
PCI-X MegaCore Function
User Guide

Version 1.0
August 2000

PCI-X MegaCore Function User Guide, August 2000 A-UG-IPPCIX-01

ACCESS, Altera, AMPP, APEX, APEX 20K, Atlas, FLEX, FLEX 10K, FLEX 10KA, FLEX 10KE, FLEX 6000, FLEX 6000A, MAX, MAX+PLUS,
MAX+PLUS II, MegaCore, MultiCore, MultiVolt, NativeLink, OpenCore, Quartus, System-on-a-Programmable-Chip, and specific device designations
are trademarks and/or service marks of Altera Corporation in the United States and other countries. Product design elements and mnemonics used by
Altera Corporation are protected by copyright and/or trademark laws.

Altera Corporation acknowledges the trademarks of other organizations for their respective products or services mentioned in this document, including
the following: Verilog is a registered trademark of Cadence Design Systems, Incorporated. Microsoft is a registered trademark and Windows is a
trademark of Microsoft Corporation.

Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document. Altera advises its
customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is
current. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty. Testing
and other quality control techniques are used to the extent Altera deems such testing necessary to support this warranty. Unless mandated by
government requirements, specific testing of all parameters of each device is not necessarily performed. In the absence of written agreement to the
contrary, Altera assumes no liability for Altera applications assistance, customer’s product design, or infringement of patents or copyrights of third
parties by or arising from use of semiconductor devices described herein. Nor does Altera warrant or represent any patent right, copyright, or other
intellectual property right of Altera covering or relating to any combination, machine, or process in which such semiconductor devices might be or are
used.

Altera products are not authorized for use as critical components in life support devices or systems without the express written approval of the president
of Altera Corporation. As used herein:

1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose
failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a
significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.

Products mentioned in this document are covered by one or more of the following U.S. patents: 5,873,113; 5,872,463; 5,870,410; 5,861,760; 5,859,544; 5,
850,365; 5,850,152; 5,850,151; 5,848,005; 5,847,617; 5,845,385; 5,844,854; RE35,977; 5,838,628; 5,838,584; 5,835,998; 5,834,849; 5,828,229; 5,825,197; 5,821,787:
5,821,773; 5,821,771; 5,815,726; 5,815,024; 5,815,003; 5,812,479; 5,812,450; 5,809,281; 5,809,034; 5,805,516; 5,802,540; 5,801,541; 5,796,267; 5,793,246;
5,790,469; 5,787,009; 5,771,264; 5,768,562; 5,768,372; 5,767,734; 5,764,583; 5,764,569; 5,764,080; 5,764,079; 5,761,099; 5,760,624; 5,757,207; 5,757,070;
5,744,991; 5,744,383; 5,740,110; 5,732,020; 5,729,495; 5,717,901; 5,705,939; 5,699,020; 5,699,312; 5,696,455; 5,693,540; 5,694,058; 5,691,653; 5,689,195;
5,668,771; 5,680,061; 5,672,985; 5,670,895; 5,659,717; 5,650,734; 5,649,163; 5,642,262; 5,642,082; 5,633,830; 5,631,576; 5,621,312; 5,614,840; 5,612,642;
5,608,337; 5,606,276; 5,606,266; 5,604,453; 5,598,109; 5,598,108; 5,592,106; 5,592,102; 5,590,305; 5,583,749; 5,581,501; 5,574,893; 5,572,717; 5,572,148;
5,572,067; 5,570,040; 5,567,177; 5,565,793; 5,563,592; 5,561,757; 5,557,217; 5,555,214; 5,550,842; 5,550,782; 5,548,552; 5,548,228; 5,543,732; 5,543,730;
5,541,530; 5,537,295; 5,537,057; 5,525,917; 5,525,827; 5,523,706; 5,523,247; 5,517,186; 5,498,975; 5,495,182; 5,493,526; 5,493,519; 5,490,266; 5,488,586;
5,487,143; 5,486,775; 5,485,103; 5,485,102; 5,483,178; 5,477,474; 5,473,266; 5,463,328, 5,444,394; 5,438,295; 5,436,575; 5,436,574; 5,434,514; 5,432,467;
5,414,312; 5,399,922; 5,384,499; 5,376,844; 5,375,086; 5,371,422; 5,369,314; 5,359,243; 5,359,242; 5,353,248; 5,352,940; 5,309,046; 5,350,954; 5,349,255;
5,341,308; 5,341,048; 5,341,044; 5,329,487; 5,317,212; 5,317,210; 5,315,172; 5,301,416; 5,294,975; 5,285,153; 5,280,203; 5,274,581; 5,272,368; 5,268,598;
5,266,037; 5,260,611; 5,260,610; 5,258,668; 5,247,478; 5,247,477; 5,243,233; 5,241,224; 5,237,219; 5,220,533; 5,220,214; 5,200,920; 5,187,392; 5,166,604;
5,162,680; 5,144,167; 5,138,576; 5,128,565; 5,121,006; 5,111,423; 5,097,208; 5,091,661; 5,066,873; 5,045,772; 4,969,121; 4,930,107; 4,930,098; 4,930,097;
4,912,342; 4,903,223; 4,899,070; 4,899,067; 4,871,930; 4,864,161; 4,831,573; 4,785,423; 4,774,421; 4,713,792; 4,677,318; 4,617,479; 4,609,986; 4,020,469 and
certain foreign patents.

Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights.

Copyright © 2000 Altera Corporation. All rights reserved.

Printed on Recycled Paper.

®

Altera Corporation iii

Contents

About this User Guide

How to Contact Altera .. v
Typographic Conventions ... vi

Getting Started

Before You Begin...9
Quartus Walk- Through...11
Using Third-Party EDA Tools...15

 MegaCore Overview

Features ..21
General Description..22
Terminology & Abbreviations ..23
PCI-2.2/PCI-X Bus Interface Signals..24

Specifications

PCI Bus Commands..37
Target Mode Operation..38
Master Mode Operation...92
Split Transactions..133
Decode & Configuration..141

Notes:

®

About this User Guide
This user guide provides comprehensive information about the Altera®
pci_x MegaCore function.

f For the most-up-to-date information about Altera products, go to the
Altera world-wide web site at http://www.altera.com.

How to Contact
Altera

For additional information about Alter aproducts, consult the sources
shown in Table 1.

Note:
(1) You can also contact your local Altera sales office or sales representative.

Table 1 .How to Contact Altera

Information Type Access USA & Canada All Other Locations
Altera Literature
Services

Telephone hotline (1) (888) 3-ALTERA (1)

Electronic mail lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical
customer service

Telephone hotline (800) SOS-EPLD (408) 544-7000

Fax (408) 544-7606 (408) 544-7606

Technical support Telephone hotline
(6:00 a.m. to 6:00 p.m.
Pacific Time)

(800) 800-EPLD (408) 544-7000 (1)

Fax (408) 544-6401 (408) 544-6401 (1)

Electronic mail sos@altera.com sos@altera.com

FTP site ftp.altera.com ftp.altera.com

General product
information

Telephone (408) 544-7104 (408) 544-7104 (1)

World-wide web site http://www.altera.com http://www.altera.com
Altera Corporation 5

About this User Guide pci_x MegaCore Function User Guide
Typographic
Conventions

The pci_x MegaCore Function User Guide uses the typographic
conventions shown in Table 2.

Table 2 .Conventions

Visual Cue Meaning
Bold Type with Initial
Capital Letters

Command names and dialog box titles are shown in bold, initial capital letters.
Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \maxplus2 directory, d: drive, chiptrip.gdf file.

Bold italic type Book titles are shown in bold italic type with initial capital letters. Example: 1999 Data

Book.

Italic Type with Initial
Capital Letters

Document titles, checkbox options, and options in dialog boxes are shown in italic type
with initial capital letters. Examples: AN 75 (High-Speed Board Design), the Check
Outputs option, the Directories box in the Open dialog box.

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of MAX+PLUS II Help topics are
shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device
with the BitBlaster™ Download Cable.”

Courier type Reserved signal and port names are shown in uppercase Courier type. Examples:
DATA1, TDI, INPUT.

User-defined signal and port names are shown in lowercase Courier type. Examples:
my_data, ram_input.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\max2work\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
6 Altera Corporation

Getting Started
Contents

Altera Corporation 7

August 2000

®

Getting Started

1

Before You Begin...9
Installing the MegaCore Files..9
MegaCore Directory Structure..10

Quartus Walk- Through...11
Design Entry ..12
Compilation & Functional Simulation...13
Timing Analysis ..14
Configuring a Device ...14

Using Third-Party EDA Tools...15
Generating VHDL & Verilog HDL Functional Models from the Quartus Software....15
Synthesis Compilation & Post-Routing Simulation with the Quartus Software...........16

Notes:

®

Getting Started

August 2000, ver. 1.0

Getting Started

1

The Altera® pci_x MegaCoreTM function provides solutions for
integrating 64-bit PCI-X peripheral devices, including network adapters,
graphic accelerator boards, and embedded control modules. The
functions are optimized for Altera devices, greatly enhancing your
productivity by allowing you to focus efforts on the custom logic
surrounding the PCI-X interface.

This section describes how to obtain the Altera pci_x MegaCore
function, explains how to install it on your PC or UNIX workstation, and
walks you through the process of implementing the function in a design.
You can test-drive the pci_x function using Altera’s OpenCoreTM feature
to simulate the functions within your custom logic. When you are ready
to license a function, contact your local Altera sales representative.

Before You
Begin

Before you can start using Altera PCI MegaCore functions, you must
obtain the MegaCore files and install them on your PC or UNIX
workstation. The following instructions describe this process and explain
the directory structure for the functions.

Installing the MegaCore Files

Depending on your platform, use the following instructions:

Windows 95/98 & Windows NT 4.0

For Windows 95/98 and Windows NT 4.0, follow the instructions below:

1. Click Run (Start menu).

2. Type <path name>\<filename>.exe, where <path name> is the
location of the downloaded MegaCore function and <filename> is the
filename of the function.

3. Click OK. The MegaCore Installer dialog box appears. Follow the
on-line instructions to finish installation.
Altera Corporation 9

Getting Started
UNIX

At a UNIX command prompt, change to the directory in which you saved
the downloaded MegaCore function and type the following commands:

uncompress <filename>.tar.Z
tar xvf <filename>.tar

MegaCore Directory Structure

Altera pci_x MegaCore function files are organized into several
directories; the top-level directory is \megacore (see Table 1).

1 Altera updates MegaCore files from time-to-time. Therefore,
Altera recommends that you do not save your project-specific
files in the MegaCore directory structure.

Table 1 .PCI MegaCore Directories

Directory Description
\lib Contains encrypted lower-level design files and other supporting files, i.e.,

symbol, an AHDL include, and Verilog simulation wrapper files. After installing
the MegaCore function, you should set a user library in the Altera Quartus
software that points to this directory. This library allows you to access all of the
necessary MegaCore files.

\<pci_x>\doc Contains supporting documents, i.e., readme file, walk-through file, and
configuration design documents for the MegaCore function.

\<pci_x>\examples\pcix_top Contains a Quartus block design file (.bdf), Quartus constraint files (.csf, .esf,
.psf) and the decode/configuration module.

\<pci_x>\examples\sim Contains a sample Quartus simulation file (.vwf).
10 Altera Corporation

Getting Started

Getting Started

1
Quartus Walk-
Through

This section describes an entire design flow using an Altera pci_x
MegaCore function and the Quartus development system (see Figure 1).

Figure 1. Example pci_x Design Flow with the Quartus Software

The following instructions assume that:

■ You are using the pci_x MegaCore function.
■ All files are located in the default directory, c:\megacore. If the files

are installed in a different directory on your system, substitute the
appropriate path name.

■ You are using a PC; UNIX users should alter the steps as appropriate.
■ You are familiar with the Quartus software.
■ Quartus version 2000.05 or higher is installed in the default location

(Refer to the readme file in /doc directory for the latest software
support).

■ You are using the OpenCore feature to test-drive the function or you
have licensed the function.

1 You can use Altera’s OpenCore feature to compile and simulate
PCI MegaCore functions, allowing you to evaluate the functions
before deciding to license them. However, you must obtain a
license from Altera before you can generate either programming
files or EDIF, VHDL, or Verilog HDL netlist files for simulation
in third-party EDA tools.

Create a
Design File

Perform Compilation &
Functional Simulation

Use Timing Analyzer to
Verify Timing

License the Function &
Configure the Devices
Altera Corporation 11

Getting Started
The sample design process uses the following steps:

1. Create a BDF that instantiates the pci_x MegaCore function.

2. Modify user-specific configuration space registers in the design file
pcix_config.v.

3. Perform a compilation and run functional simulations to evaluate
and verify the functionality.

4. Examine the timing analysis results to verify that the PCI(X) timing
specifications are met.

5. If you have licensed the pci_x function, configure a targeted Altera
EP20K400EFC672-1X device with the completed design.

Design Entry

The following steps explain how to create a BDF that instantiates an Altera
PCI MegaCore function.

1 Refer to Quartus Help for detailed instructions on creating and
editing block diagrams.

1. Copy the design file, pcix_config.v in the \lib directory into a new
directory, e.g., c:\altr_app.

2. Modify user-specific configuration space registers in the design file,
pcix_config.v.

1 In order to meet PCI-X 66-MHz timing, you may need to
synthesize your modified pcix_config.v file in a third-party
synthesis tool and generate an EDIF output file. An example
of an EDIF file, pcix_config.edf, generated from Exemplar
Leonardo Spectrum is provided in the
\pci_x\examples\pci_top directory.

3. Run the Quartus software.

4. Create a new BDF named pcix_top.bdf using the schematic shown
in the \pci_x\examples\pcix_top directory as an example. The
block symbol file, pci_x.bsf, is located in the \lib directory. You may
skip this step by saving \pci_x\examples\pcix_top\pcix_top.bdf
as a new design and going to Step 5.
12 Altera Corporation

Getting Started

Getting Started

1
5. Using the Quartus software, save your BDF into a your working
directory (e.g., c:\altr_app). You will be prompted to create a new
project with this file. Choose Yes to create a new project.

6. The Quartus New Project wizard will open and select the present
working directory and your new BDF as the project name and top-
level design entity. If necessary, change any of the default settings in
this dialog box and choose Next.

7. Specify the user library, \lib directory, for the pci_x MegaCore
function using the User Library Pathnames feature. Add additional
design files for your project as necessary and choose Finish.

After you have entered your design, you are ready to perform compilation
to synthesize, and place and route your design.

Compilation & Functional Simulation

The following steps explain how to compile and functionally simulate
your design.

1. Open your project in the Quartus software and choose the Compile
Mode command (Processing menu).

2. Choose Start Compile (Processing menu) to compile your design.
(This step performs a full compilation, including place and route,
and timing analysis.)

3. When compilation completes, change to Simulate Mode (Processing
menu) to functionally simulate your design.

4. Create a vector waveform file (.vwf) describing a PCI-X transaction.
Save the file in your working directory. An example vector file,
cfg_wr_rd.vwf, is provided in the\pci_x\examples\sim directory.
This waveform simulates configuration write and read.

5. In the Quartus Simulator Settings dialog box (Processing menu),
choose the Mode tab and select Functional. Click Apply.

6. Choose the Time/Vectors tab and specify the .vwf that you just
created as the source of vector stimuli and choose Apply.

7. Choose Run Simulation (Processing menu) to simulate your design
and view the simulation results.
Altera Corporation 13

Getting Started
After you verify that your design is functionally correct, you can use the
Quartus timing analysis tool results to verify that all of the PCI-X signals
in your design meet the PCI-X timing requirements.

Timing Analysis

The following steps explain how to verify the timing results for your
design.

1. Choose the Compile Mode command (Processing menu). Example
constraint files (.csf, .esf, .psf) for the project in
\pci_x\examples\pcix_top are provided to meet PCI-X 66-MHz
timing requirements.

2. Open the Compilation Report (Processing menu) and expand the
Timing Analysis section.

3. The Quartus software lets you perform the following five types of
timing analysis to verify your design:

■ fMAX: The fMAX results report the maximum clock frequency and
identify the longest delay paths between registers.

■ tSU: The tSU results report the setup times of the registers.
■ tH: The tH results report the hold times of the registers.
■ tCO: The tCO results report the clock-to-output delays of the

registers.
■ tPD: The tPD results report the combinatorial pin-to-pin delays.

You are now ready to configure your targeted Altera EP20K400EFC672-
1X device.

Configuring a Device

After you have compiled and analyzed your design, you are ready to
configure your targeted Altera APEX device. If you are evaluating the
pci_x MegaCore function with the OpenCore feature, you must license
the pci_x MegaCore function before you can generate configuration files.
Altera provides three types of hardware to configure APEX devices.

■ The Altera Stand-Alone Programmer (ASAP2) includes an LP6 Logic
Programmer card and a Master Programming Unit (MPU). You
should use the PLMJ1213 programming adapter with the MPU to
program a serial configuration device, which loads the configuration
data to the APEX device during power-up. A Programmer Object File
(.pof) is used to program the configuration device. The Altera Stand-
Alone Programmer is typically used in the production stage of the
design flow.
14 Altera Corporation

Getting Started

Getting Started

1
■ The MasterBlasterTM communications cable is a standard PC serial or
USB port hardware interface. An SRAM Object File (.sof) is used to
configure the APEX device. The MasterBlaster cable is typically used
in the prototyping stage of the design flow.

■ The ByteBlasterMVTM parallel port download cable provides a
hardware interface to a standard parallel port. The SOF is used to
configure the APEX device. The ByteBlasterMV cable is typically
used in the prototyping stage.

f For more information, refer to the ByteBlasterMV Parallel Port Download
Cable Data Sheet and MasterBlaster Serial/USB Communications Cable Data
Sheet.

Using Third-
Party EDA Tools

This section describe how to generate a VHDL or Verilog HDL functional
model, and describe the design flow to compile and simulate your custom
Altera pci_x MegaCore design with a third-party EDA tool.

Generating VHDL & Verilog HDL Functional Models from the
Quartus Software

To generate a VHDL or Verilog HDL functional model, perform the
following steps:

1. Open the Quartus project containing your pcix_top.bdf file.

2. Choose the third-party EDA tool that you will use for simulation
through the EDA Tool Settings dialog box (Project menu).

3. After selecting a simulation tool, you may choose to change the
default settings by choosing the Settings tab.

4. After a successful compilation, Quartus will generate either a
pci_top.vo functional Verilog HDL model or pcix_top.vho
functional VHDL model of your design. Quartus will also generate a
pcix_top.vo or pcix_top_vhd.sdo file containing the timing
information.

5. Compile the pcix_top.vo or pcix_top.vho output files in your third-
party simulator to perform functional simulation using Verilog HDL
or VHDL.

To use the Quartus NativeLink feature to automatically start your
simulation environment, review Quartus Help and the Quartus
NativeLink Guidelines on simulating Verilog HDL and VHDL
output files for the EDA tool of your choice.
Altera Corporation 15

Getting Started
Synthesis Compilation & Post-Routing Simulation with the
Quartus Software

To synthesize your design in a third-party EDA tool and perform
post-route simulation in the Quartus software, perform the following
steps:

1. Create your custom design instantiating the pci_x MegaCore
function.

2. Synthesize the design using your third-party EDA tool. Your EDA
tool should treat the pci_x MegaCore instantiation as a black box by
either setting attributes or ignoring the instantiation.

1 For more information on setting compiler options in your
third-party EDA tool, refer to the Quartus NativeLink
Guidelines.

3. After compilation, generate a hierarchical EDIF netlist file targeting
the APEX device family in your third-party EDA tool.

