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Application Note 440

Accelerating Nios II
Networking Applications

Introduction Ethernet has become a standard data transport paradigm for embedded 
systems across all applications. The reason for selecting Ethernet is 
simple—the transport technology is (relatively) cheap, abundant 
(networks are everywhere), mature, and reliable.

The primary goal of this application note is to provide you with 
techniques to accelerate the performance of your Nios® II networking 
application, and to show how certain key optimizations can improve the 
overall performance of the system. The result of applying these 
optimizations is noted in the benchmarking results section of this 
application note. The secondary goal is to provide you with a better 
understanding of how the different parts of a Nios II Ethernet-enabled 
system work together, and how the interaction of these parts correspond 
to the total networking performance of the system.

The Structure of 
Networking 
Applications

This section describes the different parts of a general networking 
application.

Ethernet System Hierarchy

Figure 1 shows the flow of information from an embedded networking 
application to the Ethernet.

Figure 1. The Ethernet System Hierarchy

The structure presented in Figure 1 shows a typical embedded 
networking system. In general, a user application performs a job that 
defines the goal of the embedded system (for example, controlling the 
speed of a motor, serving as the UI for an embedded kiosk, and so forth). 
The application uses an API (generally Sockets) provided by the 
networking stack to send networking data to and from the embedded 
system.
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The stack itself is a software library that converts data from the user 
application into networking packets, and sends the packets via the 
networking device. Networking stacks tend to be very complicated 
software state machines that must be able to send data using a wide 
variety of networking protocols (ARP, TCP, UDP, and so forth). These 
stacks generally require a significant amount of processing power from 
the CPU to get their job done.

The Ethernet device is used by the stack to move data across the physical 
media. Most of a networking stack's interaction with the networking 
device consists of shuttling Ethernet packets to and from the Ethernet 
device.

The link layer, or physical media upon which the Ethernet datagrams 
traverse, cannot be ignored when constructing a network enabled system. 
Depending on the location of the embedded system, the Ethernet 
datagrams may be traversing over a wide variety of physical links 
(10/100 Mbit twisted pair, fiber optic, and so forth). Additionally, the 
datagrams may experience latency if traversing long distances or need to 
be broadcast through many network switches in order to arrive at their 
destination.

Inter-Relationship of Elements

The total throughput performance of an embedded networking system is 
highly dependent on the interaction of the user application, networking 
stack, Ethernet device (and driver), as well as the physical connection for 
the networking link. Making substantial performance improvements in 
the network throughput often depends on optimizing the performance of 
all these elements simultaneously.

In general, your networking application has some criteria for 
performance that are either achieved or not. However, a good first order 
approximation for determining the viability of your networking 
application is to remove the user application from the system and 
measure the total networking performance. This provides you with an 
“upper bound” of total network performance, which you can use to 
create your networking application. This application note uses a simple 
benchmark program that determines the “raw” throughput rate of TCP 
and UDP data transactions. This benchmark application does very little 
apart from sending or receiving data through the networking stack. It 
therefore provides us with a good approximation of the maximum 
networking performance achievable.
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Finding the Performance Bottlenecks

There are a wide variety of tools available for analyzing the performance 
of your Nios II embedded system and finding system bottlenecks. In this 
application note, many of the techniques presented to increase overall 
system (and networking) performance were discovered through the use 
of these tools. While this application note doesn't explore the use of these 
tools, and how they were applied to find networking bottlenecks in the 
system, they are listed here for your information:

■ GNU Profiler
■ SOPC Builder Timer Peripheral
■ SOPC Builder Performance Counters

f For more information about finding general performance bottlenecks in 
your Nios II embedded system, refer to AN 391: Profiling Nios II Systems.

The User 
Application

In an embedded networking system, the application layer is the part of 
the system where your “key task” is being completed. In general, this 
application layer performs some work and then uses the network stack to 
send and receive data. In a classic embedded networking system, your 
application is being executed on the same CPU as the network stack, and 
is also vying for computation resources.

To increase the throughput of your networking system, decrease the time 
your application spends completing its task between the function calls it 
makes to the networking stack. There is a two-fold benefit to doing this. 
First, the faster your application runs to completion before sending or 
receiving data, the more function calls it can make to the networking 
stack (Sockets API) to move data across the network. Second, if the 
application takes less of the processor's time to run, the more time the 
processor has to operate the networking stack (and networking device) 
and transmit the data.

User Application Optimizations

This section describes some effective ways to decrease the amount of time 
your application uses the Nios II CPU.

Software Optimizations

■ Compiler Optimization Level—Compile your application with the 
highest compiler optimization possible, –03. Higher optimizations 
result in denser, more highly optimized code, thereby increasing the 
computational efficiency of the processor.
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■ MicroC/OS-II Thread Priority—Make sure that your application 
task has the right MicroC/OS-II priority level assigned to it. In 
general, the higher the priority of the application, the faster it runs to 
completion. The application's priority levels should be balanced 
against the priority levels assigned to the NicheStack's core tasks 
discussed in “Structure of the NicheStack Networking Stack” on 
page 8.

1 This suggestion assumes that your application is using 
Altera’s recommended method for operating the 
NicheStack Networking Stack, which requires using the 
MicroC/OS-II operating system.

Hardware Optimizations

■ Processor Performance—The performance of the Nios II processor 
can be increased in several ways:
● Computational Efficiency—Selecting the most 

computationally efficient Nios II processor core is the quickest 
way to improve overall application performance. The available 
Nios II processor cores, in order of performance, are the 
Nios II/f core (fastest), the Nios II/s core (standard), and the 
Nios II/e core (slowest).

● Memory Bandwidth—Using low-latency, high speed memory 
decreases the amount of time required by the processor to fetch 
instructions and move data. Additionally, increasing the 
processor's arbitration “share” of the memory via SOPC Builder 
increases the processor's performance by allowing the Nios II 
processor to perform more transactions to the memory before 
another Avalon master can assume control of the memory.

