hkhkhkkhkhhhkhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhdhdhdhhhdhhhdhhhdhhhdhhhdhhhddhddrdhddrdhddrdrrdrxdk

Jam STAPL Byt e-Code Pl ayer Version 2.09 READMVE 5/5/2000

hkhkhkkhkhhhkhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhdhdhdhhhdhhhdhhhdhhhdhhhdhhhddhddrdhddrdhddrdrrdrxdk

CONTENTS

DESCRI PTI ON

I NCLUDED I N THI S RELEASE

NEW I N VERSI ON 2. 09

RUNNI NG THE PLAYER | N COMVAND- LI NE MODE
PORTI NG THE JAM STAPL BYTE- CODE PLAYER
JAM STAPL BYTE- CODE PLAYER AP

MEMORY USAGE

SUPPORT

IOMmMoO®m»

A. DESCRI PTI ON
The Jam STAPL Byte-Code Player is a software driver that allows test and
programm ng algorithnms for | EEE 1149.1 Joint Test Action G oup (JTAQG -
conpliant devices to be asserted via the JTAG port. The Jam STAPL Byt e- Code
Pl ayer reads and decodes information in Jam STAPL Byte-Code Files (.jbc) to
program and test progranmable |ogic devices (PLDs), nenories, and ot her
devices in a JTAG chain. The Jam STAPL Byte-Code Pl ayer conplies with STAPL
(Standard Test and Programr ng Language) Specification JESD-71. The
construction of the Player permts fast progranmng tines, small progranmm ng
files, and easy in-field upgrades. Upgrades are sinplified, because al
programm ng/test algorithms and data are confined to the Jam STAPL Byt e- Code
File. Version 2.09 supports Jam STAPL Byte-Code Files (.jbc) that have been
conpi |l ed usi ng Jam STAPL Byt e- Code Conpiler v2.09. The Player is also able to
read and "play"ol der Jam Byte-Code files based on Jamvl.1l syntax.

The .jbc File is a binary version of the ASCII JamFile (.jan
The Jam STAPL Byt e-Code format consists, anong other things, of a "byte code"
representati on of Jam commands, as they are defined in STAPL Specification
JESD-71. This neans that the .jbc File is sinply a different inplenmentation of
the .jamfile. This binary inplenentation results in smaller
file sizes and shorter programmng times.

Thi s docunent shoul d be used together with AN 122 (Usi ng STAPL for
ISP & ICR via an Enbedded Processor).

B. I NCLUDED IN THI S RELEASE

The follow ng tables provide the directory structure of the files on this CD
ROVt

Directory Fi | ename Descri ption

\ exe \ 16-bi t - DOS\j bi . exe Supports the BitBl aster serial
Byt eBl aster parallel, Xilinx
Paral | el Downl oad Cable 111, and

Lattice i SpDOANLOAD cabl es for
PCs running 16-bit DOS pl atformns.

\ W n9598- WnNT\j bi . exe Supports the BitBlaster seria
Byt eBl aster parallel, Xilinx

Page 1

Paral | el Downl oad Cable 111, and
Lattice i SpDOANLOAD cabl es for
PCs running 32-bit W ndows
(Wndows 95 and W ndows NT)

Directory Fi | ename Descri ption
\ code j bi conp. h Source code for the Jam STAPL Byt e- Code
Pl ayer
j biexprt.h
jbijtag. h
j bi conp.c
jbijtag.c
j bimain.c
j bi stub.c
Directory Fi | ename Descri ption
\ make \'m crosoft\makefile.mak Make file conpatible with Mcrosoft Visua

C++ compiler v5.0. Builds a 32-bit w ndows
consol e execut abl e.

\ bor | and\ make32. bat Batch file that conpiles source code for
32-bit Borland conpiler. Uses jbi32b.rsp.
\ bor | and\j bi 31b. rsp Li nker script file containing 32-bit
Borl and |inker commands and fl ags.
\ bor | and\ makel6. bat Batch file that conpiles source code for
16-bit Borland conpiler. Uses jbil6b.rsp.
\ bor | and\j bi 16b. rsp Li nker script file containing 16-bit

Borl and |inker commands and fl ags.

C. NEWIN VERSION 2. 09

Updates in the Jam STAPL Byt e-Code Pl ayer version 2.09 include:

Added support for Xilinx Parallel Cable II1I.

