R R I I I R I I S R I R I I I S I S R O I O R R T

Jam Pl ayer Version 2.12 README 9/2/99
Supporting STAPL v2.1

R R I I R I S S I I R R I O I R R

CONTENTS

DESCRI PTI ON

| NCLUDED

NEW I N VERSION 2.0
PORTI NG THE JAM PLAYER
JAM PLAYER API

SUPPORT

mTmo oW

A. DESCRI PTI ON

The Jam Player is a software driver that allows test and progranm ng al gorithns
for I1EEE 1149.1 Joint Test Action Goup (JTAGQ-conmpliant devices to be asserted
via the JTAG port. Jam Player v2.12 supports the Standard Test and Programm ng
file format - the standard format of the original Jam Language. The Jam Pl ayer
parses and interprets information in JamFiles (.jam to program and test
programmabl e | ogi ¢ devices (PLDs), menories, and other devices in a JTAG chain.
The construction of the Jam Pl ayer permits fast progranmm ng tinmes, snall
programming files, and easy in-field upgrades. Upgrades are sinplified, because
all programm ng/test algorithns and data are confined to the JamFile. The Jam
Pl ayer version 2.12 is the fifth release of the Jam Player, and it supports Jam
Files that conply with the Jam Standard Test and Progranm ng Language
Specification version 2.1. It is also backward-conpatible with pre-standard Jam
files using vl.1 syntax.

B. | NCLUDED
The followi ng tables provide the directory structure of the files in this
rel ease:

Directory Fi | enane Descri ption

\ exe \32-bit\jam exe Supports the BitBlaster seria
Byt eBl aster parallel, and
Lattice i spDOANLOAD cabl es for
PCs running 32-bit W ndows
(Wndows 95 and W ndows NT)

\16-bit\jam exe Supports the BitBlaster seria
Byt eBl aster parallel, and
Lattice i spDOANLOAD cabl es for
PCs running 16-bit W ndows or
DO

j andat a. exe 32-bit Jam Data executable for
W ndows 95 and W ndows NT 4.0.
Use this programto devel op
Jam Fil es that use conpressed data.
(For devel opers only) Uses STAPL
synt ax.

Directory Fi | ename Descri ption

\'source jamarray. h Source code for the Jam Pl ayer
jamutil.h
j ansym h
j anst ack. h
janmtag. h
j amheap. h
j amexprt.h
j amexp. h
j amexec. h
jandefs. h
j anconp. h
janytab. h
j antonp. c
j ansym ¢
j anst ub. c
j anmst ack. c
jammote. c
janmtag.c
j amheap. c
j amexp. ¢
j anexec. c
janctrc.c
jamutil.c
jamarray. c

\'source\j andat a
j andat a. c Source code for jandata.exe

C. NEWIN VERSION 2.12

The updates in the Jam Pl ayer version 2.0 include:

* Adds support for the followi ng constructs with STAPL files:
- Use of literal ACA arrays
- Use of reverse array index order
- Literal array data containing white space

* Enhanced nmenory allocation for |arge, conpressed data arrays.

D. PORTING THE JAM PLAYER

The Jam Pl ayer is designed to be easily ported to any processor-based hardware
system All platformspecific code should be placed in the janstub.c file.
Routines that performany interaction with the outside world are confined to
this source file. Preprocessor statenents encase operating system specific code
and code pertaining to specific hardware. Al changes to the source code for
porting are then confined to the janstub.c file and in sone cases porting the
Jam Pl ayer is as sinple as changing a single #define statenent. This process
al so makes debugging sinple. For exanple, if the janstub.c file has been

custom zed for a particular enbedded application, but is not working, the

equi val ent DOS Jam Pl ayer and a downl oad cabl e can be used to check

the hardware continuity and provide a "known good" starting point fromwhich to
attack the problem

The janstub.c file targets the DOS operating system To change the
targeted platform edit the following line in the jamstub.c file:

#defi ne PORT DCS
The preprocessor statenent takes the form
#defi ne PORT [PLATFORM

Change the [PLATFORM field to one of the supported platforns: EVMBEDDED, DOS
W NDOA5, or UNI X. The follow ng table explains howto port the Jam Pl ayer for
each of the supported platforns:

PLATFORM

EMBEDDED 16 or 32-bit

Change #define and see EMBEDDED PLATFORM bel ow

DCS 16-bit Change #define and conpile
W NDOWAS 32-bit Change #define and conpile
UNI X 32-bit Change #define and compile

The source code supplied ANSI C source. In cases where a different downl oad
cable or other hardware is used, the DOS, WNDOAN5, and UNI X platforns wil
requi re additional code custom zation, which is described bel ow.

