
Reed-Solomon Compiler MegaCore
Function User Guide

November 1999



Reed-Solomon Compiler MegaCore Function User Guide, November 1999 A-UG-RSCOMPILER-01

ACCESS, Altera, AMPP, APEX, APEX 20K, Atlas, FLEX, FLEX 10K, FLEX 10KA, FLEX 10KE, FLEX 6000, FLEX 6000A, MAX, MAX+PLUS,
MAX+PLUS II, MegaCore, MultiCore, MultiVolt, NativeLink, OpenCore, Quartus, System-on-a-Programmable-Chip, and specific device designations
are trademarks and/or service marks of Altera Corporation in the United States and other countries. Product design elements and mnemonics used by
Altera Corporation are protected by copyright and/or trademark laws. 

Altera Corporation acknowledges the trademarks of other organizations for their respective products or services mentioned in this document, including
the following: Verilog is a registered trademark of Cadence Design Systems, Incorporated. Microsoft is a registered trademark and Windows is a
trademark of Microsoft Corporation.  

Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document. Altera advises its
customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is
current. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty. Testing
and other quality control techniques are used to the extent Altera deems such testing necessary to support this warranty. Unless mandated by
government requirements, specific testing of all parameters of each device is not necessarily performed. In the absence of written agreement to the
contrary, Altera assumes no liability for Altera applications assistance, customer’s product design, or infringement of patents or copyrights of third
parties by or arising from use of semiconductor devices described herein. Nor does Altera warrant or represent any patent right, copyright, or other
intellectual property right of Altera covering or relating to any combination, machine, or process in which such semiconductor devices might be or are
used.

Altera products are not authorized for use as critical components in life support devices or systems without the express written approval of the president
of Altera Corporation. As used herein:

1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose
failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a
significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.

Products mentioned in this document are covered by one or more of the following U.S. patents: 5,959,891; 5,953;537; 5,949,991; 5,949,710; 5,949,250;
5,949,239; 5,954,751; 5,943,267; 5,942,914; 5,940,852; 5,939,790; 5,936,425; 5,926,036; 5,925,904; 5,923,567; 5,915,756; 5,915,017; 5,909,450; 5,909,375;
5,909,126; 5,905,675; 5,904,524; 5,900,743; 5,898,628; 5,898,318; 5,894,228; 5,893,088; 5,892,683; 5,883,526; 5,880,725; 5,880,597; 5,880,596; 5,878,250;
5,875,112; 5,873,113; 5,872,529; 5,872,463; 5,870,410; 5,869,980; 5,869,979; 5,861,760; 5,859,544; 5,859,542; 5,850,365; 5,850,152; 5,850,151; 5,848,005;
5,847,617; 5,845,385; 5,844,854; RE35,977; 5,838,628; 5,838,584; 5,835,998; 5,834,849; 5,828,229; 5,825,197; 5,821,787: 5,821,773; 5,821,771; 5,815,726;
5,815,024; 5,815,003; 5,812,479; 5,812,450; 5,809,281; 5,809,034; 5,805,516; 5,802,540; 5,801,541; 5,796,267; 5,793,246; 5,790,469; 5,787,009; 5,771,264;
5,768,562; 5,768,372; 5,767,734; 5,764,583; 5,764,569; 5,764,080; 5,764,079; 5,761,099; 5,760,624; 5,757,207; 5,757,070; 5,744,991; 5,744,383; 5,740,110;
5,732,020; 5,729,495; 5,717,901; 5,705,939; 5,699,020; 5,699,312; 5,696,455; 5,693,540; 5,694,058; 5,691,653; 5,689,195; 5,668,771; 5,680,061; 5,672,985;
5,670,895; 5,659,717; 5,650,734; 5,649,163; 5,642,262; 5,642,082; 5,633,830; 5,631,576; 5,621,312; 5,614,840; 5,612,642; 5,608,337; 5,606,276; 5,606,266;
5,604,453; 5,598,109; 5,598,108; 5,592,106; 5,592,102; 5,590,305; 5,583,749; 5,581,501; 5,574,893; 5,572,717; 5,572,148; 5,572,067; 5,570,040; 5,567,177;
5,565,793; 5,563,592; 5,561,757; 5,557,217; 5,555,214; 5,550,842; 5,550,782; 5,548,552; 5,548,228; 5,543,732; 5,543,730; 5,541,530; 5,537,295; 5,537,057;
5,525,917; 5,525,827; 5,523,706; 5,523,247; 5,517,186; 5,498,975; 5,495,182; 5,493,526; 5,493,519; 5,490,266; 5,488,586; 5,487,143; 5,486,775; 5,485,103;
5,485,102; 5,483,178; 5,477,474; 5,473,266; 5,463,328, 5,444,394; 5,438,295; 5,436,575; 5,436,574; 5,434,514; 5,432,467; 5,414,312; 5,399,922; 5,384,499;
5,376,844; 5,371,422; 5,369,314; 5,359,243; 5,359,242; 5,353,248; 5,352,940; 5,309,046; 5,350,954; 5,349,255; 5,341,308; 5,341,048; 5,341,044; 5,329,487;
5,317,210; 5,315,172; 5,301,416; 5,294,975; 5,285,153; 5,280,203; 5,274,581; 5,272,368; 5,268,598; 5,266,037; 5,260,611; 5,260,610; 5,258,668; 5,247,478;
5,247,477; 5,243,233; 5,241,224; 5,237,219; 5,220,533; 5,220,214; 5,200,920; 5,187,392; 5,166,604; 5,162,680; 5,144,167; 5,138,576; 5,128,565; 5,121,006;
5,111,423; 5,097,208; 5,091,661; 5,066,873; 5,045,772; 4,969,121; 4,930,107; 4,930,098; 4,930,097; 4,912,342; 4,903,223; 4,899,070; 4,899,067; 4,871,930;
4,864,161; 4,831,573; 4,785,423; 4,774,421; 4,713,792; 4,677,318; 4,617,479; 4,609,986; 4,020,469; and certain foreign patents. 

Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights.

Copyright © 1999 Altera Corporation. All rights reserved. 

Printed on Recycled Paper.



