

®

Binary Numbering Systems

April 1997, ver. 1 Application Note 83

Introduction Binary numbering systems are used in virtually all digital systems,
including digital signal processing (DSP), networking, and computers.
Before you choose a numbering system, it is important to understand the
advantages and disadvantages of each system. This application note
describes the following numbering systems, the advantages and
disadvantages of each, and how to convert between different systems.

■ Unsigned integer
■ Two’s complement integer
■ Unsigned fractional
■ Two’s complement signed fractional
■ Gray code
■ Signed-magnitude
■ Offset two’s complement
■ One’s complement
■ Floating point
■ Block floating point

Table 1 summarizes the binary numbering systems described in this
application note. For each numbering system, the number range is
provided for an N-bit number. For fractional numbering systems, the
number range is provided for an N + M-bit number, where N is the integer
part of the number and M is the fractional part of the number.
Altera Corporation 1

A-AN-083-01

AN 83: Binary Numbering Systems

Table 2 shows a 3-bit binary number and its equivalent decimal value for
each numbering system.

Table 1. Summary of the Binary Numbering Systems

System Number Range Advantages Disadvantages

Unsigned
Integer

0 to 2N – 1 Universal numbering system.
Easy to perform arithmetic
operations such as addition and
subtraction.

Cannot store negative numbers.

Two’s
Complement
Integer

–2(N – 1) to 2(N – 1) – 1 Stores both positive and negative
numbers. Easy to perform
arithmetic with regular adders.

Requires one extra bit of storage
space when only positive
numbers are necessary.

Unsigned
Fractional

0 to 2N – 2M Stores positive numbers greater
than and less than 1. Operations
are identical to unsigned integer
operations.

Cannot store negative numbers.

Two’s
Complement
Signed
Fractional

–2(N – 1) to 2(N – 1) – 2–M
in 2–M steps

Stores positive and negative
numbers both greater than and
less than 1. Operations are
identical to two’s complement
operations.

–

Gray Code 0 to 2(N – 1) Only one bit changes between
adjacent numbers, which
facilitates interfaces with physical
systems.

Difficult to perform arithmetic
operations without first converting
to one of the systems listed
above.

Signed-
Magnitude

–2(N – 1) –1 to 2(N – 1) – 1 Useful for applications that
require the magnitude to be
distinct from the sign.

Difficult to perform arithmetic
operations (although easier than
with Gray code).

Offset Two’s
Complement

–2(N – 1) to 2(N – 1) – 1 Used by many analog-to-digital
(A/D) and digital-to-analog (D/A)
converters. Easy to perform
arithmetic operations.

–

One’s
Complement

–2(N – 1) – 1 to 2(N – 1) – 1 Easy to perform negations. Difficult to perform arithmetic
operations other than negations.

Floating Point See “Floating Point” on
page 13.

Very large dynamic range. Requires more hardware to
perform arithmetic.

Block Floating
Point

See “Block Floating
Point” on page 15.

Large dynamic range and
requires minimal hardware.

All numbers have the same
exponent at any given time.
2 Altera Corporation

AN 83: Binary Numbering Systems

Unsigned
Integer

The best known numbering system is unsigned integer representation.
Like the decimal numbering system, unsigned integers use a simple
binary place value. The position of a digit determines its value (i.e., the
place value of a digit is 2position). See Figure 1. This representation is
exactly like the decimal numbering system, in which the place value is
10position.

Figure 1. Bit Position

Table 3 shows the decimal value for each bit in a 5-bit unsigned integer.

Table 2. Values for a 3-Bit Binary Number

Binary
Number

Unsigned
Integer

Two’s
Complement

Gray Code Signed
Magnitude

Offset Two’s
Complement

One’s
Complement

000 0 0 0 0 –4 0

001 1 1 1 1 –3 1

010 2 2 3 2 –2 2

011 3 3 2 3 –1 3

100 4 –4 7 –0 0 –3

101 5 –3 6 –1 1 –2

110 6 –2 4 –2 2 –1

111 7 –1 5 –3 3 0

Table 3. Unsigned Integer Values

Position Place Value Decimal Value

0 20 1

1 21 2

2 22 4

3 23 8

4 24 16

1 1 1 1 1

4 3 2 1 0
24 23 22 21 20

Binary Number

Position

Place Value
Altera Corporation 3

AN 83: Binary Numbering Systems

Table 4 shows how to determine the decimal value of an unsigned integer.