● Instruction/ Data Caches—Adding an instruction and data 
cache is an effective way to decrease the amount of time the 
Nios II processor spends performing operations, especially in 
systems that have slow memories (DDR SDRAM, SDRAM, and 
so forth). In general, the larger the cache size selected for the 
Nios II processor, the greater the performance improvement.

● Clock Frequency—Increasing the speed of the processor's clock 
results in more instructions being executed per unit of time. To 
gain the best performance possible, you should ensure that the 
processor's execution memory is on the same clock domain as 
the processor, to avoid the use of clock-crossing FIFOs.

One of the easiest ways to increase the operational clock 
frequency of the processor and memory peripherals is to use an 
SOPC Builder FIFO bridge peripheral to isolate the slower 
peripherals of the system. With this peripheral, the processor, 
memory, and Ethernet device are connected on one side of the 
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bridge. On the other side of the bridge are all of the peripherals 
that are not performance dependent. The optimized Ethernet 
design, which appears in the benchmark section of this 
document, uses a FIFO bridge for this reason.

■ Hardware Acceleration—Hardware acceleration can provide 
tremendous performance gains by moving time-intensive processor 
tasks to dedicated hardware blocks in the system. The three most 
common ways to accelerate application level algorithms are as 
follows:
● Custom Instruction—Off-loads the Nios II CPU by using 

hardware to implement a custom instruction.
● C2H (C to Hardware) Accelerator—Accelerates processor 

execution by converting C algorithms into hardware 
subroutines.

● Custom Peripheral—Create a block of hardware that performs 
a specific algorithmic task, controllable from the Nios II CPU, as 
a peripheral.

Because every application has different computational needs, this 
application note does not focus on these technologies in any great detail.

The Sockets API

After “tuning” your application to become more computationally 
efficient (thereby freeing more of the CPU’s time for operating the 
networking stack), the next area of optimization comes from how your 
application uses the networking stack. This section describes how to 
select the best protocol for use by your application and the most efficient 
way to use the Sockets API.

Selecting the “Right” Networking Protocol
When using the Sockets API, you must also select which protocol to use 
for transporting data across the network. There are two main protocols 
used to transport data across networks: TCP (Transmission Control 
Protocol) and UDP (User Datagram Protocol). Both of these protocols 



6  Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

perform the basic function of moving data across Ethernet networks, but 
they have very different implementations and performance implications. 
Table 1 compares the two protocols. 

In terms of just throughput performance, the UDP protocol is much faster 
than TCP because it has very little overhead. The UDP protocol makes no 
attempt to validate that the data being sent arrived at its destination (or 
even that the destination is capable of receiving packets), so the network 
stack needs to perform much less work in order to send or receive data 
using this protocol.

However, aside from very specialized cases where your embedded 
system can tolerate losing data (for example, streaming multi-media 
applications), use the TCP protocol.

1 Design Tip: Use the UDP protocol to gain the fastest 
performance possible; however, use the TCP protocol when you 
must guarantee the transmission of the data.

Improving Send/Recv Performance
Proper use of the Sockets API in your application can also increase the 
overall networking throughput of your system. Following are several 
ways to optimally use the Sockets API:

■ Minimize Send/ Recv function calls—The Sockets API provides 
two sets of functions for sending and receiving data through the 
networking stack. For the UDP protocol these functions are sendto 
and recvfrom. In the TCP protocol these functions are send and 
recv.

Depending on which transport protocol you use (TCP or UDP), your 
application uses one of these sets of functions. To increase overall 
performance, avoid calling these functions repetitively to handle 
small units of data. Every call to these functions incurs a fixed time 

Table 1. The UDP and TCP Protocols

Parameter
Protocol

UDP TCP

Connection Mode Connection-Less Connection-Oriented

In Order Data Guarantee No Yes

Data Integrity and Validation No Yes

Data Retransmission No Yes

Data Checksum Yes; Can be disabled Yes
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penalty for execution, which can compound quickly when these 
functions are called multiple times in rapid succession. Instead, you 
should aggregate data you want to send (or receive) and call these 
functions with the largest possible amount of data at one time to send 
or receive.

1 Design Tip: Call the Socket's send and receive functions 
with larger buffer sizes to minimize system call overhead.

■ Minimize Latency in Sending Data—Although the TCP Sockets 
send function can accept an arbitrary number of bytes, those bytes 
may not be immediately sent as a packet. This is especially true when 
send is called with a small number of bytes because the networking 
stack attempts to coalesce these small data “chunks” into a larger 
packet. This is done to avoid congesting the network with many 
small packets (using the Nagle Algorithm for congestion avoidance). 
There is a solution, however, through the use of the 
TCP_NO_DELAY flag.

When a socket has its TCP_NO_DELAY flag set via the setsockopt 
function call, the Nagle Algorithm is disabled and the socket 
immediately sends whatever bytes are passed in as a TCP packet. 
This can be a useful way to increase network throughput in the case 
where your application must send many small “chunks” of data very 
quickly.

1 Design Tip: If you need to accelerate the transmission of 
small TCP packets, use the TCP_NO_DELAY flag on your 
socket. An example of setting the TCP_NO_DELAY flag can 
be found in the benchmarking application software, found 
in the downloadable reference design.

1 While disabling the Nagle Algorithm should cause smaller 
packets to be immediately sent over the network, the 
networking stack may still coalesce some of the packets into 
larger packets. This is especially true in the case of the 
Windows workstation platform. The networking stack 
should, however, do so with much lower frequency than if 
the Nagle Algorithm was enabled.