®

About this User Guide

User Guide
This user guide provides comprehensive information about the Altera® 
Reed-Solomon Compiler MegaCore™ function. 

ÿ For the most-up-to-date information about Altera products, go to the 
Altera world-wide web site at http://www.altera.com.

How to Contact 
Altera

For additional information about Altera products, consult the sources 
shown in Table 1.

Note:
(1) You can also contact your local Altera sales office or sales representative. 

Table 1. How to Contact Altera

Information Type Access USA & Canada All Other Locations

Altera Literature 
Services

Telephone hotline (888) 3-ALTERA (1) (888) 3-ALTERA (1)

Electronic mail lit _req@altera.com (1) lit _req@altera.com (1)

Non-technical 
customer service

Telephone hotline (800) SOS-EPLD (408) 544-7000

Fax (408) 544-7606 (408) 544-7606

Technical support Telephone hotline
(6:00 a.m. to 6:00 p.m. 
Pacific Time)

(800) 800-EPLD (408) 544-7000 (1)

Fax (408) 544-6401 (408) 544-6401 (1)

Electronic mail support@altera.com support@altera.com

FTP site ftp.altera.com ftp.altera.com

General product 
information

Telephone (408) 544-7104 (408) 544-7104 (1)

World-wide web site http://www.altera.com http://www.altera.com
Altera Corporation  iii



About this User Guide
Typographic 
Conventions

The Reed-Solomon Compiler MegaCore Function User Guide uses the 
typographic conventions shown in Table 2.

Table 2. Conventions 

Visual Cue Meaning

Bold Type with Initial 
Capital Letters

Command names, dialog box titles, checkbox options and dialog box options are 
shown in bold, initial capital letters. Example: Save As  dialog box. 

bold type External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold type. 
Examples: fMAX, \maxplus2  directory, d:  drive, chiptrip.gdf  file.

Bold ital ic t ype Book titles are shown in bold italic type with initial capital letters. Example: 1999 Data 
Book . 

Italic Type with Initial 
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75 
(High-Speed Board Design).

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: 
<file name>, <project name>.pof  file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of MAX+PLUS II Help topics are 
shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device 
with the BitBlaster™ Download Cable.”

Courier type Reserved signal and port names are shown in uppercase Courier type. Examples: 
DATA1, TDI , INPUT. 

User-defined signal and port names are shown in lowercase Courier type. Examples: 
my_data , ram_input .

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: c:\max2work\tutorial\chiptrip.gdf . Also, sections of an actual 
file, such as a Report File, references to parts of files (e.g., the AHDL keyword 
SUBDESIGN), as well as logic function names (e.g., TRI ) are shown in Courier . 

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

� Bullets are used in a list of items when the sequence of the items is not important. 

� The checkmark indicates a procedure that consists of one step only.

� The hand points to information that requires special attention. 

� The angled arrow indicates you should press the Enter key.

ÿ The feet direct you to more information on a particular topic. 
iv Altera Corporation



®

Contents

November 1999, ver. 1 User Guide
Introduction......................................................................................................................................................1
Altera MegaCore Functions ...........................................................................................................3
OpenCore Feature ............................................................................................................................4
Altera Devices ...................................................................................................................................5
Software Tools ..................................................................................................................................6
MegaWizard Plug-Ins .....................................................................................................................6
EDA Interfaces ..................................................................................................................................7

Specifications .................................................................................................................................................9
Features ...........................................................................................................................................11
General Description .......................................................................................................................11
Functional Description ..................................................................................................................13
Performance ....................................................................................................................................18

Getting Started .............................................................................................................................................21
Download & Install the RS Compiler MegaCore Function .....................................................24
Generate a Custom RS Function ..................................................................................................25
Simulate Using VHDL Models ....................................................................................................29
Compile & Simulate in the MAX+PLUS II Software ................................................................32
Perform Synthesis Compilation & Post-Routing Simulation ..................................................33
Configuring a Device .....................................................................................................................35
Altera Corporation  v



Notes:



®

Altera Corporation  1

Introduction
Contents

User Guide

Introduction

1

Altera MegaCore Functions ...........................................................................................................3
OpenCore Feature ............................................................................................................................4
Altera Devices ...................................................................................................................................5
Software Tools ..................................................................................................................................6
MegaWizard Plug-Ins .....................................................................................................................6
EDA Interfaces ..................................................................................................................................7



Notes:



®

Introduction

User Guide

Introduction

1

Altera 
MegaCore 
Functions

As programmable logic device (PLD) densities grow to over 1 million 
gates, design flows must be as efficient and productive as possible. 
Altera® provides ready-made, pre-tested, and optimized megafunctions 
that let you rapidly implement the functions you need, instead of building 
them from the ground up. Altera® MegaCore™ functions, which are 
reusable blocks of pre-designed intellectual property, improve your 
productivity by allowing you to concentrate on adding proprietary value 
to your design. When you use MegaCore functions, you can focus on your 
high-level design and spend more time and energy on improving and 
differentiating your product.

Traditionally, designers have been forced to make a tradeoff between the 
flexibility of digital signal processors and the performance of application-
specific integrated circuit (ASIC) and application-specific standard 
product (ASSP) digital signal processing (DSP) solutions. The Altera 
FLEX® and APEX™ DSP solution eliminates the need for this tradeoff by 
providing exceptional performance combined with the flexibility of PLDs. 
See Figure 1.

Figure 1. Comparison of DSP Throughput
1 G

100 M

1 M

100 K

10 K

Function
Implementation

Building Block
Implementation

System
Implementation

MCU/MPU

DSP
Processor

PLDs

ASICsData
Throughput
(MSPS)

Function Complexity
Altera Corporation  3



Introduction Reed-Solomon Compiler MegaCore Function User Guide
Altera DSP solutions include MegaCore functions developed and 
supported by Altera and Altera Megafunction Partners Program 
(AMPPSM) functions. In addition, many commonly used functions, such as 
adders and multipliers, are available from the industry-standard library 
of parameterized modules (LPM). Altera devices easily implement DSP 
applications, while leaving ample room for your custom logic. The 
devices are supported by Altera’s MAX+PLUS® II and Quartus™ 
development system, which allow you to perform a complete design cycle 
including design entry, synthesis, place-and-route, simulation, timing 
analysis, and device programming. Altera devices, software, and DSP 
MegaCore functions provide you with a complete design solution. 

