
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Embedded Design Handbook

ED_HANDBOOK-2.2

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

ED_HANDBOOK-2.2

 © February 2009 Altera Corporation
Contents
Chapter Revision Dates

Section I. Introduction

Chapter 1. First Time Designer's Guide
Introduction . 1-1

First Time Designer’s Guide Introduction . 1-1
FPGAs and Soft-Core Processors . 1-1

Embedded System Design . 1-2
FPGA Hardware Design . 1-2

Connecting Your FPGA Design to Your Board . 1-4
Connecting Signals to your SOPC Builder System . 1-4
Constraining Your FPGA-Based Design . 1-5

SOPC Builder Design . 1-5
Design Replication . 1-6
Customization and Acceleration . 1-7

Software Design . 1-8
Tools Description . 1-8
Nios II IDE Flow . 1-8
Software Build Tools Flow . 1-11

Board Design Considerations . 1-11
Configuration . 1-12
Booting . 1-13
Additional Design Considerations . 1-14

Resources . 1-14
Support . 1-15
Training . 1-15
Documentation . 1-15
Third Party Intellectual Property . 1-16

Glossary . 1-16
Conclusion . 1-17
Referenced Documents . 1-17
Document Revision History . 1-18

Section II. Nios II Software Development

Chapter 2. Developing Nios II Software
Introduction . 2-1
Software Development Cycle . 2-2

Altera System on a Programmable Chip (SOPC) Solutions . 2-2
Nios II Software Development Process . 2-3

Software Project Mechanics . 2-5
Software Tools Background . 2-5
Development Flow Guidelines . 2-6
Nios II Software Build Tools Flow . 2-6
Configuring BSP and Application Projects . 2-7

Software Example Designs . 2-7
Embedded Design Handbook

iv Contents
Configuring the BSP Project . 2-7
Configuring the Application Project . 2-9
Software Project Development Mechanics . 2-10

Ensuring Software Project Coherency . 2-12
Developing With the Hardware Application Layer . 2-16

Overview of the HAL . 2-16
HAL Configuration Options . 2-16

System Startup in HAL-Based Applications . 2-17
System Initialization . 2-17
crt0 Initialization . 2-18
HAL Initialization . 2-19

HAL Peripheral Services . 2-20
Timers . 2-20
Character Mode Devices . 2-22
Flash Memory Devices . 2-24
Direct Memory Access (DMA) Devices . 2-26
Files and File Systems . 2-29
Ethernet Devices . 2-30
Unsupported Devices . 2-30

Accessing Memory With the Nios II Processor . 2-31
Creating General C/C++ Applications . 2-31
Accessing Peripherals . 2-31
Sharing Uncached Memory . 2-32
Sharing Memory With Cache Performance Benefits . 2-32

Handling Exceptions . 2-33
Modifying the Exception Handler . 2-34

Optimizing the Application . 2-34
Performance Tuning Background . 2-35
Speeding Up System Processing Tasks . 2-35

Analyzing the Problem . 2-35
Accelerating your Application . 2-35

Accelerating Interrupt Service Routines . 2-38
Analyzing the Problem . 2-38
Accelerating the Interrupt Service Routine . 2-38

Reducing Code Size . 2-38
Analyzing the Problem . 2-38
Reducing the Code Footprint . 2-39

Linking Applications . 2-40
Background . 2-40
Linker Sections and Application Configuration . 2-40
HAL Linking Behavior . 2-40

Default BSP Linking . 2-41
User-Controlled BSP Linking . 2-41

Application Boot Loading and Programming System Memory . 2-42
Default BSP Boot Loading Configuration . 2-43
Boot Configuration Options . 2-43

Booting and Running From Flash Memory . 2-44
Booting From Flash Memory and Running From Volatile Memory . 2-45
Booting and Running From Volatile Memory . 2-45
Booting From Altera EPCS Memory and Running From Volatile Memory 2-46
Booting and Running From FPGA Memory . 2-46

Generating and Programming System Memory Images . 2-47
Programming FPGA Memory . 2-47
Configuring and Programming Flash Memory . 2-47
Embedded Design Handbook © February 2009 Altera Corporation

Contents v
Conclusion . 2-49
Referenced Documents . 2-49
Document Revision History . 2-50

Chapter 3. Debugging Nios II Designs
Debuggers . 3-1

Nios II Software Development Tools . 3-1
Nios II System ID . 3-2
Project Templates . 3-3
Configuration Options . 3-3
Nios II GDB Console and GDB Commands . 3-5
Nios II Terminal Window and stdio Library Functions . 3-6
Importing Projects Created Using the Nios II Software Build Tools . 3-7
Selecting a Processor Instance in a Multiple Processor Design . 3-7

FS2 Console . 3-9
SignalTap II Embedded Logic Analyzer . 3-10
Lauterbach Trace32 Debugger and PowerTrace Hardware . 3-10

Debugging the Lauterbach PowerTrace to Nios II Processor Connection 3-10
C Source Correlation . 3-11
Registering Trace Signals . 3-11

Insight and Data Display Debuggers . 3-11
Run-Time Analysis Debug Techniques . 3-11

Software Profiling . 3-11
Watchpoints . 3-12
Stack Overflow . 3-13
Hardware Abstraction Layer (HAL) . 3-13
Breakpoints . 3-13
Debugger Stepping and Using No Optimizations . 3-14

Conclusion . 3-15
Referenced Documents . 3-15
Document Revision History . 3-15

Chapter 4. Nios II Command-Line Tools
Introduction . 4-1
Altera Command-Line Tools for Board Bringup and Diagnostics . 4-1

jtagconfig . 4-1
jtagconfig Usage Example . 4-2

nios2-configure-sof . 4-3
nios2-configure-sof Usage Example . 4-3

system-console . 4-3
Altera Command-Line Tools for Hardware Development . 4-4

quartus_cmd and sopc_builder . 4-4
Altera Command-Line Tools for Flash Programming . 4-6

nios2-flash-programmer . 4-6
nios2-flash-programmer Usage Example . 4-6

elf2flash, bin2flash, and sof2flash . 4-7
bin2flash Usage Example . 4-8

Altera Command-Line Tools for Software Development and Debug . 4-8
nios2-terminal . 4-9
nios2-download . 4-9

nios2-download Usage Example . 4-9
nios2-stackreport . 4-9
© February 2009 Altera Corporation Embedded Design Handbook

vi Contents
nios2-stackreport Usage Example . 4-10
validate_zip . 4-10

validate_zip Usage Example . 4-10
nios2-ide . 4-10

Linux wrapper script . 4-10
Windows wrapper script . 4-11

nios2-gdb-server . 4-11
nios2-gdb-server Usage Example . 4-11

nios2-debug . 4-12
nios2-debug Usage Example . 4-12

Altera Command-Line Nios II Software Build Tools . 4-13
BSP Related Tools . 4-13
Application Related Tools . 4-14

GNU Command-Line Tools . 4-14
nios2-elf-addr2line . 4-14

nios2-elf-addr2line Usage Example . 4-15
nios2-elf-gdb . 4-15
nios2-elf-readelf . 4-15

nios2-elf-readelf Usage Example . 4-15
nios2-elf-ar . 4-16

nios2-elf-ar Usage Example . 4-16
Linker . 4-16

Linker Usage Example . 4-16
nios2-elf-size . 4-17

nios2-elf-size Usage Example . 4-17
nios2-elf-strings . 4-17

nios2-elf-strings Usage Example . 4-17
nios2-elf-strip . 4-17

nios2-elf-strip Usage Example . 4-17
nios2-elf-strip Usage Notes . 4-17

nios2-elf-gdbtui . 4-18
nios2-elf-gprof . 4-18
nios2-elf-insight . 4-18
nios2-elf-gcc and g++ . 4-18

Compilation Command Usage Example . 4-18
More Complex Compilation Example . 4-19

nios2-elf-c++filt . 4-19
nios2-elf-c++filt Usage Example . 4-19
More Complex nios2-elf-c++filt Example . 4-19

nios2-elf-nm . 4-20
nios2-elf-nm Usage Example . 4-20
More Complex nios2-elf-nm Example . 4-20

nios2-elf-objcopy . 4-20
nios2-elf-objcopy Usage Example . 4-21

nios2-elf-objdump . 4-21
nios2-elf-objdump Usage Description . 4-21

nios2-elf-ranlib . 4-21
Referenced Documents . 4-21
Document Revision History . 4-22

Chapter 5. Optimizing Nios II C2H Compiler Results
Introduction . 5-1

Prerequisites . 5-1
Cost and Performance . 5-1
Embedded Design Handbook © February 2009 Altera Corporation

Contents vii
Overview of the C2H Optimization Process . 5-2
Getting Started . 5-2
Iterative Optimization . 5-3
Meeting Your Cost and Performance Goals . 5-3

Factors Affecting C2H Results . 5-3
Memory Accesses and Variables . 5-4
Arithmetic and Logical Operations . 5-5
Statements . 5-6
Control Flow . 5-7

If Statements . 5-7
Loops . 5-8

Subfunction Calls . 5-8
Resource Sharing . 5-9
Data Dependencies . 5-9
Memory Architecture . 5-10

Data Cache Coherency . 5-11
DRAM Architecture . 5-11

Efficiency Metrics . 5-11
Cycles Per Loop Iteration (CPLI) . 5-12
FPGA Resource Usage . 5-12

Avalon-MM Master Ports . 5-13
Embedded Multipliers . 5-13
Embedded Memory . 5-14

Data Throughput . 5-14
Optimization Techniques . 5-14

Pipelining Calculations . 5-14
Increasing Memory Efficiency . 5-16

Use Wide Memory Accesses . 5-16
Segment the Memory Architecture . 5-18
Use Localized Data . 5-19

Reducing Data Dependencies . 5-20
Use __restrict__ . 5-20

Reducing Logic Utilization . 5-24
Use "do-while" rather than "while" . 5-24
Use Constants . 5-25
Leave Loops Rolled Up . 5-27
Use ++ to Sequentially Access Arrays . 5-28
Avoid Excessive Pointer Dereferences . 5-28
Avoid Multipliers . 5-28
Avoid Arbitrary Division . 5-29
Use Masks . 5-31
Use Powers of Two in Multi-Dimensional Arrays . 5-31
Use Narrow Local Variables . 5-32

Optimizing Memory Connections . 5-32
Remove Unnecessary Connections to Memory Slave ports . 5-32
Reduce Avalon-MM Interconnect Using #pragma . 5-33
Remove Unnecessary Memory Connections to Nios II Processor . 5-35

Optimizing Frequency Versus Latency . 5-35
Improve Conditional Latency . 5-36
Improve Conditional Frequency . 5-37

Improve Throughput . 5-38
Avoid Short Nested Loops . 5-38
Remove In-place Calculations . 5-39
Replace Arrays . 5-41
© February 2009 Altera Corporation Embedded Design Handbook

viii Contents
Use Polled Accelerators . 5-42
Use an Interrupt-Based Accelerator . 5-43

Glossary . 5-43
Referenced Documents . 5-45
Document Revision History . 5-45

Section III. System-Level Design

Chapter 6. Avalon Memory-Mapped Design Optimizations
Selecting Hardware Architecture . 6-1

Bus . 6-2
Full Crossbar Switch . 6-2
Partial Crossbar Switch . 6-3
Streaming . 6-5
Dynamic Bus Sizing . 6-6

Understanding Concurrency . 6-7
Create Multiple Masters . 6-7
Create Separate Datapaths . 6-8
Use DMA Engines . 6-8
Include Multiple Master or Slave Ports . 6-9
Create Separate Sub-Systems . 6-10

Increasing Transfer Throughput . 6-12
Using Pipelined Transfers . 6-12

Maximum Pending Reads . 6-13
Selecting the Maximum Pending Reads Value . 6-13
Overestimating Versus Underestimating the Maximum Pending Reads Value 6-13

Pipelined Read Masters . 6-13
Requirements . 6-14
Throughput Improvement . 6-14
Pipelined Read Master Example . 6-15

Arbitration Shares and Bursts . 6-16
Differences between Arbitration Shares and Bursts . 6-16
Choosing Interface Types . 6-17
Burst Master Example . 6-18

Increasing System Frequency . 6-20
Use Pipeline Bridges . 6-20

Master-to-Slave Pipelining . 6-20
Slave-to-Master Pipelining . 6-21
waitrequest Pipelining . 6-21

Use a Clock Crossing Bridge . 6-22
Increasing Component Frequencies . 6-22
Reducing Low-Priority Component Frequencies . 6-22

Consequences of Using Bridges . 6-23
Increased Latency . 6-23
Limited Concurrency . 6-25
Address Space Translation . 6-27
Address Shifting . 6-27
Address Coherency . 6-28

Minimize System Interconnect Logic . 6-29
Use Unique Address Bits . 6-29
Create Dedicated Master and Slave Connections . 6-30
Remove Unnecessary Connections . 6-30
Embedded Design Handbook © February 2009 Altera Corporation

Contents ix
Reducing Logic Utilization . 6-30
Minimize Arbitration Logic by Consolidating Components . 6-30

Logic Consolidation Tradeoffs . 6-31
Combined Component Example . 6-31

Use Bridges to Minimize System Interconnect Fabric Logic . 6-32
SOPC Builder Speed Optimizations . 6-33
Reduced Concurrency . 6-34

Use Bridges to Minimize Adapter Logic . 6-35
Effective Placement of Bridges . 6-35
Compact System Example . 6-35

Reducing Power Utilization . 6-37
Reduce Clock Speeds of Non-Critical Logic . 6-37

Clock Crossing Bridge . 6-38
Clock Crossing Adapter . 6-39

Minimize Toggle Rates . 6-40
Registering Component Boundaries . 6-40
Enabling Clocks . 6-41
Inserting Bridges . 6-41

Disable Logic . 6-41
Software Controlled Sleep Mode . 6-41
Hardware Controlled Sleep Mode . 6-42

Referenced Documents . 6-42
Document Revision History . 6-43

Chapter 7. Memory System Design
Overview . 7-1

Volatile Memory . 7-1
Non-volatile Memory . 7-1

On-Chip Memory . 7-1
Advantages . 7-2
Disadvantages . 7-2
Best Applications . 7-2

Cache . 7-2
Tightly Coupled Memory . 7-3
Look Up Tables . 7-3
FIFO . 7-3

Poor Applications . 7-3
On-Chip Memory Types . 7-3
Best Practices . 7-3

External SRAM . 7-4
Advantages . 7-4
Disadvantages . 7-4
Best Applications . 7-5
Poor Applications . 7-5
External SRAM Types . 7-5
Best Practices . 7-5

Flash . 7-6
Advantages . 7-6
Disadvantages . 7-6
Typical Applications . 7-7
Poor Applications . 7-7
Flash Types . 7-7
© February 2009 Altera Corporation Embedded Design Handbook

x Contents
SDRAM . 7-8
Advantages . 7-9
Disadvantages . 7-9
Best Applications . 7-9
Poor Applications . 7-9
SDRAM Types . 7-10
SDRAM Controller Types Available From Altera . 7-10
Best Practices . 7-11

Half-Rate Mode . 7-11
Full-Rate Mode . 7-11
Sequential Access . 7-12
Bursting . 7-12
SDRAM Minimum Frequency . 7-12
SDRAM Device Speed . 7-12

Memory Optimization . 7-13
Isolate Critical Memory Connections . 7-13
Match Master and Slave Data Width . 7-13
Use Separate Memories to Exploit Concurrency . 7-13
Understand the Nios II Instruction Master Address Space . 7-14
Test Memory . 7-14

Case Study . 7-14
Application Description . 7-14
Initial Memory Partitioning . 7-15
Optimized Memory Partitioning . 7-16

Add An External SRAM for input buffers . 7-16
Add On-Chip Memory for Video Line Buffers . 7-17

Referenced Documents . 7-18
Document Revision History . 7-19

Chapter 8. Hardware Acceleration and Coprocessing
Hardware Acceleration . 8-1

Accelerating Cyclic Redundancy Checking (CRC) . 8-1
Matching I/O Bandwidths . 8-3
Pipelining Algorithms . 8-3

Creating Nios II Custom Instructions . 8-4
Using the C2H Compiler . 8-7

Coprocessing . 8-8
Creating Multicore Designs . 8-8
Pre- and Post-Processing . 8-10
Replacing State Machines . 8-11

Low-Speed State Machines . 8-12
High-Speed State Machines . 8-13
Subdivided State Machines . 8-13

Referenced Documents . 8-13
Document Revision History . 8-14

Chapter 9. Verification and Board Bring-Up
Introduction . 9-1
Verification Methods . 9-1

Prerequisites . 9-1
FS2 Console . 9-2

SOPC Builder Test Integration . 9-2
Embedded Design Handbook © February 2009 Altera Corporation

Contents xi
Capabilities of the FS2 Console . 9-3
System Console . 9-5
SignalTap II Embedded Logic Analyzer . 9-7
External Instrumentation . 9-8

SignalProbe . 9-8
Logic Analyzer Interface . 9-9

Stimuli Generation . 9-9
Board Bring-up . 9-10

Peripheral Testing . 9-10
Data Trace Failure . 9-11
Address Trace Failure . 9-11
Device Isolation . 9-12
JTAG . 9-13

Board Testing . 9-14
Minimal Test System . 9-15

System Verification . 9-17
Designing with Verification in Mind . 9-17
Accelerating Verification . 9-18
Using Software to Verify Hardware . 9-19
Environmental Testing . 9-21

Referenced Documents . 9-22
Document Revision History . 9-23

Chapter 10. Interfacing an External Processor to an Altera FPGA
Configuration Options . 10-2
RapidIO Interface . 10-5
PCI Express Interface . 10-7
PCI Interface . 10-9
PCI Lite Interface . 10-9
Serial Protocol Interface (SPI) . 10-10
Custom Bridge Interfaces . 10-11
Conclusion . 10-13
Referenced Documents . 10-13
Document Revision History . 10-14

Additional Information
How to Contact Altera . Info-1
Typographic Conventions . Info-1
© February 2009 Altera Corporation Embedded Design Handbook

xii Contents
Embedded Design Handbook © February 2009 Altera Corporation

© February 2009 Altera Corporation
Chapter Revision Dates
The chapters in this book, the Embedded Design Handbook, were revised on the following dates:

Chapter 1. First Time Designer's Guide
Revised: January 2009
Part number: ED51001-2.1

Chapter 2. Developing Nios II Software
Revised: June 2008
Part number: ED51002-1.1

Chapter 3. Debugging Nios II Designs
Revised: June 2008
Part number: ED51003-1.1

Chapter 4. Nios II Command-Line Tools
Revised: November 2008
Part number: ED51004-2.0

Chapter 5. Optimizing Nios II C2H Compiler Results
Revised: June 2008
Part number: ED51005-1.1

Chapter 6. Avalon Memory-Mapped Design Optimizations
Revised: June 2008
Part number: ED51007-1.1

Chapter 7. Memory System Design
Revised: June 2008
Part number: ED51008-1.1

Chapter 8. Hardware Acceleration and Coprocessing
Revised: June 2008
Part number: ED51006-1.1

Chapter 9. Verification and Board Bring-Up
Revised: November 2008
Part number: ED51010-1.2

Chapter 10. Interfacing an External Processor to an Altera FPGA
Revised: February 2009
Part number: ED51011-1.0
Embedded Design Handbook
Preliminary

xiv Chapter Revision Dates
Embedded Design Handbook © February 2009 Altera Corporation
Preliminary

© January 2009 Altera Corporation
Section I. Introduction
The Embedded Design Handbook complements the primary documentation for the
Altera® tools for embedded system development. It describes how to most effectively
use the tools, and recommends design styles and practices for developing, debugging,
and optimizing embedded systems using Altera-provided tools. The handbook
introduces concepts to new users of Altera’s embedded solutions, and helps to
increase the design efficiency of the experienced user.

This section includes the following chapters:

■ Chapter 1, First Time Designer's Guide

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Embedded Design Handbook

I–ii Section I: Introduction
Embedded Design Handbook © January 2009 Altera Corporation

© January 2009 Altera Corporation

ED51001-2.1
1. First Time Designer's Guide
Introduction
Altera® provides various tools for development of hardware and software for
embedded systems. This handbook complements the primary documentation for
these tools by describing how to most effectively use the tools. It recommends design
styles and practices for developing, debugging, and optimizing embedded systems
using Altera-provided tools. The handbook introduces concepts to new users of
Altera’s embedded solutions, and helps to increase the design efficiency of the
experienced user.

This handbook is not a comprehensive reference guide. For general reference and
detailed information, refer to the primary documentation cited in this handbook.

This first chapter of the handbook contains information about the Altera embedded
development process and procedures for the first time user. The remaining chapters
focus on specific aspects of embedded development for Altera FPGAs.

First Time Designer’s Guide Introduction
This chapter is for first time users of Altera's embedded development tools for
hardware and software development. The chapter provides information about the
design flow and development tools interaction, and describes the differences between
the Nios® II processor flow and a typical discrete microcontroller design flow.

However, this chapter does not replace the basic reference material for the first time
designer, such as the Nios II Processor Reference Handbook, the Nios II Software
Developer’s Handbook, volumes 4 and 5 of the Quartus II Handbook, and the Nios II Flash
Programmer’s Guide.

FPGAs and Soft-Core Processors
FPGAs can implement logic that functions as a complete microprocessor while
providing many flexibility options.

