

Reed-Solomon Compiler
MegaCore Function

Solution Brief 48 September 2000, ver. 1.0

Target Applications:
Wireless Communications, Satellite
Communications

Family:
APEXTM 20K, ACEXTM 1K, FLEX® 10K,

FLEX 8000, and FLEX 6000

Ordering Codes:
PLSM-RSENC
PLSM-RSDEC
PLSM-HC-RSENC/V
PLSM-HC-RSDEC/C
PLSM-HC-RSDEC/ERAS
PLSM-HC-RSDEC/V

Vendor:

101 Innovation Drive
San Jose, CA 95134
http://www.altera.com
Tel. (408) 544-7000

Features

■ High-performance encoder/decoder for error detection and correction
■ Fully parameterized Reed-Solomon (RS) function including:

– Number of bits per symbol
– Number of information symbols and check symbols per codeword
– Field polynomial
– First root of generator polynomial
– Space between roots in generator polynomial

■ MegaWizard® Plug-In Manager for easy parameterization
– Generates parameterized encoder or decoder
– Generates example test vectors

■ VHDL simulation model
■ Flexible decoder implementation

– Discrete, streaming, or continuous architectures
– Erasure-supporting option
– Variable option

■ Optimized for the APEXTM 20K, ACEXTM 1K, FLEX® 10K, FLEX 8000, and
FLEX 6000 device architectures

■ Efficient VHDL simulation model
■ Flexible licensing: purchase only the required features

General Description

Reed-Solomon (RS) codes are used for detecting and correcting errors in data
transmitted over a communications channel. RS codes break a data stream into a series
of codewords comprised of several information symbols and check symbols (also
known as parity bits). The Altera® Reed-Solomon compiler MegaCore® function
supports four to ten bits per symbol. The encoder adds parity symbols to the data
stream prior to its transmission over a communications channel. The decoder receives
the data and checks for and corrects any errors. Errors are defined on a symbol basis
(i.e., any number of bit errors within a symbol is considered as only one error). An RS
decoder can correct one symbol error for every two check symbols in a codeword.

Functional Description

Table 1 shows the parameters for the Reed-Solomon compiler MegaCore function. The
parameters define the specific RS code for the encoder or decoder, and are specified
using the MegaWizard Plug-In Manager.

®

Altera Corporation

A-SB-048-01 MegaCoreTM

SB 48: Reed-Solomon Compiler MegaCore Function

Notes:
(1) This parameter applies to the decoder only.
(2) This parameter was called speed in earlier versions.

Encoder Signals

To begin the encoding process, a high pulse of at least one clock cycle must be applied
to start. When enable is asserted, data is entered at rsin[] and encoded at the
rising clock edge (sysclk). The function outputs the first codeword symbol on
rsout[] after the clock edge that clocked in the first information symbol. Check
symbols are output after the information symbols, during the R clock cycles.

The enable signal allows you to suspend the continuous operation of the encoder. If
enable is de-asserted, the encoder stops processing data; if enable is asserted, the
encoder restarts processing data. Table 2 describes the signals used by the RS encoder.

Note:
(1) This signal is used only when the variable option is selected.

Table 1. Reed-Solomon Compiler MegaCore Function Parameters

Parameter Range Description

type_of_encoder Standard or variable This parameter specifies a standard encoder or variable encoder.

decoder_options Erasure-supporting option
and/or variable option

This parameter specifies the erasure-supporting option and/or variable option for
the decoder. Erasure-supporting option increases the logic resources used.

architecture (1) Discrete, streaming, or
continuous

This parameter specifies discrete, streaming, or continuous decoder architecture.

keysize (1), (2) Half or full There is a trade-off between the amount of logic and the number of cycles used
to determine the location and number of errors. A full design creates a function
that uses more logic, but fewer clock cycles to process the codeword. A half
design creates a function that uses less logic, but requires more cycles to process
a codeword.

Table 2. Encoder Signals

Name Type Description

sysclk Input System clock

reset Input Resets the encoder asynchronously

start Input Sets the encoder to process a new input codeword

enable Input Allows data into the encoder and onto the output data bus

rsin[] Input m-bit wide input data bus

rsout[] Output m-bit wide output data bus

numn[] (1) Input Variable value of N. Can be any value from the minimum
allowable value of N up to the selected value of N.

numcheck (1) Input Variable number of check symbols. Can be any value from
the minimum allowable value of R up to the selected value of
R.
2 Altera Corporation

SB 48: Reed-Solomon Compiler MegaCore Function

Decoding Data

A discrete decoder processes one codeword at a time and must be reset between each
codeword. The decoder receives the codeword’s first symbol on the rising clock edge
of sysclk after reset is de-asserted. The rdyn signal indicates a decoder is ready to
accept a new codeword and is asserted until the decoder receives the last codeword.
When dsout is asserted, the discrete decoder outputs one symbol on each rising clock
edge until all data is transferred. If the discrete decoder detects more errors than it can
correct, it presents the incorrect data on the signal rsout[].

The streaming decoder interface is similar to the discrete decoder, however, the
streaming decoder is only reset once. If reset is asserted while codewords are being
decoded, the codewords are lost. The rdyn signal indicates when the streaming
decoder can accept a new codeword; when rdyn and dsin are high, the decoder
expects a new symbol at each rising clock edge. The streaming decoder has a pipeline
depth of three codewords and therefore must receive three codewords before it places
the first corrected codeword at rsout[]. If the streaming decoder detects more errors
than it can correct, it presents the incorrect data on the signal rsout[].