Figure 2 shows a complete system and highlights the functions that are 
available from Altera.

Figure 2. Typical Modulator

OpenCore 
Feature

Altera’s exclusive OpenCore™ feature allows you to evaluate MegaCore 
functions before deciding to license them. You can instantiate a MegaCore 
function in your design, compile and simulate the design, and then verify 
the MegaCore function’s size and performance. This evaluation provides 
first-hand functional, timing, and other technical data that allows you to 
make an informed decision on whether to license the MegaCore function. 
Once you license a MegaCore function, you can use the MAX+PLUS II or 
Quartus software to generate programming files as well as EDIF, VHDL, 
or Verilog HDL output netlist files for simulation in third-party EDA 
tools. Figure 3 on page 5 shows a typical design flow using MegaCore 
functions and the OpenCore feature.

Scrambler
Linear Feedback

Shift Register

FEC
Reed Solomon

Encoder

Symbol 
Mapper

ROM or LUT

Convolutional
Encoder

Outer Encoding Layer

Output 
Data

Input 
Data

NCO
Compiler DAC

FIR Compiler

N
LPF

FIR Compiler

N
LPF

Convolutional
Interleaver

Inner Coding Layer

Altera MegaCore Functions

AMPP Functions

LPM functions

I

Q

4 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide Introduction
Introduction

1
Figure 3. OpenCore Design Flow

Altera Devices The Reed-Solomon (RS) Compiler MegaCore function has been optimized 
and targeted for Altera FLEX 10K devices and APEX 20K devices; the RS 
encoder can also be implemented in FLEX 6000 devices. 

The FLEX 10K embedded PLD family delivers the flexibility of traditional 
programmable logic with the efficiency and density of gate arrays with 
embedded memory. FLEX 10K devices feature embedded array blocks 
(EABs), which are 2 Kbits of RAM that can be configured as 256 × 8, 
512 × 4, 1,024 × 2, or 2,048 × 1 blocks. The new 2.5-V FLEX 10KE devices 
support efficient implementation of dual-port RAM, and further enhance 
the performance of the FLEX 10K family.

APEX 20K devices offer complete system-level integration on a single 
device. The APEX MultiCore™ architecture delivers the ultimate in 
design flexibility and efficiency for high-performance System-on-a-
Programmable Chip™ applications. With densities ranging from 100,000 
to 1,000,000 gates, the APEX 20K architecture integrates look-up table 
(LUT) logic, product-term logic, and memory into a single architecture, 
eliminating the need for multiple devices, saving board space, and 
simplifying the implementation of complex designs.

Download a MegaCore
function from the Internet.

Instantiate the function in 
your design.

Simulate your design.

Does the solution work 
for your application?

No risk.

License the function and 
configure devices.

Yes

No
Altera Corporation  5



Introduction Reed-Solomon Compiler MegaCore Function User Guide
In the APEX MultiCore architecture, embedded system blocks (ESBs) and 
logic array blocks (LABs) are combined into MegaLAB™ structures. Each 
APEX 20K ESB can be configured as product-term logic, enabling 
APEX 20K devices to achieve unmatched integration efficiency, as LUT 
logic or as memory. The ESB can be configured as dual-port RAM, with a 
wide range of RAM widths and depths, or ROM in APEX 20K devices, 
and as content-addressable memory (CAM), a memory technology that 
accelerates applications requiring fast searches, in APEX 20KE devices.

ÿ For more information on FLEX 10K and APEX 20K devices, refer to the 
following documents:

� FLEX 10K Embedded Programmable Logic Family Data Sheet
� FLEX 10KE Embedded Programmable Logic Family Data Sheet
� APEX 20K Programmable Logic Device Family Data Sheet

Software Tools Altera offers the fastest, most powerful, and most flexible programmable 
logic development software in the industry. The MAX+PLUS II and 
Quartus software offer a completely integrated development flow and an 
intuitive, graphical user interface, making them easy to learn and use. 

The MAX+PLUS II software offers a seamless development flow, allowing 
you to enter, compile, and simulate your design and program devices 
using a single, integrated tool, regardless of the Altera device you choose. 
Altera’s fourth-generation Quartus software offers designers the ideal 
platform for processing multi-million gate designs, with state-of-the-art 
features that shorten design cycles, streamline development flows, and 
reduce verification times. The Quartus software shortens design cycles 
with the revolutionary nSTEP™ Compiler, which permits incremental 
recompilation, and multiple processor support that can operate locally or 
across networks and even platforms.

MegaWizard 
Plug-Ins

MegaWizard™ Plug-Ins are parameterization tools that help you 
integrate megafunctions into your designs without requiring the use of 
third-party tools. You can use this feature in the MAX+PLUS II and 
Quartus software or as a stand-alone tool with third-party EDA design 
interfaces. MegaWizard Plug-Ins provide maximum flexibility, allowing 
you to customize megafunctions without changing your design's source 
code. You can integrate a parameterized megafunction in any hardware 
description language (HDL) or netlist file using any EDA tool.

The MAX+PLUS II MegaWizard Plug-In Manager allows you to launch 
the megafunction’s wizard so you can set the megafunction’s parameters 
to fit your design. A custom megafunction is then generated, which you 
can instantiate in your design file.
6 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide Introduction
Introduction

1
EDA Interfaces Altera has worked closely with major EDA vendors to develop the best 
interface any PLD software has to offer. As a standard feature, the 
MAX+PLUS II software interfaces with all major EDA design tools, 
including tools for ASIC designers. Once a design is captured and 
simulated using the tool of your choice, you can transfer your EDIF file 
directly into the MAX+PLUS II software. After synthesis and fitting, you 
can transfer your file back into your tool of choice for simulation. The 
MAX+PLUS II system outputs the full-timing VHDL, Verilog HDL, 
Standard Delay Format (SDF), and EDIF netlists that can be used for post-
route device- and system-level simulation. Altera opened the Quartus 
interface to various EDA partners to enable them to provide unmatched 
levels of integration. NativeLink™ integration provides a truly seamless 
interface to major EDA software tools to support existing design flows, 
eliminating the need to learn new design tools.