An important difference between discrete microprocessors and FPGAs is that an
FPGA contains no logic when it powers up. Before you run software on a Nios II
based system, you must configure the FPGA with a hardware design that contains a
Nios II processor. To configure an FPGA is to electronically program the FPGA with a
specific logic design. The Nios II processor is a true soft-core processor: it can be
placed anywhere on the FPGA, depending on the other requirements of the design.
Three different sizes of the processor are available, each with flexible features.

To enable your FPGA-based embedded system to behave as a discrete
microprocessor-based system, your system should include the following:

■ A JTAG interface to support FPGA configuration and hardware and software
debugging

■ A power-up FPGA configuration mechanism
Embedded Design Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

1–2 Chapter 1: First Time Designer's Guide
Embedded System Design
If your system has these capabilities, you can begin refining your design from a
pretested hardware design loaded in the FPGA. Using an FPGA also allows you to
modify your design quickly to address problems or to add new functionality. You can
test these new hardware designs easily by reconfiguring the FPGA using your
system's JTAG interface.

The JTAG interface supports hardware and software development. You can perform
the following tasks using the JTAG interface:

■ Configure the FPGA

■ Download and debug software

■ Communicate with the FPGA through a UART-like interface (JTAG UART)

■ Debug hardware (with the SignalTap® II embedded logic analyzer)

■ Program flash memory

After you configure the FPGA with your Nios II processor-based design, the software
development flow is similar to the flow for discrete microcontroller designs.

Embedded System Design

FPGA Hardware Design
Whether you are a hardware designer or a software designer, read the Nios II
Hardware Development Tutorial to start learning about designing embedded systems on
an Altera FPGA. The “Nios II System Development Flow” section is particularly
useful in helping you to decide how to approach system design using Altera's
embedded hardware and software development tools. Altera recommends that you
read this tutorial before starting your first design project. The tutorial teaches you the
basic hardware and software flow for developing Nios II processor-based systems.

Designing with FPGAs gives you the flexibility to implement some functionality in
discrete system components, some in software, and some in FPGA-based hardware.
This flexibility makes the design process more complex. The SOPC Builder system
design tool helps to manage this complexity. Even if you decide a soft-core processor
doesn't meet your application's needs, SOPC Builder can still play a vital role in your
system by providing mechanisms for peripheral expansion or processor off load.
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

Chapter 1: First Time Designer's Guide 1–3
Embedded System Design
Figure 1–1 illustrates the FPGA hardware design process and Nios II software flow.

Although you develop your FPGA-based design in SOPC Builder, you must perform
the following tasks in other tools:

■ Connect signals from your FPGA-based design to your board level design

■ Connect signals from your SOPC Builder system to other signals in the FPGA logic

■ Constrain your design

Figure 1–1. System Design Flow

Develop Software
with the

Nios II IDE

Define and Generate
System in SOPC Builder

Analyze System
Requirements

Custom
Instruction

and
Peripheral

Logic

Custom
Hardware
Modules

Nios II
Cores
and

Standard
Components

Build the BSP and
Application Projects

with the
Software Build

Tools

Build the
System Library

and
Application Projects

with the
Nios II IDE

Assign Pin
Locations,

Timing
Requirements,

and Other
Design

Constraints

Download SW to
Nios II System on

Target Board
Using

nios2-download

Download SW to
Nios II System on

Target Board
with the

Nios II IDE

Develop Software
Directly with the
Software Build

Tools

Integrate SOPC
Builder System
into Quartus II

Project

Run/Debug Software
on Target Board

Refine Software
and Hardware

System Concept

Code Complete

Altera
Hardware

Abstraction
Layer
and

Peripheral
Drivers

User C/C++
Application
Code and
Custom
Libraries

Meets Spec?

Hardware Flow
Software Build
Tools FlowIDE SW Flow

No

Yes

Compile Hardware
for Target

Download
FPGA Design

to Target Board

Select
SW Flow
© January 2009 Altera Corporation Embedded Design Handbook
Preliminary

1–4 Chapter 1: First Time Designer's Guide
Embedded System Design
Connecting Your FPGA Design to Your Board
To connect your FPGA-based design to your board-level design, perform the
following two tasks:

1. Identify the top level of your FPGA design.

2. Assign signals in the top level of your FPGA design to pins on your FPGA using
any of the methods mentioned at the Altera I/O Management, Board
Development Support, and Signal Integrity Analysis Resource Center, at
www.altera.com/support/software/io-board/sof-qts-io.html

1 The top level of your FPGA-based design might be your SOPC Builder system.
However, the FPGA can include additional design logic.

Connecting Signals to your SOPC Builder System
You must define the clock and reset pins for your SOPC Builder system. You must
also define each I/O signal that is required for proper system operation. Figure 1–2
shows the top level block diagram of an SOPC Builder system that includes a Nios II
processor. The large symbol in this top-level diagram, labeled std_1s40, represents the
SOPC Builder system. The flag-shaped pin symbols in this diagram represent off-chip
(off-FPGA) connections.

f For more information about connecting your FPGA pins, refer to the Altera I/O
Management, Board Development Support, and Signal Integrity Analysis Resource
Center web page.

Figure 1–2. Top Level Block Diagram
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

http://www.altera.com/support/software/io-board/sof-qts-io.html

Chapter 1: First Time Designer's Guide 1–5
Embedded System Design
Constraining Your FPGA-Based Design
To ensure your design meets timing and other requirements, you must constrain the
design to meet these requirements explicitly using tools provided in the Quartus® II
software or by a third party EDA provider. The Quartus II software uses your
constraint information during design compilation to achieve Altera’s best possible
results.

f Altera’s third-party EDA partners and the tools they provide are listed at
www.altera.com/products/software/partners/eda_partners/eda-tools.html

SOPC Builder Design
SOPC Builder simplifies the task of building complex hardware systems on an FPGA.
SOPC Builder allows you to describe the topology of your system using a graphical
user interface (GUI) and then generate the hardware description language (HDL) files
for that system. The Quartus II software compiles the HDL files to create an FPGA
programming file.

f For additional information about SOPC Builder, refer to Volume 4: SOPC Builder of the
Quartus II Handbook.

SOPC Builder allows you to choose the processor core type and the level of cache,
debugging, and custom functionality for each Nios II processor. Your design can use
on-chip resources such as memory, PLLs, DSP functions, and high-speed transceivers.
You can construct the optimal processor for your design using SOPC Builder.

After you construct your system using SOPC Builder, and after you add any required
custom logic to complete your top-level design, you must create pin assignments
using the Quartus II software. The FPGA’s external pins have flexible functionality,
and a range of pins is available to connect to clocks, control signals, and I/O signals.

f For information about how to create pin assignments, refer to the Quartus II online
Help and to the I/O Management chapter in volume 2 of the Quartus II Handbook.

Altera recommends that you start your design from a small pretested project and
build it incrementally. Start with one of the many SOPC Builder example designs
provided with the Nios II Embedded Design Suite (EDS), or with a design example
from the Nios II Hardware Development Tutorial.

The Nios II EDS includes several SOPC Builder-based hardware example designs and
corresponding software examples. The software examples are located in the hardware
project directory of your Altera Nios development board type—for example,
$SOPC_KIT_NIOS2\examples\verilog\niosII_cycloneII_2c35—in the
software_examples subdirectory for your design type.

f For more information about the examples provided in the Nios II EDS, refer to the
"Using Nios II Example Design Scripts" section of the Using the Nios II Software Build
Tools chapter of the Nios II Software Developer’s Handbook.

1 As you add each hardware component to the system, test it with software. If you do
not know how to develop software to test new hardware components, Altera
recommends that you work with a software engineer to test the components.
© January 2009 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/products/software/partners/eda_partners/eda-tools.html
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

1–6 Chapter 1: First Time Designer's Guide
Embedded System Design
After you run a simple software design—such as the simplest built-in example, Hello
World Small—build individual systems based on this design to test the additional
interfaces or custom options that your system requires. Altera recommends that you
start with a simple system that includes a processor with a JTAG debug module, an
on-chip memory component, and a JTAG UART component, and create a new system
for each new untested component, rather than adding in new untested components
incrementally.

After you verify that each new hardware component functions correctly in its own
separate system, you can combine the new components incrementally in a single
SOPC Builder system. SOPC Builder supports this design methodology well, by
allowing you to add components and regenerate the project easily.

f For detailed information about how to implement the recommended incremental
design process, refer to the Verification and Board Bring-Up chapter of the Embedded
Design Handbook.

Design Replication
The recommended design flow requires that you maintain several small SOPC
Builder systems, each with its Quartus II project and the software you use to test the
new hardware. An SOPC Builder design requires the following files and folders:

■ Quartus II project file (.qpf)

■ Quartus II settings file (.qsf)

The .qsf file contains all of the device, pin, timing, and compilation settings for the
Quartus II project.

■ A top level design file – schematic (.bdf), Verilog HDL (.v), or VHDL (.vhd)

If SOPC Builder generates your top-level design file, you do not need to preserve a
separate top-level file.

1 SOPC Builder generates most of the HDL files for your system, so you do
not need to maintain them when preserving a project. You need only
preserve the HDL files that you add to the design directly.

f For details about the design file types, refer to the Quartus II online Help.

■ Internal SOPC Builder description file (.sopc)

■ SOPC Builder description file (.sopcinfo)

This file contains an XML description of your SOPC Builder system. SOPC Builder
and downstream tools, including the software build tools, derive information
about your system from this file.

■ Your software application source files

To replicate an entire project (both hardware and software), first copy the required
files to a separate directory, and then open the new project. You can open the new
project in the Quartus II software, in SOPC Builder, or in the Nios II Integrated
Development Environment (IDE). You can also create a script to automate the
copying process.
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51010.pdf

Chapter 1: First Time Designer's Guide 1–7
Embedded System Design
f For more information about all of these files, refer to the Archiving SOPC Builder
Projects chapter in volume 4 of the Quartus II Handbook.

Customization and Acceleration
FPGA-based designs provide you with the flexibility to modify your design easily,
and to experiment to determine the best balance between hardware and software
implementation of your design. In a discrete microcontroller-based design process,
you must determine the processor resources—cache size and built-in peripherals, for
example—before you reach the final design stages. You may be forced to make these
resource decisions before you know your final processor requirements. If you
implement some or all of your system's critical design components in an FPGA, you
can easily redesign your system as your final product needs become clear. If you use
the Nios II processor, you can experiment with the correct balance of processor
resources to optimize your system for your needs. SOPC Builder facilitates this
flexibility, by allowing you to add and modify system components and regenerate
your project easily.

Similarly, if you implement your system in an FPGA, you can experiment with the
best balance of hardware and software resource usage. If you find you have a
software bottleneck in some part of your application, you can consider accelerating
the relevant algorithm by implementing it in hardware instead of software. SOPC
Builder facilitates experimenting with the balance of software and hardware
implementation. You can even design custom hardware accelerators for specific
system tasks.

To help you solve system performance issues, the following acceleration
methodologies are available:

■ Custom peripherals

■ Custom instructions

■ C2H accelerated software

The method of acceleration you choose depends on the operation you wish to
accelerate. To accelerate streaming operations on large amounts of data, a custom
peripheral may be a good solution. Hardware interfaces (such as implementations of
the Ethernet or serial peripheral interface (SPI) protocol) may also be implemented
efficiently as custom peripherals. The current floating-point custom instruction is a
good example of the type of operations that are typically best accelerated using
custom instructions.

Working with a software or systems engineer, use the C2H Compiler to help analyze
sophisticated algorithms to determine potential hardware acceleration gains. As in
any hardware acceleration methodology, you must make trade-offs between
performance and resource consumption. When a C compiler compiles code using a
high level of optimization, the resulting executable program typically runs faster, but
also often consumes more memory than similar code compiled with a lower level of
optimization. Similarly, accelerators built with the C2H Compiler typically run faster
than the unaccelerated code, but they consume more FPGA resources.
© January 2009 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54017.pdf
http://www.altera.com/literature/hb/qts/qts_qii54017.pdf

1–8 Chapter 1: First Time Designer's Guide
Embedded System Design
f For information about hardware acceleration, refer to the Hardware Acceleration and
Coprocessing chapter of the Embedded Design Handbook. For information about how to
use the C2H Compiler, refer to the Nios II C2H Compiler User Guide and to the
Optimizing Nios II C2H Compiler Results chapter of the Embedded Design Handbook. For
information on custom instructions, refer to the Nios II Custom Instruction User Guide.
For information on creating custom peripherals, refer to the Developing Components for
SOPC Builder chapter in volume 4 of the Quartus II Handbook.

Software Design
This section contains brief descriptions of the software design tools provided by the
Nios II EDS, the Nios II IDE development flow, and the software build tools
development flow.

Tools Description
The Nios II EDS provides the following tools for software development:

■ GNU toolchain: GCC-based compiler with the GNU binary utilities

f For an overview of these and other Altera-provided utilities, refer to the
Nios II Command-Line Tools chapter of the Embedded Design Handbook.

■ Nios II processor-specific port of the newlib C library

■ Hardware abstraction layer (HAL)

The HAL provides a simple device driver interface for programs to communicate
with the underlying hardware. It provides many useful features such as a
POSIX-like application program interface (API) and a virtual-device file system.

f For more information about the Altera HAL, refer to The Hardware
Abstraction Layer section of the Nios II Software Developer’s Handbook.

■ Nios II IDE

The Nios II IDE is a GUI that supports creating, modifying, building, running, and
debugging Nios II programs. It is based on the Eclipse open development platform
and Eclipse C/C++ development toolkit (CDT) plug-ins.

■ Nios II software build tools flow

The Nios II software build tools development flow is a scriptable, command-line
based development flow that uses the software build tools independent of the
Nios II IDE.

f For more information about the Nios II software build tools flow, refer to
the Developing Nios II Software chapter of the Embedded Design Handbook.

Nios II IDE Flow
To learn about the Nios II IDE, refer to the Nios II software development tutorial.
Unlike the Nios II Hardware Development Tutorial, this tutorial is contained in the
Nios II IDE Help system. To open this Help system, in the Nios II IDE, on the Help
menu, click Welcome. A PDF version is also available at
www.altera.com/literature/ug/ug_nios2_ide_help.pdf.
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51006.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51006.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51005.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/ug/ug_nios2_ide_help.pdf

Chapter 1: First Time Designer's Guide 1–9
Embedded System Design
The Nios II software development tutorial teaches you about the following key
elements of the flow:

■ System library project

■ Software abstraction of the SOPC Builder hardware design

■ Application project

■ The software that drives your application

It also teaches you to develop your own software applications. However, Altera
recommends that you view and begin your design with one of the available software
examples that are installed with the Nios II EDS. From simple "Hello, World"
programs to networking and RTOS-based software, these examples provide good
reference points and starting points for your own software development projects. The
Hello World Small example program illustrates how to reduce your code size without
losing all of the conveniences of the HAL.

1 Altera recommends that you use an Altera Nios II development kit or custom
prototype board for software development and debugging. Many peripheral and
system-level features are available only when your software runs on an actual board.

f For more detailed information, refer to the Nios II Software Developer's Handbook.

Debugging Options

The Nios II EDS provides the following programs to aid in debugging your hardware
and software system:

■ A built-in Nios II IDE Debugger

■ Several distinct interfaces to the GNU Debugger (GDB)

■ A Nios II-specific implementation of the First Silicon Solutions, Inc. FS2 console
(available on Windows platforms only)

■ System Console, a system debug console

You can begin debugging software immediately using the built-in Nios II IDE
Debugger. This debugging environment includes advanced features such as trace,
watchpoints, and hardware breakpoints.

The Nios II EDS includes the following three interfaces to the GDB debugger:

■ GDB console (accessible through the Nios II IDE)

■ Standard GDB client (nios2-elf-gdb)

■ Insight GDB interface (Tcl/Tk based GUI)

Additional GDB interfaces such as Data Display Debugger (DDD), and Curses GDB
(CGDB) interface also function with the Nios II version of the GDB debugger.

f For more information about these interfaces to the GDB debugger, refer to the Nios II
Command-Line Tools and Debugging Nios II Designs chapters of the Embedded Design
Handbook.
© January 2009 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51004.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51004.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51003.pdf

1–10 Chapter 1: First Time Designer's Guide
Embedded System Design
f For detailed information about the FS2 console, refer to the documentation in the
$SOPC_KIT_NIOS2\bin\fs2\doc directory and to the Verification and Board
Bring-Up chapter of the Embedded Design Handbook.

The System Console is a system debug console that provides the SOPC Builder
designer with a Tcl-based, scriptable command-line interface for performing system
or individual component testing. It is available in Nios II EDS version 8.0 and later.

f For detailed information about the System Console, refer to the System Console User
Guide. On-line training is available at http://www.altera.com/training.

Third party debugging environments are also available from vendors such as
Lauterbach Datentechnik GmBH and First Silicon Solutions, Inc.

Command Line

You can use the Nios II IDE to create your project. The Nios II IDE guides you if you
are unfamiliar with the Nios II software toolchain. It also provides easy access to
newlib library functions and the HAL software layer.

However, some actions, such as rebuilding software after minor source code edits, do
not require the IDE. In these cases, you may rebuild the project from a Nios II
command shell, using your application's makefile. For example, to build or rebuild
your software, perform the following steps:

1. Open a Nios II command shell.

To start the Nios II command shell on Windows platforms, on the Start menu,
click All Programs. On the All Programs menu, on the Altera submenu, on the
Nios II EDS <version> submenu, click Nios II <version> Command Shell.
On Linux platforms, type the following command:
$SOPC_KIT_NIOS2/sdk_shell r

2. Change to the directory in which your makefile is located. If you use the
Nios II IDE for development, the correct location is often the Debug or Release
subdirectory of your software project directory.

3. In the command shell, type one of the following commands:
make r
or
make -s r

Example 1–1 illustrates the output of the make command run on a sample system.
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51010.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51010.pdf
http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/education/training/courses/OEMB1117

Chapter 1: First Time Designer's Guide 1–11
Embedded System Design
1 If you add new files to your project or rebuild your project after significant hardware
changes, you should build your project from the Nios II IDE. The Nios II IDE
recreates the makefile for the new version of your system after the modifications.

Software Build Tools Flow
The Nios II software build tools flow uses the software build tools to provide a
flexible, portable, and scriptable software build environment. Altera recommends that
you use this flow if you prefer a command-line environment, or if you want a set of
build tools that fits easily in your preferred software or system development
environment. The Nios II software build tools are the basis for Altera’s future
development.

The software build tools flow requires that you have an SOPC file (.sopc) generated
by SOPC Builder for your system. The flow includes the following steps to create
software for your system:

1. Create a board support package (BSP) for your system. The BSP is a layer of
software that interacts with your development system. It is a makefile-based
project.

2. Create your application software:

a. Write your code.

b. Generate a makefile-based project that contains your code.

3. Iterate through one or both of these steps until your design is complete.

f For more information, refer to the software design examples based on this flow that
are shipped with every release of the Nios II EDS. For more information about these
examples, refer to the "Using Nios II Example Design Scripts" section of the Using the
Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Board Design Considerations
You must choose the method to configure, or program, your FPGA, and the method
to boot your Nios II processor.

Example 1–1. Sample Output From make -s Command

[SOPC Builder]$ make -s
Creating generated_app.mk...
Creating generated_all.mk...
Creating system.h...
Creating alt_sys_init.c...
Creating generated.sh...
Creating generated.gdb...
Creating generated.x...
Compiling src1.c...
Compiling src2.c...
Compiling src3.c...
Compiling src4.c...
Compiling src5.c...
Linking project_name.elf...
© January 2009 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

1–12 Chapter 1: First Time Designer's Guide
Embedded System Design
Configuration
Many FPGA configuration options are available to you. The two most commonly
used options configure the FPGA from flash memory. One option uses a CPLD and a
CFI flash device to configure the FPGA, and the other uses a serial flash EPCS
configuration device. The Nios II development kits use these two configuration
options by default.

Choose the first option, which uses a CPLD and a CFI-compliant flash memory, in the
following cases:

■ Your FPGA is large

■ You must configure multiple FPGAs

■ You require a large amount of flash memory for software storage

■ Your design requires multiple FPGA hardware images (safe factory images and
user images) or multiple software images

EPCS configuration devices are often used to configure small, single-FPGA systems.

1 The default Nios II boot loader does not support multiple FPGA images in EPCS
devices.

f For help in configuring your particular device, refer to the device family information
at www.altera.com/products/devices/dev-index.jsp.

Figure 1–3 shows the block diagram of the configuration controller used on the
Nios II Development Kit, Cyclone® II Edition. This controller design is used on many
of the development kits, and is a good starting point for your design.

f For more information about controller designs, refer to AN346: Using the Nios
Development Board Configuration Controller Reference Designs.
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

http://www.altera.com/products/devices/dev-index.jsp
http://www.altera.com/literature/an/an346.pdf
http://www.altera.com/literature/an/an346.pdf

Chapter 1: First Time Designer's Guide 1–13
Embedded System Design
altremote_update Megafunction-Based Configuration

Newer devices such as the Cyclone III, Stratix® II, and later devices include the
built-in ALTREMOTE_UPDATE megafunction to help you configure your FPGA. For
these newer devices, no additional Programmable Logic Device (PLD) is necessary for
configuration control. However, older devices require a configuration controller
device, as shown in Figure 1–3.

