

®

Using the Jam Language
for ISP & ICR via an

Embedded Processor

November 1998, ver. 3.01 Application Note 88

Introduction In-system programming and in-circuit configuration through an

embedded processor—available in MAX® 9000, MAX 9000A,

MAX 7000A, MAX 7000AE, MAX 7000S and FLEX® 10K devices—enables

easy design prototyping, streamlines production, and allows quick and

efficient in-field upgrades. Devices that support in-system

programmability (ISP) and in-circuit reconfigurability (ICR) are easily

upgraded in the field by downloading new configurations using ROM,

FLASH cards, modems, or other data links. Design changes are

downloaded to a system in the field via an embedded processor. The

embedded processor transfers programming data from a memory source

to a device and allows easy design upgrades.

The Jam™ programming and test language, a new standard file format for

ISP, is designed to support programming of any ISP-capable device that

uses the IEEE Std. 1149.1 Joint Test Action Group (JTAG) interface. You

can download the Jam Player from the Jam web site at

http://www.jamisp.com. The Jam source code is executed directly by an

interpreter program, without being compiled into binary executable code

(see “Embedded Programming with the Jam Language” on page 4). The

Jam source code, or Jam Byte-Code File (.jbc), contains the programming

algorithm and data to upgrade one or more devices.

This application note describes how to use the Jam language to achieve

the benefits of ISP using an embedded processor, including:

■ Embedded system configuration and requirements

■ Embedded programming with the Jam language

1 This application note should be used together with the Jam
Programming & Test Language Specification.

Embedded
System
Configuration &
Requirements

To achieve the benefits of ISP or ICR, an embedded system must be able

to program or configure target devices using a small amount of system

memory and it must be flexible enough to adapt to a changing set of

devices from multiple device vendors. The embedded system typically

consists of an embedded processor, EPROM or system memory, and some

interface logic. Programming data is stored in system memory (i.e.,

EPROM or FLASH memory).
Altera Corporation 1

A-AN-088-03.01

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor

2 Altera Corporation

During in-system programming or in-circuit reconfiguration, the

embedded processor transfers programming or configuration data from

system memory to the ISP-capable device(s). Figure 1 shows a block

diagram of an embedded system.

Figure 1. Embedded System Block Diagram

Notes:
(1) Because FLEX 10KA devices in 144-pin thin quad flat pack (TQFP) packages do not have a TRST pin, you can ignore

this connection.

(2) The nCONFIG, MSEL0, and MSEL1 pins should be connected to support a FLEX configuration scheme. If only JTAG

configuration is used, connect nCONFIG to VCC, and connect MSEL0 and MSEL1 to ground.

The embedded processor is connected to an EPROM or system memory

and a programmable logic device (PLD) that stores the optional interface

logic. The JTAG chain can connect directly to four of the embedded

processor’s data pins; however, adding the interface logic allows you to

save these four ports because it treats the JTAG chain as an address

location on the existing bus. Additionally, you may choose to install a

10-pin ByteBlaster™ header on the board to allow the MAX+PLUS® II

software and ByteBlaster™ or ByteBlasterMV™ parallel port download

cable to access and verify the JTAG chain.

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

ControlControl

d[3..0]d[7..0]

adr[19..0]

Control

d[7..0]

adr[19..0]adr[19..0]

Interface
Logic

(Optional)

Any JTAG
Device

EPROM or
 System
Memory

to/from ByteBlaster

Embedded
Processor

Embedded System

8

8

4

20

2020

MAX 9000,
MAX 9000A,
MAX 7000S,
MAX 7000A,
or MAX 7000AE
Device

Any JTAG
Device

TDI

TMS
TRST (1)

CONF_DONE
nSTATUS

nCONFIG
MSEL0
MSEL1

nCE

TCK

TDO

Any FLEX 10K
or FLEX 10KA
Device

Note (2)

1 kΩ
1 kΩ

VCC VCC VCC

GND

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor

Altera Corporation 3

f For more information on the ByteBlaster or ByteBlasterMV parallel port

download cables, see the ByteBlaster Parallel Port Download Cable Data Sheet
or the ByteBlasterMV Parallel Port Download Cable Data Sheet.

Figure 2 illustrates the embedded system’s interface logic.

Figure 2. Interface Logic Note (1)

Note:
(1) The TDI , TMS, and TCK signals fed back through d[3..0] are optional. These signals are used for diagnostic

purposes only.