To simplify the design flow between the MAX+PLUS II software and 
other EDA tools, Altera has developed the MAX+PLUS II Altera 
Commitment to Cooperative Engineering Solutions (ACCESSSM) Key 
Guidelines. These guidelines provide complete instructions on how to 
create, compile, and simulate your design with tools from leading EDA 
vendors. The MAX+PLUS II ACCESS Key Guidelines are part of Altera’s 
ongoing efforts to give you state-of-the-art tools that fit into your design 
flow, and to enhance your productivity for even the highest-density 
devices. The MAX+PLUS II ACCESS Key Guidelines are available on the 
Altera web site (http://www.altera.com) and the MAX+PLUS II CD-ROM.
Altera Corporation  7



Notes:



®

Altera Corporation  9

Specifications
Contents

User Guide

Specifications

2

Features ...........................................................................................................................................11
General Description .......................................................................................................................11
Functional Description ..................................................................................................................13

MegaWizard Plug-In .............................................................................................................14
Encoder Signals ......................................................................................................................15
Decoder Signals ......................................................................................................................16

Performance ....................................................................................................................................18



Notes:



®

Specifications

User Guide

Specifications

2

Features � High-performance encoder/decoder for error detection and 

correction
� Easy-to-use MegaWizard™ Plug-In

– Generates parameterized encoders or decoders
– Generates example test vectors 

� Efficient VHDL simulation model
� Fully parameterized Reed-Solomon function including:

– Number of bits per symbol
– Number of symbols per codeword
– Number of check symbols per codeword
– Field polynomial
– First root of generator polynomial

� Decoder implementation options:
– Standard or erasure-supporting
– Discrete or streaming (pipelined)
– Fast or small

� Optimized for the FLEX® 10K and APEX™  20K device architectures

General 
Description

Reed-Solomon (RS) codes are widely used for error detection and 
correction. To use RS codes, a data stream is first broken into a series of 
codewords. Each codeword consists of several information symbols 
followed by several check symbols (also known as parity symbols). 
Symbols can contain an arbitrary number of bits. The Altera® RS Compiler 
MegaCore™ function supports four to eight bits per symbol. In an error 
correction system, the encoder adds parity symbols to the data stream 
prior to its transmission over a communications channel. Once the data is 
received, the decoder checks for and corrects any errors (see Figure 1).

Figure 1. RS Codeword Example

0010 0110 1010 0011 0111 1011

Information symbols, which 
contain the original data.

Check symbols, added by
the RS encoder before 
transmission over a
communications channel.

Symbol Codeword

4- to 8-bits 
per symbol.
Altera Corporation  11



Specifications Reed-Solomon Compiler MegaCore Function User Guide
RS codes are described as (N,K) where N is the total number of symbols 
per codeword, and K is the number of information symbols. Errors are 
defined on a symbol basis (i.e., any number of bit errors within a symbol 
is considered as only one error). A RS decoder can correct one symbol 
error for every two check symbols in a codeword. However, if a codeword 
contains many errors, the decoder can only detect up to one symbol error 
for each check symbol.

RS codes are based on finite-field (i.e., Galois field) arithmetic. All 
arithmetic operations (i.e., addition, subtraction, multiplication, and 
division) on field elements give results that are an element of the field. The 
size of the Galois field is determined by the number of bits per symbol; 
specifically, the field has 2m elements, where m is the number of bits per 
symbol. A specific Galois field is defined by a polynomial, which is user-
defined for the RS Compiler MegaCore function. The MegaWizard Plug-
In only lets the user select valid field polynomials.

The maximum number of symbols in a codeword is limited by the size of 
the finite field to 2m – 1. For example, a code based on 8-bit symbols can 
have up to 255 symbols per codeword.
12 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide Specifications
Specifications

2

Functional 
Description

Table 1 shows the RS compiler MegaCore function’s parameters. The 
parameters are specified using the MegaWizard Plug-In, and define the 
specific RS code for the encoder or decoder.

Notes:
(1) An even and odd number of check symbols are allowed.
(2) The MegaWizard Plug-in only allows the selection of legal values.
(3) These parameters apply to the decoder only.

Table 1. RS Compiler MegaCore Function Parameters

Parameter Range Description

N R + 1 to 2m – 1 Specifies the total number of symbols per codeword.

R 4 to N – 1 maximum is  50 (1) Specifies the number of check symbols per codeword.

m 4 to 8 Specifies the number of bits per symbol.

field Any valid polynomial (2) Specifies the polynomial defining the Galois field.

genstart 0 to (2m – 1 – R) Indicates the first root of the generator polynomial.

type_of_decoder Standard or erasure-supporting Specifies a standard or erasure-supporting decoder. 
Erasure-supporting substantially increases the logic 
resources used.

architecture Discrete or streaming (3) Specifies a discrete or streaming architecture. The 
discrete architecture processes one entire codeword 
before starting on the next. The streaming architecture 
creates a pipelined decoder with a depth of three 
codewords.

speed Half or full (3) Controls the amount of logic used to determine the 
location and number of errors. The full-speed setting 
creates a large, high-performance function. The half-
speed setting creates a small, lower-performance 
function.
Altera Corporation  13



Specifications Reed-Solomon Compiler MegaCore Function User Guide
MegaWizard Plug-In

You can launch the MegaWizard Plug-In Manager from within the 
MAX+PLUS II or Quartus software, or you can run it from the command 
line. The wizard generates a custom megafunction that you can instantiate 
in your design. Table 2 highlights the wizard’s main features.   

When you finish going through the wizard, it generates a VHDL 
component declaration file (.cmp) and the following:

� Text Design File (.tdf), VHDL Design File (.vhd), or Verilog Design 
File (.v) depending on your selection, used to instantiate an instance 
of the RS encoder/decoder in your design

� MAX+PLUS II Vector File (.vec) used for simulation within the 
MAX+PLUS II environment

� Symbol File (.sym) used to instantiate the RS encoder/decoder into a 
schematic design

� Hexadecimal (Intel-Format) File (.hex) with the contents of the ROM 
blocks used in the function

The RS compiler MegaCore function has an interactive wizard-driven 
interface that allows you to create custom encoders or decoders easily. The 
wizard generates an instance of the function with your choice of 
parameters in AHDL, VHDL, or Verilog HDL, which you can integrate 
into your system design. 

