

®

PCI Master/Target MegaCore
Function with DMA

November 1999, ver. 3.02 Data Sheet

PCI Bus Interface

3

Operation

Features ■ pci_a MegaCore™ function implementing a 32-bit peripheral
component interconnect (PCI) master/target interface

■ Optimized for the FLEX® 10K architecture
■ Extensive hardware testing using:

– HP E2925A PCI Bus Exerciser and Analyzer
– FLEX 10K PCI prototype board
– Validated against common PCI chipsets such as: Intel 430 and

440 chipsets, and DEC PCI-to-PCI bridges
■ Dramatically shortens design cycles
■ FLEX 10K PCI prototype board included
■ Includes test vectors for user simulation
■ OpenCore™ feature allows designers to instantiate and simulate

designs in the MAX+PLUS® II software prior to licensing
■ Uses approximately 1,000 FLEX logic elements (LEs), e.g., 35% the

capacity of an EPF10K50 device
■ PCI master features:

– Memory read/write
– Bus parking
– Fully integrated DMA engine including address counter

register, byte counter register, control and status register, and
interrupt status register

– Configurable interrupt source, including DMA terminal count,
master abort, target abort, and local side interrupt

– 64-byte (16 double words or DWORDs) RAM buffer
implemented in FLEX 10K embedded array blocks (EABs)

– Zero-wait-state PCI read and write burst transactions
■ PCI target features:

– Type zero configuration space
– Parity error detection
– Memory read/write and configuration read/write
– Target retry and disconnect
– 1 Mbyte to 2 Gbytes of parameterized target memory space

■ Configuration registers:
– Parameterized: device ID, vendor ID, class code, revision ID,

base address zero, subsystem ID, subsystem vendor ID
– Non-parameterized: command, status, header type, latency

timer, interrupt pin, interrupt line
Altera Corporation 1

A-DS-PCI1-03.02

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation

2 Altera Corporation

Introduction This data sheet provides operating information for the pci_a MegaCore
function and includes the following topics:

New in Version 2.0.. 3
General Description... 4

Compliance Summary.. 5
PCI Bus Signals.. 7
Local Side Signals.. 10
Function Prototype ... 12
Parameters.. 13

Functional Description .. 14
Sustained Tri-State Signal Operation ... 15
Master Device Signals & Signal Assertion .. 15
Target Device Signals & Signal Assertion ... 16
Parity Signal Operation.. 17
Bus Master Commands .. 18

Configuration Registers .. 18
Vendor ID Register (Offset = 00 Hex) .. 20
Device ID Register (Offset = 02 Hex) ... 20
Command Register (Offset = 04 Hex) .. 21
Status Register: (Offset = 06 Hex) ... 22
Revision ID Register (Offset = 08 Hex) .. 23
Class Code Register (Offset = 09 Hex) ... 23
Latency Timer Register (Offset = 0D Hex) .. 23
Header Type Register (Offset = 0E Hex) ... 24
Base Address Register Zero (Offset = 10 Hex)...................................... 24
Subsystem Vendor ID Register (Offset = 2C Hex) 25
Subsystem ID Register (Offset = 2E Hex) .. 25
Interrupt Line Register (Offset = 3C Hex) ... 25
Interrupt Pin Register (Offset = 3D Hex)... 26
Minimum Grant Register (Offset = 3E Hex) ... 26
Maximum Latency Register (Offset = 3F Hex) 26

PCI Bus Transactions ... 27
Target Transactions... 27
Configuration Transactions ... 35
Master Transactions.. 36

DMA Operation.. 42
Target Address Space ... 43
Internal Target Registers Memory Map... 43
DMA Registers .. 44
Initializing DMA Transfers from the Local Side 50
DMA Transactions .. 47
General Programming Guidelines.. 54

Applications .. 58
PCI SIG Protocol Checklists.. 60
PCI SIG Test Bench Summary .. 66
References.. 73

PCI Master/Target MegaCore Function With DMA Data Sheet

Altera Corporation 3

New in
Version 2.0

The pci_a function version 2.0 includes the following enhancements:

■ Additional device support
■ Local-side initiated DMA
■ Parameterized base address registers (BARs)
■ Byte-wide selection during external target write transfers
■ Use of l_holdn during external target transactions
■ Larger DMA byte counter register

More Device Support

The pci_a function supports a wide range of devices and packages
including the following FLEX 10K devices:

■ EPF10K30RC240
■ EPF10K30RC208
■ EPF10K30AQC240
■ EPF10K30AQC208
■ EPF10K40RC240
■ EPF10K40RC208
■ EPF10K50RC240
■ EPF10K100ARC240
■ EPF10K30BC356
■ EPF10K50BC356
■ EPF10K100ABC356

1 Additional device support will become available as new devices
are released. Please check the Altera world-wide web site at
http://www.altera.com for latest device support.

Local-Side Initiated DMA

To perform a DMA burst transfer using the pci_a function, appropriate
values must be written to the DMA registers to setup the transfer. In prior
versions of the pci_a function, the host or a PCI master device was
required to write to DMA registers. However, pci_a version 2.0 also
allows DMA read and write transactions directly from the local side
device. See “Initializing DMA Transfers from the Local Side” on page 50
for more information.

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation

Parameterized BARs

The BAR0 is parameterized to provide optimum efficiency for memory
allocation.In pci_a version 1.3, the BAR0 address space is a constant 1
Mbyte of contiguous address space divided into two 512 Kbytes of
memory space. However, in pci_a version 2.0 and later, users can vary
the BAR0 address space from 1 Mbyte to 2 Gbytes of contiguous memory.
See “Base Address Register Zero (Offset = 10 Hex)” on page 24 for more
information.

Byte-Wide Selection during Target Write Transfers

During target transfers, the PCI cben[3..0] bus signals are byte enable
signals, indicating which byte carries meaningful data. Bit 3 of the
cben[3..0] bus applies to byte 3, and bit 0 applies to byte 0. Likewise in
pci_a version 2.0, the additional local-side l_ben[3..0] bus signals
buffer the cben[3..0] bus signals and inform the local-side logic which
byte carries meaningful data during external target write transactions.

l_holdn for External Target Write Transactions

In pci_a version 1.3 the local application is required to supply or accept
data within two clock cycles. In version 2.0, a slower application can assert
l_holdn to extend the period necessary to transfer the data.

Larger DMA Byte Counter Register

The DMA byte counter register was increased from 16 bits to 17 bits. As a
result, the master DMA engine may initiate memory transfers up to 128
Kbytes for each DMA transaction.

General
Description

The pci_a MegaCore function provides a timely solution for integrating
32-bit PCI peripheral devices, and is fully tested to meet the requirements
of the PCI specification. The pci_a function is optimized for the
FLEX 10K device family, reducing the design task and enabling designers
to focus efforts on the custom logic surrounding the PCI interface
(ordering code: PLSM-PCI/A). Figure 1 shows the pci_a symbol.
4 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet

Figure 1. pci_a Symbol

Compliance Summary

The pci_a function is compliant with the requirements specified in the
PCI Special Interest Group’s (SIG) PCI Local Bus Specification,
Revision 2.1, and Compliance Checklist, Revision 2.1. The pci_a function
has successfully completed extensive hardware validation testing to
ensure robustness and PCI bus compliance. The testing was performed
using the following hardware and software:

■ Altera FLEX 10K PCI prototype board
■ BlueWater Systems WinDK (Windows NT-based) software driver
■ HP E2925A PCI Bus Exerciser and Analyzer

The testing was performed in a fully-loaded PCI bus. In addition to the
HP E2925A PCI Bus Exerciser and Analyzer and the Altera PCI prototype
board, PCI bus agents such as the host bridge, Ethernet network adapter,
and video card tested the function using data-intensive applications. The
extensive testing ensures that the pci_a function operates flawlessly
under the most stringent conditions.

PCI Signals

CLK
RSTN
REQN
GNTN
IDSEL
AD[31..0]
CBEN[3..0]
PAR
FRAMEN_IN
FRAMEN_OUT
IRDYN
DEVSELN
TRDYN_IN
TRDYN_OUT
STOPN_IN
STOPN_OUT
INTAN
PERRN
SERRN

PCI_A

L_IRQN
L_HOLDN

L_REQ
L_CLK

L_RESET
L_ADR[30-BAR0_RW_BITS..0]

L_DAT_OUT[31..0]
L_DAT_IN[31..0]

L_BEN[3..0]
L_ACKN

L_CSN
L_RDN
L_WRN

L_DMA_ACR_WR
L_DMA_BCR_WR
L_DMA_CSR_WR

L_DMA_DAT_IN[31..0]
L_DMA_CSR_OUT[6..0]

L_DMA_ACR_OUT[31..0]
L_DMA_BCR_OUT[16..0]

L_DMA_ISR_OUT[4..0]

Local Signals

BAR0_RW_BITS=12
CLASS _CODE=H"FF0000"
DEVICE_ID=H"0001"
DEVICE_VEND_ID=H"1172"
REVISION_ID=H"02"
SUBSYSTEM_ID=H"0000"
SUBSYSTEM_VEND_ID=H"0000"
TARGET_DEVICE="EPF10K30RC240"
Altera Corporation 5

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation

6 Altera Corporation

The pci_a function performs master and target transactions to and from
the Altera PCI prototype board. Along with typical burst and single-cycle
transactions, the pci_a function runs various interrupt cycles and initiates
different abnormal terminations. In addition to checking for data
integrity, the HP E2925A PCI Bus Exerciser and Analyzer was used to
ensure that the PCI bus is free of protocol violation. Each iteration of the
test program transfers over 6.5 billion data bytes between the host
memory and the pci_a -based EPF10K30 device. The test procedure was
done overnight, thus accounting for hundreds of iterations. The tests were
repeated across multiple PCI platforms to ensure compatibility with
various chipsets. Table 1 shows a list of hardware platforms with which
the pci_a function was tested at the time of this document printing.

In addition to all the hardware testing, the pci_a function was verified
using the applicable scenarios listed in Table 2. For a detailed listing of
tests performed, see “PCI SIG Test Bench Summary” on page 66.

Table 1. pci_a Hardware Verified Platforms

Platform Chipset CPU
Speed (MHz)

PCI Bus
Speed (MHz)

Dell OptiPlex XM 5166 Intel 430 NX 166 33

Dell OptiPlex GX Pro Intel 440FX PCISet (Bus 0) 200 33

DEC21052-AB PCI-PCI bridge (Bus 1) 200 33

Dell OptiPlex GXL 5166 Intel 430 FX PCISet 166 33

U-tron (Pentium/MMX) Intel 430 VX PCISet 166 33

Table 2. PCI Bus Tests Performed on the pci_a Function (Part 1 of 2)

PCI Test
Scenario
Number

Test Scenario Description Simulation File
Name

Note (1)

1.1 PCI bus device speed pcicc101

1.2 PCI bus single data phase target abort cycles pcicc102

1.3 PCI bus single data phase target retry cycles pcicc103

1.4 PCI bus single data phase target disconnect cycles pcicc104

1.5 PCI bus multi-data phase target abort cycles pcicc105

1.6 PCI bus multi-data phase target retry cycles pcicc106

1.7 PCI bus multi-data phase target disconnect cycles pcicc107

1.8 PCI bus multi-data phase & trdyn cycles pcicc108

1.9 PCI bus data parity error single cycles pcicc109

1.10 PCI bus data parity error multi-data phase cycles pcicc110

1.11 PCI bus master time-out pcicc111

PCI Master/Target MegaCore Function With DMA Data Sheet

Note:
(1) The file extension depends on the type of simulation file used, e.g., Simulator Channel File (.scf), Vector File (.vec),

or VHDL file.
(2) This test is not required by the PCI SIG PCI Local Bus Specification, Revision 2.1, and therefore does not have a test

number.

PCI Bus Signals

The following PCI bus signals are used by the pci_a function:

■ Input—Standard input-only signal.
■ Output—Standard output-only signal.
■ Bidirectional—Tri-state input/output signal.
■ Sustained tri-state—Signal that is driven by one agent at a time (e.g.,

device or host operating on the PCI bus). An agent that drives a
sustained tri-state pin low must actively drive it high for one clock
cycle before tri-stating it. Another agent cannot drive a sustained tri-
state signal any sooner than one clock cycle after it is released by the
previous agent.

■ Open-drain—Signal that is wire-ORed with other agents. The signaling
agent asserts the open-drain signal, and a weak pull-up resistor
deasserts the open-drain signal. The pull-up resistor may take two or
three PCI bus clock cycles to restore the open-drain signal to its
inactive state.

PCI Test
Scenario
Number

Test Scenario Description Simulation File
Name, Note (1)

1.13 PCI bus master parking pcicc113

1.14 PCI bus master arbitration pcicc114

2.5 Target ignores reserved commands (including dual address) pcicc205

2.6 Target reception of configuration cycles pcicc206

2.8 Target receives configuration cycles with address and data parity errors pcicc208

2.9 Target receives memory cycles pcicc209

2.10 Target receives memory cycles with address and data parity errors pcicc210

Note (2) Programming the DMA registers and burst read transfers. dma_rd

Note (2) Programming the DMA registers and burst write transfers. dma_wr

Note (2) External target read/write transfers trg_xrw

Table 2. PCI Bus Tests Performed on the pci_a Function (Part 2 of 2)
Altera Corporation 7

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
8 Altera Corporation

Table 3 summarizes the PCI bus signals interfacing the pci_a function to
the PCI bus. See “Local Side Signals” on page 10 for information on local
side signals.

Table 3. PCI Signals Interfacing the pci_a to the PCI Bus (Part 1 of 2)

Name Type Polarity Description

clk Input – Clock. The clk input provides the reference signal for all other PCI
interface signals, except rstn and intan .

rstn Input Low Reset. The rstn input initializes the FLEX 10K PCI interface
circuitry, and can be asserted asynchronously to the PCI bus clk
edge. When active, the PCI output signals are tri-stated and the
open-drain signals, such as serrn , float.

gntn Input Low Grant. The gntn input indicates to the master device that it has
control of the PCI bus. Every master device has a pair of arbitration
lines (gntn and reqn) that connect directly to the arbiter.

reqn Output Low Request. The reqn output indicates to the arbiter that the master
wants to gain control of the PCI bus to perform a transaction.

ad[31..0] Tri-State – Address/data bus. The ad[31..0] bus is a time-multiplexed
address/data bus; each bus transaction consists of an address
phase followed by one or more data phases. Each data phase
completes when irdyn and trdyn are both asserted.

cben[3..0] Tri-State
Master: Output
Target: Input

Low Command/byte enable. The cben[3..0] bus is a time-
multiplexed command/byte enable bus. During the address phase
this bus indicates the command; during the data phase this bus
indicates byte enables.

par Tri-State – Parity. The par signal is a tri-stated output of even parity. The
number of 1s on ad[31..0] , cben[3..0] , and par is an even
number.

framen

Note (1)
Sustained
Tri-State
Master: Output
Target: Input

Low Frame. The framen is an output from the current bus master that
indicates the beginning and duration of a bus operation. When
framen is initially asserted, the address and command signals are
present on the ad[31..0] and cben[3..0] buses. The framen
signal remains asserted during the data operation and is
deasserted to identify the end of a transaction.

irdyn Sustained
Tri-State
Master: Output
Target: Input

Low Initiator ready. The irdyn signal is an output from a bus master to
its target and indicates that the bus master can complete a data
transaction. In a write transaction, irdyn indicates that valid data
is on the ad[31..0] bus. In a read transaction, irdyn indicates
that the master is ready to accept the data on the ad[31..0] bus.

devseln Sustained
Tri-State
Master: Input
Target: Output

Low Device select. Target asserts devseln to indicate that the target
has decoded its own address.