4. Create a new project in Quartus from your EDIF file using the New
Project wizard. Add your design file that contains the custom
instantiation of the pci_x MegaCore function to the current project.
Add the pci_x \lib directory to your User Libraries for the project.

5. Choose EDA Tool Settings (Project menu).

6. In the EDA Tool Settings dialog box, select the EDA tool for your
EDIF netlist from the Design Entry/Synthesis Tool drop-down list
box. Change the default tool setting through the Settings box as
necessary.

7. In the EDA Tool Settings dialog box, select the EDA tool for your
simulation from the Simulation Tool drop-down list box. Change
the default tool settings through the Settings box as necessary.

8. Make logic option and/or place-and-route assignments for your
custom logic using the Assignment Organizer (Tools menu).

9. Compile your design. The Quartus Compiler synthesizes and
performs place-and-route on your design, and generates output and
programming files.

10. Import your Quartus-generated output files (.edo, .vho, .vo, or .sdo)
into your third-party EDA tool for post-route, device-level, and
system-level simulation.
16 Altera Corporation

Getting Started

Getting Started

1
To use the Quartus NativeLink feature to automatically start your EDA
tools for synthesis and simulation, review Quartus Help and the Quartus
NativeLink Guidelines to setup your project for the EDA tools of your
choice.
Altera Corporation 17

Notes:

MegaCore Overview
Contents

Altera Corporation 19

August 2000

®

M
egaCore

2

Overview

Features ..21
PCI-X/PCI-2.2 Supported Features..21

General Description..22
Terminology & Abbreviations ..23
PCI-2.2/PCI-X Bus Interface Signals..24

Local-Side Target Interface Signals ..26
Local-Side Master Interface Signals ...29

Notes:

®

MegaCore Overview

August 2000, ver. 1

M
egaCore

2

Overview
Altera Corporation 21

Features This section describes the features of the pci_x MegaCoreTM function.
The pci_x function is a parameterized MegaCore function implementing
a 64-bit PCI-X/PCI-2.2 master/target interface module that has been
designed and optimized for Altera high density and high performance
devices. The pci_x MegaCore function is fully compliant with the
functional and timing requirements of the PCI Special Interest Group (PCI
SIG) PCI Local Bus Specification, Revision 2.2 and PCI-X Addendum, Revision
1.0.

The pci_x function isolates the PCI(X) bus interface state machines (and
logic) from the buffer management state machines (and logic). The
function isolates the internal modules as much as possible from the
differences in signaling between the PCI-X and PCI-2.2 bus protocols thus
making local bus behavior similar regardless of whether the external bus
is operating with PCI-X or PCI-2.2 protocol.

PCI-X/PCI-2.2 Supported Features

The pci_x function is based on the CompaqTM pci_x function and
supports the following features:

■ Flexible 64-bit master/target interface that can be customized for
specific peripheral requirements

■ Based upon industry standard PCI-X core from Compaq Computer—
implemented in several application specific integrated circuits
(ASICs)

■ Fully compliant with the timing and functional requirements of the
PCI Special Interest Group’s (PCI SIG) PCI Local Bus Specification,
Revision 2.2 and PCI-X Addendum, Revision 1.0

■ PCI-X bus operation up to 66 MHz
■ Achieves up to 33% higher system speed than PCI-2.2 at the same

frequency
■ Supports all PCI-2.2/PCI-X commands
■ Dynamically handles 64-bit and 32-bit data operation
■ Automatic byte enable generation in PCI-X protocol
■ User-configurable configuration space
■ Fully synchronous design
■ No-risk OpenCore feature allows designers to instantiate and

simulate designs in the Quartus software prior to purchase

MegaCore Overview
General
Description

PCI-X is an evolutionary design and enhancement of the industry
standard PCI bus. PCI-X enables 64-bit designs to operate at speeds up to
133MHz. PCI-X achieves this performance by implementing a register-to-
register protocol and improved transaction processing. Called Split
Transactions, this feature enables multi-threading split transactions
rather than delayed serial processing inherent in PCI-2.2 protocol. PCI-X
allows flexible protocol usage, i.e., it can be used with both legacy PCI-2.2
systems as well as newer PCI-X systems.

The Altera® MegaCore function (ordering code: PLSM-PCI/X) is a high
performance , flexible implementation of the 64-bit PCI-X master/target
interface. Because this function handles the complex PCI-X protocol and
stringent timing requirements internally, designers can focus their
engineering efforts on value-added custom development, significantly
shortening design cycles and thus reducing time-to-market.

In addition, the Altera pci_x function is a based upon the industry
standard PCI-X core from Compaq Computer. This core has been
rigorously tested by Compaq and its partners to ensure PCI-X 1.0 and
PCI-2.2 compliance. The Compaq core also has been implemented in
several ASICs to further demonstrate compliance and stability. All
protocol and timing requirements of PCI-X and PCI-2.2 are supported by
the core. The high-speed PCI-X interface is targeted to a broad range of
applications such as servers and networks that require high-bandwidth
protocols such as Gigabit Ethernet and Fibre Channel.

Optimized for Altera high-density APEX devices, designers have ample
resources for custom local logic after implementing the PCI-X interface.
The high performance of APEX devices also enables the pci_x function
to support unlimited cycles of zero-wait-state memory-burst transactions.

Additionally, the configuration space is user-configurable and
parameterized, providing scalability, adaptability, and efficient silicon
implementation. As a result, the same pci_x function can be used in
multiple PCI-X projects with different requirements. For example, the
pci_x function can offer up to six base address registers (BARs) for
multiple local-side devices. However, some applications require only one
contiguous memory range. PCI-X designers can choose to instantiate only
one BAR, which reduces logic cell consumption. After designers define
the parameter values, the Quartus software automatically and efficiently
modifies the design and implements the logic.

This user guide should be used in conjunction with the latest
PCI-2.2/PCI-X specifications, published by the PCI Special Interest Group
(SIG). Users should be fairly familiar with the PCI-2.2/PCI-X standards
when using this function.
22 Altera Corporation

MegaCore Overview

M
egaCore

2

Overview
Terminology &
Abbreviations

Table 1 lists common PCI terms and abbreviations used throughout this
user guide.

Table 1. Commonly Used Terms & Abbreviations

Terms Description
ADB Allowable Disconnect Boundary. A PCI-X term used to describe a 128-byte, address-aligned

boundary

Completer The PCI-X device that issues a split response for a transaction and is responsible for
completing the transaction using a split completion.

DAC Dual address cycle. In 64-bit addressing, the lower address is written to on the first clock
cycle and the upper address space is written to on the second clock cycle.

DWORD PCI-X DWORD-type transaction.

Dword Address-aligned four bytes.

Local bus Refers to the internal bus to which the pci_x module is designed.

Local master The pci_x initiates local to PCI-2.2/PCI-X cycles.

Local master bus Internal bus for transactions where the pci_x wishes to initiate PCI-2.2/PCI-X cycles.

Local target The pci_x is the target of PCI-2.2/PCI-X to local interface cycles.

Local target bus Internal bus for transactions where the pci_x is the target of PCI-2.2/PCI-X cycles.

MegaCore Refers to the PCI(X) to local interface module. Also referred to as pci_x function.

MLT Master Latency Timer. See PCI-2.2/PCI-X Bus Specification.

MR PCI memory read command.

MRB PCI-X memory read block cycle.

MRD PCI-X memory read DWORD cycle.

MRL PCI-2.2 memory read line command.

MRM PCI-2.2 memory read multiple command.

MWB PCI-X memory write block cycle.

PCI-2.2 Refers to a PCI-2.2 cycle only and not a PCI-X cycle.

PCI(X) Refers to both a PCI-2.2 cycle and a PCI-X cycle.

PCI-X Refers to a PCI-X cycle only and not a PCI-2.2 cycle.

Qword Address-aligned eight bytes.

RDH PCI-X reserved drive high (RDH) byte enable usage.

Requester The PCI-X device whose request has received a split response.

SC PCI-X split completion cycle.

SCM PCI-X split completion message cycle.

Speculative /
non-speculative

Memory regions can be speculative and non-speculative. A speculative memory region is
one in which read side affects do not occur (prefetching is allowed). A non-speculative
memory region is one in which read side affects do occur (prefetching is not allowed).

Split completion Data cycle run by the completer with the originally requested data or completion status.

Split response Response given by completer to requester indicating it wishes to split the request.
Altera Corporation 23

MegaCore Overview
PCI-2.2/PCI-X
Bus Interface
Signals

The following PCI-2.2/PCI-X signals are used by the pci_x function:

■ Input—Standard input-only signal
■ Output—Standard output-only signal
■ Bidirectional—Tri-state input/output signal
■ Sustained tri-state (STS)—Signal that is driven by one agent at a time

(e.g., device or host operating on the PCI bus). An agent that drives a
sustained tri-state pin low must actively drive it high for one clock
cycle before tri-stating it. Another agent cannot drive a sustained tri-
state signal any sooner than one clock cycle after it is released by the
previous agent.

■ Open-drain—Signal that is wire-ORed with other agents. The signaling
agent asserts the open-drain signal, and a weak pull-up resistor
deasserts the open-drain signal. The pull-up resistor may require two
or three PCI-X/PCI-2.2 bus clock cycles to restore the open-drain
signal to its inactive state.

Table 2 lists the PCI-X/PCI-2.2 bus interface input and output signals,
describing the address, data, command, and byte enables of the
transaction. Unless otherwise noted, the signals in Table 2 interface with
either PCI-X or PCI-2.2 bus protocol.

Table 2 .PCI-X/PCI-2.2 Bus Interface Signals (Part 1 of 3)

Name Type Polarity Description
pci_clk Input — Clock. The clock provides the reference signal for all other PCI-

X/PCI-2.2 interface signals, except rst_n and inta_n.

pci_gnt_n Input Low Grant. The gnt_n input indicates to the bus master device that it
has control of the PCI-X/PCI-2.2 bus. Every master device has a
pair of arbitration lines (gnt_n and req_n) that connect directly to
the arbiter.

pci_idsel Input High Initialization device select. The idsel input is a device select for
configuration transactions.

pci_reset_n Input — Reset. The rst_n input initializes the PCI-X/PCI-2.2 interface
circuitry, and can be asserted asynchronously to the PCI-X/PCI-2.2
bus clock edge. When active, the PCI-X/PCI-2.2 output signals are
tri-stated and the open-drain signals, such as serr_n, float.

pci_req_n Output Low Request. The req_n output indicates to the arbiter that the bus
master wants to gain control of the PCI-X/PCI-2.2 bus to perform a
transaction.

pci_ad[63..0] Tri-State — Address/data bus. The ad[63..0] bus is a time-multiplexed
address/data bus; each bus transaction consists of an address
phase followed by one or more data phases. The data phases
occur when irdy_n and trdy_n are both asserted. In the case of
a 32-bit data phase, only ad[31..0] will hold valid data.
24 Altera Corporation

MegaCore Overview

M
egaCore

2

Overview
pci_cbe_n[7..0] Tri-State Low Command/byte enable. The cben[7..0] bus is a time-
multiplexed command/byte enable bus. During the address phase,
this bus indicates the command; during the data phase, this bus
indicates byte enables.

pci_par Tri-State — Parity. The par signal is even parity across the 32 least significant
address/data bits and 4 least significant command/byte enable bits.
In other words, the number of “1”s on ad[31..0], cben[3..0],
and par equal an even number. The parity of a data phase is
presented on the bus during the clock following the data phase.

pci_par64 Tri-State — Parity 64. The par64 signal is even parity across the 32 most
significant address/data bits and the 4 most significant
command/byte enable bits. In other words, the number of “1”s on
ad[63..32], cben[7..4], and par64 equal an even number.
The parity of a data phase is presented on the bus during the clock
cycle following the data phase.

pci_ack64_n STS Low Acknowledge 64-bit transfer. The target asserts ack64_n to
indicate that the target can transfer data using 64 bits. The
ack64_n signal has the same timing as devsel_n.

pci_devsel_n STS Low Device select. Target asserts devsel_n to indicate that the target
has decoded its own address and accepts the transaction.

pci_frame_n STS Low Frame. The frame_n signal is an output from the current bus
master and indicates the beginning and duration of a bus operation.
When frame_n is initially asserted, the address and command
signals are present on the ad[63..0] and cben[7..0] buses
respectively. The frame_n signal remains asserted during the data
operation and is deasserted to identify the end of a transaction.

pci_irdy_n STS Low Master ready. The irdy_n signal is an output from a bus master to
its target and indicates that the bus master can complete the
current data transaction. In a write transaction, irdy_n indicates
valid data. In a read transaction, irdy_n indicates that the master
is ready to accept data.

pci_perr_n STS Low Parity error. The perr_n signal indicates a data parity error. The
perr_n signal is asserted one clock following the par and par64
signals, or two clocks following a data phase with a parity error. The
pci_x asserts the perr_n signal if (1) parity error is detected on
either the par or par64 signals, and (2) the perr_n bit (bit 6) of
the command register is set.

pci_req64_n STS Low Request 64-bit transfer. The req64_n signal is an output from the
current bus master and indicates that the master is requesting a 64-
bit transaction. The req64_n signal has the same timing as
frame_n.

Table 2 .PCI-X/PCI-2.2 Bus Interface Signals (Part 2 of 3)

Name Type Polarity Description
Altera Corporation 25

MegaCore Overview
Local-Side Target Interface Signals

Tables 3 through 7 describe the pci_x local-side target interface signals.
Because there are two local address buses in the pci_x, all local side
target and master interface signals are separate. Unless otherwise noted,
the following local side target signals interface with either the PCI-X or
PCI-2.2 protocol.

Table 3 lists the local-side target signal naming conventions.

pci_stop_n STS Low Stop. The stop_n signal is a target device request that indicates
to the bus master to terminate the current transaction. The stop_n
signal is used in conjunction with trdy_n and devsel_n to
indicate the type of termination initiated by the target.

pci_trdy_n STS Low Target ready. The trdy_n signal is a target output, indicating that
the target can complete the current data transaction. In a read
operation, trdyn indicates that the target is providing data. In a
write operation, trdyn indicates that the target is ready to accept
data.

pci_inta_n Open-
Drain

Low Interrupt A. The inta_n signal is an active-low interrupt to the host
and must be used for any single-function device requiring an
interrupt capability.

pci_serr_n Open-
Drain

Low System error. Indicates system error and address parity error. The
pci_x asserts serr_n if a parity error is detected during an
address phase and the serr_n enable bit (bit 8) of the command
register is set.

Table 2 .PCI-X/PCI-2.2 Bus Interface Signals (Part 3 of 3)

Name Type Polarity Description

Table 3.pci_x Local -Side Target Signal Naming Conventions

Signal prefix Description
lto* Local target output signal prefix

lti* Local target input signal prefix
26 Altera Corporation

MegaCore Overview

M
egaCore

2

Overview
Local Target Address, Data, Command, and Byte Enable Signals

Table 4 lists the local-side interface inputs and outputs, describing the
address, data, command, and byte enables of the transaction.

Local Target Control Signals

Table 5 lists the local-side interface inputs and outputs, describing control
logic information for the transaction.

Table 4.Local Target Address, Data, Command & Byte Enable Signals

Name Type Polarity Description
lti_readdata[63..0] Input — Target to master read data. Provides read data from the

target to the master.

lto_addr[63..0] Output — Master to target address.

lto_be_[7..0] Output — Master to target byte enable. Indicates (to the local side) valid
byte lanes for each data phase of the transfer.

lto_cmd[3..0] Output — Master to target command. Indicates to the local side the PCI
command of the current transaction. Command encoding is
identical to PCI-2.2 protocol, except that the dual address
cycle (DAC) command is reserved.

lto_writedata[63..0] Output — Master to target write data transfer. Provides the data written
from the master to the target device.

Table 5.Local Target Control Signals (Part 1 of 2)

Name Type Polarity Description
lti_disc Input High Target to master disconnect. Indicates that target is ending

the cycle after data has transferred.

lti_rdy Input High Target to master ready. Indicates that the target is either
driving valid data (read cycle), or that the target can accept
data (write cycle).

lti_retry Input High Master to target 64-bit access. Indicates that the target can
not process the current data cycle and that the cycle should
be retried on the expansion bus. Also, lti_retry can be
used to support delayed transactions.

lto_64access Output High Master to target 64-bit access. Indicates that the transaction
on the expansion bus was initiated as a 64-bit transaction.
The lto_64access signal is necessary for the target to
properly decode the cycle.
Altera Corporation 27

MegaCore Overview
Local Target Control Signals Interfacing Only with PCI-X Protocol

Table 6 lists additional local side interface inputs and outputs, describing
control logic information for the transaction. These signals interface only
with PCI-X protocol.

lto_cyc Output High Master to target cycle. Indicates valid address and command
data is being driven. However, lto_cyc does not indicate
either (1) that the transaction has been claimed on the
expansion bus, or (2) for which target device the cycle is
intended. Target devices may use lto_cyc to begin the
decode process, but must wait for lto_cycvalid to confirm
that it is the target of the cycle.

lto_cycvalid Output High Master to target cycle valid. Indicates that the transaction will
be claimed on the expansion bus and that the target device
receiving the signal is the intended target of the cycle.

lto_writeburst Output High Master to target burst. Valid only for (1) memory write, and (2)
memory write and invalidate cycles. Indicates that the write
transaction still has at least one more data phase remaining.

Table 5.Local Target Control Signals (Part 2 of 2)

Name Type Polarity Description

Table 6.Local Target Control Signals Interfacing Only with PCI-X Protocol (Part 1 of 2)

Name Type Polarity Description
lti_discadb Input High Target to master disconnect at ADB. Indicates that the target

device will terminate data transfer at the next ADB.

lti_split Input High Target to master split transaction request. Indicates the target
intends to split the transaction.

lto_busno[7..0] Output — Master to target bus number. Indicates the bus number of the
originating device.

lto_deviceno[4..0] Output — Master to target device number. Indicates the device number
of the originating device.

lto_functionno[2..0] Output — Master to target function number. Indicates the function
number of the originating device.

lto_scexception Output High Master to target split completion exception. Indicates the
currently active split completion cycle is an exception.

lto_scmessage Output High Master to target split completion message. Indicates the
currently active split completion cycle is a message, i.e., does
not carry data.

lto_tbc[11..0] Output — Master to target transaction byte count. Indicates the number
of bytes to be transferred. Also, for type 0 configuration write
cycles, bits[7..0] carry the secondary number.
28 Altera Corporation

MegaCore Overview

M
egaCore

2

Overview
Local Target Error Reporting Signals

Table 7 lists the local side interface inputs and outputs, describing error-
reporting information for the transaction.

Local-Side Master Interface Signals

Tables 9 through 13 describe the pci_x local-side master interface
signals. Because there are two local address buses in the pci_x, all local
side target and master interface signals are separate. Unless otherwise
noted, the following local-side master signals interface with either PCI-X
or PCI-2.2 protocols.

lto_tbcmodified Output High Master to target transaction byte count modified. Indicates
the byte count of the current transaction has been modified by
the master device.

lto_tagno[4..0] Output — Master to target tag number. Indicates the tag number of the
current cycle. The lto_tagno[4..0] signal is not used for
split completion cycles.

Table 6.Local Target Control Signals Interfacing Only with PCI-X Protocol (Part 2 of 2)

Table 7.Local Target Error Reporting Signals

Name Type Polarity Description
lti_abort Input High Target to master abort. Indicates the target has encountered

a fatal error, or can never process the current cycle, and that
the cycle should be aborted on the expansion bus.

lti_perr Input High Target to master parity error. Indicates that the target has
detected a read data parity error and is forwarding the
information to the master. The master device can use the
forwarded information to drive incorrect parity on the
expansion bus and force a parity error.

lti_serr Input High Target to master system error. Instructs the master to assert
the system error signal (serrn) on the expansion bus.

lto_perr Output High Master to target parity error. Indicates that the master has
either detected or observed a data parity error on its
expansion bus and is forwarding the information to the target.

lto_serr Output High Master to target system error. Indicates a system error has
occurred on the expansion bus.
Altera Corporation 29

MegaCore Overview
Table 8 lists the local-side master signal naming conventions.