Table 2. RS Compiler MegaCore Function Wizard Options

Option Description

Type of function Specifies an RS encoder or decoder.

Implementation parameters 
(decoder only)

Specifies a standard or erasure-supporting decoder, a discrete or streaming 
decoder, and whether to use a half- or full-speed implementation.

Parameters Specifies the number of bits per symbol, the number of symbols per codeword, the 
number of check symbols per codeword, the field polynomial, and the first root of 
the generator polynomial.
14 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide Specifications
Specifications

2

Encoder Signals

The RS encoder is fully synchronous and operates on the rising edge of 
sysclk . The function’s internal registers are cleared asynchronously by 
setting reset  high. To begin the encoding process, a high pulse of at least 
one clock cycle must be applied on start . After start  is de-asserted, 
when enable  is asserted, data is entered at rsin[] and encoded at the 
rising edge of  sysclk . The remaining information symbols appear in 
subsequent cycles as long as enable  is asserted. The function outputs the 
first codeword symbol after the same clock edge that clocks in the first 
information symbol. The check  symbols are output during the R clock 
cycles after the information symbols. The start  signal must be asserted 
before each codeword is encoded.

The enable  signal allows the encoder to perform either continuous or 
discrete (discontinuous) operation. If enable  is de-asserted, the encoder 
stops processing data; if enable  is asserted, the encoder restarts 
processing data. 
Table 3 describes the signals used by the RS encoder.

 Figures 2 and 3 show the waveforms for discrete and continuous 
encoding.

Table 3. Encoder Signals

Name Type Description

sysclk Input System clock.

reset Input Resets the encoder asynchronously.

start Input Sets the encoder to process a new codeword.

enable Input Enables data into the encoder and on the output data bus.

rsin[] Input m-bit wide input data bus.

rsout[] Output m-bit wide output data bus.
Altera Corporation  15



Specifications Reed-Solomon Compiler MegaCore Function User Guide
Figure 2. Discrete Encoding

Figure 3. Continuous Encoding

Decoder Signals
A discrete decoder processes one codeword at a time and must be reset 
between each codeword. The decoder receives the codeword’s first 
symbol on the rising edge of sysclk  after reset  is de-asserted, 
depending on the value of dsin . The rdyin  signal is asserted during 
reset and remains asserted until the decoder receives the last codeword 
symbol.

The outvalid  signal is asserted when the decoder outputs valid data on 
rsout[] . When dsout  is asserted, the discrete decoder outputs one 
symbol on each rising clock edge until all data is transferred. The 
outvalid  signal is de-asserted when all data is transferred. If the discrete 
decoder detects more errors than it can correct, it asserts decfail  and 
presents the uncorrected data on rsout[] .

sysclk

reset

enable

start

rsin

rsout

0 10 9 8 7 6 5 4 3 2 1 0

0 10 9 8 7 6 5 4 3 2 1 0 13 15 13 4 0

sysclk

reset

enable

start

rsin

rsout

0 10 9 8 7 6 5 4 3 2 1 0

13 4 015 1302 15 4 37 69 8100
16 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide Specifications
Specifications

2

The streaming decoder interface is similar to the discrete decoder, except 
the streaming decoder is only reset once. If reset  is asserted while 
codewords are being decoded, the codewords are lost. The rdyin  signal 
indicates when the streaming decoder can accept a new codeword; once 
rdyin  goes high, the decoder expects a new symbol at each rising clock 
edge, controlled by dsin . At startup, dsin  must remain de-asserted for 
at least one clock cycle after reset  is de-asserted.

The streaming decoder has a pipeline depth of three codewords. 
Therefore, the decoder must receive three codewords before it places the 
first corrected codeword at rsout[] . The outvalid  signal is not 
asserted until the first valid codeword is available at rsout[] . When 
outvalid  is asserted, corrected symbols are presented at rsout[]  on 
every clock cycle, controlled by dsout . If the streaming decoder detects 
more errors than it can correct, it asserts decfail  and presents the 
uncorrected codeword on rsout[] . The eras_ind  input indicates an 
erasure (when the erasure-supporting decoder is selected).

Table 4 describes the signals used by the RS decoder. 

Table 4. RS Decoder Signals

Name Type Description

sysclk Input System clock. 

reset Input Decoder reset. The discrete decoder must be reset between each codeword.

rsin[] Input m-bit wide input data bus.

eras_ind Input When asserted the symbol in rsin[]  is erased (erasure-supporting decoder only).

dsin Input Data input control. Data input only takes place in clock cycles when dsin  is 
asserted. In the streaming decoder, dsin  must remain de-asserted for at least one 
clock cycle after reset  is de-asserted.

dsout Input Data output control. Data can be output when dsout  is asserted. If dsout  is not 
asserted, data is not output. There is a three-cycle latency between a change in 
dsout  and the time when the output starts and stops.

bypass Input When asserted, the decoder outputs the uncorrected input data instead of the 
corrected data. All other operations are unaffected and the decoder’s latency 
remains the same.

rsout[] Output m-bit wide output data bus.

rdyin Output Indicates the decoder is ready to accept a new codeword. 

outvalid Output Asserted when the decoder outputs a codeword.

decfail Output Asserted at the beginning of a data output when the decoder has detected errors 
and cannot correct them.

numerr[] Output Number of symbol errors found.
Altera Corporation  17



Specifications Reed-Solomon Compiler MegaCore Function User Guide
Figures 4 and 5 show decoder timing diagrams. Note that at least one 
clock cycle separation is required between reset  deassertion and dsin  
assertion.

Figure 4. Using dsin to Control Input of Data to Decoder

Figure 5. Using dsout to Control Output of Data from the Decoder

Performance You can calculate the decoder performance using the formulae in Table 5, 
which define the maximum number of clock cycles required to process 
each codeword.

Note:
(1) First symbol in to last symbol out.