The continuous decoder also has a pipeline depth of three codewords but does not have
idle gaps in between codewords; the codewords enter and are placed at the output
continuously. The continuous decoder is suspended by de-asserting ce and applying
reset for at least one clock cycle. When ce is re-asserted, the first symbol can be
accepted by the decoder. If the continuous decoder detects more errors than it can
correct, it presents the incorrect data on the signal rsout[]. There is no variable option
for the continuous decoder.

Performance

Tables 3 and 4 show the standard and erasure-supporting function’s performance and
area utilization for FLEX 10KE devices. Overall resource requirements vary widely
depending on the parameter values selected. The number of logic cells required to
implement the function depends on both the field size and the number of check
symbols. EAB (embedded array block) and ESB (embedded system block) usage varies
between discrete and streaming decoders.

Table 3. Performance & Area Utilization in a FLEX 10KE Device—Standard

Architecture Keysize m N R Utilization Performance

Logic
Elements

EABs/ESBs Mbps fMAX
(MHz)

streaming full 4 15 4 516 6 150 82

streaming full 5 31 6 772 6 259 78

streaming half 6 55 6 906 6 381 74

streaming half 8 204 16 2,431 6 455 61

continuous half 8 204 16 2,118 7 488 61

discrete half 8 204 16 2,194 3 115 55

streaming half 8 207 20 3,439 6 388 53

streaming half 8 225 46 6,603 6 178 45

continuous (1) full 10 1,023 8 1,240 36 921 92
Altera Corporation 3

Note to tables:
(1) Results are for architectures implemented in an APEX 20KE device.

Tables 5 and 6 show the function’s performance and area utilization for the variable
and erasure-supporting options implemented in a FLEX 20KE device.

Generating a Custom RS Megafunction

Altera provides a MegaWizard Plug-In with the Reed-Solomon compiler MegaCore
function. You can use the MegaWizard Plug-In Manager within the MAX+PLUS® II or
QuartusTM software, or as a standalone application to create and integrate custom
megafunctions without changing your design’s source code. You can then simulate
your design to verify compatibility and instantiate the custom megafunction in your
design file.

Table 4. Performance & Area Utilization in a FLEX 10KE Device—Erasure-Supporting

Architecture Keysize m N R Utilization Performance

Logic Elements EABs/ESBs Mbps fMAX
(MHz)

streaming full 4 15 4 858 6 129 81

streaming full 5 31 6 1,355 6 227 79

streaming half 6 55 6 1,562 6 381 76

streaming half 8 204 16 4,853 6 441 59

continuous half 8 204 16 3,913 7 423 93

discrete half 8 204 16 4,190 3 118 57

streaming half 8 207 20 6,312 6 383 52

streaming (1) half 8 225 45 13,101 6 149 37

Table 5. Performance & Area Utilization—Variable

Architecture Keysize m N R Utilization Performance

Logic Elements EABs/ESBs Mbps fMAX
(MHz)

streaming full 8 255 40 7,288 6 480 69

discrete half 5 31 6 1,355 6 227 79

streaming half 6 55 6 1,562 6 381 76

streaming full 8 255 40 13,865 7 321 37

Table 6. Performance & Area Utilization—Erasure-supporting & Variable

Architecture Keysize m N R Utilization Performance

Logic Elements EABs/ESBs Mbps fMAX
(MHz)

streaming full 8 255 40 13,865 7 321 37
4 Altera Corporation

SB 48: Reed-Solomon Compiler MegaCore Function

Copyright © 2000 Altera Corporation. Altera, APEX, APEX 20K, ACEX, FLEX, FLEX 10K, MAX+PLUS, MegaCore, MegaWizard and Quartus
are trademarks and/or service marks of Altera Corporation in the United States and other countries. Other brands or products are trademarks
of their respective holders. The specifications contained herein are subject to change without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing
by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services. All rights reserved.

®

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

To generate a custom RS megafunction, start the MegaWizard Plug-In Manager by
choosing the MegaWizard Plug-In Manager command (File menu) in the
MAX+PLUS II or Quartus software, or type the command megawiz at a command or
UNIX prompt. Specify that you wish to create a new custom megafunction, and select
RS Compiler in the Communications folder. Select a language for the output files,
select either a decoder or an encoder, and specify whether you want the erasure-
supporting (decoder only) or variable options. If you are creating a decoder, specify a
discrete, streaming, or continuous architecture, and whether you wish to use a full- or
half-size design.

Altera provides VHDL models that you can use to simulate the functionality of the RS
compiler MegaCore function in your system. Users who have licensed the MegaCore
function can also generate VHDL Output Files (.vho) or Verilog Output Files (.vo) for
simulation in third-party simulators.

f To learn more about Altera’s RS compiler, refer to the Reed-Solomon Compiler MegaCore
Function User Guide.
Altera Corporation 5

	Contents
	SB 48: Reed-Solomon Compiler Megacore Function
	Features
	General Description
	Functional Description
	Encoder Signals
	Decoding Data

	Performance
	Generating a Custom RS Megafunction

