

®

In-System Programmability
Guidelines

May 1999, ver. 3 Application Note 100

Introduction As time-to-market pressures increase, design engineers require advanced

system-level products to ensure problem-free development and

manufacturing. Programmable logic devices (PLDs) with in-system

programmability (ISP) can help accelerate development time, facilitate

in-field upgrades, simplify the manufacturing flow, lower inventory

costs, and improve printed circuit board (PCB) testing capabilities.

Altera® ISP-capable devices can be programmed and reprogrammed

in-system via the IEEE Std. 1149.1 Joint Test Action Group (JTAG)

interface. This interface allows devices to be programmed and the PCB to

be functionally tested in a single manufacturing step, saving testing time

and assembly costs. This application note describes guidelines you should

follow to design successfully with ISP, including:

■ General ISP Guidelines

■ IEEE Std. 1149.1 Signals

■ Sequential vs. Concurrent Programming

■ ISP Troubleshooting Guidelines

■ ISP via Embedded Processors

■ ISP via In-Circuit Testers

General ISP
Guidelines

This section provides guidelines that will help you design successfully for

ISP-capable devices. These guidelines should be used regardless of your

specific design implementation.

Operating Conditions

Each Altera device has several parametric ratings, or operating

conditions, that are required for proper operation. Although Altera

devices can exceed these conditions when in user mode and still operate

correctly, these conditions should not be exceeded during in-system

programming. Violating any of the operating conditions during in-system

programming can result in programming failures or incorrectly

programmed devices.
Altera Corporation 1

A-AN-100-03

AN 100: In-System Pr ogrammability Guidelines

VCCISP Voltage

All Altera ISP-capable devices have a specification called VCCISP. The

VCCISP level must be maintained on the VCCINT pins (i.e.,

VCCINT = VCCISP) during in-system programming to ensure that the

device’s EEPROM cells are programmed correctly. The VCCISP

specification applies for both commercial- and industrial-temperature-

grade devices.

Because power consumption during in-system programming can exceed

the power consumption during user mode, you may need to adjust your

in-system programming setup to maintain correct voltage levels during

both modes. Altera recommends that you test the VCCISP levels on the

device’s VCCINT pins using an oscilloscope. First, test the VCCISP levels

with the oscilloscope’s trigger level set to the minimum VCC level listed in

the recommended operating conditions table in the appropriate device

family data sheet. Measure the voltage between VCCINT and ground,

probed at the pins of the device. Then, repeat this test with the

oscilloscope’s trigger level set to the maximum VCC level listed in the

recommended operating conditions table. If the oscilloscope is triggered

at either voltage level, you should adjust your programming setup.

Input Voltages

Each device family data sheet lists device input voltage specifications in

the absolute maximum ratings and recommended operating conditions

tables. The input voltages in the absolute maximum ratings tables refer to

the voltages beyond which the device risks permanent damage. For

example, MAX® 9000 devices have a maximum input voltage of 7.0 V and

a minimum input voltage of –2.0 V.

The recommended operating conditions tables specify the voltage range

for safe device operation. All devices can operate safely with input

voltages between (ground – 1.0 V) and (VCCINT + 1.0 V), and with input

currents up to 100 mA. Make sure all pins that transition during in-system

programming do not have a ground or VCC overshoot. Overshoot

problems typically occur on free-running clocks or data buses that can

toggle during in-system programming. All pins that have an overshoot

greater than 1.0 V must have series termination.

f For more information on operating conditions and termination, see the

Operating Requirements for Altera Devices Data Sheet and Application Note 75
(High-Speed Board Designs), respectively.
2 Altera Corporation

AN 100: In-System Pr ogrammability Guidelines

Altera Corporation 3

Interrupting In-System Programming

Altera does not recommend interrupting the programming process

because partially programmed devices operate unpredictably. Partially

programmed devices also cause signal conflicts, which can lead to

permanent device damage and can affect the proper operation of other

devices on the board.

MultiVolt Devices & Power-Up Sequences

For the JTAG circuitry to operate correctly during in-system

programming or boundary-scan testing, all devices in a JTAG chain must

be in the same state. Therefore, in systems with multiple power supply

voltages, the JTAG pins must be held in the test-logic-reset state until all

devices in the chain are completely powered up. This procedure is

particularly important because systems with multiple power supplies

cannot power all voltage levels simultaneously.

Altera devices with the MultiVoltTM feature can use two power supply

voltages: VCCINT and VCCIO. VCCINT provides power to the JTAG

circuitry; VCCIO provides power to output drivers for all pins, including

TDO. Therefore, when these devices use two power supply voltages, the

JTAG circuitry must be held in the test-logic-reset state until both power

supplies are turned on. If the JTAG pins are not held in the test-logic-reset

state, in-system programming errors can occur.