PR

CLR

D

EN

PR

CLR

D

EN

PR

CLR

D

EN

SEL

A1
B1
A2
B2
A3
B3

Y1

Y2

Y3

Y4
A4
B4
GN

adr[19..0] AD_VALID

TDO

TDI

TMS

TCK

DATA3

DATA2

DATA1

DATA0

TDI Register

TMS Register

TCK Register

ByteBlaster_nProcessor_Select

ByteBlaster_TDI

ByteBlaster_TMS

ByteBlaster_TCK

ByteBlaster_TDO

adr[19..0]

nDS

d[3..0]

R_nW

R_AS

nRESET

CLK

address_decode

74157
Multiplexer

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor

The interface logic activates when it receives the proper address and

control signals from the embedded processor. The registers then

synchronize the timing of the TDI , TCK, and TMS signals and drive the

output pins through a 74157 multiplexer. The multiplexer allows the

ByteBlaster or ByteBlasterMV cable to access the JTAG chain for

verification.

Embedded
Programming
with the Jam
Language

The Jam language has two parts: the Jam File and the Jam Player. A Jam

File, which contains all the information to program ISP-capable devices, is

generated from the MAX+PLUS II development software and is stored in

system memory. The Jam Player runs on the embedded processor,

interprets the information in the Jam File, and generates the binary data

stream for device programming. Because updates may only be needed by

and are confined to the Jam File, the Jam Player requires no changes and

is used to program any vendor’s device.

Figure 3 shows a block diagram of how in-system programming is

achieved with the Jam language.

Figure 3. Block Diagram of ISP using JBC File & Jam Player

The Jam File

Jam Files are compact files containing programming data and algorithm

information needed to program any device through the IEEE Std. 1149.1

JTAG port. Altera supports two separate implementations of the Jam File:

the Jam Byte-Code File (.jbc) and the ASCII Jam File (.jam). The JBC File

is a binary file, while the Jam File is text only. Altera recommends using

the JBC File for all new designs because it provides smaller file sizes and

faster programming times. Altera will continue to support the ASCII Jam

File format for backward compatibility.

System Memory

Jam Player

Embedded Processor

to JTAG Chain
00100…0100…etc.

JTAG Binary Data Stream
.jbc
4 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor

Figure 4 describes how to generate a JBC File for in-system programming

using the MAX+PLUS II software.

1 A similar flow is possible using development software from

other vendors.

Figure 4. Generating a JBC File Using the MAX+PLUS II software

EPROM/FLASH
Device

 MAX+PLUS II

Utility

.pof .pof .pof

.jbc

.hex

Compile
Design 1

Compile
Design 2

Compile
Design N

Compile your designs with the
MAX+PLUS II software.

The MAX+PLUS II
software generates the
Programmer Object File.

The MAX+PLUS II
software converts the
POFs into a JBC File.

Use utility to
create a Hex File
or similar
programming file.

Program Hex File or
other programming
file into EPROM/
FLASH devices.
Altera Corporation 5

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor

Initialization Conventions

The MAX+PLUS II software generates JBC Files that use Jam conventions

for initialization. This section describes special conventions that are

supported by the Jam language.

DO_PROGRAM

The DO_PROGRAM variable determines whether a device should be

programmed. By setting DO_PROGRAM to 1, the Jam Player performs the

silicon ID check, bulk erase, and program functions for one or more

ISP-capable devices. When programming more than one device in the

same family, the MAX+PLUS II software uses a concurrent programming

algorithm (i.e., programming data shifts through all devices of the same

family at the same time).

Targeted devices tri-state I/O pins at the beginning of programming, and

all I/O pins leave the tri-state mode when the last device finishes

programming. Both transitions occur simultaneously for all of the

targeted devices in the JTAG chain.

DO_VERIFY

The DO_VERIFY variable tells the JBC File to verify the device. By setting

DO_VERIFY to 1, the targeted devices are verified. The result of

verification is indicated by the exit code of the Jam program.

DO_ERASE

The DO_ERASE variable causes the JBC File to completely erase the device.

This process ensures the proper programming of each bit and the

reliability of the device after multiple programming cycles.

DO_BLANKCHECK

The DO_BLANKCHECK variable ensures that the entire device is properly

bulk erased before programming. The DO_BLANKCHECK variable verifies

that all data is erased.