You can easily perform arithmetic operations on unsigned numbers by
following the same rules used for decimal number operations. However,
for binary numbers, the digit is carried after 1 rather than after 9 (i.e.,
when two 1s are added together, a 0 is placed in the corresponding
position and a 1 is carried to the next position). Figure 2 shows how to add
2 unsigned integers together.

Figure 2. Unsigned Integer Addition

The unsigned integer numbering system is widely used. This numbering
system’s main limitation is that it can only store the numbers ranging
from 0 to (2N – 1); most signal processing systems need to store both
positive and negative numbers.

Two’s
Complement
Integer

The most commonly used numbering system that can store both positive
and negative numbers is two’s complement integer. This system is similar
to unsigned integers, except the sign of the most significant bit (MSB) is
negated. For example, for an N-bit number, bit 0 has a value of 20, bit 1 has
a value of 21, bit N – 2 has a value of 2(N – 2), and bit N – 1 (i.e., the MSB)
has a value of –2(N – 1). Table 5 shows the decimal value for each position
in a 5-bit two’s complement integer.

Table 4. Unsigned Integer Conversion

Unsigned
Integer

Decimal
Value

Conversion

01000 8 0 + 23 + 0 + 0 + 0 = 8

10011 19 24 + 0 + 0 + 21 + 20 = 16 + 2 + 1 = 19

11011 27 24 + 23 + 0 + 21 + 20 = 16 + 8 + 2 + 1 = 27

 1 1 0 1 1 27
+ 1 0 0 1 1 = + 19
 1 0 1 1 1 0 46
4 Altera Corporation

AN 83: Binary Numbering Systems

Table 6 shows how to determine the decimal value of a two’s complement
number.

Two’s complement integers represent numbers ranging from –2(N – 1) to
2(N – 1) – 1. To negate a two’s complement integer, you simply invert the
bits and add 1. For example, the following steps show how to negate the
number 9 to –9.

1. Substitute the binary values of the decimal number: 9 = 01001

2. Invert the bits: 10110

3. Add 1: (10110 + 1) = 10111

As shown in Table 6, 10111 is equal to –9.

The biggest advantage of the two’s complement numbering system is that
adding and subtracting two’s complement numbers is the same as adding
and subtracting unsigned numbers. However, sign extension must be
performed before the operation and any carry out of the adder should be
ignored. Figure 3 shows how to add two 2-bit two’s complement
numbers.

Table 5. Two’s Complement Integer Values for a 5-Bit Number

Position Place Value Decimal Value

0 20 1

1 21 2

2 22 4

3 23 8

4 (MSB) –24 –16

Table 6. Two’s Complement Integer Conversion

Two’s
Complement

Integer

Decimal
Value

Conversion

01000 8 0 + 23 + 0 + 0 + 0 = +8

11000 –8 –24 + 23 + 0 + 0 + 0 = –16 + 8 = –8

10000 –16 –24 + 0 + 0 + 0 + 0 = –16

10111 –9 –24 + 0 + 22 + 21 + 20 = –16 + 0 + 4 + 2 + 1 = –9
Altera Corporation 5

AN 83: Binary Numbering Systems

Figure 3. Two’s Complement Integer Addition

In Figure 3, the digits shaded in blue represent the bits used for sign
extension. The blue digits are the carry out of the 3-bit adder, which must
be ignored. Other than the sign extension and ignoring the carry-out of
the MSB of the adder, addition for two’s complement numbers is identical
to addition for unsigned integer numbers.

Unsigned
Fractional

In DSP and other systems, it is often necessary to store numbers that have
both an integer and a fractional component. Because some bit positions
can be negative, the unsigned fractional numbering system can store
numbers greater than and less than 1. The place value of a digit in the
unsigned fractional numbering system is 2position, where the position can
be positive or negative (see Figure 4). Therefore, the unsigned fractional
numbering system is a superset of the unsigned integer numbering
system.