Local Master Arbitration Signals

Table 9 lists the local side interface inputs and outputs, describing the
arbitration handshaking required to request ownership of the bus.

Table 8.pci_x Local -Side Master Signal Naming Conventions

Signal prefix Description
lmo* Local master output signal prefix

lmi* Local master input signal prefix

Table 9.Local Master Arbitration Signals

Name Type Polarity Description
lmi_cyc Input High Master to target request. When asserted, lmi_cyc indicates

that the master device wants to run a transaction on the
expansion bus. However, if the master device does not intend
to immediately run another transaction after the current one,
the lmi_cyc signal must be deasserted on the clock
following the assertion of lmo_ack.

lmi_cycvalid Input High Master to target valid cycle information. Indicates that the
address, command, and data phases are valid, and that other
cycle information signals are valid. The lmi_cycvalid
signal must deassert after the master samples lmo_ack.

lmo_ack Output High Target to master acknowledgment. When the target device
asserts lmo_ack, the target is indicating that the master
device’s address and cycle information have been captured
and that the data phase has been entered. Master devices
also step forward to the next data phase when they sample
lmo_ack.
30 Altera Corporation

MegaCore Overview

M
egaCore

2

Overview
Local Master Address, Data, Command & Byte Enable Signals

Table 10 lists the local-side interface inputs and outputs, describing the
address, data, command, and byte enable signals of the transaction.

Local Master Control Signals

Table 11 lists the local side interface inputs and outputs, describing
control logic information for the transaction.

Table 10.Local Master Address, Data, Command & Byte Enable Signals

lmi_addr[63..0] Input — Master to target address. Provides the address to be driven
on the expansion bus. The address must have byte resolution
for I/O cycles.

lmi_be[7..0] Input — Master to target byte enable. Indicates which byte lanes are
valid for the current data phase. Byte enables are valid for
each data phase of a multiple data phase transfer.

lmi_cmd[3..0] Input — Master to target command. Provides the command to be
driven on the expansion bus. PCI-X command encoding is
identical to PCI-2.2 encoding except that the DAC command
is reserved.

lmi_dphasecnt[9..0] Input — Master to target data phase count. Indicates the number of
Qwords or data phases for a 64-bit bus that the master device
wants to transfer to/from the expansion bus.

lmi_writedata[63..0] Input — Master to target read data. Provides the target device with the
write data from the master device.

lmo_readdata[63..0] Output — Target to master read data. Provides the data that was read
by the target to the master device. Read data is qualified by
the lmo_xferhi and lmo_xferlo signals, so not all 64-bits
of data may be valid.

Table 1 1 .Local Master Control Signals (Part 1 of 2)

Name Type Polarity Description
lmi_disc Input High Master to target disconnect. Indicates the master wishes to

end the cycle, overriding the original lmi_dphasecnt cycle
negotiated.

lmo_cycdone Output High Target to master cycle done. Indicates the cycle on the
expansion bus is complete.

lmo_retry Output High Target to master retry. Indicates that the expansion bus has
retried or disconnected the current cycle. If either or both of
the lmo_xfer signals are asserted with this signal, data
transfer occurs with the termination.
Altera Corporation 31

MegaCore Overview
Local Master Control Signals Interfacing Only with PCI-X Protocol

Table 12 lists additional local side interface inputs and outputs, describing
control logic information for the transaction. These signals interface with
PCI-X only.

lmo_xferhi Output High Target to master high doubleword (4 bytes) of data transfer.
Indicates the data is being transferred on the current clock to
or from the master. On master writes, the assertion of this
signal indicates that the expansion bus target has transferred
a higher doubleword of data (lmi_writedata[63..32]).
On master reads, the assertion of this signal indicates that
valid read data is being driven on lmo_readdata[63..32].

lmo_xferlo Output High Target to master low doubleword (4 bytes) data transfer.
Indicates that the data is being transferred on the current
clock to or from the master device. On master writes, the
assertion of this signal indicates that the expansion bus target
has transferred a lower doubleword of data
(lmi_writedata[31..0]). On master reads, the assertion
of this signal indicates that valid read data is being driven on
lmo_readdata[31..0].

Table 11.Local Master Control Signals (Part 2 of 2)

Table 12.Local Master Control Signals Interfacing Only with PCI-X Protocol (Part 1 of 2)

Name Type Polarity Description

lmi_busno[7..0] Input — Master to target bus number. Indicates the bus number of the
originating bus.

lmi_deviceno[4..0] Input — Master to target device number. Indicates the device number
of the originating bus.

lmi_discadb Input High Master to target disconnect at ADB. Indicates master is
overriding the data phase count and wishes to terminate data
transfer at the next ADB.

lmi_functionno[2..0] Input — Master to target function number. Indicates the function
number of the originating device.

lmi_scexception Input High Indicates the current transaction is a split completion
exception.

lmi_scmessage Input High Indicates the current transaction is a split completion
message.

lmi_tbc[11..0] Input — Master to target byte count. Indicates the number of bytes to
be transferred for this transaction.
32 Altera Corporation

MegaCore Overview

M
egaCore

2

Overview
Local Master Error Reporting Signals

Table 13 lists the local side interface inputs and outputs, describing error-
reporting information for the transaction.

lmi_tbcmodified Input High Master to target transaction byte count modified. Indicates
the master has modified the byte count of the current
transaction.

lmi_tagno[4..0] Input High Master to target tag number. Indicates the tag number of the
current cycle.

lmo_split Output High Target to master split response. Indicates the target on the
expansion bus drove a split response for this cycle.

Table 1 2 .Local Master Control Signals Interfacing Only with PCI-X Protocol (Part 2 of 2)

Table 1 3 .Local Master Error Reporting Signals

Name Type Polarity Description
lmi_perr Input High Master to target parity error. Indicates the current data driven

on lmi_writedata encountered an ECC/parity error or
other corruption on the originating bus. Valid only when
lmi_writedata is driven on a write cycle. The lmi_perr
signal is driven concurrently with the data that contains the
ECC/parity error or corruption information, and must follow
lmi_writedata wait-state rules.

lmi_serr Input High Master to target system error. Instructs the expansion bus
target to assert the system error signal (serrn) on the
expansion bus.

lmo_masterabort Output High Target to master, master abort signal. Indicates that a target
did not respond to the cycle on the target expansion bus.

lmo_perr Output High Target to master parity error. Driven two clocks after the
affected lmo_xfer, the lmo_perr signal indicates that the
data driven or received on the expansion bus encountered a
parity error.

lmo_targetabort Output High Target to master on target abort signal. Indicates that a target
on the target expansion bus issued a target-abort for the
cycle.
Altera Corporation 33

MegaCore Overview
Notes:
34 Altera Corporation

®

Specifications
Contents

August 2000

Specifications

3

PCI Bus Commands..37
Target Mode Operation..38

Target Read Transactions ..38
Target Write Transactions ...64

Master Mode Operation...92
Addressing...92
Master Read Transactions..94
Master Write Transactions...115

Split Transactions..133
Master Device Receives Split Response...133
Target Device Issues Split Response ..135
Master Issues Split Completion ..137
Target Device Receives Split Completion ...139

Decode & Configuration..141
Design Files..142
Signal Descriptions ...143
Functional Blocks ..145
Design Considerations ...146
Altera Corporation 35

Notes:

®

Specifications

August 2000, ver. 1

Specifications

3

This section describes the specifications of the pci_x MegaCoreTM
function, including the :supported peripheral component interconnect
(PCI) bus commands and the clock cycle sequence for both the Target and
Master read/write transactions.

PCI Bus
Commands

Table 1 shows the PCI bus commands that can be initiated or responded
to by the pci_x function.

Notes:
(1) During a special cycle, the pci_x function does not detect and drive serr_n on data parity error; however, the

function does forward special cycle information to the target local side interface.
(2) These commands are supported for PCI-X cycles, but ignored during PCI-2.2 cycles.

Table 1. PCI Bus Command Support Summary

cben[3:0] Value PCI-X Commands PCI-2.2 Commands Master Target
0000 Interrupt acknowledge Interrupt acknowledge Yes Yes

0001 Special cycle Special cycle Yes, Note (1) Yes, Note (1)

0010 I/O read I/O read Yes Yes

0011 I/O write I/O write Yes Yes

0100 Reserved Reserved Ignored Ignored

0101 Reserved Reserved Ignored Ignored

0110 Memory read Memory read Yes Yes

0111 Memory write Memory write Yes Yes

1000 Alias to memory read block Reserved Yes, Note (2) Yes, Note (2)

1001 Alias to memory write block Reserved Yes, Note (2) Yes, Note (2)

1010 Configuration read Configuration read Yes Yes

1011 Configuration write Configuration write Yes Yes

1100 Split completion Memory read multiple Yes Yes

1101 Dual address cycle (DAC) Dual address cycle (DAC) Yes Yes

1110 Memory read block Memory read line Yes Yes

1111 Memory write block Memory write and invalidate Yes Yes
Altera Corporation 37

Specifications

Specifications

3

During the address phase of a transaction, the cben[3:0] bus is used to
indicate the transaction type. See Table 1.

The pci_x responds to standard memory read/write, cache memory
read/write, I/O read/write, and configuration read/write commands.
The bus commands are discussed in greater detail in “Target Mode
Operation” and “Master Mode Operation.”

Target Mode
Operation

This section describes all supported target transactions for the pci_x
function and includes waveform diagrams showing typical PCI(X) cycles
in target mode. As a target device, the pci_x supports all types of PCI-X
and PCI-2.2 command types, except for special cycle commands. The
pci_x does not detect and drive serr_n on data parity error during a
special cycle. However, the pci_x does forward special cycle information
to the local target bus.

The data width of the local target interface is 64-bit; however, the interface
communicates with either 64-bit or 32-bit PCI-X master devices.
Therefore, local target devices can perform all operations, except where
PCI specifications require single data phases, with QWORD granularity.

1 The pci_x supports decode speed C for PCI-X cycles and slow
decode speed for PCI-2.2 cycles.

Target Read Transactions

The pci_x function performs both PCI-X and PCI-2.2 target read
transactions. There are a few major differences between the PCI-X and
PCI-2.2 target read transactions; however, from the perspective of the
local target bus, behavior of the pci_x during the transactions is similar.

PCI-X transactions are different than PCI-2.2 transactions because they
include an attribute phase, block cycle support, and split transaction
support:

■ The attribute phase follows the address phase and provides more
transaction information up front, e.g., transaction byte count of the
request.

■ Block cycle (128-byte, address-aligned boundary) support is new
with PCI-X protocol and enhances the robustness of transactions, i.e.,
more data can be transferred per clock cycle.

■ Split transactions enable other peripheral devices to perform
transactions with the PCI-X bus during an active transaction, i.e.,
with PCI-2.2 protocol no other bus transactions can occur until the
current transaction is complete. See “Split Transactions” on page 133
for more information.
38 Altera Corporation

Specifications

Specifications

3

PCI-X Target Read Transactions

Because the PCI-X bus can operate as a 64-bit or 32-bit bus and the local
target bus is 64-bit, the pci_x performs some data and byte enable
manipulation to compensate for the data-width mismatch.

The following are some general operating rules for PCI-X target read
transactions:

■ The PCI-2.2 delayed transaction protocol is not allowed with PCI-X
protocol; thus, there is no issue of local targets responding with a
local target retry and storing transaction information. Local targets
that cannot provide immediate data must instead provide a split
response (i.e., assert lti_Split), and then store the relevant
transaction information.

■ For 64-bit or 32-bit memory read block cycles where the local target
has immediate data, the pci_x will accept read data from the local
target bus in 64-bit increments. While the PCI-X master does not drive
any byte enables for a memory read block transaction (i.e., the
pci_cbe_n[7:0] bus is reserved drive high), the megacore will
generate valid byte enables on the local target lto_BE_n bus lines on
a per data phase basis.

■ For 32-bit single data phase PCI-X cycles (e.g., DWORD memory,
I/O, and configuration cycles) where the local target device has
immediate data, the pci_x will pick up the data on either the upper
or lower 32 bits of the 64-bit local data bus (i.e.,
lti_ReadData[63:0]). The value of bit 2 in the address
determines whether the data is picked up in the upper or lower
boundary of the data bus.

■ For all immediate read cycles (i.e., non split transactions), parity error
information (i.e., lti_Perr) for a particular data phase can be driven
by the local target along with the assertion of lti_Rdy. At this point,
the pci_x intentionally drives the data with bad parity on the PCI-X
bus.

■ The address presented to the local bus is the same as the PCI-X
address. Therefore, when the pci_x is operating with PCI-X
protocol, the address specified on lto_Addr is byte-aligned, except
for configurations transactions, which are DWORD aligned.

■ When a local target issues a split response during a PCI-X local read
request, the local target is responsible for:
– Storing the relevant transaction information
– Subsequently issuing the split completion cycle on the local

master bus.
Altera Corporation 39

Specifications

Specifications

3

However throughout the assertion of lto_Cyc, the pci_x will
maintain a stable value for the transaction information, including
address, command, device number, bus number, and tag number
values.

In PCI-X protocol, the pci_x supports two types of 64-bit target read
transactions:

■ Memory single-cycle read
■ Memory bust read

For both types of read transactions, the sequence of events is the same and
can be divided into the following steps:

1. The address phase occurs when the PCI-X master asserts
pci_frame_n and pci_req64n signals and drives the address and
command on pci_ad[31:0] and pci_cben[3:0],
correspondingly. Asserting the pci_req64n signal indicates to the
target device that the master device is requesting a 64-bit data
transaction.

2. One clock later is the attribute phase. The attribute phase contains
additional information about the current transaction, such as the
byte count of the transaction.

3. Turn-around cycles on the pci_ad[63:0] bus occur during the
clock immediately following the attribute phase. During the turn-
around cycles, the PCI-X master tri-states the pci_ad[63:0] bus.
This process is necessary because the PCI-X agent driving the
pci_ad[63:0] bus changes during read cycles.

4. If the address of the transaction matches one of the base address
registers, the pci_x function turns on the drivers for the
pci_ad[63:0], pci_devsel_n, pci_ack64_n, pci_trdy_n,
and pci_stop_n signals. The drivers for pci_par and
pci_par64 are turned on in the following clock.

5. The pci_x drives and asserts pci_devseln and pci_ack64n to
indicate to the master device that it is accepting the 64-bit
transaction.

6. One or more data phases follow next, depending on the type of read
transaction.

PCI-X 64-Bit Single-Cycle Target Memory Read Transaction

Figure 1 shows the waveform for a PCI-X 64-bit single-cycle target
memory read transaction.
40 Altera Corporation

Specifications

Specifications

3

Figure 1. PCI-X 64-Bit Single-Cycle Target Memory Read Transaction

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_ReadData

Ito_64access

1 2 3 4 5 76 8 9 10

DATA0ATTRADDR-LO

0e 00 ff

ADDR-LO

e

008

00

DATA0
Altera Corporation 41

Specifications

Specifications

3

Table 2 shows the sequence of events for a PCI-X 64-bit single-cycle target
memory read transaction.

Table 2. PCI-X 64-Bit Single-Cycle Target Read Transaction

Clock
Cycle

Event

1 PCI-X side: The address phase. A PCI-X master asserts pci_frame_n to indicate the beginning of a
transaction. At the same time, pci_req64_n is asserted to indicate that a 64-bit transaction is being
requested.

2 PCI-X side: The attribute phase. Additional information about the transaction is provided on
pci_ad[31:0] and pci_cben[3:0]. In this transaction, the total byte count transferred is eight.
Local side: The pci_x latches the address and command signals and decodes the address, verifying if
the address falls within one of the BARs.

3 PCI-X side: Turn-around cycle on the pci_ad[63:0] bus.
Local side: The lto_Cyc is asserted to indicate that a PCI-X transaction is occurring. The pci_x drives
the transaction address on the lto_Addr[31:0] bus and the command address on the
lto_Cmd[3:0] bus. The pci_x also asserts lto_64access to to indicate to the local side that the
current transaction request is 64-bit

4 PCI-X side: The PCI-X bus master asserts pci_irdyn to indicate that it is ready to accept data.

5 PCI-X side: After decoding the transaction address, the pci_x asserts pci_devsel_n and
pci_ack64_n to claim the 64-bit transaction.
Local side: The lto_CycValid signal is asserted to indicate that the pci_x has claimed the transaction.
The lto_Rdy signal is also asserted to indicate that the PCI-X master is ready to accept data. With the
assertion of the lto_CycValid signal, and because the local target is ready to provide data, the
lti_Rdy signal is also asserted. The local side read data is registered in this clock cycle.

6 PCI-X side: With the assertion of lti_Rdy in clock 5, the pci_x asserts pci_trdy_n. Data transfer
occurs in this clock cycle.
Local side: Because the transaction byte count is eight, only one 64-bit data phase is required to expire
the byte count. Therefore, lti_Rdy is deasserted and the local target completes the data transfers.

7 PCI-X side: The pci_x deasserts the pci_trdy_n, pci_devsel_n, and pci_ack64_n signals
because the byte count has been satisfied.
Local side: The lto_Rdy signal is deasserted to indicate that the PCI-X master is not ready to accept
more data.

8 Local side: The lto_CycValid signal is deasserted to indicate to the local side that the current
transaction has ended.
42 Altera Corporation

Specifications

Specifications

3

PCI-X 64-Bit Burst Target Memory Read

Figure 2 shows a 64-bit burst target memory read transaction. The
sequence of events for a burst read transaction is the same as a single-cycle
read transaction; however, during a burst read transaction, more than one
data transfer occurs. Figure 2 shows a 64-bit zero wait-state burst read
transaction with four data phases. Four Qwords are transferred from the
local side in clocks 5 through 8 and are then transferred to the PCI-X side
in clocks 6 through 9.
Altera Corporation 43

Specifications

Specifications

3

Figure 2. PCI-X 64-Bit Burst Target Memory Read Transaction

PCI-X 64-Bit Burst Target Memory Read Transaction with Local Side
Wait States

Figure 3 shows the same transaction as Figure 2 except with the local
target asserting initial wait states. In Figure 3, the local target is not ready
to send data as soon as lto_CycValid is asserted in clock 5. Thus, the
local target asserts two initial wait states and does not assert lti_Rdy
until clock 7.

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad ATTR

0e 00 ff

DATA0

020

DATA1 DATA2

ADDR-LO

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_ReadData

Ito_64access

1 2 3 4 5 76 8 9 10 11 12

ADDR-LO

DATA3

DATA0 DATA1 DATA2 DATA3

00

e

44 Altera Corporation

Specifications

Specifications

3

Figure 3. PCI-X 64-Bit Target Memory Read with Local Side Wait States

PCI-X 64-Bit Target Memory Read with Single Data Phase Disconnect

Figure 4 is identical to Figure 1, with the local side indicating a single data
phase disconnect. In Figure 4, the PCI-X master is requesting to transfer
four QWORDS with lto_TBC signals set to 20 hexadecimal. However, the
local target can only transfer 1 QWORD and therefore, asserts lti_Disc
along with lti_Rdy in clock 5 to indicate a single data phase disconnect.