DO_SECURE

The DO_SECURE initialization variable causes the security bit to be

programmed for those devices that have the security bit turned on in the

corresponding POF. If the POF does not have the security bit turned on,

initializing this variable to 1 has no effect.
6 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor

DO_SECURE_ALL

The DO_SECURE_ALL initialization variable programs the security bit

regardless of whether the security bit is turned on in the corresponding

POF.

DO_READ_UES

The user electronic signature (UES) is useful for tracking design revisions.

The DO_READ_UES variable tells the Jam Player to read the UES code out

of the targeted device and report it. The Jam Player reads the UES code

when the DO_READ_UES variable is initialized to 1 (i.e., -dDO_READ
UES=1). The Jam Player returns the value of the UES code through the

jbi_export() routine, using printf . A JTAG chain with two Altera

devices supporting UES has the following output:

jbi –p378 –dDO_READ_UES=1 Altera.jbc

1 FFFA and FFFB are the 16-bit UES codes represented in

hexadecimal format.

DO_CONFIGURE

The DO_CONFIGURE variable determines whether an SRAM-based device

should be configured. Setting this variable to 1 when applying a JBC File

that has been generated for a FLEX 10K device results in configuration.

f For more information on initialization conventions, see the Jam
Programming & Test Language Specification.
Altera Corporation 7

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor

JBC File Structure

In an embedded system, a JBC File is placed in system memory that can

be updated. A JBC File is structured to be compact; it has a Variable

Declaration/Initialization Section and an Algorithm Section. Figure 5

illustrates the JBC File structure.

Figure 5. Structure of a JBC File

The Variable Declaration and Initialization Section contains the declared

variables that are used in the JBC File. The variables can also be initialized

to specific values. In a BOOLEAN array, the variable is initialized as a

compressed data array, using the advanced compression algorithm

(ACA) format. Variables of other types can be declared and initialized in

this section; initialization of these variables is optional.

f For more detail on the ACA data array format, see the Jam Programming &
Test Language Specification.

The Algorithm Section contains the actual programming commands and

programming code that performs other necessary functions

(e.g., branching based on the results of verification, looping for multiple

JTAG data register scans, or other administrative functions to track the

targeted JTAG chain). The Algorithm Section contains the superset of

functions (e.g., blank-check and verify) that are performed on the targeted

device(s).

• Compressed Program/Verify Data
• Initialized Variables

• Check Silicon ID
• Blank-Check (Optional)
• Bulk Erase & Program (Optional)
• Read UES (Optional)
• Verify (Optional)
• Exit Code

Variable Declaration/Initialization Section

Algorithm Section
8 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
The Jam Player

The Jam Player is a C program that parses the JBC File, interprets each Jam

instruction, and reads and writes data to and from the JTAG chain. The

source code is written for compilation using 16- or 32-bit processors. The

variables processed by the Jam Player depend on the initialization list

variables present at the time of execution (see “Executing the Jam Player”

on page 10 for more information). Because each application has unique

requirements, the Jam Player source code was designed to be easily

modified. Figure 6 illustrates the Jam Player source code structure.

Figure 6. Jam Player Source Code Structure

The main program performs all of the basic functions of the Jam Player

without modification. Only the I/O functions, which are contained in the
jbistub.c file, need to be modified for a given application. These functions

include those that specify addresses to I/O pins, delay routines, operating

system-specific functions, and routines for file I/O.

The Jam Player resides permanently in system memory, where it

interprets the commands given in the JBC File and generates a binary data

stream for device programming. This structure confines all upgrades to

the JBC File, and allows the Jam Player to adapt to any system

architecture.

.jbc

Jam Player

I/O Functions
(jbistub.c file)

Main Program

Compare
& Export

Error
Message

TCK

TMS

TDI

TDO

InterpretParse
Altera Corporation 9

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Two types of Jam Players are available, for use with ASCII Jam Files and

JBC Files. Table 1 documents the compatibility of the Jam Player with the

various file options.

JBC Files are applied using the Jam Byte-Code Player, while ASCII Jam

Files are applied with the ASCII Jam Player. This separation of

functionality reduces the file size of the Jam Player binaries. Altera

recommends using JBC Files in all cases except where existing projects

require the use of ASCII Jam Files.

