
© November 2008 Altera Corporation

© November 2008
Simulating Nios II Embedded Processor
Designs
AN-351-1.2
Introduction
This application note describes the process of generating an RTL simulation environment 
using Nios II example designs, SOPC Builder, and the Nios II software build tools. It also 
describes the process of running the Nios II RTL simulation in the ModelSim simulator.

The increasing pressure to deliver robust products to market in a timely manner has 
amplified the importance of comprehensively verifying embedded processor designs. 
Therefore, a key consideration when choosing an embedded processor is the verification 
solution supplied with the processor. Nios® II embedded processor designs support a broad 
range of verification solutions, including the following:

■ Board Level Verification—Altera offers a number of development boards that provide a 
versatile platform for verifying both the hardware and software of a Nios II embedded 
processor system. You can use the Nios II integrated development environment (IDE) 
with its built-in debugger to verify designs running on either development or custom 
boards. You can find more information about the Nios II IDE debugger in the Nios II IDE 
Help. You can further debug the hardware components that interact with the processor 
with the SignalTap® II embedded logic analyzer.

f For more information about the SignalTap II embedded logic analyzer, refer to 
AN 323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder Systems and 
AN 446: Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer.

■ Register Transfer Level (RTL) Simulation—RTL simulation is a powerful means of 
debugging the interaction between a processor and its peripheral set. When debugging a 
target board, it is often difficult to view signals buried deep in the system. RTL simulation 
alleviates this problem as it enables you to functionally probe every register and signal in 
the design. Nios II-based systems are easily simulated in the ModelSim® simulator using 
an automatically generated simulation environment created by SOPC Builder and the 
Nios II software build tools. 

f For more information about Nios II software build tools, refer to the Introduction 
to the Nios II Software Build Tools chapter in the Nios II Software Developer’s 
Handbook.

Before You Begin
This document assumes that you have prior experience using SOPC Builder as well as a 
familiarity with the ModelSim simulator. In order to simulate the Nios II design using the 
instructions in this document, you must have the following software installed:

■ The Quartus® II software version 8.1 or later

■ ModelSim-Altera 6.3g or higher, or ModelSim PE, SE, or EE

■ Nios II Embedded Development Suite (EDS) 8.1 or later
Simulating Nios II Embedded Processor Designs

http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf


Page 2 Setting Up Your Simulation Environment in SOPC Builder
Setting Up Your Simulation Environment in SOPC Builder
To open the example design, perform the following steps:

1. Locate the <Nios II EDS install directory>/examples/<vhdl or verilog>/
niosII_stratixII_2s60/standard directory and copy this folder into a location where 
you plan to test the Nios II simulation flow. The location where you copy the 
folder is referred to as <your project directory> throughout the remainder of this 
document.

2. Start the Quartus II software.

3. On the File menu, click Open Project.

4. Browse to <your project directory>/standard.

5. Select NiosII_stratixII_2s60_standard.qpf.

6. Click Open.

7. On the Tools menu, click SOPC Builder. 

Memory Initialization
To run a simulation of a Nios II design, you must initialize any memories that contain 
software prior to simulation. You can create the memory initialization files using the 
Nios II software build tools. Later sections of this document explain how to use the 
Nios II software build tools to create memory initialization files for your simulation.

You can use two types of memory models for simulation purposes: generic and 
vendor-specific. This application note discusses the generic memory model. Table 1 
shows the different types of memory and their corresponding simulation models.

f For more information about simulating each of the memory types, refer to the 
documents listed in Table 1.

Table 1. Simulation Models Provided by Altera

Memory Type Simulation Model Documentation

On-chip memory Generic memory model Building Memory Subsystem Development Walkthrough 
chapter in volume 4 of the Quartus II Handbook

Off-chip SRAM Generic memory model Building Memory Subsystem Development Walkthrough 
chapter in volume 4 of the Quartus II Handbook

Flash Generic memory model Building Memory Subsystem Development Walkthrough 
chapter in volume 4 of the Quartus II Handbook

SDRAM Generic memory model ■ Building Memory Subsystem Development Walkthrough 
chapter in volume 4 of the Quartus II Handbook

■ SDRAM Controller Core chapter in volume 5 of the 
Quartus II Handbook
Simulating Nios II Embedded Processor Designs © November 2008 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf


Setting Up Your Simulation Environment in SOPC Builder Page 3
JTAG UART Settings
You can use SOPC Builder to customize a JTAG UART for generating a data stream to 
send to the host processor during simulation. 