The “Zero Copy” API
The NicheStack networking stack provides a further optimization to 
accelerate the data transfers to and from the stack called the “Zero Copy” 
API. The “Zero Copy” API increases overall system performance by 
eliminating the buffer management scheme performed by the Socket 
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API’s read and write function calls. The send and receive data buffers are 
directly managed by the user’s application, thereby eliminating an extra 
level of data copying performed by the Nios II CPU.

This performance optimization is not covered in detail in this application 
note. Refer to the “Appendix” on page 25 for pointers to more 
information.

1 Design Tip: Using the NicheStack “Zero Copy” API may 
accelerate your network application's throughput by 
eliminating an extra layer of copying.

Structure of the 
NicheStack 
Networking 
Stack

The NicheStack networking stack is a highly configurable software 
library designed for communicating over TCP/IP networks. The version 
that Altera ships in the Nios II EDS has been optimized for use with the 
MicroC/OS-II Real Time Operating System (RTOS), and includes device 
driver support for the LAN91C111 and Altera® Triple Speed Ethernet 
(TSE) MAC.

The NicheStack networking stack is extremely configurable, with the 
entire software library utilizing a single configuration header file, called 
ipport.h.

General Optimizations

Because this application note focuses on a single Nios II system, most of 
the optimizations described in “User Application Optimizations” on 
page 3 also improve the performance of the NicheStack networking stack. 
The following optimizations also help increase your overall network 
performance.

Software optimizations:

■ Compiler Optimization Level

Hardware optimizations:

■ Processor Performance

● Computational Efficiency
● Memory Bandwidth
● Instruction/ Data Caches
● Clock Frequency
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NicheStack Specific Optimizations

There are several targeted optimizations that can be used to increase the 
performance of the NicheStack networking stack directly. These 
improvements are described below.

NicheStack Thread Priorities

Altera's version of the NicheStack networking stack relies on the 
MicroC/OS-II operating system's threads to drive two critical tasks to 
properly service the networking stack. These tasks (threads) are 
tk_nettick, which is responsible for time-keeping, and tk_netmain, 
which is used to drive the main operation of the stack.

When building a NicheStack-based system in the Nios II EDS, the default 
run-time thread priorities assigned to these tasks are: tk_netmain = 2 and 
tk_nettick = 3. These thread priorities have been selected to provide the 
best networking performance possible for your system. However, in your 
embedded system you may need to override these priorities because your 
application task (or tasks) run more frequently than these tasks. Doing 
this, however, may result in performance degradation of network 
operations, as the NicheStack networking stack has less processor cycles 
to complete its tasks.

Therefore, if you need to increase the priority of your application tasks 
above that of the NicheStack tasks, make sure to yield control whenever 
possible to ensure that these tasks get some processor time. Additionally, 
ensure that the tk_netmain and tk_nettick tasks have priority levels that 
are just slightly less than the priority level of your critical system tasks.

When you yield control, your application task is placed from a “running” 
state into a “waiting” state by the MicroC/OS-II scheduler, which then 
takes the next “ready” task and places it into a running “state.” If 
tk_netmain and tk_nettick are the higher priority tasks, they are allowed 
to run more frequently, which in turn increases the overall performance 
of the networking stack.

1 Design Tip: If your MicroC/OS-II based application tasks run 
with a higher priority level (lower priority number) than the 
NicheStack tasks, remember to yield control periodically so the 
NicheStack tasks can run. Tasks using the NicheStack services 
should call the function tk_yield. If they are not using the 
NicheStack services, the tasks should call the function 
OSTimeDly.
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Disabling Non-Essential NicheStack Modules

Because the NicheStack networking stack is highly configurable, it is 
possible to include many modules (for example, FTP client/server, web 
server, and so forth). Every module included in your system may result 
in some performance degradation due to the overhead associated with 
having the Nios II processor service these modules. 

This degradation can happen because the main NicheStack task, 
tk_netmain periodically polls each of these modules. Also, these modules 
may insert time-based, call back functions, which further decrease the 
overall performance of the networking stack.

You can control what is enabled or disabled in the NicheStack networking 
stack through a series of macro definitions in the ipport.h configuration 
file. Additionally, some settings are inserted in the Nios II processor’s 
system.h file through the NicheStack's software component GUI. A list of 
NicheStack features and modules to disable, which may increase system 
performance, follows. (To disable a particular feature or module, ensure 
that its #define statement is not present in ipport.h or the system.h 
configuration files.)

The NicheStack features to disable include the following:

■ IN_MENUS (enable NicheTool command interface)
■ NPDEBUG (enable debugging aids)
■ MEM_WRAPPERS (debugging aid to validate memory)
■ QUEUE_CHECKING (debugging aid to validate memory queues)
■ MULTI_HOMED (not needed if only one networking device)
■ IP_ROUTING (not needed if only one networking device)

The NicheStack modules to disable include the following:

■ PING_APP (enable ping support) 
■ UDPSTEST, TCP_ECHOTEST (enable echotest programs)
■ FTP CLIENT, FTP SERVER (enable ftp client/server)
■ TELNET_SVR (enable Telnet server)
■ USE_SYSLOG_TASK (enable statistics collection)
■ SMTP_ALERTS (enable email client)
■ INCLUDE_SNMP (enable SNMP server)
■ DNS_SERVER (enable DNS server)

1 Design Tip: Disabling unused NicheStack networking stack 
features and modules in your system helps increase overall 
system performance.
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1 The NicheStack networking stack also supports a wide variety 
of features and modules not listed here. Refer to the NicheStack 
documentation and your ipport.h file for more information.

Using Faster Packet Memory

The performance of the NicheStack networking stack can be increased by 
using fast, low-latency memory for storing Ethernet packets. This section 
describes this optimization and explains how it works.