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 9

Note:
(1) To allow the pci_a function to pass the PCI set-up time requirement, the framen , trdyn , and stopn signals are

split into two unidirectional (input, output) signals. For example, the PCI signal trdyn is connected to the input
trdyn _in and the output trdyn _out . The input trdyn _in is connected to a dedicated input on the FLEX 10K
device, and the output trdyn _out is connected to an I/O pin on the FLEX 10K device.

The PCI bus and FLEX 10K devices allow IEEE Std. 1149.1 Joint Test
Action Group (JTAG) boundary-scan testing (BST). To use IEEE Std.
1149.1 BST, designers should connect the PCI bus JTAG pins with the
FLEX 10K device JTAG pins. See Table 4.

Name Type Polarity Description

trdyn

Note (1)
Sustained
Tri-State
Master: Input
Target: Output

Low Target ready. The trdyn signal indicates that the target can
complete the current data transaction. In a read operation, trdyn
indicates that the target is providing data on the ad[31..0] bus.
In a write operation, trdyn indicates that the target is ready to
accept data on the ad[31..0] bus.

stopn

Note (1)
Sustained
Tri-State
Master: Input
Target: Output

Low Stop. The stopn signal is a target device request that indicates to
the bus master to stop the current transaction.

idsel Input High Initialization device select. The idsel input is a chip select for
configuration read or write operations.

perrn Sustained
Tri-State

Low Parity error. The perrn signal indicates a data parity error.

serrn Open-Drain Low System error. The serrn signal indicates system and address
parity errors.

intan Open-Drain Low Interrupt A. The intan signal is an active-low interrupt to the host,
and must be used for any single-function device requiring an
interrupt capability.

Table 3. PCI Signals Interfacing the pci_a to the PCI Bus (Part 2 of 2)

Table 4. Optional IEEE Std. 1149.1 Signals

Name Type Polarity Description

TCK Input High Test clock. The TCK input is used to clock test mode and test data in and out
of the device.

TMS Input High Test mode select. The TMS input is used to control the state of the Test Access
Port (TAP) control in the device.

TDI Input High Test data. The TDI input is used to shift the test data and instruction into the
device.

TDO Output High Test data. The TDO output is used to shift the test data and instruction out of
the device.

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
10 Altera Corporation

Local Side Signals
Table 5 summarizes the pci_a function signals that interface the pci_a
function to the local side peripheral device(s).

Table 5. pci_a Signals Interfacing the pci_a Function to the Local Side (Part 1 of 3)

Name Type Polarity Description

l_irqn Input Low Local side interrupt request. The local side peripheral
device asserts l_irqn to signal a PCI bus interrupt. For
example, when the local side peripheral device requires a
DMA transfer, it could use the l_irqn input to request
servicing from the host.

l_holdn Input Low Local hold. During master transactions, l_holdn
suspends the current DMA transfer. As long as l_holdn
is active, data transfers cannot occur between the pci_a
function and the local side peripheral device. During
target transactions, the assertion of l_holdn extends the
external target transfers. If l_holdn is not asserted, the
pci_a function expects data to be supplied to or received
from the local side on the second clock after l_csn is
asserted.

l_req Input High Local DMA request. After the DMA has been loaded with
valid data, the local side peripheral device asserts l_req ,
which signals the pci_a function to start the PCI DMA
operation.

l_dat_in[31..0] Input – Local data bus input. The l_dat_in[31..0] input is
driven active by the local side peripheral device during
pci_a -initiated DMA write transactions (i.e., local side
DMA read transactions) and PCI bus target read
transactions.

l_dat_out[31..0] Output _ Local data bus output. The pci_a function drives the
l_dat_out[31..0] output during pci_a -initiated DMA
read transactions (i.e., local side DMA write transactions)
and PCI target write transactions.

l_ben[3..0] Output Low Local byte enable. The l_ben[3..0] outputs are driven
by the pci_a function to indicate the byte select during
target write transfers.

l_adr[30-BAR0_RW_BITS..0] Output – Local target address. The l_adr[30-

BAR0_RW_BITS..0] outputs represent address of the
target transaction to the local side peripheral device.

l_csn Output Low Local target chip select. When active, l_csn notifies the
peripheral device of an impending target transaction. The
l_ackn and the l_csn outputs are never asserted at the
same time.

PCI Master/Target MegaCore Function With DMA Data Sheet
Name Type Polarity Description

l_rdn Output Low Read. The pci_a function asserts l_rdn to signal a read
access to the local side peripheral device. The pci_a
function uses the l_rdn for reading from peripheral
device target registers and for PCI DMA write
transactions. For target read operations, the pci_a
function asserts the l_csn and l_rdn signals. For DMA
write operations, the pci_a function asserts the l_ackn
and l_rdn signals.

l_wrn Output Low Write. The pci_a function asserts l_wrn to signal a write
access to the local side peripheral device. The pci_a
function uses the l_wrn output for writing to peripheral
device target registers and for PCI DMA read
transactions. For a write operation to the local side,
pci_a asserts either l_csn and l_wrn for target
accesses, or l_ackn and l_wrn for DMA read
accesses.

l_ackn Output Low Local DMA acknowledge. When low, l_ackn notifies the
local side peripheral device that it has been granted a
DMA read or write transaction. The peripheral device can
then transfer data to or from the PCI bus through the
pci_a function.

l_clk Output – Local PCI clock. The l_clk is a buffered version of the
PCI bus clock and is used by the local side peripheral
device to synchronize all control logic to the pci_a
function.

l_reset Output High Local reset. The pci_a function asserts the l_reset
output to reset the local side peripheral device. The
l_reset output is active during a PCI master reset and
follows the state of the l_rst bit (bit 2 of the DMA control
status register).

l_dma_acr_wr Input High Local DMA address counter register write. The local side
asserts l_dma_acr_wr to signal a write access to the
DMA address counter register. When l_dma_acr_wr is
high, the data on l_dma_in[31..0] bus is written into
the dma_acr register.

l_dma_bcr_wr Input High Local DMA byte counter register write. The local side
asserts l_dma_bcr_wr to signal a write access to the
DMA byte counter register. When l_dma_bcr_wr is
high, the data on l_dma_dat_in[31..0] bus is written
into the dma_bcr register.

Table 5. pci_a Signals Interfacing the pci_a Function to the Local Side (Part 2 of 3)
Altera Corporation 11

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
12 Altera Corporation

Function Prototype

The Altera Hardware Description Language (AHDL) Function Prototype
of the pci_a function is shown below:

FUNCTION pci_a (clk, framen_in, gntn, idsel,
l_dat_in[31..0], l_holdn, l_irqn, l_req, rstn,
stopn_in, trdyn_in, l_dma_acr_wr, l_dma_bcr_wr,
l-dma_csr_wr, l_dma_dat_in[31..0])

WITH (SUBSYSTEM_ID, SUBSYSTEM_VEND_ID, DEVICE_ID,
DEVICE_VEND_ID, CLASS_CODE, REVISION_ID, BAR0_RW_BITS,
TARGET_DEVICE)

RETURNS (framen_out, l_ackn,
l_adr[30-BAR0_RW_BITS..0], l_clk, l_csn,
l_dat_out[31..0], l_ rdn, l_reset, l_wrn, stopn_out,
trdyn _out, ad[31..0], cben[3..0], devseln, intan,
irdyn, par, perrn, reqn, serrn; l_dma_csr_out[6..0],
l_dma_acr_out[31..0], l_dma_bcr[16..0],
l_dma_isr_out[4..0], l_ben[3..0]);

Name Type Polarity Description

l_dma_csr_wr Input High Local DMA control status register write. The local side
asserts l_dma_csr_wr to signal a write access to the
DMA control/status registers. When l_dma_csr_wr is
high, the data on l_dma_dat_in[31..0] bus is written
into the dma_csr register.

l_dma_dat_in[31..0] Input – Local DMA data in. While one of the DMA write signals
(l_dma_acr_wr , l_dma_bcr_wr , or l_dma_csr_wr)
is asserted, the l_dma_dat_in[31..0] supplies the
data to be written to the corresponding DMA register.

l_dma_csr_out[6..0] Output – Local DMA control status registers out. Direct output of
the DMA control/status register.

l_dma_acr_out[31..0] Output _ Local DMA address counter registers out. Direct output of
DMA the address counter registers.

l_dma_bcr_out[16..0] Output _ Local DMA byte counter registers out. Direct output of the
DMA byte counter register.

l_dma_isr_out[4..0] Output _ Local DMA interrupt status registers out. Direct output of
the DMA interrupt status register.

Table 5. pci_a Signals Interfacing the pci_a Function to the Local Side (Part 3 of 3)

PCI Master/Target MegaCore Function With DMA Data Sheet
Parameters

The pci_a parameters—except BAR0_RW_BITS and TARGET_DEVICE—set
read-only PCI bus configuration registers in the pci_a function; these
registers are called device identification registers. See “Configuration
Registers” on page 18 for more information on device ID registers.

The BAR0_RW_BITS parameter controls the number of read/write bits
instantiated for BAR0, and according to the PCI specification, the number
of read/write bits instantiated for BAR0 controls the memory address
range reserved by the BAR0. The value of the BAR0_RW_BITS parameter
must be between 1 and 12. The TARGET_DEVICE parameter ensures that
the most optimized design is used for a particular device and package,
which ensures timing compliance of the target device. For the most
updated list of support devices and packages, refer to the readme.htm file
included with the pci_a function. Table 6 describes the parameters of the
pci_a function.

Table 6. Parameters

Name Format Default Value Description

BAR0_RW_BITS Decimal 12 BAR address space size

TARGET_DEVICE String "EPF10K30RC240" Device selection

CLASS_CODE 24-bit Hex H"FF0000" Class code register

DEVICE_ID 16-bit Hex H"0001" Device ID register

DEVICE_VEND_ID 16-bit Hex H"1172" Device vendor ID register

REVISION_ID 8-bit Hex H"02" Revision ID register

SUBSYSTEM_ID 16-bit Hex H"0000" Subsystem ID register

SUBSYSTEM_VEND_ID 16-bit Hex H"0000" Subsystem vendor ID register
Altera Corporation 13

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
Functional
Description

The pci_a function consists of three main components:

■ A defined 64-byte PCI bus configuration register space and master
control logic

■ PCI bus target interface control logic, including target decode and
register read/write signals

■ Embedded DMA control engine, which operates with four registers
and includes a 64-byte (16 DWORD) RAM buffer, and local side
interface DMA control logic, including read/write control and PCI
bus arbitration for master/target accesses

Figure 2 shows the pci_a function’s block diagram.

Figure 2. pci_a Function Block Diagram

par

perrn

serrn

Parity Checking
 & Generation

Target Interface

Master
Interface

PCI Address/
Data Buffering

Configuration
Registers

DMA Registers

Local Data Buffering

Local Side
 DMA

 Access Control

Local Side
Target

 Access Control

pci_a

clk

rstn

idsel

ad[31..0]

cben[3..0]

reqn
gntn
intan

framen
irdyn

devseln
trdyn
stopn

64-Byte RAM Buffer
(EAB)

l_adr[18..0]

l_csn

l_rdn

l_wrn

l_dat_in[31..0]
l_dat_out[31..0]

l_ackn
l_clk

l_reset

l_holdn
l_req

l_irqn

l_ben[3..0]

l_dma_acr_wr
l_dma_bcr_wr
l_dma_csr_wr
l_dma_dat_in[31..0]
l_dma_csr_out[6..0]
l_dma_acr_out[31..0]
l_dma_bcr_out[16..0]
l_dma_isr_out[4..0]
14 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Sustained Tri-State Signal Operation

The PCI specification defines signals that are constantly sampled by
different bus agents yet driven by one agent at a time as sustained tri-state
signals. For example, framen is constantly sampled by different PCI bus
targets (to detect the start of a transaction), and yet driven by one PCI bus
master at a time.

For sustained tri-state signals, the PCI specification requires one clock
cycle to drive the signals inactive before being tri-stated. The PCI
specification also requires that any sustained tri-state signal being
released, such as the master device releasing ad[31..0] after asserting
the address on a read operation, be given a full clock cycle to tri-state
before another device can drive it.

The PCI specification defines a turn-around cycle as the clock cycle where
a sustained tri-state signal is being tri-stated so that another bus agent can
drive it. Turn-around cycles prevent contention on the bus.

Master Device Signals & Signal Assertion

Figure 3 illustrates the PCI-compliant master device signals interfacing
pci_a with the PCI bus. The signals are grouped by functionality, and
signal directions are illustrated from the perspective of the pci_a
function operating as a master on the PCI bus.

A pci_a master sequence begins with the assertion of reqn to request
mastership of the PCI bus. After receiving gntn from the arbiter (usually
the PCI host bridge) and after the bus idle state is detected, the pci_a
function initiates the address phase by asserting framen and driving both
the PCI address on ad[31..0] and the bus command on cben[3..0] for
one clock cycle.

When the pci_a master is ready to present data on the bus, it asserts
irdyn . At this point, the pci_a function’s master logic monitors the
control signals driven by the target device. (A target device is determined
by the decoding of the address and command signals presented on the
PCI bus during the address phase of the transaction.) The target device
drives the control signals devseln , trdyn , and stopn to indicate one of
the following:

■ The data transaction has been decoded and accepted.
■ The target device is ready for the data operation. (When both trdyn

and irdyn are active, a data DWORD is clocked from the sending to
the receiving device.)

■ The master device should stop the current transaction.
Altera Corporation 15

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
Figure 3. pci_a Master Device Signals

Target Device Signals & Signal Assertion

Figure 4 illustrates the PCI-compliant target device signals interfacing the
pci_a function with the PCI bus. The signals are grouped by
functionality, and signal directions are illustrated from the perspective of
the pci_a function operating as a target on the PCI bus.

A pci_a target sequence begins when the master device asserts framen
and drives the address of the target and the command on the PCI bus.
When the target device decodes its address on the PCI bus, it asserts
devseln to indicate to the master that it has accepted the transaction. The
master will then assert irdyn to indicate to the target device that:

■ For a read operation, the master device can complete a data
transaction.

■ For a write operation, valid data is on the ad[31..0] bus.

When the pci_a functions as the selected target device, it will drive the
control signals devseln , trdyn , and stopn as discussed in “Master
Device Signals & Signal Assertion” on page 15.

pci_a
PCI-Compliant
Master Device

framen

irdyn

trdyn

stopn

devseln

Interface
 Control
 Signals

gntn

reqn
Arbitration

 Signals

Address,
Data &

Command
 Signals

par

ad[31..0]

cben[3..0]

perrn

serrn

intan

Error
Reporting
Signals

Interrupt
Request
Signal

System
Signals

clk
rstn

idsel
16 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
As a target device, the pci_a function only supports single-cycle accesses;
therefore, the pci_a function simultaneously drives stopn and trdyn
active. When qualified by an active irdyn signal, a data word is clocked
from the sending to the receiving device.