For information about the ALTREMOTE_UPDATE megafunction, refer to the Remote
Update Circuitry Megafunction User Guide (ALTREMOTE_UPDATE). The Application
Selector example uses this megafunction in the Nios II Embedded Evaluation Kit
(NEEK), Cyclone III Edition.

Booting
Many Nios II booting options are available. The following options are the most
commonly used:

■ Boot from CFI Flash

■ Boot from EPCS

■ Boot from on-chip RAM

The default boot loader that is included in the Nios II EDS supports boot from CFI
flash memory and from EPCS flash memory. If you use an on-chip RAM that supports
initialization, such as the M4K and M9K types of RAM, you can boot from the on-chip
RAM without a boot loader.

Figure 1–3. Configuration Controller for Cyclone II Devices

Cyclone II
EP2C35

External
Flash
Drive

reset_n

A[23..0]

DATA[7..0]

CONTROL

MAX EPM7256AE
Configuration Controller

Reconfig_Request

DCLK

CONF_DONE

STATUS_n

CONFIG_n

A[23..0]

DATA[7..0]

CONTROL

Reset
Distribution

Logic

Configuration
Clock

Generator

Flash
Address and
Control-Logic

Generator

Configuration
Control
Logic

Configuration
Status
Monitor

Status LEDs

E
N

E
T

 R
S

T

P
R

O
TO

1 R
S

T

P
R

O
TO

2 R
S

T

Flash Parallel
to Serial Data

Converter

MSEL[1..0]

DATA0

EPCS64
Configuration

Device

C
S

_n

A
S

D
0

© January 2009 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/ug/ug_altremote.pdf
http://www.altera.com/literature/ug/ug_altremote.pdf

1–14 Chapter 1: First Time Designer's Guide
Resources
f For additional information on Nios II boot methodologies, refer to AN458: Alternative
Nios II Boot Methods.

Additional Design Considerations
Consider the following topics as you design your system:

■ JTAG signal integrity

■ Extra memory space for prototyping

■ System verification

JTAG Signal Integrity

The JTAG signal integrity on your system is very important. You must debug your
hardware and software, and program your FPGA, through the JTAG interface. Poor
signal integrity on the JTAG interface can prevent you from debugging over the JTAG
connection, or cause inconsistent debugger behavior.

You can use the System Console to verify the JTAG chain.

1 JTAG signal integrity problems are extremely difficult to diagnose. To increase the
probability of avoiding these problems, and to help you diagnose them should they
arise, Altera recommends that you follow the guidelines outlined in
AN428: MAX II CPLD Design Guidelines and in the Verification and Board Bring-Up
chapter of the Embedded Design Handbook when designing your board.

f For more information about the System Console, refer to the System Console User
Guide.

Extra Memory Space For Prototyping

Even if your final product includes no off-chip memory, Altera recommends that your
prototype board include a connection to some region of off-chip memory. This
component in your system provides additional memory capacity that enables you to
focus on refining code functionality without worrying about code size. Later in the
design process, you can substitute a smaller memory device to store your software.

System Verification

f For useful information about design techniques for your embedded system, refer to
the Verification and Board Bring-Up chapter of the Embedded Design Handbook. Altera
recommends that you read this chapter before you begin your design.

Resources
This section contains a list of resources to help you find design help. Your resource
options include traditional Altera-based support such as online documentation,
training, and My Support, as well as web-based forums and Wikis. The best option
depends on your inquiry and your current stage in the design cycle.
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/an/an458.pdf
http://www.altera.com/literature/an/an458.pdf
http://www.altera.com/literature/an/an428.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51010.pdf
http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51010.pdf

Chapter 1: First Time Designer's Guide 1–15
Resources
Support
Altera recommends that you seek support in the following order:

1. Search www.altera.com for answers to your questions.

Relevant literature appears on the Altera literature pages, especially on the Nios II
Processor literature page and the SOPC Builder literature page.

2. Contact your local Altera sales office or sales representative, or your field
application engineer (FAE).

3. Contact technical support at www.altera.com/mysupport to get support directly
from Altera.

4. Consult the community-owned Nios Forum and Wiki:

■ www.niosforum.com

■ www.nioswiki.com

1 Altera is not responsible for the contents of the Nios Forum and Nios Wiki websites,
which are maintained by groups outside of Altera.

To learn how the tools work together and to use them in an instructor-led
environment, register for training.

Training
Several training options are available. For information about general training, refer to
Altera's Education and Events website at
www.altera.com/education/edu-index.html.

For detailed information on available courses and their locations, visit the Altera
Technical Training website at
www.altera.com/education/training/curriculum/embedded_sw/
trn-embedded_sw.html. This website contains information on both online and
instructor-led training.

Documentation
Documentation about the Nios II processor and embedded design is located in your
Nios II EDS installation directory at $SOPC_KIT_NIOS2/documents/index.htm. To
access this page directly on Windows platforms, on the Start menu, click All
Programs. On the All Programs menu, on the Altera submenu, on the Nios II EDS
<version> submenu, click Nios II <version> Documentation. This web page contains
links to the latest Nios II documentation.

The Nios II literature page includes a list and links to available documentation at
www.altera.com/literature/lit-nio2.jsp. At the bottom of this page, you can find links
to various product pages that include Nios II processor online demonstrations and
embedded design information.

Useful information for first time Nios II IDE users appears on the Welcome page. This
page appears the first time you open the Nios II IDE after a new installation. You can
also open it at any time from the Nios II IDE by clicking Welcome on the Help menu.
A PDF version is also available at
www.altera.com/literature/ug/ug_nios2_ide_help.pdf.
© January 2009 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com
http://www.altera.com/literature
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com/mysupport
http://www.niosforum.com
http://www.nioswiki.com
http://www.altera.com/education/edu-index.html
http://www.altera.com/education/training/curriculum/embedded_sw/trn-embedded_sw.html
http://www.altera.com/education/training/curriculum/embedded_sw/trn-embedded_sw.html
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/ug/ug_nios2_ide_help.pdf

1–16 Chapter 1: First Time Designer's Guide
Glossary
The other chapters in the Embedded Design Handbook are a valuable source of
information about embedded hardware and software design, verification, and
debugging. Each chapter contains links to the relevant overview documentation.

Third Party Intellectual Property
Many third parties have participated in developing solutions for embedded designs
with Altera FPGAs through the Altera AMPPSM Program. For up-to-date information
on the third-party solutions available for the Nios II processor, refer to the Altera
embedded processing web pages at www.altera.com/embedded, and click
Embedded Software Partners.

Several community forums are also available. These forums are not controlled by
Altera. The Nios Forum's Marketplace provides third-party hard and soft embedded
systems-related IP. The forum also includes an unsupported projects repository of
useful example designs. You are welcome to contribute to these forum pages.

Traditional support is available from the Support Center or through your local Field
Application Engineer (FAE). You can obtain more informal support by visiting the
Nios Forum at www.niosforum.com or by browsing the information contained on the
Nios Wiki, at www.nioswiki.com. Many experienced developers, from Altera and
elsewhere, contribute regularly to Wiki content and answer questions on the Nios
Forum.

Glossary
The following definitions explain some of the unique terminology for describing
SOPC Builder and Nios II processor-based systems:

■ System interconnect fabric—An interface through which the Nios II processor
communicates to on- and off-chip peripherals. This fabric provides many
convenience and performance-enhancing features.

■ Component—A named module in SOPC Builder that contains the hardware and
software necessary to access a corresponding hardware peripheral.

■ Custom instruction—Custom hardware processing integrated into the Nios II
processor's ALU. The programmable nature of the Nios II processor and SOPC
Builder-based design supports this implementation of software algorithms in
custom hardware. Custom instructions accelerate common operations. (The
Nios II processor floating-point instructions are implemented as custom
instructions).

■ Custom peripheral—An accelerator implemented in hardware. Unlike custom
instructions, custom peripherals are not connected to the CPU's ALU. They are
accessed through the system interconnect fabric. (See System interconnect fabric).
Custom peripherals off-load data transfer operations from the processor in data
streaming applications.

■ ELF (Executable and Loadable Format)—The executable format used by the
Nios II processor. This format is arguably the most common of the available
executable formats. It is used in most of today's popular Linux/BSD operating
systems.
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.altera.com/embedded
http://www.niosforum.com
http://www.nioswiki.com

Chapter 1: First Time Designer's Guide 1–17
Conclusion
■ HAL (Hardware Abstraction Layer)—A lightweight runtime environment that
provides a simple device driver interface for programs to communicate with the
underlying hardware. It provides a POSIX-like software layer and wrapper to the
newlib C library.

■ Nios II C-To-Hardware Acceleration (C2H) Compiler—A push-button ANSI
C-to-hardware compiler that allows you to explore algorithm acceleration and
design-space options in your embedded system.

■ Nios II Command Shell—The command shell you use to access Nios II and SOPC
Builder command-line utilities.

■ On Windows platforms, a Nios II command shell is a Cygwin bash with the
environment properly configured to access command-line utilities.

■ On Linux platforms, to run a properly configured bash, type
$SOPC_KIT_NIOS2/sdk_shell r

■ Nios II Embedded Development Suite (EDS)—The complete software
environment required to build and debug software applications for the Nios II
processor. The EDS includes the Nios II IDE. (See Nios II IDE).

■ Nios II IDE—An Eclipse-based development environment for Nios II embedded
designs that provides software project management, build, and debugging
capabilities.

■ SOPC Builder—Software that provides a GUI-based system builder and related
build tools for the creation of FPGA-based subsystems, with or without a
processor.

Conclusion
This chapter is a basic overview of the Altera embedded development process and
tools for the first time user. The chapter focuses on using these tools and where to find
more information. It references other Altera documents that provide detailed
information on the individual tools and procedures. It contains resource and glossary
sections to help orient the first time user of Altera’s embedded development tools for
hardware and software development.

Referenced Documents
This chapter references the following documents:

■ AN346: Using the Nios Development Board Configuration Controller Reference Designs

■ AN428: MAX II CPLD Design Guidelines

■ AN458: Alternative Nios II Boot Methods

■ Archiving SOPC Builder Projects chapter in volume 4 of the Quartus II Handbook

■ Debugging Nios II Designs chapter of the Embedded Design Handbook

■ Developing Components for SOPC Builder chapter in volume 4 of the Quartus II
Handbook

■ Developing Nios II Software chapter of the Embedded Design Handbook

■ Embedded Design Handbook
© January 2009 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/an/an346.pdf
http://www.altera.com/literature/an/an428.pdf
http://www.altera.com/literature/an/an458.pdf
http://www.altera.com/literature/hb/qts/qts_qii54017.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf

1–18 Chapter 1: First Time Designer's Guide
Document Revision History
■ Hardware Acceleration and Coprocessing chapter of the Embedded Design Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ Nios II Command-Line Tools chapter of the Embedded Design Handbook

■ Nios II Custom Instruction User Guide

■ Nios II Flash Programmer User Guide

■ Nios II Hardware Development Tutorial

■ Nios II Processor Reference Handbook

■ Nios II Software Developer's Handbook

■ Optimizing Nios II C2H Compiler Results chapter of the Embedded Design Handbook

■ Remote Update Circuitry Megafunction User Guide (ALTREMOTE_UPDATE)

■ System Console User Guide

■ Using the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook

■ Verification and Board Bring-Up chapter of the Embedded Design Handbook

■ Volume 4: SOPC Builder of the Quartus II Handbook

■ Volume 5: Embedded Peripherals of the Quartus II Handbook

Document Revision History
Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History

Date and
Document Version Changes Made Summary of Changes

January 2009
v2.1

Updated Nios Wiki hyperlink. Updated Nios Wiki hyperlink.

November 2008
v2.0

Added System Console. Added System Console.

March 2008
v1.0

Initial release. —
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51004.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51005.pdf
http://www.altera.com/literature/ug/ug_altremote.pdf
http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51010.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf

© November 2008 Altera Corporation
Section II. Nios II Software Development
This section of the Embedded Design Handbook describes how to most effectively use
the Altera® tools for embedded system software development, and recommends
design styles and practices for developing, debugging, and optimizing the software
for embedded systems using Altera-provided tools. The section introduces concepts
to new users of Altera’s embedded solutions, and helps to increase the design
efficiency of the experienced user.

This section includes the following chapters:

■ Chapter 2, Developing Nios II Software

■ Chapter 3, Debugging Nios II Designs

■ Chapter 4, Nios II Command-Line Tools

■ Chapter 5, Optimizing Nios II C2H Compiler Results

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Embedded Design Handbook

II–ii Section II: Nios II Software Development
Embedded Design Handbook © November 2008 Altera Corporation

© June 2008 Altera Corporation

ED51002-1.1
2. Developing Nios II Software
Introduction
This chapter provides in-depth information about software development for the
Altera® Nios® II processor. It complements the Nios II Software Developer’s Handbook by
providing the following additional information:

■ Recommended design practices—Best practice information for Nios II software
design, development, and deployment.

■ Implementation information—Additional in-depth information about the
implementation of APIs and source code for each topic, if available.

■ Pointers to topics—Informative background and resource information for each
topic, if available.

Before reading this document, you should be familiar with the process of creating a
board-support package (BSP) project and an application project using the Nios II
software development flow. The new Nios II software development flow, first
supported by the Nios II Embedded Design Suite (EDS) v7.1, is very different from
the older Nios II Integrated Development Environment (IDE) software development
flow. The following resources provide training on the new Nios II software
development flow, called the Nios II software build tools flow:

■ Online training demonstrations located at
www.altera.com/education/training/curriculum/embedded_sw/
trn-embedded_sw.html:

■ Developing Software for the Nios II Processor: Tools Overview

■ Developing Software for the Nios II Processor: Design Flow

■ Developing Software for the Nios II Processor: Software Build Flow (Part 1)

■ Developing Software for the Nios II Processor: Software Build Flow (Part 2)

■ Documentation located at www.altera.com/literature/lit-nio2.jsp, especially the
Introduction to the Nios II Software Build Tools chapter of the Nios II Software
Developer's Handbook

■ Example designs provided with the Nios II EDS. The online training
demonstrations describe these software design examples, which you can use as-is
or as the basis for your own more complex designs.

This chapter is structured according to the Nios II software development process.
Each section describes Altera’s recommended design practices to accomplish a
specific task.

This chapter contains the following sections:

■ “Software Development Cycle”

■ “Software Project Mechanics” on page 2–5

■ “Developing With the Hardware Application Layer” on page 2–16

■ “Optimizing the Application” on page 2–34
Embedded Design Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/education/training/curriculum/embedded_sw/trn-embedded_sw.html
http://www.altera.com/education/training/curriculum/embedded_sw/trn-embedded_sw.html
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/lit-nio2.jsp

2–2 Chapter 2. Developing Nios II Software
Software Development Cycle
■ “Linking Applications” on page 2–40

■ “Application Boot Loading and Programming System Memory” on page 2–42

Software Development Cycle
The Nios II EDS includes a complete set of C/C++ software development tools for the
Nios II processor. In addition, a set of third-party embedded software tools is
provided with the Nios II EDS. This set includes the MicroC/OS-II real-time
operating system and the NicheStack TCP/IP networking stack. This chapter focuses
on the use of the Altera-created tools for Nios II software generation. It also includes
some discussion of third-party tools.

The Nios II EDS is a collection of software generation, management, and deployment
tools for the Nios II processor. The toolchain includes tools that perform low-level
tasks and tools that perform higher-level tasks using the lower-level tools.

This section contains the following subsections:

■ “Altera System on a Programmable Chip (SOPC) Solutions”

■ “Nios II Software Development Process” on page 2–3

Altera System on a Programmable Chip (SOPC) Solutions
To understand the Nios II software development process, you must understand the
definition of an SOPC Builder system. SOPC Builder is a system development tool for
creating systems including processors, peripherals, and memories. The tool enables
you to define and generate a complete SOPC very efficiently. SOPC Builder does not
require that your system contain a Nios II processor, although it provides complete
support for integrating Nios II processors into your system.

An SOPC Builder system is similar in many ways to a conventional embedded
system; however, the two kinds of system are not identical. An in-depth
understanding of the differences increases your efficiency when designing your SOPC
Builder system.

In Altera SOPC Builder solutions, the hardware design is implemented in an FPGA
device. An FPGA device, in contrast to a normal ASIC device, is volatile—contents are
lost when the power is turned off—and reprogrammable. When an FPGA is
programmed, the logic cells inside it are configured and connected to create an SOPC
system, which can contain Nios II processors, memories, peripherals, and other
structures. The system components are connected with Avalon® interfaces. After the
FPGA is programmed to implement a Nios II processor, you can download, run, and
debug your system software on the system.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–3
Software Development Cycle
Understanding the following basic characteristics of FPGAs and Nios II processors is
critical for developing your Nios II software application efficiently:

■ FPGA devices and SOPC Builder—basic properties:

■ Volatility—The FPGA is functional only after it is configured, and it can be
reconfigured at any time.

■ Design—Most Altera SOPC systems are designed using SOPC Builder and the
Quartus® II software, and may include multiple peripherals and processors.

■ Configuration—FPGA configuration can be performed through a
programming cable, such as the USB-Blaster™ cable, which is also used for
Nios II software debugging operations.

■ Peripherals—Peripherals are created from FPGA resources and can appear
anywhere in the Avalon memory space. Most of these peripherals are
internally parameterizeable.

■ Nios II processor—basic properties:

■ Volatility—The Nios II processor is volatile and is only present after the FPGA
is configured. It must be implemented in the FPGA as a system component,
and, like the other system components, it does not exist in the FPGA unless it is
implemented explicitly.

■ Parametrization—Many properties of the Nios II processor are
parameterizeable in SOPC Builder, including core type, cache memory
support, and custom instructions, among others.

■ Processor Memory—The Nios II processor must boot from and run code
loaded in an internal or external memory device.

■ Debug support—To enable software debug support, you must configure the
Nios II processor with a debug core. Debug communication is performed
through a programming cable, such as the USB-Blaster cable.

■ Reset vector—The reset vector address can be configured to any memory
location.

■ Exception vector—The exception vector address can be configured to any
memory location.

Nios II Software Development Process
This section provides an overview of the Nios II software development process and
introduces terminology. The rest of the chapter elaborates the description in this
section.

The Nios II software generation process includes the following stages and main
hardware configuration tools:

1. Hardware configuration

■ SOPC Builder

■ Quartus II software
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–4 Chapter 2. Developing Nios II Software
Software Development Cycle
2. Software project management

■ BSP configuration

■ Application project configuration

■ Editing and building the software project

■ Running, debugging, and communicating with the target

■ Ensuring hardware and software coherency

■ Project management

3. Software project development

■ Developing with the Hardware Abstraction Layer (HAL)

■ Programming the Nios II processor to access memory

■ Writing exception handlers

■ Optimizing the application for performance and size

4. Application deployment

■ Linking (run-time memory)

■ Boot loading the system application

■ Programming flash memory

In this list of stages and tools, the subtopics under the topics Software project
management, Software project development, and Application deployment
correspond closely to sections in the chapter.

You create the hardware for the system using the Quartus II and SOPC Builder
software. The main output produced by generating the hardware for the system is the
SRAM Object File (.sof), which is the hardware image of the system, and the SOPC
Builder system file (.sopc), which is the specification file that describes the hardware
components and connections.

The software generation tools use the .sopc file to create a BSP project. The BSP project
is a collection of C source, header and initialization files, and a makefile for building a
custom library for the hardware in the system. This custom library is the BSP library
file (.a). The BSP library file is compiled with your application project to create an
executable binary file for your system, called an application image. The combination
of the BSP project and your application project is called the software project.

The application project is your application C source and header files and a makefile
that you can generate by running Altera-provided tools. You can edit these files and
compile them with the BSP library file using the makefile. Your application sources
can reference all resources provided by the BSP library file. The BSP library file
contains services provided by the hardware abstraction layer (HAL), which your
application sources can reference. After you build your application image, you can
download it to the target system, and communicate with it through a terminal
application. You can also import the generated project file to the Nios II IDE
framework, which provides you with editing, compilation, and debugging support.

1 In the Nios II IDE design flow, the BSP library file is called a system library.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–5
Software Project Mechanics
The software project is flexible: you can regenerate it if the system hardware changes,
or modify it to add or remove functionality, or tune it for your particular system.
Changes to the hardware require that you create a new BSP library file with updated
header files. You can also modify the BSP library file to include additional
Altera-supplied components, such as the read-only file system (ZIPFS) or TCP/IP
networking stack (the NicheStack TCP/IP Stack). Both the BSP library file and the
application project can be configured to build with different parameters, such as
compiler optimizations and linker settings.

1 The key file required to generate the application software is the SOPC database file,
the .sopc file. This file describes the target system hardware configuration.

Software Project Mechanics
This section describes the Nios II software build tools flow, which is the
recommended design flow for hardware designs that contain a Nios II processor. It
describes how to configure BSP and application projects, and the process of
developing a software project that contains a Nios II processor, including ensuring
coherency between the software and hardware designs.

This section contains the following subsections:

■ “Software Tools Background”

■ “Development Flow Guidelines” on page 2–6

■ “Nios II Software Build Tools Flow” on page 2–6

■ “Configuring BSP and Application Projects” on page 2–7

■ “Software Project Development Mechanics” on page 2–10

■ “Ensuring Software Project Coherency” on page 2–12

Software Tools Background
The Nios II EDS provides a sophisticated set of software project generation tools to
build your application image. In version 7.2 of the Nios II EDS, two separate
software-development methodologies are available for project creation—the
Nios II IDE flow and the Nios II software build tools flow.