Background
The NicheStack networking stack uses a memory queue to assemble and 
receive network packets. To send a packet, the NicheStack removes a free 
memory buffer from the queue, assembles the packet data into it, and 
passes this buffer memory location to the Ethernet device driver. To 
receive the data, the Ethernet device driver removes a free memory buffer, 
loads it with the received packet, and passes it back to the networking 
stack for processing. The NicheStack networking stack allows you to 
specify where its queue of buffer memory is located and how this 
memory allocation is implemented. 

By default, the Altera version of the NicheStack networking stack 
allocates this pool of buffer memory using a series of calloc function 
calls that use the system's heap memory. Depending on the design of the 
system, and where the Nios II system memory is located, this could 
impact overall system performance. A potential scenario in which this 
could occur is in cases where your Nios II processor's heap segment has 
been placed in high latency or slow memory.

Additionally, in the case where the Ethernet device utilizes DMA 
hardware to move the packets and the Nios II processor is not directly 
involved in transmitting or receiving the packet data, then this buffer 
memory must exist in an “uncached” region. This further degrades the 
performance because the Nios II processor's data cache is not able to 
offset any performance issues due to the “slow” memory.

The solution is to use the fastest memory possible for the networking 
stacks buffer memory, preferably a separate memory not used by the 
Nios II processor for programmatic execution.

Solution
The ipport.h file defines a series of macros for allocating and deallocating 
big and small networking buffers. The macro names begin with BB_ (for 
“big buffer”) and LB_ (for “little buffer”). Following is the block of macros 
with the definitions in place for TSE driver support.
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#define BB_ALLOC(size) ncpalloc(size)
#define BB_FREE(ptr) ncpfree(ptr)
#define LB_ALLOC(size) ncpalloc(size)
#define LB_FREE(ptr) ncpfree(ptr)

You can use these macros to allocate/deallocate memory any way you 
choose. In the case of the example design that accompanies this 
application note, these macros are redefined to allocate memory from 
MRAM memory (a fast memory structure inside the FPGA). This faster 
memory resulted in a 4% to 45% performance increase, depending on the 
system.

1 The Altera version of NicheStack does not use the BB_FREE or 
LB_FREE function calls. Therefore, any memory allocated via 
the BB_ALLOC and LB_ALLOC function calls occurs at run 
time, and is never freed.

1 Design Tip: Using fast, low latency memory for NicheStack's 
packet storage can improve the overall performance of the 
system.

Accelerating the Packet Checksum

The network checksum is a critical bottleneck to increasing the overall 
networking performance of the system. However, by using the Altera 
C2H compiler to accelerate the network checksum, you can increase the 
the system’s networking performance.

Background
Ethernet networks use a checksum routine for guaranteeing the validity 
of transmitted data. This checksum is applied to the IP header, and is also 
used by the ICMP, IGMP, UDP, and TCP protocols for their own data 
headers and data.

The checksum operates by taking the 1's complement sum of the data 
octets of the packet (including the checksum field), where each octet is 
paired to form a 16-bit operand. When data is transmitted, the checksum 
field is set to all 0's, the 1's complement sum is taken of all the 16-bit 
coupled octets, and the 1's complement of the resultant value is stored in 
the checksum field. When packet data is received, however, the 1's 
complement sum is taken of all the 16-bit coupled octets (including the 
checksum field). If the result is equal to all 0's, the packet is valid.

While the algorithmic “work” being performed by this checksum does 
not seem to be very computationally intensive, the effect of running this 
checksum on every sent or received packet and their respective protocol 
data sections, can have the aggregate effect of degrading overall 
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networking performance. Because of this, most checksum routines are 
often written in “hand optimized” assembly code, which is the case in the 
NicheStack networking stack. However, further performance gains can 
be achieved by accelerating the checksum algorithm with FPGA 
hardware resources.

Optimizing the Packet Checksum
In the NicheStack networking stack, the checksum routine is configurable 
by setting a macro in the ipport.h configuration file, as follows:

#define cksum <function you want to call for the checksum>

You can set this macro to install any checksum implementation you want. 

However, Altera's version of the NicheStack networking stack contains 
additional source code to enable three different checksums for 
experimentation and benchmarking (C source, Nios II assembly, and 
“hooks” for a C2H hardware checksum). More information, including 
detailed instructions, about how to create and use the C2H hardware 
checksum can be found in the readme.doc file, present in the example 
design zip file that accompanies this document.

In this application note, a C source code implementation of the network 
checksum has been optimized using Altera's C2H compiler. The results 
for accelerating the checksum via C2H can be found in the benchmark 
results table (Table 4 on page 22). In most cases, a C2H-optimized 
checksum routine yields a 6% to 40% performance improvement over the 
optimized assembly routine, depending on the configuration of the 
system.

1 Design Tip: Accelerating the performance of the network 
checksum routine, via dedicated hardware resources on the 
FPGA, can greatly accelerate overall network performance.

“Super Loop” Mode

Although the Altera-supported version of the NicheStack networking 
stack requires MicroC/OS-II for its operation, the stack can be enabled to 
run without an operating system. In this mode of operation, 
MicroC/OS-II is replaced with a single, never-ending software loop that 
services the stack and runs the user application.

Removing the MicroC/OS-II operating system from your system can 
result in slightly higher networking performance, but this comes at the 
expense of additional complexity in the software design of your system. 
It can be very easy to create “pathological” systems where your 



14  Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

application code consumes all of the processor’s time, and without 
frequent calls to a stack servicing function, the effective networking 
performance deteriorates.

This application note does not attempt to benchmark the “Super Loop” 
system, but it is mentioned here as another possible area of optimization. 
General details of how to create the “Super Loop” system can be found in 
the NicheStack reference manuals (mentioned in the “Appendix” on 
page 25).

1 Design Tip: Although not officially supported by Altera, the 
NicheStack networking stack can be utilized without the 
MicroC/OS-II operating system. Doing so may provide 
additional networking performance benefits.