Figure 4. pci_a Target Device Signals

Parity Signal Operation

All bus cycles include parity. Every device that transmits on the
ad[31..0] bus must also drive the par signal, including master devices
outputting the address. Because parity on the PCI bus is even, the number
of logic 1s on ad[31..0] , cben[3..0] , and par must be even. Parity
checking is not required, but can be enabled through the agent’s PCI
command register. Address parity errors are presented on the serrn
output, and data parity errors are presented on the perrn output. The
par bit lags the ad[31..0] bus by one clock cycle, and parity error
signals lag the par bit by one clock cycle; thus, parity error signals lag
the address or data by two clock cycles.

pci_a
PCI-Compliant
Target Device

System
Signals

clk
rstn

perrn

serrn

intan

Error
Reporting
Signals

Interrupt
Request
Signal

Address,
Data &

Command
 Signals

par

ad[31..0]

cben[3..0]

framen

irdyn

trdyn

stopn

devseln

Interface
 Control
 Signals

idsel
Altera Corporation 17

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
18 Altera Corporation

PCI Bus Commands

Table 7 summarizes the PCI bus commands that are supported by the
pci_a function.

The pci_a function supports memory read/write and configuration
read/write commands. When operating as a master device, the pci_a
function executes standard memory read and write operations. When
operating as a target, the pci_a function responds to standard memory
read and write transactions. The pci_a function also responds to
configuration read and write operations.

Configuration
Registers

Each logical PCI bus device includes a block of 64 configuration DWORDs
reserved for the implementation of its configuration registers. The format
of the first 16 DWORDs is defined by the PCI SIG’s PCI Compliance
Checklist, Revision 2.1, which defines two header formats, type one and
type zero. Header type one is used for PCI-to-PCI bridges; header type
zero is used for all other devices, including the pci_a function.

Table 8 displays the defined 64-byte configuration space. The registers
within this range are used to identify the device, control PCI bus
functions, and provide PCI bus status. The shaded areas indicate registers
that are supported by the pci_a function.

Table 7. PCI Bus Command Support Summary

cben[3..0] Value Bus Command Cycle Target Support Master Support

0110 Memory read v v

0111 Memory write v v

1010 Configuration read v

1011 Configuration write v

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 19

Table 9 summarizes the pci_a -supported configuration registers address
map. Read/write refers to the status at run time, i.e., from the perspective
of other PCI bus agents. Designers can set some of the read-only registers
at design time by setting the parameters when the pci_a function is
instantiated in the MAX+PLUS II software. For example, the device ID
register value can be modified from its default value by changing the
DEVICE_ID parameter in the MAX+PLUS II software. The specified
default state is defined as the state of the register when the PCI bus is reset.

Table 8. PCI Bus Configuration Registers

Address Byte

3 2 1 0

00H Device ID Vendor ID

04H Status Register Command Register

08H Class Code Revision ID

0CH BIST Header Type Latency Timer Cache Line Size

10H Base Address Register 0

14H Base Address Register 1

18H Base Address Register 2

1CH Base Address Register 3

20H Base Address Register 4

24H Base Address Register 5

28H Card Bus CIS Pointer

2CH Subsystem ID Subsystem Vendor ID

30H Expansion ROM Base Address Register

34H Reserved

38H Reserved

3CH Maximum
Latency

Minimum Grant Interrupt Pin Interrupt Line

Table 9. pci_a-Supported Configuration Registers Address Map (Part 1 of 2)

Address Offset
(Hexadecimal)

Range
Reserved

(Hexadecimal)

Bytes Used/
Reserved

Read/Write Mnemonic Register Name

00 00-01 2/2 Read ven_id Vendor ID

02 02-03 2/2 Read dev_id Device ID

04 04-05 2/2 Read/Write comd Command

06 06-07 2/2 Read/Write status Status

08 08-08 1/1 Read rev_id Revision ID

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
Vendor ID Register (Offset = 00 Hex)

Vendor ID is a 16-bit read-only register that identifies the manufacturer of
the device (e.g., Altera for the pci_a function). The value of this register
is assigned by the PCI SIG; the default value of this register is the Altera
vendor ID value, which is 1172 hex. However, by setting the
DEVICE_VEND parameter (see Table 6), designers can change the value of
the vendor ID register to their PCI SIG-assigned vendor ID value. See
Table 10.

Device ID Register (Offset = 02 Hex)

Device ID is a 16-bit read-only register that identifies the type of device.
The value of this register is assigned by the manufacturer (e.g., Altera
assigned the value of the device ID register for the pci_a function). The
default value of the device ID register is 0001 hex; however, designers can
change the value of the device ID register by setting the parameter
DEVICE_ID (see Table 6 on page 13).

Address Offset
(Hexadecimal)

Range
Reserved

(Hexadecimal)

Bytes Used/
Reserved

Read/Write Mnemonic Register Name

09 09-0B 3/3 Read class Class code

0D 0D-0D 1/1 Read/Write lat_tmr Latency timer

0E 0E-0E 1/1 Read header Header type

10 10-13 4/4 Read/Write bar0 Base address register
zero

2C 2C-2D 2/2 Read sub_ven_id Subsystem vendor ID

2E 2E-2F 2/2 Read sub_id Subsystem ID

3C 3C-3C 1/1 Read/Write int_ln Interrupt line

3D 3D-3D 1/1 Read int_pin Interrupt pin

3E 3E-3E 1/1 Read min_gnt Minimum grant

3F 3F-3F 1/1 Read max_lat Maximum latency

Table 9. pci_a-Supported Configuration Registers Address Map (Part 2 of 2)

Table 10. Vendor ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 ven_id Read PCI vendor ID
20 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 21

Command Register (Offset = 04 Hex)

Command is a 16-bit read and write register that provides basic control
over the ability of the pci_a function to respond to and/or perform PCI
bus accesses. See Table 11.

Table 11. Command Register Format

Data Bit Mnemonic Read/Write Definition

0 Unused – –

1 mem_ena Read/Write Memory access enable. When high, mem_ena enables
the pci_a function to respond to the PCI bus memory
accesses as a target. Because the DMA registers are
set via memory target accesses, the mem_ena bit must
be set as part of the initialization operation for the
pci_a function to perform DMA transfers.

2 mstr_ena Read/Write Master enable. When high, mstr_ena enables the
pci_a function to acquire mastership of the PCI bus.
For the pci_a function to perform DMA transfers, the
mstr_ena bit must be set as a part of the initialization
operation.

5..3 Unused – –

6 perr_ena Read/Write Parity error enable. When high, perr_ena enables the
pci_a function to report parity errors via the perrn
output.

7 Unused – –

8 serr_ena System error enable. When high, serr_ena enables
the pci_a function to report address parity errors via
the serrn output. However, to signal a system error,
the perr_ena bit must also be high.

15..9 Unused – –

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
Status Register: (Offset = 06 Hex)

Status is a 16-bit register that provides the status of bus-related events.
Read transactions to the status register behave normally. However, write
transactions are different from typical write transactions in that bits in the
status register can be cleared but not set. A bit in the status register is
cleared by writing a logic one to that bit. For example, writing the value
4000 hex to the status register clears bit number 14 and leaves the rest of
the bits unchanged. The default value of the status register is 0400 hex.
See Table 12.

Table 12. Status Register Format

Data Bit Mnemonic Read/Write Definition

7..0 Unused – –

8 dat_par_rep Read/Write Data parity reported. When high, dat_par_rep
indicates that during a read transaction the pci_a

function asserted the perrn output as a master
device, or that during a write transaction the perrn
was asserted by a target device. This bit is high only
when the perr_ena bit (bit 6 of the command register)
is also high.

10..9 devsel_tim Read Device select timing. The devsel_tim bits indicate
target access timing of the pci_a function via the
devseln output. The pci_a function is designed to
be a slow target device.

11 Unused – –

12 tar_abrt Read/Write Target abort. When high, tar_abrt indicates that the
current target device transaction has been terminated.

13 mstr_abrt Read/Write Master abort. When high, mstr_abrt indicates that
the current master device transaction has been
terminated.

14 serr_set Read/Write Signaled system error. When high, serr_set
indicates that the pci_a function drove the serrn
output active, i.e., an address phase parity error has
occurred.

15 det_par_err Read/Write Detected parity error. When high, det_par_err
indicates that the pci_a detected either an address or
data parity error. Even if parity error reporting is
disabled (via perr_ena), the pci_a function will set
the det_par_err bit.
22 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Revision ID Register (Offset = 08 Hex)

Revision ID is an 8-bit read-only register that identifies the revision
number of the device. The value of this register is assigned by the
manufacturer (e.g., Altera for the pci_a function). Therefore, the default
value of the revision ID register is set as the revision number of the pci_a
function. See Table 13. However, designers can change the value of the
revision ID register by setting the REVISION_ID parameter (see Table 6).

Class Code Register (Offset = 09 Hex)

Class code is a 24-bit read-only register divided into three sub-registers:
base class, sub-class, and programming interface. Refer to the PCI Local
Bus Specification, Revision 2.1 for detailed bit information. See Table 14.
The default value of the class code register is FF0000 hex; however,
designers can change the value by setting the CLASS_CODE parameter (see
Table 6).

Latency Timer Register (Offset = 0D Hex)

The latency timer register is an 8-bit register with bits 2, 1, and 0 tied to
GND. The register defines the maximum amount of time, in PCI bus clock
cycles, that the pci_a function can retain ownership of the PCI bus. After
initiating a transaction, the pci_a function decrements its latency timer by
one on the rising edge of each clock. The default value of the latency timer
register is 00 hex. See Table 15.

Table 13. Revision ID Register Format

Data Bit Mnemonic Read/Write Definition

7..0 rev_id Read PCI revision ID

Table 14. Class Code Register Format

Data Bit Mnemonic Read/Write Definition

23..0 class Read Class code

Table 15. Latency Timer Register Format

Data Bit Mnemonic Read/Write Definition

2..0 lat_tmr Read Latency timer register

7..3 lat_tmr Read/Write Latency timer register
Altera Corporation 23

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
24 Altera Corporation

Header Type Register (Offset = 0E Hex)

Header type is an 8-bit read-only register that identifies the pci_a
function as a single-function device. The default value of the header type
register is 00 hex. See Table 16.

Base Address Register Zero (Offset = 10 Hex)

Depending on the value of the BAR0_RW_BITS parameter, base address
register zero (BAR0) consists of registers ranging from 12 to 1 bit. The
BAR0_RW_BITS can be set when the pci_a function is instantiated, and
determines the base memory address of the pci_a target space. This
process is done in accordance with the PCI Local Bus Specification,
Revision 2.1., which states that the number of bits implemented as
read/write registers defines the amount of memory address space
reserved by the BAR. Power-up software can determine how much
address space a device requires by writing a value of all 1s to the BAR and
then reading the value back. To specify the required address space, the
pci_a function will return 0s in all the lower bits. The amount of required
address space is generally a function of the value of the BAR0_RW_BITS
parameter, i.e., assuming BAR0_RW_BITS = n, the reserved address space
is 2(32-n) bytes. For example, when BAR0_RW_BITS = 4, the reserved
address space is 2 (32-4) bytes, or 256 Mbytes. See Table 17.

Table 16. Header Type Register Format

Data Bit Mnemonic Read/Write Definition

7..0 header Read PCI header type

Table 17. Base Address Register Format (Part 1 of 2)

Data Bit Mnemonic Read/Write Definition

0 mem_ind Read Memory indicator. The mem_ind bit indicates whether
the register is I/O or a memory address decoder. In the
pci_a function, the mem_ind bit is tied to GND, which
indicates a memory address decoder.

2..1 mem_type Read Memory type. The mem_type bits indicate the type of
memory that can be implemented in the pci_a

function memory address space. These bits are tied to
GND, which indicates that the memory block can be
located anywhere in the 32-bit address space.

3 pre_fetch Read Memory prefetchable. The pre_fetch bit indicates
whether the block of memory defined by BAR0 is
prefetchable by the host bridge. In the pci_a

function, the address space is not prefetchable, i.e., it
reads as low.

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 25

Subsystem Vendor ID Register (Offset = 2C Hex)

Subsystem vendor ID is a 16-bit read-only register that identifies add-in
cards designed by different vendors but with the same functional device
on the card. The value of this register is assigned by the PCI SIG. See
Table 18. The default value of the subsystem vendor ID register is
0000 hex; however, designers can change the value by setting the
SUBSYSTEM_VEND_ID parameter (see Table 6).

Subsystem ID Register (Offset = 2E Hex)

Subsystem ID register identifies the subsystem; the value of this register
is defined by the subsystem vendor, i.e., the designer. See Table 19. The
default value of the subsystem ID register is 0000 hex; however, designers
can change the value by setting the SUBSYSTEM_ID parameter (see
Table 6).

Interrupt Line Register (Offset = 3C Hex)

The interrupt line register consists of an 8-bit register that defines to which
system interrupt request line (on the system interrupt controller) the
intan output is routed. The interrupt line register is written to by the
system software on power-up; the default value is FF hex. See Table 20.

Data Bit Mnemonic Read/Write Definition

31-BAR0_RW_BITS Unused – –

31..(32-BAR0_RW_BITS) bar0 Read/write Base address register 0.

Table 17. Base Address Register Format (Continued) (Part 2 of 2)

Table 18. Subsystem Vendor ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 sub_vend_id Read PCI subsystem/vendor ID

Table 19. Subsystem ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 sub_id Read PCI subsystem ID

Table 20. Interrupt Line Register Format

Data Bit Mnemonic Read/Write Definition

7..0 int_ln Read/write Interrupt line register

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
26 Altera Corporation

Interrupt Pin Register (Offset = 3D Hex)

The interrupt pin register consists of an 8-bit read-only register that
defines the pci_a function’s PCI bus interrupt request line to be intan .
The default value of the interrupt pin register is 01 hex. See Table 21.

Minimum Grant Register (Offset = 3E Hex)

Minimum grant register consists of an 8-bit read-only register that defines
the length of time the pci_a function would like to retain mastership of
the PCI bus. The value set in this register indicates the required burst
period length in 250-ns increments. The pci_a function requests a
timeslice of 4 microseconds. The default state of the minimum grant
register is 10 hex. See Table 22.

Maximum Latency Register (Offset = 3F Hex)

The maximum latency register is an 8-bit read-only register that defines
the frequency in which the pci_a function would like to gain access to the
PCI bus. The value of the maximum latency register is set to 00 hex, which
indicates that the pci_a function has no major requirements for
maximum latency. See Table 23.

Table 21. Interrupt Pin Register Format

Data Bit Mnemonic Read/Write Definition

7..0 int_pin Read Interrupt pin register

Table 22. Minimum Grant Register Format

Data Bit Mnemonic Read/Write Definition

7..0 min_gnt Read Minimum grant register

Table 23. Maximum Latency Register Format

Data Bit Mnemonic Read/Write Definition

7..0 max_lat Read Maximum latency register

PCI Master/Target MegaCore Function With DMA Data Sheet
PCI Bus
Transactions

This section describes pci_a PCI bus transactions. The following items
should be considered when reading the diagrams in this section:

■ All pci_a DMA accesses to the PCI bus are quad-byte, or 32-bit
transfers; therefore, all byte enables are active for the duration of
master data transfers. During pci_a external target write accesses,
the transfers are byte selectable.