EMBEDDED PLATFORM

Because there are nany different kinds of embedded systems, each with different
hardware and software requirenents, some additional custom zation nust be done
to port the Jam Player for enbedded systens. To port the Jam Pl ayer, the

foll owi ng functions may need to be custom zed:

FUNCTI ON DESCRI PTI ON

jamgetc() The only function used to retrieve information fromthe Jam
File (file I/10.

j am seek() Allows the Jam Pl ayer to nove about in the JamFile (file

jamjtag_io()
j am message()
j am export ()

j am del ay()

M scel | aneous

jamgetc()

i nt jam getc(void)

1/10.

Interface to the IEEE 1149.1 JTAG signals, TD, TMS5, TCK, and
TDO.

Prints information and error text to standard output, when
avai l abl e.

Passes information such as the User El ectronic Signature (UES)
back to the calling program

| mpl enents the progranm ng pul ses or del ays needed during
execution.

jamgetc() retrieves the next character in the JamFile. Each call to jamgetc()
advances the current position in the file, so that successive calls to the
function get sequential characters. This function is simlar to the standard C

function fgetc().

The function returns the character code that was read or a

(-1) if none was avail abl e.

j am seek()

int jam seek(long offset)

jam seek() sets the current position in the JamFile input stream The function
returns zero for success or a non-zero value if the request was out of range.
This function is simlar to the standard C function fseek(). The storage
nmechani smfor the JamFile is a nenory buffer. Alternatively, a file systemcan
be used. In this case, this function would need to be custom zed to use the
equi val ent of the C I anguage fopen() and fclose(),as well as store the file

poi nter.

jamjtag_io()

int jamjtag_io(int tms, int tdi, int read_tdo)

This function provides exclusive access to the | EEE 1149.1 JTAG signals. You
nust al ways custom ze this function to wite to the proper hardware port.

The code supports a serial npde specific to the Altera BitBlaster downl oad
cable. If a serial interface is required, this code can be custom zed for that
pur pose. However, this custom zation would require sonme additional processing
external to the enbedded processor to turn the serial data streaminto valid
JTAG vectors. This readnme file does not discuss custom zation of serial node.
Contact Altera Applications at (800) 800-EPLD for nmore information.

In nbst cases a parallel byte node is used. When in byte node, jamjtag_io() is
passed the values of TM5 and TDI. Likew se, the variable read tdo tells the
function whether reading TDO is required. (Because TCK is a clock and is al ways
witten, it is witten inplicitly within the function.) If requested,

jamjtag io() returns the value of TDO read. Sanple code is shown bel ow

int jamjtag io(int tns, int tdi, int read_tdo)
{

int data = O;

int tdo = O;

if (!jtag _hardware_initialized)
initialize_jtag_hardware();

jtag_hardware_initialized = TRUE
}

data = ((tdi ? 0x40 : 0) | (tms ? 0x02 : 0));
wite byteblaster(0, data);

if (read_tdo)
{

}

wite byteblaster(0, data | 0x01);

tdo = (read_byteblaster(1) & 0x80) ? 0 : 1;

wite byteblaster (0, data);

return (tdo);

The code, as shown above, is configured to read/wite to a PC parallel port.
initialize_jtag_hardware() sets the control register of the port for byte node.
As shown above, jamjtag_ io() reads and wites to the port as foll ows:

| 7 1] 6 | 5 | 4] 3] 2| 1] 0 | 1/0Port

| ...