Backward compatibility with existing Jamv1l.1 (pre-STAPL) .jbc files.
Updated to report all exit codes defined by JESD 71

Enhanced error reporting in command-|ine node.

* %k X X

D. RUNNI NG THE JAM STAPL BYTE- CODE PLAYER | N COMVAND- LI NE MODE

If the Player is going to be run on a PC or a workstation, the follow ng
conmands can be

used to execute progranmm ng or other tasks:

Usage: jbi [-h] [-v] [-d<var=val > OR -a<action>] [-p<port>] [-s<port>]
<fil enane>

-a : action nane
-h : hel p nmessage
-V . verbose nessages
-d : initialize variable to specified val ue
-p : parallel port nunmber or address (for ByteBlaster)

Page 2

-s : serial port nanme (for BitBlaster)
-c : alternative downl oad cable compatibility. -cl or -cx

Conmmand line text is not case-sensitive.

Use the -a flag when applying Jam STAPL Byte-Code files. Use the -d flag when
applying Jamvl.1

Byt e- Code files.

Valid action nanmes, as specified by JEDEC Standard JESD- 71 are:

Acti on Name Descri ption

CHECKCHAI N Verify the continuity of the IEEE 1149.1 JTAG scan
chain

READ | DCODE Read the | EEE 1149.1 | DCODE and EXPORT it (print it)
READ USERCCODE Read the | EEE 1149.1 USERCODE and EXPORT it (print it)
READ_UES Read the | EEE 1149.1 UESCODE and EXPORT it (print it)
ERASE Performa bul k erase of the device(s)

BLANKCHECK Check the erased state of the device(s)

PROGRAM Program t he devi ce

VERI FY Verify the programm ng data of the device(s)

READ Read t he progranm ng data of the device(s)

CHECKSUM Cal cul at e one fuse checksum of the progranm ng data of
t he devi ce(s)

SECURE Set the security bit of the device(s)

QUERY_SECURI TY Check whether the security bit is set

TEST Performa test. This test can include tests such as

boundary-scan, internal, vector, and built-in self tests

Valid initialization variables and values for the -d flag are:

Initialization String Val ue Action

DO_PROGRAM 0 Do not programthe device
DO_PROGRAM 1 Program t he devi ce

DO _VERI FY 0 Do not verify the device

DO _VERI FY 1 Verify the device

DO_BLANKCHECK 0 Do not check the erased state of the
devi ce

DO_BLANKCHECK 1 Check the erased state of the device
READ_UESCODE 0 Do not read the JTAG UESCODE

READ UESCCDE 1 Read UESCODE and export it

DO_SECURE 0 Do not set the security bit
DO_SECURE 1 Set the security bit

E. PORTING THE JAM STAPL BYTE- CODE PLAYER

The Jam STAPL Byte-Code Player is designed to be easily ported to any
processor - based hardware system All platformspecific code is placed in the
jbistub.c and jbimain.c files. Routines that performany interaction with the
outside world are confined to the jbistub.c source

Page 3

file. Preprocessor statenents encase operating systemspecific code and code
pertaining to specific hardware. Al changes to the source code for porting
are nostly confined to the jbistub.c file and in sone cases porting the Jam
Player is as sinple as changing a single #define statenent. This process also
makes debuggi ng sinple. For exanple, ifthe jbistub.c file has been custom zed
for a particul ar enbedded application, but is not working, the equival ent DOS
Jam STAPL Byt e-Code Pl ayer and a downl oad cabl e can be used to check the
hardware continuity and provide a "known good"” starting point fromwhich to
attack the problem

The jbistub.c and jbimain.c files in this release target the DOS operating
system by default. To change the targeted platform edit the following |ine
in the jbistub.c and jbimain.c files:

#def i ne PORT DOS
The preprocessor statenent takes the form

#defi ne PORT [PLATFORM
Change the [PLATFORM field to one of the supported platforns: EVBEDDED, DOS
W NDOA5, or UNI X. The follow ng table explains howto port the Jam STAPL Byte-
Code Pl ayer for each of the supported platforns:

PLATFORM COWPI LER ACTI ONS

ENMBEDDED 16 or 32-bit Change #define and see EVMBEDDED PLATFORM
bel ow

DOS 16-bit Change #define and compile

W NDOWAS 32-bit Change #define and compile

UNI X 32-bit Change #define and compile

The source code supplied in this release is ANSI C source. In cases where a

di fferent downl oad cabl e or other hardware is used, the DOS, W NDOA5, and UN X
platforns will require additional code custom zation, which is described

bel ow.