To set up the JTAG UART for a simulation, perform the following steps in SOPC 
Builder:

1. In the Module Name column, double-click jtag_uart. The JTAG UART dialog box 
opens.

2. In the JTAG UART dialog box, click the Simulation tab.

3. Turn on the Create ModelSim alias to open an interactive stimulus/response 
window option.

4. Click Finish.

f For more information about setting up a JTAG UART for simulation, refer to the 
JTAG UART Core chapter in volume 5 of the Quartus II Handbook.

Parallel I/O (PIO) Settings
You can also use SOPC Builder to initialize the inputs of any PIO peripherals in your 
design that have an input port. For example, you can initialize PIOs, with the 
direction set to bidirectional (tri-state) ports, input ports only, or both input and 
output ports, for simulation in SOPC Builder.

f For more information, refer to the PIO Core chapter in volume 5 of the Quartus II 
Handbook.

To initialize the PIO in the example design, perform the following steps in SOPC 
Builder:

1. In the Module Name column, double-click button_pio. The PIO (Parallel I/O) 
dialog box opens.

2. In the PIO (Parallel I/O) dialog box, click the Simulation tab.

3. In the Drive inputs to field, type the initial value that you want to drive on the 
input ports; for example type 0xF.

4. Click Finish.

SOPC Builder Simulation Settings
After you set up the simulation settings for the JTAG-UART and PIO peripherals in 
your design, you must enable simulation file generation before you start generating 
the system. To enable simulation file generation in SOPC Builder, perform the 
following steps:

1. On the System Generation tab, turn on the Simulation. Create project simulator 
files option. 

2. Click Generate. Click Save when prompted to save changes.

3. Click Exit when system generation is complete.
© November 2008 Altera Corporation Simulating Nios II Embedded Processor Designs

http://www.altera.com/literature/hb/nios2/n2cpu_nii51009.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51007.pdf


Page 4 Using the Nios II Software Build Tools to Generate Memory Initialization 
SOPC Builder Generated System Simulation Files
At this point in the design, SOPC Builder has generated your system and created all of 
the files necessary for simulation listed in Table 2, except for the memory initialization 
files. These simulation files are located in the <your project directory>/standard/
NiosII_stratixII_2s60_standard_sim directory.

Using the Nios II Software Build Tools to Generate Memory Initialization 
Files

This section describes how to finish setting up your simulation by using the Nios II 
software build tools to create a software test project and to generate the necessary files 
for initializing the memories used in your simulation. 

f For further details about the Nios II software build tools, refer to the Introduction to the 
Nios II Software Build Tools chapter in the Nios II Software Developer’s Handbook.

Creating a Nios II Software Build Tools Project
The software test project you are going to simulate is a simple Hello World 
application. Download and unzip the AN351_software_file.zip file into the 
<your project directory>/standard directory. A hyperlink to the 
AN351_software_file.zip file appears next to this application note on the Application 
Notes web page.

This software prints a message to the JTAG UART on the target board and displays an 
incrementing binary value on the LEDs. For further details about this software, refer 
to hello_world.c source file located in the <your project directory>/standard/
software/app/hello_world directory.

To create and build the software project using the Nios II software build tools, 
perform the following steps:

1. Open a Nios II command shell. On the Windows Start menu, point to 
Programs>Altera>Nios II EDS 8.1 and then click Nios II 8.1 Command Shell.

2. Change the directory to <your project directory>/standard/software/
app/hello_world.

Table 2. SOPC Files Generated for Nios II Simulation

File Extension Description

.mpf ModelSim project file. This file is created if SOPC Builder detects that the ModelSim simulator is 
installed in the machine.

.do ModelSim macro execution scripts. The setup_sim.do script initializes the macros listed in Table 3.

The wave_presets.do script generates a list of default signals that are displayed in the waveform 
window.

.dat Memory initialization files in hexadecimal format. These files are used for simulation only. 

The .dat files are created to initialize components in your system such as UARTs. Additional .dat files 
need to be generated using the Nios II software build tools to load the memories used in your design.
Simulating Nios II Embedded Processor Designs © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/lit-an.jsp
http://www.altera.com/literature/lit-an.jsp


Launch the ModelSim Simulator Using the Nios II Command Shell Page 5
3. To create and build the application with the create-this-app script, type the 
following in the command shell:

./create-this-app

Building the software project takes some time.