Ethernet Device An important parameter in the total performance of your Ethernet 
application is the function and capabilities of the network interface device 
itself. Because the function of this device is to translate the physical 
Ethernet packets into datagrams that can be accessed by the stack, its 
performance is critical to the overall performance of your networking 
application.

Link Speed

For most embedded networking applications, the network physical layer 
is composed of either 100BASE-TX or 1000BASE-T Ethernet, which uses 
twisted copper wires for the transport medium. The maximum data 
transport rate (in one direction) for 100BASE-TX is 100 Mbits/sec, while 
1000BASE-T can accommodate 1000 Mbits/sec.

It is very difficult for an embedded networking device to completely use 
a 100 Mbit link (much less a 1000 Mbit link), but a faster link provides 
better performance most of the time. This is because the 1000 Mbit link 
has a larger overall carrying capacity for data. The improvement is 
especially noticeable in cases where the link is shared among several 
different devices that are using the link simultaneously.

Selecting the Right Hardware

Two supported Ethernet device solutions present in the Nios II 
Embedded Development are the LAN91C111 (by SMSC) and the Altera 
TSE MAC. Apart from the obvious difference in supported Ethernet 
speeds, with the LAN91C111 supporting 10/100 Mbit and the TSE 
Ethernet MAC supporting 10/100/1000 Mbit networks, both devices 
have radically different implementations that impact networking 
performance.
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Network Interface Comparison (LAN91C111 vs. Altera TSE MAC)

Both the LAN91C111 and Altera TSE MAC essentially perform the same 
role, that is, to translate an application's Ethernet data into physical bits 
on the Ethernet link. However, as seen in Table 2, there are some key 
differences between them that can impact network performance.

In terms of Ethernet link speed, the LAN91C111 only supports up to a 
100 Mbit link speed, while the TSE MAC can support up to a 1000 Mbit 
link speed. Additionally, the TSE MAC is capable of sending and 
receiving Ethernet data more quickly than the LAN91C111 because of the 
SGDMA peripherals. Finally, the TSE MAC provides a greater range of 
send and receive FIFO depth to be selected, while the LAN91C111 
restricts you to a fixed 8 Kbyte memory space shared by both the send 
and receive operations.

NicheStack Device Driver Model

The NicheStack networking stack presents users with a simplified device 
driver model for integrating their Ethernet devices, and both the 
LAN91C111 and Altera TSE MAC solutions have been fully optimized to 
support this model.

Table 2. LAN91C111 vs. TSE MAC 

Parameter
Ethernet Device

LAN91C111 Altera TSE MAC

Type external chip FPGA IP

Control Interface Avalon MM
(Tri-state Bridge)

Avalon MM

Data Interface Avalon MM 
(Tri-state Bridge)

Avalon ST

Data Width (bits) 8,16, 32 8, 32

Supported Link Speeds (Mbits/sec) 10/100 10/100/1000

Recv FIFO Depth 8 KB for send/recv (combined) 64 Bytes to 256 Kbytes

Send FIFO Depth 8 KB for send/recv (combined) 64 Bytes to 256 Kbytes

DMA None Altera SGDMA (required)

PHY Interface (Integrated) 100BASE-TX/10BASE-T None

PHY Interface (External) MII (100 Mbits/sec) MII (100 Mbits/sec),
GMII (1000 Mbits/sec)
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In the LAN91C111 device driver, the Nios II CPU is solely responsible for 
performing the movement of Ethernet packet data to and from the device. 
However, in the TSE MAC device driver, the SGDMA peripherals are 
responsible for the movement of the Ethernet packet data to and from the 
TSE MAC. 

These SGDMA peripherals can operate much more efficiently than the 
Nios II processor for data movement operations (on a per clock basis), 
and therefore results in an overall performance increase in the system. 
The benchmark results show a performance increase of more than 15% to 
60% of the TSE MAC solution to the LAN91C111 solution for this very 
reason.

Benchmarking 
Results and 
Analysis

The previous sections have described several optimizations that can be 
used to increase the performance of a networking system. This section 
describes a method to evaluate the effectiveness of each one. The best way 
to evaluate the optimizations is to use a benchmarking application that 
measures the impact of applying each optmization. 

Overview

A simple benchmarking application was created to measure the overall 
networking performance. This application enables you to measure the 
Ethernet data transfer rate between two systems, such as a Nios II 
development board and a workstation using the TCP or UDP protocols.

During a benchmarking test, one machine assumes the role of the 
“sender” and the other machine becomes the “receiver.” The sender 
opens a connection to the receiver, transmits a specified amount of data, 
and prints out a throughput measurement in Mbits/sec. Likewise, the 
receiver waits for a connection from the sender, begins receiving Ethernet 
data, and at the end of the data transmission prints out the total 
throughput, in Mbits/sec.

The benchmarking application has been structured to be as simple as 
possible. Both the sender and receiver parts of the program perform no 
additional work apart from sending and receiving Ethernet data. 
Additionally, for standardization purposes, all network operations use 
the industry standard Sockets API in their implementation.

1 More information about the benchmarking program, including 
detailed information about how to build and operate it, can be 
found in the readme.doc file in the example design file that 
accompanies this application note.
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Benchmarking Results and Analysis

Test Setup

The benchmarking tests were conducted between a workstation and a 
Nios II development board. The workstation used was a Dell Optiplex 
GX280 workstation running the Windows XP Professional operating 
system, with two Pentium 4 (3.2GHz) CPUs. The Nios II development 
board used was a Nios II Stratix® II RoHS development board with a 
Marvell PHY 10/100/1000 daughter card. The workstation was lightly 
loaded, meaning that the only user applications running were the 
benchmark program and the Nios II IDE.

The Ethernet connection used between the two systems was a single 
twisted pair, networking cable used in a direct-connection fashion (no 
hub or switch was used between the connections).