■ Although Figures 5 through 16 show PCI bus signals as tri-stated
when not driven by the pci_a function, they are actually high due to
the pull-up resistors used to keep sustained tri-state signals at a logic
high while the signals are not being driven by a PCI bus agent.

The pci_a function accesses the PCI bus for three types of transactions:

■ Target
■ Configuration
■ Master

Target Transactions

The sequence of events for the beginning of all target transfers is exactly
the same. A target read or write transaction begins after the master
acquires mastership of the PCI bus. The master device then asserts framen
and drives the address on the ad[31..0] bus and command on the
cben[3..0] bus. The pci_a function latches the address and command
signals on the first clock edge when framen is asserted and starts
decoding the address.

Target Read Transactions

The pci_a function supports two types of target read transactions:

■ Internal target read—Target read transaction from the internal DMA
registers

■ External target read—Target read transaction from the local side target
memory space

The sequence of events in both target read transactions is identical;
however, the timing is not. (See “External Target Read Transaction” on
page 29 for more information.) A target read transaction from the local
side target memory space requires more time because the pci_a function
must wait for the local side to supply it with data.
Altera Corporation 27

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
28 Altera Corporation

Internal Target Read Transaction

Immediately after the address phase (clock four), the master deasserts
framen and asserts irdyn , indicating both of the following:

■ The transaction contains a single data phase.
■ The master device is ready to read the data that the pci_a function

has presented on the ad[31..0] bus.

The master device tri-states the ad[31..0] bus in clock five after the
pci_a function latches the address. The pci_a function can drive the
ad[31..0] bus beginning in clock six. If the master is attempting a burst
access, it will keep both framen and irdyn signals asserted. However,
because the pci_a function does not support target bursts, it will assert
stopn to indicate a disconnect to the master. The master will subsequently
end the transaction by deasserting framen and asserting irdyn for one
clock cycle.

In Figure 5, the pci_a function asserts devseln in clock seven, which
indicates to the master device that pci_a has claimed the transaction. The
devseln is then sampled by the master device on the rising-edge of clock
eight, which is slow decode, as defined by the PCI specification. Figure 5
shows the timing of a pci_a internal target read transaction.

Figure 5. Internal Target Read Transaction

reqn (Master)

gntn (Arbiter)

1 2 3 4 5 6 7 8 9 10clk

200 ns 300 ns0 ns

Byte Enable

100 ns

ad[31..0] (pci_a) D0Address

cben[3..0] (Master) 0110

irdyn (Master)

framen (Master)

perrn (Master)

par (pci_a)

stopn (pci_a)

trdyn (pci_a)

devseln (pci_a)

11

Add-Par Par-D0

Perr

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 29

In Figure 5, the pci_a asserts trdyn and stopn in clock eight to indicate
that valid data is on the ad[31..0] bus and a disconnect is desired. Data
is transferred during clock eight when irdyn and trdyn are active and
latched by the master device on the rising-edge of clock nine. In the case
of an attempted burst transfer, the PCI specification requires that a target
device that does not support burst transfers must issue a disconnect
during the first data phase. Because of the PCI specification, the pci_a
function always asserts stopn and trdyn at the same time.

The master drives the par active in clock five for address parity, and the
pci_a function drives par active in clock nine for data parity. In a target
read transaction, the master device drives the perrn signal to indicate
data parity errors.

In clock nine, because the data has been sampled, the pci_a function
releases the ad[31..0] bus and the master releases cben[3..0] . The
devseln , trdyn , and stopn signals are driven high in clock nine and
released by the pci_a one clock later. Thus, the sustained tri-state signal
requirement is met, i.e., driving the signal high for one clock cycle before
releasing it.

External Target Read Transaction

The sequence of events in an external target read transaction is identical
to an internal target read transaction. However, because a DMA access to
the local side takes precedence over any other access to the local side, an
external target read transaction is allowed to complete only when the
DMA is idle. If an external target read transaction is received by the pci_a
function while the DMA is not idle, the pci_a function signals a retry.

Because the pci_a function must wait for the local side to supply it with
data, a target read transaction from the local side target memory space
(external target read) requires more time. If the local logic cannot supply
the data within one clock after l_csn and l_rdn are asserted, l_holdn
can be asserted low to halt the data transfers. The l_holdn signal may be
driven low until the data is presented on the l_dat_in[31..0] bus.

1 PCI specification requires that the first data phase of a target
transaction completes within 16 clock cycles. The local device
must ensure that the PCI specification is not violated by an
excessively long l_holdn assertion.

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
30 Altera Corporation

Figures 6 shows the timing of a pci_a external target read transaction.

Figure 6. External Target Read Transaction

Figure 7 illustrates an external target read transfer where l_holdn is used
to insert additional wait states on the local side. Unable to supply data
immediately when l_csn and l_rdn are asserted, the local logic asserts
l_holdn in clock eight for two clock cycles. The local side supplies the
data on the l_dat_in[31..0] bus in clock 10 and deasserts l_holdn . The
pci_a function latches the data internally on the rising edge of clock 11
and deasserts l_rdn . The l_csn is deasserted one clock later. The pci_a
drives the data on the PCI bus one clock after it latches it from the local
side (clock 13). Because l_holdn is registered, the local side must follow
the tSU timing requirements (provided by the MAX+PLUS II Timing
Analyzer) when it drives l_holdn .

1 To avoid excessive latency, the PCI specification requires that
PCI target devices complete the initial data transaction within 16
clocks after framen is asserted. (The local logic must ensure that
this PCI specification is met.) Therefore, l_holdn cannot be held
active for more than 10 clock cycles.

1 2 3 4 5 6 7 8 9 10 11 12clk

D0Address

0110 Byte Enable

Add-Par Par-D0

Perr

ad[31..0]

cben[3..0]

par

perrn

irdyn

framen

devseln

trdyn

stopn

Valid Addressl_adr[18..0]

l_dat_in[31..0] D0

l_rdn

l_csn

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 31

Figure 7. External Target Read Transaction with l_holdn Asserted

Target Write Transactions

The pci_a function supports two types of target write transactions:

■ Internal target write: Target write to internal DMA registers
■ External target write: Target write to the local side target memory

space

The sequence of events in both target write transactions is identical;
however, the timing may not be.

Internal Target Write Transaction

Immediately after the address phase, the master deasserts framen and
asserts irdyn , indicating the following:

■ The transaction contains a single data phase.
■ The master device is ready to write data on the ad[31..0] bus for the

target device to receive.

If the master device is not ready for the data phase to begin, irdyn is
delayed and framen is not deasserted until the clock where irdyn goes
active. If the master is attempting a burst access, it will keep both framen
and irdyn signals asserted. However, because the pci_a function does
not support target bursts, it will assert stopn to indicate a disconnect to
the master. The master will subsequently end the transaction by
deasserting framen and asserting irdyn for one clock cycle.

1 2 3 4 5 6 7 8 9 10 11 12clk

framen

l_rdn

l_csn

l_holdn

trdyn

devseln

irdyn

ad[31..0]

0110 Byte Enablecben[3..0]

perrn

par

Valid Addressl_adr[18..0]

D0l_dat_in[31..0]

stopn

D0Address

Add-Par Par-D0

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
32 Altera Corporation

Figure 8 shows a typical waveform for an internal target write transaction.
The address phase occurs during clock four, and the data phase begins in
clock five. The pci_a function claims the transaction in clock eight by
asserting devseln . On the rising edge of clock nine, data is transferred
from the master device to the pci_a function because both irdyn and
trdyn are asserted. At the same time when the pci_a function asserts
trdyn , it also asserts stopn to indicate that it is unable to receive more
data. The pci_a function always asserts stopn and trdyn at the same
time to ensure that only one data phase occurs during each target
transaction.

The master device drives par active in clock five for parity of the address
bits, and clock six for parity of the data bits. If a parity error occurs, the
pci_a function will drive perrn one clock cycle later.

In clock nine, because the data has been sampled, the pci_a function
releases the ad[31..0] and cben[3..0] buses. One clock later par is
released by the master device. The pci_a drives devseln , trdyn , and
stopn high in clock nine and releases them one clock later.

Figure 8. Internal Target Write Transaction

External Target Write Transaction

The sequence of events in an external target write transaction is identical
to an internal target write transaction. However, the timing may be
different.

1 2 3 4 5 6 7 8 9 10clk

reqn (Master)

gntn (Arbiter)

11

framen (Master)

ad[31..0] (Master) Data0

cben (Master)

perrn (pci_a)

par (Master)

devseln (pci_a)

stopn (pci_a)

trdyn (pci_a)

irdyn (Master)

Address

0111 Byte Enable

Adr-Par Data-Par

Data-Perr

PCI Master/Target MegaCore Function With DMA Data Sheet
To allow an external target write transaction to complete faster, the pci_a
function provides a single address and a single data holding register.
When an external target write access takes place, the pci_a stores the
address and data in its internal holding registers and completes the
transfer on the PCI bus. The pci_a function will subsequently assert its
l_csn signal to indicate to the local side that there is a pending target
access; one clock later (clock 10), the l_wrn is asserted and data is driven
on l_dat_out[31..0] bus and the byte enables are driven on the
l_ben[3..0] bus. Figure 9 shows the timing of an external target write
transaction.

Figure 9. External Target Write Transaction

Similar to an external target read transaction, if the local logic is unable to
receive the 32-bit data from the l_dat_out[31..0] bus, l_hold can be
applied to delay the data transfer. Figure 10 on page 34 depicts an
external target write transaction where l_holdn is asserted to extend the
time required by the local side to transfer the data.

1 2 3 4 5 6 7 8 9 10clk 11 12

D0

Valid Address

0 ns 100 ns 200 ns 300 ns

irdyn

perrn

devseln

trdyn

stopn

l_adr[18..0]

l_dat_out[31..0]

l_wrn

l_csn

l_ben[3..0] Byte Enable

framen

Byte Enable

Address D0

0111

Add-Par Par-D0

Perr-D0

ad[31..0]

cben[3..0]

par
Altera Corporation 33

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
34 Altera Corporation

When the pci_a drives l_csn low, the l_wrn is driven low one clock
cycle later. Because the local logic is unable to receive the write data, it
drives l_holdn in clock 10.

1 The local side can detect that the local target data transfer is a
write cycle because in clock eight, when l_csn is asserted, l_rdn
is not asserted.

Because pci_a detects the assertion of l_holdn , it continues to drive
data0 (D0) on the l_dat_out[31..0] bus as well as l_csn and l_wrn
until l_holdn is deasserted. The local application must assert l_holdn by
clock 10 to extend the data cycle.

The local logic latches the data at clock 13. The l_wrn signal is asserted
until one clock after l_holdn is deasserted; l_csn is then deasserted one
clock after l_wrn is deasserted.

The pci_a function finishes the data transfers on the PCI bus before the
data is presented to the local side. During an external target write
transaction, l_holdn can be held active many clock cycles without
affecting the PCI bus performance. However, it is generally a good
practice to deassert l_holdn as soon as possible. Otherwise, if a PCI agent
attempts to access the pci_a function again while the function has valid
data, the pci_a function issues a retry.

Figure 10. External Target Write Transaction with l_holdn Asserted

1 2 3 4 5 6 7 8 9 10clk 11 12

D0

Valid Address

Perr-D0

Byte Enable0111

Adr D0

Par-D0Add-Par

Byte Enable

l_adr[18..0]

stopn

trdyn

devseln

irdyn

framen

perrn

cben[3..0]

ad[31..0]

par

l_wrn

l_csn

l_holdn

l_dat_out[31..0]

l_ben[3..0]

13

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 35

Configuration Transactions

A configuration transaction is generated by either a host-to-PCI bridge or
PCI-to-PCI bridge access. In the address phase of a configuration
transaction, the PCI bridge will drive the idsel signal of the PCI bus
agent that it wants to access. If a PCI bus agent decodes the configuration
command and detects its idsel to be high, the agent will claim the
configuration access and assert devseln .

PCI Configuration Read Transaction

Figure 11 shows the timing of a pci_a configuration read transaction. The
protocol is identical to the protocol discussed in the “Target Read
Transactions” on page 27 except for the idsel signal, which is active
during the address phase of a configuration transaction.

Figure 11. Configuration Read Transaction

PCI Configuration Write Transaction

Figure 12 shows the timing of a pci_a configuration write transaction.
The protocol is identical to the protocol discussed in the “Target Write
Transactions” on page 31 except for the idsel signal, which is active
during the address phase of a configuration transactions.

par (pci_a)

1 2 3 4 5 6 7 8 9 10clk

cben (Host) 1010 Byte Enable

devseln (pci_a)

irdyn (Host)

trdyn (pci_a)

stopn (pci_a)

gntn (Arbiter)

framen (Host)

idsel (Host)

ad[31..0] (pci_a) Address Data0

Data Parity Error

reqn (Host)

perrn (Host)

Address Parity Data Parity

11

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
Figure 12. Configuration Write Transaction

Master Transactions

Master transactions in the pci_a function are controlled by the DMA
engine. A pci_a master transaction begins after the user loads the
appropriate values in the DMA register (see “General Host Programming
Guidelines” on page 54 for more detailed information on DMA register
loading). The pci_a function waits for the local side to assert l_req ,
which indicates to the pci_a function that it can begin the DMA
operation.

In a DMA read (PCI to local side) transaction, the pci_a function
immediately asserts reqn to acquire mastership of the PCI bus. After the
arbiter asserts gntn , the pci_a function begins the address phase by
asserting framen and driving the address on the ad[31..0] bus and the
command on the cben[3..0] bus.

1 2 3 4 5 6 7 8 9 10clk

200 ns 300 ns0 ns

perrn (Host)

Data Parity Error

par (Host)

irdyn (Host)

trdyn (pci_a)

stopn (pci_a)

reqn (Host)

gntn (Arbiter)

framen (Host)

idsel (Host)

ad[31..0] (Host)

1011

Data0

cben (Host) Byte Enable

devseln (pci_a)

Address Parity Data Parity

11

100 ns

Adr
36 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
In a DMA write (local side to PCI) transaction, the pci_a function first
reads up to 16 DWORDs from the local side and stores them in its internal
RAM buffer. At this point, the DMA asserts reqn to acquire mastership of
the PCI bus. After the arbiter asserts gntn , the pci_a function begins the
address phase.

Master Read Transactions

The pci_a function supports two types of master read transactions:

■ Single-cycle master read
■ Master burst read

Single-Cycle Master Read Transaction

In a master read transaction, data is being transferred from the PCI side to
the local side. Assuming the pci_a function has acquired mastership of
the PCI bus, the start of a master read transaction is indicated when the
pci_a function asserts framen .

After the master read transaction is initiated, the target devices latch the
address and command on the clock edge when framen is active and start
the address decode. The pci_a function is not ready to read data until
clock five; therefore, framen is not deasserted and irdyn is not asserted
until clock five.

The selected target device asserts devseln in clock three, and devseln is
sampled by the pci_a function on the rising-edge of clock four, which
depicts a fast decode target device.

