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Introduction Binary numbering systems are used in virtually all digital systems, 
including digital signal processing (DSP), networking, and computers. 
Before you choose a numbering system, it is important to understand the 
advantages and disadvantages of each system. This application note 
describes the following numbering systems, the advantages and 
disadvantages of each, and how to convert between different systems.

■ Unsigned integer
■ Two’s complement integer
■ Unsigned fractional
■ Two’s complement signed fractional
■ Gray code
■ Signed-magnitude
■ Offset two’s complement
■ One’s complement
■ Floating point
■ Block floating point

Table 1 summarizes the binary numbering systems described in this 
application note. For each numbering system, the number range is 
provided for an N-bit number. For fractional numbering systems, the 
number range is provided for an N + M-bit number, where N is the integer 
part of the number and M is the fractional part of the number.
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Table 2 shows a 3-bit binary number and its equivalent decimal value for 
each numbering system.

Table 1. Summary of the Binary Numbering Systems

System Number Range Advantages Disadvantages

Unsigned 
Integer

0 to 2N – 1 Universal numbering system. 
Easy to perform arithmetic 
operations such as addition and 
subtraction.

Cannot store negative numbers.

Two’s 
Complement 
Integer

–2(N – 1) to 2(N – 1) – 1 Stores both positive and negative 
numbers. Easy to perform 
arithmetic with regular adders.

Requires one extra bit of storage 
space when only positive 
numbers are necessary.

Unsigned 
Fractional

0 to 2N – 2M Stores positive numbers greater 
than and less than 1. Operations 
are identical to unsigned integer 
operations.

Cannot store negative numbers.

Two’s 
Complement 
Signed 
Fractional

–2(N – 1) to 2(N – 1) – 2–M 
in 2–M steps

Stores positive and negative 
numbers both greater than and 
less than 1. Operations are 
identical to two’s complement 
operations.

–

Gray Code 0 to 2(N – 1) Only one bit changes between 
adjacent numbers, which 
facilitates interfaces with physical 
systems.

Difficult to perform arithmetic 
operations without first converting 
to one of the systems listed 
above.

Signed-
Magnitude

–2(N – 1) –1 to 2(N – 1) – 1 Useful for applications that 
require the magnitude to be 
distinct from the sign.

Difficult to perform arithmetic 
operations (although easier than 
with Gray code).

Offset Two’s 
Complement

–2(N – 1) to 2(N – 1) – 1 Used by many analog-to-digital 
(A/D) and digital-to-analog (D/A) 
converters. Easy to perform 
arithmetic operations.

–

One’s 
Complement

–2(N – 1) – 1 to 2(N – 1) – 1 Easy to perform negations. Difficult to perform arithmetic 
operations other than negations.

Floating Point See “Floating Point” on 
page 13. 

Very large dynamic range. Requires more hardware to 
perform arithmetic.

Block Floating 
Point

See “Block Floating 
Point” on page 15.

Large dynamic range and 
requires minimal hardware.

All numbers have the same 
exponent at any given time.
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Unsigned 
Integer

The best known numbering system is unsigned integer representation. 
Like the decimal numbering system, unsigned integers use a simple 
binary place value. The position of a digit determines its value (i.e., the 
place value of a digit is 2position). See Figure 1. This representation is 
exactly like the decimal numbering system, in which the place value is 
10position.  

Figure 1. Bit Position

Table 3 shows the decimal value for each bit in a 5-bit unsigned integer.     

Table 2. Values for a 3-Bit Binary Number

Binary 
Number

Unsigned 
Integer

Two’s 
Complement

Gray Code Signed 
Magnitude

Offset Two’s 
Complement

One’s 
Complement

000 0 0 0 0 –4 0

001 1 1 1 1 –3 1

010 2 2 3 2 –2 2

011 3 3 2 3 –1 3

100 4 –4 7 –0 0 –3

101 5 –3 6 –1 1 –2

110 6 –2 4 –2 2 –1

111 7 –1 5 –3 3 0

Table 3. Unsigned Integer Values

Position Place Value Decimal Value

0 20 1

1 21 2

2 22 4

3 23 8

4 24 16

1  1  1  1  1

4 3 2 1 0
24 23 22 21 20

Binary Number

Position

Place Value
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Table 4 shows how to determine the decimal value of an unsigned integer.