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_ReadData DATA0 DATA1 DATA2

1 2 3 4 5 76 8 9 10 11 12 13 14

ADDR-LO

0e 00 ff

DATA0 DATA1 DATA2 DATA3ATTR

e

ADDR-LO

020

00

DATA3

Ito_64access
Altera Corporation 45

Specifications

Specifications

3

Figure 4. PCI-X 64-Bit Target Memory Read with Single Data Phase Disconnect
1 2 3 4 5 6 7 8 9 10

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_Disc

Iti_ReadData

ADDR-LO

0e 00 ff

ATTR DATA0

00

ADDR-LO

e

DATA0

020000

Ito_64access
46 Altera Corporation

Specifications

Specifications

3

PCI-X 64-Bit Target Memory Read Transaction with Disconnect at ADB

Figure 5 is identical to Figure 2, with the local target requesting to
disconnect at the ADB by asserting lti_DiscADB. In Figure 5, the
starting address is 5 Qwords from the ADB, and the PCI-X master device
is requesting to transfer 6 Qwords (lto_TBC=12'h12'h030). The local
target asserts lti_DiscADB at the same clock cycle it asserts lti_Rdy in
clock 5. As a result, the pci_x function transfers 1 Qword with the
assertion of pci_trdy_n in clock 6, and in the following 4 clock cycles,
the pci_x function acknowledges the request to disconnect at the ADB by
asserting pci_trdy_n and pci_stop_n.
Altera Corporation 47

Specifications

Specifications

3

Figure 5. PCI-X 64-Bit Target Memory Read Transaction with Disconnect at ADB

In PCI-X protocol, the pci_x responds to three types of 32-bit target read
transactions:

■ Memory read
■ I/O read
■ Configuration read

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_DiscADB

Iti_ReadData

1 2 3 4 5 6 7 8 9 10 11 12 13

ADDR-LO

0e 00 ff

DATA0 DATA2 DATA3 DATA4DATA1ATTR

030

00

DATA0 DATA1 DATA2 DATA3 DATA4

e

ADDR-LO

Ito_64access
48 Altera Corporation

Specifications

Specifications

3

For 32-bit single data phase PCI-X cycles (e.g., DWORD memory, I/O, and
configuration cycles) where the local target device has immediate data,
the pci_x will pick up the data on either the upper or lower 32 bits of the
64-bit local data bus (i.e., lti_ReadData[63:0]). The value of bit 2 in
the address determines whether the data is picked up in the upper or
lower boundary of the data bus. The pci_x will also adjust byte enables,
disabling byte enables for the 32-bit half that is not requested.

PCI-X 32-bit Target Memory Read Transactions

Memory transactions are either single-cycle or burst. For memory
transactions, the pci_x function always assumes a 64-bit local side. For a
32-bit PCI bus, the pci_x function automatically reads 64-bit data on the
local side and transfers the data to the PCI-X master device, one DWORD
at a time.

Figure 6 shows a 32-bit single-cycle target memory read transaction. The
sequence of events in Figure 6 is identical to Figure 1, except for the
following:

■ During the address phase (clock 1), the PCI-X master does not assert
pci_req64_n. The PCI-X master uses the memory read DWORD
command (pci_cbe_n[3:0] = 4'h6) to specifically request a single-
cycle 32-bit transaction.

■ The pci_x function does not assert pci_ack64_n when it asserts
pci_devsel_n.

■ The lto_64access signal is not asserted to indicate (to the local
side) that the current transaction is 32-bits.

Figure 6 shows that with the assertion of lti_Rdy, the local side transfers
a full Qword in clock 5. The pci_x function, however, transfers only the
upper Dword (lti_ReadData[63:32]) to the PCI-X master because the
starting address is at a high Dword boundary, i.e., pci_ad[2] = 1'b1.
This is indicated by lto_BE_n[7:0] = 8'h0F, where a value “0” indicates
valid byte enables and a value “F” indicates invalid byte enables.
Altera Corporation 49

Specifications

Specifications

3

Figure 6. PCI-32 Bit Single-Cycle Target Memory Read Transaction

Figure 7 shows a 32-bit burst target memory read transaction. The
sequence of events in Figure 7 is identical to Figure 6, except for the
following:

■ During the address phase (clock 1), the PCI-X master intends to do a
32-bit burst memory read by not asserting pci_req64_n and
driving the memory read block command (pci_cbe_n[3:0] =
4'hE).

pci_reset_n

ADDR-HI

06 00 ff

ATTR DATA0

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_ReadData

1 2 3 4 5 6 7 8 9 10

ADDR-HI

6

0f

DATA0

000
50 Altera Corporation

Specifications

Specifications

3

■ The pci_x function transfers more than one data phase.

Figure 7 shows that the PCI-X master is requesting to transfer 16 bytes
(lto_TBC = 12'h010). Because Figure 7 represents a 32-bit cycle, the
transaction will require four data phases to complete the byte count. On
clock 5, the pci_x function registers only the upper Dword of DATA0
(indicated by lto_BE_n = 8'h0F) and transfers it to the PCI-X master in
clock 6. In the following clock cycles, the pci_x function registers three
more Dwords and transfers the data to the PCI-X master to satisfy the byte
count request.
Altera Corporation 51

Specifications

Specifications

3

Figure 7. PCI-X 32-Bit Burst Target Memory Read Transaction

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_ReadData

1 2 3 4 5 6 7 8 9 10 11 12

ADDR-LO

0e 00 ff

ATTR DATA0-HI DATA1-LO DATA1-HI DATA2-LO

010

DATA0 DATA1 DATA2

0f 00 fo

e

ADDR-HI
52 Altera Corporation

Specifications

Specifications

3

PCI-X Target I/O Read Transaction

By definition, a PCI-X I/O transaction is 32-bit and single-cycle. Figure 8
shows an I/O read transaction, where bit 2 of the address is 1'b1
(pci_ad[2] = 1'b1). The pci_x uses this information to determine where
to register the data and drive the byte enables. Because the I/O read was
to the high Dword, the data that appears on lti_ReadData[63:32] is
driven on pci_ad[31:0]. In addition, the byte enables that appear on
pci_cbe_n[3:0] also appear on lto_BE_n[7:4]. The pci_x
intentionally disables the lower byte enables, i.e., lto_BE_n[3:0] =
4'hF.
Altera Corporation 53

Specifications

Specifications

3

Figure 8. PCI-X I/O Read Transaction

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_ReadData

1 2 3 4 5 6 7 8 9 10

ADDR-HI

02 00 ff

ATTR DATA0

0f

000

ADDR-HI

2

DATA0
54 Altera Corporation

Specifications

Specifications

3

PCI-X Target Configuration Read Transaction

By definition, a PCI-X configuration transaction is 32-bit and single-cycle.
Figure 9 shows configuration read transaction, where bit 2 of the address
is 1'b0 (pci_ad[2] = 1'b0). The pci_x uses this information to determine
where to register the data and drive the byte enables. Because the I/O read
was to the low Dword, the data that appears on lti_ReadData[31:0]
is driven on pci_ad[31:0]. In addition, the byte enables that appear on
pci_cbe_n[3:0] also appear on lto_BE_n[3:0]. The pci_x
intentionally disables the upper byte enables, i.e., lto_BE_n[7:4] =
4'hF.
Altera Corporation 55

Specifications

Specifications

3

Figure 9. PCI-X Configuration Read Transaction

PCI-2.2 Target Read Transactions

As stated earlier, from the perspective of the local target bus the behavior
of the pci_x during PCI-2.2 cycles is similar to the behavior during PCI-X
cycles. Also, because the PCI bus can be 32-bit or 64-bit and the local target
is always 64-bit, the pci_x does some data and byte-enable manipulation
to accommodate for the data mismatch.

The following are some general operating rules for PCI-2.2 target read
transactions:

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

ADDR

0a 00 ff

ATTR DATA0

f0

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

1 2 3 4 5 6 7 8 9 10 11 12 13 14

XADDR

a

56 Altera Corporation

Specifications

Specifications

3

■ For memory burst cycles, whether there is a 32-bit or 64-bit PCI
master device running the cycle, the pci_x will accept read data
from the local target bus in 64-bit increments.

■ For 32-bit single data phase PCI-2.2 cycles (e.g., memory, I/O, and
configuration cycles), the pci_x will pick up the data on either the
lower or upper 32 bits of the 64-bit local data bus
(lti_ReadData[63:0]). The value of bit 2 in the address
determines whether the data is picked up in the upper or lower
boundary of the data bus. The MegaCore will also adjust the byte
enables, disabling the byte enables for the 32-bit half that was not
requested.

■ For all read cycles, parity error information (lti_Perr) for a
particular data phase can be driven by the local target along with the
assertion of lti_Rdy. At this point, the pci_x intentionally drives
the data with bad parity on the PCI bus.

■ The address presented to the local bus is the same as the PCI-2.2
address. Therefore, when the pci_x is operating in PCI-2.2 protocol,
the address presented for a memory read cycle is either Dword- or
Qword-aligned, depending on the data width of the PCI master
device. I/O cycles have byte-aligned addresses in PCI-2.2.

■ PCI-2.2 delayed transaction support: The pci_x does not make any
assumptions as to whether the local target is going to provide data
immediately during reads (e.g., memory, I/O, or configuration
cycles) or use the PCI-2.2 delayed transaction protocol to get the read
data from the final destination. When a local target retries the pci_x
during a read cycle, the pci_x does not know if any cycle has been
enqueued or not. Local targets using the PCI-2.2 delayed transaction
protocol are responsible for storing the relevant transaction
information. The pci_x will however, throughout the assertion of
lto_Cyc, maintain a stable value for address (lto_Addr),
command (lto_Cmd), and 64-bit PCI master information
(lto_64access) to assist in the storing of the transaction
information.

In PCI-2.2 protocol, the pci_x support two types of 64-bit target read
transactions:

■ Memory single-cycle read
■ Memory burst read

For both types of read transactions, the sequence of events is the same and
can be divided into the following steps:
Altera Corporation 57

Specifications

Specifications

3

1. The address phase occurs when the PCI-X master asserts
pci_frame_n and pci_req64_n signals and drives the address
and command on pci_ad[31:0] and pci_cbe_n[3:0],
correspondingly. Asserting the pci_req64_n signal indicates to the
target device that the master device is requesting a 64-bit data
transaction.

2. Turn-around cycles on the pci_ad[63:0] bus occur during the
clock immediately following the address phase. During the turn-
around cycles, the PCI master tri-states the pci_ad[63:0] bus.
This process is necessary because the PCI agent driving the
pci_ad[63:0] bus changes during read cycles.

3. If the address of the transactions matches one of the base address
registers, the pci_x function turns on the drivers for the
pci_ad[63:0], pci_devsel_n, pci_ack64_n, pci_trdy_n,
and pci_stop_n signals. The drivers for pci_par and pci_par64
are turned on in the following clock.

4. The pci_x function drives and asserts pci_devsel_n and
pci_ack64_n to indicate to the master device that it is accepting the
64-bit transaction.

5. One or more data phases follow next, depending on the type of read
transaction.

PCI-2.2 64-Bit Single-Cycle Target Memory Read Transaction

The sequence of events for a 64-bit PCI-2.2 single-cycle target memory
read transaction (shown in Figure 10) is the same as a 64-bit PCI-X single-
cycle target memory read transaction (shown in Figure 1), except for the
following:

■ There is no attribute phase (clock 2).
■ If the pci_x function is the target of a transaction, it claims the

transaction three clocks after the assertion of pci_frame_n by
asserting pci_devsel_n. The pci_x function is a slow decode
device in PCI-2.2 protocol and a decode C device in PCI-X protocol.
58 Altera Corporation

Specifications

Specifications

3

Figure 10. PCI 64-Bit Single-Cycle Target Memory Read Transaction

PCI-2.2 64-Bit Burst Target Memory Read Transaction

Figure 11 shows a 64-bit burst target memory read transaction. It is similar
to Figure 10, except that Figure 11 describes a four Qword data transfer
transaction.

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_ReadData

1 2 3 4 5 6 7 8

ADDR-LO

06 00

DATA0

DATA0

00

6

ADDR-LO
Altera Corporation 59

Specifications

Specifications

3

Figure 11. PCI-2.2 64-Bit Burst Target Memory Read Transaction

The pci_x function responds to three types of 32-bit target read
transactions:

■ Memory read
■ I/O read
■ Configuration read

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_ReadData

1 2 3 4 5 6 7 8 9 10 11

ADDR-LO

06 00

DATA0 DATA1 DATA2 DATA3

DATA0 DATA1 DATA2 DATA3

00

6

ADDR-LO
60 Altera Corporation

Specifications

Specifications

3

PCI 32-bit Target Memory Read Transactions

Memory transactions are either single- or burst-cycle. For memory
transactions, the pci_x always assumes a 64-bit local side. Assuming a
32-bit PCI bus, the pci_x function automatically reads 64-bit data on the
local side and transfers the data to the PCI master, one DWORD at a time.

Figure 12 shows a 32-bit single-cycle target memory read transaction. The
sequence of events in Figure 12 is identical to Figure 10, except for the
following:

■ During the address phase (clock 1), the PCI-X master does not assert
pci_req64_n to request a 32-bit transaction.

■ The pci_x function does not assert pci_ack64_n when it asserts
pci_devsel_n.

■ The local side signal, lto_64access, is not asserted to indicate that
the current transaction is 32-bits.

Figure 12 shows that the local side transfers a full Qword in clock four
with the assertion of lti_Rdy. The pci_x function, however, transfers
only the upper Dword (lti_ReadData[63:32]) to the PCI master
because the starting address is at a high Dword boundary, i.e.,
pci_ad[2] = 1'b1. This is indicated by lto_BE_n[7:0] = 8'h0F, where
a value “0” indicates valid byte enables and a value “F” indicates invalid
byte enables.
Altera Corporation 61

Specifications

Specifications

3

Figure 12. PCI 32-Bit Single-Cycle Target Memory Read Transaction

Figure 13 shows a 32-bit burst target memory read transaction. The
sequence of events in Figure 13 is identical to Figure 12, except for the
multiple data phases. In clock 4, the pci_x function registers only the
upper Dword of DATA0 (indicated by lto_BE_n[7:0] = 8'h0F) and
transfers it to the PCI master device in clock 5. In the following clock
cycles, the pci_x function registers three more Dwords and transfers the
data to the PCI master device.

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

1 2 3 4 5 6 7 8

ADDR-HI

06 00

DATA0-HI

0f

6

ADDR-HI
62 Altera Corporation

Specifications

Specifications

3

Figure 13. PCI-2.2 32-Bit Burst Target Memory Read Transaction

1 PCI-2.2 target I/O and configuration read transactions are nearly
identical to PCI-X transactions, i.e., PCI-X transactions have an
attribute phase. Go to “PCI-X Target I/O Read Transaction” on
page 53 and “PCI-X Target Configuration Read Transaction” on
page 55 for more information.

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_ReadData

1 2 3 4 5 6 7 8 9

ADDR-HI

06 00

DATA1-LO DATA2-LODATA1-HIDATA0-HI

0f 00 f0

DATA2DATA1DATA0

6

ADDR-HI
Altera Corporation 63

Specifications

Specifications

3

Target Write Transactions

The pci_x function performs both PCI-X and PCI-2.2 target write
transactions. There are a few major differences between the PCI-X and
PCI-2.2 target write transactions; however, from the perspective of the
local target bus, behavior of the pci_x during the transactions is similar.

PCI-X transactions include an attribute phase, block cycle support, and
split transaction support. See “Target Read Transactions” on page 38 for
more information.

The following are some general operating rules for PCI-X and PCI-2.2
target write transactions:

■ Because the PCI-X or PCI-2.2 bus can operate as a 64- or 32-bit bus
and the local target bus is 64-bit, the pci_x performs some data and
byte enable manipulation to compensate for the data-width
mismatch.

■ For 32-bit single data phase PCI-X or PCI-2.2 cycles (i.e., Dword
memory, I/O, and configuration cycles), the pci_x function will
place the data on the lower or upper 32-bits of the 64-bit local data
bus (lto_WriteData). The value of bit 2 in the address determines
whether the data is picked up in the upper or lower boundary of the
data bus. The pci_x will also adjust the byte enables, disabling the
byte enables for the 32-bit half that was not transferred.

■ For all PCI-X and PCI-2.2 memory writes, parity information for a
particular data phase appears two clocks after the assertion of
lto_Rdy. The pci_x calculates expected parity and drives
lto_Perr to 1'b1 to indicate that the data driven with lto_Rdy two
clocks earlier has bad parity. Local targets can choose to use the
parity information either on a per data phase basis or a per
transaction basis.

■ The pci_x function will continue to treat configuration and I/O
writes differently from memory writes. For memory writes,
lto_Rdy is asserted after data transfers have taken place on the
PCI-X or PCI-2.2 bus. However for configuration and I/O writes,
lto_Rdy is asserted and the data is driven on the local target bus
before any data transfers have taken place on the PCI-X or PCI-2.2
bus. The pci_x first waits for data and parity information from the
PCI-X or PCI-2.2 bus. When the pci_x asserts lto_Rdy,
lto_WriteData shows the data being driven by the PCI-X or PCI-
2.2 master device. The value of lto_Perr in the same clock informs
the local target whether the data being written has good or bad
parity. Local targets can use this feature to prevent overwriting
critical registers with bad data.
64 Altera Corporation

Specifications

Specifications

3

PCI-X Target Write Transactions

The following are some general operating rules for PCI-X target write
transactions:

■ For burst memory write cycles (i.e., memory write or memory write
block), regardless of whether there is a 32-bit or 64-bit PCI-X master
running the cycle, the pci_x will forward the write data to the local
target bus in 64-bit increments. While the PCI-X master device does
not drive any byte enables for a memory write block transaction
(pci_be_n bus is reserved drive high), the pci_x will generate
valid byte enables on the local target lto_BE_n lines on a per data
phase basis.

■ The address presented to the local bus is the same as the PCI-X
address. Therefore, when the pci_x is operating in PCI-X protocol,
the address specified on lto_Addr is byte aligned, except for
configuration transactions, which are DWORD aligned (indicates the
configuration transaction type).

In PCI-X protocol, the pci_x function responds to two types of 64-bit
target write transactions:

■ Memory single-cycle write
■ Memory bust write

PCI-X 64-Bit Single-Cycle Target Memory Write Transaction

Figure 14 shows the waveforms for a PCI-X 64-bit single-cycle target
memory write transaction.
Altera Corporation 65

Specifications

Specifications

3

Figure 14. PCI-X 64-Bit Single-Cycle Target Memory Write Transaction

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

Ito_64access

Ito_WriteBurst

1 2 3 4 5 6 7 8 9 10

ADDR-LO

0f 00 ff

ATTR DATA0

08

DATA0

00

ADDR-LO

f

66 Altera Corporation

Specifications

Specifications

3

Table 3 shows the sequence of events for a PCI-X 64-bit single-cycle target
memory write transaction.

PCI-X 64-Bit Burst Target Memory Write Transaction

Figure 15 shows a 64-bit burst target memory write transaction. The
sequence of events for a burst write transaction is the same as a single-
cycle write transaction; however, during a burst write transaction more
than one data transfer occurs. Figure 15 shows a 64-bit zero wait-state
burst write transaction with four data phases. Four Qwords are
transferred from the PCI-X side in clocks 6 through 9 and are then
transferred to the local side in clocks 7 through 10. In addition, the
assertion of lto_WriteBurst indicates that another data transfer should
occur in the following clock cycle.

Table 3 .Single-Cycle Target Memory Write Transaction

Clock
Cycle

Event

1 PCI-X side: The address phase. A PCI-X master device asserts pci_frame_n to indicate the
beginning of a transaction. The pci_req64_n is asserted to indicate that a 64-bit transaction is being
requested.