1 The mem_init_install makefile target in the create-this-app script tells the 
software build tools to generate the memory initialization files. When the compilation 
is complete, the .dat files in the <your project directory>/standard/
NiosII_stratixII_2s60_standard_sim directory are updated. 

Board Support Package (BSP) Settings
To improve the simulation speed, change the BSP settings for the software project. To 
specify which memory you want your code compiled for and to increase simulation 
speed by reducing code overhead, perform the following steps: 

1. Open the create-this-bsp script located in <your project directory>/ 
standard/software/bsp/hal_default directory using any text editor of your choice.

2. Search for NIOS2_BSP_ARGS variable in the script. 

There are some nios2-bsp utility arguments assigned to the variable. Table 3 lists 
these arguments and their purpose.

Launch the ModelSim Simulator Using the Nios II Command Shell
You can use the Nios II command shell to launch and set up the ModelSim simulator 
to run your simulation. After launching the ModelSim simulator, the Nios II 
command shell has no further role in the simulation process. All subsequent 
simulation commands are performed in the ModelSim simulator.

Table 3. Purposes for the nios2-bsp Utility Arguments

Arguments Purpose

--set hal.enable_sim_optimize 1 This argument turns on ModelSim only, no hardware support option. 
This option tells the compiler that the current project is being run on a 
simulator. In turn, the compiler removes sections of the startup code to 
improve simulation speed. Specifically, the instruction and data caches 
are not initialized during simulation and the .bss section of the 
read/write data memory is not cleared. These enhancements greatly 
improve the speed at which your design is simulated in the ModelSim 
simulator; however, the resulting software image will not run on a target 
board.

Before downloading your software image to your target board, you must 
disable the ModelSim only, no hardware support option by setting this 
argument value to zero and rerun the create-this-app script. 

--default_sections_mapping sdram This argument sets the Program, Read-only data, Read/write data, Heap, 
and Stack memories to sdram. This specifies that the software code is 
compiled for this memory module.

--default_stdio jtag_uart This argument sets the stdout, stderr, and stdin devices to 
jtag_uart.
© November 2008 Altera Corporation Simulating Nios II Embedded Processor Designs



Page 6 Launch the ModelSim Simulator Using the Nios II Command Shell
Set up the ModelSim simulator to run your project by performing the following steps:

1. In the Nios II command shell, change the directory to <your project directory>/
standard/NiosII_stratixII_2s60_standard_sim.

2. To launch the ModelSim simulator, type the following in the command shell:

vsim setup_sim.do &

Once the ModelSim simulator is launched, it then compiles the setup_sim.do script 
and waits for you to run the simulation.

Running the Simulation Using the ModelSim Simulator
After you have launched the ModelSim simulator from the Nios II command shell, 
the setup_sim.do script is run and the available macros are shown in the Nios II 
command shell. These macros make it easy for you to load your design files and view 
the default signals for your design. The available macros are described in Table 4.

Run the simulation in the ModelSim simulator by performing the following steps:

1. Type s in the ModelSim Transcript window to run the s macro to load the design.

2. Run the jtag_uart_drive macro to launch the interactive terminal window that 
displays the output of the printf statement in the hello_world.c source code.

3. Run the w macro to display the ModelSim waveform window with the example 
signals that were automatically generated for your system. These signals are 
separated by function and include signals useful for debugging. Table 5 lists the 
signals included in the default waveform.

4. Run the design in the ModelSim simulator using the standard ModelSim 
commands. However, by adding a few additional signals to the wave window, 
you can observe the operation of the PIO peripheral. To view the operation of the 
PIO peripheral, click on the sim tab inside the Workspace window. (If the 
Workspace window is not open, on the View menu, click Workspace.) 

Table 4. Nios II Simulation Macros

Macros Description

s Loads all design (HDL) files into the ModelSim work library, recompiles the design files, and 
starts the simulation.

c Recompiles memory contents. Builds C- and assembly-language programs (and associated 
simulation data-files such as UART simulation strings) for refreshing memory contents. 
Works only with the Legacy Software Development Kit (SDK).

w Loads the wave_presets.do file, which contains predefined ModelSim waveform window 
information. The wave_presets.do file loads the common signals from all of the processors 
and peripherals that reside on-chip and displays the ModelSim waveform window.

l Loads the list_presets.do file, which contains predefined ModelSim list window information. 
The list_presets.do file loads the common signals from all of the processors and peripherals 
that reside on-chip and displays the ModelSim list window.

h Help. Displays a list of the available macros and their functions.