VCCINT Powered before VCCIO

If VCCINT is powered up before VCCIO, the JTAG circuitry is active but

unable to drive signals out. Thus, any transition on TCK can cause the state

machine to transition to an unknown JTAG state. If TMS and TCK are

connected to VCCIO and VCCIO is not powered up, the JTAG signals are

left floating. These floating values can cause the device to transition to

unintended JTAG states, leading to incorrect operation when VCCIO is

finally powered up. Therefore, all JTAG signals must be disabled as

described in “Disabling IEEE Std. 1149.1 Circuitry” on page 5.

VCCIO Powered before VCCINT

If VCCIO is powered up before VCCINT, the JTAG circuitry is not active but

TDO is tri-stated. Even though the JTAG circuitry is not active, if the next

device in the JTAG chain is powered up with the same trace as VCCIO, its

JTAG circuitry must stay in the test-logic-reset state. Because all TMS and

TCK signals are common, they must be disabled for all devices in the chain.

Therefore, the JTAG pins must be disabled by pulling TCK low.

AN 100: In-System Pr ogrammability Guidelines

4 Altera Corporation

I/O Pins Tri-Stated during In-System Programming

All device I/O pins are tri-stated during in-system programming. In

addition, MAX 7000S, MAX 7000A, MAX 7000AE, MAX 7000B, and

MAX 3000A devices have a weak pull-up resistor. The purpose of this

weak pull-up resistor is to eliminate the need for external pull-ups on

unused I/O pins. The value of this pull-up resistor is listed in the

individual device family data sheets.

Sufficient pull-up or pull-down resistors must be added on signals that

require a particular value during in-system programming (e.g., output

enable or chip enable signals). If a pull-up or pull-down resistor is not

added, the device could have high current during in-system

programming (caused by conflicts on the board), in-system programming

failures with either unrecognized device or verify errors, or a power-up

after in-system programming fails.

IEEE Std.
1149.1 Signals

This section provides guidelines for programming with the IEEE Std.

1149.1 (JTAG) interface.

TCK Signal

Most in-system programming failures are caused by a noisy TCK signal.

Noisy transitions on rising or falling edges can cause incorrect clocking of

the IEEE Std. 1149.1 Test Access Port (TAP) controller. Incorrect clocking

can cause the state machine to transition to an unknown state, leading to

in-system programming failures.

Further, because the TCK signal must drive all IEEE Std. 1149.1 devices in

the chain in parallel, the signal may have a high fan-out. Like any other

high fan-out user-mode clock, you must manage a clock tree to maintain

signal integrity. Typical errors that result from clock integrity problems

are invalid ID messages, blank-check errors, or verification errors.

Altera recommends pulling the TCK signal low through a resistor. Typical

resistor values are 1 kΩ to 5 kΩ, depending on the amount of current being

consumed and the number of devices on the board.

Fast TCK edges combined with board inductance can cause overshoot

problems. When this combination occurs, you must either reduce

inductance on the trace or reduce the switching rate by selecting a

transistor-to-transistor logic (TTL) driver chip with a slower slew rate.

Altera does not recommend using resistor and capacitor (RC) networks to

slow down edge rates, because they can violate the device’s input

specifications. In most cases, using a driver chip prevents the edge rate

from being too slow. Altera recommends using driver chips that do not

glitch upon power-up.

AN 100: In-System Pr ogrammability Guidelines

Programming via a Download Cable

If you are using the MasterBlasterTM, ByteBlasterMVTM, ByteBlasterTM, or

BitBlasterTM download cable and your JTAG chain contains three or more

devices, Altera recommends adding a buffer to the chain. You should

select a buffer with slow transitions to minimize noise.

If you must extend the download cable, you can attach a standard PC

parallel or serial port cable to the download cable. Do not extend the

10-pin header portion of the download cable; extending this portion of the

cable can cause noise and in-system programming problems.

f For more information on using the MasterBlaster, ByteBlasterMV,

ByteBlaster, or BitBlaster download cables, see the MasterBlaster
Serial/USB Communications Cable Data Sheet, ByteBlasterMV Parallel Port
Download Cable Data Sheet, ByteBlaster Parallel Port Download Cable Data
Sheet, or BitBlaster Serial Download Cable Data Sheet.

Disabling IEEE Std. 1149.1 Circuitry

If your design does not use ISP or boundary-scan test (BST) circuitry,

Altera recommends disabling the IEEE Std. 1149.1 circuitry. Table 1

summarizes how to disable the IEEE Std. 1149.1 circuitry when it is not in

use.

Notes:
(1) Information on MAX 7000B, MAX 7000A, MAX 7000AE, and MAX 3000A devices

is preliminary.

(2) Typical pull-up resistor values are 1 kΩ to 5 kΩ. This value may vary depending on

the amount of current being consumed and the number of devices on the board.

Table 1. Disabling IEEE Std. 1149.1 Circuitry

Devices Permanently Disabled Enabled for ISP & BST,
Disabled During User Mode

MAX 7000S
MAX 7000B (1)
MAX 7000A (1)
MAX 7000AE (1)
MAX 3000A (1)

In the MAX+PLUS® II
software, turn off the Enable
JTAG Support option.