| o | TD| 0 | O | O | O | TMS| TCK | OUTPUT DATA - Base Address
e S |

|['TDO| X | X | X | X | === ---] --- | INPUT DATA - Base Address + 1

The PC parallel port inverts the actual value of TDO Thus, jamjtag_io()
inverts it again to retrieve the original data. I|nverted:

tdo = (read_byteblaster(1) & 0x80) ? 0 : 1;
If the target processor does not invert TDO, the code will |ook Iike
tdo = (read_byteblaster(1) & 0x80) ? 1 : O;

To map the signals to the correct addresses sinmply use the left shift (<<) or
right shift (>>) operators. For exanple, if TMS and TDI are at ports 2 and 3,
respectively, then the code woul d be as shown bel ow

data = (((tdi ? O0x40 : 0)>>3) | ((tms ? 0x02 : 0)<<1));
The sane process applies to TCK and TDO

read_byteblaster() and wite byteblaster() use the inp() and outp() <conio.h>
functions, respectively, to read and wite to the port. If these functions are
not avail abl e, equival ent functions should be substituted.

j am nmessage()

voi d jam nessage(char *nessage_text)

VWhen the Jam Pl ayer encounters a PRINT command within the JamFile, it processes
t he nmessage text and passes it to jam nmessage(). The text is sent to stdio. If a
standard output device is not available, jamnessage() does nothing and returns.
The Jam Pl ayer does not append a newline character to the end of the text
message. This function should append a newline character for those systens that
require one.

j am export ()

voi d jam export(char *key, |ong val ue)

The jam export() function sends information to the calling programin the form
of a text string and associated integer value. The text string is called the key
string and it determ nes the significance and interpretation of the integer

val ue. An exanple use of this function would be to report the device UES back to
the calling program

j am del ay()

voi d jam del ay(l ong mi croseconds)

jamdelay() is used to inplenent progranm ng pul se wi dths necessary for
programm ng PLDs, nenories, and configuring SRAM based devi ces. These del ays are
i mpl enented using software | oops calibrated to the speed of the targeted
enmbedded processor. The Jam Player is told how long to delay with the JamFile
WAI T command. This function can be custom zed easily to neasure the passage of
time via a hardware-based timer. jamdelay() nust performaccurately over the
range of one nillisecond to one second. The function can take nore time than is
specified, but cannot return in less time. To mnimze the tine to execute the
Jam statenents, it is generally recommended to calibrate the delay as accurately
as possi bl e.

M scel | aneous Functi ons

jamvector_map() and jamvector _io()

The VMAP and VECTOR Jam commands are translated by these functions to assert
signals to non-JTAG ports. If the Jam Player will only execute Jamfiles that
interface only through the JTAG port, these routines can be renoved. In the
event that the Jam Pl ayer does encounter the VMAP and VECTOR comands, it will
process the information so that non-JTAG signals can be witten and read as
defined by STAPL Specification v2.1.

jam mal | oc()
void *jam mal | oc(unsigned int size)

Duri ng execution, the Jam Player will allocate nenory to performits tasks. Wen
it allocates nenory, it calls the jammalloc() function. If nmalloc() is not
avai l able to the enbedded systemit nust be replaced with an equi val ent

functi on.

jamfree()
void jamfree(void *ptr)

This function is called when the Jam Pl ayer frees nenmory. If free() is not
avail able to the enmbedded system it must be replaced with an equival ent
function.

E. JAM PLAYER AP

The main entry point for the Jam Player is the jam execute function:

JAM RETURN_TYPE j am execut e
(
char *program
| ong programsi ze,
char *wor kspace,
| ong wor kspace_si ze,
char *action,
char **init _list,
long *error_line,
int *exit_code

This routine recieves 6 paraneters, passes back 2 paraneters, and returns a
status code (of JAM RETURN TYPE). This function is called once in main(), which
is coded in the janstub.c file (jamexecute() is defined in the jamexec.c file).
Sone processing is done in main() to check for valid data being passed to

jam execute(), and to set up sone of the buffering required to store the Jam
File.