<UART name>_drive Optional. For each UART in the system, this macro is created if you turned on the Create 
ModelSim alias to open an interactive/stimulus response window option inside SOPC 
Builder before system generation. When you run this macro, it opens an interactive display 
window.
Simulating Nios II Embedded Processor Designs © November 2008 Altera Corporation



Launch the ModelSim Simulator Using the Nios II Command Shell Page 7
5. In the Workspace window, expand test_bench and expand DUT to select 
the_led_pio.

6. In the Objects window, select chipselect and out_port. (If the Objects window is 
not open, on the View menu, click Objects.)

7. Drag the selected signals into the waveform window.

8. Run the simulation for 800 microseconds by typing run 800 us in the ModelSim 
Transcript window.

9. After the simulation has completed, the terminal window should display Hello 
from Nios II! message. Also, zoom in on the PIO signals that you added to the 
waveform window and observe the CPU writing data to the PIO as shown in 
Figure 1.

Table 5. Signals Shown in Simulation Waveform

Signal Group Description

cpu Signals related to instruction fetching and reading and writing data. Signals in this 
group beginning with a d_ prefix are associated with the CPU data master. These 
signals provide information on when the CPU data master is performing read or write 
access to memory or memory-mapped peripherals. Signals beginning with an i_ prefix 
are associated with the CPU instruction master. These signals indicate when the CPU 
instruction master is reading instructions from memory.

sdram Signals that show the following:

■ The interface between the system interconnect fabric and the SDRAM controller

■ The interface between the SDRAM controller and SDRAM device(s)

■ Signals internal to the SDRAM controller logic

Signals from the system interconnect fabric to the SDRAM controller have the prefix 
az_. For example, az_addr is the address bus input.

Signals from the SDRAM controller to the system interconnect fabric have the prefix 
za_. For example, za_data is the data from the controller to the system interconnect 
fabric.

Signals between the SDRAM controller and external SDRAM device(s) have the prefix 
zs_. For example, zs_ras_n is the row address strobe signal. Signals internal to the 
SDRAM controller logic include the system clock (clk) and the current operation that 
the SDRAM controller is performing (code).

onchip_ram Address, data, and control signals for the onchip_ram memory.

jtag_uart Displays the Avalon® Memory-Mapped (MM) slave port interface signals of the JTAG 
UART.

uartl Bus Interface Signals displaying the UART bus interface. These signals display the Avalon address 
and data signals for the UART.

uartl Internals Internal UART signals showing the UART transmit (TX) and receive (RX) data registers. 
The signals decode the 8-bit TX and RX registers to ASCII text so that you can view the 
characters in the simulation waveform. The TX ready and RX character ready signals 
are also shown.
© November 2008 Altera Corporation Simulating Nios II Embedded Processor Designs



Page 8 Conclusion
Conclusion
Simulation and verification are vital parts of the design process. You can 
comprehensively verify the Nios II processors with board-level debugging, and RTL 
simulation using the ModelSim simulator. RTL simulation is an important part of the 
design process, particularly for configurable systems, because it enables you to probe 
deeply embedded signals in the processor and your peripheral set. RTL simulation 
also helps verify your system before you try out your design in the actual hardware.

Figure 1. Simulation Results
Simulating Nios II Embedded Processor Designs © November 2008 Altera Corporation



Revision History
101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support
www.altera.com/support

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized 
Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service 
marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other 
countries. All other product or service names are the property of their respective holders. Altera products are protected 
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants 
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, 
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no 
responsibility or liability arising out of the application or use of any information, product, or service 
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are 
advised to obtain the latest version of device specifications before relying on any published 
information and before placing orders for products or services.

Revision History
Table 6 shows the revision history for this application note. 

Table 6. Document Revision History

Date and Revision Changes Made Summary of Changes

November 2008, 

version 1.2

Updated for the Nios II processor 8.1 release. Updated the tutorial section.

November 2007, 

version 1.1

Updated for the Nios II processor 7.2 release. Updated the screenshots.

May 2004

version 1.0

Initial Release. —

http://www.altera.com
http://www.altera.com/support

	Simulating Nios II Embedded Processor Designs
	Introduction
	Before You Begin
	Setting Up Your Simulation Environment in SOPC Builder
	Using the Nios II Software Build Tools to Generate Memory Initialization Files
	Creating a Nios II Software Build Tools Project
	Board Support Package (BSP) Settings

	Launch the ModelSim Simulator Using the Nios II Command Shell
	Conclusion
	Revision History