Figure 4. Bit Position

Table 7 shows the decimal value for each bit in an unsigned fractional
number.

Table 8 shows how to determine the decimal value of an unsigned
fractional number.

Positive + Positive Negative + Positive Negative + Negative

 1 0 0 1 –1 1 1 1 –1 1 1 1
+ 1 + 0 0 1 + 1 + 0 0 1 –2 + 1 1 0
 2 0 0 0 1 0 1 0 0 0 –3 1 1 0 1

Table 7. Unsigned Fractional Values

Position Place Value Decimal Value

–2 2–2 0.25

–1 2–1 0.50

0 20 1

1 21 2

2 22 4

1 1 1 1 1

2 1 0 –1 –2
22 21 20 2–1 2–2

Binary Number

Position

Place Value
6 Altera Corporation

AN 83: Binary Numbering Systems

Unsigned fractional numbers use a convenient notation to keep track of
the location of a radix point (i.e., the binary or decimal point); a number
with N bits to the left of the radix point and M bits to the right is said to be
an N. M number (e.g., an 8.3 number has 8 digits to the left of the radix
point and 3 digits to the right).

If all numbers in your system have the same M value (i.e., the same
fractional bit-width), arithmetic operations are straightforward. For
example, you can add an 8.3 number to a 12.3 number by using a 15-bit
binary adder. Figure 5 shows how to add 00100101.101 (37.625) to
001101110011.001 (883.125).

Figure 5. Addition with the Same M Values

To add numbers with different M values, you must add extra zeros to
keep the radix points aligned. For example, to add an 8.3 number to a 6.5
number, you must pad the 8.3 number with zeros to create an 8.5 number.
Thus, you must use a 13-bit adder rather than an 11-bit adder to add the
two numbers. Figure 6 shows how to add 11011011.110 (219.750) to
110111.11011 (55.84375).

Figure 6. Addition with Different M Values

Table 8. Unsigned Fractional Conversion

Unsigned
Fractional
Number

Decimal
Value

Conversion

01001 2.25 0 + 21 + 0 + 0 + 2–2 = 2 + 0.25 = 2.25

11011 6.75 22 + 21 + 0 + 2–1 + 2–2 = 4 + 2 + 0.5 + 0.25 = 6.75

00010 0.5 0 + 0 + 0 + 2–1 + 0 = 0.5

 00100101.101
+ 001101110011.001

 001110011000.110

 37.625
+ 883.125
 920.750

 11011011.11000

 + 00110111.11011

 100010011.10101

 219.75000
+ 055.84375

 275.59375

Digits used for padding are highlighted in blue.
Altera Corporation 7

AN 83: Binary Numbering Systems
Other than aligning the radix points, there is no difference between the
unsigned integer and unsigned fractional numbering systems. In fact, an
unsigned integer number is simply an N.0 unsigned fractional number
(i.e., unsigned integer numbers have no bits to the right of the radix point).
Any hardware built for integer numbers will work with fractional
numbers.

Two’s
Complement
Signed
Fractional

Like unsigned fractional, the two’s complement signed fractional
numbering system uses an N.M notation and must have the radix points
aligned during arithmetic operations.

Figure 7 shows how to add an 8.3 number to a 5.5 number.

Figure 7. Two’s Complement Signed Fractional Addition

Again, the numbers are padded with zeros and sign-extended to obtain
the correct result.

Gray Code Gray code is a numbering system that is used mainly in real-world
sensing applications. The fundamental feature of Gray code is that only
one bit changes at a time as you progress sequentially through the
numbers. See Table 9.

 –36.25000
+ 13.90625

 –22.34375

 111011011.11000

 + 000001101.11101

 100010011.10101

Digits used for padding are highlighted in blue.