Finally, to minimize the impact of spurious network communications on 
the Ethernet link, only the TCP/IP protocol suite was enabled for the 
network link on the Windows workstation; all other networking 
protocols and applications were disabled.

Test Systems

The benchmarking analysis was structured to demonstrate how changing 
key parameters in an Ethernet system can lead to radical performance 
changes. The analysis compared two of Altera's Ethernet networking 
solutions:

■ A system using the LAN91C111 chip (10/100 Mbit)
■ A system using the Altera Triple Speed Ethernet (TSE) MAC 

(10/100/1000 Mbit), with a Marvell PHY

The goal of this benchmark analysis is to highlight the performance 
improvements that can result from using an optimized Ethernet device 
that utilizes SGDMA channels to handle the data movement. The tests 
also measure the relative performance differences of using the Nios II 
processor with SSRAM and DDR SDRAM.

1 Test runs for the LAN91C111 were conducted on a 100 Mbit link, 
because this is the maximum link speed supported by the 
LAN91C111 device.

This benchmark test examines the merits of applying various 
optimizations to both the Nios II processor and the NicheStack 
networking stack. The first parameter tested is the effect of doubling the 
instruction and data cache sizes for the processor. The second parameter 
tested is the effect of increasing the Nios II processor's clock frequency 
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from 83.333 MHz to 150 MHz. All the tests also measure the relative 
performance differences of operating the Nios II processor with both 
SSRAM and DDR SDRAM.

The effect of applying various hardware optimizations to the NicheStack 
networking stack were also measured. These included the use of a 
hardware checksum (generated via the C2H compiler), the use of fast 
internal memory for packet storage, using a combination of the two, and 
not using either.

Test Methodology

This section describes the parameters used in the benchmarking tests.

Ethernet Link Type 

The Ethernet link selected for connecting the workstation to the Nios II 
board used a single 100/1000 Mbit cable in a point-to-point configuration 
(no hub or switch). This choice mitigated any effects an additional piece 
of networking hardware might have had in the test system.

In most networking applications, however, your system may be 
connected to another host through one (or more) Ethernet hubs or 
switches. These extra connections may increase the communication 
latency. Therefore, the benchmark numbers presented here should be 
viewed as the “idealized” performance of a (near) perfect Ethernet 
connection.

Protocols Tested

All benchmark operations were conducted using the the TCP protocol, 
because the TCP protocol guarantees that all data sent by the 
“transmitter” arrives at the “receiver.” This means that the throughput 
numbers reported are legitimate.

The benchmark application can measure UDP transmission speeds, but 
does so without accounting for lost or missing Ethernet packets. 
Therefore, the UDP test only measures the speed at which the transmitter 
can send all of the data using the UDP protocol, without considering 
whether the data made it to the receiver at all.

Data Transmission Sizes

For this series of tests, a total data size of 100 megabytes 
(100,000,000 bytes) was selected. This data size was chosen to increase the 
total amount of time spent in the course of the test, to more clearly capture 
the average performance of both the sender and receiver.
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Furthermore, the largest TCP payload size was used for Ethernet packet 
transmission (1458 bytes). This payload size was chosen to provide an 
upper bound of Ethernet performance, that is, the best expected 
performance numbers achievable in the design.

1 Because the benchmarking application uses the Sockets API, the 
payload size (1458 bytes) directly maps to the length parameter 
in the send (TCP) and sendto (UDP) function calls. Following 
is an example of a send function call in TCP:

send(int socket, const void *buffer, size_t length, int flags);

Test Runs

For every Nios II configuration, the data transmission time and average 
data throughput was measured with the Nios II system as both the sender 
and the receiver. Three consecutive measurements were taken and the 
average of these runs was recorded as the final measurement. 

Nios II System Software Configuration

The benchmark application uses Altera's recommended structure for 
Nios II NicheStack-based applications. The application relies on the 
MicroC/OS-II and NicheStack Sockets API for operation. The following 
configurations, were applied to all test systems.

NicheStack Networking Stack Configuration

The NicheStack networking stack was built by selecting the default 
configuration in the configuration wizard. This configuration provides a 
minimal set of general purpose functionality to enabled networking 
operations using the TCP and UDP protocols.

Additionally, the following MicroC/OS-II thread priorities were selected 
for the two core NicheStack tasks:

■ tk_netmain = priority 2
■ tk_nettick = priority 3

MicroC/OS-II Configuration

The default MicroC/OS-II configuration was also selected for the 
operation of the networking stack. This configuration provides all the 
basic MicroC/OS-II services.
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Benchmark Application

The benchmark application uses the Sockets API. The configuration for 
the application is as follows:

■ benchmark application = priority 4
■ benchmark initialization thread = priority 1

1 More information on the benchmark application and its 
operation can be found in the design files that accompany this 
application note.

General Application and System Library Settings

Both the benchmark application and the associated system library were 
compiled using the Nios II GNU tool chain with the –03 optimization 
enabled. In the test cases that involve changes to the run-time memory 
(either SSRAM or DDR SDRAM), the entire memory was selected for the 
application's binary segments (Text, Data, BSS, and so forth).

Workstation System Software

The workstation benchmark application was compiled using the GNU 
tool chain for the Cygwin environment, targeting the x86 architecture. 
Because the workstation benchmark application re-utilizes much of the 
same source code base as the Nios II application, it uses the Sockets API 
for conducting this test.
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Nios II Test 
Hardware

Based on the performance guidelines for the application, networking 
stack, and Networking device peripherals, the following four systems 
were created for benchmarking. Table 3 summarizes the results.

■ LAN91C111—This system is the Nios II, Stratix II RoHS “full 
featured” reference design that is included in the Nios II 
development kit. The design was modified to run at 83.333 MHz to 
match the other systems being benchmarked. This design includes 
an interface to the LAN91C111 MAC/PHY chip, and memory 
interfaces to DDR SDRAM and SSRAM memory.