Either pull TMS high and TCK
low, or pull TMS high before
pulling TCK high. (2)

MAX 9000
MAX 9000A

Either pull TMS high and TCK
low, or pull TMS high before
pulling TCK high. (2)

Either pull TMS high and TCK
low, or pull TMS high before
pulling TCK high. (2)
Altera Corporation 5

AN 100: In-System Pr ogrammability Guidelines
JTAG Permanently Disabled (MAX 7000S, MAX 7000B, MAX 7000A,
MAX 7000AE & MAX 3000A Devices)

MAX 7000S, MAX 7000B, MAX 7000A, MAX 7000AE, and MAX 3000A

device JTAG pins can be used as either JTAG ports or I/O pins. You

should specify how the pins will be used before compiling your design in

the MAX+PLUS II software by turning the Enable JTAG Support option on

or off. When the Enable JTAG Support option is turned on, the pins act as

JTAG ports for in-system programming and boundary-scan testing; when

the Enable JTAG Support option is turned off, the pins act as I/O pins and

you cannot perform in-system programming or boundary-scan testing.

f For more information on how to disable the JTAG circuitry using the

MAX+PLUS II software, search for “Classic & MAX Global Project Device

Options Dialog Box” or “Classic & MAX Individual Device Options

Dialog Box” in MAX+PLUS II Help.

JTAG Permanently Disabled (MAX 9000 & MAX 9000A Devices)

The JTAG circuitry is always enabled in MAX 9000 and MAX 9000A

devices because they have dedicated JTAG pins and circuitry. Therefore,

if you do not plan to use the ISP and BST circuitry, you can disable the

circuitry through the JTAG pins. To disable JTAG, the JTAG specification

instructs you to pull TMS high but does not explain what to do with TCK.

Altera recommends pulling TMS high and TCK low. Pulling TCK low

ensures that a rising edge does not occur on TCK during the power-up

sequence.

You can pull TCK high, but you must first pull TMS high. Pulling TMS high

first ensures that the rising edge or edges on TCK do not cause the JTAG

state machine to leave the test-logic-reset state.

JTAG Enabled for ISP/BST & Disabled in User Mode

For Altera ISP-capable devices that use JTAG for either in-system

programming or boundary-scan testing, the JTAG circuitry must be

enabled during ISP and BST but disabled at all other times. You control

JTAG operation through the JTAG pins. To permanently disable the JTAG

circuitry on MAX 9000 devices, either pull TMS high and TCK low, or pull

TMS high before pulling TCK high.
6 Altera Corporation

AN 100: In-System Pr ogrammability Guidelines
Working with Different Voltage Levels

When devices in a JTAG chain operate at different voltage levels, a

device’s output voltage specification must meet the subsequent device’s

input voltage specification. If the devices do not meet this criteria, you

must add additional circuitry, such as a level-shifter, to adjust the voltage

levels. For example, when a 5.0-V device drives a 2.5-V device, you must

adjust the 5.0-V device’s output voltage to meet the 2.5-V device’s input

voltage specification.

Because all devices in a JTAG chain are tied together, you must also

ensure that the first device’s TDO output meets the subsequent device’s

TDI input voltage specification to program a chain of devices successfully.

All Altera ISP-capable devices include a MultiVolt I/O feature, which

allows these devices to interface with systems that have different supply

voltages. All 5.0-V MultiVolt devices can be set for 3.3-V or 5.0-V I/O

operation. All 3.3-V MultiVolt devices can be set for 2.5-V, 3.3-V, or 5.0-V

I/O operation.

Sequential vs.
Concurrent
Programming

This section describes how to program multiple devices using sequential

and concurrent programming. For more information on sequential and

concurrent programming, see Product Information Bulletin 26 (Concurrent
Programming through the JTAG Interface for MAX Devices).

Sequential Programming

Sequential programming is the process of programming multiple devices

in a chain one device at a time. After the first device in the chain is finished

being programmed, the next device is programmed. This sequence

continues until all specified devices in the JTAG chain are programmed.

After a device is programmed, it uses the JTAG BYPASS instruction to

pass data to subsequent devices in the chain. However, any device loaded

with the JTAG BYPASS instruction will, by definition, operate in normal

user mode.
Altera Corporation 7

AN 100: In-System Pr ogrammability Guidelines
8 Altera Corporation

Concurrent Programming

Concurrent programming is used to program devices from the same

family in parallel. The time required to program multiple devices

concurrently is only slightly longer than the time required to “burn” data

into the largest device’s EEPROM or FLASH cells, resulting in

considerably faster programming times than sequential programming.

Higher clock rates for shifting data result in an even greater time savings.

However, using a parallel port rather than a serial port to transfer data

greatly reduces the time savings because serial ports have limited

bandwidth. Because FLEX® 10K devices are SRAM-based, they do not

“burn” data and thus support serial configuration only.