Table 9. Gray Code Values

Gray Code Number Decimal Value

001 1

011 2

010 3

110 4

111 5
8 Altera Corporation

AN 83: Binary Numbering Systems
To understand why a numbering system in which only one bit changes at
a time is useful, consider the optical sensor shown in Figure 8. This sensor
is a shaft encoder that gives the physical position (i.e., rotation) of the
shaft. For simplicity, the sensor is shown with only a 2-bit code. The
sensor has 2 light-emitting diodes (LEDs) and 2 photo detectors for
sensing the position of the shaft. The number of bits represented by the
wheel depends on how closely you can space the cut-outs in the wheel
without the wheel becoming too flimsy, the diameter of the light beam,
and other physical parameters. Figure 8 shows a binary shaft encoder
with 2 signals: s1 and s0.

Figure 8. Straight Binary Shaft Encoder

Figure 9 shows the ideal waveforms of s1 and s0 as the wheel cycles
through one full rotation.

Figure 9. Ideal Waveforms of s1 & s0

In contrast, the real waveforms generated by the optical sensors vary
slowly and the sensors are always misaligned by at least a small amount,
which causes the signals to resemble the waveforms shown in Figure 10.

LEDsPhoto Detectors

s1

s0

0 (00) 3 (11)

1 (01) 2 (10) Shaft

00 01 10 11s[1..0]

s1

s0

00
Altera Corporation 9

AN 83: Binary Numbering Systems
Figure 10. Waveforms Caused by Misaligned Sensors

When the optical sensors are misaligned, s1 and s0 may not switch at the
same instant. Therefore, intervening codes appear in the sensed shaft
position. In Figure 10, the s[1..0] signal should have cycled through the
shaft position sequence of 00 è 01 è 10 è 11 è 00. However, it actually
cycles through the sequence 00 è 01 è 00 è 10 è 11 è 10 è 00, which
is incorrect. This error could be catastrophic if the shaft encoder is, for
example, sensing the rudder position on an airplane.

The fundamental problem with non-Gray code is that more than 1 bit
changes when going from one position to another, such as going from
position 1 (01) to position 2 (10). In 2-bit Gray code, the decimal sequence
0 è 1 è 2 è 3 è 0 is represented as 00 è 01 è 11 è 10 è 00. Notice
that only 1 bit changes between any 2 adjacent numbers, which prevents
the problems incurred with simultaneous switching in misaligned
sensors. Figure 11 shows the shaft encoder for 2-bit Gray code.

Figure 11. Shaft Encoder for 2-Bit Gray Code

When the sensors on this encoder are misaligned, even by a significant
amount, there are no extra codes in the sequence 0 è 1 è 2 è 3 è 0, as
shown in Figure 12.

00 01 10 11s[1..0]

s1

s0

00 10 00

0 (00) 3 (10)

1 (01) 2 (11)

LEDsPhoto Detectors
s1

s0

Shaft
10 Altera Corporation

AN 83: Binary Numbering Systems
Figure 12. Gray Code Sequence with Significant Misalignment

Unfortunately, it is difficult to perform arithmetic on Gray code numbers.
It is easiest to perform operations by first converting the numbers from
Gray code to either unsigned or signed two’s complement numbers after
sensing.

You can create longer Gray code sequences by concatenating the smaller
sequence with a reversed version of the same sequence, and setting the
MSB to 0 and 1. For example, the following steps show how to build a 3-bit
Gray code:

1. For the first 4 numbers, append a 0 to the MSB of the 2-bit Gray code.

2. For the last 4 numbers, reverse the order of the 2-bit Gray code and
append a 1 to the MSB.

This method ensures that only 1 bit changes between any two adjacent
numbers. See Table 10.

Signed-
Magnitude

Signed-magnitude is useful for applications in which the sign and
magnitude of a number must be accessed separately. In signed-
magnitude systems, the MSB represents the sign of the number (i.e., 0 =
positive, 1 = negative) and all other bits represent the magnitude. This
notation is similar to decimal notation, which uses a + and – as the sign bit
and uses the remaining bits to represent the magnitude.

Table 10. Creating Longer Gray Code Sequences

Decimal Value 2-Bit Gray Code 3-Bit Gray Code

0 00 000

1 01 001

2 11 011

3 10 010

4 – 110

5 – 111

6 – 101

7 – 100

10s[1..0]

s1

s0

2 3 0
Altera Corporation 11

AN 83: Binary Numbering Systems
The signed-magnitude and two’s complement numbering systems both
use the MSB to determine the sign. However, do not confuse signed-
magnitude with two’s complement. Although the MSB can be used to
determine the sign in two’s complement, the other bits do not represent
the magnitude when the sign is negative. In addition, two’s complement
has only one representation of zero, whereas the signed-magnitude
numbering system has two (i.e., +0 and –0).