2 PCI-X side: The attribute phase. Additional information about the transaction is provided on
pci_ad[31:0] and pci_cben[3:0]. In this transaction, the total byte count transferred is eight.
Local side: The pci_x latches the address and command data, and then decodes the address to verify
that it falls within the BAR range.

3 PCI-X side: Turn-around cycle on the ad[63:0] bus.
Local side: The lto_Cyc is asserted to indicate that a PCI-X transaction is occurring.
The pci_x drives the transaction address on the lto_Addr[31:0] bus and the command data on
the lto_Cmd[3:0] bus. The pci_x also asserts lto_64access to indicate (to the local side) that
the current transaction request is 64-bit.

4 PCI-X side: The PCI-X master device asserts pci_irdy_n to indicate that it is ready to send data.

5 PCI-X side: After decoding the transaction address, the pci_x function asserts pci_devsel_n and
pci_ack64_n to claim the 64-bit transaction.
Local side: The lto_CycValid signal is asserted to indicate that the pci_x function has claimed the
transaction. With the assertion of lto_CycValid, and because the local target is ready to provide
data, lti_Rdy is also asserted.

6 PCI-X side: With the assertion of lti_Rdy in the clock 5, the pci_x function asserts pci_trdy_n.
Data transfer occurs in this clock cycle.

7 PCI-X side: The pci_x function deasserts pci_trdy_n, pci_devsel_n, and pci_ack64_n
because the byte count has been satisfied.
Local side: The lto_Rdy signal is asserted to indicate that thelto_WriteData[63:0] data is valid.

8 Local side: The lto_CycValid signal is deasserted to indicate to the local side that the current
transaction has ended. Also, the local target deasserts lti_Rdy because the transaction has ended.
Altera Corporation 67

Specifications

Specifications

3

Figure 15. PCI-X 64-Bit Burst Target Memory Write Transaction

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

Ito_64access

Iti_WriteBurst

1 2 3 4 5 6 7 8 9 10 11 12

ADDR-LO

0f 00 ff

ATTR DATA0 DATA1 DATA2 DATA3

DATA0 DATA1 DATA2 DATA3

020

ADDR-LO

f

00
68 Altera Corporation

Specifications

Specifications

3

PCI-X 64-Bit Burst Target Memory Write Transaction with Wait States

Figure 16 is identical to Figure 15, except with the local target asserting
initial wait-states. In Figure 16, the local target is not ready to accept data
as soon as lto_CycValid is asserted in clock 5. Thus, the local target
asserts two initial wait-states and does not assert lti_Rdy until clock 7.
Altera Corporation 69

Specifications

Specifications

3

Figure 16. PCI-X 64-Bit Burst Target Memory Write Transaction with Local Side Wait-States

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

Ito_64access

Ito_WriteBurst

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ADDR-LO

0f 00 ff

ATTR DATA0 DATA1 DATA2 DATA3

020

DATA0 DATA1 DATA2 DATA3

00

ADDR-LO

f

70 Altera Corporation

Specifications

Specifications

3

PCI-X 64-Bit Burst Target Memory Write Transaction with Byte Enables
(PCI-X Command 7)

Figure 17 is the same as Figure 15, except that in Figure 17 the PCI-X
command is 7, which by definition allows the PCI-X master device to set
byte enables for each data phase.

Figure 17. PCI-X 64-Bit Burst Target Memory Write Transaction with Byte Enables (PCI-X Command 7)

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

Ito_64access

1 2 3 4 5 6 7 8 9 10 11 12

ADDR-LO

07 00 ab cd ef ab

ATTR DATA0 DATA1 DATA2 DATA3

ab cd ef ab af zx

DATA0 DATA1 DATA2 DATA3

ADDR-LO

7

020
Altera Corporation 71

Specifications

Specifications

3

PCI-X 64-Bit Target Memory Write Transaction with Single Data Phase
Disconnect

Figure 18 shows the same transaction as in Figure 14, except with the local
side indicating a single data phase disconnect. In Figure 18, the PCI-X
master device is requesting to transfer four Qwords with lto_TBC set to
20 hexadecimal. However, the local target can only accept one Qword and
therefore, asserts lti_Disc along with lti_Rdy in clock 5 to indicate a
single data phase disconnect.
72 Altera Corporation

Specifications

Specifications

3

Figure 18. PCI-X 64-Bit Target Memory Write Transaction with Single Data Phase Disconnect

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_Disc

Ito_WriteData

Ito_64access

Ito_WriteBurst

1 2 3 4 5 6 7 8 9 10

ADDR-LO

0f 00 ff

ATTR DATA0

020

DATA0

00

f

ADDR-LO
Altera Corporation 73

Specifications

Specifications

3

PCI-X 64-Bit Target Memory Write Transaction with Disconnect at ADB

Figure 19 shows the same transaction as Figure 15 with the local target
requesting to disconnect at the ADB by asserting lti_DiscADB. In
Figure 19, the starting address is five Qwords from the ADB, and the PCI-
X master is requesting to transfer six Qwords (lto_TBC = 12'h030). The
local target asserts lti_DiscADB on the same clock cycle aslti_Rdy, i.e.,
clock 5. As a result, the pci_x function transfers one Qword with the
assertion of pci_trdy_n in clock 6, and in the following 4 clock cycles,
the pci_x function acknowledges the request to disconnect at the ADB by
asserting pci_trdy_n and pci_stop_n.
74 Altera Corporation

Specifications

Specifications

3

Figure 19. PCI-X 64-Bit Target Memory Write Transaction with Disconnect at ADB

In PCI-X protocol, the pci_x function responds to three types of 32-bit
target write transactions:

■ Memory write
■ I/O write
■ Configuration write

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_DiscADB

Iti_WriteData

1 2 3 4 5 6 7 8 9 10 11 12 13

ADDR-LO

0f 00 ff

DATA0 DATA2 DATA3 DATA4DATA1ATTR

030

00

DATA0 DATA1 DATA2 DATA3 DATA4

f

ADDR-LO
Altera Corporation 75

Specifications

Specifications

3

PCI-X 32-bit Target Memory Write Transactions

Memory transactions are either single-cycle or burst. For memory
transactions, the pci_x function always assumes a 64-bit local side. The
pci_x function reads one DWORD at a time if the PCI bus is 32-bits wide
and then automatically transfers 64-bit data to the local side.

Figure 20 shows a 32-bit single-cycle target memory write transaction. The
sequence of events in Figure 20 is identical to Figure 14, except for the
following:

■ During the address phase (clock 1), the PCI-X master does not assert
pci_req64_n to indicate a 32-bit transaction.

■ The pci_x function does not assert pci_ack64_n when it asserts
pci_devsel_n.

■ The local side signal, lto_64access, is not asserted to indicate (to
the local side) that the current transaction is 32-bits.

Figure 20 shows that the pci_x registers a Dword from the PCI-X master
device in clock 6, and because the starting address is a high Dword
boundary (pci_ad[2] = 1'b1), the pci_x function transfers the Dword to
the local side on lto_WriteData[63:32]. This is indicated by
lto_BE_n[7:0] = 8'h0F, where a value "0" indicates valid byte enables
and a value "F" indicates invalid byte enables.
76 Altera Corporation

Specifications

Specifications

3

Figure 20. PCI-X 32-Bit Single-Cycle Target Memory Write Transaction

Figure 21 shows a 32-bit burst target memory write transaction. The
sequence of events in Figure 21 is exactly the same as in Figure 20, except
more than one data phase occurs.

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

1 2 3 4 5 6 7 8 9 10

ADDR-HI

0f 00 ff

ATTR DATA0

004000

DATA0

0f 00

f

ADDR-HI
Altera Corporation 77

Specifications

Specifications

3

Figure 21 shows that the PCI-X master requests to transfer 16 bytes
(lto_TBC = 12'h010). Because this is a 32-bit transaction, four data phases
are required to complete the byte count. In clock 6, the pci_x registers a
Dword. In the following clock cycle (clock 7), the pci_x function transfers
the Dword to the local side on lto_WriteData[63:32]. Because the
starting address is a high Dword boundary, the data transfer is indicated
to the local side with the assertion of lto_Rdy and lto_BE_n[7:0] =
8'h0F. In addition, the pci_x registers another Dword in clock 7.
However, this time the pci_x does not transfer the Dword to the local
side in the following cycle. Instead, the pci_x captures another Dword
from the PCI-X master device in clock 8, and then transfers a Qword on
lto_WriteData[63:0], which is indicated to the local side with the
assertion of lto_Rdy and lto_BE_n[7:0] = 8'h00 in clock 9. The last
Dword is transferred to the local side in clock 10 on
lto_WriteData[31:0], which is indicated to the local side with the
assertion of lto_Rdy and lto_BE_n[7:0] = 8'hF0.
78 Altera Corporation

Specifications

Specifications

3

Figure 21. PCI-X 32-Bit Burst Target Memory Write Transaction

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_WriteData

It0_WriteBurst

1 2 3 4 5 6 7 8 9 10 11 12

ADDR-HI

0f 00 ff

ATTR DATA0 DATA1 DATA2 DATA3

DATA0 DATA3

0f 00 f0

010

ADDR-HI

f

[DATA2 & DATA1]
Altera Corporation 79

Specifications

Specifications

3

PCI-X Target I/O Write Transaction

By definition, a PCI-X I/O transaction is 32-bit and single-cycle. Figure 22
shows an I/O write transaction, where bit 2 of the address is 1'b1
(pci_ad[2] = 1'b1). The pci_x uses the address information to
determine where to register the data and the drive the byte enables.
Because the I/O data is driven to the upper Dword boundary, the data
that appears on pci_ad[31:0] also appears on
lto_WriteData[63:32]. In addition, the byte enables that appear on
pci_cbe_n[3:0] also appear on lto_BE_n[7:4]. The pci_x
intentionally disables the lower byte enables, i.e., lto_BE_n[3:0] =
4'hF.
80 Altera Corporation

Specifications

Specifications

3

Figure 22. PCI-X I/O Write Transaction

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

1 2 3 4 5 6 7 8 9 10 11 12

ADDR-HI

03 00 f0

ATTR DATA0

000

DATA0

0f

3

ADDR-HI
Altera Corporation 81

Specifications

Specifications

3

PCI-X Target Configuration Write Transaction

By definition, a PCI-X configuration transaction is 32-bit and single-cycle.
Figure 23 shows a configuration write transaction, where bit 2 of the
address is 1'b1 (pci_ad[2] = 1'b1). The pci_x uses the address
information to determine where to register the data and drive the byte
enables. Because the I/O write data was driven to the high Dword
boundary, the data that appears on pci_ad[31:0] is driven on
lto_WriteData[63:32]. In addition, the byte enables that appear on
pci_cbe_n[3:0], the clock after the address phase, also appear on
lto_BE_n[7:4]. The pci_x intentionally disables the lower byte
enables, i.e., lto_BE_n[3:0] = 4'hF.
82 Altera Corporation

Specifications

Specifications

3

Figure 23. PCI-X Configuration Write Transaction

PCI-2.2 Target Write Transactions

As stated earlier, from the perspective of the local target bus the behavior
of the pci_x during PCI-2.2 cycles is similar to the behavior during PCI-
X cycles. Also, because the PCI bus can be 32-bit or 64-bit and the local
target is always 64-bit, the pci_x does some data and byte-enable
manipulation to accommodate for the data mismatch.

pci_reset_n

ADDR-Hl

DATA0

0f

ATTR

000b

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b

ADDR-HI

DATA0

ff
Altera Corporation 83

Specifications

Specifications

3

The following are some general operating rules for PCI-2.2 target write
transactions:

■ For burst memory write cycles, regardless of whether there is a 32-bit
or 64-bit PCI-2.2 master device running the cycle, the pci_x will
forward the write data to the local target bus in 64-bit increments.

■ The address presented to the local bus is the same as the PCI-2.2
address. Therefore, when the pci_x is operating in PCI-2.2 protocol,
the address presented for a memory write cycle is either Dword- or
Qword-aligned, depending on whether the PCI master device is 32-
bit or 64-bit. I/O cycles have byte-aligned addresses in PCI-2.2.

■ PCI-2.2 Delayed Transaction Support: The pci_x does not make any
assumptions as to whether the local target is going to accept data
immediately during configuration or I/O writes or use the PCI-2.2
Delayed Transaction protocol to forward the write data to the final
destination. When a local target retries the pci_x during an I/O or
configuration write cycle, the pci_x does not know if any cycle has
been enqueued or not. Local targets using the PCI-2.2 Delayed
Transaction protocol are responsible for storing the relevant
transaction information. However the pci_x will, throughout the
assertion of lto_Cyc, maintain stable values for the
address(lto_Addr), command (lto_Cmd), and 64-bit PCI master
information (lto_64access) in order to assist in storing the
transaction information.

■ For configuration and I/O write cycles, the pci_x will drive data and
parity information on the local bus even if it has not received a
response from the local target. Local targets that are using the PCI-2.2
Delayed Transaction protocol can then store the relevant data and
parity information.

In PCI-2.2 protocol, the pci_x supports two types of 64-bit write
transactions:

■ Memory single-cycle read
■ Memory burst read

For both types of read transactions, the sequence of events is the same and
can be divided into the following steps:

1. The address phase occurs when the PCI master asserts
pci_frame_n and pci_req64_n signals and drives the address
and command on the pci_ad[31:0] and pci_cbe_n[3:0] buses,
correspondingly. Asserting the pci_req64_n signal indicates to the
target device that the master device is requesting a 64-bit data
transaction.
84 Altera Corporation

Specifications

Specifications

3

2. If the address of the transactions matches one of the BARs, the
pci_x function turns on the drivers for the pci_ad[63:0],
pci_devsel_n, pci_ack64_n, pci_trdy_n, and pci_stop_n
signals. The drivers for pci_par and pci_par64 are turned on in
the following clock cycle.

3. The pci_x function drives and asserts pci_devsel_n and
pci_ack64_n to indicate to the master device that it is accepting the
64-bit transaction.

4. One or more data phases follow next, depending on the type of write
transaction.

PCI-2.2 64-Bit Single-Cycle Target Memory Write Transaction

Figure 24 shows a 64-bit single-cycle target memory write transaction. The
sequence of events in Figure 24 is identical to Figure 14, except for the
following:

■ There is no attribute phase (clock cycle 2)
■ If the pci_x is the target of a transaction, it will claim the transaction

three clocks after the assertion of pci_frame_n by asserting
pci_devsel_n. The pci_x is a slow decode device in PCI-2.2 and
decode C device in PCI-X.
Altera Corporation 85

Specifications

Specifications

3

Figure 24. PCI-2.2 64-Bit Single-Cycle Target Memory Write Transaction

PCI-2.2 64-Bit Burst Target Memory Write Transaction

Figure 25 shows a 64-bit burst target memory write transaction. Figure 25
is similar to Figure 24, except that the former transaction is a four Qword
data transfer.

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_WriteData

Ito_64acess

Ito_WriteBurst

1 2 3 4 5 6 7 8

ADDR-LO

07 00

DATA0

00

DATA0

7

ADDR-LO
86 Altera Corporation

Specifications

Specifications

3

Figure 25. PCI-2.2 64-Bit Burst Target Memory Write Transaction

In PCI-2.2 protocol, the pci_x function responds to three types of 32-bit
target write transactions:

■ Memory read
■ I/O read
■ Configuration read

pci_idsel

1 2 3 4 5 6 7 8 9 10 11
pci_reset_n

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Iti_WriteData

Ito_64acess

Ito_WriteBurst

ADDR-LO

07 00

DATA0 DATA1 DATA2 DATA3

DATA0 DATA1 DATA2 DATA3

00

7

ADDR-LO
Altera Corporation 87

Specifications

Specifications

3

PCI-2.2 32-bit Target Memory Write Transactions

Memory transactions are either single- or burst-cycle. For memory
transactions, the pci_x function always assumes a 64-bit local side. The
pci_x function registers one Dword at a time if the PCI bus is 32-bit and
then automatically transfers 64-bit data increments to the local side.

Figure 26 shows a 32-bit single-cycle target memory write transaction. The
sequence of events in Figure 26 is identical to Figure 24, except for the
following:

■ During the address phase (clock 1), the PCI master does not assert
pci_req64_n to request a 32-bit transaction.

■ The pci_x does not assert pci_ack64_n when it asserts
pci_devsel_n.

■ The local side signal, lto_64access, is not asserted to indicate (to
the local side) that the current transaction is 32-bits.

Because the starting address is a high Dword boundary, Figure 26 shows
that the pci_x function registers a Dword in clock 5 and then in clock 6
transfers the Dword to the local side on the lto_WriteData[63.32]
bus (indicated by the assertion of lto_Rdy and lto_BE_n[7:0] =
8'h0F).
88 Altera Corporation

Specifications

Specifications

3

Figure 26. PCI-2.2 32-Bit Single-Cycle Target Memory Write Transaction

Figure 27 shows a 32-bit burst target memory write transaction. The
sequence of events in Figure 27 is identical to Figure 26, except for the
multiple data phases. In clock 5, the pci_x function registers a Dword.
Because the starting address is a high Dword boundary, the pci_x
transfers the Dword to the local side on the
lto_WriteData[63:32]bus (indicated to the local side with the
assertion of lto_Rdy and lto_BE_n[7:0] = 8'h0F) in clock 6. Also in
clock 6, the pci_x function registers another Dword.

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

Ito_WriteBurst

1 2 3 4 5 6 7 8

ADDR-HI

07 00

DATA0

0f

DATA0

7

ADDR-HI
Altera Corporation 89

Specifications

Specifications

3

However, the pci_x does not transfer the Dword to the local side in
clock 7. Instead, the pci_x captures another Dword from the PCI-2.2
master device in clock 7, and then transfers a Qword on the
lto_WriteData[63:0] bus (indicated to the local side with the
assertion of lto_Rdy and lto_BE_n[7:0] = 8'h00) in clock 8. The last
Dword is transferred to the local side in clock 9 on the
lto_WriteData[31:0] bus (indicated to the local side with the
assertion of lto_Rdy and lto_BE_n[7:0] = 8'hF0).
90 Altera Corporation

Specifications

Specifications

3

Figure 27. PCI-32 Bit Burst Target Memory Write Transaction

1 PCI-2.2 target I/O and configuration write transactions are
nearly identical to PCI-X transactions, i.e., PCI-X transactions
have an attribute phase. Go to “PCI-X Target I/O Write
Transaction” on page 80 and “PCI-X Target Configuration Write
Transaction” on page 82 for more information.

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

Ito_WriteBurst

1 2 3 4 5 6 7 8 9 10 11

ADDR-HI

07 00

DATA0 DATA1 DATA2 DATA3

0f f0 00 f0

DATA0 DATA3

7

ADDR-HI

[DATA2 , DATA1]
Altera Corporation 91

Specifications

Specifications

3

Master Mode
Operation

This section describes all supported master transactions for the pci_x
function and includes waveform diagrams showing typical PCI(X) cycles
in master mode. As a master device, the pci_x supports all types of PCI-X
and PCI-2.2 command types, including special cycle commands.

Because the local master interface does not completely isolate the local
master device from potential data-width mismatches, it is necessary for
local master devices to be prepared to initiate both Qword and Dword
transactions.

Still, the pci_x will initiate most transactions with 64-bit data width
(Qword), the exceptions are as follows:

■ PCI-X protocol: For DWORD commands cycles (e.g., DWORD
memory, I/O, and configuration).

■ PCI-2.2 protocol: For transactions with a high Dword starting
address, pci_ad[2] = 1’b1 (e.g., I/O, configuration, and memory
transactions).