Selecting Sequential or Concurrent Programming

When programming using a Programmer Object File (.pof) and a

MasterBlaster, ByteBlasterMV, ByteBlaster, or BitBlaster download cable,

sequential programming is selected automatically. When using a JamTM

File (.jam) or Serial Vector Format (.svf) File, devices are programmed or

configured in the following order:

1. FLEX 10K devices sequentially

2. APEXTM 20K devices sequentially

3. MAX 7000S and MAX 7000A devices concurrently

4. MAX 7000AE and MAX 3000A devices concurrently

5. EPC2 devices sequentially

6. MAX 9000 devices concurrently

You can perform sequential programming with a Jam or SVF File if you

create individual files for each device. In this scheme, FLEX and APEX

devices will not begin configuration until you click the Configure button

in the MAX+PLUS II Programmer.

Devices in Different Modes

Errors can occur if some devices in the chain are operational while others

are still being programmed. For this reason, MAX 7000S, MAX 7000A,

MAX 7000AE, MAX 7000B, and MAX 3000A devices use a special ISP

instruction that prevents the devices from entering normal operation until

all devices in the chain finish in-system programming. In this mode, these

devices pass all boundary-scan data synchronously and wait for all other

devices in the same family to complete programming before beginning

operation. Thus, all of these devices begin operation simultaneously.

APEX 20K, FLEX 10K, MAX 9000, and MAX 9000A devices do not

currently support this mode. These devices are held in tri-state mode by

the programming software until all device families have been

programmed or configured.

AN 100: In-System Pr ogrammability Guidelines
ISP Trouble-
shooting
Guidelines

This section provides a few tips for troubleshooting ISP-related problems.

Invalid ID & Unrecognized Device Messages

The first step during in-system programming is to check the device’s

silicon ID. If the silicon ID does not match, an Invalid ID or

Unrecognize Device error is generated. Typical causes for this error are

shown below:

■ Download cable connected incorrectly

■ TDO is not connected

■ Incomplete JTAG chain

■ Noisy TCK signal

■ Jam Player ported incorrectly

Download Cable Connected Incorrectly

You will receive an error if the download cable is connected incorrectly to

the parallel port or if it is not receiving power from your board.

f For more information on installing the MasterBlaster, ByteBlasterMV,

ByteBlaster, or BitBlaster download cable, see the MasterBlaster Serial/USB

Communications Cable Data Sheet, ByteBlasterMV Parallel Port Download
Cable Data Sheet, ByteBlaster Parallel Port Download Cable Data Sheet, or

BitBlaster Serial Download Cable Data Sheet.

TDO Is Not Connected

You will receive an error if the TDO port of one device in the chain is not

connected. During in-system programming, data must be shifted in and

out of each device in the JTAG chain through the JTAG pins. Therefore,

each device’s TDO port must be connected to the subsequent device’s TDI

port, and the last device’s TDO port must be connected to the download

cable’s TDO port.

Incomplete JTAG Chain

You will receive an error if the JTAG chain is not complete. To check if an

incomplete JTAG chain is causing the error, use an oscilloscope to monitor

vectors coming out of each device in the chain. If each device’s TDO port

does not toggle during in-system programming, your JTAG chain is not

complete.
Altera Corporation 9

AN 100: In-System Pr ogrammability Guidelines
10 Altera Corporation

Noisy TCK Signal

Noise on the TCK signal is the most common reason for in-system

programming errors. Noisy transitions on rising or falling edges can

cause incorrect clocking of the IEEE Std. 1149.1 TAP controller, causing

the state machine to be lost and in-system programming to fail. For more

information on dealing with noisy TCK signals, See “TCK Signal” on

page 4.

Jam Player Ported Incorrectly

You will receive an error if the Jam Player was not ported correctly for

your platform. To check if the Jam Player is causing the error, apply the

IDCODE instruction to the target device using a Jam File. You can use a

Jam File to load an IDCODE instruction and then shift out the IDCODE

value. This test determines if the JTAG chain is set up correctly and if you

can read and write to the JTAG chain properly. Figure 1 on page 13 shows

a sample file you can use to read the IDCODE.

Troubleshooting Tips

This section discusses some additional suggestions for troubleshooting

ISP issues.

Verify the JTAG Chain Continuity

For in-system programming to occur successfully, the number of devices

physically in the JTAG chain must match the number reported in the

MAX+PLUS II software. The following steps show one simple way to

verify that the JTAG chain is connected properly.

1. In the MAX+PLUS II Programmer, choose Multi-Device JTAG
Chain Setup.

2. In the Multi-Device JTAG Chain Setup dialog box, click the Detect
JTAG Chain Info button. The MAX+PLUS II software reports how

many devices it found on the JTAG chain.

Check the VCC Level of the Board During In-System Programming

Using an oscilloscope, monitor the VCCINT signal on your JTAG chain and

set the trigger to the minimum VCC level listed in the recommended

operating conditions table of the appropriate device family data sheet. If

a trigger occurs during in-system programming, the devices may need

more current than is being supplied by the existing power supply. Try

replacing the existing power supply with one that provides more current.