To perform any complex arithmetic operations on signed-magnitude
data, it is usually easiest to convert the numbers to two’s complement,
perform the operations, and then convert the numbers back to the signed-
magnitude system, if required.

Offset Two’s
Complement

The offset two’s complement numbering system is used by many D/A
and A/D converters. The distinguishing characteristic of this numbering
system is that the numbers move from –4 to 3 monotonically as you count
in binary from 000 to 111—there are no jumps or discontinuities. In
contrast, the decimal value of two’s complement numbers goes from 0 to
3 and then counts from –4 to –1 as the binary number progresses from 000
to 111.

To convert numbers from two’s complement to offset two’s complement,
you simply invert the MSB, as shown in Table 11.

One’s
Complement

The one’s complement numbering system is seldom used because it has
the same drawbacks as all non-two’s complement numbers—it is difficult
to perform arithmetic and it has two representations of zero (i.e., +0 and
–0).

Table 11. Converting to Offset Two’s Complement

Decimal Value Two’s Complement Offset Two’s
Complement

–4 100 000

–3 101 001

–2 110 010

–1 111 011

0 000 100

1 001 101

2 010 110

3 011 111
12 Altera Corporation

AN 83: Binary Numbering Systems
When you add a one’s complement number to its inverse, the answer is
not zero, which creates an inconsistent algebra. In fact, as Table 2 on
page 3 shows, the two representations of zero are 000 and 111, which
makes zero sensing more difficult (i.e., you must use an N-bit OR and an
N-bit AND gate). To negate a number in the one’s complement numbering
system, you simply invert all the bits (i.e., you do not add a 1 like in two’s
complement).

Floating Point All of the previous numbering systems have one common characteristic:
they have a relatively small dynamic range between the largest and
smallest numbers they can store. The power dynamic range in decibels
(dB) of all previous numbering systems is approximately 20log(2N),
where N is the total number of bits in the numbering system. For an 8-bit
number, the dynamic range is 48.1 dB; for a 16-bit number, the dynamic
range is 96.3 dB. In many cases, you may need larger dynamic ranges. For
example, you need a large dynamic range to perform a simple physical
calculation, such as figuring out the mass (in grams) of 1,000 atoms of
carbon.

The following equation can be used to calculate the mass of carbon.

m = n × w /N

where: m = Mass (grams)
n = Number of atoms = 1,000
w = Atomic mass (grams/mole) = 12.0107
N = Avogadro’s number (1/mole) = 6.022 × 1023

Calculating the mass with a fixed-point numbering system is similar to
performing calculations without scientific notation. To represent both
Avogadro’s number to 23 decimal places and the atomic mass accurate to
0.0001 simultaneously, you need 28 decimal digits of accuracy to
represent the input operands, and another 19 digits to represent the
result—a total of 47 decimal digits. To perform the same calculation in
binary, you would require 157 bits of accuracy. To illustrate, the following
calculation shows how to calculate the mass with fixed-point arithmetic
(all 47 digits are used to illustrate the fact that you would similarly have
to keep track of all 157 bits in hardware):

m = 000000000000000000001000.00000000000000000000000 ×
000000000000000000000012.01070000000000000000000 /
602200000000000000000000.00000000000000000000000 =
000000000000000000000000.00000000000000000001995
Altera Corporation 13

AN 83: Binary Numbering Systems
Obviously, a 157-bit multiplier/divider would be a costly circuit. To
perform this calculation by hand, you can use scientific notation, as
shown below:

This method of storing numbers is easier to use for numbers with
differing magnitudes. The scientific notation requires only one digit to the
left of the radix point, 5 digits to the right (these 6 digits are known as the
mantissa), along with 2 extra digits for the exponent. This method
requires a multiplier/divider with only 6 digits (or 20 bits) of accuracy.