You can easily perform arithmetic operations on unsigned numbers by 
following the same rules used for decimal number operations. However, 
for binary numbers, the digit is carried after 1 rather than after 9 (i.e., 
when two 1s are added together, a 0 is placed in the corresponding 
position and a 1 is carried to the next position). Figure 2 shows how to add 
2 unsigned integers together.

Figure 2. Unsigned Integer Addition

The unsigned integer numbering system is widely used. This numbering 
system’s main limitation is that it can only store the numbers ranging 
from 0 to (2N – 1); most signal processing systems need to store both 
positive and negative numbers.

Two’s 
Complement 
Integer

The most commonly used numbering system that can store both positive 
and negative numbers is two’s complement integer. This system is similar 
to unsigned integers, except the sign of the most significant bit (MSB) is 
negated. For example, for an N-bit number, bit 0 has a value of 20, bit 1 has 
a value of 21, bit N – 2 has a value of 2(N – 2), and bit N – 1 (i.e., the MSB) 
has a value of –2(N – 1). Table 5 shows the decimal value for each position 
in a 5-bit two’s complement integer.

Table 4. Unsigned Integer Conversion

Unsigned 
Integer

Decimal 
Value

Conversion

01000 8 0 + 23 + 0 + 0 + 0 = 8

10011 19 24 + 0 + 0 + 21 + 20 = 16 + 2 + 1 = 19

11011 27 24 + 23 + 0 + 21 + 20 = 16 + 8 + 2 + 1 = 27

   1 1 0 1 1          27
+  1 0 0 1 1   =   + 19
 1 0 1 1 1 0           46
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Table 6 shows how to determine the decimal value of a two’s complement 
number. 

Two’s complement integers represent numbers ranging from –2(N – 1) to 
2(N – 1) – 1. To negate a two’s complement integer, you simply invert the 
bits and add 1. For example, the following steps show how to negate the 
number 9 to –9. 

1. Substitute the binary values of the decimal number: 9 = 01001

2. Invert the bits: 10110

3. Add 1:  (10110 + 1) = 10111

As shown in Table 6, 10111 is equal to –9.

The biggest advantage of the two’s complement numbering system is that 
adding and subtracting two’s complement numbers is the same as adding 
and subtracting unsigned numbers. However, sign extension must be 
performed before the operation and any carry out of the adder should be 
ignored. Figure 3 shows how to add two 2-bit two’s complement 
numbers.

Table 5. Two’s Complement Integer Values for a 5-Bit Number

Position Place Value Decimal Value

0 20 1

1 21 2

2 22 4

3 23 8

4 (MSB) –24 –16

Table 6. Two’s Complement Integer Conversion

Two’s 
Complement

Integer

Decimal 
Value

Conversion

01000 8 0 + 23 + 0 + 0 + 0 = +8

11000 –8 –24 + 23 + 0 + 0 + 0 = –16 + 8 = –8

10000 –16 –24 + 0 + 0 + 0 + 0 = –16

10111 –9 –24 + 0 + 22 + 21 + 20 = –16 + 0 + 4 + 2 + 1 = –9
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Figure 3. Two’s Complement Integer Addition

In Figure 3, the digits shaded in blue represent the bits used for sign 
extension. The blue digits are the carry out of the 3-bit adder, which must 
be ignored. Other than the sign extension and ignoring the carry-out of 
the MSB of the adder, addition for two’s complement numbers is identical 
to addition for unsigned integer numbers.