EMBEDDED PLATFORM

Because there are many di fferent kinds of enbedded systens, each with

di fferent hardware and software requirements, sone additional custoni zation
must be done to port the Jam STAPL Byte-Code Pl ayer for enbedded systens. To
port the Player, the follow ng functions may

need to be custom zed:

FUNCTI ON DESCRI PTI ON

jbi _jtag io()Interface to the IEEE 1149.1 JTAG signals, TD, TMsS, TCK, and
TDO.

j bi _message()Prints information and error text to standard output, when
avai | abl e.

j bi _export()Passes information such as the User Electronic Signature (UES)
back to the calling program

j bi _delay() Inplenments the programm ng pul ses or del ays needed during
execution.

Page 4

M scel | aneous

j bi _vector_map() Processes signal-to-pin map for non-1EEE 1149.1 JTAG si gnal s.
jbi _vector _io() Asserts non-lIEEE 1149.1 JTAG signals as defined in the VECTOR
VAP,

jbi _jtag_io()

int jbi_jtag_ io(int tnms, int tdi, int read_tdo)

This function provides exclusive access to the | EEE 1149.1 JTAG signals. You
nmust al ways custom ze this function to wite to the proper hardware port.

The code in this rel ease supports a serial nbde specific to the Altera

Bi t Bl aster downl oad cable. If a serial interface is required, this code can be
custom zed for that purpose. However, this custom zation would require some
addi ti onal processing external to the enbedded processor to turn the seria
data streaminto valid JTAG vectors. This readne fil edoes not discuss

custom zati on of serial node. Contact Altera Applications at (800) 800-EPLD
for nore information.

In nost cases a parallel byte node is used. Wien in byte node, jbi_jtag_io()

i s passedthe values of TM5 and TDI. Likew se, the variable read_tdo tells the
function whether reading TDO is required. (Because TCKis a clock and is

al ways written, it is witten inmplicitly within the function.) If requested,
jbi _jtag_io() returns the value of TDO read. Sanple code is shown bel ow

int jbi_jtag io(int tnms, int tdi, int read_tdo)

{
int data = O;
int tdo = O;
if (!jtag_hardware_initialized)
{
initialize_jtag_hardware();
jtag_hardware_initialized = TRUE
}
data = ((tdi ? 0x40 : 0) | (tms ? Ox02 : 0));
write_ byteblaster(0, data);
if (read_tdo)
{
tdo = (read_byteblaster(1l) & 0x80) ? 0 : 1;
}
wite byteblaster(0, data | 0x01);
write_ byteblaster(0, data);
return (tdo);
}

Page 5

The code, as shown above, is configured to read/wite to a PC parallel port.
initialize_jtag_hardware() sets the control register of the port for byte
node. As shown above, jbi_jtag io() reads and wites to the port as foll ows:

| 71 6 5/ 4 3 2 1| 0] I/0Port

e e e |

| o TO| O| O | O | 0 TWMS TCK OUTPUT DATA - Base Address
e |

| 'Tod X X X | X ---| =---| ---| INPUT DATA - Base Address + 1

The PC parallel port inverts the actual value of TDO Thus, jbi_jtag_io()
inverts it again to retrieve the original data. Inverted:

tdo = (read_byteblaster(1l) & 0x80) ? 0 : 1;
If the target processor does not invert TDO, the code should | ook Iike
tdo = (read_byteblaster(1l) & 0x80) ? 1 : O;

To map the signals to the correct addresses sinply use the left shift (<<) or
right shift (>>) operators. For exanple, if TMS and TDI are at ports 2 and 3,
respectively, then the code woul d be as shown bel ow

data = (((tdi ? 0x40 : 0)>>3) | ((tms ? 0x02 : 0)<<1));
The sane process applies to TCK and TDO

read_bytebl aster() and wite_byteblaster() use the inp() and outp() <conio.h>
functions, respectively, to read and wite to the port. If these functions are
not avail abl e, equival ent functions should be substituted.