The place values of digits next to the radix point can have extremely
different magnitudes, which depend directly upon the exponent. You can
think of this as a “floating” decimal point. Thus, scientific notation is
simply floating-point notation for decimal calculations.

To perform this calculation in digital systems, you use the same concept
of mantissa and exponent. The mantissa is the fractional part of the
number, and the exponent gives the power of 2 by which the mantissa
should be multiplied.

The following example shows the floating-point representation of the
decimal number 3072.

3072.0 (decimal) = 110000000000.0 (binary)

You can use a 2-bit mantissa and a 4-bit exponent to represent this number
in floating-point notation, as shown below:

3 × 210 (decimal) = 11 × 21010 (binary)

This notation requires only 6 bits to store the number, as opposed to the
12 bits used for fixed-point notation.

In floating-point format, a radix point is placed to the right of the most
significant 1, and the exponent is adjusted accordingly. For example, the
equation shown above is represented as 1.1 × 21011, rather than
11 × 21010. This format is called normalized floating point. Because a 1 is
always to the left of the binary point in normalized floating-point
numbers, the 1 can be assumed and not stored, leaving an extra bit for
storing the mantissa or exponent.

m
1.00000 103×() 1.20107 101×()×

1.99447 10 20–×
--=
14 Altera Corporation

AN 83: Binary Numbering Systems
For example, the number 3,072 is stored by directly concatenating the
mantissa and exponent. With a 2-bit mantissa and 4-bit exponent, you
obtain 111011. Using normalized floating-point format you obtain 101011
(again with 2 bits of mantissa, and 4 bits of exponent).

f A variety of floating-point formats are available, each with various
advantages and disadvantages. For more information on other floating-
point formats, see Functional Specification 2 (fp_add_sub Floating-Point
Adder/Subtractor) and Functional Specification 4 (fp_mult Floating-Point
Multiplier).

Block Floating
Point

The block floating point numbering system is used in signal processing
applications dealing with numbers that vary widely throughout a
calculation, such as the fast Fourier transform (FFT) function. For
example, the data for an FFT function may come from a 16-bit A/D
converter, which has a dynamic range of 96 dB. As the FFT processes data,
the numbers grow significantly throughout the calculation. Because
floating-point hardware is more expensive than fixed-point hardware,
many FFT calculations are performed with fixed-point hardware. You can
use floating-point hardware economically if you are willing to give up
dynamic range for any given set of data and to keep track of the
magnitude of the entire set of data separately from each individual piece
of data.

For example, an FFT function may start with 256 points of data, each with
a 16-bit value between –32,768 and 32,767. On the first pass through the
FFT, the values may range between –65,536 and 65,536, which requires
extra precision. To keep the data 16-bits wide, you can divide all 256
points by 2 and store a 1 in a register. This method requires only 1 extra
register to keep the data at 16 bits.

This method is called block floating point because the radix point on the
entire block of data moves at the same time, which keeps the radix points
aligned with each other. In true floating point, the radix point of every
piece of data is in a different location.

The floating point numbering system should not be confused with the
block floating point numbering system. They are dramatically different
and require different hardware for computation.

f For more information on FFTs, see the fft Fast Fourier Transform Data Sheet.
Altera Corporation 15

AN 83: Binary Numbering Systems
Altera is a trademark and/or service mark of Altera Corporation in the United States and other countries.
Altera acknowledges the trademarks of other organizations for their respective products or services
mentioned in this document. Altera products are protected under numerous U.S. and foreign patents and
pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor
products to current specifications in accordance with Altera’s standard warranty, but reserves the right to
make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services.

Copyright  1997 Altera Corporation. All rights reserved.

2610 Orchard Parkway
San Jose, CA 95134-2020
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 894-7104
Literature Services:
(888) 3-ALTERA
lit_req@altera.com

®

16 Altera Corporation

Printed on Recycled Paper.

	Contents
	AN 83: Binary Numbering Systems
	Introduction
	Unsigned Integer
	Two’s Complement Integer
	Unsigned Fractional
	Two’s Complement Signed Fractional
	Gray Code
	Signed- Magnitude
	Offset Two’s Complement
	One’s Complement
	Floating Point
	Block Floating Point