Of the two software-generation flows available to you, the Nios II IDE
software-development flow predates the other. The Nios II IDE
software-development flow was initially released with version 1.0 of the Nios II
processor. Its goal was to provide users with a GUI environment for configuring,
building, and debugging software projects. The Nios II software build tools flow was
initially released in version 7.1 of the Nios II EDS. It was designed to provide users
with a command-line and script-driven, easily controllable development environment
for creating, managing, and configuring software applications. The Nios II IDE is still
available for editing, building, and debugging software applications.

1 Altera recommends that you use the Nios II software build tools flow for generating
new software projects. The Nios II software build tools are the basis for Altera’s future
development.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–6 Chapter 2. Developing Nios II Software
Software Project Mechanics
f For information about migrating existing Nios II IDE projects to the Nios II software
build tools flow, refer to the "Porting Nios II IDE Projects" section of the Using the
Software Build Tools chapter of the Nios II Software Developer's Handbook.

Development Flow Guidelines
The Nios II software build tools flow provides many services and functions for your
use. Until you become familiar with these services and functions, Altera recommends
that you adhere to the following guidelines to simplify your development effort:

■ Begin with a known hardware design—The Nios II EDS includes a set of known
working designs, called hardware example designs, which are excellent starting
points for your own design.

■ Begin with a known software example design—The Nios II EDS includes a set of
preconfigured application and BSP projects for you to use as the starting point of
your own application. Use one of these designs and parameterize it to suit your
application goals.

■ Follow pointers to documentation—Many of the application and BSP project files
include inline comments that provide additional information.

■ Make incremental changes—Regardless of your end-application goals, develop
your software application by making incremental, testable changes, to
compartmentalize your software development process. Altera recommends that
you use a version control system to maintain distinct versions of your source files
as you develop your project.

The following section describes how to implement these guidelines.

Nios II Software Build Tools Flow
The Nios II software build tools are a collection of command-line utilities and scripts.
These tools allow you to build a BSP project and an application project into an
application image. The BSP project is a parameterizeable library, customized for the
hardware capabilities and peripherals in your system. When you create a BSP library
file from the BSP project, you create it with a specific set of parameter values. The
application project consists of your application source files and the application
makefile. The source files can reference services provided by the BSP library file.

The BSP and application projects are built using the following command-line tools:

■ nios2-bsp—This script creates a makefile that builds a BSP library file from the
BSP project.

■ nios2-app-generate-makefile—This utility creates a makefile that builds an
application image from the application project and the BSP library file.

Both of these commands allow parameterization of their respective projects through
the use of Tcl commands and settings.

f For the full list of generators, utilities, and scripts in the Nios II software build tools
flow, refer to the "Generators, Utilities, and Scripts" section of the Using the Nios II
Software Build Tools chapter of the Nios II Software Developer's Handbook.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 2. Developing Nios II Software 2–7
Software Project Mechanics
Configuring BSP and Application Projects
This section describes some methods for configuring the BSP and application projects
that comprise your software application, while encouraging you to begin your
software development with a software example design.

f For information about using version control, copying, moving and renaming a BSP
project, and transferring a BSP project to another person, refer to the "Common BSP
Tasks" section of the Using the Nios II Software Build Tools chapter of the Nios II Software
Developer's Handbook.

Software Example Designs
While you are still becoming acquainted with the Nios II software build flow, the
easiest way to begin developing software for the Nios II processor is to use one of the
pre-existing software example designs that are provided with the Nios II EDS. The
software example designs are preconfigured software applications that you can use as
the basis for your own software development. They are shell scripts that use the
nios2-bsp and nios2-app-generate-makefile commands with different parameters.

f For more information about the software example designs provided in the Nios II
EDS, refer to the "Using Nios II Example Design Scripts" section of the Using the
Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook.

To use a software example design, perform the following steps:

1. Set up a working directory that contains your system hardware, including the
system .sopc file.

2. In your Quartus II installation, in the hardware project directory of your Altera
Nios development board type—for example,
C:\altera\72\nios2eds\examples\verilog\niosII_cycloneII_2c35 —in
software_examples, select an example you are interested in using.

3. Copy the entire software_examples directory to your working directory.

4. In the Nios II command shell, change to your chosen example directory in the new
working subdirectory.

5. Type the following command at the command prompt:
./create-this-app r
You have generated the software application image of both the application and
BSP projects for your system hardware.

1 You must ensure that your system hardware satisfies the requirements for the
software example design. If you use a standard Altera development kit, the supplied
software example designs are guaranteed to work with the particular hardware
configuration for that board.

Configuring the BSP Project
The BSP project is a configurable library. You can configure your BSP project to
incorporate your optimization preferences—size, speed, or other features—in the
custom library you create. This custom library is the BSP project file (.a) that is used
by the application project.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

2–8 Chapter 2. Developing Nios II Software
Software Project Mechanics
Creating the BSP project populates the target directory with the BSP library file source
and build file scripts. Some of these files are copied from other directories and are not
overwritten when you recreate the BSP project. Others are generated when you create
the BSP project. Altera recommends that you not edit the generated files directly,
because they can be overwritten by the BSP generation tools.

To configure a BSP project, Altera recommends that you create a Tcl configuration file
and pass it to the nios2-bsp command using the --script option.

Selecting Core Services (HAL versus MicroC/OS-II RTOS)

You have a choice of two separate run-time environments that you can incorporate in
your BSP library file. These two environments are the Nios II hardware abstraction
layer (HAL) and the MicroC/OS-II real-time operating system (RTOS), which you
specify as ucosii. The HAL environment is a lightweight, POSIX-like,
single-threaded library, and is sufficient for many applications. The MicroC/OS-II
RTOS enables multi-threaded processing and HAL-level services. To enable one of
these two services, type the following command:

nios2-bsp <hal or ucosii> <bsp-dir> r
MicroC/OS-II RTOS Configuration Tips

If you use the MicroC/OS-II RTOS (UCOSII) environment, be aware of the following
properties of this environment:

■ UCOSII BSP settings—The MicroC/OS-II RTOS component supports many
configuration options. Some of these options are enabled by default, while others
are enabled with BSP settings. A comprehensive list of options appears in the
"Settings" section of the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer's Handbook.

■ UCOSII setting modification—Setting or clearing the UCOSII options modifies
the system.h file, which is used to compile the BSP library file.

■ UCOSII initialization—The core MicroC/OS-II component is initialized during
the execution of the C run-time initialization (crt0) code block. After the crt0
code block runs, the MicroC/OS-II RTOS resources are available for your
application to use. For more information, refer to “crt0 Initialization” on
page 2–18.

■ UCOSII configuration script—Altera recommends that you create a configuration
script to store your UCOSII configuration settings (Example 2–1).

Example 2–1. UCOSII Tcl Configuration Script Example (ucosii_conf.tcl)

#enable code for UCOSII timers
set_setting ucosii.os_tmr_en 1

#enable a maximum of 4 UCOSII timers
set_setting ucosii.timer.os_tmr_cfg_max 4

#enable code for UCOSII queues
set_setting ucosii.os_q_en 1
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 2. Developing Nios II Software 2–9
Software Project Mechanics
The UCOSII configuration script in Example 2–1 enables the UCOSII timer and queue
code, and defines a maximum of four timers for use. To run this script during BSP
generation, type the following command line:

nios2-bsp UCOSII . ../system.sopc --script ucosii_conf.tcl r

HAL Configuration Tips

If you use the HAL environment, be aware of the following properties of this
environment:

■ HAL BSP settings—A comprehensive list of HAL configuration options appears
in the "Settings" section of the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer's Handbook.

■ HAL setting modification—Setting or clearing the HAL options modifies the
system.h file, which is used to compile the BSP library file.

■ HAL initialization—The core HAL component is initialized during the execution
of the C run-time initialization (crt0) code block. After the crt0 code block runs,
the HAL resources are available for your application to use. For more information,
refer to “crt0 Initialization” on page 2–18.

■ HAL configuration script—Altera recommends that you create a configuration
script to store your HAL configuration settings (Example 2–2).

Adding Additional Components

Altera supplies several add-on software packages in the Nios II EDS. These add-on
components are available for your application to use. The following components are
provided:

■ Host File System—Allows a Nios II system to access a file system that resides on
the workstation. For more information, refer to “HOSTFS: Workstation-Based File
System” on page 2–29.

■ Read-Only Zip File System—Provides access to a simple file system stored in
flash memory. For more information, refer to “ZIPFS: Read-Only File System” on
page 2–29.

■ NicheStack TCP/IP Stack – Nios II Edition—Enables support of the NicheStack
TCP/IP networking stack component.

f For more information about the NicheStack TCP/IP networking stack,
refer to the Ethernet and the TCP/IP Networking Stack - Nios II Edition
chapter of the Nios II Software Developer's Handbook.

Configuring the Application Project
Configure the application project by specifying user source files and a valid BSP
project, along with other command-line options.

Example 2–2. HAL Tcl Configuration Script Example (hal_conf.tcl)

#set up stdio file handles to point to a UART
set default_stdio my_uart
set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

2–10 Chapter 2. Developing Nios II Software
Software Project Mechanics
Application Configuration Tips

Use the following tips to increase your efficiency in designing your application
project:

■ Makefile modification—For quick experimentation, edit the generated makefile.
This method is faster than regenerating the entire application project.

■ Source file inclusion—Several options are available for specifying the user source
files in your application project. If all your source files are in the same directory,
use the --src-dir command-line option.

■ Makefile variables—Set makefile variables with the --set <var> <value>
command-line option during configuration of the application project. Examine a
generated application makefile to ensure you understand the current and default
settings.

■ Creating top level generation script—Simplify the parameterization of your
application project by creating a top level shell script to control the configuration.
The create-this-app scripts mentioned in “Software Example Designs” on
page 2–7 are good models for your configuration script.

Linking User Libraries

You can also create and use your own user libraries in the Nios II software
development flow, as follows:

1. Create the library using the nios2-lib-generate-makefile command. This
command generates a public.mk file.

2. Configure the application project with the new library by running the
nios2-app-generate-makefile command with the --use-lib-dir option. The
value for the option specifies the path to the library's public.mk file.

Software Project Development Mechanics
This section describes the recommended ways to edit, build, download, run, and
debug your software application, with and without the Nios II IDE.

The Role of the Nios II IDE

Although the Nios II software build tools flow is recommended for configuring your
software application, the Nios II IDE is a good graphical tool for editing, debugging,
and running the application on the target system. Before you can use the Nios II IDE
for developing your software application, you must import the project, which
includes both the application and BSP projects.

f For more information, refer to the "Importing User-Managed Projects" section of the
Nios II Integrated Development Environment chapter of the Nios II Software Developer's
Handbook.

Editing the Project

In the Nios II IDE, you can edit the application source files, BSP project files, and user
library files, all of which appear in the project navigator. However, any modifications
to the BSP project files are overwritten when you regenerate the BSP project.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf

Chapter 2. Developing Nios II Software 2–11
Software Project Mechanics
1 Altera recommends that you not edit the BSP project files unless absolutely necessary,
because of the project maintenance implications. Modifying the source code for the
Altera-supplied BSP libraries, device drivers, or add-on components creates your own
custom version of the Altera libraries. Before you edit the BSP project files, confirm
that you cannot make your desired modifications with BSP settings or by modifying
driver or package settings.

Building the Project

To build your application, use the makefiles created for the application and BSP
projects. These makefiles use the Nios II GNU toolchain, which is provided with the
Nios II EDS.

1 Alternatively, you can use the TASKING VX toolset to build your application. This
toolset is available for purchase from Altium Limited (www.altium.com).

Downloading and Running the Software

From the command line, download and run your application image by typing the
following command:

nios2-download -g <myapp>.elf r
This command line downloads the application image .elf file to the target device and
runs the .elf file.

1 Before you run your target application, ensure that your FPGA is configured with
your target hardware image.

In the Nios II IDE environment, you must import the BSP and application projects
and make a Run or Debug configuration for your project.

f For information about using the Nios II IDE to download and run the software
application, refer to the Nios II Integrated Development Environment chapter of the
Nios II Software Developer’s Handbook.

Communicating with the Target

If you configured your application to use the stdio functions in a UART or JTAG
UART interface, you can use the nios2-terminal application to communicate with
your target subsystem. Unfortunately, the Nios II IDE and the nios2-terminal
application handle input characters very differently.

On the command line, you must use the nios2-terminal application to communicate
with your target. To start the application, type the following command:
nios2-terminal r
When you use the nios2-terminal application, characters you type in the shell are
transmitted, one by one, to the target.

The Nios II IDE automatically provides a console window in which you can
communicate with your system. When you use the Nios II IDE to communicate with
the target, characters you input are transmitted to the target line by line. Characters
are visible to the target only after the Enter key is pressed on your keyboard.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altium.com
http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf

2–12 Chapter 2. Developing Nios II Software
Software Project Mechanics
Software Debugging

The Nios II IDE helps you to debug the application by providing breakpoint, source
navigation, and memory viewing support. To use the Nios II IDE in debug mode, you
must create and run a debug configuration, which downloads the .elf file and runs the
debugger.

Alternatively, you can debug your application using the Tcl/Tk-based Insight GDB
GUI, which installs with the Nios II EDS distribution, or using a third party debugger.

f For more information about using the Nios II IDE to debug your application, refer to
the Debugging Nios II Designs chapter of the Embedded Design Handbook.

Enabling the hal.enable_runtime_stack_checking setting when you
configure your BSP project turns on stack checking. This setting causes subroutine
calls to generate an exception if the stack collides with the heap or with statically
allocated data in memory.

f For more information about this and other BSP configuration settings, refer to the
"Settings" section of the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer's Handbook.

Ensuring Software Project Coherency
In some engineering environments, maintaining coherency between the software and
system hardware projects is difficult. For example, in a mixed team environment in
which a hardware engineering team creates new versions of the hardware,
independent of the software engineering team, the potential for using the incorrect
version of the software on a particular version of the system hardware is high. Such
an error may cause engineers to spend time debugging phantom issues. This section
discusses several design and software architecture practices that can help you avoid
this problem.

Recommended Development Practice

The safest software development practice for avoiding the software coherency
problem is to follow a strict hardware and software project hierarchy, and to use
scripts to generate your application and BSP projects.

One best practice is to structure your application hierarchy with parallel application
project and BSP project folders, as in the Nios II installation software_examples
directories. In Figure 2–1, a top-level hardware project folder includes the Quartus II
project file, the SOPC Builder-generated files, and the software project folder. The
software project folder contains a subfolder for the application project and a subfolder
for the BSP project. The application project folder contains a create-this-app script,
and the BSP project folder contains a create-this-bsp script.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51003.pdf

Chapter 2. Developing Nios II Software 2–13
Software Project Mechanics
For your own software project, you must create the create-this-app and
create-this-bsp scripts. Altera recommends that you also create clean-this-app and
clean-this-bsp scripts. These scripts perform the following tasks:

■ create-this-app—This bash script uses the nios2-app-generate-makefile
command to create the application project, using the application software source
files for your project. The script verifies that the BSP project was properly
configured (a settings.bsp file is present in the BSP project directory), and runs the
create-this-bsp script if necessary. The Altera-supplied create-this-app scripts that
are included in the software project example designs provide good models for this
script.

■ clean-this-app—This bash script performs all necessary clean-up tasks for the
whole project, including the following:

■ Call the application makefile with the clean-all target.

■ Call the clean-this-bsp shell script.

■ create-this-bsp—This bash script generates the BSP project. The script uses the
nios2-bsp command, which can optionally call the configuration script
bsp_settings.tcl. The nios2-bsp command references the <system_name>.sopc file
located in the hardware project folder. Running this script creates all the BSP
project files for the system.

■ clean-this-bsp—This bash script calls the clean target in the BSP project makefile
and deletes the settings.bsp file.

The complete system generation process, from hardware to BSP and application
projects, must be repeated every time a change is made to the system in SOPC
Builder. The system generation process follows:

1. Hardware files generation—Using SOPC Builder, write the updated system
description to the <system_name>.sopc and <system_name>.ptf files.

2. Regenerate BSP project—Generate the BSP project with the create-this-bsp script.

Figure 2–1. Recommended Directory Structure

Note for Figure 2–1:

(1) is a Tcl configuration file. For more information about the Tcl configuration file, refer to “Configuring the BSP Project”
on page 2–7.

 APP project folder

 clean-this-app

 create-this-app

 application software source files

hardware project folder

software project folder

 BSP project folder

 clean-this-bsp

 create-this-bsp

 bsp_settings.tcl (optional) (1)

<system_name>.ptf

<system_name>.sopc

<system_name>.sof
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–14 Chapter 2. Developing Nios II Software
Software Project Mechanics
3. Regenerate application project—Generate the application project with the
create-this-app script. This script also runs the makefile to generate the BSP library
file.

4. Build the system—Build the system software using the application and BSP
makefile scripts.

To implement this system generation process, Altera recommends that you use the
following checklists for handing off responsibility between the hardware and
software groups.

1 This method assumes that the hardware engineering group installs the Nios II EDS. If
so, the hardware and software engineering groups must use the same version of the
Nios II EDS toolchain.

To hand off the project from the hardware group to the software group, perform the
following steps:

1. Hardware project hand-off—At minimum, the hardware group provides copies
of the <system_name>.sopc, <system_name>.ptf, and <system_name>.sof files. The
software group copies these files to the software group’s hardware project folder.

2. Recreate software project—The software team recreates the software application
for the new hardware by running the create-this-app script. This script runs the
create-this-bsp script.

3. Build—The software team runs make in its application project directory to
regenerate the software application.

To hand off the project from the software group to the hardware group, perform the
following steps:

1. Clean project directories—The software group runs the clean-this-app script.

2. Software project folder hand-off—The software group provides the hardware
group with the software project folder structure it generated for the latest
hardware version. Ideally, the software project folder contains only the application
project user files and the application project and BSP generation scripts.

3. Reconfigure software project—The hardware group runs the create-this-app
script to reconfigure the group’s application and BSP projects.

4. Build—The hardware group runs make in the application project directory to
regenerate the software application.

Recommended Architecture Practice

Many of the hardware and software coherency issues that arise during the creation of
the application software are problems of misplaced peripheral addresses. Because of
the flexibility provided by SOPC Builder, almost any peripheral in the system can be
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–15
Software Project Mechanics
assigned an arbitrary address, or have its address modified during system creation.
Implement the following practices to prevent this type of coherency issue during the
creation of your software application:

■ Peripheral and Memory Addressing—The Nios II software build tools
automatically generate a system header file, system.h, that defines a set of
#define symbols for every peripheral in the system. These definitions specify the
peripheral name, address location, and address span. To protect against coherency
issues, access all system peripherals and memory components with their system.h
name and address span symbols. This method guarantees access regardless of a
peripheral's addressable location.

For example, if your system includes a UART peripheral named UART1, located at
address 0x1000, access it using the system.h address symbol
(iowr_32(UART1_BASE, 0x0, 0x10101010)) rather than using its address
(iowr_32(0x1000, 0x0, 0x10101010)).

■ Checking peripheral values with the preprocessor—If you work in a large team
environment, and your software has a dependency on a particular hardware
address, you can create a set of C preprocessor #ifdef statements that validate
the hardware during the software compilation process. These #ifdef statements
validate the #define values in the system.h file for each peripheral.

For example, for the peripheral UART1, assume the #define values in system.h
appear as follows:

#define UART1_NAME "/dev/uart1"
#define UART1_BASE 0x1000
#define UART1_SPAN 32
#define UART1_IRQ 6
. . .

In your C/C++ source files, add a preprocessor macro to verify that your expected
peripheral settings remain unchanged in the hardware configuration. For
example, the following code checks that the base address of UART1 remains at the
expected value:

#if (UART1_BASE != 0x1000)
#error UART should be at 0x1000, but it is not

#endif

■ Ensuring coherency through the System ID core—Use the System ID core. The
System ID core is an SOPC Builder peripheral that provides a unique identifier for
a generated system. This identifier is stored in a hardware register readable by the
Nios II processor. This unique identifier is also stored in the .sopc file, which is
then used to generate the BSP project for the system. You can use the system ID
core to ensure coherency between the hardware and software by two methods.
The first method is automatically implemented during system software
development, when the .elf file is downloaded to the Nios II target. During the
software download process, the value of the system ID core is checked against the
value present in the BSP library file. If the two values do not match, this condition
is reported. The second method for using the system ID peripheral is useful in
systems that do not have a Nios II debug port, or in situations in which running
the Nios II software download utilities is not practical. In this method you use the
C function alt_avalon_sysid_test(). This function reports whether the
hardware and software system IDs match.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–16 Chapter 2. Developing Nios II Software
Developing With the Hardware Application Layer
f For more information about the System ID core, refer to the System ID Core
chapter in volume 5 of the Quartus II Handbook.

Developing With the Hardware Application Layer
The hardware application layer (HAL) for the Nios II processor is a lightweight
runtime environment that provides a simple device driver interface for programs to
communicate with the underlying hardware. The HAL application program interface
(API) is integrated with the ANSI C standard library. The HAL API allows you to
access devices and files using familiar C library functions.