Unsigned 
Fractional

In DSP and other systems, it is often necessary to store numbers that have 
both an integer and a fractional component. Because some bit positions 
can be negative, the unsigned fractional numbering system can store 
numbers greater than and less than 1. The place value of a digit in the 
unsigned fractional numbering system is 2position, where the position can 
be positive or negative (see Figure 4). Therefore, the unsigned fractional 
numbering system is a superset of the unsigned integer numbering 
system.

Figure 4. Bit Position

Table 7 shows the decimal value for each bit in an unsigned fractional 
number.

Table 8 shows how to determine the decimal value of an unsigned 
fractional number.

Positive + Positive    Negative + Positive    Negative + Negative

   1            0 0 1           –1            1 1 1         –1                1 1 1
+ 1        +  0 0 1          + 1       +   0 0 1         –2           +   1 1 0
   2        0 0 0 1                 0        1 0 0 0         –3            1 1 0 1

Table 7. Unsigned Fractional Values

Position Place Value Decimal Value

–2 2–2 0.25

–1 2–1 0.50

0 20 1

1 21 2

2 22 4

1  1  1  1  1

2 1 0 –1 –2
22 21 20 2–1 2–2

Binary Number

Position

Place Value
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Unsigned fractional numbers use a convenient notation to keep track of 
the location of a radix point (i.e., the binary or decimal point); a number 
with N bits to the left of the radix point and M bits to the right is said to be 
an N. M number (e.g., an 8.3 number has 8 digits to the left of the radix 
point and 3 digits to the right).

If all numbers in your system have the same M value (i.e., the same 
fractional bit-width), arithmetic operations are straightforward. For 
example, you can add an 8.3 number to a 12.3 number by using a 15-bit 
binary adder. Figure 5 shows how to add 00100101.101 (37.625) to 
001101110011.001 (883.125).

Figure 5. Addition with the Same M Values

To add numbers with different M values, you must add extra zeros to 
keep the radix points aligned. For example, to add an 8.3 number to a 6.5 
number, you must pad the 8.3 number with zeros to create an 8.5 number. 
Thus, you must use a 13-bit adder rather than an 11-bit adder to add the 
two numbers. Figure 6 shows how to add 11011011.110 (219.750) to 
110111.11011 (55.84375).

Figure 6. Addition with Different M Values

Table 8. Unsigned Fractional Conversion

Unsigned 
Fractional 
Number

Decimal 
Value

Conversion

01001 2.25 0 + 21 + 0 + 0 + 2–2 = 2 + 0.25 = 2.25

11011 6.75 22 + 21 + 0 + 2–1 + 2–2 = 4 + 2 + 0.5 + 0.25 = 6.75

00010 0.5 0 + 0 + 0 + 2–1 + 0 = 0.5

     00100101.101
+  001101110011.001

   001110011000.110

     37.625
+ 883.125
   920.750

     11011011.11000

        +  00110111.11011

      100010011.10101

   219.75000
+ 055.84375

   275.59375

Digits used for padding are highlighted in blue.
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Other than aligning the radix points, there is no difference between the 
unsigned integer and unsigned fractional numbering systems. In fact, an 
unsigned integer number is simply an N.0 unsigned fractional number 
(i.e., unsigned integer numbers have no bits to the right of the radix point). 
Any hardware built for integer numbers will work with fractional 
numbers.

Two’s 
Complement 
Signed 
Fractional

Like unsigned fractional, the two’s complement signed fractional 
numbering system uses an N.M notation and must have the radix points 
aligned during arithmetic operations.

Figure 7 shows how to add an 8.3 number to a 5.5 number.

Figure 7. Two’s Complement Signed Fractional Addition

Again, the numbers are padded with zeros and sign-extended to obtain 
the correct result.

Gray Code Gray code is a numbering system that is used mainly in real-world 
sensing applications. The fundamental feature of Gray code is that only 
one bit changes at a time as you progress sequentially through the 
numbers. See Table 9.

   –36.25000
+   13.90625

   –22.34375

     111011011.11000

        +  000001101.11101

       100010011.10101

Digits used for padding are highlighted in blue.

