

®

White Paper

Configuring PLDs with Flash Memory

Introduction

As Altera® introduces higher-density programmable logic devices (PLDs) to the market, the size of the configuration
bit streams also increases. By using a standard flash memory device, these high-density devices can be configured. A
MAX® 3000 device can be used to stream the data from the flash memory into a large PLD. This configuration
technique allows faster configuration times. Since a fixed-frequency oscillator (or any available clock on the system)
is used to generate the clock for the configuration, the clock frequency can be as high as 57 MHz (the maximum for
an APEX™ 20KE device).

Flash memory is a type of nonvolatile memory that can be used as a data storage device. Flash memory can be erased
and reprogrammed in units of memory called blocks.

This white paper describes how to configure a PLD with flash memory. By using a MAX 3000 device to configure
higher density PLDs, the flash memory can store configuration data and the MAX 3000 device can serialize and
transmit the data to the PLD. This configuration technique can be used with APEX, ACEX™, or FLEX® devices.

Configuring PLDs

Figure 1 shows a device that uses an EPM3128A device and flash memory to configure the PLDs.

Figure 1. Device Configuration Using Flash Memory & EPM3128A Device

Notes:
(1) FLEX 6000 devices have a single MSEL pin, which is tied to ground. Additionally, its DATA0 pin is renamed DATA.
(2) The nCEO pin is left unconnected for the last device in the chain.
(3) Pull-up resistors are 1 kΩ except for APEX 20KE devices. For APEX 20KE devices, pull up resistors are 10 kΩ.
(4) The nSTATUS, CONF_DONE, and INIT_DONE pins are open-drain on the APEX, ACEX, and FLEX devices. The corresponding pins on

the EPM3128A should also be open_drain.

Flash Memory

ADDR[] ADDR[]

RESTART

DATA[] D[]

CLK

EPM3128A Device

nSTATUS

INIT_DONE

CONF_DONE

DCLK

DATA0

nCONFIG

APEX, ACEX, or FLEX

nSTATUS

INIT_DONE

CONF_DONE

DCLK

DATA0

nCONFIG

APEX, ACEX, or FLEX

GND

GND

MSEL0 (1)
MSEL1 (1)

nCE

MSEL0 (1)
MSEL1 (1)

nCE

RESTART nCEO

GND

VCC

VCC

VCC

(1)

(1)

(1)

(1)

Oscillator

nCEO

nSTATUS (4)

INIT_DONE (4)

CONF_DONE (4)
DCLK

DATA0

nCONFIG

(2)

CEn

CEn

(3)

(3) (3)
October 2000, ver. 1.0 1

M-WP-M3KPLD-01

Altera Corporation Configuring PLDs with FLASH Memory

A VHDL design file called MAXconfig, shown in the “Configuration Design File” section, allows an EPM3128A
device to control the configuration process. The MAXconfig design configures the PLD using the configuration data
stored in the attached flash memory. The MAXconfig design contains a sequencer and an address generator, which
drives the correct data to the PLD’s programming pins. The MAXconfig design file is available on the Altera web site
at http://www.altera.com/document/wp/maxconfig.txt.

When the MAXconfig design is reset, the MAXconfig design reads the data from the flash memory, one byte at a
time. The MAXconfig design then serializes and sends the data to the APEX, ACEX, or FLEX device. The serialized
data is sent to the PLD using the passive serial interface pins such as DCLK, DATA, nSTATUS, INIT_DONE, and nCONFIG.
Since the passive serial mode is used, the flash pins are not directly connected to the APEX, ACEX, or FLEX device.

Flash memory can be programmed prior to being put onto a board with standard programming equipment or it can be
programmed in-system by a processor or test equipment. Since different flash memories have different algorithms,
consult the flash memory data sheet for programming information.

Figure 2 shows a configuration timing waveform of an EPM3128A device downloading data to an APEX, ACEX, or
FLEX device.

Figure 2. Configuration Timing Waveform

Configuration Design File

This section shows the MAXconfig design file that controls the configuration process on APEX, ACEX, or FLEX
devices:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity MAXconfig is
port

(
clock : in std_logic;
init_done : in std_logic;
nStatus : in std_logic;
D : in std_logic_vector(7 downto 0);
restart : in std_logic;
Conf_Done : in std_logic;

Data0 : out std_logic;
Dclk : out std_logic;
nConfig : buffer std_logic;

nSTATUS

CLK

nCONFIG

DCLK

DATA0

D[7..0]

ADDR[15..0]

CONF_DONE

RESTART

INIT_DONE

A1 A2 A3A0

D0 D1 D2

DATA

An

Dn z

z

D3
2

http://www.altera.com/document/wp/maxconfig.txt

Altera Corporation Configuring PLDs with Flash Memory

--To increase the size of the memory, change the size of std_logic_vector for ADDR output and
--std_logic_vector signal inc:

ADDR : out std_logic_vector(15 downto 0);
CEn : out std_logic);