j bi _message()

voi d jam nessage(char *nessage_text)

When t he Jam STAPL Byt e- Code Pl ayer encounters a PRI NT command within the .jbc
File, it processes the nessage text and passes it to jbi_nessage(). The text
is sent to stdio. If a standard output device is not available, jbi_message()
does not hing and returns. The Jam STAPL Byte-Code Pl ayer does not append a
newl i ne character to the end of the text nessage. This function should append
a newl i ne character for those systens that require one.

j bi _export()

void jbi _export(char *key, |ong val ue)

The j bi _export () function sends information to the calling programin the form
of a text string and associated integer value. The text string is called the
key string and it determ nes the significance and interpretation of the

i nteger value. An exanple use of this function would be to report the device
USERCODE back to the calling program

Page 6

voi d jbi _delay(long m croseconds)

jbi _delay() is used to inplenent progranm ng pul se wi dths necessary for
programm ng PLDs, nenories, and configuring SRAM based devi ces. These del ays
are implenented using software | oops calibrated to the speed of the targeted
enbedded processor. The Jam STAPL Byte-Code Player is told how long to del ay
with the .jbc File WAIT comand. This function can be custom zed easily to
nmeasure the passage of tinme via a hardware-based tinmer. jbi_delay()

must perform accurately over the range of one mllisecond to one second. The
function can take nore time than is specified, but cannot return in less tine.
To minimze the tine to execute the Jamstatenents, it is generally
recormended to calibrate the delay as accurately as possible.

M scel | aneous Functi ons

j bi _vector_map() and jbi_vector_io()

The VMAP and VECTOR Jam commands are translated by these functions to assert
signals to non-JTAG ports. Altera .jbc Files do not use these conmands. If the
Jam STAPL Byt e-Code Player will be used only to program Altera devices, these
routi nes can be renmoved. In the event that the Jam Pl ayer does encounter the
VMAP and VECTOR commands, it will process the information so that non-JTAG
signals can be witten and read as defined by JEDEC Specification JESD 71

j bi _mall oc()
void *jam mal | oc(unsigned int size)

During execution, the Jam STAPL Byte-Code Player will allocate nenory to
performits tasks. Wien it allocates nmenory, it calls the jbi_malloc()
function. If malloc() is not available to the enbedded systemit nust be
repl aced with an equi val ent function

jbi _free()
void jbi _free(void *ptr)

This function is called when the Jam STAPL Byt e-Code Pl ayer frees nenory. If
free() is not available to the enbedded system it nust be replaced with an
equi val ent function

F. JAM STAPL Byt e-Code Pl ayer AP

The main entry point for the Jam Player is the jbi_execute function

JAM RETURN_TYPE j bi _execute

(
PROGRAM_PTR pr ogr am
| ong programsize
char *wor kspace,
| ong wor kspace_si ze,
char *action,

Page 7

char **init_list,
long *error_line,
int *exit_code,

int *format_version

)

This routine recieves 6 paranmeters, passes back 2 parameters, and returns a
status code (of JAM RETURN TYPE). This function is called once in nain(),
which is coded in the jbistub.c file (jbi_execute() is defined in the
jbimain.c file). Some processing is done in main() to check for valid data
bei ng passed to jbi _execute(), and to set up sonme of the buffering required to
store the .jbc File.

The program paraneter is a pointer to the nenory |ocation where the .jbc File
is stored (menory space previously malloc'd and assigned in main()).

j bi _execute() assigns this pointer to the global variable jbi_program which
provi des the rest of the Jam STAPL Byte-Code Pl ayer with access to the .jbc
File via the GET_BYTE, GET_WORD, and CGET_DWORD macr 0s.

program si ze provi des the nunber of bytes stored in the nmenory buffer occupied
by the .jbc File.

wor kspace points to nmenory previously allocated in main(). This space is the
sum of all nenory reserved for all of the processing that the Jam STAPL Byte-
Code Pl ayer nust do, including the space taken by the .jbc File. Menory is
only used in this way when the Jam STAPL Byte-Code Pl ayer is executed using
the -mconsole option. If the -moption is not used, the Jam Byte Code Pl ayer
is free to allocate nmenory dynamcally as it is needed. In this case,

wor kspace points to NULL. jbi_execute() assigns the workspace pointer to the
gl obal variable, jbi_workspace, giving the rest of the Jam STAPL Byt e- Code