AN 100: In-System Pr ogrammability Guidelines
Power-Up Problems

Excessive voltage or current on I/O pins during power-up can cause one

of the devices in the JTAG chain to experience latch-up. Check if any of the

devices are hot to the touch; hot devices have probably experienced

latch-up and may have been damaged. In this situation, check all voltage

sources to make sure that excessive voltage or current is not being fed into

the device. Then, replace the affected device and try programming again.

Random Signals on JTAG Pins

During normal operation, each device’s TAP controller must be in the

test-logic-reset state. To force the device back into this state, try pulling the

TMS signal high and pulsing the TCK clock signal six times. If the device

then powers-up successfully, you must add a higher pull-down resistor

on the TCK signal.

Software Issues

Failures during in-system programming are occasionally related to the

MAX+PLUS II software. All software-related issues are documented in

the Altera Technical Support (AtlasSM) section of the Altera web site at

http://www.altera.com. Simply search the Atlas database for information

relating to software issues that interfere with in-system programming.

ISP via
Embedded
Processors

This section provides guidelines for programming ISP-capable devices

using the Jam programming and test language and an embedded

processor.

Processor & Memory Requirements

The Jam Byte-Code Player supports 8-bit and higher processors; the ASCII

Jam Player supports 16-bit and higher processors. The Jam Player uses

memory in a predictable manner, which simplifies in-field upgrades by

confining updates to the Jam File. The Jam Player memory uses both ROM

and dynamic memory (RAM). ROM is used to store the Jam Player binary

and the Jam File; dynamic memory is used when the Jam Player is called.

f For information on how to estimate the maximum amount of RAM and

ROM required by the Jam Player, see Application Note 88 (Using the Jam
Language for ISP & ICR via an Embedded Processor).
Altera Corporation 11

AN 100: In-System Pr ogrammability Guidelines
Porting the Jam Player

The Altera Jam Player (both Byte-Code and ASCII versions) works with a

PC parallel port. To port the Jam Player to your processor, you only need

to modify the jamstub.c or jbistub.c file (for the ASCII Jam Player or Jam

Byte-Code Player, respectively). All other files should remain the same.

If the Jam Player is ported incorrectly, an Unrecognized Device error is

generated. The most common causes for this error are listed below:

■ After porting the Jam Player, the TDO value may be read in reversed

polarity. This problem may occur because the default I/O code in the

Jam Player assumes the use of the PC parallel port. Refer to the Jam

Player readme.txt file on the Altera Digital Library CD-ROM for

more detailed information on how to solve the problem.

■ Although the TMS and TDI signals are clocked in on the rising edge of

TCK, outputs do not change until the falling edge of TCK. This

situation causes a half TCK clock cycle lag in reading out the values. If

the TDO transition is expected on the rising edge, the data appears to

be offset by one clock.

■ Altera recommends using registers to synchronize the output

transitions. In addition, some processor data ports use a register to

synchronize the output signals. For example, reading and writing to

the PC’s parallel port is accomplished by reading and writing to

registers. The use of these registers must be taken into consideration

when reading and writing to the JTAG chain. Incorrect accounting of

these registers can cause the values to either lead or lag the expected

value.

You can use a test Jam File to determine if the Jam Player is ported

correctly. Figure 1 shows a sample Jam File that helps debug potential

porting problems, including the three issues discussed previously. You

can download this example file from the literature page on Altera’s web

site at http://www.altera.com.
12 Altera Corporation

AN 100: In-System Pr ogrammability Guidelines
Altera Corporation 13

Figure 1. Sample Jam File for Debugging Porting Problems (Part 1 of 5)

NOTE JAM_VERSION "1.1 ";
NOTE DESIGN "IDCODE.jam version 1.4 4/28/98";
'###
' #This Jam File compares the IDCODE read from a JTAG chain with the
' #expected IDCODE. There are 5 parameters that can be set when executing
' #this code.
' #
' #COMP_IDCODE_[device #]=1, for example -dCOMP_IDCODE_9400=1
' #compares the IDCODE with an EPM9400 IDCODE.
' #PRE_IR=[IR_LENGTH] is the length of the instruction registers you want
'# to bypass after the target device. The default is 0, so if your
' #JTAG length is 1, you don't need to enter a value.
' #POST_IR=[IR_LENGTH] is the length of the instruction registers you
' #want to bypass before the target device. The default is 0, so if
'# your JTAG length is 1, you don't need to enter a value.
' #PRE_DR=[DR_LENGTH] is the length of the data registers you want
' #to bypass after the target device. The default is 0, so if your
' #JTAG length is 1, you don't need to enter a value.
' #POST_DR=[DR_LENGTH] is the length of the data registers you want
' #to bypass before the target device. The default is 0, so if your
' #JTAG length is 1, you don't need to enter a value.
' #Example: This example reads the IDCODE out of the second device in the
'# chain below:
' #
' #TDI -> EPM7128S -> EPM7064S -> EPM7256S -> EPM7256S -> TDO
' #
' #In this example, the IDCODE is compared to the EPM7064S IDCODE. If the JTAG
' #chain is set up properly, the IDCODEs should match.
' # C:\> jam -dCOMP_IDCODE_7064S=1 -dPRE_IR=20 -dPOST_IR=10 -dPRE_DR=2
' #-dPOST_DR=1 -p378 IDCODE.jam
' #
' #
' # Example: This example reads the IDCODE of a single device JTAG chain
' # and compares it to an EPM9480 IDCODE:
' #
' # C:\> jam -dCOMP_IDCODE_9480=1 -p378 IDCODE.jam
' ###