■ TSE Standard—This system is the Nios II, Stratix II RoHS 
“TSE_SGDMA” reference design that is included in the Nios II 
development kit. This design includes an interface to the TSE MAC, 
driven by two separate SGDMA engines. Memory interfaces are 
provided to DDR SDRAM and SSRAM memory. The core system 
operates at a clock frequency of 83.333 MHz, with an additional clock 
driving the MAC component at 125 MHz. This system also has the 
fast packet memory and C2H hardware checksum optimization.

■ TSE Big Cache—This is the same design as TSE Standard, but 
includes larger instruction and data cache memories for the Nios II 
processor. The instruction cache memory is 8 Kbytes (vs. 4 Kbytes in 
the TSE Standard system) and the data cache memory is 8 Kbytes (vs. 
2 Kbytes in the TSE Standard system).

Table 3. Ethernet Benchmark Test Matrix Note (1)

System MHz

Nios II Cache 
(Kbytes) Memory Optimizations

Link Speed 
(Mbits/

Sec)

Inst. Data SSRAM DDR 
SDRAM None HW FM HW/FM 100 1000

LAN91C111 83.333 4 2 x x x x x x x

TSE Standard 83.333 4 2 x x x x x x x

TSE Big Cache 83.333 8 8 x x x x x x x

TSE Optimized 150 8 8 x x x x x x x

Note to Table 3:
(1) HW = Hardware checksum optimization

FM = Fast packet memory optimization
x = Feature is present



22  Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

■ TSE Optimized—This system is almost the same design as TSE Big 
Cache, but the overall system clock frequency for the system has 
been increased to 150 MHz. This clock increase was made possible by 
using a pipeline bridge peripheral to separate the faster peripherals 
from the slower peripherals in the system.

1 The fourth design (TSE Optimized) is included in the design 
files that accompany this application note.

Test Results Table 4 shows the results from the benchmark testing.

Analysis

The test results show that the Nios II Ethernet transmission speed (TX) is 
much greater than the receive speed (RX). This result is most likely 
because the computational overhead for transmitting packets tends to be 
much less than that for receiving packets.

The results from the LAN91C111 system show that its throughput is 
constrained both computationally and in terms of data movement, 
because the Nios II processor is involved in both operations. Therefore, 
when the latency of the memory (moving from DDR SDRAM to SSRAM 
memory) is decreased, the performance increases in a fairly linear way. 

Table 4. Benchmark Test Results Note (1)

System Name Test 
Type

Configuration

DDR SDRAM SSRAM

None FM HW FM/HW None FM HW FM/HW

LAN91C111
TX 24.183 25.845 23.472 27.924 27.711 28.888 30.114 32.262

RX 19.840 21.161 17.729 22.903 21.530 23.221 22.854 24.667

TSE Standard
TX 27.862 31.800 32.524 33.916 41.395 43.828 50.332 54.462

RX 19.066 25.453 20.889 27.970 27.712 32.217 31.608 35.692

TSE Big Cache
TX 36.172 44.930 46.179 47.703 58.740 62.898 76.260 82.118

RX 21.805 33.274 25.912 38.047 38.059 42.662 43.994 49.520

TSE Optimized
TX 58.708 71.259 82.778 80.702 83.827 94.742 107.627 108.868

RX 36.019 53.076 41.619 59.682 54.485 65.451 62.628 74.569

Note to Table 4:
(1) All figures are in Mbits/sec

None = Neither optimization is present
FM = Fast packet memory optimization
HW = Hardware checksum optimization
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Test Results

Additionally, both the fast packet memory and C2H checksum 
optimizations improved the overall performance, but the main bottleneck 
is still the Nios II processor's ability to move data in the system. The 
Nios II data movement operations, that is, moving packet data from the 
LAN91C111 device to memory, were clearly the slowest operations in the 
whole system. Any major performance improvements in this system are 
only going to happen by improving the data movement operations of the 
packets to and from the Ethernet device.

1 The LAN91C111 device can be used with an Altera Avalon DMA 
peripheral, but this implementation is beyond the scope of this 
application note.

The TSE Standard system results are interesting because the data 
movement operations between the networking stack and the Ethernet 
device are accomplished via the use of the SGDMA engines instead of the 
Nios II processor. There is a significant performance improvement in both 
sending and receiving Ethernet data (48% increase in TX and 69% 
increase in RX) when the high latency memory (DDR SDRAM) is replaced 
by the lower latency memory (SSRAM). These improvements are further 
magnified when the fast packet memory and hardware checksum 
optimizations are applied to the DDR SDRAM and SSRAM based 
systems (61% TX improvement and 28% RX improvement).

The results of the TSE Big Cache system show the importance of 
increasing the cache memory in the TSE systems. By increasing the 
instruction cache from 4 Kbytes to 8 Kbytes, and increasing the data cache 
from 2 Kbytes to 8 Kbytes, there is a big performance increase in both the 
TX and RX cases. With the system running in DDR SDRAM, the TX 
performance jumps from about 28 Mbits/sec to 36 Mbits/sec (30% 
increase) and the RX performance jumps from 19 Mbits/sec to about 
22 Mbits/sec (14% increase). Moreover, in SSRAM the TX performance 
jumps from 41 Mbits/sec to 59 Mbits/sec (42% increase) and the RX 
performance jumps from 27 Mbits/sec to 38 Mbits/sec (37% increase). 
The test results show that the increase in data cache sizes helped to 
increase the overall computational performance of the Nios II processor, 
which in turn increased the overall throughput of the networking stack. 
Additionally, the performance increase of the fast packet memory and 
hardware checksum served to further boost the performance as well, with 
both the TX performance and RX performance increasing substantially 
over the standard systems.