Customizing the Jam Player

The Jam Player is structured to simplify customization based on platform

requirements and applications. All file I/O and port configurations are

changed by editing the jbistub.c file. As an input, the jbistub.c file

retrieves data from the JBC File and/or reads shifted data from TDO. As an

output, the jbistub.c file sends processed JTAG data to the three JTAG

pins: TDI , TMS, and TCK, sends formatted error and information messages

back to the calling program, and/or sends status and information back to

the calling program.

f The readme file included with Jam Player source code provides detailed

information about porting the Jam Player. Contact Altera Applications at

(800) 800-EPLD for more information.

Executing the Jam Player

The Jam Player provides the flexibility to specify which ISP functions are

performed. At the time of execution, command-line options are passed to

the Jam Player. Jam Player usage takes the following form:

jam [–h] [–v] [–p<Hexadecimal parallel port address>]

–d<Initialization variable> [–d <Initialization variable>] <Jam File name>

Command-line options in brackets ([]) are optional. The Jam Player

processes only one JBC File at a time. Table 2 describes the function of

each command-line option.

Table 1. Jam Player Compatibility

Jam File Type Jam Player Type

ASCII (jam.exe) Byte Code (jbi.exe)

ASCII v

Byte Code v
10 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Altera Corporation 11

Note:
(1) This command-line option is optional.

When using the –d command-line option, certain variables from the

initialization list are provided for initializing the Jam Player. Table 3

describes the variables that can be used after the –d command-line option.

Table 2. Jam Player Command-Line Options

Command-
Line Option

Definition Function

–h , (1) Help Reports the Jam Player version.

–v , (1) Verbose Reports status and error messages with detailed
real-time information.

–d Initialize Tells the Jam Player which functions to perform.

–p , (1) Port Specifies the parallel port address where the Jam
Player should send data.

–s , (1) Port Specifies the serial port address where the Jam Player
should send data.

–1 , (1) Cable Use this ISP download cable. The default uses the
ByteBlaster parallel port download cable.

Table 3. -d Command-Line Option Variable Names & Their Functions

Variable Name Value Function

DO_ERASE 0 Do not erase the device.

1 Erase the device.

DO_BLANKCHECK 0 Do not check the erased state of the device.

1 Check the erased state of the device.

DO_PROGRAM 0 Do not program the device.

1 Program the device.

DO_VERIFY 0 Do not verify the device.

1 Verify the device.

DO_SECURE 0 Do not set the security bit.

1 If the corresponding POF sets the security bit,
set the security bit.

DO_SECURE_ALL 0 Do not set the security bit.

1 Set the security bit, overriding the POF
setting.

DO_READ_UES 0 Do not read the UES code.

1 Read and report the UES code.

DO_CONFIGURE 0 Do not configure the device.

1 Configure the device.

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
12 Altera Corporation

The initialization variables apply to all Altera devices that are targeted in

the JTAG chain. When the JBC File is generated, targeted devices are

assigned a configuration file. To get to the dialog box that is used to

generated JBC Files, perform the following steps:

1. Run the MAX+PLUS II software.

2. Choose Programmer (MAX+PLUS II menu).

3. Choose Create Jam or SVF File (File menu).

Figure 7 shows the dialog box that specifies which JBC Files are generated

by the MAX+PLUS II software.

Figure 7. Generating a JBC File for a Multi-Device JTAG Chain

The devices showing <none> next to them are bypassed during

configuration. Initialization variables that are passed to the Jam Player are

applied to each device that has a programming file name next to it. For

example, the following command configures the EPF10K100A device and

concurrently programs and verifies the EPM7064S and EPM7128S

devices, while bypassing the EPF6016 device and the i960 processor:

jbi –v –p378 –dDO_CONFIGURE=1 –dDO_PROGRAM=1 –dDO_VERIFY=1
dboard.jbc

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Jam Player Memory Usage

The Jam Player binary code and the JBC File are stored in non-volatile

system memory. Once the Jam Player is called, it uses dynamic RAM

(DRAM) to perform all of the tasks for device programming. Field

upgrades are simplified by confining updates to the Jam File.

The Jam Player uses memory as follows:

1. The controlling software calls the Jam Player.

2. The Jam Player reads the JBC File into DRAM.

3. The Jam Player inflates the compressed data and initializes memory

for the symbol table and stack.

Figure 8 shows how the Jam Player uses memory.

Figure 8. Jam Player Memory

Notes:
(1) The RAMSIZE is the maximum amount of DRAM required by the Jam Player.