Note:
(1) First symbol in to last symbol out.

sysclk

reset

dsin

rsin 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 1 0 31 102

sysclk

dsout

rsout

outvalid

17 0 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 10

Table 5. Performance Calculations - Standard Decoder

Speed Discrete (1) Streaming

half 3N + 11R + 4 max [(N + R),(10R + 4)]

full 3N + 8R  + 5 max [(N + R),(7R + 5)]

Table 6. Performance Calculations - Erasure-supporting Decoder

Speed Discrete (1) Streaming

half 3N + 11R + 6 max [(N + R),(10R + 6)]

full 3N + 9R  + 6 max [(N + R),(8R + 6)]
18 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide Specifications
Specifications

2

Tables 7 and 8 show the function’s performance and area utilization for 
FLEX 10KE devices. The performance is derived from the formulae in 
Table 5 and maximum frequency at which the design can operate. 

Note:
(1) LEs = logic elements, EABs = embedded array blocks.

Note:
(1) LEs = logic elements, EABs = embedded array blocks.
(2) Implemented in an APEX 20K device.

Overall resource requirements vary widely depending on the parameter 
values used. The number of logic cells required to implement the function 
is linearly dependent on both the field size and the number of check 
symbols. The number of EABs used depends on whether the decoder is 
discrete (3 EABs) or streaming (6 EABs).

Table 7. Performance & Area Utilization - Standard

Architecture Speed m N R Utilization (1)  Performance

LEs EABs Megabits/
Second

fMAX 
(MegaHertz)

streaming full 4 15 4 516 6 150 82.6 

streaming full 5 31 6 772 6 259 78.7 

streaming half 6 55 6 906 6 381 74 

streaming half 8 204 16 2431 6 455 61 

discrete half 8 204 16 2194 3 115 55 

streaming half 8 207 20 3439 6 388 53.1 

streaming half 8 225 45 6603 6 178 45

Table 8. Performance & Area Utilization - Erasure-supporting

Architecture Speed m N R Utilization (1)  Performance

LEs EABs Megabits/
Second

Fmax 
(MegaHertz)

streaming half 6 55 6 1562 6 381 76.3

streaming half 8 204 16 4853 6 441 59.5

discrete half 8 204 16 4190 3 118 57.8

streaming half 8 207 20 6312 6 383 52.6

streaming half 8 225 45 (2) 13101 6 149 37.9
Altera Corporation  19



Notes:



®

Altera Corporation  21

Getting Started
Contents

User Guide

Getting Started

3

Download & Install the RS Compiler MegaCore Function .....................................................24
Obtaining MegaCore Functions ...........................................................................................24
Installing the MegaCore Files ...............................................................................................24

Generate a Custom RS Function ..................................................................................................25
Compile & Simulate in the MAX+PLUS II Software ................................................................32
Simulate Using VHDL Models ....................................................................................................29

Setting Up Your System ........................................................................................................30
Using the VHDL Model ........................................................................................................32

Perform Synthesis Compilation & Post-Routing Simulation ..................................................33
Configuring a Device .....................................................................................................................35



Notes:



®

Getting Started

User Guide

Getting Started

3

Altera® digital signal processing (DSP) MegaCore™ functions provide 
solutions for integrating Reed-Solomon (RS) functions into your digital 
communications system. The functions are optimized for Altera FLEX® 
10K and APEX™ 20K devices, greatly enhancing your productivity by 
allowing you to focus efforts on the custom logic in the system. This 
section describes how to obtain the RS compiler MegaCore function, 
explains how to install it on your PC, and walks you through the process 
of implementing the function in a design. You can test-drive MegaCore 
functions using Altera’s OpenCore™ feature to simulate the functions 
within your custom logic. When you are ready to generate programming 
or configuration files, you should license the function by contacting your 
local Altera sales representative. 

This design walkthrough involves the following steps:

1. Download and install the RS compiler MegaCore function.

2. Generate a custom RS function.

3. Implement your system using AHDL, VHDL, Verilog HDL, or 
schematic entry.

4. Compile your design and perform place-and-route.

5. Use the RS compiler MegaCore function wizard-generated VHDL or 
Verilog HDL simulation models to confirm the operation of your 
system.

6. License the RS compiler MegaCore function and configure the 
devices.

The instructions assume that:

� You are using a PC.
� You are familiar with the MAX+PLUS II software.
� MAX+PLUS II version 9.2 or higher is installed in the default location 

(c:\maxplus2).
� You are using the OpenCore feature to test-drive the RS compiler 

MegaCore function or you have licensed the function.
Altera Corporation  23



Getting Started Reed-Solomon Compiler MegaCore Function User Guide
Download & 
Install the RS 
Compiler 
MegaCore 
Function

Before you can start using Altera MegaCore functions, you must obtain 
the MegaCore files and install them on your PC. The following 
instructions describe this process.

Obtaining MegaCore Functions

If you have Internet access, you can download the RS compiler MegaCore 
function from the Altera web site at http://www.altera.com. Follow the 
instructions below to obtain the RS compiler MegaCore function via the 
Internet. If you do not have Internet access, you can obtain the RS 
compiler MegaCore function from your local Altera representative.

1. Run your web browser (e.g., Netscape Navigator or Microsoft 
Internet Explorer).

2. Open the URL http://www.altera.com.

3. Click the Tools icon on the home page toolbar.

4. Click the MegaCore Functions link.

5. Click the link for the RS compiler MegaCore function.

6. Follow the on-line instructions to download the function and save it 
to your hard disk.

Installing the MegaCore Files

For Windows 95/98 and Windows NT 4.0, follow the instructions below:

1. Click Run (Start menu).

2. Type <path name>\<filename>.exe , where <path name> is the location 
of the downloaded MegaCore function and <filename> is the 
filename of the function. Click OK. 

3. The MegaCore Installer dialog box appears. Follow the on-line 
instructions to finish installation.

4. After you have finished installing the MegaCore files, you must 
specify the directory in which you installed them (e.g., <path 
name>\reed_solomon\lib) as a user library in the MAX+PLUS II 
software. Search for “User Libraries” in MAX+PLUS II Help for 
instructions on how to add these libraries.
24 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide GettingGetting Started
Getting Started

3

Generate a 
Custom RS 
Function

This section describes the design flow using the Altera RS compiler 
MegaCore function and the MAX+PLUS II development system. Altera 
provides a MegaWizard Plug-In with the RS compiler MegaCore 
function. The MegaWizard™ Plug-In Manager, which you can use within 
the MAX+PLUS II software or as a stand-alone application, lets you create 
or modify design files to meet the needs of your application. You can then 
instantiate the custom megafunction in your design file.