Table 9. Gray Code Values

Gray Code Number Decimal Value

001 1

011 2

010 3

110 4

111 5
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To understand why a numbering system in which only one bit changes at 
a time is useful, consider the optical sensor shown in Figure 8. This sensor 
is a shaft encoder that gives the physical position (i.e., rotation) of the 
shaft. For simplicity, the sensor is shown with only a 2-bit code. The 
sensor has 2 light-emitting diodes (LEDs) and 2 photo detectors for 
sensing the position of the shaft. The number of bits represented by the 
wheel depends on how closely you can space the cut-outs in the wheel 
without the wheel becoming too flimsy, the diameter of the light beam, 
and other physical parameters. Figure 8 shows a binary shaft encoder 
with 2 signals: s1 and s0.

Figure 8. Straight Binary Shaft Encoder

Figure 9 shows the ideal waveforms of s1 and s0 as the wheel cycles 
through one full rotation.

Figure 9. Ideal Waveforms of s1 & s0

In contrast, the real waveforms generated by the optical sensors vary 
slowly and the sensors are always misaligned by at least a small amount, 
which causes the signals to resemble the waveforms shown in Figure 10.

LEDsPhoto Detectors

s1

s0

0 (00) 3 (11)

1 (01) 2 (10) Shaft

00 01 10 11s[1..0]

s1

s0

00
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Figure 10. Waveforms Caused by Misaligned Sensors

When the optical sensors are misaligned, s1 and s0 may not switch at the 
same instant. Therefore, intervening codes appear in the sensed shaft 
position. In Figure 10, the s[1..0] signal should have cycled through the 
shaft position sequence of 00 è 01 è 10 è 11 è 00. However, it actually 
cycles through the sequence 00 è 01 è 00 è 10 è 11 è 10 è 00, which 
is incorrect. This error could be catastrophic if the shaft encoder is, for 
example, sensing the rudder position on an airplane.

The fundamental problem with non-Gray code is that more than 1 bit 
changes when going from one position to another, such as going from 
position 1 (01) to position 2 (10). In 2-bit Gray code, the decimal sequence 
0 è 1 è 2 è 3 è 0 is represented as 00 è 01 è 11 è 10 è 00. Notice 
that only 1 bit changes between any 2 adjacent numbers, which prevents 
the problems incurred with simultaneous switching in misaligned 
sensors. Figure 11 shows the shaft encoder for 2-bit Gray code.

Figure 11. Shaft Encoder for 2-Bit Gray Code

When the sensors on this encoder are misaligned, even by a significant 
amount, there are no extra codes in the sequence 0 è 1 è 2 è 3 è 0, as 
shown in Figure 12.

00 01 10 11s[1..0]

s1

s0

00 10 00

0 (00) 3 (10)

1 (01) 2 (11)

LEDsPhoto Detectors
s1

s0

Shaft
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Figure 12. Gray Code Sequence with Significant Misalignment

Unfortunately, it is difficult to perform arithmetic on Gray code numbers. 
It is easiest to perform operations by first converting the numbers from 
Gray code to either unsigned or signed two’s complement numbers after 
sensing.

You can create longer Gray code sequences by concatenating the smaller 
sequence with a reversed version of the same sequence, and setting the 
MSB to 0 and 1. For example, the following steps show how to build a 3-bit 
Gray code:

1. For the first 4 numbers, append a 0 to the MSB of the 2-bit Gray code.

2. For the last 4 numbers, reverse the order of the 2-bit Gray code and 
append a 1 to the MSB. 

This method ensures that only 1 bit changes between any two adjacent 
numbers. See Table 10.

Signed-
Magnitude

Signed-magnitude is useful for applications in which the sign and 
magnitude of a number must be accessed separately. In signed-
magnitude systems, the MSB represents the sign of the number (i.e., 0 = 
positive, 1 = negative) and all other bits represent the magnitude. This 
notation is similar to decimal notation, which uses a + and – as the sign bit 
and uses the remaining bits to represent the magnitude. 