This section contains the following subsections:

■ “Overview of the HAL” on page 2–16

■ “System Startup in HAL-Based Applications” on page 2–17

■ “HAL Peripheral Services” on page 2–20

■ “Accessing Memory With the Nios II Processor” on page 2–31

■ “Handling Exceptions” on page 2–33

■ “Modifying the Exception Handler” on page 2–34

Overview of the HAL
This section describes how to use HAL services in your Nios II software. It provides
information about the HAL configuration options, and the details of system startup
and HAL services in HAL-based applications.

HAL Configuration Options
To support the Nios II software development flow, the HAL system library is
self-configuring to some extent. By design, the HAL attempts to enable as many
services as possible, based on the peripherals present in the system hardware. This
approach provides your application with the least restrictive environment possible—
a useful feature during the product development and board bringup cycle.

The HAL is configured with a set of settings whose values are determined by Tcl
commands, which are called during the creation of the BSP project. As mentioned in
“Configuring the BSP Project” on page 2–7, Altera recommends you create a separate
Tcl file that contains your HAL configuration settings.

HAL configuration settings control the boot loading process, and provide detailed
control over the initialization process, system optimization, and the configuration of
peripherals and services. For each of these topics, this section provides pointers to the
relevant material elsewhere in this chapter.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51014.pdf

Chapter 2. Developing Nios II Software 2–17
Developing With the Hardware Application Layer
Configuring the Boot Environment

Your particular system may require a boot loader to configure the application image
before it can begin execution. For example, if your application image is stored in flash
memory and must be copied to non-volatile memory for execution, a boot loader must
configure the application image in the non-volatile memory. This configuration
process occurs before the HAL system library configuration routines execute, and
before the crt0 code block executes. A boot loader implements this process. For more
information, refer to “Linking Applications” on page 2–40 and “Application
Boot Loading and Programming System Memory” on page 2–42.

Controlling HAL Initialization

As noted in “HAL Initialization” on page 2–19, although most user applications begin
execution in a main() function, some applications require the ability to control
overall system initialization after the crt0 initialization routine runs and before
main() is called.

For an example of this kind of application, refer to the hello_alt_main software
example design supplied with the Nios II EDS installation.

Minimizing the Code Footprint and Increasing Performance

For information about increasing your application's performance, or minimizing the
code footprint, refer to “Optimizing the Application” on page 2–34.

Configuring Peripherals and Services

For information about configuring and using HAL services, refer to “HAL Peripheral
Services” on page 2–20.

System Startup in HAL-Based Applications
System startup in HAL-based applications is a three-stage process. First, the system
initializes, then the crt0 code section runs, and finally the HAL services initialize.
The following sections describe these three system-startup stages.

System Initialization
The system initialization sequence begins when the system powers up. The
initialization sequence steps for FPGA designs that contain a Nios II processor are the
following:

1. Hardware reset event—The board receives a power-on reset signal, which resets
the FPGA.

2. FPGA configuration—The FPGA is programmed with a .sof, from a specialized
configuration memory or an external hardware master. The external hardware
master can be a CPLD device or an external processor.

3. System reset—The SOPC Builder system, composed of one or more Nios II
processors and other peripherals, receives a hardware reset signal and enters the
components’ combined reset state.

4. Nios II processor(s)—Each Nios II processor jumps to its pre-configured reset
address, and begins running instructions found at this address.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–18 Chapter 2. Developing Nios II Software
Developing With the Hardware Application Layer
5. Boot loader or program code—Depending on your system design, the reset
address vector contains a packaged boot loader, called a boot image, or your
application image. Use the boot loader if the application image must be copied
from non-volatile memory to volatile memory for program execution. This case
occurs, for example, if the program is stored in flash memory but runs from
SDRAM. If no boot loader is present, the reset vector jumps directly to the .crt0
section of the application image. Do not use a boot loader if you wish your
program to run in-place from non-volatile or preprogrammed memory. For
additional information about both of these cases, refer to “Application
Boot Loading and Programming System Memory” on page 2–42.

6. crt0 execution—After the boot loader executes, the processor jumps to the
beginning of the program's initialization block—the .crt0 code section. The
function of the crt0 code block is detailed in the next section.

crt0 Initialization
The crt0 code block contains the C run-time initialization code—software
instructions needed to enable execution of C or C++ applications, and potentially
usable for assembly language as well. The Altera-provided crt0 block performs the
following initialization steps:

1. Calls alt_load macros—If the application is designed to run from flash memory
(the .text section runs from flash memory), the remaining sections are copied to
volatile memory. For additional information, refer to “Configuring the Boot
Environment” on page 2–17.

2. Initializes instruction cache—If the processor has an instruction cache, this cache
is initialized. All instruction cache lines are zeroed (without flushing) with the
initi instruction.

1 SOPC Builder determines the processors that have instruction caches, and
configures these caches at system generation. The software build tools
insert the instruction-cache initialization code block if necessary.

3. Initializes data cache—If the processor has a data cache, this cache is initialized.
All data cache lines are zeroed (without flushing) with the initd instruction. As
for the instruction caches, this code is enabled if the processor has a data cache.

4. Sets the stack pointer—The stack pointer is initialized. You can set the stack
pointer address. For additional information refer to “HAL Linking Behavior” on
page 2–40.

5. Clears the .bss section—The .bss section is initialized. You can set the .bss
section address. For additional information refer to “HAL Linking Behavior” on
page 2–40.

6. Initializes stack overflow protection—Stack overflow checking is initialized. For
additional information, refer to “Software Debugging” on page 2–12.

7. Jumps to alt_main—The processor jumps to the alt_main code block, which
begins initializing the HAL system library.

1 If you use a third-party, real-time operating system (RTOS) or environment
for your BSP library file, the alt_main() function could be different than
the one provided by the Nios II EDS.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–19
Developing With the Hardware Application Layer
If you use a third-party compiler or library, the C run-time initialization behavior may
differ from this description.

The crt0 code includes initialization short-cuts only if you perform hardware
simulations of your design. These optimizations are controlled by the
hal.enable_sim_optimize BSP setting, documented in the "Settings" section of
the Nios II Software Build Tools Reference chapter of the Nios II Software Developer's
Handbook.

After you generate your BSP project, the crt0.s source file is located in the HAL/src
directory.

HAL Initialization
As for any other C program, the first part of the HAL's initialization is implemented
by the Nios II processor's crt0.s routine. For more information, see “crt0
Initialization” on page 2–18. After crt0.s completes the C run-time initialization, it
calls the HAL alt_main() function, which initializes the HAL system library and
subsystems.

The HAL alt_main() function performs the following steps:

1. Initializes interrupts—Sets up interrupt support for the Nios II processor (with
the alt_irq_init() function).

2. Starts MicroC/OS-II—Starts the MicroC/OS-II real-time operation system
(RTOS), if this RTOS is configured to run (with the ALT_OS_INIT and
ALT_SEM_CREATE functions). For additional information on MicroC/OS-II use
and initialization, refer to “Selecting Core Services (HAL versus MicroC/OS-II
RTOS)” on page 2–8.

3. Initializes device drivers—Initializes device drivers (with the alt_sys_init()
function). The Nios II software build tools automatically find all peripherals
supported by the HAL, and automatically insert a call to a device configuration
function for each peripheral in the alt_sys_init() code. You can override this
behavior in the BSP project by using the
--cmd set_driver <peripheral_name> none command-line option in the call
to the nios2-bsp script. For information about removing a device configuration
function, refer to “Optimizing the Application” on page 2–34.

4. Configures stdio functions—Initializes stdio services for stdin, stderr, and
stdout. These services enable the application to use the GNU newlib stdio
functions and maps the file pointers to supported character devices. For more
information about configuring the stdio services, refer to “Character Mode
Devices” on page 2–22.

5. Initializes C++ CTORS and DTORS—Handles initialization of C++ constructor
and destructor functions. These function calls are necessary if your application is
written in the C++ programming language. By default, the HAL configuration
mechanism enables support for the C++ programming language. Disabling this
feature reduces your application's code footprint, as noted in “Optimizing the
Application” on page 2–34.

6. Calls main()—Calls user function main(), or application program. Most user
applications are constructed using a main() function declaration, and begin
execution at this function.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

2–20 Chapter 2. Developing Nios II Software
Developing With the Hardware Application Layer
1 If you use a system library other than the HAL and need to initialize it after the
crt0.s routine runs, define your own alt_main() function. For an example, see
the main() and alt_main() functions in the hello_alt_main.c file at
$SOPC_KIT_NIOS2\examples\software\hello_alt_main.

After you generate your BSP project, the alt_main.c source file is located in the
HAL/src directory.

HAL Peripheral Services
The HAL provides your application with a set of services, typically relying on the
presence of a hardware peripheral to support the services. By default, if you configure
your HAL BSP project from the command-line by running the nios2-bsp script, each
peripheral in the system is initialized, operational, and usable as a service at the entry
point of your C/C++ application (main()).

This section describes the core set of Altera-supplied, HAL-accessible peripherals and
the services they provide for your application. It also describes application design
guidelines for using the supplied service, and background and configuration
information, where appropriate.

f For more information about the HAL peripheral services, refer to the Developing
Programs Using the Hardware Abstraction Layer chapter of the Nios II Software
Developer's Handbook.

f For more information about HAL BSP configuration settings, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer's Handbook.

Timers
The HAL provides two types of timer services, a system clock timer and a timestamp
timer. The system clock timer is used to control, monitor, and schedule system events.
The timestamp variant is used to make high performance timing measurements. Each
of these timer services is assigned to a single Altera Avalon Timer peripheral.

f For more information about this peripheral, refer to the Timer Core chapter in volume 5
of the Quartus II Handbook.

System Clock Timer

The system clock timer resource is used to trigger periodic events—alarms— and as a
time-keeping device that counts system clock ticks. The system clock timer service
requires that a timer peripheral be present in the SOPC Builder system. This timer
peripheral must be dedicated to the HAL system clock timer service.

1 Only one system clock timer service may be identified in the BSP library file. This
timer should be accessed only by HAL supplied routines.

The hal.sys_clk_timer setting controls the BSP project configuration for the
system clock timer. Altera provides separate APIs for user-level system clock
functionality and for generating alarms.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf

Chapter 2. Developing Nios II Software 2–21
Developing With the Hardware Application Layer
User-level system clock functionality is provided through two separate classes of
APIs, one Nios II specific and the other Unix-like. The Altera function alt_nticks
returns the number of clock ticks that have elapsed. You can convert this value to
seconds by dividing by the value returned by the alt_ticks_per_second()
function. For most embedded applications, this function is sufficient for rudimentary
time keeping.

The POSIX-like getttimeofday() function behaves differently in the HAL than on
a Unix workstation. On a workstation, with a battery backed-up, real-time clock, this
function returns an absolute time value, with the value zero representing 00:00
Coordinated Universal Time (UTC), January 1, 1970, whereas in the HAL, this
function returns a time value starting from system power-up. By default, the function
assumes system power-up to have occurred on January 1, 1970. Use the
settimeofday() function to correct the HAL gettimeofday() response. The
times() function exhibits the same behavior difference.

Consider the following common issues and important points before you implement a
system clock timer:

■ System Clock Resolution—The timer’s period value specifies the rate at which
the HAL BSP project increments the internal variable for the system clock counter.
If the system clock increments too slowly for your application, you can decrease
the timer's period in SOPC Builder.

■ Rollover—The internal, global variable that stores the number of system clock
counts (since reset) is a 32-bit unsigned integer. No rollover protection is offered
for this variable. Therefore, you should calculate when the rollover event will
occur in your system, and plan the application accordingly.

■ Performance Impact—Every clock tick causes the execution of an interrupt service
routine. Executing this routine leads to a minor performance penalty. If your
system hardware specifies a short timer period, the cumulative interrupt latency
may impact your overall system performance.

The alarm API allows you to schedule events based on the system clock timer, in the
same way an alarm clock operates. The API consists of the alt_alarm_start()
function, which registers an alarm, and the alt_alarm_stop() function, which
disables a registered alarm.

Consider the following common issues and important points before you implement
an alarm:

■ Interrupt Service Routine (ISR) context—A common mistake is to program the
alarm callback function to call a service that depends on interrupts being enabled
(such as the printf() function). This mistake causes the system to deadlock,
because the alarm callback function occurs in an interrupt context, while
interrupts are disabled.

■ Resetting the alarm—The callback function can reset the alarm by returning a
non-zero value. Internally, the alt_alarm_start() function is called by the
callback function with this value.

■ Chaining—The alt_alarm_start() function is capable of handling one or
more registered events, each with its own callback function and number of system
clock ticks to the alarm.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–22 Chapter 2. Developing Nios II Software
Developing With the Hardware Application Layer
■ Rollover—The alarm API handles clock rollover conditions for registered alarms
seamlessly.

1 A good timer period for most embedded systems is 50 ms. This value provides
enough resolution for most system events, but does not seriously impact performance
nor roll over the system clock counter too quickly.

Timestamp Timer

The timestamp timer service provides applications with an accurate way to measure
the duration of an event in the system. The timestamp timer service requires that a
timer peripheral be present in the SOPC Builder system. This timer peripheral must be
dedicated to the HAL timestamp timer service.

1 Only one timestamp timer service may be identified in the BSP library file. This timer
should be accessed only by HAL supplied routines.

The hal.timestamp_timer setting controls the BSP configuration for the timer.
Altera provides a timestamp API.

The timestamp API is very simple. It includes the alt_timestamp_start()
function, which makes the timer operational, and the alt_timestamp() function,
which returns the current timer count.

Consider the following common issues and important points before you implement a
timestamp timer:

■ Timer Frequency—The timestamp timer decrements at the clock rate of the clock
that feeds it in the SOPC Builder system. You can modify this frequency in SOPC
Builder.

■ Rollover—The timestamp timer has no rollover event. When the
alt_timestamp() function returns the value 0, the timer has run down.

■ Maximum Time—The timer peripheral has 32 bits available to store the timer
value. Therefore, the maximum duration a timestamp timer can count is ((1/timer
frequency) × 232) seconds.

f For more information about the APIs that control the timestamp and system clock
timer services, refer to the HAL API Reference appendix of the Nios II Software
Developer's Handbook.

Character Mode Devices

stdin, stdout, and stderr

The HAL can support the stdio functions provided in the GNU newlib library.
Using the stdio library allows you to communicate with your application using
functions such as printf() and scanf().

Currently, Altera supplies two system components that can support the stdio
library, the UART and JTAG UART components. These devices can function as
standard I/O devices. To enable this functionality, use the --default_stdio
<device> option during Nios II BSP configuration.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 2. Developing Nios II Software 2–23
Developing With the Hardware Application Layer
The stdin character input file variable and the stdout and stderr character output
file variables can also be individually configured with the HAL BSP settings
hal.stdin, hal.stdout, and hal.stderr.

After your target system is configured to use the stdin, stdout, and stderr file
variables with either the UART or JTAG UART peripheral, you can communicate with
the target Nios II system through the Nios II EDS development tools. For more
information about performing this task, refer to “Communicating with the Target” on
page 2–11.

f For more information about the --default_stdio <device> option, refer to the
"Nios II Software Build Tools Utilities" section of the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer's Handbook.

Blocking versus Non-Blocking I/O

Character mode devices can be configured to operate in blocking mode or
non-blocking mode. The mode is specified in the device’s file descriptor. In blocking
mode, a function call to read from the device waits until the device receives new data.
In non-blocking mode, the function call to read new data returns immediately and
reports whether new data was received. Depending on the function you use to read
the file handle, an error code is returned, specifying whether or not new data arrived.

The UART and JTAG UART components are initialized in blocking mode. However,
each component can be made non-blocking with the fnctl or the ioctl() function,
as seen in the following open system call, which specifies that the device being
opened is to function in non-blocking mode:

fd = open ("/dev/<your uart name>", O_NONBLOCK | O_RDWR);

The fnctl() system call shown in Example 2–3 specifies that a device that is already
open is to function in non-blocking mode:

The code fragment in Example 2–4 illustrates the use of a non-blocking device:

Example 2–3. fnctl System Call

/* You can specify <file_descriptor> to be
* STDIN_FILENO, STDOUT_FILENO, or STDERR_FILENO
* if you are using STDIO
*/
fnctl(<file_descriptor>, F_SETFL, O_NONBLOCK);

Example 2–4. Non-Blocking Device Code Fragment

input_chars[128];
return_chars = scanf("%128s", &input_chars);
if(return_chars == 0)
{
if(errno != EWOULDBLOCK)
{
/* check other errnos */
}
}
else
{
/* process received characters */
}

© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

2–24 Chapter 2. Developing Nios II Software
Developing With the Hardware Application Layer
The behavior of the UART and JTAG UART peripherals can also be modified with an
ioctl() function call. The ioctl() function supports the following parameters:

■ For UART peripherals:

■ TIOCMGET (reports baud rate of UART)

■ TIOCMSET (sets baud rate of UART)

■ For JTAG UART peripherals:

■ TIOCSTIMEOUT (timeout value for connecting to workstation)

■ TIOCGCONNECTED (find out whether host is connected)

The altera_avalon_uart_driver.enable_ioctl BSP setting enables and
disables the ioctl() function for the UART peripherals. The ioctl() function is
automatically enabled for the JTAG UART peripherals.

Adding Your Own Character Mode Device

If you have a custom device capable of character mode operation, you can create a
custom device driver that the stdio library functions can use.

f For information about how to develop the device driver, refer to AN459: Guidelines for
Developing a Nios II HAL Device Driver.

Flash Memory Devices
The HAL system library supports parallel common flash interface (CFI) memory
devices and Altera erasable, programmable, configurable serial (EPCS) flash memory
devices. A uniform API is available for both flash memory types, providing users with
read, write, and erase capabilities.

Memory Initialization, Querying, and Device Support

Every flash memory device is queried by the HAL during system initialization to
determine the kind of flash memory and the functions that should be used to manage
it. This process is automatically performed by the alt_sys_init() function, if the
device drivers were not explicitly omitted and the small driver configuration was not
set.

After initialization, you can query the flash memory for status information with the
alt_flash_get_flash_info() function. This function returns a pointer to an
array of flash region structures—C structures of type struct flash_region—and
the number of regions on the flash device.

1 For additional information about the struct flash_region structure, refer to the
source file HAL/inc/sys/alt_flash_types.h in the BSP project directory.

Accessing the Flash Memory

The alt_flash_open() function opens a flash memory device and returns a
descriptor for that flash memory device. After you complete reading and writing the
flash memory, call the alt_flash_close() function to close it safely.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/an/an459.pdf

Chapter 2. Developing Nios II Software 2–25
Developing With the Hardware Application Layer
The HAL flash memory device model provides you with two flash access APIs, one
simple and one fine-grained The simple API takes a buffer of data and writes it to the
flash memory device, erasing the sectors if necessary. The fine-grained API enables
you to manage your flash device on a block-by-block basis.

Both APIs can be used in the system. The type of data you store determines the most
useful API for your application. The following general design guidelines help you
determine which API to use for your data storage needs:

Simple API—This API is useful for storing arbitrary streams of bytes, if the exact flash
sector location is not important. Examples of this type of data are log or data files
generated by the system during run-time, which must be accessed later in a
continuous stream somewhere in flash memory.

Fine-Grained API—This API is useful for storing units of data, or data sets, which
must be aligned on absolute sector boundaries. Examples of this type of data include
persistent user configuration values, FPGA hardware images, and application images,
which must be stored and accessed in a given flash sector (or sectors).

f For examples that demonstrate the use of APIs, refer to the "Using Flash Devices"
section in the Developing Programs Using the Hardware Abstraction Layer chapter of the
Nios II Software Developer's Handbook.

Configuration and Use Limitations

If you use flash memories in your system, be aware of the following properties of this
memory:

■ Code Storage—If your application runs code directly from the flash memory, the
flash manipulation functions are disabled. This setting prevents the processor
from erasing the memory that holds the code it is running. In this case, the
symbols ALT_TEXT_DEVICE, ALT_RODATA_DEVICE, and
ALT_EXCEPTIONS_DEVICE must all have values different from the flash memory
peripheral. (Note that each of these #define symbols names a memory device,
not an address within a memory device).

■ Small Driver—If the small driver flag is set for the software—the
hal.enable_reduced_device_drivers setting is enabled—then the flash
memory peripherals are not automatically initialized. In this case, your application
must call the initialization routines explicitly.

■ Thread safety—Most of the flash access routines are not thread-safe. If you use
any of these routines, construct your application so that only one thread in the
system accesses these function.

■ EPCS flash memory limitations—The Altera EPCS memory has a serial interface.
Therefore, it cannot run Nios II instructions and is not visible to the Nios II
processor as a standard random-access memory device. Use the Altera-supplied
flash memory access routines to read data from this device.

■ File System—The HAL flash memory API does not support a flash file system in
which data can be stored and retrieved using a conventional file handle. However,
you can store your data in flash memory before you run your application, using
the ZIPFS file system and the Nios II flash programmer utility. For information
about the ZIPFS file system, refer to “ZIPFS: Read-Only File System” on page 2–29.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

2–26 Chapter 2. Developing Nios II Software
Developing With the Hardware Application Layer
f For more information about the configuration and use limitations of flash memory,
refer to the "Using Flash Devices" section in the Developing Programs Using the
Hardware Abstraction Layer chapter of the Nios II Software Developer's Handbook.

f For more information about the API for the flash memory access routines, refer to the
HAL API Reference appendix of the Nios II Software Developer’s Handbook.