You can use Altera’s OpenCore feature to compile and simulate the 
MegaCore functions, allowing you to evaluate the functions before 
deciding to license them. However, you must obtain a license from Altera 
before you can generate programming files or EDIF, VHDL, or Verilog 
HDL netlist files for simulation in third-party EDA tools.

ÿ You should use the MAX+PLUS II software version 9.2 or higher 
when designing with the RS compiler MegaCore function. The 
function relies on library files that only exist in these versions of 
software.

To create a custom version of the RS compiler MegaCore function, follow 
these steps:

1. Start the MegaWizard Plug-In Manager by choosing the 
MegaWizard Plug-In Manager command (File menu) in any 
MAX+PLUS II application, or by starting the stand-alone version of 
the MegaWizard Plug-In Manager by typing the command megawiz  
�  at a command line. The MegaWizard Plug-In Manager dialog box 
is displayed.

ÿ Refer to MAX+PLUS II Help for detailed instructions on how to 
use the MegaWizard Plug-In Manager.

2. Specify that you want to create a new custom megafunction and 
click Next.

3. Select RS Encoder Decoder in the Communications folder (see 
Figure 1).
Altera Corporation 25



Getting Started Reed-Solomon Compiler MegaCore Function User Guide
Figure 1. Selecting the Megafunction

4. Choose the language for the output file(s)—either AHDL, VHDL, or 
Verilog HDL—and specify a filename. Click Next.

5. Select whether you wish to create a RS encoder or decoder. If you are 
creating a decoder, you must also specify the implementation 
parameters: whether the decoder is discrete or streaming, and 
whether to use a faster or smaller implementation (see Figures 2 and 
3). Click Next.
26 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide GettingGetting Started
Getting Started

3

Figure 2. Selecting the Decoder

Figure 3. Selecting the Encoder

6. Choose the parameters that define the specific RS code you wish to 
implement (see Figure 4). You can either enter the parameters one by 
one or click DVB Standard to use digital video broadcast (DVB) 
standard values. See Table 1 on page 13 for a description of the 
parameters. The MegaWizard Plug-In only allows you to select legal 
combinations of parameters. Click Next when you are finished.
Altera Corporation 27



Getting Started Reed-Solomon Compiler MegaCore Function User Guide
Figure 4. Choosing the Parameters

7. Choose whether you want to generate vector files. The MegaWizard 
Plug-In also lists any memory or vector files generated. For a 
throughput calculation, enter the frequency in MHz, select the 
desired units and click Calculate (see Figure 5). Click Next when you 
are finished.

Figure 5. Specifying Vector & Memory Files

8. The MegaWizard Plug-In lists the product order codes for your 
custom megafunction (see Figure 6). You will need these codes when 
you want to license the MegaCore function. Click Next when you are 
finished.
28 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide GettingGetting Started
Getting Started

3

Figure 6. Product Order Codes

9. The final screen lists the design files that the wizard creates. In 
addition to these files, the wizard creates one hexadecimal file (.hex) 
that defines the contents of the ROM used by the MegaCore 
function, and a Vector File (.vec) that can be used to simulate the 
function in the MAX+PLUS II software. Click Finish.

Once you have created a custom megafunction, you can integrate it into 
your system design and compile. 

Simulate Using 
VHDL Models

Altera provides register transfer level (RTL) VHDL models that you can 
use to simulate the functionality of the RS function in your system. The 
VHDL models are supplied as pre-compiled libraries for the ModelSim 
simulator and support both encoding and decoding functions. You can 
integrate these RTL models into your system, speeding simulation. 
Additionally, you can synthesize the MegaCore function in the 
MAX+PLUS II software and then generate VHDL Output Files (.vho) or 
Verilog Output Files (.vo) for simulation in third-party simulators.

The following instructions describe how to set up your system and how to 
simulate the VDHL models using ModelSim. 
Altera Corporation 29



Getting Started Reed-Solomon Compiler MegaCore Function User Guide
Setting Up Your System

The pre-compiled VHDL model is provided with the RS compiler 
MegaCore function, and is installed in the directory 
sim_lib\vhdl\ModelSim\ReedS. Follow the steps below to set up your 
system to use the model.

1. Run the ModelSim software and create a logical map called ReedS to 
the directory containing the compiled library by typing the 
following command in the ModelSim software:

vmap ReedS <Drive: >\< RS MegaCore Path>
\sim_lib\vhdl\ModelSim\ReedS

You can also use the ModelSim graphical user interface to create the 
logical map. Refer to the ModelSim on-line help for details.

2. Altera provides sample testbenches and configuration files with the 
models in the sim_lib\vhdl\ModelSim\testbench directory. You 
should compile these files and save them into the ReedS library 
before simulating in the ModelSim software by performing the 
following steps:

a. Choose Compile (File menu). 

b. In the Compile HDL Source Files dialog box, click Default 
Options (see Figure 7). The Compiler Options dialog box 
appears 
(see Figure 8).
30 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide GettingGetting Started
Getting Started

3

Figure 7. Compile HDL Source Files Dialog Box

Figure 8. Compiler Options

c. In the  Compiler Options dialog box, turn on the Use 1993 
Language Syntax option in the VHDL tab. Click OK. 

d. In the  Compile HDL Source Files dialog box, select ReedS in 
the Library drop down list. 

e. Select the files you wish to compile and click Compile. 

f. Once compilation finishes, click Done.
Altera Corporation 31



Getting Started Reed-Solomon Compiler MegaCore Function User Guide
Using the VHDL Model

To use the model, you must first instantiate it in your system. Altera 
provides four generic testbenches and configurations to demonstrate how 
to use the models: cfg_Rs_std_str_tb for the standard streaming decoder, 
cfg_Rs_std_dsc_tb for the discrete decoder, cfg_Rs_eras_str_tb for the 
erasure-supporting streaming decoder, and cfg_Rs_eras_dsc_tb for the 
erasure-supporting discrete decoder. All files include the encoder and a 
testbench with a generic stimulus and a generic channel introducing some 
errors. These configurations must be loaded specifying the parameter 
values (for non-default values). Five of the parameters (n, check , m, 
irrpol , and genstart ) can be obtained from page 4 of the MegaWizard 
Plug-In. Refer to Figure 1 on page 26 for an example of the wizard.