Increasing the overall frequency of the entire system (Nios II processor, 
Ethernet device, and memory) also had a profound effect on the overall 
networking performance of the system. In the TSE Optimized design, the 
frequency of the system was increased from 83.333 MHz to 150 MHz, an 
80% increase in MHz from the TSE Standard system. This change resulted 
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in approximately a 60% increase in TX and RX performance in the DDR 
SDRAM system, and about a 40% increase in TX and RX performance in 
the SSRAM system, respectively. Additionally, both the fast packet 
memory and hardware checksum optimizations also seemed to maintain 
this overall performance increase as well. The TSE Optimized system 
running from SSRAM, then, was able to achieve 107 Mbits/sec TX and 
63 Mbits/sec RX performance, about a 100% increase in performance 
over the TSE Standard system.

Note that applying both the fast packet memory and C2H hardware 
checksum optimizations to a given system tends to provide a greater level 
of performance than applying each optimization by itself. This makes 
sense because the C2H hardware checksum operates more quickly on 
faster memory, which is the whole point of the fast packet memory 
optimization.

Finally, note that in the some test cases where the DDR SDRAM was used 
for the Nios II processor’s memory, the C2H hardware checksum yielded 
results that were sub-optimal (the performance was less than using the 
standard assembly checksum). This result was most likely due to bank 
switching caused by the accelerator's access of the DDR SDRAM 
memory; however, this problem went away when the fast packet memory 
was used in conjunction with the C2H hardware checksum.

Conclusion As seen in the empirical benchmark results, minor performance increases 
in your Ethernet system can be obtained by applying a single hardware 
optimization; however, achieving significant Ethernet performance 
increases involves applying several hardware optimizations together in 
the same system. 

In decreasing order of importance, the optimizations you should consider 
for their Ethernet system are as follows:

■ DMA engine for moving data to and from the Ethernet device
■ Increasing the overall system frequency (CPU, DMAs, memory, and 

so forth)
■ Using low-latency memory for Nios II execution
■ Using C2H to accelerate the network checksum
■ Using fast packet memory to store Ethernet data

Finally, the overall performance you seek from your Ethernet application 
depends on the nature of the application itself. This application note has 
provided you with general techniques to accelerate Nios II Ethernet 
applications, but the final measure of success is whether your application 
meets the performance goals you established.
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Appendix General Information for TCP/IP Networking

The following resources were used in the construction of this application 
note, and can provide you with more information regarding Ethernet, the 
TCP/IP protocol, and the Sockets API:

General Information:

■ Richard Stevens, UNIX Network programming
■ Douglas Comer, Internetworking with TCP/IP volume 3
■ General Ethernet Information (en.wikipedia.org/wiki/Ethernet)

Additionally, more information regarding Altera's tools and technology 
can be found on the Altera literature page (www.altera.com/literature).

NicheStack Documentation

f For more information about using “Super Loop” mode, the “Zero Copy” 
API, and so forth, refer to the NicheStack TCP/IP Stack documentation 
in the NicheStackRef.zip file located in the <Nios II EDS install path>/ 
components/altera_iniche/UCOSII/src/downloads/packages directory.

Additional NicheStack Information

The NicheStack TCP/IP Networking stack is a software library licensed 
by Altera from InterNiche Technologies. If you are interested in licensing 
the NicheStack networking stack for use in your Nios II application, 
check the terms and conditions here: www.altera.com/nichestack.

The version of the NicheStack networking stack distributed by Altera 
provides you with basic TCP/IP networking functionality. If your 
application requires additional application modules, or protocol support, 
visit the InterNiche website for more information: www.iniche.com.

Additional Network Technology Solutions

The device driver support included in the Altera version of the 
NicheStack networking stack supports both the LAN91C111 MAC/PHY 
chip and Altera TSE MAC IP. Additional networking device IP is 
available at Altera’s IP Megastore: 
www.altera.com/products/ip/ipm-index.html



26  Altera Corporation
Preliminary

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support:
www.altera.com/support/
Literature Services:
literature@altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

Accelerating Nios II Networking Applications

Document 
Revision History

Table 5 shows the revision history for this application note. 

Table 5. Document Revision History 

Date and Document 
Version Changes Made Summary of Changes

May 2007
v1.0

Initial release. —


	Accelerating Nios II Networking Applications
	Introduction
	The Structure of Networking Applications
	Ethernet System Hierarchy
	Inter-Relationship of Elements
	Finding the Performance Bottlenecks

	The User Application
	User Application Optimizations
	Software Optimizations
	Hardware Optimizations
	The Sockets API
	Selecting the “Right” Networking Protocol
	Improving Send/Recv Performance
	The “Zero Copy” API



	Structure of the NicheStack Networking Stack
	General Optimizations
	NicheStack Specific Optimizations
	NicheStack Thread Priorities
	Disabling Non-Essential NicheStack Modules
	Using Faster Packet Memory
	Background
	Solution

	Accelerating the Packet Checksum
	Background
	Optimizing the Packet Checksum

	“Super Loop” Mode


	Ethernet Device
	Link Speed
	Selecting the Right Hardware
	Network Interface Comparison (LAN91C111 vs. Altera TSE MAC)
	NicheStack Device Driver Model

	Benchmarking Results and Analysis
	Overview
	Test Setup
	Test Systems

	Test Methodology
	Ethernet Link Type
	Protocols Tested
	Data Transmission Sizes
	Test Runs

	Nios II System Software Configuration
	NicheStack Networking Stack Configuration
	MicroC/OS-II Configuration
	Benchmark Application
	General Application and System Library Settings

	Workstation System Software

	Nios II Test Hardware
	Test Results
	Analysis

	Conclusion
	Appendix
	General Information for TCP/IP Networking
	NicheStack Documentation
	Additional NicheStack Information
	Additional Network Technology Solutions

	Document Revision History