Pl ayer access to this block of nmenory.

wor kspace_si ze provides the size of the workspace in bytes. If the workspace
poi nter points to NULL this parameter is ignored. jbi_execute() assigns
wor kspace_si ze to the gl obal variable, jbi_workspace_size.

action is the way the Player is told what function should be perforned, as
defined by STAPL. (i.e. PROGRAM READ USERCODE, etc) The action pointer points
to the string that tells the Player what functions to execute within the .jbc
file. Each action can contain "reconmended” and "optional"” sub-actions.
"Reconmended” sub-actions are those that will be executed by default, while
"optional" sub-actions will be skipped. For exanple, passing "PROGRAM 0" will
result in the follow ng steps for an Altera .jbc file:

- ERASE (recomended)

- BLANKCHECK (opti onal)

- PROGRAM (r ecommended)

- VERI FY (recomrended)

So, by sinply passing "PROGRAM 0" the device will be progranmed and verifi ed.
This is the action Altera recommends using with it's .jbc files. If you want
to add the BLANKCHECK step you must pass " DO BLANKCHECK=1\0" via the init_Ilist
poi nter. See Section D for other valid action strings. Note that the action
string rmust be NULL term nated.

Page 8

init_list is a parameter that is used when applying pre-JEDEC, Jamvl.1l .jbc
files, or when overriding optional sub-actions, as in the exanpl e above. Wil e
ol der pre-JEDEC .jbc files can be played, it is strongly recomended that
STAPL-based .jbc files be used. Wen using STAPL-based .jbc files, init_Ilist
should point to NULL. If an older .jbc file nmust be used, see AN 88 for nore
details on the paraneters that init_list can point to

If an error occurs during execution of the .jbc File, error_line provides the
I'ine nunber of the .jbc File where the error occured. This error is associated
with the function of the device, as opposed to a syntax or software error in

the .jbc File.

exit_code provides general information about the nature of an error associated
with a mal function of the device or a functional error

exit_code Descri ption

0 Success

1 Checking chain failure

2 Readi ng | DCODE fail ure

3 Readi ng USERCODE fail ure
4 Readi ng UESCCODE fail ure
5 Entering ISP failure

6 Unr ecogni zed devi ce

7 Devi ce version is not supported
8 Erase failure

9 Device is not bl ank

10 Devi ce progranmming failure

11 Device verify failure

12 Read failure

13 Cal cul ating checksum failure
14 Setting security bit failure
15 Querying security bit failure
16 Exiting ISP failure

17 Perform ng systemtest failure

These codes are intended to provide general information about the nature of
the failure. Additional analysis would need to be done to determ ne the root
cause of any one of these errors. In nost cases, if there is any device-

rel ated problemor hardware continuity problem the "Unrecognized device”
error will be issued. In this case, first take the steps outlined in Section D
for debuggi ng the Jam Pl ayer. |f debugging is unsuccessful, contact Altera for
support.

If the "Device version is not supported” error is issued, it is nmost likely
due to a .jbc File that is older than the current device revision. A ways use
the | atest version of MAX+PLUS Il to generate the .jbc File. For nore support,
see Section G

j bi _execute() returns with a code indicating the success or failure of the
execution. This code is confined to errors associated with the syntax and
structural accuracy of the .jbc File. These codes are defined in the jbistub.c
file, where the array variable "error_text[]".

Page 9

format _version shoul d be set equal to "2" when calling jbi_execute. This neans
that the Player will expect a STAPL-based .jbc file.

G MEMORY USACGE

Menory usage i s docunmented in detail in AN 122 (Using the Jam Language for | SP
via an Enbedded Processor).

H SUPPORT

For additional support, e-mail jam@ltera.com Bugs or suggested enhancenents
can al so be comuni cated via this channel

Page 10

	Contents
	Jam STAPL Byte-Code Player Version 2.09 README
	Description
	Included in this Release
	New in Version 2.09
	Running the Jam STAPL Byte-Code Player in Command-Line Mode
	Porting the Jam STAPL Byte-Code Player
	jbi_message()
	jbi_export()
	jbi_delay()
	Miscellaneous Functions

	Jam STAPL Byte-Code Player API
	Memory Usage
	Support