The speed  parameter can be set to “full” or “half;” the clock_period  
parameter can be any valid time period (for example, 30 ns). 
See Table 1 on page 13 for a detailed description of the parameters. 

You can quickly load the configuration from the command line in the 
ModelSim software, for example:

vsim -Girrpol=37 -Ggenstart=1 -Gm=5 -Gspeed=\"full\"
-Gn=31 -Gcheck=6 {-Gclock_period=30 ns}
ReedS.cfg_rs_std_str_tb

You can also use the ModelSim graphical user interface to load the 
configuration. Refer to the ModelSim on-line help for details.

To instantiate the VHDL model in your system, you can instantiate the 
parameterized models by using the generic testbenches as templates. 
Alternatively, you can instantiate the VHDL entity created by the 
MegaWizard Plug-In, which acts as a wrapper to the parameterized 
model.

Compile & 
Simulate in the 
MAX+PLUS II 
Software

The following steps explain how to compile and simulate your design in 
the MAX+PLUS II software. 

ÿ For the best results, you should turn on the Manual Carry Chain 
logic option, in the Global Project Logic Synthesis dialog box, 
when compiling your design in the MAX+PLUS II software. Also 
you should turn on Register Packing, to reduce the size by 10 to 
15%. However, this may reduce speed (in some cases 
drastically), so if speed is a premium turn off Register Packing.

1. Open the MAX+PLUS II Compiler.

2. Click Start to compile your design.
32 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide GettingGetting Started
Getting Started

3

3. Run the MAX+PLUS II Simulator. The Vector File created by the 
MegaWizard Plug-In Manager for your custom RS compiler 
MegaCore function is loaded automatically. Click Start to begin 
simulation.

4. When simulation has completed, click the Open SCF button to view 
the design’s waveform.

Figure 9 shows an example waveform display simulated in the 
MAX+PLUS II Simulator.

Figure 9. Example RS MegaCore Simulation

After you have verified that your design is functionally correct, you are 
ready to perform system verification.

Perform 
Synthesis 
Compilation & 
Post-Routing 
Simulation

As a standard feature, the Altera MAX+PLUS II software works 
seamlessly with tools from all EDA vendors, including Cadence, 
Exemplar Logic, Mentor Graphics, Synopsys, Synplicity, and Viewlogic. 
After you have licensed the MegaCore function, you can generate EDIF, 
VHDL, Verilog HDL, and Standard Delay Output Files from the 
MAX+PLUS II software and use them with your existing EDA tools to 
perform functional modeling and post-route simulation of your design. 

The following sections describe the design flow to compile and simulate 
your custom MegaCore design with a third-party EDA tool. Refer to 
Figure 2 on page 4, which shows the design flow for interfacing your 
third-party EDA tool with the MAX+PLUS II software.
Altera Corporation 33



Getting Started Reed-Solomon Compiler MegaCore Function User Guide
To synthesize your design in a third-party EDA tool and perform post-
route simulation, perform the following steps:

1. Create your custom design instantiating a RS compiler MegaCore 
function.

2. Synthesize the design using your third-party EDA tool. Your EDA 
tool should treat the MegaCore instantiation as a black box by either 
setting attributes or ignoring the instantiation.

ÿ For more information on setting compiler options in your third-
party EDA tool, refer to the MAX+PLUS II ACCESS Key 
Guidelines.

3. After compilation, generate a hierarchical EDIF netlist file in your 
third-party EDA tool.

4. Open your EDIF file in the MAX+PLUS II software.

5. Set your EDIF file as the current project in the MAX+PLUS II 
software. 

6. Choose EDIF Netlist Reader Settings (Interfaces menu). 

7. In the EDIF Netlist Reader Settings dialog box, select the vendor for 
your EDIF netlist file in the Vendor drop-down list box and click 
OK.

8. Make logic option and/or place-and-route assignments for your 
custom logic using the commands in the Assign menu. 

9. In the MAX+PLUS II Compiler, make sure Functional SNF Extractor 
(Processing menu) is turned off.

10. Turn on the Verilog Netlist Writer or VHDL Netlist Writer 
command (Interfaces menu), depending on the type of output file 
you want to use in your third-party simulator. Use the 1993 VHDL 
language option.

11. Compile your design. The MAX+PLUS II Compiler synthesizes and 
performs place-and-route on your design, and generates output and 
programming files.

12. Import your MAX+PLUS II-generated output files (.edo, .vho, .vo, or 
.sdo) into your third-party EDA tool for post-route, device-level, and 
system-level simulation. 
34 Altera Corporation



Reed-Solomon Compiler MegaCore Function User Guide GettingGetting Started
Getting Started

3

Configuring a 
Device

After you have compiled and analyzed your design, you are ready to 
configure your targeted Altera device. If you are evaluating the MegaCore 
function with the OpenCore feature, you must license the function before 
you can generate configuration files.
Altera Corporation 35


	Contents
	Reed-Solomon Compiler MegaCore Function User Guide ver. 1.0
	About this User Guide
	How to Contact Altera
	Typographic Conventions

	Introduction
	Altera MegaCore Functions
	OpenCore Feature
	Altera Devices
	Software Tools
	MegaWizard Plug-Ins
	EDA Interfaces

	Specification
	Features
	General Description
	Functional Description
	MegaWizard Plug-In
	Encoder Signals
	Decoder Signals

	Performance

	Getting Started
	Download & Install the RS Compiler MegaCore Function
	Obtaining MegaCore Functions
	Installing the MegaCore Files

	Generate a Custom RS Function
	Simulate Using VHDL Models
	Setting Up Your System
	Using the VHDL Model

	Compile & Simulate in the MAX+PLUS II Software
	Perform Synthesis Compilation & Post-Routing Simulation
	Configuring a Device