■ For master read cycles, the pci_x provides the local master with
transfer status (lmo_XferHi/lmo_XferLo) on a per Dword (32-bit)
basis. Local masters use the transfer status information as an
indication of when the pci_x is providing valid data on the local
bus. The transfer status signals are also used to help the local master
increment its address. Thus, the master can re-initiate a terminated
transaction if it is terminated before the master is able to completely
receive all the read data requested.

■ For master write cycles, the pci_x also provides the local master
with transfer status (lmo_XferHi/lmo_XferLo) on a per Dword
(32-bit) basis. Local masters use the transfer status as an indication of
whether the pci_x has successfully transferred the data on the
PCI(X) bus. The transfer status signals are also used:
– To determine when the local master must provide the next data

phase.
– To help the local master increment its address so that the local

master can re-initiate a terminated transaction if it is terminated
before the local master is able to completely send all the data
originally intended to write.

Addressing

Addressing requirements are different for PCI-X and PCI-2.2 protocols. In
PCI-X protocol there are less stringent starting address requirements—
beyond the byte-alignment requirement. By contrast, in PCI-2.2 protocol
the addressing requirements are more stringent. Also, 64-bit addressing is
fully supported in PCI-X, whereas in PCI-2.2, 64-bit addressing was an
optional feature.
92 Altera Corporation

Specifications

Specifications

3

PCI-X Protocol Addressing

In PCI-X protocol, although all addressing must be byte-aligned
(including memory transactions) the address can have either Qword or
Dword-granularity. The pci_x will initiate all burst-type transactions as
64-bit transactions, and all DWORD-type transactions as single data phase
32-bit transactions on the PCI-X bus—regardless of the value of
lmi_DPhaseCnt.

PCI-2.2 Protocol Addressing

For PCI-2.2 protocol, the pci_x requires that local the master issue all
memory requests with addresses that have Qword granularity, i.e.,
lmi_Addr[2:0] = 3’b000. Exceptions to this requirement are noted in
“In PCI-2.2 Protocol When The Local Master Device Must Initiate a Cycle
With High Dword Address”.

For all memory transactions that have an lmi_DPhaseCnt greater than
one and if lmi_Addr[2] = 0, the pci_x will initiate the transactions as
64-bit. However, for all memory transactions that have an
lmi_DPhaseCnt greater than one and if lmi_Addr[2] = 1 (i.e., a high
Dword address), the pci_x will initiate the transactions as 32-bit. If the
local master wants to transfer a large amount of data, the second approach
is not very efficient. Also, the pci_x uses bit 2 of the address to
accommodate a special case of PCI target termination (See “In PCI-2.2
Protocol When The Local Master Device Must Initiate a Cycle With High
Dword Address”).

All other cycle types can be issued with addresses that have byte
granularity.

In PCI-2.2 Protocol When The Local Master Device Must Initiate a
Cycle With High Dword Address

Under normal operating conditions, the pci_x always initiates memory
transactions as 64-bit when the lmi_DPhaseCnt is greater than one.
However, there is a potential livelock condition, (See PCI SIG’s PCI Local
Bus Specification, Rev. 2.2), where a 32-bit PCI non-bursting target can
infinitely retry a 64-bit PCI master device. To avoid this problem, there is
a condition on the local master bus, following which the local master must
initiate a cycle with a high Dword address (lmi_Addr[2] = 1'b1). The
algorithm is described below:

If the local master initiates a transaction of the following type:

■ lmi_Cmd is a memory command
Altera Corporation 93

Specifications

Specifications

3

■ lmi_DPhaseCnt is greater than one
■ Address is Qword aligned (i.e., lmi_Addr[2] = 1'b0)
■ lmi_BE_[7:0] = 8'hxx, all 8 bits are whatever the local master

specifies

Then the pci_x will initiate a 64-bit transaction.

If the pci_x terminates the cycle by asserting lmo_XferLo, lmo_Retry,
and lmo_CycDone, then the local master must initiate the retried cycle
with the following parameters:

■ lmi_Cmd is a memory command
■ i2tiDPhaseCnt is greater than one
■ The address should be a high Dword address, i.e., the address is now

Dword-aligned and lmi_Addr[2] = 1'b1
■ Byte enables should be lmi_BE_[7:0] = 8'hxF, where the lower 4

bits are 4'hF but the upper 4 bits are whatever the local master
specifies

At this point, the pci_x will:

■ Initiate a 32-bit transaction, (i.e., not assert pci_req64_n),
■ Assert lmo_XferLo and lmo_XferHi. However, the first

lmo_XferLo must be ignored by the local master consistent with
lmi_BE_[7:0] being 8'hxF—i.e., the lower 4 byte enables are not
enabled.

64-bit Addressing

The pci_x supports full 64-bit addressing for all local to PCI(X) cycles,
which is a new feature in PCI-X. If lti_Addr[63:0] has an address
greater than 4 GB, the pci_x will initiate a DAC in both PCI-2.2 and
PCI-X protocols regardless of the type of transaction being initiated. The
local master device is responsible for making sure that the address being
driven meets the PCI(X) requirements, i.e., only memory cycles are
allowed to address greater than 4 GB in both the PCI-2.2 and the PCI-X
protocols.

1 The pci_x will not filter addresses because filtering may mask
operating problems in the local master device.

Master Read Transactions

The pci_x function performs both PCI-X and PCI-2.2 master read
transactions. There are a few major differences between the PCI-X and
PCI-2.2 master read transactions; however, from the perspective of the
local master bus, behavior of the pci_x during the transactions is similar.
94 Altera Corporation

Specifications

Specifications

3

PCI-X transactions include an attribute phase, block cycle support, and
split transaction support. See “Target Read Transactions” on page 38 for
more information.

PCI-X Master Read Transactions

The following are some general operating rules for PCI-X master read
transactions:

■ To isolate the local master device from potential data-width
mismatch with local target devices, the pci_x must toggle data. The
pci_x uses toggle signals (lmo_XferHi and lmo_XferLo) to
qualify whether the data is valid on the upper or lower Dword. For
example, the pci_x will assert dummy lmo_XferHi and
lmo_XferLo signals if a particular Dword is not transferred because
the intended target device is 32-bit and the master device initiating
the transaction is 64-bit.

■ For master read block transactions: Because the deassertion of
pci_frame_n is not an effective transaction termination indicator
when master devices have three data phases—or fewer—to transfer,
the PCI-X specification requires that master devices modify the byte
count to accurately reflect the data phases by:
– Modifying the value in lmi_TBC while initiating memory read

block cycles that start three, two, or one Qword(s) from the first
ADB.

– Setting the local master to begin the memory read block cycle
when lmi_DiscADB is asserted and when the cycle begins three,
two or one Qword(s) away from the first ADB. If this option is
used, the pci_x will generate the byte count up to the first ADB
and then drive the byte count—instead of lmi_TBC—in the byte
count field during the attribute phase.

1 For PCI-X memory read block transactions where the cycle
starts greater than three Qwords from the first ADB and the
local master asserts lmi_DiscADB, the pci_x will not need
to modify the byte count because in this scenario
pci_frame_n can be used as a transaction termination
indicator.

■ If a memory read block request starts three Qwords—or fewer—from
the ADB, and lmi_DiscADB is asserted, the pci_x will generate the
byte count up to the first ADB when initiating the cycle on the PCI-X
bus. Thus, if the target on the PCI-X bus splits the cycle, only the data
bytes from the starting address to the ADB will be returned during
the split-completion transaction.

The local master is responsible for issuing the remainder of the
transaction (if it wants to). Typically, memory read block cycles
Altera Corporation 95

Specifications

Specifications

3

should not be initiated if there is insufficient buffer space for storing
the requested read data. However, master devices implementing this
protocol should be aware of this corner condition.

In PCI-X protocol, the pci_x supports two types of 64-bit read
transactions:

■ Memory single-cycle read
■ Memory burst read

PCI-X 64-Bit Single-Cycle Master Memory Read Transaction

Figure 28 shows the waveform for a PCI-X 64-bit single-cycle master
memory read transaction.
96 Altera Corporation

Specifications

Specifications

3

Figure 28. PCI-X 64-Bit Single-Cycle Master Memory Read Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

Imo_XferLo

Imo_XferHi

Imo_ReadData

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ee f0 ff

ADDR-LO

e

00

001

008

DATA0

ATTRADDR-LO DATA0
Altera Corporation 97

Specifications

Specifications

3

Table 4 shows the sequence of events for a PCI-X 64-bit single-cycle
master memory read transaction

Table 4 .PCI-X 64-Bit Single-Cycle Master Memory Read Transaction (Part 1 of 2)

Clock
Cycle

Event

1 Local side: The local master asserts lmi_Cyc to request ownership of the PCI-X bus.

2 Local side: The local master asserts lmi_CycValid to indicate valid local address
(lmi_Addr[63:0]), command (lmi_Cmd[3:0]), byte enables (lmi_BE_n[7:0]), data phase count
(lmi_DPhaseCnt[9:0]), and total bye count (lmi_TBC[11:0]). In addition (not shown in the
waveforms), the local master provides bus number (lmi_BusNo[7:0]), device number
(lmi_DeviceNo[4:0]), function number (lmi_FunctionNo[2:0]), and tag number
(lmi_TagNo[4:0]) information.

3 PCI-X side: With the assertion of lmi_Cyc in clock cycle 1, the pci_x function asserts pci_req_n to
request ownership of the PCI bus.
Local side: The local master continues to drive the same information as in clock 2.

4 PCI-X side: The arbiter asserts pci_gnt_n to indicate bus ownership has been granted. However, the
arbiter may not always assert pci_gnt_n one clock after receiving pci_req_n.

5 PCI-X side: The arbiter continues to assert pci_gnt_n.
Local side: The local master continues to drive the same information as in clock 2.

6 PCI-X side: The address phase. The pci_x asserts pci_frame_n to indicate the beginning of the
transaction. The pci_req64_n is also asserted to indicate that a 64-bit transaction is being requested.
Local side: The pci_x function drives lmo_Ack to indicate to the local side that the PCI-X bus has
been granted to the local master.

7 PCI-X side: The attribute phase. The additional information provided by the local master in clock 2 is
driven on pci_ad[31:0] and pci_cbe_n[3:0]. In this transaction, the total byte count to be
transferred is eight, which is equivalent to one Qword.
Local side: Because the attribute phase has taken place on the PCI-X side, the local master deasserts
lmi_CycValid.

8 PCI-X side: Turn-around cycle on the pci_ad[63:0] bus.
Local side: The local master deasserts lmi_Cyc (immediately after this transaction) to indicate that it
has no intention of requesting ownership of the bus.

9 PCI-X side: Because this is a master read, the target provides the data on pci_ad[63:0].
The pci_x function asserts pci_irdy_n to indicate that it is ready to accept data.

10 PCI-X side: The target claims the 64-bit transaction request by asserting pci_devsel_n and
pci_ack64_n. In this particular case, the target is a decode C device.
98 Altera Corporation

Specifications

Specifications

3

PCI-X 64-Bit Burst Master Memory Read Transaction

Figure 29 shows a PCI-X 64-bit burst master memory read cycle. The
sequence of events in Figure 29 is identical to Figure 28, except that more
data is transferred. Figure 29 shows a 64-bit zero wait state burst read
transaction with four data phases. Four Qwords are transferred from the
PCI-X side in clocks 11 through 14 and are then transferred to the local
side in clocks 12 through 15.

11 PCI-X side: The target asserts pci_trdy_n to indicate that it ready to send data. Data transfer occurs
on the PCI-X bus in this clock cycle.

12 PCI-X side: The target deasserts pci_devsel_n, pci_ack64_n, and pci_trdy_n.
Local side: The pci_x function transfers the data registered in clock cycle 11 to the local side on
lmo_ReadData[63:0] (indicated by the assertion lmo_XferLo and lmo_XferHi).

13 PCI-X side: The pci_x deasserts pci_frame_n, pci_req64_n, and pci_irdy_n.
Local side: The pci_x asserts lmo_CycDone to indicate that the transaction is complete.

Table 4 .PCI-X 64-Bit Single-Cycle Master Memory Read Transaction (Part 2 of 2)
Altera Corporation 99

Specifications

Specifications

3

Figure 29. PCI-X 64-Bit Burst Master Memory Read Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

Imo_XferLo

Imo_XferHi

Imo_ReadData

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

ADDR-LO

ee f0 ff

ADDR-LO

e

00

004

020

DATA0 DATA1 DATA2 DATA3

ATTR DATA0 DATA1 DATA2 DATA3
100 Altera Corporation

Specifications

Specifications

3

PCI-X 64-Bit Burst Master Memory Read Transaction with a 32-Bit
Target

Figure 30 shows the local master device requesting a 64-bit transaction by
asserting pci_req64_n in clock 6. However, the PCI-X target is only
32-bit (indicated by the non-active state of pci_ack64_n in clock 10).
Therefore, the pci_x function registers four Dwords in clocks 11 through
14, and transfers the data (to the local side) one Dword at a time in clocks
12 through 15. Also, because the starting address is a low Dword
boundary (pci_ad[2] = 1’b0), the first Dword transferred to the local
side is on lmo_ReadData[31:0] (indicated with the assertion of
lmo_XferLo), and the second Dword is transferred on
lmo_ReadData[63:32] (indicated by the assertion of lmo_XferHi).
The toggling between lmo_XferLo and lmo_XferHi indicates that only
Dword transfers are occuring on the local side.
Altera Corporation 101

Specifications

Specifications

3

Figure 30. PCI-X 64-Bit Burst Master Memory Read Transaction with a 32-Bit Target

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

Imo_XferLo

Imo_XferHi

Imo_ReadData

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ee f0 ff

ADDR-LO

e

00

002

010

DATA0 DATA1 DATA2 DATA3

ATTR DATA0 DATA1 DATA2 DATA3

ADDR-LO
102 Altera Corporation

Specifications

Specifications

3

In PCI-X protocol, the pci_x function can initiate three types of 32-bit
master read transactions:

■ Single-cycle memory read
■ I/O read
■ Configuration read

1 Because the pci_x is a 64-bit local master device, it does not
initiate 32-bit burst master read transactions (using PCI-X
protocol).

PCI-X 32-bit Single-Cycle Master Memory Read Transactions

Figure 31 shows a 32-bit single-cycle master memory read transaction.
The sequence of events in Figure 31 is identical to Figure 28, except for the
following:

■ During the address phase (clock 6), the pci_x function does not
assert pci_req64_n. The local master uses the memory read
DWORD command (lmi_Cmd[3:0] = 4’h6) to specifically request a
single-cycle, 32-bit transaction.

■ The PCI-X target does not assert pci_ack64_n when it asserts
pci_devsel_n.

Figure 31 shows that the pci_x function registers a Dword in clock 11.
Also, because the starting address is a low Dword boundary, the pci_x
function transfers the Dword to the local side in the following clock cycle
(clock 12) on lmo_ReadData[31:0] (indicated by the assertion of
lmo_XferLo).
Altera Corporation 103

Specifications

Specifications

3

Figure 31. PCI-X 32-Bit Single-Cycle Master Memory Read Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

lmo_XferLo

Imo_XferHi

Imo_ReadData

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ADDR-LO

6

00

001

004

DATA0

ADDR-LO

66 f0 ff

DATA0ATTR
104 Altera Corporation

Specifications

Specifications

3

PCI-X Master I/O Read Transactions

By definition, a PCI-X I/O transaction is 32-bit and single-cycle. Figure 32
shows a master I/O read transaction. The sequence of events in Figure 32
is similar to Figure 31. Figure 32 shows that the pci_x function registers
a Dword in clock 11, and because the starting address is a high Dword
boundary, the pci_x function transfers the Dword to the local side on
lmo_ReadData[63:32] in clock 12 (indicated by the assertion of
lmo_XferHi).
Altera Corporation 105

Specifications

Specifications

3

106 Altera Corporation

Figure 32. PCI-X Master I/O Read Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

lmo_XferLo

Imo_XferHi

Imo_ReadData

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ADDR-HI

2

00

001

004

DATA0

ADDR-HI

22 f0 ff

DATA0ATTR

Specifications

Specifications

3

PCI-X Master Configuration Read Transactions

By definition, a PCI-X configuration transaction is 32-bit and single-cycle.
Figure 33 shows a master configuration read transaction. The sequence of
events in Figure 33 is similar to Figure 31, except that the pci_x function
performs address stepping by driving the address bus (pci_ad[63:0])
four clock cycles before the PCI-X address phase. Figure 33 also shows
that the pci_x function registers a Dword in clock 15, and because the
starting address is a high Dword boundary, the pci_x function transfers
the Dword to the local side in clock 16 on lmo_ReadData[63:32]
(indicated by the assertion of lmo_XferHi).
Altera Corporation 107

Specifications

Specifications

3

Figure 33. PCI-X Master Configuration Read Transactions

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

lmo_XferLo

Imo_XferHi

Imo_ReadData

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

ADDR-HI

a

00

001

004

DATA0

ADDR-HI

aa f0 ff

DATA0ATTR
108 Altera Corporation

Specifications

Specifications

3

PCI-2.2 Master Read Transactions

From the perspective of the local master bus, the behavior of the pci_x
during PCI-2.2 cycles is similar to the behavior during PCI-X cycles,
except for the following:

■ There is no attribute phase.
■ The pci_x does not initiate 64-bit single-cycle master read

transactions.
■ The pci_x can initiate a 32-bit burst master memory read transaction

if the starting address is a high Dword boundary. However, if the
starting address is a low Dword boundary, the pci_x function
initiates a 64-bit burst transaction.

In PCI-2.2 protocol, the pci_x initiates only one type of 64-bit read
transactions: Memory burst read.

PCI 64-Bit Burst Master Memory Read Transaction

Figure 34 shows a 64-bit zero wait-state burst master memory read
transaction with four data phases. Four Qwords are transferred from the
PCI side in clocks 8 through 11, and are then transferred to the local side
in clocks 9 through 12.
Altera Corporation 109

Specifications

Specifications

3

Figure 34. PCI-2.2 64-Bit Burst Master Memory Read Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

lmi_WriteData

Imo_XferLo

Imo_XferHi

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13

ADDR-LO

e

43 65 8721

004

020

DATA0 DATA1 DATA2 DATA3

ADDR-LO

ee 21 43 65

DATA0 DATA1 DATA2 DATA3
110 Altera Corporation

Specifications

Specifications

3

In PCI-2.2 protocol, the pci_x responds to three types of 32-bit master
read transactions:

■ Memory read
■ I/O read
■ Configuration read

1 The pci_x function does support single-cycle and burst
memory transactions, but does not support bursting of
configuration or I/O cycles.

PCI-2.2 32-bit Master Memory Read Transactions

Memory transactions are either single-cycle or burst. In PCI-2.2 protocol,
the pci_x function can initiate a 32-bit single-cycle, depending on
lmi_BE_n[7:0]. To initiate a 32-bit single-cycle with a low Dword
starting address, set lmi_BE_n[7:0] = 8’HF0. To initiate a 32-bit single-
cycle with a high Dword starting address, set lmi_BE_n[7:0] = 8’h0F.
In PCI-2.2 protocol, the pci_x function only initiates 32-bit burst master
memory read transactions if the starting address is a high Dword
boundary.