Direct Memory Access (DMA) Devices
The HAL DMA model uses DMA transmit and receive channels. A DMA operation
places a transaction request on a channel. A DMA peripheral can have a transmit
channel, a receive channel, or both. This section describes three possible hardware
configurations for a DMA peripheral, and shows how to activate each kind of DMA
channel using the HAL memory access functions.

The DMA peripherals are initialized by the alt_sys_init() function call, and are
automatically enabled by the nios2-bsp script.

DMA Configuration and Use Model

The following examples illustrate use of the DMA transmit and receive channels in a
system. The information complements the information available in the "Using DMA
Devices" section of the Developing Programs Using the Hardware Abstraction Layer
chapter of the Nios II Software Developer's Handbook.

Regardless of the DMA peripheral connections in the system, initialize a transmit
channel by running the alt_dma_txchan_open() function, and initialize a receive
DMA channel by running the alt_dma_rxchan_open() function. The following
sections describe the use model for some specific cases.

RX-Only DMA Component

A typical RX-only DMA component moves the data it receives from another
component to memory. In this case, the receive channel of the DMA peripheral reads
continuously from a fixed location in memory, which is the other peripheral's data
register. The following sequence of operations directs the DMA peripheral:

1. Open the DMA peripheral—Call the alt_dma_rxchan_open() function to
open the receive DMA channel.

2. Enable DMA ioctl operations—Call the alt_dma_rxchan_ioctl() function
to set the ALT_DMA_RX_ONLY_ON flag. Use the ALT_DMA_SET_MODE_<n> flag to
set the data width to match that of the other peripheral’s data register.

3. Configure the other peripheral to run—The Nios II processor configures the other
peripheral to begin loading new data in its data register.

4. Queue the DMA transaction requests—Call the alt_avalon_dma_prepare()
function to begin a DMA operation. In the function call, you specify the DMA
receive channel, the other peripheral’s data register address, the number of bytes
to transfer, and a callback function to run when the transaction is complete.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 2. Developing Nios II Software 2–27
Developing With the Hardware Application Layer
TX-Only DMA Component

A typical TX-only DMA component moves data from memory to another component.
In this case, the transmit channel of the DMA peripheral writes continuously to a
fixed location in memory, which is the other peripheral's data register. The following
sequence of operations directs the DMA peripheral:

1. Open the DMA peripheral—Call the alt_dma_txchan_open() function to open
the transmit DMA channel.

2. Enable DMA ioctl operations—Call the alt_dma_txchan_ioctl() function
to set the ALT_DMA_TX_ONLY_ON flag. Use the ALT_DMA_SET_MODE_<n> flag to
set the data width to match that of the other peripheral’s data register.

3. Configure the other peripheral to run—The Nios II processor configures the other
peripheral to begin receiving new data in its data register.

4. Queue the DMA transaction requests—Call the alt_avalon_dma_send()
function to begin a DMA operation. In the function call, you specify the DMA
transmit channel, the other peripheral’s data register address, the number of bytes
to transfer, and a callback function to run when the transaction is complete.

RX and TX DMA Component

A typical RX and TX DMA component performs memory-to-memory copy
operations. The application must open, configure, and assign transaction requests to
both DMA channels explicitly. The following sequence of operations directs the DMA
peripheral:

1. Open the DMA RX channel—Call the alt_dma_rxchan_open() function to
open the DMA receive channel.

2. Enable DMA RX ioctl operations—Call the alt_dma_rxchan_ioctl()
function to set the ALT_DMA_RX_ONLY_OFF flag. Use the
ALT_DMA_SET_MODE_<n> flag to set the data width to the correct value for the
memory transfers.

3. Open the DMA TX channel—Call the alt_dma_txchan_open() function to
open the DMA transmit channel.

4. Enable DMA TX ioctl operations—Call the alt_dma_txchan_ioctl()
function to set the ALT_DMA_TX_ONLY_OFF flag. Use the
ALT_DMA_SET_MODE_<n> flag to set the data width to the correct value for the
memory transfers.

5. Queue the DMA RX transaction requests—Call the
alt_avalon_dma_prepare() function to begin a DMA RX operation. In the
function call, you specify the DMA receive channel, the address from which to
begin reading, the number of bytes to transfer, and a callback function to run when
the transaction is complete.

6. Queue the DMA TX transaction requests—Call the alt_avalon_dma_send()
function to begin a DMA TX operation. In the function call, you specify the DMA
transmit channel, the address to which to begin writing, the number of bytes to
transfer, and a callback function to run when the transaction is complete.

1 The DMA peripheral does not begin the transaction until the DMA TX transaction
request is issued.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–28 Chapter 2. Developing Nios II Software
Developing With the Hardware Application Layer
f For examples of DMA device use, refer to the "Using DMA Devices" section of the
Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II Software
Developer's Handbook.

DMA Data-Width Parameter

The DMA data-width parameter is configured in SOPC Builder to specify the widths
that are supported. In writing the software application, you must specify the width to
use for a particular transaction. The width of the data you transfer must match the
hardware capability of the component.

Consider the following points about the data-width parameter before you implement
a DMA peripheral:

■ Peripheral width—When a DMA component moves data from another
peripheral, the DMA component must use a single-operation transfer size equal to
the width of the peripheral’s data register.

■ Transfer length—The byte transfer length specified to the DMA peripheral must
be a multiple of the data width specified.

■ Odd transfer sizes—If you must transfer an uneven number of bytes between
memory and a peripheral using a DMA component, you must divide up your data
transfer operation. Implement the longest allowed transfer using the DMA
component, and transfer the remaining bytes using the Nios II processor. For
example, if you must transfer 1023 bytes of data from memory to a peripheral with
a 32-bit data register, perform 255 32-bit transfers with the DMA and then have the
Nios II processor write the remaining 3 bytes.

Configuration and Use Limitations

If you use DMA components in your system, be aware of the following properties of
these components:

■ Hardware configuration—The following aspects of the hardware configuration of
the DMA peripheral determine the HAL service:

■ DMA components connected to peripherals other than memory support only
half of the HAL API (receive or transmit functionality). The application
software should not attempt to call API functions that are not available.

■ The hardware parameterization of the DMA component determines the data
width of its transfers, a value which the application software must take into
account.

■ IOCTL control—The DMA ioctl() function call enables the setting of a single
flag only. To set multiple flags for a DMA channel, you must call ioctl()
multiple times.

■ DMA transaction slots—The current driver is limited to 4 transaction slots. If you
must increase the number of transaction slots, you can specify the number of slots
using the macro ALT_AVALON_DMA_NSLOTS. The value of this macro must be a
multiple of two.

■ Interrupts—The HAL DMA service requires that the DMA peripheral's interrupt
line be connected in the system.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 2. Developing Nios II Software 2–29
Developing With the Hardware Application Layer
■ User controlled DMA accesses—If the default HAL DMA access routines are too
unwieldy for your application, you can create your own access functions. For
information about how to remove the default HAL DMA driver routines, refer to
“Reducing Code Size” on page 2–38.

f For more information about the HAL API for accessing DMA devices, refer to the
"Using DMA Devices" section of the Developing Programs Using the Hardware
Abstraction Layer chapter of the Nios II Software Developer's Handbook and to the HAL
API Reference appendix of the Nios II Software Developer's Handbook.

Files and File Systems
The HAL provides two simple file systems and an API for dealing with file data. The
HAL uses the GNU newlib library's file access routines, found in file.h, to provide
user access to files. In addition, the HAL provides two file systems, one that enables a
Nios II system to access the workstation's file system (HOSTFS), and a simple
read-only file system that enables access to the system’s on-board files (ZIPFS).

1 Several conventional (read/ write) file systems are available through third-party
vendors. For up-to-date information about the file system solutions available for the
Nios II processor, refer to the Altera embedded processing web pages at
www.altera.com/embedded, and click Embedded Software Partners.

HOSTFS: Workstation-Based File System

The HOSTFS file system enables the Nios II system to manipulate files on a
workstation through a JTAG connection. The API is a transparent way to access data
files. The system does not require a physical block device.

Consider the following points about the HOSTFS file system before you use it:

■ Communication speed—Reading and writing large files to the Nios II system
using this file system is slow.

■ Debug use mode—HOSTFS is only available during debug sessions from the
Nios II IDE. Therefore, you should use HOSTFS only during system debugging
and prototyping operations.

■ Incompatibility with direct drivers—HOSTFS only works if the HAL system
library is configured with direct driver mode disabled. However, enabling this
mode reduces the size of the application image. For more information, refer to
“Optimizing the Application” on page 2–34.

f For more information, refer to the Nios II IDE online Help and the host file system
Nios II software example design listed in the "Using Nios II Example Design Scripts"
section of the Using the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

ZIPFS: Read-Only File System

ZIPFS was designed to be a lightweight, read-only file system for the Nios II
processor, targeting flash memory.

Consider the following points about the ZIPFS file system before you use it:

■ Read Only—ZIPFS is a read-only file system.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/embedded
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

2–30 Chapter 2. Developing Nios II Software
Developing With the Hardware Application Layer
■ Configuring the file system—To create the ZIP file system you must create a
binary file on your workstation and use the Nios II flash programmer utility to
program it in the Nios II system.

■ Incompatibility with direct drivers—ZIPFS only works if the HAL system library
is configured with direct driver mode disabled. However, enabling this mode
reduces the size of the application image. For more information, refer to
“Optimizing the Application” on page 2–34.

f For more information, refer to the Read-Only Zip File System and Developing Programs
Using the Hardware Abstraction Layer chapters of the Nios II Software Developer's
Handbook, and the zip file system Nios II software example design listed in the "Using
Nios II Example Design Scripts" section of the Using the Nios II Software Build Tools
chapter of the Nios II Software Developer’s Handbook.

Ethernet Devices
Ethernet devices are a special case for the HAL service model. To make them
accessible to the application, these devices require an additional software library, a
TCP/IP stack. Altera supplies a TCP/IP networking stack called NicheStack, which
provides your application with a socket-based interface for communicating over
Ethernet networks.

f For more information, refer to the Ethernet and the NicheStack TCP/IP Stack – Nios II
Edition chapter of the Nios II Software Developer’s handbook.

Unsupported Devices
The HAL provides a wide variety of native device support for Altera-supplied
peripherals. However, your system may require a device or peripheral that Altera
does not provide. In this case, one or both of the following two options may be
available to you:

■ Altera’s third-party program supports your device

■ You can incorporate your own device

Altera's third party program information is available on the Nios II embedded
software partners page. Refer to the Altera embedded processing web pages at
www.altera.com/embedded, and click Embedded Software Partners.

Incorporating your own custom peripheral is a two-stage process. First you must
incorporate the peripheral in the hardware, and then you must develop a device
driver.

f For more information about how to incorporate a new peripheral in the hardware,
refer to the Nios II Hardware Development Tutorial.

f For more information about how to develop a device driver, refer to the Developing
Device Drivers for the Hardware Abstraction Layer chapter of the Nios II Software
Developer's Handbook.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/embedded
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 2. Developing Nios II Software 2–31
Developing With the Hardware Application Layer
Accessing Memory With the Nios II Processor
It can be difficult to create software applications that program the Nios II processor to
interact correctly with data and instruction caches when it reads and writes to
peripherals and memories. There are also subtle differences in how the different
Nios II processor cores handle these operations, that can cause problems when you
migrate from one Nios II processor core to another.

This section helps you avoid the most common pitfalls. It provides background
critical to understanding how the Nios II processor reads and writes peripherals and
memories, and describes the set of software utilities available to you, as well as
providing sets of instructions to help you avoid some of the more common problems
in programming these read and write operations.

Creating General C/C++ Applications
You can write most C/C++ applications without worrying about whether the
processor's read and write operations bypass the data cache. However, you do need to
make sure the operations do not bypass the data cache in the following cases:

■ Your application must guarantee that a read or write transaction actually reaches a
peripheral or memory.

■ Your application shares a block of memory with another processor or Avalon
interface master peripheral.

Accessing Peripherals
If your application accesses peripheral registers, or performs only a small set of
memory accesses, Altera recommends that you use the default HAL I/O macros,
IORD and IOWR. These macros guarantee that the accesses bypass the data cache.

1 Two types of cache-bypass macros are available. The HAL access routines whose
names end in _32DIRECT, _16 DIRECT, and _8 DIRECT interpret the offset as a byte
address. The other routines treat this offset as a count to be multiplied by four bytes,
the number of bytes in the 32-bit connection between the Nios II processor and the
system interconnect fabric. The _32DIRECT, _16DIRECT, and _8DIRECT routines are
designed to access memory regions, and the other routines are designed to access
peripheral registers.

Example 2–5 shows how to write a series of half-word values into memory. Because
the target addresses are not all on a 32-bit boundary, this code sample uses the
IOWR_16DIRECT macro.

Example 2–6 shows how to access a peripheral register. In this case, the write is to a
32-bit boundary address, and the code sample uses the IOWR macro.

Example 2–5. Writing Half-Word Locations

/* Loop across 100 memory locations, writing 0xdead to */
/* every half word location... */
for(i=0, j=0;i<100;i++, j+=2)
{
IOWR_16DIRECT(MEM_START, j, (unsigned short)0xdead);
}

© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–32 Chapter 2. Developing Nios II Software
Developing With the Hardware Application Layer
1 Altera recommends that you use the HAL-supplied macros for accessing external
peripherals and memory.

Sharing Uncached Memory
If your application must allocate some memory, operate on that memory, and then
share the memory region with another peripheral (or processor), use the
HAL-supplied alt_uncached_malloc() and alt_uncached_free() functions.
Both of these functions operate on pointers to bypass cached memory.

To share uncached memory between a Nios II processor and a peripheral, perform the
following steps:

1. malloc memory—Run the alt_uncached_malloc() function to claim a block
of memory from the heap. If this operation is successful, the function returns a
pointer that bypasses the data cache.

2. Operate on memory—Have the Nios II processor read or write the memory using
the pointer. Your application can perform normal pointer-arithmetic operations on
this pointer.

3. Convert pointer—Run the alt_remap_cached() function to convert the
pointer to a memory address that is understood by external peripherals.

4. Pass pointer—Pass the converted pointer to the external peripheral to enable it to
perform operations on the memory region.

Sharing Memory With Cache Performance Benefits
Another way to share memory between a data-cache enabled Nios II processor and
other external peripherals safely without sacrificing processor performance is the
delayed data-cache flush method. In this method, the Nios II processor performs
operations on memory using standard C or C++ operations until it needs to share this
memory with an external peripheral.

1 Your application can share non-cache-bypassed memory regions with external
masters if it runs the alt_dcache_flush() function before it allows the external
master to operate on the memory.

To implement delayed data-cache flushing, the application image programs the
Nios II processor to perform the following steps:

1. Processor operates on memory—The Nios II processor performs reads and writes
to a memory region. These reads and writes are C/C++ pointer or array based
accesses or accesses to data structures, variables, or a malloc'ed region of memory.

Example 2–6. Peripheral Register Access

 unsigned int control_reg_val = 0;
/* Read current control register value */
control_reg_val = IORD(BAR_BASE_ADDR, CONTROL_REG);

/* Enable "start" bit */
control_reg_val |= 0x01;

/* Write "start" bit to control register to start peripheral */
IOWR(BAR_BASE_ADDR, CONTROL_REG, control_reg_val);
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–33
Developing With the Hardware Application Layer
2. Processor flushes cache—After the Nios II processor completes the read and write
operations, it calls the alt_dcache_flush() instruction with the location and
length of the memory region to be flushed. The processor can then signal to the
other memory master peripheral to operate on this memory.

3. Processor operates on memory again—When the other peripheral has completed
its operation, the Nios II processor can operate on the memory once again. Because
the data cache was previously flushed, any additional reads or writes update the
cache correctly.

Example 2–7 shows an implementation of delayed data-cache flushing for memory
accesses to a C array of structures. In the example, the Nios II processor initializes one
field of each structure in an array, flushes the data cache, signals to another master
that it may use the array, waits for the other master to complete operations on the
array, and then sums the values the other master is expected to set.

Example 2–8 shows an implementation of delayed data-cache flushing for memory
accesses to a memory region the Nios II processor acquired with malloc.

1 The alt_dcache_flush_all() function call flushes the entire data cache, but this
function is not efficient. Altera recommends that you flush from the cache only the
entries for the memory region that you make available to the other master peripheral.

Handling Exceptions
The HAL infrastructure provides users with a robust interrupt handling service
routine and an API for exception handling. The Nios II processor can handle
exceptions caused by hardware interrupts, unimplemented instructions, and software
traps.

f For information about the exception handler software routines, HAL-provided
services, and programmer API, refer to the Exception Handling chapter of the Nios II
Software Developer's Handbook.

Example 2–7. Data-Cache Flushing With Arrays of Structures

struct input foo[100];

for(i=0;i<100;i++)
foo[i].input = i;

alt_dcache_flush(&foo, sizeof(struct input)*100);
signal_master(&foo);
for(i=0;i<100;i++)

sum += foo[i].output;

Example 2–8. Data-Cache Flushing With Memory Acquired Using malloc

char * data = (char*)malloc(sizeof(char) * 1000);

write_operands(data);
alt_dcache_flush(data, sizeof(char) * 1000);
signal_master(data);
result = read_results(data);
free(data);
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

2–34 Chapter 2. Developing Nios II Software
Optimizing the Application
Consider the following common issues and important points before you use the
HAL-provided exception handler:

■ Prioritization of interrupts—The Nios II processor does not prioritize its 32
interrupt vectors, but the HAL exception handler assigns higher priority to lower
numbered interrupts. You must modify the IRQ prioritization of your peripherals
in SOPC Builder.

■ Nesting of interrupts—The HAL infrastructure allows interrupts to be nested—
higher priority interrupts can preempt processor control from an exception
handler that is servicing a lower priority interrupt. However, Altera recommends
that you not nest your interrupts because of the associated performance penalty.

■ Exception handler environment—When creating your exception handler, you
must ensure that the handler does not run interrupt-dependent functions and
services, because this can cause deadlock. For example, an exception handler
should not call the IRQ-driven version of the printf() function.

Modifying the Exception Handler
In some very special cases, you may wish to modify the existing HAL exception
handler routine or to insert your own interrupt handler for the Nios II processor.
However, in most cases you need not modify the interrupt handler routines for the
Nios II processor for your software application.

Consider the following common issues and important points before you modify or
replace the HAL-provided exception handler:

■ Interrupt vector address—The interrupt vector address for each Nios II processor
is set during compilation of the FPGA design. You can modify it during hardware
configuration in SOPC Builder.

■ Modifying the exception handler—The HAL-provided exception handler is fairly
robust, reliable, and efficient. Modifying the exception handler could break the
HAL-supplied user interrupt handling API, and cause problems in the device
drivers for other peripherals that use interrupts, such as the UART and the JTAG
UART.

You may wish to modify the behavior of the exception handler to increase overall
performance. For guidelines for increasing the exception handler’s performance, refer
to “Accelerating Interrupt Service Routines” on page 2–38.

Optimizing the Application
This section examines techniques to increase your software application's performance
and decrease its size.

This section contains the following subsections:

■ “Performance Tuning Background”

■ “Speeding Up System Processing Tasks” on page 2–35

■ “Accelerating Interrupt Service Routines” on page 2–38

■ “Reducing Code Size” on page 2–38
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–35
Optimizing the Application
Performance Tuning Background
Software performance is the speed with which a certain task or series of tasks can be
performed in the system. To increase software performance, you must first determine
the sections of the code in which the processing time is spent.

An application's tasks can be divided into interrupt tasks and system processing
tasks. Interrupt task performance is the speed with which the processor completes an
interrupt service routine to handle an external event or condition. System processing
task performance is the speed with which the system performs a task explicitly
described in the application code.

A complete analysis of application performance examines the performance of the
system processing tasks and the interrupt tasks, as well as the footprint of the
software image.

Speeding Up System Processing Tasks
To increase your application’s performance, determine how you can speed up the
system processing tasks it performs. First analyze the current performance and
identify the slowest tasks in your system, then determine whether you can accelerate
any part of your application by increasing processor efficiency, creating a hardware
accelerator, or improving the applications’s methods for data movement.

Analyzing the Problem
The first step to accelerate your system processing is to identify the slowest task in
your system. Altera provides the following tools to profile your application:

■ GNU Profiler—The Nios II EDS toolchain includes a method for profiling your
application with the GNU Profiler. This method of profiling reports how long
various functions run in your application.

■ High resolution timer—The interval timer peripheral is a simple time counter that
can determine the amount of time a given subroutine runs.

■ Performance counter peripheral—The performance counter unit can profile
several different sections of code with a collection of counters. This peripheral
includes a simple software API that enables you to print out the results of these
counters through the Nios II processor's stdio services.

Use one or more of these tools to determine the tasks in which your application is
spending most of its processing time.

f For more information about how to profile your software application, refer to
AN391: Profiling Nios II Systems.

Accelerating your Application
This section describes several techniques to accelerate your application. Because of the
flexible nature of the FPGA, most of these techniques modify the system hardware to
improve the processor's execution performance. This section describes the following
performance enhancement methods:

■ Methods to increase processor efficiency

■ Methods to accelerate select software algorithms using hardware accelerators
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/an/an391.pdf

2–36 Chapter 2. Developing Nios II Software
Optimizing the Application
■ Using a DMA peripheral to increase the efficiency of sequential data movement
operations

Increasing Processor Efficiency

An easy way to increase the software application's performance is to increase the rate
at which the Nios II processor fetches and processes instructions, while decreasing the
number of instructions the application requires. The following techniques can
increase processor efficiency in running your application:

■ Processor clock frequency—Modify the processor clock frequency using SOPC
Builder. The faster the execution speed of the processor, the more quickly it is able
to process instructions.