' ######################### Initialization ########################

BOOLEAN read_data[32];
BOOLEAN I_IDCODE[10] = BIN 1001101000;
BOOLEAN I_ONES[10] = BIN 1111111111;
BOOLEAN ONES_DATA[32]= HEX FFFFFFFF;

AN 100: In-System Programmability Guidelines
14 Altera Corporation

Figure 1. Sample Jam File for Debugging Porting Problems (Part 2 of 5)

BOOLEAN ID_9320[32] = BIN 10111011000000000100110010010000;
BOOLEAN ID_9400[32] = BIN 10111011000000000000001010010000;
BOOLEAN ID_9480[32] = BIN 10111011000000000001001010010000;
BOOLEAN ID_9560[32] = BIN 10111011000000000110101010010000;
BOOLEAN ID_7032S[32] = BIN 10111011000001001100000011100000;
BOOLEAN ID_7064S[32] = BIN 10111011000000100110000011100000;
BOOLEAN ID_7128S[32] = BIN 10111011000000010100100011100000;
BOOLEAN ID_7128A[32] = BIN 10111011000000010100100011100000;
BOOLEAN ID_7160S[32] = BIN 10111011000000000110100011100000;
BOOLEAN ID_7192S[32] = BIN 10111011000001001001100011100000;
BOOLEAN ID_7256S[32] = BIN 10111011000001101010010011100000;
BOOLEAN ID_7256A[32] = BIN 10111011000001101010010011100000;

BOOLEAN COMP_9320_IDCODE = 0;
BOOLEAN COMP_9400_IDCODE = 0;
BOOLEAN COMP_9480_IDCODE = 0;
BOOLEAN COMP_9560_IDCODE = 0;
BOOLEAN COMP_7032S_IDCODE = 0;
BOOLEAN COMP_7064S_IDCODE = 0;
BOOLEAN COMP_7096S_IDCODE = 0;
BOOLEAN COMP_7128S_IDCODE = 0;
BOOLEAN COMP_7128A_IDCODE = 0;
BOOLEAN COMP_7160S_IDCODE = 0;
BOOLEAN COMP_7192S_IDCODE = 0;
BOOLEAN COMP_7256S_IDCODE = 0;
BOOLEAN COMP_7256A_IDCODE = 0;
BOOLEAN COMP_7032AE_IDCODE = 0;
BOOLEAN COMP_7064AE_IDCODE = 0;
BOOLEAN COMP_7128AE_IDCODE = 0;
BOOLEAN COMP_7256AE_IDCODE = 0;
BOOLEAN COMP_7512AE_IDCODE = 0;
INTEGER PRE_IR = 0;
INTEGER PRE_DR = 0;
INTEGER POST_IR = 0;
INTEGER POST_DR = 0;

BOOLEAN SET_ID_EXPECTED[32];
BOOLEAN COMPARE_FLAG1 = 0;
BOOLEAN COMPARE_FLAG2 = 0;
BOOLEAN COMPARE_FLAG = 0;

' This information is what is expected to be shifted out of the instruction
' register

BOOLEAN expected_data[10] = BIN 0101010101;
BOOLEAN ir_data[10];

AN 100: In-System Programmability Guidelines
Altera Corporation 15

Figure 1. Sample Jam File for Debugging Porting Problems (Part 3 of 5)

' These values default to 0, so if you have a single device JTAG chain, you do
' not have to set these values.

PREIR PRE_IR;
POSTIR POST_IR;
PREDR PRE_DR;
POSTDR POST_DR;

INTEGER i;

' ######################### Determine Action ########################

LET COMPARE_FLAG1= COMP_9320_IDCODE || COMP_9400_IDCODE || COMP_9480_IDCODE ||
COMP_9560_IDCODE || COMP_7032S_IDCODE || COMP_7064S_IDCODE ||
COMP_7096S_IDCODE || COMP_7032AE_IDCODE || COMP_7064AE_IDCODE ||
COMP_7128AE_IDCODE;

LET COMPARE_FLAG2 = COMP_7128S_IDCODE || COMP_7128A_IDCODE || COMP_7160S_IDCODE
|| COMP_7192S_IDCODE || COMP_7256S_IDCODE || COMP_7256A_IDCODE ||
COMP_7256AE_IDCODE || COMP_7512AE_IDCODE;