(2) ROMSIZE is the maximum amount of ROM required to store the Jam Player and

JBC File.

When the Jam Player is called, it reads the entire JBC File into a buffer, and

decompresses programming data, contained within the JBC File. In some

cases, a JBC File can be generated such that the Jam Player does not need

to decompress any data.

Jam Player

Heap

Stack

Symbol Table

Uncompressed Data

.jbc

.jbc

jbi.exe

Extra Memory

Extra Memory

Dynamic Memory

ROM

RAMSIZE

ROMSIZEStep 1

Step 2

Step 3
(1)

(2)
Altera Corporation 13

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Next, the Jam Player initializes the symbol table, stack, and heap. The

symbol table stores variable and label names declared in the JBC File. The

stack is used for executing FOR loops, CALL statements, and PUSH
statements. The heap is temporary memory for evaluating arithmetic

expressions and storing padding data.

Once the symbol table, stack, and heap are initialized, the Jam Player is

ready to parse and execute the JBC File. While the Jam Player processes

the JBC File, the stack and heap expand and shrink as commands are

encountered. During this process, the amount of memory used by the JBC

File, the uncompressed data, and the symbol table remains constant.

Estimating ROM Usage

Use the following equation to estimate the maximum amount of ROM

required to store the Jam Player and JBC File:

ROMSIZE = JBC File Size + Jam Player Size

The JBC File size can be separated into two categories: the amount of

memory required to store the programming data, and the space required

for the programming algorithm. Use the following equation to estimate

the JBC File size:

JBC File Size = Alg +

where:

Alg = Space used by algorithm

Data = Space used by compressed programming data

k = Index representing family type(s) being targeted

N = Number of target devices in the chain

This equation provides a JBC File size estimate that may vary by ±10%,

depending on device utilization. When device utilization is low, JBC File

sizes tend to be smaller and compression algorithms are more likely to

find repetitive data.

The equation also indicates that the algorithm size stays constant for a

device family, but the programming data size grows slightly as more

devices are targeted. For a given device family, the increase in JBC File

size (due to the data component) is linear.

Data
k 1=

N

∑

14 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Table 4 shows algorithm file size constants for all possible combinations

of Altera device families that support the Jam language.

Note:
(1) When configuring FLEX 10K devices and programming MAX 9000, MAX 7000A,

or MAX 7000S devices, the FLEX 10K algorithm adds negligible memory.

(2) For information on MAX 7000AE devices, contact Altera Applications at

(800) 800-EPLD.

Table 4. Algorithm File Size Constants for Altera Device Families

Device Family Typical Algorithm Size (Kbytes)

ASCII Jam File JBC File

MAX 7000S, MAX 7000A 22 18

MAX 9000 26 21

MAX 9000, MAX 7000S, MAX 7000A 42 35

FLEX 10K, MAX 7000S, MAX 7000A 42 35

FLEX 10K, MAX 9000, MAX 7000A,
MAX 7000S, Note (1)

42 35

FLEX 10K 6 4

MAX 7000AE Note (2) Note (2)
Altera Corporation 15

AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor

Table 5 shows data constants for all possible combinations of Altera

devices that support the Jam language for ISP.

Notes:
(1) For information on MAX 7000AE devices, contact Altera Applications at (800) 800-EPLD.

(2) For more information on how to generate JBC Files with uncompressed programming data, contact Altera

Applications at (800) 800-EPLD.

Table 5. Data Constants Note (1)

Device Typical Data Size (Kbytes)

Compressed Uncompressed

ASCII Jam JBC JBC, Note (2)

EPM7032S 1 4 4

EPM7064S 3 9 9

EPM7128S, EPM7128A 6 5 20

EPM7160S 9 6 27

EPM7192S 10 7 34

EPM7256S, EPM7256A 14 10 49

EPM9320, EPM9320A 20 15 59

EPM9400 26 19 70

EPM9480 25 18 73

EPM9560, EPM9560A 27 20 96

EPF10K10, EPF10K10A 11 8 14

EPF10K20 23 17 28

EPF10K30, EPF10K30A,EPF10K30E 39 28 46

EPF10K40 51 37 61

EPF10K50, EPF10K50E, EPF10K50V 60 44 76

EPF10K70 95 69 109

EPF10K100, EPF10K100A,
EPF10K100B, EPF10K100E

130 95 146

EPF10K130E, EPF10K130V 177 128 194

EPF10K200E 196 143 322

EPF10K250A, EPF10K250E 245 179 403
16 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
After estimating the JBC File size, estimate the Jam Player size using the

information in Table 6.