■ Nios II processor improvements—Select the most efficient version of the Nios II
processor and parameterize it properly. The following processor settings can be
modified using SOPC Builder:

■ Processor type—Select the fastest Nios II processor core possible. In order of
performance, from fastest to slowest, the processors are the Nios II/f,
Nios II/s, and Nios II/e cores.

■ Instruction and data cache—Include an instruction or data cache, especially if
the memory you select for code execution—where the application image and
the data are stored—has high access time or latency.

■ Multipliers—Use hardware multipliers to increase the efficiency of relevant
mathematical operations.

f For more information about the processor configuration options, refer to
the Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II
Processor Reference Handbook.

■ Nios II instruction and data memory speed—Select memory with low access time
and latency for the main program execution. The memory you select for main
program execution impacts overall performance, especially if the Nios II caches
are not enabled. The Nios II processor stalls while it fetches program instructions
and data.

■ Tightly coupled memories—Select a tightly coupled memory for the main
program execution. A tightly coupled memory is a fast general purpose memory
that is connected directly to the Nios II processor's instruction or data paths, or
both, and bypasses any caches. A tightly coupled memory must guarantee a
single-cycle access time. Therefore, it is usually implemented in an FPGA memory
block.

f For more information about tightly coupled memories, refer to the Using
Nios II Tightly Coupled Memory Tutorial and to the Cache and Tightly-Coupled
Memory chapter of the Nios II Software Developer's Handbook.

■ Compiler Settings—More efficient code execution can be attained through the use
of compiler optimizations. Increase the compiler optimization setting to -03, the
fastest compiler optimization setting, to attain more efficient code execution.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 2. Developing Nios II Software 2–37
Optimizing the Application
f For information about configuring the compiler optimization level, refer
to the hal.make.bsp_cflags_optimization BSP setting in the
Nios II Software Build Tools Reference chapter of the Nios II Software
Developer’s Handbook.

Accelerating Hardware

Slow software algorithms can be accelerated through the use of custom instructions,
dedicated hardware accelerators, and use of the C-to-Hardware (C2H) compiler tool.
The following techniques can increase processor efficiency in running your
application:

■ Custom instructions—Use custom instructions to augment the Nios II processor's
ALU with a block of dedicated, user-defined hardware to accelerate a
task-specific, computational operation. This hardware accelerator is associated
with a user-defined operation code, which the application software can call.

f For information about how to create a custom instruction, refer to the
Using Nios II Floating-Point Custom Instructions tutorial.

■ Hardware accelerators—Use hardware accelerators for bulk processing operations
that can be performed independently of the Nios II processor. Hardware
accelerators are custom, user-defined peripherals designed to speed up the
processing of a specific system task. They increase the efficiency of operations that
are performed independently of the Nios II processor.

f For more information about hardware acceleration, refer to the Hardware
Acceleration and Coprocessing chapter of the Embedded Design Handbook.

■ C2H Compiler—Use the C2H Compiler to accelerate standard ANSI C functions
by converting them to dedicated hardware blocks.

f For more information about the C2H Compiler, refer to the Nios II C2H
Compiler User Guide and to the Optimizing Nios II C2H Compiler Results
chapter of the Embedded Design Handbook.

Improving Data Movement

If your application performs many sequential data movement operations, a DMA
peripheral might increase the efficiency of these operations. Altera provides the
following two DMA peripherals for your use:

■ DMA—Simple DMA peripheral that can perform single operations before being
serviced by the CPU. For more information about using the DMA peripheral, refer
to “HAL Peripheral Services” on page 2–20.

f For information about the DMA peripheral, refer to the DMA Controller
Core chapter in volume 5 of the Quartus II Handbook.

■ Scatter-Gather DMA (SGDMA)—Descriptor-based DMA peripheral that can
perform multiple operations before being serviced by CPU.

f For more information, refer to the Scatter-Gather DMA Controller Core
chapter in volume 5 of the Quartus II Handbook.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/tt/tt_floating_point_custom_instructions.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51006.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51006.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51006.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51006.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55003.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51005.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf

2–38 Chapter 2. Developing Nios II Software
Optimizing the Application
Accelerating Interrupt Service Routines
To increase the efficiency of your interrupt service routines, determine how you can
speed up the tasks they perform. First analyze the current performance and identify
the slowest parts of your interrupt dispatch and handler time, then determine
whether you can accelerate any part of your interrupt handling.

Analyzing the Problem
The total amount of time consumed by an interrupt service routine is equal to the
latency of the HAL interrupt dispatcher plus the interrupt handler running time. Use
the following methods to profile your interrupt handling:

■ Interrupt dispatch time—Calculate the interrupt handler entry time using the
method found in design files that accompany the Using Nios II Tightly Coupled
Memory Tutorial on the Altera literature pages. You can download the design files
from the Nios II literature web page at www.altera.com/literature/lit-nio2.jsp.

■ Interrupt service routine time—Use a timer to measure the time from the entry to
the exit point of the service routine.

Accelerating the Interrupt Service Routine
The following techniques can increase interrupt handling efficiency when running
your application:

■ General software performance enhancements—Apply the general techniques for
improving your application's performance to the ISR and ISR handler. Place the
.exception code section in a faster memory region.

■ IRQ priority—Set the interrupt priority of your hardware device to the lowest
number available. The HAL ISR service routine uses a priority based system in
which the lowest number interrupt has the highest priority.

■ Custom instruction and tightly coupled memories—Decrease the amount of time
spent by the interrupt handler by using the interrupt-vector custom instruction
and tightly coupled memory regions.

f For more information about how to improve the performance of the Nios II exception
handler, refer to the Exception Handling chapter of the Nios II Software Developer's
Handbook.

Reducing Code Size
Reducing the memory space required by your application image also enhances
performance. This section describes how to measure and decrease your code
footprint.

Analyzing the Problem
The easiest way to analyze your application's code footprint is to use the GNU Binary
Utilities tool nios2-elf-size. This tool analyzes your compiled .elf binary file and
reports the total size of your application, as well as the subtotals for the .text,
.data, and .bss code sections. Example 2–9 shows a nios2-elf-size command
response.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

Chapter 2. Developing Nios II Software 2–39
Optimizing the Application
Reducing the Code Footprint
The following methods help you to reduce your code footprint:

■ Compiler options—Setting the -Os flag for the GCC causes the compiler to apply
size optimizations for code size reduction. Use the
hal.make.bsp_cflags_optimization BSP setting to set this flag.

■ Reducing the HAL footprint—Use the HAL system library configuration settings
to reduce the size of the HAL system library component of your BSP library file.
However, enabling the size-reduction settings for the HAL system library often
impacts the flexibility and performance of the system. The configuration settings
for size optimization are as follows:

■ hal.max_file_descriptors 4

■ hal.enable_small_c_library true

■ hal.sys_clk_timer none

■ hal.timestamp_timer none

■ hal.enable_exit false

■ hal.enable_c_plus_plus false

■ hal.enable_lightweight_device_driver_api true

■ hal.enable_clean_exit false

■ hal.enable_sim_optimize false

■ hal.enable_reduced_device_drivers true

■ hal.make.bsp_cflags_optimization \"-Os\"

f For more information about these settings, refer to the "Setting"s section of
the Nios II Software Build Tools Reference chapter of the Nios II Software
Developer's Handbook. For an example, refer to the BSP project
hal_reduced_footprint, included in your Quartus II installation, in the
hardware project directory of your Altera Nios development board type,
in software_examples/bsp/hal_reduced_footprint.

Example 2–9. Example Use of nios2-elf-size Command

> nios2-elf-size -d application.elf
text data bss dec hex filename
203412 8288 4936 216636 34e3c application.elf
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

2–40 Chapter 2. Developing Nios II Software
Linking Applications
■ Removing unused HAL device drivers—Configure the HAL with support only
for system peripherals your application uses.

■ By default, the HAL configuration mechanism includes device driver support
for all system peripherals present. If you do not plan on accessing all of these
peripherals using the HAL device drivers, you can elect to have them omitted
during configuration of the HAL system library by using the set_driver
command when you configure the BSP project.

■ The HAL can be configured to include various software modules, such as the
NicheStack networking stack and the ZIPFS file system, whose presence
increases the overall footprint of the application. However, the HAL does not
enable these modules by default.

Linking Applications
This section discusses how the Nios II software development tools create a default
linker script, what this script does, and how to override its default behavior. The
section also includes instructions to control some common linker behavior, and
descriptions of the circumstances in which you may need them.

This section contains the following subsections:

■ “Background”

■ “Linker Sections and Application Configuration”

■ “HAL Linking Behavior” on page 2–40

Background
The create-this-bsp script and the underlying nios2-bsp script are responsible for
creating two linker-related files for your project, linker.x and linker.h. linker.x is the
linker command file that the generated application's makefile uses to create the .elf
binary file. All linker setting modifications you make to the HAL BSP project affect the
contents of these two files.

Linker Sections and Application Configuration
Every Nios II application contains .text, .rodata, .rwdata, .bss, .heap, and
.stack sections. Additional user sections can be added to the .elf file to hold user
code and data.

These sections are placed in named memory regions, defined to correspond with
physical memory devices and addresses. By default, these sections are automatically
generated by the HAL. However, you can control them for a particular application.

HAL Linking Behavior
This section describes the default linking behavior of the BSP generation tools and
how to control the linking explicitly.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–41
Linking Applications
Default BSP Linking
During BSP configuration, the tools perform the following steps automatically:

1. Assign memory region names—Assign a name to each system memory device,
and add each name to the linker file as a memory region.

2. Find largest memory—Identify the largest read-and-write memory region in the
linker file.

3. Assign sections—Place the default sections (.text, .rodata, .rwdata, .bss,
.heap, and .stack) in the memory region identified in the previous step.

4. Write files—Write the linker.x and linker.h files.

Usually, this section allocation scheme works during the software development
process, because the application is guaranteed to function if the memory is large
enough.

1 The rules for the HAL default linking behavior are contained in the Altera-generated
Tcl scripts bsp-set-defaults.tcl and bsp-linker-utils.tcl found in the sdk2/bin
directory. These scripts are called by the nios2-bsp-create-settings configuration
application. Do not modify these scripts directly.

User-Controlled BSP Linking
You can control the default linking behavior of the BSP tools by calling certain Tcl
functions during BSP configuration. You can incorporate these functions in a Tcl
script called by the nios2-bsp-create-settings or nios2-bsp command, or pass them to
one of these commands as an argument. You should not modify the Altera-generated
scripts, but you can write scripts that override their behavior. The following two
commands are useful for manipulating linker sections:

■ add_memory_region—Maps a memory region name to a physical memory
device

■ add_section_mapping—Maps a section name to a memory region

f For more information about the linker-related BSP configuration commands, refer to
the Nios II Software Built Tools Reference chapter of the Nios II Software Developer's
Handbook.

You can override the default linking behavior of the BSP configuration tools by
creating a Tcl script and passing it to the nios2-bsp tool as an argument. Example 2–10
shows a Tcl configuration script mem_link.tcl that is called with the following
command:

nios2-bsp HAL . ../system.sopc --script mem_link.tcl r
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

2–42 Chapter 2. Developing Nios II Software
Application Boot Loading and Programming System Memory
To create the script in Example 2–10, you must know the default names of the memory
regions created by the HAL BSP generator. The script also uses a non-default memory
region called onchip_ram0 that you must create in SOPC Builder. The
add_section_mapping commands locate the default sections and map your own
section, called .myown, to your custom region called onchip_ram0. The
hal.linker commands in the script are explained in “Application Boot Loading
and Programming System Memory”.

The nios2-bsp script automatically creates memory region names for all memory
components discovered in system hardware. The names of these memory regions are
the names assigned in SOPC Builder. After the initial settings.bsp file is generated,
you can run the following two commands to discover the default memory regions and
section mappings:

■ Discover the names, base addresses, and spans of all the memory regions in your
system by running the following command:

nios2-bsp-query-settings --settings settings.bsp --cmd puts \
[get_current_memory_regions] r
■ Discover the section mappings by running the following command:

nios2-bsp-query-settings --settings settings.bsp --cmd puts \
[get_current_section_mappings] r

Application Boot Loading and Programming System Memory
Most Nios II systems require some method to configure the hardware and software
images in system memory before the processor can begin executing your application
program. This section describes various possible memory topologies for your system
(both volatile and non-volatile), their use, their requirements, and their configuration.
The Nios II software application requires a boot loader application to configure the
system memory if the system software is stored in flash memory, but is configured to

Example 2–10. Example Tcl (mem_link.tcl) File for Configuring Memory Linking and Boot Loading

The names used below are created by the BSP generation tools
We are just assigning some variables for convenience
set text_region_name ext_flash
set data_region_name ddr_sdram_0
Add our own memory region
add_memory_region onchip_ram0 onchip_ram0 0 0x100000
Set up our linker sections
add_section_mapping .text $text_region_name
add_section_mapping .rodata $data_region_name
add_section_mapping .rwdata $data_region_name
add_section_mapping .bss $data_region_name
add_section_mapping .heap $data_region_name
add_section_mapping .stack $data_region_name
add_section_mapping .myown onchip_ram0
Configure the boot loader facilities
set_setting hal.linker.allow_code_at_reset 1
set_setting hal.linker.enable_alt_load 1
set_setting hal.linker.enable_alt_load_copy_rwdata 1
set_setting hal.linker.enable_alt_load_copy_rodata 1
set_setting hal.linker.enable_alt_load_copy_exceptions 1
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–43
Application Boot Loading and Programming System Memory
run from volatile memory. If the Nios II processor is running from flash memory—the
.text section is in flash memory—a copy routine, rather than a boot loader, loads the
other program sections to volatile memory. In some cases, such as when your system
application occupies internal FPGA memory, or is pre-loaded into external memory
by another CPU, no configuration of the system memory is required.

This section contains the following subsections:

■ “Default BSP Boot Loading Configuration”

■ “Boot Configuration Options” on page 2–43

■ “Generating and Programming System Memory Images” on page 2–47

Default BSP Boot Loading Configuration
The nios2-bsp script determines whether the system requires a boot loader and
whether to enable the copying of the default sections.

By default, the nios2-bsp script makes these decisions using the following rules:

■ Boot loader—The nios2-bsp script assumes that a boot loader is being used if the
following conditions are met:

■ The Nios II processor's reset address is not in the .text section.

■ The Nios II processor's reset address is in flash memory.

■ Copying default sections—The nios2-bsp script enables the copying of the
default volatile sections if the Nios II processor's reset address is set to an address
in the .text section.

If the default boot loader behavior is appropriate for your system, you do not need to
intervene in the boot loading process.

Boot Configuration Options
You can modify the default nios2-bsp script behavior for application loading by using
the following settings:

■ hal.linker.allow_code_at_reset

■ hal.linker.enable_alt_load

■ hal.linker.enable_alt_load_copy_rwdata

■ hal.linker.enable_alt_load_copy_exceptions

■ hal.linker.enable_alt_load_copy_rodata

If you enable these settings, you can override the BSP's default behavior for boot
loading. Altera recommends that you list the settings in a Tcl script that you pass to
the BSP generation tools. Example 2–10 on page 2–42 shows such a script.

1 These settings are created in the settings.bsp configuration file whether or not you
override the default BSP generation behavior. However, you may override their
default values.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–44 Chapter 2. Developing Nios II Software
Application Boot Loading and Programming System Memory
f For more information about BSP configuration settings, refer to the "Settings" section
in the Nios II Software Build Tools Reference chapter of the Nios II Software Developer's
Handbook.

f For more information about boot loading options and for advanced boot loader
examples, refer to AN458: Alternative Nios II Boot Methods.

Booting and Running From Flash Memory
If your program is loaded in and runs from flash memory, the application's .text
section is not copied. However, during C run-time initialization—execution of the
crt0 code block—some of the other code sections may be copied to volatile memory
in preparation for running the application.

For more information about the behavior of the crt0 code, refer to “crt0
Initialization” on page 2–18.

1 Altera recommends that you avoid this configuration during the normal development
cycle because downloading the compiled application requires reprogramming the
flash memory. In addition, software breakpoint capabilities are not available through
the debugger when using this configuration.

Prepare for BSP configuration by performing the following steps to configure your
application to boot and run from flash memory:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address
is in flash memory. Configure the reset address and flash memory addresses in
SOPC Builder.

2. Text section linker setting—Ensure that the .text section maps to the flash
memory address region (for example, with the command
add_section_mapping .text ext_flash) in the Tcl settings file.

3. Other sections linker setting—Ensure that all of the other sections, with the
possible exception of the .rodata section, are mapped to volatile memory
regions. The .rodata section can map to a flash-memory region.

4. HAL C run-time configuration settings—Use the following HAL C run-time
configuration settings:

■ hal.linker.allow_code_at_reset 1

■ hal.linker.enable_alt_load 1

■ hal.linker.enable_alt_load_copy_rwdata 1

■ hal.linker.enable_alt_load_copy_exceptions 1

■ hal.linker.enable_alt_load_copy_rodata 1

If your application contains custom, user-defined memory sections, you must
manually load the custom sections. Use the alt_load_section() HAL library
function to ensure that these sections are loaded before your program runs.

1 The HAL system library disables the flash memory service to prevent accidental
override of the application image.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/an/an458.pdf

Chapter 2. Developing Nios II Software 2–45
Application Boot Loading and Programming System Memory
Booting From Flash Memory and Running From Volatile Memory
If your application image is stored in flash memory, but executes from volatile
memory with assistance from a boot loader program, prepare for BSP configuration
by performing the following steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address
is an address in flash memory. Configure this option using SOPC Builder.

2. Text section linker setting—Ensure that the .text section maps to a volatile
region of system memory, and not to the flash memory.

3. Other sections linker setting—Ensure that all of the other sections, with the
possible exception of the .rodata section, are mapped to volatile memory
regions. The .rodata section can map to a flash-memory region.

4. HAL C run-time configuration settings—Use the following HAL C run-time
configuration settings:

■ hal.linker.allow_code_at_reset 0

■ hal.linker.enable_alt_load 0

■ hal.linker.enable_alt_load_copy_rwdata 0

■ hal.linker.enable_alt_load_copy_exceptions 0

■ hal.linker.enable_alt_load_copy_rodata 0

Booting and Running From Volatile Memory
This configuration is use in cases where the Nios II processor's memory is loaded
externally by another processor or interconnect switch fabric master port. In this case,
prepare for BSP configuration by performing the same steps as in “Booting From
Flash Memory and Running From Volatile Memory”, except that the Nios II processor
reset address should be changed to the memory that holds the code that the processor
executes initially. Prepare for BSP configuration by performing the following steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address
is in volatile memory. Configure this option using SOPC Builder.

2. Text section linker setting—Ensure that the .text section maps to the reset
address memory.

3. Other sections linker setting—Ensure that all of the other sections, including the
.rodata section, also map to the reset address memory.

4. HAL C run-time configuration settings—Use the following HAL C run-time
configuration settings:

■ hal.linker.allow_code_at_reset 1

■ hal.linker.enable_alt_load 0

■ hal.linker.enable_alt_load_copy_rwdata 0

■ hal.linker.enable_alt_load_copy_exceptions 0

■ hal.linker.enable_alt_load_copy_rodata 0

This type of boot loading and sequencing requires additional supporting hardware
modifications, which are beyond the scope of this chapter.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

2–46 Chapter 2. Developing Nios II Software
Application Boot Loading and Programming System Memory
Booting From Altera EPCS Memory and Running From Volatile Memory
This configuration is a special case of the configuration described in “Booting From
Flash Memory and Running From Volatile Memory” on page 2–45. However, in this
configuration, the processor does not perform the initial boot loading operation. The
EPCS flash memory stores the FPGA hardware image and the application image.
During system power up, the FPGA configures itself from EPCS memory. Then the
Nios II processor resets control to a small FPGA memory resource in the EPCS
memory controller, and executes a small boot loader application that copies the
application from EPCS memory to the application’s run-time location.

1 To make this configuration work, you must instantiate the EPCS device controller
core in your system hardware. Add the component using SOPC Builder.

Prepare for BSP configuration by performing the following steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address
is in the EPCS memory controller. Configure this option using SOPC Builder.

2. Text section linker setting—Ensure that the .text section maps to a volatile
region of system memory.

3. Other sections linker setting—Ensure that all of the other sections, including the
.rodata section, map to volatile memory.

4. HAL C run-time configuration settings—Use the following HAL C run-time
configuration settings:

■ hal.linker.allow_code_at_reset 0

■ hal.linker.enable_alt_load 0

■ hal.linker.enable_alt_load_copy_rwdata 0

■ hal.linker.enable_alt_load_copy_exceptions 0

■ hal.linker.enable_alt_load_copy_rodata 0

Booting and Running From FPGA Memory
In this configuration, the program is loaded in and runs from internal FPGA memory
resources. The FPGA memory resources are automatically configured when the FPGA
device is configured, so no additional boot loading operations are required.

Prepare for BSP configuration by performing the following steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address
is in the FPGA internal memory. Configure this option using SOPC Builder.