To indicate that it is ready to send data, the target device simultaneously
asserts trdyn and drives data on the ad[31..0] bus beginning in clock
four. The data phase begins in clock five when irdyn and trdyn are active
and finishes on the rising edge of clock six with data latched by the pci_a
function.

The pci_a function drives the par signal active in clock three for parity of
the address and command bits, and the selected target drives par active
in clock six for parity of the data and byte enable bits.

The pci_a function releases the ad[31..0] bus in clock three, the
cben[3..0] bus in clock six, and the par signal in clock four.

Figure 13 shows the timing of a pci_a function master read transaction.
The figure assumes the pci_a function has already acquired mastership
of the PCI bus.
Altera Corporation 37

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
Figure 13. Single-Cycle Master Read Transaction

Master Burst Read Transaction

The protocol for the address phase of a master burst read transaction is
identical to “Single-Cycle Master Read Transaction” on page 37. After the
address phase, the protocol changes to reflect the additional read
transactions.

After the master burst read transaction is initiated, the selected target
device asserts devseln in clock three, and the pci_a function samples
devseln on the rising edge of clock five. This example displays a fast
decode target. The target device then signals to the pci_a that it is ready
to send data by driving trdyn and the ad[31..0] bus active in clock four.

The pci_a function drives par active in clock three for parity of the
address and command bits. In clock six the target device drives par active
for parity of the first data phase (Data0). The target device also drives par
active in clocks seven, eight, and nine for parity of the second, third and
fourth data phases.

Figure 14 shows a 16-byte data transaction, with the data phases
occurring in four consecutive clock cycles. The data phase begins in clock
five and ends in clock eight when the pci_a function releases framen ,
which indicates the start of the final data phase.

1 2 3 4 5 6 7 8 9 10clk

200 ns 300 ns0 ns

par (Target)

perrn (pci_a)

Address Parity Data Parity
Data Parity Error

irdyn (pci_a)

framen (pci_a)

ad[31..0] (Target) Address Data0

cben (pci_a) 0110 0000

100 ns

devseln (Target)

stopn (Target)

trdyn (Target)
38 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 39

Because the data has been read, the target device simultaneously releases
devseln , trdyn , and the ad[31..0] bus when the pci_a function
releases irdyn in clock nine.

Figure 14. Master Burst Read Transaction

Master Write Transactions

The pci_a function supports two types of master write transactions:

■ Single-cycle master write
■ Master burst write

Single-Cycle Master Write Transaction

In a master write transaction, data is transferred from the local side to the
PCI side. Assuming the pci_a function has acquired mastership of the
PCI bus, the start of a master device write transaction is indicated when
the pci_a function asserts framen .

After the master device write transaction is initiated, the target devices
latch the address and command on the clock edge when framen is active
and start the address decode. Data from pci_a master device write
transactions is not available until clock five; therefore, framen is not
deasserted and irdy is not asserted until clock five.

1 2 3 4 5 6 7 8 9 10clk

ad[31..0] (Target)

cben (pci_a)

200 ns 300 ns0 ns

0000

par (Target)

perrn (pci_a)

Address Parity Data Parity

Data Parity Error

framen (pci_a)
Address Data0 Data1 Data2 Data3

0110

irdyn (pci_a)

devseln (Target)

trdyn (Target)

stopn (Target)

100 ns

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
40 Altera Corporation

The selected target device asserts devseln in clock four and is sampled by
the pci_a function in clock five, which depicts a medium decode target
device.

To indicate that it is ready to receive data, the target device drives trdyn
active in clock five. Then, the pci_a function drives data on the
ad[31..0] bus beginning in clock five and simultaneously with the
assertion of irdyn . The data phase begins in clock five when irdyn and
trdyn are active, and ends on the rising-edge of clock six with data
latched by the selected target device.

The pci_a function drives par active in clock three for parity of the
address and command bits and clock six for parity of the data and byte
enable bits.

Because the data phase is complete, the pci_a function releases the
ad[31..0] bus and cben[3..0] in clock six. One clock later, par is
released by the pci_a function, and devseln and trdyn are released by
the target device. To meet the requirement of driving a sustained tri-state
signal high for one clock cycle before releasing it, the pci_a function
drives irdyn high in clock six before releasing it in clock seven.

Figure 15 shows the timing of a pci_a master write transaction. The
figure assumes the pci_a function has already acquired mastership of the
PCI bus.

Figure 15. Single-Cycle Master Write Transaction

Address Data0

0111 0000

Address Parity Data Parity

Data Parity Error

irdyn (pci_a)

devseln (Target)

trdyn (Target)

1 2 3 4 5 6 7 8 9 10clk

framen (pci_a)

ad[31..0] (pci_a)

cben (pci_a)

200 ns 300 ns0 ns

par (pci_a)

perrn (Target)

stopn (Target)

100 ns

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 41

Master Burst Write Transaction

The protocol for master burst write transactions from the address phase to
data phase one is identical to “Single-Cycle Master Write Transaction” on
page 39. From data phase two, the protocol changes to reflect the
additional write transactions.

After the master burst write transaction is initiated, the selected target
device asserts devseln in clock four, and the pci_a function samples
devseln on the rising edge of clock five. This example depicts a medium
decode target. The target device signals to the master device that it is
ready to receive data by driving trdyn active in clock five.

The master burst write transaction example in Figure 16 shows the data
phases occurring in clocks five, six, seven, and nine when irdyn and
trdyn are both active.

To ensure data synchronization on the pci_a function’s internal data path
pipeline, a wait state for master burst write transactions is inserted by the
pci_a function in clock eight. If the target does not insert a wait state
during the burst write transaction, pci_a will insert only one wait state
for the entire burst transfer. However, if the target inserts additional wait
states during the burst write transaction, the pci_a function will insert
additional wait states. The final data transfer occurs when the pci_a
function simultaneously asserts irdyn and deasserts framen in clock
nine.

The pci_a function drives the par active in clock three for parity of the
address bits and clock six for parity of the data bits.

Figure 16 shows the timing of a pci_a burst write transaction, which
depicts a 16-byte data transfer.

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
42 Altera Corporation

Figure 16. Master Burst Write Transaction

DMA Operation This section provides operating details of the DMA engine, and is divided
into the following sub-sections:

■ Target address space
■ Internal target registers memory map
■ DMA registers
■ DMA transactions
■ Initializing DMA transfers from the local side
■ General host programming guidelines

1 2 3 4 5 6 7 8 9 10

200 ns 300 ns0 ns

11

Address Data0 Data1 Data2 Data3

0111 0000

Address Parity Data Parity
Data Parity Error

clk

irdyn (pci_a)

devseln (Target)

framen (pci_a)

ad[31..0] (Target)

cben (pci_a)

par (Target)

perrn (pci_a)

trdyn (Target)

stopn (Target)

100 ns

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 43

Target Address Space

The pci_a function memory-mapped target registers (internal and
external) are read and/or written over the PCI bus in BAR0 memory
space. Accesses to or from BAR0 memory space occur in 32-bit transfers.
Table 24 lists the pci_a function’s memory space address map. The pci_a
function BAR0 address space ranges from 1 Mbyte to 2 Gbytes of
contiguous address divided into two equal-sized regions (lower and
upper). Each region reserves half of the total address space reserved by
BAR0. The lower region (internal target address space) contains the pci_a
DMA control registers, and the upper region (external target address
space) contains user-defined memory space.

Note:
(1) These values are based on the BAR0_RW_BITS parameter set to 12.

Internal Target Registers Memory Map

Internal pci_a target address space is used for the DMA registers,
including the DMA control/status register, DMA address counter
register, DMA byte counter register and the interrupt status register.
Table 25 lists the pci_a function’s DMA registers memory map.

Note:
(1) These values are based on the BAR0_RW_BITS parameter set to 12.

Table 24. Memory Space Address Map

Memory
Space

Block Size
(DWORDs)

Address Offset
Note (1)

Words Used Read/ Write Description

BAR0 1/2 of
reserved
space

00000h-7FFFFh 4 bytes Read/write DMA registers

BAR0 1/2 of
reserved
space

80000h-FFFFFh All Read/write User-defined memory space,
ranging in size from 512 Kbytes to
2 Gbytes

Table 25. Internal Target Registers Memory Map

Range
Reserved

Note (1)

Bytes
Used/Reserved

Read/Write Mnemonic Default State
(Hexadecimal)

Register Name

00000h-00003h 8/32 Read/write dma_csr 00000000 DMA control/status

00004h-00007h 32/32 Read/write dma_acr 00000000 DMA address counter

00008h-0000Bh 17/32 Read/write dma_bcr 00000000 DMA byte counter

0000Ch-0000Fh 8/32 Read dma_isr 00000000 DMA interrupt status

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
DMA Registers

This section describes the DMA registers. The specified default state is
defined as the state of the storage element when the PCI bus is reset. The
pci_a function contains the following DMA registers:

■ Control and status
■ Address counter
■ Byte counter
■ Interrupt status

Control & Status Register (Offset = 00000 Hex)

The DMA control and status register (dma_csr) configures the pci_a
DMA engine, directs the pci_a function’s DMA operation, and provides
status of the current memory transfer. See Table 26.

Table 26. DMA Control & Status Register Format (Part 1 of 2)

Data Bit Mnemonic Read/Write Definition

0 int_ena Read/write PCI interrupt enable. The int_ena bit enables the intan output
when either the err_pend or dma_tc bits are driven high from the
dma_isr , or when the l_irqn signal is active.

1 flush Write Flush buffer. When high, flush marks all bytes in the internal EAB
RAM queue as invalid and resets dma_tc and ad_loaded (bits 3
and 4 of the interrupt status register). The flush bit also resets itself;
therefore, it always reads as zero. The flush bit should never be set
while dma_on is set, because a DMA transfer is in progress.

2 l_rst Read/write Local reset. This bit serves as a software reset to the local side add-
on logic (see “Local Side Signals” on page 10). The l_reset output
of the pci_a function is active as long as the l_rst bit is high. (The
l_reset output is also active for PCI bus resets.)

3 write Read/write Memory read/write. The write bit determines the direction of the
pci_a function’s DMA transfer. When write is high, the data flows
from the local side to the PCI bus (PCI bus write); when write is low,
the data flows from the PCI bus to the local device (PCI bus read).

4 dma_ena Read/write DMA enable. When high, dma_ena allows pci_a to respond to DMA
requests from the local side (l_req) as long as the PCI bus activity
is not stopped due to a pending interrupt, etc.

5 tci_dis Read/write Transfer complete interrupt disable. When high, tci_dis disables
dma_tc (bit 3 of the DMA interrupt status register) from generating
PCI bus interrupts.
44 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Address Counter Register (Offset = 00004 Hex)

The DMA address counter register (dma_acr) is a 32-bit register
consisting of a 30-bit counter (bits 31..2) and 2 bits (bits 1..0) tied to GND.
The dma_acr contains the PCI bus address for the current memory
transfer and is incremented after every data transfer on the PCI bus. PCI
bus memory transfers initiated by the pci_a function must begin on
DWORD boundaries. For monitoring progress, the dma_acr can be read
via l_dma_acr_out[] ports. See Table 27.

Byte Counter Register (Offset = 00008 Hex)

The DMA byte counter register (dma_bcr) is a 17-bit register consisting of
a 15-bit counter (bits 16..2) and 2 bits (bits 1..0) tied to GND. The dma_bcr
holds the byte count for the current pci_a -initiated memory transfer and
decrements (by 4 bytes) after every data transfer on the PCI bus. PCI bus
memory transfers initiated by the pci_a function must be DWORD
transfers. Reading the dma_bcr during a memory transfer can be achieved
via the l_dma_bcr_out[] ports. See Table 28.

Data Bit Mnemonic Read/Write Definition

6 dma_on Read DMA on. When high, dma_on indicates that the pci_a function can
request mastership of the PCI bus (reqn) if prompted by the local
side (i.e., an active l_req). The dma_on bit is high when the address
is loaded (ad_loaded), the DMA is enabled, and there are no
pending errors. The DMA transfer sequence actually begins when
the dma_on bit becomes set. Under normal conditions (i.e., DMA is
enabled and no errors are pending) the dma_on bit becomes set
when a write transaction to the DMA address counter register occurs.
The dma_on bit becomes set whether the write transaction occurs
from the local side or via a target access.

31..7 Unused – –

Table 26. DMA Control & Status Register Format (Part 2 of 2)

Table 27. DMA Address Counter Register Format

Data Bit Name Read/Write Definition

1..0 dma_acr Read Bits are tied to GND

31..2 dma_acr Read/write 30-bit counter
Altera Corporation 45

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
46 Altera Corporation

Interrupt Status Register (Offset = 0000C Hex)

The DMA interrupt status register (dma_isr) provides all interrupt source
status signals to the interrupt handler. See Table 29.

Table 28. DMA Byte Counter Register Format

Data Bit Name Read/Write Definition

1..0 byte_cntr Read Bits are tied to GND.

16..2 byte_cntr Read/write 15-bit counter.

31..17 Unused – –

Table 29. DMA Interrupt Status Register Format

Data Bit Mnemonic Read/Write Definition

0 int_pend Read The pci_a function automatically asserts int_pend to indicate that
a pci_a interrupt is pending. The three possible interrupt signals from
the pci_a are err_pend , dma_tc , and int_irq .

1 err_pend Read When high, err_pend indicates that an error occurred during a
pci_a -initiated PCI bus memory transfer, and that the interrupt
handler must read the PCI configuration status register and clear the
appropriate bits. Any one of the following three PCI status register bits
can assert err_pend : mstr_abrt , tar_abrt , and det_par_err .
See “Control & Status Register (Offset = 00000 Hex)” on page 44.

2 int_irq Read When high, int_irq indicates that the local side is requesting an
interrupt, i.e., the l_irqn input is asserted.

3 dma_tc Read When high, dma_tc indicates that the pci_a -initiated DMA transfer is
complete. When the pci_a function sets the dma_tc bit, an interrupt
will be generated on the intan output as long as interrupts are
enabled by the int_ena bit (bit 0 of the dma_csr) and not disabled by
the tci_dis bit (bit 5 of the dma_csr). The dma_tc bit is reset in one
of three ways: a read transaction to the dma_isr ; a write transaction
to the dma_csr , which sets the flush bit (bit 1 of the dma_csr); or by
writing to the dma_acr from the local side.

4 ad_loaded Read When high, ad_loaded indicates that the address has been loaded in
the dma_acr . This bit is cleared in one of three ways: when the DMA
operation is complete and the dma_tc bit is set; when the flush bit is
set; or when the rstn input is asserted from the PCI bus. The
ad_loaded bit triggers the beginning of a DMA operation because it
sets the dma_on bit in the dma_acr register. It is automatically set by
the pci_a when a write operation to the dma_acr is performed.
Therefore, the dma_acr should be written to last when a DMA
operation is being loaded into the DMA registers.

31..5 Unused – –

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 47

DMA Transactions

As a master device, the pci_a function performs DMA read and write
transactions to system memory (typically via the host bridge), or to
another PCI bus agent capable of accepting burst target data transfers.

A DMA read transaction from memory to the local side consists of two
separate transfers:

■ A PCI bus burst read from the PCI bus to the RAM buffer
■ An equivalent number of DWORD transfers to the local side

All DMA read transactions from the pci_a use the memory read
command.