The program paraneter is a pointer to the nenory |location where the JamFile is
stored (menory space previously malloc'd and assigned in main()). jamexecute()
assigns this pointer to the global variable jam program which provides the rest
of the Jam Player with access to the JamFile via the jamgetc() and jam seek()
functions.

program si ze provi des the nunber of bytes stored in the menory buffer occupied
by the Jam File.

wor kspace points to menmory previously allocated in main(). This space is the sum
of all nenory reserved for all of the processing that the Jam Player nust do,

i ncludi ng the space taken by the JamFile. Menory is only used in this way when
the Jam Pl ayer is executed using the -mconsole option. If the -moption is not
used, the Jam Player is free to allocate nenory dynanically as it is needed. In
this case, workspace points to NULL. jam execute() assigns the workspace pointer
to the gl obal variable, jamworkspace, giving the rest of the Jam Pl ayer access
to this block of nenory.

wor kspace_si ze provides the size of the workspace in bytes. If the workspace
poi nter points to NULL this parameter is ignored. jamexecute() assigns
wor kspace_si ze to the gl obal variable, jam workspace_size.

action is the nethod of describing the function that is to be perforned, as
defined by STAPL. (i.e. PROGRAM VERIFY, etc) The action pointer points to the
string that tells the Player what function it is to use within the .jamfile.
See the STAPL specification for support action string nanes.

init list is the address of a table of a string of pointers, each of which
contains an initialization string. This method for specifying the function is
pre- STAPL. The table is terminated by a NULL pointer. Each initialization string
is of the form"string=value". The following |list provides some strings defined
in the Jam Specification version 1.1, along with their corresponding actions:

Initialization String Val ue Acti on

DO_PROGRAM 0 Do not programthe device

DO _PROGRAM 1 (default) Programthe device

DO VERI FY 0 Do not verify the device

DO VERI FY 1 (default) Verify the device

DO _BLANKCHECK 0 Do not check the erased state of the

devi ce

DO _BLANKCHECK 1 (default) Check the erased state of the device
READ UESCODE 0 (default) Do not read the JTAG UESCODE

READ UESCODE 1 Read UESCODE and export it

DO_SECURE O (default) Do not set the security bit
DO_SECURE 1 Set the security bit

If an initialization list is not needed, a NULL pointer can be used to signify
an enpty initialization list. This would be the case if the action is always the
same and if the action(s) are already defined by default in the JamFile

If an error occurs during execution of the JamFile, error_line provides the
[ine nunber of the JamFile where the error occured. This error is associated
with the function of the device, as opposed to a syntax or software error in the
Jam Fi | e.

exit_code provides general information about the nature of an error associ ated
with a mal function of the device or a functional error. The follow ng
conventions are defined by the Jam Specification version 1.1:

exit_code Descri ption

Success

Illegal flags specified in initialization |ist
Unr ecogni zed device ID

Devi ce version is not supported

Programm ng failure

Bl ank- check failure

Verify failure

Test failure

~N~No o~ WNEO

These codes are intended to provide general information about the nature of the
failure. Additional analysis would need to be done to determi ne the root cause
of any one of these errors. In npost cases, if there is any device-rel ated
probl em or hardware continuity problem the "Unrecogni zed device ID" error wll
be issued. In this case, first take the steps outlined in Section E for
debuggi ng the Jam Pl ayer. |f debugging is unsuccessful, contact Altera for
support.

If the "Device version is not supported" error is issued, it is nost |ikely due
to a JamFile that is older than the current device revision. A ways use the

| atest version of MAX+PLUS Il to generate the Jam File. For nobre support, see
Section H.

jam execute() returns with a code indicating the success or failure of the
execution. This code is confined to errors associated with the syntax and
structural accuracy of the JamFile. These codes are defined in the jamexprt.h
file.

F. SUPPORT

For additional support contact the vendor that is witing the STAPL or Jamfiles
that are being used. If the issues is specific to the code contained within this
rel ease of the Jam Player, e-mail jam@ltera.com

	Contents
	Jam Player Version 2.12 README
	Description
	Included
	New in Version 2.12
	Porting the Jam Player
	Jam Player API
	Support