LET COMPARE_FLAG = COMPARE_FLAG1 || COMPARE_FLAG2;
IF COMPARE_FLAG != 1 THEN GOTO NO_OP;

FOR i=0 to 31;
IF COMP_9320_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9320[i];
IF COMP_9400_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9400[i];
IF COMP_9480_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9480[i];
IF COMP_9560_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9560[i];
IF COMP_7032S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7032S[i];
IF COMP_7064S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7064S[i];
IF COMP_7128S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7128S[i];
IF COMP_7128A_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7128A[i];
IF COMP_7160S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7160S[i];
IF COMP_7192S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7192S[i];
IF COMP_7256S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7256S[i];
IF COMP_7256A_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7256A[i];
IF COMP_7032AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7032AE[i];
IF COMP_7064AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7064AE[i];
IF COMP_7128AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7128AE[i];
IF COMP_7256AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7256AE[i];
IF COMP_7512AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7512AE[i];

NEXT I;

AN 100: In-System Programmability Guidelines
Figure 1. Sample Jam File for Debugging Porting Problems (Part 4 of 5)

' ######################### Actual Loading ########################

IRSTOP IRPAUSE;
STATE RESET;
IRSCAN 10, I_IDCODE[0..9], CAPTURE ir_data[0..9];
STATE IDLE;

DRSCAN 32, ONES_DATA[0..31], CAPTURE read_data[0..31];

' ######################### Printing ########################

PRINT "EXPECTED IRSCAN : 1010101010";
PRINT "ACTUAL IRSCAN: ",ir_data[0], ir_data[1], ir_data[2], ir_data[3],

ir_data[4], ir_data[5], ir_data[6], ir_data[7], ir_data[8], ir_data[9];

PRINT "";PRINT "EXPECTED IDCODE : ", SET_ID_EXPECTED[0], SET_ID_EXPECTED[1],
SET_ID_EXPECTED[2], SET_ID_EXPECTED[3], SET_ID_EXPECTED[4],
SET_ID_EXPECTED[5], SET_ID_EXPECTED[6], SET_ID_EXPECTED[7],
SET_ID_EXPECTED[8], SET_ID_EXPECTED[9], SET_ID_EXPECTED[10],
SET_ID_EXPECTED[11], SET_ID_EXPECTED[12], SET_ID_EXPECTED[13],
SET_ID_EXPECTED[14], SET_ID_EXPECTED[15], SET_ID_EXPECTED[16],
SET_ID_EXPECTED[17], SET_ID_EXPECTED[18], SET_ID_EXPECTED[19],
SET_ID_EXPECTED[20], SET_ID_EXPECTED[21], SET_ID_EXPECTED[22],
SET_ID_EXPECTED[23], SET_ID_EXPECTED[24], SET_ID_EXPECTED[25],
SET_ID_EXPECTED[26], SET_ID_EXPECTED[27], SET_ID_EXPECTED[28],
SET_ID_EXPECTED[29], SET_ID_EXPECTED[30], SET_ID_EXPECTED[31];

PRINT "ACTUAL IDCODE : ", READ_DATA[0], READ_DATA[1], READ_DATA[2],
READ_DATA[3], READ_DATA[4], READ_DATA[5], READ_DATA[6], READ_DATA[7],
READ_DATA[8], READ_DATA[9], READ_DATA[10], READ_DATA[11], READ_DATA[12],
READ_DATA[13], READ_DATA[14], READ_DATA[15], READ_DATA[16], READ_DATA[17],
READ_DATA[18], READ_DATA[19], READ_DATA[20], READ_DATA[21], READ_DATA[22],
READ_DATA[23], READ_DATA[24], READ_DATA[25], READ_DATA[26], READ_DATA[27],
READ_DATA[28], READ_DATA[29], READ_DATA[30], READ_DATA[31];

GOTO END;
16 Altera Corporation

AN 100: In-System Programmability Guidelines
Figure 1. Sample Jam File for Debugging Porting Problems (Part 5 of 5)

' ######################### If no parameters are set ########################

NO_OP: PRINT "jam [-d< var=val>] [-p< port>] [-s< port>] IDCODE.jam";
PRINT "-d : initialize variable to specified value";
PRINT "-p : parallel port number or address < for ByteBlaster>";
PRINT "-s : serial port name < for BitBlaster>";
PRINT " ";
PRINT "Example: To compare IDCODE of the 4th device in a chain of 5 Altera ";
PRINT "devices with EPM7192S IDCODE";
PRINT " ";
PRINT "jam -dCOMP_7192S_IDCODE=1 -dPRE_IR=10 -dPOST_IR=30 -dPRE_DR=1";
PRINT "dPOST_DR=3 -p378 IDCODE.jam";
PRINT " ";

END:

EXIT 0;

ISP via
In-Circuit
Testers

This section addresses specific issues associated with programming

ISP-capable devices via in-circuit testers.

