera customers are advised to
obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

U.S. and foreign patents pending.

Copyright  1996 Altera Corporation. All rights reserved.

2610 Orchard Parkway
San Jose, CA 95134-2020
(408) 894-7000
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 894-7104
Literature Services:
(408) 894-7144

®

12 Altera Corporation

information related to converting gate array designs.

■ FLEX 10K Embedded Programmable Logic Family Data Sheet
■ FLEX 8000 Programmable Logic Device Family Data Sheet
■ MAX 9000 Programmable Logic Device Family Data Sheet
■ MAX 7000S Programmable Logic Device Family Data Sheet
■ MAX 7000 Programmable Logic Device Family Data Sheet
■ Cadence & MAX+PLUS II Software Interface Guide
■ Mentor Graphics & MAX+PLUS II Software Interface Guide
■ Synopsys & MAX+PLUS II Software Interface Guide
■ Powerview & MAX+PLUS II Software Interface Guide
■ Application Brief 96 (Generating Library Mapping Files)
■ Application Brief 106 (Simulating MAX+PLUS II Verilog Output)
■ MAX+PLUS II AHDL Help

For more information about ICR and ISP, see the following documents:

■ Product Information Bulletin 19 (ICR & ISP)
■ Application Brief 141 (In-System Programmability in MAX 9000 Devices)
■ Application Brief 145 (Designing for In-System Programmability in

MAX 7000S Devices)
■ Application Note 33 (Configuring FLEX 8000 Devices)
■ Application Note 38 (Configuring Multiple FLEX 8000 Devices)
■ Application Note 59 (Configuring FLEX 10K Devices)
Printed on Recycled Paper.

	Contents
	AN 51: Using Programmable Logic for Gate Array Designs
	Introduction
	Design Flow
	Design Entry
	Design Processing
	Design Verification
	Device Programming

	Design Entry
	Design Processing
	Schematic Design Guidelines
	HDL Design Guidelines
	EDIF Netlist Files
	HDL Design Resynthesis
	VHDL Design
	Verilog HDL

	Design Compilation
	Design Verification
	Timing Analyzer
	MAX+PLUS II Simulator

	Device Programming
	MAX+PLUS II Conversion Libraries
	LMF Information
	Creating Altera Equivalents of Gate Array Primitiv...

	Conclusion
	References