Estimating Dynamic Memory Usage

Use the following equation to estimate the maximum amount of DRAM

required by the Jam Player:

The JBC File size is determined by a single- or multi-device equation (see

“Estimating ROM Usage” on page 14).

The ACA variable is the size of the kth compressed array when inflated,

where N is the total number of ACA compressed arrays within the JBC

File. To determine the ACA variable size, look in the ASCII Jam File’s

Variable Declaration/Initialization section. The size of each array (in bits)

is stated within brackets of the Variable Declaration statement. For

example:

BOOLEAN A21[104320] = ACA mB300u...

In this example, the ACA variable is 104,320 bits long when inflated.

Table 6. Jam Player Binary Sizes

Processor Typical Size (Kbytes)

Size Description ASCII Jam
Player

JBC
Player

16-bit Pentium/486 using the BitBlaster™,
ByteBlaster, or ByteBlasterMV parallel
port download cables

105 62

32-bit Pentium/486 using the BitBlaster™,
ByteBlaster, or ByteBlasterMV serial
download cables

115 68

RAM = JBC File Size + ACA variable kSIZE ∑
k = 1

N

Altera Corporation 17

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
18 Altera Corporation

1 The memory requirements for the stack and heap are negligible,

with respect to the total amount of memory used by the Jam

Byte-Code Player. The maximum depth of the stack is set by the

JBI_STACK_SIZE parameter in the jbimain.c file.

Estimating Memory Example

The following example uses a Motorola 68000 processor to program an

EPM7128S and EPM7064S device in an IEEE Std. 1149.1 JTAG chain via a

JBC File. To determine memory usage, first determine the amount of ROM

required and then estimate the RAM usage. Use the following steps to

calculate the amount of DRAM required by the Jam Byte-Code Player:

1. Determine the JBC File size. Use the multi-device equation to

estimate the JBC File size:

where:

Alg = 18 Kbytes

Data = EPM7064S Data + EPM7128S Data = 9 + 5 = 14 Kbytes

Thus, the JBC File size equals 32 Kbytes.

2. Estimate the Jam Byte-Code Player size. This example uses

62 Kbytes for the binary size estimation. Use the following equation

to determine the amount of ROM needed:

ROMSIZE = JBC File Size + Jam Player Size

ROMSIZE = 94 Kbytes.

3. Estimate the RAM usage with the following equation:

The ACA variables are as follows (open the ASCII Jam File to find the

compressed arrays):

BOOLEAN A21[150120] = ACA Db400u...
BOOLEAN A22[97640] = ACA j_200u...

JBC File Size = Alg + Data ∑
k = 1

N

RAM = 32 Kbytes + ACA variable k SIZE ∑
k = 1

N

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Inflating the compressed data uses the following amount of RAM:

Calculate the total DRAM usage as follows:

RAMSIZE = 32 Kbytes + 30 Kbytes = 62 Kbytes

In general, Jam Files use more RAM than ROM, which is desirable

because RAM is cheaper. The overhead associated with easy upgrades

becomes a lesser factor as a larger number of devices are programmed. In

most applications, easy upgrades outweigh the memory costs.

Jam Player Operation

The Jam Player provides an interface for manipulating the IEEE Std.

1149.1 JTAG Test Access Port (TAP) state machine. The TAP controller is

a 16-state state machine that is clocked on the rising edge of TCK, and uses

the TMS pin to control JTAG operation in a device. Figure 9 shows the flow

of an IEEE Std. 1149.1 TAP controller state machine.

150,120 bits + 97,640 bits

bits

byte
8

= 30 Kbytes
Altera Corporation 19

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Figure 9. JTAG TAP Controller State Machine

SELECT_DR_SCAN

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

TMS = 0

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

RUN_TEST/
IDLETMS = 0

TEST_LOGIC/
RESETTMS = 1

TMS = 0

TMS = 1 TMS = 1

TMS = 1 TMS = 1

CAPTURE_IR

SELECT_IR_SCAN
20 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Table 7 shows the TAP state machine timing specifications. These timing

parameters are the same as those specified in the IEEE Std. 1149.1

specification.

Figure 10 illustrates waveforms that correspond to each timing

parameter. By using these timing parameters, you can ensure proper Jam

Player operation for any system.