Figure 35 shows a 32-bit single-cycle master memory read transaction. In
Figure 35, the local master initiates a high Dword starting address
transaction. In addition, the local master sets lmi_BE_n = 8’h0F to
indicate a 32-bit single-cycle, where the Dword will be transferred to the
local side on lmo_ReadData[63:32]. The pci_x function drives a
dummy lmo_XferLo signal.
Altera Corporation 111

Specifications

Specifications

3

112 Altera Corporation

Figure 35. PCI-2.2 32-Bit Master Memory Read Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imo_ReadData

lmo_XferLo

Imo_XferHi

Imo_CycDone

1 2 3 4 5 6 7 8 9 10

ADDR-HI

6

0f

001

DATA0

ADDR-HI

66 f0

DATA0

Specifications

Specifications

3

Figure 36 shows a 32-bit burst master memory read transaction. The
sequence of events in Figure 36 is identical to Figure 35, except for the
multiple data phases. The pci_x function initiates a 32-bit burst memory
read transaction because the starting address is a high Dword boundary.
The pci_x function registers four Dwords in clock cycles 10 through 13,
and transfers them to the local side one Dword at a time in clock cycles 11
through 14. Because the starting address is a high Dword boundary
(pci_ad[2] = 1’b1), the first Dword transferred to the local side is on
lmo_ReadData[63:32] (indicated with the assertion of lmo_XferHi),
and the second Dword is transferred on lmo_ReadData[31:0]
(indicated by the assertion of lmo_XferLo). The toggling between
lmo_XferLo and lmo_XferHi indicates that only Dword transfers are
occuring on the local side.
Altera Corporation 113

Specifications

Specifications

3

Figure 36. PCI 32-Bit Burst Master Memory Read Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imo_ReadData

lmo_XferLo

Imo_XferHi

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13

ADDR-HI

6

21 43 65

002

DATA0 DATA1 DATA2 DATA3

ADDR-HI

66 ff f2 f3 f4

DATA0 DATA1 DATA2 DATA3
114 Altera Corporation

Specifications

Specifications

3

Master Write Transactions

The pci_x function performs both PCI-X and PCI-2.2 master write
transactions. There are a few major differences between the PCI-X and
PCI-2.2 master write transactions; however, from the perspective of the
local master bus, behavior of the pci_x during the transactions is similar.

PCI-X transactions are different than PCI-2.2 transactions because they
include an attribute phase, block cycle support, and split transaction
support. See “Target Read Transactions” on page 38 for more information.

PCI-X Master Write Transactions

The following are some general operating rules for PCI-X master write
transactions:

■ To isolate the local master device from potential data-width
mismatch with local target devices, the pci_x must toggle data. The
pci_x uses toggle signals (lmo_XferHi and lmo_XferLo) to
qualify whether the data is valid on the upper or lower Dword.

The pci_x always asserts lmo_XferHi and lmo_XferLo signals
with respect to the negotiated DPhaseCnt—regardless of whether
the PCI-X target is 32-bit or 64-bit (unless the local master device or
PCI-X target terminate the transaction early).

For example, as per the PCI-X specification, the pci_x does a “copy
down” of the Hi-Dword address and byte enables during a Hi-
Dword memory write cycle. If a 32-bit PCI-X target responds, the Lo-
Dword never gets transferred. However, the pci_x will generate a
dummy Lo-Dword Xfer with the assertion of the first lmo_XferHi
to keep the number of Dwords transferred consistent with the
negotiated DPhaseCnt. If a 64-bit PCI-X target device does respond,
the local master will see both lmo_XferHi and lmo_XferLo signals
assert anyway, so the pci_x tries to save the local master from the
responsibility of data acceptance width of the PCI-X target.

Another example is of the pci_x initiating a PCI-X memory write
block cycle where the ending address is on the Lo-Dword, i.e., the
sum of the starting address and the byte count ends on the Lo-Dword.
If a 64-bit PCI-X target responds, the last data phase will result in both
lmo_XferHi and lmo_XferLo signals asserting. A 32-bit PCI-X
target however, would complete the transaction and deassert
pci_irdy_n after accepting only the Lo-Dword. The pci_x will
generate a dummy lmo_XferHi as the last Xfer to save the local
master from the responsiblity of data acceptance width of the PCI-X
target.
Altera Corporation 115

Specifications

Specifications

3

■ For master burst transactions: Because the deassertion of
pci_frame_n is not an effective transaction termination indicator
when master devices have three data phases—or fewer—to transfer,
the PCI-X specification requires that master devices modify the byte
count to accurately reflect the data phases by:
– Modifying the value in lmi_TBC while initiating memory write

and memory write block cycles that start three, two, or one
Qword(s) from the first ADB.

– Setting the local master to begin the memory burst cycle when
lmi_DiscADB is asserted and when the cycle begins three, two
or one Qword(s) away from the first ADB. If this option is used,
the pci_x will generate the byte count up to the first ADB and
then drive the byte count—instead of lmi_TBC—in the byte
count field during the attribute phase.

1 For PCI-X memory burst transactions where the cycle starts
greater than three Qwords from the first ADB and the local
master asserts lmi_DiscADB, the pci_x will not need to
modify the byte count because in this scenario
pci_frame_n can be used as a transaction termination
indicator.

In PCI-X protocol, the pci_x support two types of 64-bit master write
transactions:

■ Memory single-cycle read
■ Memory burst read

PCI-X 64-Bit Single-Cycle Master Memory Write Transaction

Figure 37 shows the waveform for a PCI-X 64-bit single-cycle master
memory write transaction.
116 Altera Corporation

Specifications

Specifications

3

Figure 37. PCI-X 64-Bit Single-Cycle Master Memory Write Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

Imi_WriteData

Imo_XferLo

Imo_XferHi

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13

ff f0 ff

ADDR-LO

f

00

001

001

DATA0

ATTR DATA0

ADDR-LO
Altera Corporation 117

Specifications

Specifications

3

Table 5 shows the sequence of events for a PCI-X 64-bit single-cycle
master memory write transaction.

Table 5 .PCI-X 64-Bit Single-Cycle Master Memory Write Transactions (Part 1 of 2)

Clock
Cycle

Event

1 Local side: The local master asserts lmi_Cyc to request ownership of the PCI-X bus.

2 Local side: The local master asserts lmi_CycValid to indicate valid local address
(lmi_Addr[63:0]), command (lmi_Cmd[3:0]), byte enables (lmi_BE_n[7:0]), data phase
count (lmi_DPhaseCnt[9:0]), and total bye count (lmi_TBC[11:0]). In addition (not shown in the
waveforms), the local master provides the bus number (lmi_BusNo[7:0]), device number
(lmi_DeviceNo[4:0]), function number (lmi_FunctionNo[2:0]), and tag number
(lmi_TagNo[4:0]) information.

3 PCI-X side: With the assertion of lmi_Cyc in clock one, the pci_x function asserts pci_req_n on
the PCI-X bus to request ownership of the bus.
Local side: The local master continues to drive the same information as in clock 2. In addition, the local
master drives the 64-bit data on lmi_WriteData[63:0].

4 PCI-X side: The arbiter asserts pci_gnt_n to indicate bus ownership has been granted. However, it
may not always be the case that the arbiter asserts pci_gnt_n one clock after receiving pci_req_n.

5 PCI-X side: The arbiter continues to asset pci_gnt_n.
Local side: The local master continues to drive the same information as in clock 2, including
lmi_WriteData[63:0].

6 PCI-X side: The address phase. The pci_x asserts pci_frame_n to indicate the beginning of the
transaction. The pci_req64_n is also asserted to indicate that a 64-bit transaction is being requested.
Local side: The pci_x drives lmo_Ack to indicate that the PCI-X bus has been granted to the master.

7 PCI-X side: The attribute phase. The additional information provided by the local master in clock 2 is
driven on pci_ad[31:0] and pci_cbe_n[3:0]. In this transaction, the total byte count to be
transferred is eight, which is equivalent to one Qword.
Local side: Because the attribute phase has taken place on the PCI-X side, the local master deasserts
lmi_CycValid.

8 PCI-X side: The pci_x drives pci_ad[63:0] with the 64-bit data registered from
lmi_WriteData[63:0].
Local side: The local master deasserts lmi_Cyc (immediately after this transaction) to indicate that it
has no intention of requesting ownership of the bus.

9 PCI-X side: The PCI-X target claims the 64-bit transaction request by asserting pci_devsel_n and
pci_ack64_n. In this particular case, the PCI-X target is a decode B device.
The pci_x function asserts pci_irdy_n to indicate that it is ready to send data.
118 Altera Corporation

Specifications

Specifications

3

PCI-X 64-Bit Burst Master Memory Write Transaction

Figure 38 shows a 64-bit burst master memory write transaction. The
sequence of events in Figure 38 is identical to Figure 37, except more data
is transferred. Figure 38 shows a 64-bit zero wait state burst write
transaction with four data phases. In clock 3, the local master drives the
first 64-bit data on lmi_WriteData[63:0] and continues to drive the
first Qword until clock 7. In clock 7, the local master increments to the
second Qword due to the assertion of lmo_Ack in the previous clock
(clock 6). The local master continues to drive the second Qword until the
pci_x drives lmo_XferLo and lmo_XferHi, indicating that a
successful Qword transfer on the PCI-X bus occurred in the previous
cycle. Therefore, in clock 10, the local master increments to the third
Qword. Because of the successful Qword transfer on the PCI-X bus in the
previous cycle (with the assertion of lmo_XferLo and lmo_XferHi),
the local master transfers the last Qword on lmi_WriteData[63:0] in
clock 11.

10 PCI-X side: The PCI-X target asserts pci_trdy_n to indicate that it is ready to accept data. Data
transfer occurs on the PCI-X bus in this clock cycle.

11 PCI-X side: The PCI-X target deasserts pci_devsel_n, pci_ack64_n, and pci_trdy_n.
Local side: The pci_x asserts lmo_XferLo and lmo_XferHi to indicate that a successful Qword
transferred in the PCI-X bus in the previous clock cycle (clock 10).

12 PCI-X side: The pci_x deasserts pci_frame_n, pci_req64_n, and pci_irdy_n.
Local side: The pci_x asserts lmo_CycDone to indicate that the transaction is complete.

Table 5 .PCI-X 64-Bit Single-Cycle Master Memory Write Transactions (Part 2 of 2)
Altera Corporation 119

Specifications

Specifications

3

Figure 38. PCI-X 64-Bit Burst Master Memory Write Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

Imi_WriteData

Imo_XferLo

Imo_XferHi

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ff f0 ff

ADDR-LO

f

00

004

020

DATA0 DATA1 DATA2 DATA3

ATTR DATA0 DATA1 DATA2 DATA3

ADDR-LO
120 Altera Corporation

Specifications

Specifications

3

PCI-X 64-Bit Burst Master Memory Write Transaction with 32-Bit Target

Figure 39 shows the local master requesting a 64-bit transaction by
asserting pci_req64_n in clock 6. However, the PCI-X target is only
32-bit (indicated by the non-active state of pci_ack64_n in clock 8). In
clock 3, the local master drives the first 64-bit data on
lmi_WriteData[63:0] and continues to drive the first Qword until
clock 7. In clock 7, the local master increments to the second Qword due
to the assertion of lmo_Ack in the previous clock (clock 6). Because the
starting address is a low Dword boundary (pci_ad[2] = 1’b0), the
pci_x asserts lmo_XferLo in clock 10 to indicate that the low Dword of
the first Qword was transferred successfully on the PCI-X bus in the
previous clock (clock 9). The toggling between lmo_XferLo and
lmo_XferHi indicates that only Dword transfers are occuring on the
PCI-X side.
Altera Corporation 121

Specifications

Specifications

3

Figure 39. PCI-X 64-Bit Burst Master Memory Write Transaction with 32-Bit Target

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

Imi_WriteData

Imo_XferLo

Imo_XferHi

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ff f0 ff

ADDR-LO

f

00

002

010

DATA0 DATA1

ATTR DATA0-LO DATA0-HI DATA1-LO DATA1-HI

ADDR-LO
122 Altera Corporation

Specifications

Specifications

3

In PCI-X protocol, the pci_x can initiate two types of 32-bit master write
transactions:

■ I/O write
■ Configuration write

1 Because the pci_x is a 64-bit local master, it does not initiate
32-bit single-cycle or burst master memory write transactions (in
PCI-X protocol).

PCI-X Master I/O Write Transaction

By definition, a PCI-X I/O transaction is 32-bit and single-cycle. Figure 40
shows a PCI-X master I/O write transaction. In clock 3, the local master
drives the 64-bit data on lmi_WriteData[63:0]. Because the starting
address is a high Dword boundary, the pci_x function registers
lmi_WriteData[63:32] and transfers the Dword to the PCI-X target in
clock 10. The pci_x function asserts lmo_XferHi in clock 11 to indicate
that the upper Dword (lmi_WriteData[63:32]) was successfully
transferred to the PCI-X bus in the previous clock cycle.
Altera Corporation 123

Specifications

Specifications

3

Figure 40. PCI-X Master I/O Write Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

lmi_WriteData

Imo_XferLo

Imo_XferHi

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13

33

ADDR-HI

f0 ff

ADDR-HI

3

00

001

004

DATA0

ATTR DATA0-HI
124 Altera Corporation

Specifications

Specifications

3

PCI-X Master Configuration Write Transaction

By definition, a PCI-X configuration transaction is 32-bit and single-cycle.
Figure 41 shows a master configuration read transaction. The sequence of
events in Figure 41 is similar to Figure 40, except that the pci_x function
performs address stepping, i.e., driving the address bus (pci_ad[63:0])
for four clock cycles before the PCI-X address phase. In clock 3, the local
master drives the 64-bit data on lmi_WriteData[63:0]. Because the
starting address is a high Dword boundary, the pci_x registers
lmi_WriteData[63:32] and transfers the Dword to the PCI-X target in
clock 13. The pci_x asserts lmo_XferHi in clock 14 to indicate that the
upper Dword (lmi_WriteData[63:32]) was successfully transferred
to the PCI-X bus in the previous clock cycle.
Altera Corporation 125

Specifications

Specifications

3

Figure 41. PCI-X Master Configuration Write Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

lmi_WriteData

Imo_XferLo

Imo_XferHi

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ADDR-HI

b

00

001

004

DATA0

ADDR-HI

bb fff0

ATTR DATA0-HI
126 Altera Corporation

Specifications

Specifications

3

PCI-2.2 Master Write Transactions

From the perspective of the local master bus, the behavior of the pci_x
during PCI-2.2 write cycles is similar to the behavior during PCI-X write
cycles, except for the following:

■ There is no attribute phase.
■ Does not initiate 64-bit single-cycle master read transactions.
■ The pci_x function can initiate a 32-bit burst master memory write

transaction if the starting address is a high Dword boundary.
However, if the starting address is a low Dword boundary, the
pci_x initiates a 64-bit transaction.

In PCI-2.2 protocol, the pci_x function initiates one type of 64-bit write
transaction: Memory burst write

PCI-2.2 64-Bit Burst Master Memory Write Transaction

Figure 42 shows a 64-bit zero wait state burst master memory write
transaction with four data phases. In clock 3, the local master drives the
first 64-bit data on lmi_WriteData[63:0] and continues to drive the
first Qword until clock 6. In clock 6, the local master increments to the
second Qword due to the assertion of lmo_Ack in the previous clock cycle
(clock 5). The local master continues to drive the second Qword until the
pci_x drives lmo_XferLo and lmo_XferHi, indicating that a
successful Qword transfer on the PCI-X bus occurred in the previous
cycle. Therefore, in clock 9, the local master increments to the third
Qword. Because of the successful Qword transfer on the PCI-X bus (with
the assertion of lmo_XferLo and lmo_XferHi)the local master
transfers the last Qword on lmi_WriteData[63:0] in clock 10.
Altera Corporation 127

Specifications

Specifications

3

Figure 42. PCI-2.2 64-Bit Burst Master Memory Write Transaction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

lmi_WriteData

Imo_XferLo

Imo_XferHi

Imo_CycDone

ADDR-LO

7

21 43 65 87

004

DATA0 DATA1 DATA2 DATA3

ADDR-LO

77 43 6521

DATA0 DATA2 DATA3DATA1
128 Altera Corporation

Specifications

Specifications

3

In PCI-2.2 protocol, the pci_x responds to three types of 32-bit master
write transactions:

■ Memory write
■ I/O write
■ Configuration write

1 The pci_x function does support single-cycle and burst
memory transactions, but does not support bursting of
configuration or I/O cycles.

PCI-2.2 32-bit Master Memory Write Transactions

Memory transactions are either single-cycle or burst. In PCI-2.2 protocol,
the pci_x function can initiate a 32-bit single-cycle, depending on
lmi_BE_n[7:0]. To initiate a 32-bit single-cycle with a low Dword
starting address, set lmi_BE_n[7:0] = 8’HF0. To initiate a 32-bit single-
cycle with a high Dword starting address, set lmi_BE_n[7:0] = 8’h0F.
In PCI-2.2 protocol, the pci_x only initiates 32-bit burst master memory
write transactions if the starting address is a high Dword boundary.

Figure 43 shows a 32-bit single-cycle master memory read transaction. In
Figure 43, the local master initiates a high Dword starting address
transaction. In addition, the local master sets lmi_BE_n = 8’h0F to
indicate a 32-bit single-cycle, where the upper Dword
(lmi_WriteData[63:32]) will be transferred to the PCI side in
clock 11. In clock 12, the pci_x drives a dummy lmo_XferLo.
Altera Corporation 129

Specifications

Specifications

3

Figure 43. PCI-2.2 32-Bit Single-Cycle Master Memory Write Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imo_WriteData

lmo_XferLo

Imo_XferHi

Imo_CycDone

1 2 3 4 5 6 7 8 9 10 11

ADDR-HI

f

0f

001

DATA0 DATA1

ADDR-HI

ff f0

DATA0-HI
130 Altera Corporation

Specifications

Specifications

3

Figure 44 shows a 32-bit burst master memory write transaction. In
clock 3, the local master drives the first 64-bit data on
lmi_WriteData[63:0] and continues to drive the first Qword until
clock 6. In clock 6, the local master increments to the second Qword
because of the assertion of lmo_Ack in the previous clock cycle. Also
because the starting address is at a low Dword boundary (pci_ad[2] =
1’b1), the pci_x asserts lmo_XferHi in clock 9 to indicate that the low
Dword of the first Qword was transferred successfully on the PCI-X bus
in the previous clock (clock 8). The toggling between lmo_XferLo and
lmo_XferHi indicates that only Dword transfers are occuring on the
PCI-X side.
Altera Corporation 131

Specifications

Specifications

3

Figure 44. PCI-2.2 32-Bit Burst Master Memory Write Transaction

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

Imo_Ack

Imi_Cyc

Imi_CycValid

Imi_Addr

Imi_Cmd

Imi_BE_n

Imi_DPhaseCnt

Imi_TBC

Imo_XferLo

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ee f0 ff

ADDR-LO

e

00

001

008

ATTRADDR-LO DATA0
132 Altera Corporation

Specifications

Specifications

3

Split
Transactions

As mentioned in “Target Read Transactions” on page 38, the PCI-X
protocol provides a split transaction feature, which is the ability of PCI-X
bus agents to split the data transfer. Splitting the data transfer allows
other peripheral devices to perform transactions during an active PCI-X
bus cycle.

The following command types can use the split transaction feature:

■ Memory read block
■ Alias to memory read block
■ Memory read Dword
■ Interrupt acknowledge
■ I/O read
■ I/O write
■ Configuration read
■ Configuration write

PCI specification uses additional terminology when referring to PCI-X
bus devices involved with split transactions. The simple target/master
terminology can become confusing, so requester and completer are also
used. For example, when a master device (requester) issues a request, the
target device (completer) can issue a split response. To complete this
transaction, the target device must become the master device and vice
versa. The following device A and device B example explains the steps of
a split transaction:

1. Device A: The master device (requester) issues a 64-bit master
memory read request

2. Device B: In response to the master device’s request, the target
device (completer) issues a split response. At this point the master
device releases itself from mastership of the bus.