Similarly, a DMA write transaction from the pci_a function to system
memory consists of two separate transfers:

■ One to sixteen DWORD transfers from the local side to the RAM
buffer

■ A PCI burst write from the RAM buffer to a PCI agent.

All DMA (PCI bus) write transactions from the pci_a function use the
memory write command.

PCI Bus DMA Read Transaction & Signal Sequence

In a PCI bus internal DMA read transaction, data is transferred from the
system memory to the local side buffer. Specifically, a PCI bus DMA read
transaction consists of:

■ A pci_a master device read from a PCI agent to the pci_a RAM
buffer.

■ A write from the pci_a function’s RAM buffer to the local side
peripheral device.

The following is the signal sequence of a PCI bus DMA read transaction:

1. The host sets up a DMA read transfer by writing appropriate values
to the DMA registers. The DMA transfer sequence actually begins
when the dma_on bit becomes set. Under normal conditions (i.e.,
DMA is enabled and no errors are pending) the dma_on bit becomes
set when a write transaction to the DMA address counter register
occurs.

2. The local side peripheral device asserts l_req to request a DMA
transfer.

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
48 Altera Corporation

3. The pci_a function asserts reqn and waits for gntn to become active
before assuming mastership of the PCI bus.

4. The pci_a function reads up to the 16 DWORDs from the PCI bus
system memory and loads the data into the pci_a function’s RAM
buffer.

5. Once the PCI transfer is complete, the pci_a function asserts l_ackn
and l_wrn to the local side peripheral device and transfers up to 16
DWORDs. Because the pci_a does not have the local side address
location where data is to be written, the local side is responsible for
generating the address during a local side DMA transfer. In
Figure 17 the address is not generated from the pci_a .

6. The pci_a function writes the data from the pci_a function’s RAM
buffer onto the l_dat_out[31..0] bus. When the last data word is
written, the pci_a function disables l_ackn and l_wrn .

7. If the dma_bcr expires (i.e., the specified number of data bytes have
been transferred), the pci_a function sets the dma_tc bit in the
dma_isr register and asserts intan , provided that the interrupt is
enabled and tci_dis = 0. Otherwise, steps 2 through 5 are repeated
until dma_bcr expiration or until a DMA error occurs. See Figure 17.

Figure 17. PCI Bus DMA Read Transaction

Adr

D0 D1 D2 D3

The number of clock cycles
depends on the length

of the burst transfer.

The irdy signal goes high
indicating that in the current
burst read, the last data
phase transfer is complete.

The pci_a asserts
l_ackn to indicate a DMA
transfer to the local side.

Local memory address
is generated by the local side
while both l_ackn and
l_wrn signals are asserted.

clk 1 2 3 4 5 6 7 8

0 ns 100 ns 200 ns

Local side signals
the pci_a to begin
a DMA operation.

l_req (local side)

irdyn (pci_a)

l_ackn (pci_a)

l_holdn (pci_a)

l_wrn (pci_a)

l_rdn (pci_a)

l_dat_out[31..0] (pci_a)

Local side RAM address Adr+4 Adr+8 Adr+12

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 49

PCI Bus DMA Write Transaction & Signal Sequence

In a PCI bus internal DMA write transaction, data is transferred from the
local side to system memory. Specifically, a PCI DMA write consists of:

■ A transfer from the local side to the pci_a function’s RAM buffer.
■ A pci_a master write from the pci_a function’s RAM buffer to a PCI

bus agent.

The following steps show the signal sequence of a PCI DMA write
transaction:

1. The local side or the host sets up a DMA write transfer by writing
appropriate values to the DMA registers. The DMA transfer
sequence actually begins when the dma_on bit becomes set. Under
normal conditions (i.e., DMA is enabled and no errors are pending)
the dma_on bit becomes set when a write transaction to the DMA
address counter register occurs.

2. The local side peripheral device asserts l_req to request a DMA
transfer.

3. The pci_a function asserts l_ackn and l_rdn in response to the
DMA request and latches up to 16 DWORDs from the local side
peripheral device.

4. The pci_a function reads the data from the l_dat_in[31..0] bus
into the pci_a RAM buffer. When the last DWORD in the DMA
transfer is read, or when the RAM buffer is full, the pci_a function
disables l_ackn and l_rdn .

5. The pci_a function asserts reqn and waits for gntn to become active
before assuming mastership of the PCI bus.

6. The pci_a function transfers up to 16 DWORDs from its RAM buffer
to the PCI bus target device.

7. If the dma_bcr expires (i.e., the specified number of data bytes have
been transferred), the pci_a sets the dma_tc bit in dma_isr register
and asserts intan provided that interrupt is enabled and
tci_dis = 0. Otherwise, steps 2 through 5 are repeated until the
dma_bcr expiration or until a DMA error occurs. See Figure 18.

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
50 Altera Corporation

Figure 18. PCI Bus DMA Write Transaction

Initializing DMA Transfers from the Local Side

The pci_a function version 2.0 allows both the local side and the host to
perform DMA read transactions. This section discusses how the local side
may set up the DMA registers to initiate a master transfer. For more
information on how the host may initiate DMA, see “General Host
Programming Guidelines” on page 54.

The pci_a function’s DMA engine, which consists of a 64-byte RAM
buffer and four programmable registers, is the control channel when the
pci_a acquires mastership of the PCI bus.

After the configuration space registers are properly set, either the host or
the local logic can initiate burst DMA transfers by writing to the DMA
registers in the pci_a function. This section is divided into two tasks:

■ Initializing the pci_a function for a DMA read transaction
■ Initializing the pci_a function for a DMA write transaction

0 ns 100 ns 200 ns

1 2 3 4 5 6 7 8clk

l_req (local side)

l_ackn (pci_a)

l_holdn (pci_a)

l_wrn (pci_a)

l_rdn (pci_a)

l_dat_in[31..0] (pci_a)

Local side RAM address

reqn (pci_a)

Adr

D0 D1 D2 D3

Local side signals
the pci_a to begin
a DMA operation.

The pci_a asserts
l_ackn to indicate a DMA
transfer to the local side.

Local memory address is
generated by the local side
while both l_ackn and l_rdn
signals are asserted.

The l_ackn signal goes high,
indicating the end of the
local side DMA transfer.

The pci_a
asserts reqn
to request
access to
the PCI bus.

9

Adr+4 Adr+8 Adr+12

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 51

Initializing the pci_a Function for a DMA Read Transaction

To initialize a DMA read cycle, the local logic sequentially writes to the
dma_csr , dma_bcr , and dma_acr registers. After the local logic writes to
the dma_acr , the ad_loaded bit in the dma_isr register is set. The
ad_loaded bit will set the dma_on bit in the dma_csr register if the DMA
is enabled (dma_csr bit 4) and no errors are pending (dma_isr bit 1).
When dma_on bit is set, the pci_a waits for the local device to assert
l_req before it actually begins the DMA read transaction by requesting
mastership of the PCI bus. It is important to check that the dma_acr is
written to last, i.e., after proper values have been set in the dma_bcr and
dma_csr registers. See Table 30.

Figure 19 on page 52 shows the timing of a local side DMA read
transaction. In this example, the local logic requests to read 33 DWORDs
(132 bytes) from the system memory starting at the address 00400000
hex. Figure 19 illustrates the following signal sequence:

1. The local logic asserts l_req in clock one, indicating that it is ready
for a transfer. The assertion of l_req can be delayed until the local
side is ready for the DMA transfer to commence.

2. In clock two, the local logic asserts l_dma_csr_wr while supplying
data value for l_dma_dat_in[31..0] bus. A hexadecimal value of
31 indicates that bit 0, 4, and 5 of the DMA control and status register
are set, which enables the DMA and interrupts, and disables the
DMA terminal count interrupt. In this case, bit 3 is not set, which
indicates a DMA read transfer.

Table 30. Initialization the pci_a Function for a DMA Read Operation

Address
(Hexadecimal)

Register
Name

Data
(Hexadecimal)

Definition

BAR0: 0.0000 dma_csr 0000.0031 The value in the dma_csr enables the interrupts and the
DMA engine, and disables DMA terminal count interrupt.

BAR0: 0.0008 dma_bcr 00084 The value written in this register indicates the amount of data
(in bytes) for a DMA transfer. The value must be in multiples
of DWORDs.

BAR0: 0.0004 dma_acr 00400000 The PCI bus address where the transfer should begin. This
address is automatically updated after every data transfer.

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
3. In clock three, the local logic asserts l_dma_bcr_wr while supplying
the data value for the dma_bcr register on the
l_dma_dat_in[31..0] bus. A hexadecimal value of 84 equals a
decimal value of 132 bytes, indicating that the pci_a is going to read
33 DWORDs. Because the value of l_dma_csr_out[6..0] changes
to the value written in clock 2, the write to the dma_csr register takes
effect in clock 3.

4. The local logic asserts l_dma_acr_wr while supplying data value for
the dma_acr register on the l_dma_dat_in[31..0] bus. This
transaction writes the value of 00400000 hex into the dma_acr
register. Thus, the pci_a function seeks to read from an address
value of 00400000 hex.

5. In clock 5, the write transaction to the dma_bcr and dma_acr
registers take effect. Figure 19 shows the changes in values on the
l_dma_bcr_out[16..0] and l_dma_acr_out[31..0] buses.
Figure 19 also shows changes in values on the
l_dma_isr_out[4..0] and l_dma_csr_out[6..0] buses, which
result from the ad_loaded and dma_on bits becoming set.

6. Because l_req is already asserted, the pci_a function seeks
mastership of the PCI bus by asserting the reqn signal in clock
seven. See Figure 19.

Figure 19. Local SIde Initiated DMA Read Transaction

1 2 3 4 5 6 7 8clk

l_dma_bcr_out[16..0]

l_dma_isr_out[4..0]

l_dma_csr_wr

reqn

l_dma_dat_in[31..0]

l_req

l_dma_bcr_wr

l_acr_out_[31..0]

l_dma_csr_out[6..0]

l_dma_acr_wr

00000031 00000084 00400000

00 31 51

00400000

00084

10

00000000

00000

00
52 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Initializing the pci_a Function for a DMA Write Transaction

Setting up the DMA registers for a burst write transaction from the local
logic follows the same steps as setting up a DMA read transaction. The
local logic sequentially writes the dma_csr , dma_bcr , and dma_acr
registers. When the local logic writes to the dma_csr , dma_bcr , and
dma_acr registers, the ad_loaded bit (bit 4 of the dma_isr) is set. The
ad_loaded bit triggers the beginning of a DMA operation by setting the
dma_on bit (bit 4 of the dma_csr), which prompts the pci_a to start the
DMA write operation by asserting l_ackn and reading up to 16 DWORDs
from the local side. Therefore, it is important to check that the dma_acr is
written to last, i.e., after proper values have been set in the dma_bcr and
dma_csr registers. See Table 31.

Figure 20 on page 54 shows the timing of a local side DMA register write
transaction, and illustrates the following signal sequence:

1. The local logic asserts l_req in clock one, indicating that it is ready
for a DMA transfer. The assertion of l_req can be delayed until the
local side is ready for the DMA transfer to commence.

2. In clock two, the local logic asserts l_dma_csr_wr while suppling
data value in the l_dma_dat_in[31..0] bus. A hexadecimal value
of 39 is written to the dma_csr register, which enables interrupts,
disables DMA terminal count interrupt, and enables the DMA
engine and requests a write cycle.

3. In clock three, the local logic asserts l_dma_bcr_wr while supplying
data value in the l_dma_dat_in[31..0] bus. This signal sequence
writes the value of 84 hexadecimal (132 bytes) into the dma_bcr
register. In clock three, the write to dma_csr takes place because the
value of l_dma_csr_out[6..0] changed to the value written in
clock two.

Table 31. Initializing the pci_a Function for a DMA Write Operation

Address
(Hexadecimal)

Register
Name

Data
(Hexadecimal)

Definition

BAR0: 0.0000 dma_csr 0000.0039 The value in the dma_csr enables interrupts, indicates that the
DMA operation is a write operation, enables the DMA engine
and disables the DMA terminal count interrupt.

BAR0: 0.0008 dma_bcr 00084 The value written in this register indicates the amount of data (in
bytes) for a DMA transfer. The value must be in multiples of
DWORDs (4 bytes).

BAR0: 0.0004 dma_acr 00400000 The PCI bus address where the transfer should begin. This
address is automatically updated after every data transfer.
Altera Corporation 53

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
54 Altera Corporation

4. In clock four, local logic asserts l_dma_acr_wr while supplying data
value in the l_dma_dat_in[] bus. This signal sequence writes a
hexadecimal value of 00400000 into the dma_acr register. The
pci_a function starts its PCI write operation at the the hexadecimal
address of 00400000 .

5. In clock five, the write transaction to the dma_bcr and dma_acr take
effect. Figure 20 shows the changes in the values on the
l_dma_bcr_out[16..0] and l_dma_acr_out[31..0] buses.
Figure 20 also shows the changes in values on the
l_dma_isr_out[4..0] and l_dma_csr_out[6..0] buses, which
set the ad_loaded and dma_on bits.

6. The pci_a function asserts l_ackn , indicating it is ready to accept
data from the local side.

7. On the rising edge of clock nine, local logic begins to provide data
on the l_dat_in[31..0] bus into the buffer.

Figure 20. Local Side Initiated DMA Write Transaction

General Host Programming Guidelines
DMA transfers can be controlled by the host as well as the local logic. This
section provides general programming guidelines—when the DMA is
controlled by the host—and is divided into the following four tasks:

■ Initializing the pci_a function
■ DMA operation
■ Interrupt service operation
■ Clearing error bits

1 2 3 4 5 6 7 8clk

l_dma_acr_out[31..0]

l_dma_bcr_out[16..0]

l_req

l_ackn

l_rdn

l_dma_dat_in[31..0]

l_dma_csr_wr

l_dma_csr_out[6..0]

l_dma_acr_wr

l_dma_bcr_wr

l_dma_bcr_out[16..0]

00400000

00084

10

00000000

00000

00

00 39 59

00000039 00000084 00400000

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 55

Initializing the pci_a Function

To initialize the pci_a function:

1. Configure the pci_a -supported PCI bus configuration registers.

2. Configure the dma_csr register. See Table 32.

DMA Operation

To begin a DMA operation, perform the steps below:

1. Load the dma_bcr . (This step is optional if the byte count for the next
block of data is the same as the current block.)

2. Load the dma_acr . (See “Internal Target Registers Memory Map” on
page 43)

3. Configure the local side peripheral device. This step will set up the
address generation process necessary on the local side and allow the
local side to assert l_req . However, if an intelligent PCI agent (e.g., a
microprocessor) is operating on the local side, this step may not be
necessary. See Table 33.

Table 32. Initializing the pci_a Function

Step Address
(Hexadecimal)

Register
Name

Data
(Hexadecimal)

Definition

1 04 PCI bus
command/status
register

0000.0146 The value in the PCI bus command register enables
memory transfers, master operations, the assertion
of perrn in the case of data parity errors, and the
assertion of serrn in case of address parity errors.

2 BAR0: 0.0000 0000.0011 The value in the dma_csr enables both the
interrupts and the DMA engine.

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
4. At this point, the pci_a function generates a PCI interrupt (intan)
to interrupt the controller due to byte counter expiration.