Using “F” vs. Non-“F” Devices

MAX devices use either fixed algorithms (“F”) or branching algorithms

(non-“F”). Most in-circuit tester file formats, e.g., SVF, Hewlett-Packard’s

Pattern Capture Format (.pcf), DTS, and ASC, are “fixed” or

deterministic, which means they can only support one fixed algorithm

without branching. The MAX+PLUS II software generates SVF Files for

“F” devices. Because the algorithms in SVF Files are constant, you can

always use these files to program future “F” devices.

Altera does not recommend programming non-“F” devices via in-circuit

testers. Non-“F” devices require branching based on three variables read

from the device: programming pulse time, erase pulse time, and

manufacturer silicon ID. These three variables are programmed into all

non-“F” Altera devices. Using only “F” devices eliminates problems you

may experience if these variables change.
Altera Corporation 17

AN 100: In-System Pr ogrammability Guidelines
Maximum Vectors per File

The file formats for “bed of nails” in-circuit testers generally require very

large vector files for in-system programming. When the file is larger than

the tester’s available memory, the file must be divided into smaller files.

For example, Altera’s svf2pcf utility automatically divides a single SVF

File into several smaller files. In addition, the utility allows users to either

specify the maximum number of vectors per file or use a default value. If

you put too many vectors in a single file, an error message occurs. If you

receive this error, simply reduce the number of vectors per file.

Pull-Up & Pull-Down Resistors

Testers may require pull-up or pull-down resistors on various signal

traces. Contact the in-circuit tester manufacturer directly for specific

information.

Summary The information provided in this document is based on development

experiences and customer issues resolved by Altera. For more

information on resolving in-system programming problems, contact

Altera Applications at (800) 800-3753, or via e-mail at sos@altera.com.

Twenty-four hour support is available through the Atlas section of the

Altera web site at http://www.altera.com.
18 Altera Corporation

AN 100: In-System Pr ogrammability Guidelines
Notes:
Altera Corporation 19

AN 100: In-System Pr ogrammability Guidelines
Altera, Atlas, APEX, APEX 20K, FLEX, FLEX 10K, MAX, MAX+PLUS, MAX+PLUS II, MAX 9000, MAX 9000A,

MAX 7000S, MAX 7000B, MAX 7000A, MAX 7000AE, MAX 3000A, MasterBlaster, BitBlaster, ByteBlaster,

ByteBlasterMV, EPM7128S, EPM7256S, EPM7064S, EPM9400, EPM9480, and Jam are trademarks and/or

service marks of Altera Corporation in the United States and other countries. Altera acknowledges the

trademarks of other organizations for their respective products or services mentioned in this document. Altera

products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights,

and copyrights. Altera warrants performance of its semiconductor products to current specifications in

accordance with Altera’s standard warranty, but reserves the right to make changes to any products and

services at any time without notice. Altera assumes no responsibility or liability arising out

of the application or use of any information, product, or service described herein except as

expressly agreed to in writing by Altera Corporation. Altera customers are advised to

obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

Copyright  1999 Altera Corporation. All rights reserved.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
(888) 3-ALTERA
lit_req@altera.com

®

20 Altera Corporation

Printed on Recycled Paper.

	Contents
	AN 100: In-System Programmability Guidelines
	Introduction
	General ISP Guidelines
	Operating Conditions
	VCCISP Voltage
	Input Voltages

	Interrupting In-System Programming
	MultiVolt Devices & Power-Up Sequences
	VCCINT Powered before VCCIO
	VCCIO Powered before VCCINT

	I/O Pins Tri-Stated during In-System Programming

	IEEE Std. 1149.1 Signals
	TCK Signal
	Programming via a Download Cable
	Disabling IEEE Std. 1149.1 Circuitry
	JTAG Permanently Disabled (MAX 7000S, MAX 7000B, MAX 7000A, MAX�7000AE & MAX 3000A Devices)
	JTAG Permanently Disabled (MAX 9000 & MAX 9000A Devices)
	JTAG Enabled for ISP/BST & Disabled in User Mode

	Working with Different Voltage Levels

	Sequential vs. Concurrent Programming
	Sequential Programming
	Concurrent Programming
	Selecting Sequential or Concurrent Programming
	Devices in Different Modes

	ISP Trouble-shooting Guidelines
	Invalid ID & Unrecognized Device Messages
	Download Cable Connected Incorrectly
	TDO Is Not Connected
	Incomplete JTAG Chain
	Noisy TCK Signal
	Jam Player Ported Incorrectly

	Troubleshooting Tips
	Verify the JTAG Chain Continuity
	Check the VCC Level of the Board During In-System Programming
	Power-Up Problems
	Random Signals on JTAG Pins
	Software Issues

	ISP via Embedded Processors
	Processor & Memory Requirements
	Porting the Jam Player

	ISP via In�Circuit Testers
	Using “F” vs. Non-“F” Devices
	Maximum Vectors per File
	Pull-Up & Pull-Down Resistors

	Summary