Table 10. Creating Longer Gray Code Sequences

Decimal Value 2-Bit Gray Code 3-Bit Gray Code

0 00 000

1 01 001

2 11 011

3 10 010

4 – 110

5 – 111

6 – 101

7 – 100

10s[1..0]

s1

s0

2 3 0
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The signed-magnitude and two’s complement numbering systems both 
use the MSB to determine the sign. However, do not confuse signed-
magnitude with two’s complement. Although the MSB can be used to 
determine the sign in two’s complement, the other bits do not represent 
the magnitude when the sign is negative. In addition, two’s complement 
has only one representation of zero, whereas the signed-magnitude 
numbering system has two (i.e., +0 and –0). 

To perform any complex arithmetic operations on signed-magnitude 
data, it is usually easiest to convert the numbers to two’s complement, 
perform the operations, and then convert the numbers back to the signed-
magnitude system, if required.

Offset Two’s 
Complement

The offset two’s complement numbering system is used by many D/A 
and A/D converters. The distinguishing characteristic of this numbering 
system is that the numbers move from –4 to 3 monotonically as you count 
in binary from 000 to 111—there are no jumps or discontinuities. In 
contrast, the decimal value of two’s complement numbers goes from 0 to 
3 and then counts from –4 to –1 as the binary number progresses from 000 
to 111.

To convert numbers from two’s complement to offset two’s complement, 
you simply invert the MSB, as shown in Table 11.

One’s 
Complement

The one’s complement numbering system is seldom used because it has 
the same drawbacks as all non-two’s complement numbers—it is difficult 
to perform arithmetic and it has two representations of zero (i.e., +0 and 
–0). 

Table 11. Converting to Offset Two’s Complement

Decimal Value Two’s Complement Offset Two’s 
Complement

–4 100 000

–3 101 001

–2 110 010

–1 111 011

0 000 100

1 001 101

2 010 110

3 011 111
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When you add a one’s complement number to its inverse, the answer is 
not zero, which creates an inconsistent algebra. In fact, as Table 2 on 
page 3 shows, the two representations of zero are 000 and 111, which 
makes zero sensing more difficult (i.e., you must use an N-bit OR and an 
N-bit AND gate). To negate a number in the one’s complement numbering 
system, you simply invert all the bits (i.e., you do not add a 1 like in two’s 
complement).

Floating Point All of the previous numbering systems have one common characteristic: 
they have a relatively small dynamic range between the largest and 
smallest numbers they can store. The power dynamic range in decibels 
(dB) of all previous numbering systems is approximately 20log(2N), 
where N is the total number of bits in the numbering system. For an 8-bit 
number, the dynamic range is 48.1 dB; for a 16-bit number, the dynamic 
range is 96.3 dB. In many cases, you may need larger dynamic ranges. For 
example, you need a large dynamic range to perform a simple physical 
calculation, such as figuring out the mass (in grams) of 1,000 atoms of 
carbon. 

The following equation can be used to calculate the mass of carbon.

m = n × w /N

where: m = Mass (grams)
n = Number of atoms = 1,000
w  = Atomic mass (grams/mole) = 12.0107
N  = Avogadro’s number (1/mole) = 6.022 × 1023

Calculating the mass with a fixed-point numbering system is similar to 
performing calculations without scientific notation. To represent both 
Avogadro’s number to 23 decimal places and the atomic mass accurate to 
0.0001 simultaneously, you need 28 decimal digits of accuracy to 
represent the input operands, and another 19 digits to represent the 
result—a total of 47 decimal digits. To perform the same calculation in 
binary, you would require 157 bits of accuracy. To illustrate, the following 
calculation shows how to calculate the mass with fixed-point arithmetic 
(all 47 digits are used to illustrate the fact that you would similarly have 
to keep track of all 157 bits in hardware):

m = 000000000000000000001000.00000000000000000000000 × 
000000000000000000000012.01070000000000000000000 /
602200000000000000000000.00000000000000000000000 =
000000000000000000000000.00000000000000000001995
Altera Corporation  13
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Obviously, a 157-bit multiplier/divider would be a costly circuit. To 
perform this calculation by hand, you can use scientific notation, as 
shown below:

This method of storing numbers is easier to use for numbers with 
differing magnitudes. The scientific notation requires only one digit to the 
left of the radix point, 5 digits to the right (these 6 digits are known as the 
mantissa), along with 2 extra digits for the exponent. This method 
requires a multiplier/divider with only 6 digits (or 20 bits) of accuracy. 

The place values of digits next to the radix point can have extremely 
different magnitudes, which depend directly upon the exponent. You can 
think of this as a “floating” decimal point. Thus, scientific notation is 
simply floating-point notation for decimal calculations. 

To perform this calculation in digital systems, you use the same concept 
of mantissa and exponent. The mantissa is the fractional part of the 
number, and the exponent gives the power of 2 by which the mantissa 
should be multiplied. 

The following example shows the floating-point representation of the 
decimal number 3072.

3072.0 (decimal) = 110000000000.0 (binary)

You can use a 2-bit mantissa and a 4-bit exponent to represent this number 
in floating-point notation, as shown below:

3 × 210 (decimal) = 11 × 21010 (binary) 

This notation requires only 6 bits to store the number, as opposed to the 
12 bits used for fixed-point notation. 

In floating-point format, a radix point is placed to the right of the most 
significant 1, and the exponent is adjusted accordingly. For example, the 
equation shown above is represented as 1.1 × 21011, rather than 
11 × 21010. This format is called normalized floating point. Because a 1 is 
always to the left of the binary point in normalized floating-point 
numbers, the 1 can be assumed and not stored, leaving an extra bit for 
storing the mantissa or exponent. 

m
1.00000 103×( ) 1.20107 101×( )×

1.99447 10 20–×
------------------------------------------------------------------------------------=
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For example, the number 3,072 is stored by directly concatenating the 
mantissa and exponent. With a 2-bit mantissa and 4-bit exponent, you 
obtain 111011. Using normalized floating-point format you obtain 101011 
(again with 2 bits of mantissa, and 4 bits of exponent). 

f A variety of floating-point formats are available, each with various 
advantages and disadvantages. For more information on other floating-
point formats, see Functional Specification 2 (fp_add_sub Floating-Point 
Adder/Subtractor) and Functional Specification 4 (fp_mult Floating-Point 
Multiplier).

Block Floating 
Point

The block floating point numbering system is used in signal processing 
applications dealing with numbers that vary widely throughout a 
calculation, such as the fast Fourier transform (FFT) function. For 
example, the data for an FFT function may come from a 16-bit A/D 
converter, which has a dynamic range of 96 dB. As the FFT processes data, 
the numbers grow significantly throughout the calculation. Because 
floating-point hardware is more expensive than fixed-point hardware, 
many FFT calculations are performed with fixed-point hardware. You can 
use floating-point hardware economically if you are willing to give up 
dynamic range for any given set of data and to keep track of the 
magnitude of the entire set of data separately from each individual piece 
of data. 

For example, an FFT function may start with 256 points of data, each with 
a 16-bit value between –32,768 and 32,767. On the first pass through the 
FFT, the values may range between –65,536 and 65,536, which requires 
extra precision. To keep the data 16-bits wide, you can divide all 256 
points by 2 and store a 1 in a register. This method requires only 1 extra 
register to keep the data at 16 bits. 

This method is called block floating point because the radix point on the 
entire block of data moves at the same time, which keeps the radix points 
aligned with each other. In true floating point, the radix point of every 
piece of data is in a different location.

The floating point numbering system should not be confused with the 
block floating point numbering system. They are dramatically different 
and require different hardware for computation.

f For more information on FFTs, see the fft Fast Fourier Transform Data Sheet.
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