-- The polarity of the CEn signal is determined by the type of Flash device
end;

architecture rtl of MAXconfig is

--The following encoding is done in such way that the LSB represents the nConfig signal:

constant start :std_logic_vector(2 downto 0) := "000";
constant wait_nCfg_8us :std_logic_vector(2 downto 0) := "100";
constant status :std_logic_vector(2 downto 0) := "001";
constant wait_40us :std_logic_vector(2 downto 0) := "101";
constant config :std_logic_vector(2 downto 0) := "011";
constant init :std_logic_vector(2 downto 0) := "111";

signal pp :std_logic_vector(2 downto 0);
signal count :std_logic_vector(2 downto 0);
signal data0_int, dclk_int :std_logic;
signal inc :std_logic_vector(15 downto 0);
signal div :std_logic_vector(2 downto 0);
signal waitd :std_logic_vector(11 downto 0);
--The width of signal ‘waitd’ is determined by the frequency. For 57 MHz (APEX 20KE devices),
--‘waitd’ is 12 bits. For 33 MHz (FLEX 10KE and ACEX devices) ‘waitd’ is 11 bits. To calculate
--the width of the ‘waitd’ signal fordifferent frequencies, calculate the following:
--(multiply tcf2ck * clock frequency)+ 40
--Then convert this value to binary to obtain the width.
--For example, for 33 MHz (FLEX 10KE & ACEX devices), converting 1360 ((40us * 33MHz)+40=1360)
--to binary code, the ‘waitd’ is an 11-bit signal. So signal ‘waitd’ will be:
--signal waitd :std_logic_vector(10 downto 0);

begin
--The following process is used to divide the CLOCK:

PROCESS (clock,restart)
begin

if restart = '0' then
div <= (others => '0');

else
IF (clock'EVENT AND clock = '1') THEN

div <= div + 1;
end if;

end if;
END PROCESS;

PROCESS (clock,restart)
begin

if restart = '0' then
pp<=start;
count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');

else
if clock'event and clock='1' then

--The following test is used to divide the CLOCK. The value compared to must be such that the
--condition is true at a maximum rate of 57 MHz (tclk = 17.5 ns min) for APEX 20KE devices
--and at a maximum rate of 33 MHz (tclk=30ns min) for FLEX 10KE or ACEX devices.

if (div = 7) then
case pp is
when start =>
 count <= (others => '0');
 inc <= (others => '0');
 waitd <= (others => '0');
3

Altera Corporation Configuring PLDs with FLASH Memory

 pp <= wait_nCfg_8us;
--This state is used in order to verify the tcfg timing (nCONFIG low pulse width).
--Tcfg = 8µs => min= 456 clock cycle of a 57 MHz clock (APEX 20KE devices). For different
--clocks, multiply 8µs to clock frequency. For example, for 33MHz (FLEX 10KE or ACEX devices)
this --value is 8*33=264. This clock is CLOCK divided by the divider -div-.

when wait_nCfg_8us =>
 count <= (others => '0');
 inc <= (others => '0');
 waitd <= waitd + 1;
 if waitd = 456 then

--For 33 MHz FLEX 10KE or ACEX devices this line is: if waitd = 264 then

pp <= status;
 end if;

--This state is used to have nCONFIG high.
when status =>

count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
pp <= wait_40us;

--This state is used to generate the tcf2ck timing (nCONFIG high to first rising edge on DCLK).
--Tcf2ck = 40µs min => 2280 clock cycles of a 57MHz (APEX 20KE) clock. This clock is CLOCK
--divide by the divider -div-
--Tcf2ck = 40µs min => 1320 clock cycles of a 33MHz (FLEX 10KE/ACEX) clock. This clock is CLOCK
--divided by the divider -div-)
--For any other clock frequency, multiply tcf2ck * clock frequency.

when wait_40us =>
 count <= (others => '0');
 inc <= (others => '0');
 waitd <= waitd + 1;
 if waitd = 2280 then

--For 33 MHz (FLEX 10KE or ACEX devices), this line is: if waitd = 1320 then

 pp <= config;
end if;

--This state is used to increment the memory address. In the same state when
--the Conf_Done is high clock cycles are added in order to have the initialization completed.

when config =>
count <= count + 1;
if Conf_Done='1' then

waitd <= waitd + 1;
end if;
if count=7 then

inc <= inc + 1;
end if;
if waitd = 2320 then

--Modification: Add 40 clock cycles. For APEX 20KE devices, it is 2280+40=2320
--For FLEX 10KE and ACEX devices, it is 1320+40=1360. This line becomes: if waitd= 1360 then

pp<= init;
end if;

when init =>
count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
if nStatus = '0' then

pp <= start;
else

pp <= init;
end if;

when others =>
pp <= start;
4

Altera Corporation Configuring PLDs with FLASH Memory

Copyright  2000 Altera Corporation. Altera, ACEX, APEX, FLEX, MAX, and specific device designations are trademarks and/or service
marks of Altera Corporation in the United States and other countries. Altera acknowledges the trademarks of other organizations for their
respective products or services mentioned in this document. Altera products are protected under numerous U.S. and foreign patents and
pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications
in accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except
as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before
relying on any published information and before placing orders for products or services. All rights reserved.

®

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

end case;
else

pp <= pp;
inc <= inc;
count <= count;

end if;
end if;

end if;
end PROCESS;

dclk_int <= div(2) when pp=config else '0';

--The following process is used to serialize the data byte :
PROCESS (count,D,pp)
begin

if pp=config then
case count is
when "000" => data0_int <= D(0);
when "001" => data0_int <= D(1);
when "010" => data0_int <= D(2);
when "011" => data0_int <= D(3);
when "100" => data0_int <= D(4);
when "101" => data0_int <= D(5);
when "110" => data0_int <= D(6);
when "111" => data0_int <= D(7);
when others => null;
end case;

else
data0_int <= '0';

end if;
end PROCESS;

nConfig <= pp(0);
CEn <= not nconfig;
Dclk <= '0' when pp(1)='0' else dclk_int;
Data0 <= '0' when pp(1)='0' else data0_int;
ADDR <= inc;
end;

Conclusion

Altera provides high-density PLDs that require larger configuration files. By using a flash memory device and an
EPM3128A device in a design, a PLD can be quickly configured.
5

	Contents
	Configuring PLDs with Flash Memory White Paper
	Introduction
	Configuring PLDs
	Configuration Design File
	Conclusion