3. Device B: The target device must now issue the split completion
request, making the target device the master device.

4. Device A: The original master device is now on the receiving end;
thus, it becomes the target device.

Master Device Receives Split Response

Figure 45 shows a local master device requesting to read four Qwords
from a target device. However, the target device issues a split response.
Altera Corporation 133

Specifications

Specifications

3

Figure 45. Master Receives Split Response For a PCI-X 64-Bit Master Memory Read Request

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

lmo_Ack

lmi_Cyc

lmi_CycValid

lmi_Addr

lmi_Cmd

lmi_BE_n

lmi_DPhaseCnt

lmi_TBC

lmo_XferLo

lmo_XferHi

lmo_Split

lmo_ReadData

lmo_CycDone

1 2 3 4 5 6 7 8 9 10 11 12

ADDR

e

00

004

020

ffffffffffffffff

ADDR ATTR ffffffffffffffff

ee f0 ff
134 Altera Corporation

Specifications

Specifications

3

Target Device Issues Split Response

Figure 46 shows the local target issuing a split response to a master
device’s 64-bit target memory read request. In Figure 46, the master is
requesting to read four Qwords from the local target. However, the local
target asserts lti_Split to indicate a split response.

When a local target issues a split response, the local target is responsible
for storing the relevant transaction information and then, subsequently,
issuing the split completion cycle on the local master bus. Throughout the
assertion of lto_Cyc, the pci_x will maintain a stable value for the
transaction information, including address (lto_Addr), command
(lto_Cmd), device number (lto_DeviceNo), bus number (lto_BusNo),
and tag number (lto_TagNo).
Altera Corporation 135

Specifications

Specifications

3

Figure 46. Target Issues Split Response To PCI-X 64-Bit Target Memory Read Transaction

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

lto_Addr

lto_Cmd

lto_TBC

lto_BE_n

lto_Cyc

lto_CycValid

lto_Rdy

lti_Rdy

lti_Split

lti_ReadData

lto_64access

1 2 3 4 5 6 7 8 9

ADDR-LO

e

020

e0 00

DATA0

ADDR-LO ATTR ffffffffffffffff

0e 00 ff
136 Altera Corporation

Specifications

Specifications

3

Master Issues Split Completion

From the perspective of the local bus, PCI-X master split completion
transactions are similar to PCI-X master write transactions. Also, the
pci_x isolates the local master from potential data-width mismatch
issues with the target device, i.e., the pci_x asserts dummy lmo_XferHi
and lmo_XferLo signals if a particular Dword is not transferred because
a 64-bit transaction is responded to by a 32-bit target device.

For PCI-X split completion transactions where the transaction is the only
split completion for a memory read block request—or first of a series of
split completion transactions for a memory read block request: The PCI-X
specification requires that master devices—with three data phases or
fewer to transfer—modify the byte count to accurately reflect the data
phases. This requirement is needed because in this scenario the
deassertion of pci_frame_n is not an effective transaction termination
indicator.

Local master devices may choose to modify the transaction byte count
(lmi_TBC) automatically while initiating certain split completions. If the
local master modifies the TBC field to reflect a byte count that is from the
starting address only up to the first ADB, the local master must set the
lmi_BCModified signal. The pci_x will then set the appropriate BCM
attribute bit during the split completion attribute phase.

However, the pci_x is also capable of modifying the byte count if the
local master begins the split completion cycle (which begins three, two, or
one Qword away from the first ADB) with lmi_DiscADB asserted. In this
scenario—although the local master does not assert lmi_BCModified—
the pci_x will generate the byte count up to the first ADB and set the
appropriate BCM attribute bit during the split completion attribute phase.
For split completion transactions where the cycle starts greater than three
Qwords from the first ADB and the local master device asserts
lmi_DiscADB, the pci_x will not modify the byte count because there is
enough time to use the deassertion of pci_frame_n as a transaction
termination indicator.

Figure 47 shows the local master device issuing a split completion to a 64-
bit target device. In this transaction the local master is actually the original
target device (i.e., device B in the example on page 133). Thus, the local
master device is completing a transaction to which it originally issued a
split response. The split completion transaction in Figure 47 is similar to a
64-bit PCI-X master memory write transaction.
Altera Corporation 137

Specifications

Specifications

3

Figure 47. Master Device Issues Split Completion

pci_reset_n

pci_clk

pci_req_n

pci_gnt_n

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

lmo_Ack

lmi_Cyc

lmi_CycValid

lmi_Addr

lmi_Cmd

lmi_BE_n

lmi_DPhaseCnt

lmi_TBC

lmo_WriteData

lmo_XferLo

lmo_XferHi

lmo_CycDone˚

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ADDR

c

ff

004

020

DATA0 DATA1 DATA2 DATA3

ADDR ATTR DATA0 DATA1 DATA2 DATA3

cc f0 ff
138 Altera Corporation

Specifications

Specifications

3

Target Device Receives Split Completion

Data steering and byte enable manipulation split completion transactions
are similar to memory write block transactions. Also, regardless of
whether there is a 32-bit or 64-bit PCI-X completer running the
transaction, the pci_x will forward the split completion data to the local
target bus in 64-bit increments. While the PCI-X master does not drive any
byte enables for a split completion transaction (pci_be_n bus is
“reserved drive high”), the pci_x will generate valid byte enables on the
local target lto_BE_n lines on a per data phase basis.

As in PCI-X memory write transactions, parity information for split
completion transactions appears two clocks after the assertion of
lto_Rdy. The pci_x calculates expected parity and drives lto_Perr to
1’b1 to indicate that the data driven with lto_Rdy two clocks earlier had
bad parity. Local targets can choose to use this information on a per data-
phase basis or on a per transaction basis.

For a split completion transaction to be claimed by the pci_x target
interface, the decode logic must assert claim_Cyc to the pci_x for split
completion cycles when requester information driven by the completer
matches the requester’s information.

During split completions, the address presented to the local bus on
lto_Addr[63:0] is the same as the PCI-X split completion address. The
local target uses the requester’s transaction information to match the
transaction being received with the original transaction that was split on
the local master interface. Also, because the lower seven bits of the
address are driven on lto_Addr[63:0], the local target has the
necessary information to determine the next ADB boundary and can
assert lti_DiscADB during the appropriate termination window if it
wants the transaction to be terminated at the next ADB.

During split completion transactions, lto_Addr[63:0] holds the
original requester’s information, while other fields such as
lto_DeviceNo, lto_BusNo, lto_TagNo, and lto_TBC hold the
completer’s information. These fields always carry information from the
PCI-X master’s attribute phase, regardless of whether the PCI-X master is
running the cycle as a requester or completer.
Altera Corporation 139

Specifications

Specifications

3

Local targets must also anticipate the possibility of an unknown split
completion transaction, i.e., a split completion received with a sequence
number that does not match any outstanding split transactions. If this
scenario occurs, the local target is obligated to assert lti_Rdy to allow the
transaction to complete on the PCI-X bus and then bit-bucket all the data.
There is also the possibility that a local target will receive a split
completion exception message. See the PCI-X specification for more
information.

Figure 48 shows the local target (device A) receiving a split completion,
where the completer (device b) originally responded with a target split
response but is now completing the transaction to the requester. In
Figure 48, the 64-bit PCI-X completer issues a split completion to the local
target. The local target treats the split completion transaction similarly to
a 64-bit PCI-X target memory write transaction.
140 Altera Corporation

Specifications

Specifications

3

Figure 48. Target Receives a Split Completion

Decode &
Configuration

This section describes the contents of the decode/configuration module,
which is in reference to the design file, pcix_config.v (located in the \lib
directory).

pci_reset_n

pci_idsel

pci_clk

pci_par

pci_par64

pci_ad

pci_cbe_n

pci_frame_n

pci_req64_n

pci_irdy_n

pci_devsel_n

pci_ack64_n

pci_trdy_n

pci_stop_n

pci_perr_n

pci_serr_n

pci_clk

Ito_Addr

Ito_Cmd

Ito_TBC

Ito_BE_n

Ito_Cyc

Ito_CycValid

Ito_Rdy

Iti_Rdy

Ito_WriteData

Ito_64access

Iti_WriteBurst

1 2 3 4 5 6 7 8 9 10 11 12

ADDR-LO

c 00 ff

ATTR DATA0 DATA1 DATA2 DATA3

DATA0 DATA1 DATA2 DATA3

020

ADDR-LO

c

00
Altera Corporation 141

Specifications

Specifications

3

Design Files

This section describes the pci_x Verilog HDL design files, including a
figure illustrating the relationship between the files.

Table 6 describes the pci_x design files.

Figure 49 shows the relationship between the pci_x design files.

Figure 49. pci_x Design File Relationship

Table 6 .pci_x Design File Descriptions

Design File Description
pci_x.v PCI(X) Top-level module.

pcix_net.edf PCI(X) Master/target module

pcix_io.v PCI(X) Input/output (I/O) interface module

pcix_config.v PCI(X) Decode/configuration space module

pcix_io.v

I/O
Module

pcix_net.edf

Master/Target
Module

pcix_config.v

Decode/
Configuration

Module

pci_x.v
Top-Level Module
142 Altera Corporation

Specifications

Specifications

3

Signal Descriptions

This section provides:

■ An illustration of the master/target and decode/configuration
module interface

■ A description of the decode/configuration module signals

Figure 50 illustrates the interface between the master/target
(pcix_net.edf) and the decode/configuration modules (pcix_config.v).

Figure 50. pcix_net.v and pcix_config.v Interface

Inputs
claim_Cyc

cfg2p_par_en
cfg2p_serr_en

cfg2p_lattmr[4..0]
cfg2p_cachline_size[7..0]

lti_ReadData[63..0]

Outputs
pci_clk

pci_reset_n

lto_addr[63..0]
lto_cmd[3..0]

lto_WriteData[63..0]

latched pci_idsel
p2cfg_mabort

p2cfg_all_maborts
p2cfg_pm_tabort
p2cfg_pt_tabort

p2cfg_perr_n
p2cfg_serr_n

p2cfg_pm_perr_n
p2cfg_addrerr_stb

p2cfg_pt_scerror
p2cfg_dataerr_stb_iow

p2cfg_dataerr_stb_niow

Outputs
claim_Cyc
cfg2p_par_en
cfg2p_serr_en
cfg2p_lattmr[4..0]
cfg2p_cachline_size[7..0]

lti_ReadData[63..0]

Inputs
pci_clk
pci_reset_n

lto_addr[63..0]
lto_cmd[3..0]
lto_WriteData[63..0]

latched pci_idsel
p2cfg_mabort
p2cfg_all_maborts
p2cfg_pm_tabort
p2cfg_pt_tabort
p2cfg_perr_n
p2cfg_serr_n
p2cfg_pm_perr_n
p2cfg_addrerr_stb
p2cfg_pt_scerror
p2cfg_dataerr_stb_iow
p2cfg_dataerr_stb_niow

pcix_net.edf pcix_config.v
Altera Corporation 143

Specifications

Specifications

3

Table 7 describes the decode/configuration module (pcix_config.v)
signals.

Table 7 .Signal Descriptions (Part 1 of 2)

Signal Name Type Description
pci_clk Input Global PCI clock input.

pci_reset_n Input Global PCI reset input.

lti_Addr[63:0] Input Latched version of the PCI address.

lti_Cmd[3:0] Input Latched version of the PCI command.

lti_WriteData[63:0] Input Latched version of the PCI data.

latched_pci_idsel Input Latched version of the PCI idsel.

p2cfg_mabort Input Indicates that the pci_x master device received a master
abort on the PCI(X) bus (except for special cycles).

p2cfg_perr_n Input Indicates that the pci_x detected a PCI(X) data parity error.

p2cfg_pm_perr_n Input Indicates that a data parity error occurred when the pci_x
is the master device or the target device when accepting
PCI-X split completions.

p2cfg_pm_tabort Input Indicates that the pci_x master device received a target
abort on the PCI(X) bus.

p2cfg_pt_tabort Input Indicates that the pci_x signaled a target abort.

p2cfg_serr_n Input Indicates that the pci_x asserted pci_serr_n.

p2cfg_pt_scerror Input Indicates that the pci_x received a split completion error
message. Bit 29 of the PCI-X status register.

p2cfg_split_cmpln_disc Input Indicates that a split completion is discarded. Bit 18 of the
PCI-X status register. User must generate logic to set this
bit. Refer to section 5.4.4-5.4.5 of the PCI-X Addendum,
Revision 1.0.

p2cfg_unexpected_split_cmpln Input Indicates unexpected split completion. Bit 19 of the PCI-X
status register. User must generate logic to set this bit. Refer
to section 5.4.4-5.4.5 of the PCI-X Addendum, Revision 1.0.

spci_bus_idle Input Registered signal indicates that the PCI bus is idle.

claim_Cyc Output Indicates that the pci_x has decoded that it is the target of
the current access. Subsequently, the pci_x will assert
pci_devsel_n.

cfg2p_cacheline_size [7:0] Output Cacheline size. Used by the pci_x for PCI-2.2 latency timer
expiration during MWI cycles.

cfg2p_lattmr[7:3] Output Latency timer value.

cfg2p_par_en Output Enable parity checking.

cfg2p_perrecov_en Output Data parity error recovery enable. Bit 0 of the PCI-X
command register.
144 Altera Corporation

Specifications

Specifications

3

Functional Blocks

This section describes the functionality of the decode/configuration
module. Figure 51 shows the functional blocks of the
decode/configuration module.

Figure 51. Functional Blocks of the Decode/Configuration Module

Address/Command Decode Logic

The address/command functional block decodes the PCI address and
command signals. Using lti_Addr[6:2], the logic determines which
configuration register is being addressed. Using lti_Cmd[3:0], the
logic determines whether the current access is a configuration, I/O, or
memory transaction.

Clock Enable Logic

The clock enable functional block determines if the current configuration
transaction is a valid cycle by decoding a configuration command,
checking the assertion of the PCI(X) idsel, and checking that the two
LSB’s of the address (lti_Addr[1:0]) are zeros

cfg2p_rlxord_en Output Relaxed ordering enable. Bit 2 of the PCI-X command
register.

cfg2p_serr_en Output Enables pci_serr_n assertion on the PCI(X) bus.

s1_cfg_cyc_vld Output Registered signal indicates a valid configuration cycle.

Table 7 .Signal Descriptions (Part 2 of 2)

pcix_config.v
Configuration

Write

Clock Enable
Logic

Configuration
Read

BAR Decode
Logic

Claim Cycle
Logic

Address/Command
Decode Logic
Altera Corporation 145

Specifications

Specifications

3

Configuration Write

If the current transaction is a valid configuration cycle and
lti_Cmd[0] = 1’b1 for a configuration write transaction, the
configuration write functional block writes to the read/write registers of
the configuration space.

Configuration Read

If the current transaction is a valid configuration cycle and
lti_Cmd[1]= 1’b0 for a configuration read transaction, the
configuration read functional block reads from the configuration
registers.

BAR Decode Logic

The BAR decode functional block compares the current transaction
address to determine if the pci_x is the target of the current I/O or
memory cycle.

Claim Cycle Logic

The claim cycle functional block determines if the pci_x is the target of
the current configuration, I/O, or memory transaction. If it is the target of
the current transaction, the signal claim_Cyc is asserted.

Design Considerations

This section discusses design considerations when modifying the
decode/configuration module for your specific application. The detail
implementation notes are in the design file, pcix_config.v.

As part of the capabilities list, the pcix_config.v file implements the first
64-bytes of the configuration space as well as the PCI-X registers. You can
modify the Verilog HDL code to support only the configuration registers
required for your design.
146 Altera Corporation

Specifications

Specifications

3

BAR Decode Logic

In the beginning of the design, there are parameters that determine the
type (I/O or memory) and the size of the space. The parameter for the
read/write registers will determine the size of the space required. Each
BAR can implement a 32-bit address space. Two BARs are needed to
implement a 64-bit address space. The design file, pcix_config.v, uses 2
base address registers (BAR0 and BAR1). BAR0 and BAR1 can each
implement a 32-bit address space, but for a 64-bit address space, both
BAR0 and BAR1 are needed. If your design requires more than 2 BARs,
copy the BAR0 and BAR1 parameters and logic.

Claim Cycle Logic

If more than 2 BARs are implemented for your design, you will need to
add the conditions for the additional BAR hits.

PCI-X Split Completion Cycle Decode

Targets must claim split completion transactions if the sequence ID driven
in the split completion address matches the target’s sequence ID.

The following “Partial Decode of Split Completion Method” is one way to
decode a split completion cycle:

Partial Decode of Split Completion Method

Set the decode/configuration module to assert claim_Cyc when the
device issuing a split completion transaction has the requester’s bus
number and device number fields of the split transaction, i.e., address
matching the bus number and device number.

Because only a partial decode cycle has occurred to this point, the local
target needs to determine (based on the tag number) if the split
completion is valid or if the cycle is an unexpected split completion.
Because pci_devsel_n is already asserted, unexpected split completion
transactions need to be bit-bucketed by asserting lti_Rdy. Also, the local
module is responsible for setting the unexpected split completion status
bit in the PCI-X status register. Refer to section 5.4.4-5.4.5 of the PCI-X
Addendum, Revision 1.0.

The “Partial Decode of Split Completions” method allows the
decode/configuration module to do a “hit check” based on static
information, i.e., the device’s bus number and device number only. Also,
because the bus number and device number already match, the local
target is only required to match the split completion’s tag number.
Altera Corporation 147

Notes:

	Contents
	PCI-X MegaCore Function User Guide
	Contents
	About this User Guide
	How to Contact Altera
	Typographic Conventions

	Getting Started
	Before You Begin
	Installing the MegaCore Files
	Windows 95/98 & Windows NT 4.0
	UNIX

	MegaCore Directory Structure

	Quartus Walk- Through
	Design Entry
	Compilation & Functional Simulation
	Timing Analysis
	Configuring a Device

	Using Third- Party EDA Tools
	Generating VHDL & Verilog HDL Functional Models from the Quartus Software
	Synthesis Compilation & Post-Routing Simulation with the Quartus Software

	MegaCore OVerview
	Features
	PCI-X/PCI-2.2 Supported Features

	General Description
	Terminology & Abbreviations
	PCI-2.2/PCI-X Bus Interface Signals
	Local-Side Target Interface Signals
	Local Target Address, Data, Command, and Byte Enable Signals
	Local Target Control Signals
	Local Target Control Signals Interfacing Only with PCI-X Protocol
	Local Target Error Reporting Signals

	Local-Side Master Interface Signals
	Local Master Arbitration Signals
	Local Master Address, Data, Command & Byte Enable Signals
	Local Master Control Signals
	Local Master Control Signals Interfacing Only with PCI-X Protocol
	Local Master Error Reporting Signals

	Specifications
	PCI Bus Commands
	Target Mode Operation
	Target Read Transactions
	PCI-X Target Read Transactions
	PCI-2.2 Target Read Transactions

	Target Write Transactions
	PCI-X Target Write Transactions
	PCI-2.2 Target Write Transactions

	Master Mode Operation
	Addressing
	PCI-X Protocol Addressing
	PCI-2.2 Protocol Addressing
	64-bit Addressing

	Master Read Transactions
	PCI-X Master Read Transactions
	PCI-2.2 Master Read Transactions

	Master Write Transactions
	PCI-X Master Write Transactions
	PCI-2.2 Master Write Transactions

	Split Transactions
	Master Device Receives Split Response
	Target Device Issues Split Response
	Master Issues Split Completion
	Target Device Receives Split Completion

	Decode & Configuration
	Design Files
	Signal Descriptions
	Functional Blocks
	Address/Command Decode Logic
	Clock Enable Logic
	Configuration Write
	Configuration Read
	BAR Decode Logic
	Claim Cycle Logic

	Design Considerations
	BAR Decode Logic
	Claim Cycle Logic
	PCI-X Split Completion Cycle Decode