Table 7. IEEE Std. 1149.1 Timing Parameters

Symbol Parameter MAX 9000 MAX 7000A MAX 7000AE MAX 7000S FLEX 10K Unit

Min Max Min Max Min Max Min Max Min Max
tJCP TCK clock period 100 100 100 100 100 ns

tJCH TCK clock high time 50 50 50 50 50 ns

tJCL TCK clock low time 50 50 50 50 50 ns

tJPSU JTAG port setup time 20 20 20 20 20 ns

tJPH JTAG port hold time 45 45 45 45 45 ns

tJPCO JTAG port clock to output 25 25 25 25 25 ns

tJPZX JTAG port high-
impedance to valid output

25 25 25 25 25 ns

tJPXZ JTAG port valid output to
high-impedance

25 25 25 25 25 ns

tJSSU Capture register setup
time

20 20 20 20 20 ns

tJSH Capture register hold time 45 45 45 45 45 ns

tJSCO Update register clock to
output

25 25 25 25 25 ns

tJSZX Update register
high-impedance to valid
output

25 25 25 25 25 ns

tJSXZ Update register valid
output to high-impedance

25 25 25 25 25 ns
Altera Corporation 21

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Figure 10. JTAG Waveforms

While the Jam Player provides a driver that manipulates the TAP

controller, the JBC File provides the high-level intelligence needed to

program a given device. All Jam instructions that send JTAG data to the

device involves moving the TAP controller through either the data

register leg of the state machine or the instruction register leg. For

example, loading a JTAG instruction involves moving the TAP controller

to the SHIFT_IR state and shifting the instruction into the instruction

register via the TDI pin. Next, the TAP controller is moved to the

RUN_TEST/IDLE state where a delay is implemented to allow the

instruction time to be latched. This process is identical for data register

scans, except that the data register leg of the state machine is traversed.

The high-level Jam instructions are the DRSCAN instruction for scanning

the JTAG data register, the IRSCAN instruction for scanning the instruction

register, and the WAIT command that causes the state machine to sit idle

for a specified period of time. Each leg of the TAP controller is scanned

repeatedly, according to instructions in the JBC File, until all of the target

devices are programmed.

f For more information on Jam instructions, see the Jam Programming & Test
Language Specification.

TDO

TCK

tJPZX tJPCO

tJPH

tJPXZ

 tJCP

 tJPSU tJCL tJCH

TDI

TMS

Signal
to Be

Captured

Signal
to Be

Driven

tJSZX

tJSSU tJSH

tJSCO tJSXZ
22 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Figure 11 illustrates the functional behavior of the Jam Player when it

parses the JBC File. Upon encountering a DRSCAN, IRSCAN, or WAIT

instruction, the Jam Player generates the proper data on TCK, TMS, and TDI

to complete the instruction. The flow diagram shows branches for the

DRSCAN, IRSCAN, and WAIT instructions. Although the Jam Player

supports other instructions, they are omitted from the flow diagram for

simplicity.
Altera Corporation 23

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Figure 11. Jam Player Flow Diagram (Part 1 of 2)

Set TMS to 1
and Pulse TCK
Twice

Set TMS to 0
and Pulse TCK
Twice

Switch

Case[]

EOF

Start

Switch

End

EOF?

Test-Logic-Reset

Run-Test/Idle

Set TMS to 1
and Pulse TCK
Five Times

Set TMS to 0
and Pulse TCK

Read Instruction
from the Jam
File

Set TMS to 1
and Pulse TCK
Three Times

F

T

Test-Logic-Reset

Parse Argument

IRSCAN

DRSCAN

Switch

Set TMS to 0
and Pulse TCK

Delay

WAIT

Run-Test/Idle

Select-IR-Scan

Shift-IR

Set TMS to 0
and Pulse TCK
and Write TDI

Set TMS to 0
and Pulse TCK
and Write TDI

Set TMS to 1
and Pulse TCK

Set TMS to 0
and Pulse TCK

Set TMS to 1
and Pulse TCK
Twice

Set TMS to 0
and Pulse TCK

Shift-IR

Exit1-IR

Pause-IR

Update-IR

Run-Test/Idle

Shift-DR

Set TMS to 0
and Pulse TCK
and Write TDI

Set TMS to 0
and Pulse TCK
Twice

Set TMS to 1
and Pulse TCK

Parse Argument

Shift-DR

Select-DR-Scan

Continued on
Part 2 of
Flow Diagram

F

T

Shift-IR
24 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Figure 11. Jam Player Flow Diagram (Part 2 of 2)