Interrupt Service Operation

To interrupt a service operation, perform the steps below:

1. Read the dma_isr .

a. If the dma_tc bit is high and err_pend bit is low, indicating that
the DMA operation was successful and that the pci_a is ready
for a new DMA transfer, go to step 1 of “DMA Operation” on
page 55.

b. If the err_pend bit is high, indicating that the DMA operation
was stopped due to an error, go to step 2 in “Clearing Error Bits”
on page 57. Clear the error bit prior to continuing. See
Table 34.

Table 33. DMA Operation

Step Address
(Hexadecimal)

Register Name Data
(Hexadecimal)

Definition

1 BAR0: 0.0008 dma_bcr User defined The amount of data (in bytes) for a DMA
transfer

2 BAR0: 0.0004 dma_acr User defined The PCI bus address where the transfer
should begin. This address is automatically
updated after every data transfer.

3 BAR0: 8.0000 External target
register

User defined This step may involve several steps, e.g.,
setting-up the local address generator; or
asserting l_req from the local side.

Table 34. Interrupt Service Routine

Step Address
(Hexadecimal)

Register Name Data
(Hexadecimal)

Definition

1 BAR0: 0.000C dma_isr User defined The value in the dma_isr register indicates
the progress of the DMA operation and the
reason the operation is terminated.
56 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Clearing Error Bits

To clear the error bits, perform the following steps:

1. Read the dma_isr . If the err_pend bit is active, go to step 2.

2. Configure the dma_csr by asserting the flush bit to clear the
ad_loaded bit (bit 4 of the dma_isr).

3. Read the PCI bus configuration status register and determine which
error is asserted (i.e., bit 15, 12, or 13).

4. Configure the pci_a -supported PCI status register and write a logic
one to the appropriate error bit field. Writing a one to a bit in the
status register clears the bit, allowing the designer to read the status
register and write the same value to clear the error conditions.
Altera Corporation 57

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
Applications The pci_a function is ideal for add-in applications. Figure 21 shows a
typical connection to an intelligent local-side host. In this example, a
target and a DMA control block are needed for access to the local side. The
local side data bus is a bidirectional bus controlled by the l_holdn output.
The host asserts l_holdn whenever it is accessing the local bus. Because
the PCI bus address is often different than the local side address, the host
is responsible for generating the local side address during a DMA access.

Figure 21. Local Side Interface to an Intelligent Local-Side Host with a Shared Memory Bus

Figure 22 shows a typical pci_a connection to a dumb memory FIFO
buffer. In this example, a target and a DMA control block are needed for
access to the local side.

Because the local side does not have the intelligence to generate control
and address signals during a DMA access, designers can set up the DMA
control block to accept configuration and control data from the PCI bus
via target access. Figure 22 illustrates the process via the bidirectional
signals going between the two control blocks.

pci_a
 Master/Target
Local Side I/O

l_rdn

l_rdn
l_wrn
l_holdn
l_req
l_irqn
l_reset
l_ackn

l_dat_in[31..0

l_dat_out[31..0]

Local Side
 Interface:

Add-on Logic

External Target

Local Side
Host:

DMA Control

address[16..

csn
oen
wen

SRAM

I/O

l_clk

l_adr[18..0]

l_csn

l_wrn
58 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 59

Figure 22. Local Side Interface to a Dumb FIFO Buffer

Local Side
Interface:

DMA Control
Add-on Logic

Local Side
Interface:

Add-on Logic
External

Target Registers

pci_a
Master/Target
Local Side I/O

l_rdn

l_wrn
l_req
l_holdn
l_irqn

l_reset

l_ackn

wrn

control

ren

oen

Error Flags

FIFO Buffer

l_dat_out[31..0]

l_dat_in[31..0]

l_clk

l_adr[18..0]

l_csn

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
60 Altera Corporation

PCI SIG
Protocol
Checklists

Tables 35 through 42 list the applicable PCI SIG protocol requirements
from the PCI Compliance Checklist, Revision 2.1. A check mark in the yes
column indicates that the pci_a meets the requirement. Checklists not
applicable to the Altera FLEX 10K pci_a function are not listed, and table
entries annotated with an em dash represent non-applicable PCI SIG
requirements.

Table 35. Component Configuration

CO# Requirement Yes No

1 Does each PCI resource have a configuration space based on the 256 byte
template defined in section 6.1, with a predefined 64-byte header and a 192-byte
device specific region?

v

2 Do all functions in the device support the vendor ID, device ID, command, status,
header type and class code fields in the header?

v

3 Is the configuration space available for access at all times? v

4 Are writes to reserved registers or read only bits completed normally and the data
discarded?

v

5 Are reads to reserved or unimplemented registers, or bits, completed normally and
a data value of 0 returned?

v

6 Is the vendor ID a number allocated by the PCI SIG? v

7 Does the header type field have a valid encoding? v

8 Do multi-byte transactions access the appropriate registers and are the registers
in “little endian” order?

v

9 Are all read-only register values within legal ranges? For example, the interrupt pin
register must only contain values 0-4.

v

10 Is the class code in compliance with the definition in appendix D? v

11 Is the predefined header portion of configuration space accessible as bytes, words,
and DWORDs?

v

12 Is the device a multi-function device? v

13 If the device is multifunction, are configuration space accesses to unimplemented
functions ignored?

v

Table 36. Component Configuration Space Summary (Part 1 of 2)

Location Name Required/Optional N/A Support

00h-01h Vendor ID Required. v

02h-03h Device ID Required. v

04h-05h Command Required. v

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 61

Location Name Required/Optional N/A Support

06h-07h Status Required. v

08h Revision ID Required. v

09h-0Bh Class code Required. v

0Ch Cache line
size

Required by master devices/functions that can generate
Memory Write and Invalidate.

v

0Dh Latency timer Required by master devices/functions that can burst more
than two data phases.

v

0Eh Header type If the device is multi-functional, then bit 7 must be set to a 1. v

0F BIST Optional. v

10h-13h BAR0 Optional. v

14h-27h BAR1-BAR5 Optional. v

28h-2Bh Cardbus CIS
pointer

Optional. v

2Ch-2Dh Subsystem
vendor ID

Optional. v

2Eh-2Fh Subsystem ID Optional. v

30h-33h Expansion
ROM base
address

Required for devices/functions that have expansion ROM.
v

34h-3Bh Reserved

3Ch Interrupt line Required by devices/functions that use an interrupt pin. v

3Dh Interrupt pin Required by devices/functions that use an interrupt pin. v

3Eh Min_Gnt Optional. v

3Fh Max_Lat Optional. v

Table 37. Device Control Summary

Location Required/Optional Yes No

DC1 When the command register is loaded with a 0000h, is the device/function
logically disconnected from the PCI bus, with the exception of
configuration accesses? (Devices in boot code path are exempt).

v

DC2 Is the device/function disabled after the assertion of PCI rstn ? (Devices
in boot code are exempt.)

v

Table 36. Component Configuration Space Summary (Part 2 of 2)

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
62 Altera Corporation

Table 38. Command Register Summary

Bit Name Required/Optional N/A Target Master

0 I/O space Required if device/function has registers mapped into I/O
space.

v

1 Memory space Required if device/function responds to memory space
accesses.

v

2 Bus master Required. v

3 Special cycles Required for devices/functions that can respond to
special cycles.

v

4 Memory write
and invalidate

Required for devices/functions that generate Memory
Write and Invalidate cycles.

v

5 VGA palette
snoop

Required for VGA or graphical devices/functions that
snoop VGA palette.

v

6 Parity error
response

Required. v

7 Wait cycle
control

Optional. v

8 serrn enable Required if device/function has serrn pin. v

9 Fast back-to-
back enable

Required if master device/function can support fast back-
to-back cycles among different targets.

v

10..15 Reserved

Table 39. Device Status

DS# Requirement Yes No

1 Do all implemented read/write bits in the status reset to 0? v

2 Are read/write bits set to a 1 exclusively by the device/function? v

3 Are read/write bits reset to a 0 when PCI rstn is asserted? v

4 Are read/write bits reset to a 0 by writing a 1 to the bit? v

Table 40. Status Register Summary (Part 1 of 2)

Bit Name Required/Optional N/A Target Master

4..0 Reserved Required.

5 66-MHz capable Required for 66-MHz capable devices. v

6 UDF supported Optional. v

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 63

Bit Name Required/Optional N/A Target Master

7 Fast back-to-
back capable

Optional. v

8 Data parity
detected

Required. v

10..9 DEVSEL timing Required. v

11 Signaled target
abort

Required for devices/functions that are capable of
signaling target abort.

v

12 Received target
abort

Required. v

13 Received
master abort

Required. v

14 Signaled
system error

Required for devices/functions that are capable of
asserting serrn .

v

15 Detected parity
error

Required unless exempted per section 3.7.2. v

Table 41. Component Master Checklist (Part 1 of 2)

MP# Requirement Yes No

1 All sustained tri-state signals are driven high for one clock before being tri-stated. (section
2.1)

v

2 Interface under test (IUT) always asserts all byte enables during each data phase of a
memory write Invalidate cycle. (section 3.1.1)

v

3 IUT always uses linear burst ordering for memory write invalidate cycles. (section 3.1.1) —

4 IUT always drives irdyn when data is valid during a write transaction. (section 3.2.1) v

5 IUT only transfers data when both irdyn and trdyn are asserted on the same rising clock
edge. (section 3.2.1)

v

6 Once the IUT asserts irdyn it never changes framen until the current data phase
completes. (section 3.2.1)

v

7 Once the IUT asserts irdyn it never changes irdyn until the current data phase
completes. (section 3.2.1)

v

8 IUT never uses reserved burst ordering (ad[1..0] = “01”). (section 3.2.2) v

9 IUT never uses reserved burst ordering (ad[1..0] = “11”). (section 3.2.2) v

10 IUT always ignores configuration command unless idsel is asserted and ad[1..0] are
“00”. (section 3.2.2)

v

11 The IUT’s address lines are driven to stable values during every address and data phase.
(section 3.2.4)

v

Table 40. Status Register Summary (Part 2 of 2)

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
MP# Requirement Yes No

12 The IUT’s cben[3..0] output buffers remain enabled from the first clock of the data
phase through the end of the transaction. (section 3.3.1)

v

13 The IUT’s cben[3..0] lines contain valid byte enable information during the entire data
phase. (section 3.3.1)

v

14 IUT never deasserts framen unless irdyn is asserted or will be asserted (section 3.3.3.1) v

15 IUT never deasserts irdyn until at least one clock after framen is deasserted. (section
3.3.3.1)

v

16 Once the IUT deasserts framen it never reasserts framen during the same transaction.
(section 3.3.3.1)

v

17 IUT never terminates with master abort once target has asserted devseln . v

18 IUT never signals master abort earlier than 5 clocks after framen was first sampled
asserted. (section 3.3.3.1)

v

19 IUT always repeats an access exactly as the original when terminated by retry. (section
3.3.3.2.2)

v

20 IUT never starts cycle unless gntn is asserted. (section 3.4.1) v

21 IUT always tri-states cben[3..0] and ad[31..0] within one clock after gntn negation
when bus is idle and framen is negated. (section 3.4.3)

v

22 IUT always drives cben[3..0] and ad[31..0] within eight clocks of gntn assertion
when bus is idle. (section 3.4.3)

v

23 IUT always asserts irdyn within eight clocks on all data phases. (section 3.5.2) v

24 IUT always begins lock operation with a read transaction. (section 3.6) —

25 IUT always releases LOCK# when access is terminated by target-abort or master-abort.
(section 3.6)

—

26 IUT always deasserts LOCK# for minimum of one idle cycle between consecutive lock
operations. (section 3.6)

—

27 IUT always uses linear burst ordering for configuration cycles. (section 3.7.4) v

28 IUT always drives par within one clock of cben[3..0] and ad[31..0] being driven.
(section 3.8.1)

v

29 IUT always drives par such that the number of “1”s on ad[31..0] , cben[3..0] , and
par equals an even number. (section 3.8.1)

v

30 IUT always drives perrn (when enabled) active two clocks after data when data parity
error is detected. (section 3.8.2.1)

v

31 IUT always drives PERR (when enabled) for a minimum of 1 clock for each data phase that
a parity error is detected. (section 3.8.2.1)

v

32 IUT always holds framen asserted for cycle following DUAL command. (section 3.10.1) —

33 IUT never generates DUAL cycle when upper 32-bits of address are zero. (section 3.10.1) —

Table 41. Component Master Checklist (Part 2 of 2)
64 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Table 42. Component Target Checklist (Part 1 of 2)

TP# Requirement Yes No

1 All sustained tri-state signals are driven high for one clock before being tri-stated. (section
2.1)

v

2 IUT never reports perrn until it has claimed the cycle and completed a data phase.
(section 2.2.5)

v

3 IUT never aliases reserved commands with other commands. (section 3.1.1) —

4 32-bit addressable IUT treats DUAL command as reserved. (section 3.1.1) —

5 Once IUT has asserted trdyn it never changes trdyn until the data phase completes.
(section 3.2.1)

v

6 Once IUT has asserted trdyn it never changes devseln until the data phase completes.
(section 3.2.1)

v

7 Once IUT has asserted trdyn it never changes stopn until the data phase completes.
(section 3.2.1)

v

8 Once IUT has asserted stopn it never changes stopn until the data phase completes.
(section 3.2.1)

v

9 Once IUT has asserted stopn it never changes trdyn until the data phase completes.
(section 3.2.1)

v

10 Once IUT has asserted stopn it never changes devseln until the data phase completes.
(section 3.2.1)

v

11 IUT only transfers data when both irdyn and trdyn are asserted on the same rising clock
edge. (section 3.2.1)

v

12 IUT always asserts trdyn when data is valid on a read cycle. (section 3.2.1) v

13 IUT always signals target-abort when unable to complete the entire I/O access as defined
by the byte enables. (section 3.2.2)

—

14 IUT never responds to reserved encodings. (section 3.2.2) v

15 IUT always ignores configuration command unless idsel is asserted and ad[31..0] are
“00”. (section 3.2.2)

v

16 IUT always disconnects after the first data phase when reserved burst mode is detected.
(section 3.2.2)

—

17 The IUT’s ad[31..0] lines are driven to stable values during every address and data
phase. (section 3.2.4)

v

18 The IUT’s cben[3..0] output buffers remain enabled from the first clock of the data
phase through the end of the transaction. (section 3.3.1)

v

19 IUT never asserts trdyn during turnaround cycle on a read. (section 3.3.1) v

20 IUT always deasserts trdyn , stopn , and devseln the clock following the completion of
the last data phase. (section 3.3.3.2)

v

21 IUT always signals disconnect when burst crosses resource boundary. (section 3.3.3.2) —

22 IUT always deasserts stopn the cycle immediately following framen being deasserted.
(section 3.3.3.2.1)

v

Altera Corporation 65

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
PCI SIG Test
Bench
Summary

Tables 43 through 60 list the applicable PCI SIG test bench scenarios from
the PCI Compliance Checklist, Revision. 2.1. A check mark in the yes
column indicates that the pci_a function meets the requirement.
Checklists not applicable to the Altera FLEX 10K pci_a function are not
listed.

MP# Requirement Yes No

23 Once the IUT has asserted stopn it never deasserts stopn until framen is negated.
(section 3.3.3.2.1)

v

24 IUT always deasserts trdyn before signaling target-abort. (section 3.3.3.2.1) —

25 IUT never deasserts stopn and continues the transaction. (section 3.3.3.2.1) v

26 IUT always completes initial data phase within 16 clocks. (section 3.5.1.1) v

27 IUT always locks minimum of 16 bytes. (section 3.6) —

28 IUT always issues devseln before any other response. (section 3.7.1) v

29 Once IUT has asserted devseln it never deasserts devseln until the last data phase has
competed except to signal target-abort. (section 3.7.1)

v

30 IUT never responds to special cycles. (section 3.7.2) v

31 IUT always drives par within one clock of cben[3..0] and ad[31..0] being driven.
(section 3.8.1)

v

32 IUT always drives par such that the number of “1”s on ad[31..0] , cben[3..0] , and
par equals an even number. (section 3.8.1)

v

Table 42. Component Target Checklist (Part 2 of 2)

Table 43. Test Scenario: 1.1 PCI Device Speed (as indicated by devsel) Tests (Part 1 of 2)

Requirement Yes No

1 Data transfer after write to fast memory slave. v

2 Data transfer after read from fast memory slave. v

3 Data transfer after write to medium memory slave. v

4 Data transfer after read from medium memory slave. v

5 Data transfer after write to slow memory slave. v

6 Data transfer after read from slow memory slave. v

7 Data transfer after write to subtractive memory slave. v

8 Data transfer after read from subtractive memory slave. v
66 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
Requirement Yes No

9 Master abort bit set after write to slower than subtractive memory slave. v

10 Master abort bit set after read from slower than subtractive memory slave. v

Table 44. Test Scenario: 1.2 PCI Bus Target Abort Cycles

Requirement Yes No

1 Target abort bit set after write to fast memory slave. v

2 IUT does not repeat the write transaction. v

3 IUT’s target abort bit set after read from fast memory slave. v

4 IUT does not repeat the read transaction. v

5 Target abort bit set after write to medium memory slave. v

6 IUT does not repeat the write transaction. v

7 IUT’s target abort bit set after read from medium memory slave. v

8 IUT does not repeat the read transaction. v

9 Target abort bit set after write to slow memory slave. v

10 IUT does not repeat the write transaction. v

11 IUT’s target abort bit set after read from slow memory slave. v

12 IUT does not repeat the read transaction. v

13 Target abort bit set after write to subtractive memory slave. v

14 IUT does not repeat the write transaction. v

15 IUT’s target abort bit set after read from subtractive memory slave. v

16 IUT does not repeat the read transaction. v

Table 45. Test Scenario: 1.3 PCI Bus Target Retry Cycles (Part 1 of 2)

Requirement Yes No

1 Data transfer after write to fast memory slave. v

2 Data transfer after read from fast memory slave. v

Table 43. Test Scenario: 1.1 PCI Device Speed (as indicated by devsel) Tests (Part 2 of 2)
Altera Corporation 67

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
68 Altera Corporation

Requirement Yes No

3 Data transfer after write to medium memory slave. v

4 Data transfer after read from medium memory slave. v

5 Data transfer after write to slow memory slave. v

6 Data transfer after read from slow memory slave. v

7 Data transfer after write to subtractive memory slave. v

8 Data transfer after read from subtractive memory slave. v

Table 46. Test Scenario: 1.4 PCI Bus Single Data Phase Retry Cycles

Requirement Yes No

1 Data transfer after write to fast memory slave. v

2 Data transfer after read from fast memory slave. v

3 Data transfer after write to medium memory slave. v

4 Data transfer after read from medium memory slave. v

5 Data transfer after write to slow memory slave. v

6 Data transfer after read from slow memory slave. v

7 Data transfer after write to subtractive memory slave. v

8 Data transfer after read from subtractive memory slave. v

Table 47. Test Scenario: 1.5 PCI Bus Single Data Phase Disconnect Cycles (Part 1 of 2)

Requirement Yes No

1 Target abort bit set after write to fast memory slave. v

2 IUT does not repeat the write transaction. v

3 IUT’s target abort bit set after read from fast memory slave. v

4 IUT does not repeat the read transaction. v

5 Target abort bit set after write to medium memory slave. v

6 IUT does not repeat the write transaction. v

7 IUT’s target abort bit set after read from medium memory slave. v

Table 45. Test Scenario: 1.3 PCI Bus Target Retry Cycles (Part 2 of 2)

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 69

Requirement Yes No

8 IUT does not repeat the read transaction. v

9 Target abort bit set after write to slow memory slave. v

10 IUT does not repeat the write transaction. v

11 IUT’s target abort bit set after read from slow memory slave. v

12 IUT does not repeat the read transaction. v

13 Target abort bit set after write to subtractive memory slave. v

14 IUT does not repeat the write transaction. v

15 IUT’s target abort bit set after read from subtractive memory slave. v

16 IUT does not repeat the read transaction. v

Table 48. Test Scenario: 1.6 PCI Bus Multi-Data Phase Retry Cycles

Requirement Yes No

1 Data transfer after write to fast memory slave. v

2 Data transfer after read from fast memory slave. v

3 Data transfer after write to medium memory slave. v

4 Data transfer after read from medium memory slave. v

5 Data transfer after write to slow memory slave. v

6 Data transfer after read from slow memory slave. v

7 Data transfer after write to subtractive memory slave. v

8 Data transfer after read from subtractive memory slave. v

Table 49. Test Scenario: 1.7 PCI Bus Multi-Data Phase Disconnect Cycles (Part 1 of 2)

Requirement Yes No

1 Data transfer after write to fast memory slave. v

2 Data transfer after read from fast memory slave. v

3 Data transfer after write to medium memory slave. v

4 Data transfer after read from medium memory slave. v

Table 47. Test Scenario: 1.5 PCI Bus Single Data Phase Disconnect Cycles (Part 2 of 2)

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
70 Altera Corporation

Requirement Yes No

5 Data transfer after write to slow memory slave. v

6 Data transfer after read from slow memory slave. v

7 Data transfer after write to subtractive memory slave. v

8 Data transfer after read from subtractive memory slave. v

Table 50. Test Scenario: 1.8 PCI Bus Multi-Data Phase & trdyn Cycles

Requirement Yes No

1 Verify that data is written to primary target when trdyn is released after second
rising clock edge and asserted on third rising clock edge after framen .

v

2 Verify that data is read from primary target when trdyn is released after second
rising clock edge and asserted on third rising clock edge after framen .

v

3 Verify that data is written to primary target when trdyn is released after third rising
clock edge and asserted on fourth rising clock edge after framen .

v

4 Verify that data is read from primary target when trdyn is released after third
rising clock edge and asserted on fourth rising clock edge after framen .

v

5 Verify that data is written to primary target when trdyn is released after third rising
clock edge and asserted on fifth rising clock edge after framen .

v

6 Verify that data is read from primary target when trdyn is released after third
rising clock edge and asserted on fifth rising clock edge after framen .

v

7 Verify that data is written to primary target when trdyn is released after fourth
rising clock edge and asserted on sixth rising clock edge after framen .

v

8 Verify that data is read from primary target when trdyn is released after fourth
rising clock edge and asserted on sixth rising clock edge after framen .

v

9 Verify that data is written to primary target when trdyn alternately released for one
clock cycle and asserted for one clock cycle after framen .

v

10 Verify that data is read from primary target when trdyn alternately released for
one clock cycle and asserted for one clock cycle after framen .

v

11 Verify that data is written to primary target when trdyn alternately released for two
clock cycles and asserted for two clock cycles after framen .

v

12 Verify that data is read from primary target when trdyn alternately released for
two clock cycles and asserted for two clock cycles after framen .

v

Table 49. Test Scenario: 1.7 PCI Bus Multi-Data Phase Disconnect Cycles (Part 2 of 2)

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera Corporation 71

Table 51. Test Scenario: 1.9 PCI Bus Data Parity Error Single Cycles

Requirement Yes No

1 Verify the IUT sets data parity error detected bit when primary target asserts
perrn on IUT memory write.

v

2 Verify that perrn is active two clocks after the first data phase (which had odd
parity) on IUT memory read.

v

3 Verify the IUT sets parity error detected bit when odd parity is detected on IUT
memory read.

v

Table 52. Test Scenario: 1.10 PCI Bus Data Parity Error Multi-Data Phase Cycles

Requirement Yes No

1 Verify the IUT sets parity error detected bit when primary target asserts perrn on
IUT multi-data phase memory write.

v

2 Verify that perrn is active two clocks after the first data phase (which had odd
parity) on IUT multi-data phase memory read.

v

3 Verify the IUT sets parity error detected bit when odd. v

Table 53. Test Scenario: 1.11 PCI Bus Master Time-Out

Requirement Yes No

1 Memory write transaction terminates before 4 data phases completed. v

2 Memory read transaction terminates before 4 data phases completed. v

Table 54. Test Scenario: 1.13 PCI Bus Master Parking

Requirement Yes No

1 IUT drives ad[31..0] to stable values within eight PCI clocks of gntn . v

2 IUT drives cben[3..0] to stable values within eight PCI clocks of gntn . v

3 IUT drives par one clock cycle after IUT drives ad[31..0] v

4 IUT tri-states ad[31..0] and cben[3..0] and par when gntn is released. v

Table 55. Test Scenario: 1.14 PCI Bus Master Arbitration

Requirement Yes No

1 IUT completes transaction when deasserting gntn is coincident with asserting
framen .

v

PCI Master/Target MegaCore Function With DMA Data Sheet

3

PCI Bus Interface
Operation
Table 56. Test Scenario: 2.5 Target Ignores Reserved Commands

Requirement Yes No

1 IUT does not respond to RESERVED COMMANDS. v

2 Initiator detects master abort for each transfer. v

3 IUT does not respond to 64-bit cycle (dual address). v

Table 57. Test Scenario: 2.6 Target Receives Configuration Cycles

Requirement Yes No

1 IUT responds to all configuration cycles type 0 read/write cycles appropriately. v

2 IUT does not respond to configuration cycles type 0 with idsel inactive. v

Table 58. Test Scenario: 2.8 Target Receives Configuration Cycles with Address and Data Parity Errors

Requirement Yes No

1 IUT reports address parity error via serrn during configuration read/write cycles. v

2 IUT reports data parity error via PERR during configuration write cycles. v

Table 59. Test Scenario: 2.9 Target Receives Memory Cycles

Requirement Yes No

1 IUT completes single memory read and write cycles appropriately. v

Table 60. Test Scenario: 2.10 Target Receives Memory Cycles with Address and Data Parity Errors

Requirement Yes No

1 IUT reports address parity error via serrn during all memory read and write
cycles.

v

2 IUT reports data parity error via PERR during all memory write cycles. v
72 Altera Corporation

PCI Master/Target MegaCore Function With DMA Data Sheet
References Reference documents for the pci_a function include:

■ PCI Special Interest Group. PCI Local Bus Specification. Revision
2.1. Portland, Oregon: PCI Special Interest Group, June 1995.

■ PCI Special Interest Group. PCI Compliance Checklist. Revision 2.1.
Portland, Oregon: PCI Special Interest Group, June 1995.

■ Altera Corporation. 1996 Data Book. San Jose, California: Altera
Corporation, June 1996.

■ Institute of Electrical and Electronics Engineers, Inc.IEEE Standard
VHDL Language Reference Manual (ANSI/IEEE Std 1076-1993). New
York: Institute of Electrical and Electronics Engineers, Inc., June 1994.

Revision
History

The information contained in the PCI Master/Target MegaCore Function
with DMA Data Sheet version 3.02 supersedes information published in
previous versions.

Version 3.02

Figures 21 and 22 were updated in version 3.02 of the PCI Master/Target
MegaCore Function with DMA Data Sheet.

Version 3.01

Version 3.01 contains updated waveforms in Figures 11 and 12.
Altera Corporation 73

PCI Master/Target MegaCore Function With DMA Data Sheet
Altera, FLEX, FLEX 10K, EPF10K130V, MegaCore, OpenCore, MAX, MAX+PLUS, and MAX+PLUS II are
trademarks and/or service marks of Altera Corporation in the United States and other countries. Altera
acknowledges the trademarks of other organizations for their respective products or services mentioned in this
document. Altera products are protected under numerous U.S. and foreign patents and pending applications,
maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services.

Copyright  1998 Altera Corporation. All rights reserved.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
(408) 544-7144
lit_req@altera.com

®

76 Altera Corporation

Printed on Recycled Paper.

	Contents
	PCI Master/Target MegaCore Function with DMA Data Sheet
	Features
	Introduction
	New in Version 2.0
	More Device Support
	Local-Side Initiated DMA
	Parameterized BARs
	Byte-Wide Selection during Target Write Transfers
	l_holdn for External Target Write Transactions
	Larger DMA Byte Counter Register

	General Description
	Compliance Summary
	PCI Bus Signals
	Local Side Signals
	Function Prototype
	Parameters

	Functional Description
	Sustained Tri-State Signal Operation
	Master Device Signals & Signal Assertion
	Target Device Signals & Signal Assertion
	Parity Signal Operation
	PCI Bus Commands

	Configuration Registers
	Vendor ID Register (Offset = 00 Hex)
	Device ID Register (Offset = 02 Hex)
	Command Register (Offset = 04 Hex)
	Status Register: (Offset = 06 Hex)
	Revision ID Register (Offset = 08 Hex)
	Class Code Register (Offset = 09 Hex)
	Latency Timer Register (Offset = 0D Hex)
	Header Type Register (Offset = 0E Hex)
	Base Address Register Zero (Offset = 10 Hex)
	Subsystem Vendor ID Register (Offset = 2C Hex)
	Subsystem ID Register (Offset = 2E Hex)
	Interrupt Line Register (Offset = 3C Hex)
	Interrupt Pin Register (Offset = 3D Hex)
	Minimum Grant Register (Offset = 3E Hex)
	Maximum Latency Register (Offset = 3F Hex)

	PCI Bus Transactions
	Target Transactions
	Target Read Transactions
	Target Write Transactions

	Configuration Transactions
	PCI Configuration Read Transaction
	PCI Configuration Write Transaction

	Master Transactions
	Master Read Transactions
	Master Write Transactions

	DMA Operation
	Target Address Space
	Internal Target Registers Memory Map
	DMA Registers
	Control & Status Register (Offset = 00000 Hex)
	Address Counter Register (Offset = 00004 Hex)
	Byte Counter Register (Offset = 00008 Hex)
	Interrupt Status Register (Offset = 0000C Hex)

	DMA Transactions
	PCI Bus DMA Read Transaction & Signal Sequence
	PCI Bus DMA Write Transaction & Signal Sequence

	Initializing DMA Transfers from the Local Side
	Initializing the pci_a Function for a DMA Read Transaction
	Initializing the pci_a Function for a DMA Write Transaction

	General Host Programming Guidelines
	Initializing the pci_a Function
	DMA Operation
	Interrupt Service Operation
	Clearing Error Bits

	Applications
	PCI SIG Protocol Checklists
	PCI SIG Test Bench Summary
	References
	Revision History
	Version 3.02
	Version 3.01