Conclusion To achieve the benefits of in-system programming and ICR through an

embedded processor, the Jam programming and test language

successfully meets necessary system requirements such as small file sizes,

ease of use, and platform independence. Using the Jam language for ISP

and ICR through an embedded processor supports in-field upgrades, easy

design prototyping, and fast production. These benefits lengthen the life

and enhance the quality and flexibility of the end products, and reduce

device inventories by eliminating the need to stock and track

programmed devices.

Switch

Update-IR

Run-Test/Idle

Set TMS to 1
and Pulse TCK

Set TMS to 0
and Pulse TCK

Switch

Update-IR

Run-Test/Idle

Set TMS to 1
and Pulse TCK

Set TMS to 0
and Pulse TCK

Set TMS to 1
and Pulse TCK
and Store TDO

Set TMS to 0
and Pulse TCK,
Write TDI, and
Store TDO

Shift-DR
Exit1-DR

F

F

T

Report
Error

DefaultCase[]

Loop<
DR Length

Set TMS to 1
and Pulse TCK
and Store TDO

Set TMS to 0
and Pulse TCK,
Write TDI, and
Store TDO

Compare

Capture

Exit1-DR

Switch

Update-IR

Run-Test/Idle

Set TMS to 1
and Pulse TCK

Set TMS to 0
and Pulse TCK

Loop<
DR Length

Set TMS to 1
and Pulse TCK
and Store TDO

Set TMS to 0
and Pulse TCK
and Write TDI

Exit1-DR

Continued from
Part 1 of
Flow Diagram

Correct
TDO Value

T

F

F

T

T

Loop<
DR Length
Altera Corporation 25

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Revision
History

The information contained in Application Note 88 (Using the Jam Language
for ISP & ICR via an Embedded Processor) version 3.01 supersedes

information published in previous versions.

Application Note 88 (Using the Jam Language for ISP & ICR via an Embedded
Processor) version 3.01 contains the following changes:

■ Added a note clarifying the operation of the TDI , TMS, and TCK signals

to Figure 2.

■ Made minor textual and style changes throughout the document.
26 Altera Corporation

AN 88: Using the Jam Langua ge for ISP & ICR via an Embed ded Pr ocessor
Altera, Jam, MAX, MAX 9000, MAX 9000A, MAX 7000A, MAX 7000AE, MAX 7000S, MAX, MAX+PLUS,

MAX+PLUS II, FLEX, FLEX 10K, FLEX 10KA, EPM7032S, EPM7032A, EPM7064S, EPM7064A, EPM7128S,

EPM7128A, EPM7160S, EPM7192S, EPM7256S, EPM7256A, EPM9320, EPM9320A, EPM9400, EPM9480,

EPM9560, EPM9560A, EPF10K10, EPF10K20, EPF10K30, EPF10K40, EPF10K50, EPF10K70, EPF10K100,

EPF10K130A, EPF10K250A, BitBlaster, ByteBlaster, and ByteBlasterMV are trademarks and/or service marks

of Altera Corporation in the United States and other countries. Altera acknowledges the trademarks of other

organizations for their respective products or services mentioned in this document. Altera products are

protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and

copyrights. Altera warrants performance of its semiconductor products to current

specifications in accordance with Altera’s standard warranty, but reserves the right to make

changes to any products and services at any time without notice. Altera assumes no

responsibility or liability arising out of the application or use of any information, product, or

service described herein except as expressly agreed to in writing by Altera Corporation.

Altera customers are advised to obtain the latest version of device specifications before

relying on any published information and before placing orders for products or services.

®

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
(888) 3-ALTERA
lit_req@altera.com
28 Altera Corporation

Printed on Recycled Paper.

	Contents
	AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor
	Introduction
	Embedded System Configuration�& Requirements
	Embedded Programming with the Jam Language
	The Jam File
	Initialization Conventions
	JBC File Structure

	The Jam Player
	Customizing the Jam Player
	Executing the Jam Player
	Jam Player Memory Usage
	Estimating ROM Usage
	Estimating Dynamic Memory Usage
	Estimating Memory Example

	Jam Player Operation

	Conclusion
	Revision History