2. Text section linker setting—Ensure that the .text section maps to the internal
FPGA memory.

3. Other sections linker setting—Ensure that all of the other sections map to the
internal FPGA memory.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–47
Application Boot Loading and Programming System Memory
4. HAL C run-time configuration settings—Use the following HAL C run-time
configuration settings:

■ hal.linker.allow_code_at_reset 1

■ hal.linker.enable_alt_load 0

■ hal.linker.enable_alt_load_copy_rwdata 0

■ hal.linker.enable_alt_load_copy_exceptions 0

■ hal.linker.enable_alt_load_copy_rodata 0

1 This configuration requires that you generate FPGA memory HEX files for
compilation to the FPGA image. This step is described in the following section.

Generating and Programming System Memory Images
After you configure your linker settings and boot loader configuration and build the
application image .elf file, you must create a memory programming file. The flow for
creating the memory programming file depends on your choice of FPGA, flash, or
EPCS memory.

The easiest way to generate the memory files for your system is to use the
application-generated makefile targets. The available mem_init.mk targets are listed
in the "Creating Memory Initialization Files" section in the Using the Nios II Software
Build Tools chapter of the Nios II Software Developer's Handbook. You can also perform
the same process manually, as shown in the following sections.

Generating memory programming files is not necessary if you want to download and
run the application on the target system, for example, during the development and
debug cycle.

Programming FPGA Memory
If your software application is designed to run from an internal FPGA memory
resource, you must convert the application image .elf file to one or more HEX
memory files. The Quartus II software compiles these HEX memory files to an FPGA
image (.sof). When this image is loaded in the FPGA it initializes the internal memory
blocks.

To create a HEX memory file from your .elf file, type the following command:

elf2mem --infile=<myapp>.elf --ptf=<system>.ptf r
This command creates one or more HEX memory files from application image
<myapp>.elf, based on the SOPC Builder hardware description file <system>.ptf.

Compile the HEX memory files to an FPGA image using the Quartus II software.
Initializing FPGA memory resources requires some knowledge of SOPC Builder and
the Quartus II software.

Configuring and Programming Flash Memory
After you configure and build your BSP project and your application image .elf file,
you must generate a flash programming file. The nios2-flash-programmer tool uses
this file to configure the flash memory device through a programming cable, such as
the USB-Blaster cable.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

2–48 Chapter 2. Developing Nios II Software
Application Boot Loading and Programming System Memory
Creating a Flash Image File

If a boot loader application is required in your system, then you must first create a
flash image file for your system. This section shows some standard commands to
create a flash image file. The section does not address the case of programming and
configuring the FPGA image from flash memory.

The following standard commands create a flash image file for your flash memory
device:

■ Boot loader required and EPCS flash device used—To create an EPCS flash
device image, type the following command:

elf2flash --epcs --after=<standard>.flash --input=<myapp>>.elf \
--output=<myapp>.flash r
This command converts the application image in the file <myapp>.elf to a flash
record format, and creates the new file <myapp>.flash that contains the new flash
record appended to the FPGA hardware image in <standard>.flash.

■ Boot loader required and CFI flash memory used—To create a CFI flash memory
image, type the following command:

elf2flash --base=0x0 --reset=0x0 --end=0x1000000 \
--boot=<boot_loader_cfi>.srec \
--input=<myapp>.elf --output=<myapp>.flash r

This command converts the application image in the file <myapp>.elf to a flash
record format, and creates the new file <myapp>.flash that contains the new flash
record appended to the CFI boot loader in <boot_loader_cfi>.srec. The flash record
is to be downloaded to the reset address of the Nios II processor, 0x0, and the base
address of the flash device is 0x0. If you use the Altera-supplied boot loader, your
user-created program sections are also loaded from the flash memory to their
run-time locations.

■ No boot loader required and CFI flash memory used—To create a CFI flash
memory image, if no boot loader is required, type the following command:

elf2flash --base=0x0 --reset=0x0 --end=0x1000000 \
--input=<myapp>.elf --output=<myapp>.flash r

This command and its effect are almost identical to those of the command to create
a CFI flash memory image if a boot loader is required. In this case, no boot loader
is required, and therefore the --boot command-line option is not present.

The Nios II EDS includes two precompiled boot loaders for your use, one for CFI flash
devices and another for EPCS flash devices. The source code for these boot loaders can
be found in the <nios2eds dir>/components/altera_nios2/boot_loader_sources/
directory.

Programming Flash Memory

The easiest way to program your system flash memory is to use the
application-generated makefile target called program-flash. This target automatically
downloads the flash image file to your development board through a JTAG download
cable. You can also perform this process manually, using the nios2-flash-programmer
utility. This utility takes a flash file and some command line arguments, and
programs your system's flash memory. The following command-line examples
illustrate use of the nios2-flash-programmer utility to program your system flash
memory:
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 2. Developing Nios II Software 2–49
Conclusion
■ Programming CFI Flash Memory—To program CFI flash memory with your flash
image file, type the following command:

nios2-flash-programmer --base=0x0 <myapp>.flash r
This command programs a flash memory located at base address 0x0 with a flash
image file called <myapp>.flash.

■ Programming EPCS Flash Memory—To program EPCS flash memory with your
flash image file, type the following command:

nios2-flash-programmer --epcs --base=0x0 <myapp>.flash r
This command programs an EPCS flash memory located at base address 0x0 with
a flash image file called <myapp>.flash.

The nios2-flash-programmer utility requires that your FPGA has already been
configured with your system hardware image. You must download your .sof file with
the nios2-configure-sof command before running the nios2-flash-programmer
utility.

f For more information about how to configure, program, and manage your flash
memory devices, refer to the Nios II Flash Programmer User Guide.

Conclusion
Altera recommends that you use the Nios II software build tools flow for hardware
designs that contain a Nios II processor. This chapter provides information about the
Nios II software build tools flow that complements the Nios II Software Developer’s
Handbook. It discusses recommended design practices and implementation
information, and provides pointers to related topics for more in-depth information.

Referenced Documents
This chapter references the following documents:

■ AN391: Profiling Nios II Systems

■ AN458: Alternative Nios II Boot Methods

■ AN459: Guidelines for Developing a Nios II HAL Device Driver

■ Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer's
Handbook

■ Debugging Nios II Designs chapter of the Embedded Design Handbook

■ Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer's Handbook

■ Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer's Handbook

■ DMA Controller Core chapter in volume 5 of the Quartus II Handbook

■ Ethernet and the TCP/IP Networking Stack - Nios II Edition chapter of the Nios II
Software Developer's Handbook

■ Exception Handling chapter of the Nios II Software Developer's Handbook
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51003.pdf
http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/an/an458.pdf
http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51006.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

2–50 Chapter 2. Developing Nios II Software
Document Revision History
■ HAL API Reference appendix of the Nios II Software Developer's Handbook

■ Hardware Acceleration and Coprocessing chapter of the Embedded Design Handbook

■ Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook

■ Introduction to the Nios II Software Build Tools chapter of the Nios II Software
Developer's Handbook

■ Nios II C2H Compiler User Guide

■ Nios II Flash Programmer User Guide

■ Nios II Hardware Development Tutorial

■ Nios II Integrated Development Environment chapter of the Nios II Software
Developer's Handbook

■ Nios II Software Build Tools Reference chapter of the Nios II Software Developer's
Handbook

■ Nios II Software Developer’s Handbook

■ Optimizing Nios II C2H Compiler Results chapter of the Embedded Design Handbook

■ Read-Only Zip File System chapter of the Nios II Software Developer's Handbook

■ Scatter-Gather DMA Controller Core chapter in volume 5 of the Quartus II Handbook

■ System ID Core chapter in volume 5 of the Quartus II Handbook

■ Using Nios II Floating-Point Custom Instructions

■ Using Nios II Tightly Coupled Memory Tutorial

■ Using the Software Build Tools chapter of the Nios II Software Developer's Handbook

Document Revision History
Table 2–1 shows the revision history for this chapter.

Table 2–1. Document Revision History

Date and
Document Version Changes Made Summary of Changes

June 2008

v1.1

Corrected Table of Contents —

March 2008

v1.0

Initial release. —
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/tt/tt_floating_point_custom_instructions.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55003.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51006.pdf

© June 2008 Altera Corporation

ED51003-1.1
3. Debugging Nios II Designs
This chapter describes best practices for debugging Nios® II processor software
designs. Debugging these designs involves debugging both hardware and software,
which requires familiarity with multiple disciplines. Successful debugging requires
expertise in board layout, FPGA configuration, and Nios II software tools and
application software. This chapter includes the following sections that discuss
debugging techniques and tools to address difficult embedded design problems:

■ “Debuggers”

■ “Run-Time Analysis Debug Techniques” on page 3–11

Debuggers
The Nios II development environments offer several tools for debugging Nios II
software systems. This section describes the debugging capabilities available in the
following development environments:

■ “Nios II Software Development Tools”

■ “FS2 Console” on page 3–9

■ “SignalTap II Embedded Logic Analyzer” on page 3–10

■ “Lauterbach Trace32 Debugger and PowerTrace Hardware” on page 3–10

■ “Insight and Data Display Debuggers” on page 3–11

Nios II Software Development Tools
The Nios II Integrated Development Environment (IDE) is a graphical user interface
(GUI) that supports creating, modifying, building, running, and debugging Nios II
programs. The Nios II software build tools are command-line utilities available from a
Nios II command shell. Using the software build tools provides fine control over the
build process and project settings, but also requires more expertise than does using
the Nios II IDE.

SOPC Builder is a system development tool for creating systems including processors,
peripherals, and memories. The tool enables you to define and generate a complete
FPGA system very efficiently. SOPC Builder does not require that your system
contain a Nios II processor. However, it provides complete support for integrating
Nios II processors in your system, including some critical debugging features.

This section contains the following subsections, which describe the debugging tools
and support features available in the Nios II software development tools:

■ “Nios II System ID”

■ “Project Templates” on page 3–3

■ “Configuration Options” on page 3–3

■ “Nios II GDB Console and GDB Commands” on page 3–5

■ “Nios II Terminal Window and stdio Library Functions” on page 3–6
Embedded Design Handbook

3–2 Chapter 3: Debugging Nios II Designs
Debuggers
■ “Importing Projects Created Using the Nios II Software Build Tools” on page 3–7

■ “Selecting a Processor Instance in a Multiple Processor Design” on page 3–7

■ “Debugging the Lauterbach PowerTrace to Nios II Processor Connection” on
page 3–10

■ “C Source Correlation” on page 3–11

Nios II System ID
The system ID feature is available as a system component in SOPC Builder. The
component allows the debugger to identify attempts to download software projects
with system libraries that were generated for a different SOPC Builder system. This
feature protects you from inadvertently using an executable and loadable format (.elf)
file built for a Nios II hardware design that is not currently loaded in the FPGA. If
your application image does not run on the hardware implementation for which it
was compiled, the results are unpredictable.

To start your design with this basic safety net, always select Validate Nios II system
ID before software download on the Main tab of the Nios II IDE Debug dialog box,
as shown in Figure 3–4 on page 3–8.

The system ID feature requires that the SOPC Builder design include a system ID
component. Figure 3–1 shows an SOPC Builder system with a system ID component.

f For more information about the System ID component, refer to the System ID Core
chapter in volume 5 of the Quartus II Handbook.

Figure 3–1. SOPC Builder System With System ID Component
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51014.pdf

Chapter 3: Debugging Nios II Designs 3–3
Debuggers
Project Templates
The Nios II IDE helps you to create a simple, small, and pretested software project to
test a new board.

The Nios II IDE provides a mechanism to create new software projects using project
templates. To create a new project for which you already have source code, perform
the following steps:

1. In the Nios II C/C++ perspective, on the File menu, on the New submenu, click
Nios II C/C++ Application.

The New Project wizard for Nios II C/C++ application projects appears,
pre-selecting the current SOPC Builder system .ptf file.

2. Click Next.

3. In the Select Project Template list, click Blank Project.

4. If your project contains multiple Nios II processors, in the CPU list, click the CPU
you wish to run this application software.

5. Click Finish.

6. On the Nios II IDE C/C++ Projects page, copy your source code files to the new
project by dragging them onto the newly created project label.

To create a simple test program to test a new board, perform these steps with the
following exceptions:

■ In step 3, click Hello World Small

■ Do not perform step 6.

The Hello World Small template is a very simple, small application. Using a simple,
small application minimizes the number of potential failures that can occur as you
bring up a new piece of hardware.

Configuration Options
The following Nios II IDE configuration options increase the amount of debugging
information available for your application image .elf file:

■ Objdump File

■ Show Make Commands

■ Show Line Numbers

Objdump File

You can direct the Nios II build process to generate helpful information about your
.elf file in an object dump text file (.objdump). The .objdump file contains
information about the memory sections and their layout, the addresses of functions,
and the original C source code interleaved with the assembly code. Example 3–1
shows part of the C and assembly code section of an .objdump file for the Nios II
built-in Hello World Small project.
© June 2008 Altera Corporation Embedded Design Handbook

3–4 Chapter 3: Debugging Nios II Designs
Debuggers
To enable this option in the Nios II IDE, perform the following steps:

1. On the Window menu, click Preferences.

2. On the list to the left, click Nios II.

3. On the Nios II page, turn on Generate objdump file.

After the next build, the .objdump file is found in the same directory as the
newly built .elf file.

After the next build generates the .elf file, the build runs the nios2-elf-objdump
command with the options --disassemble-all, --source, and --all-headers
on the generated .elf file.

In the Nios II user-managed tool flow, you can edit the settings in the application
makefile that determine the options with which the nios2-elf-objdump command
runs. Running the create-this-app script, or the nios2-app-generate-makefile script,
creates the following lines in the application makefile:

#Options to control objdump.
CREATE_OBJDUMP := 1
OBJDUMP_INCLUDE_SOURCE :=0
OBJDUMP_FULL_CONTENTS := 0

Example 3–1. Piece of Code in .objdump File From Hello World Small Project

06000170 <main>:

include "sys/alt_stdio.h"

int main()
{
6000170:deffff04 addisp,sp,-4
alt_putstr("Hello from Nios II!\n");
6000174:01018034 movhir4,1536
6000178:2102ba04 addir4,r4,2792
600017c:dfc00015 stwra,0(sp)
6000180:60001c00 call60001c0 <alt_putstr>
6000184:003fff06 br6000184 <main+0x14>

06000188 <alt_main>:
* the users application, i.e. main().
*/

void alt_main (void)
{
6000188:deffff04 addisp,sp,-4
600018c:dfc00015 stwra,0(sp)

static ALT_INLINE void ALT_ALWAYS_INLINE
alt_irq_init (const void* base)
{
NIOS2_WRITE_IENABLE (0);
6000190:000170fa wrctlienable,zero
NIOS2_WRITE_STATUS (NIOS2_STATUS_PIE_MSK);
6000194:00800044 movir2,1
6000198:1001703a wrctlstatus,r2
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 3: Debugging Nios II Designs 3–5
Debuggers
Edit these options to control the .objdump file according to your preferences for the
project:

■ CREATE_OBJDUMP—The value 1 directs nios2-elf-objdump to run with the
options --disassemble, --syms, --all-header, and --source.

■ OBJDUMP_INCLUDE_SOURCE—The value 1 adds the option --source to the
nios2-elf-objdump command line.

■ OBJDUMP_FULL_CONTENTS—The value 1 adds the option --full-contents to
the nios2-elf-objdump command line.

1 For detailed information about the information each command-line option generates,
in a Nios II command shell, type the following command:
nios2-elf-objdump --help r
Show Make Commands

To enable a verbose mode for the make command in the Nios II IDE, perform the
following steps:

1. On the Window menu, click Preferences.

2. On the list to the left, click Nios II.

3. On the Nios II page, turn on Show command lines when running 'make' (i.e.
Don't use '-s' flag on make).

Show Line Numbers

To enable display of C source-code line numbers in the Nios II IDE, follow these steps:

1. On the Window menu, click Preferences.

2. On the list to the left, under General, under Editors, select Text Editors.

3. On the Text Editors page, turn on Show line numbers.

Nios II GDB Console and GDB Commands
The Nios II GDB console allows you to send GDB commands to the Nios II processor
directly.

First, enable the GDB console on the Debugger tab of the Debug dialog box, by
turning on Verbose console mode. This mode displays all of the GDB commands that
are sent to and received by the Nios II processor on the GDB console.

To display this console, which allows you to view these commands and to enter your
own GDB commands, click the blue monitor icon on the lower right corner of the
Nios II Debug perspective. If multiple consoles are connected, click the black arrow
next to the blue monitor icon to list the available consoles. On the list, select the Nios II
GDB console. Figure 3–2 shows the console list icon—the blue monitor icon and black
arrow—that allow you to display the GDB console.
© June 2008 Altera Corporation Embedded Design Handbook

3–6 Chapter 3: Debugging Nios II Designs
Debuggers
An example of a useful command you can enter in the Nios II GDB console is
dump binary memory <file> <start_addr> <end_addr> r
This command dumps the contents of a specified address range in memory to a file on
the host computer. The file type is binary. You can view the generated binary file
using the HexEdit hexadecimal-format editor that is available from
www.expertcomsoft.com.

Nios II Terminal Window and stdio Library Functions
If the Nios II processor outputs characters using the stdio library functions, but no
terminal session exists to receive these characters, the Nios II software system
deadlocks. If you use the alt_log() function, rather than the printf() function, to
transmit characters to a nios2-terminal session or to the Nios II IDE terminal window,
the system does not deadlock if no terminal session is available to receive the
transmitted characters.

If neither of the consoles is connected, the output buffer fills. Then the system hangs
on the next stdio library function write. If you select the Reduced Device Drivers
option on the System Properties page in SOPC Builder, stdout uses the
polling-mode device driver. This driver polls in a loop, waiting for the character
output buffer to empty before the driver can transmit more characters. If no real-time
operating system is running, and the E_WOULD_BLOCK ioctl() control code is
not sent to the UART driver for the Nios II terminal, the Nios II software system
hangs waiting to transmit characters as the result of a printf() statement in
application code.

Figure 3–2. Console List Icon

Console
list
icon
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.expertcomsoft.com

Chapter 3: Debugging Nios II Designs 3–7
Debuggers
f For more information about the alt_log() function, refer to AN459: Guidelines for
Developing a Nios II HAL Device Driver.

Importing Projects Created Using the Nios II Software Build Tools
Whether a project is created and built using the Nios II software build tools or using
the Nios II IDE, you can debug the resulting .elf image file in the Nios II IDE.

f For information about how to import a project created with the Nios II software build
tools to the Nios II IDE, refer to the "Getting Started" section in the Introduction to the
Nios II Software Build Tools chapter of the Nios II Software Developer's Handbook.

Selecting a Processor Instance in a Multiple Processor Design
In a design with multiple Nios II processors, you must create a different software
project for each processor. When you create the application project, the Nios II IDE
generates a system library. For system library generation, you must specify the CPU
to which the application project is targeted.

Figure 3–3 shows how you specify the CPU for the application in the Nios II IDE. The
Nios II C/C++ Application page of the New Project wizard collects the information
required for system library creation. This page derives the list of available CPU
choices from the .ptf for the system.

Figure 3–3. Nios II IDE Nios II C/C++ Application Page — CPU Selection
© June 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/an/an459.pdf

3–8 Chapter 3: Debugging Nios II Designs
Debuggers
In the Main tab of the Debug dialog box, shown in Figure 3–4, click the Load JDI File
button to select the JTAG debug interface (.jdi) file for your SOPC Builder project. The
.jdi file is typically located in the same directory as the SRAM object file (.sof) for the
project. The .jdi file is parsed and its contents compared to the name of the CPU you
select for the current project, to determine the correct instance ID number. The
command-line option --instance = <instance ID> is appended to the implicit
debug command that the Nios II IDE runs. The text for the command-line option
appears in the Additional nios2-download arguments field next to the Load JDI File
button. Clicking this button ensures that the proper instance ID is used for the
selected CPU, whether or not the Quartus II software modified the instance IDs.

From the Nios II command shell, the jtagconfig –n command identifies available
JTAG devices and the number of CPUs in the subsystem connected to each JTAG
device. Example 3–2 shows the system response to a jtagconfig -n command.

Figure 3–4. Nios II IDE Debug Configuration Page — Load JDI File Button

Load
JDI file
button

Example 3–2. Two-FPGA System Response to jtagconfig Command

[SOPC Builder]$ jtagconfig -n
1) USB-Blaster [USB-0]
120930DD EP2S60
Node 11104600
Node 0C006E00

2) USB-Blaster [USB-1]
020B40DD EP2C35
Node 11104601
Node 11104602
Node 11104600
Node 0C006E00
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 3: Debugging Nios II Designs 3–9
Debuggers
The response in Example 3–2 lists two different FPGAs, connected to the running
JTAG server through different USB-Blaster™ cables. The cable attached to the USB-0
port is connected to a JTAG node in an SOPC Builder subsystem with a single Nios II
core. The cable attached to the USB-1 port is connected to a JTAG node in an SOPC
Builder subsystem with three Nios II cores. The node numbers represent JTAG nodes
inside the FPGA. The appearance of the node number 0x111046xx in the response
confirms that your FPGA implementation has a Nios II processor with a JTAG debug
module. The appearance of a node number 0x0C006Exx in the response confirms
that the FPGA implementation has a JTAG UART component. The CPU instances are
identified by the least significant byte of the Nodes beginning with 111. The JTAG
UART instances are identified by the least significant byte of the Nodes beginning
with 0C. Instance IDs begin with 0.

Only the CPUs that have JTAG debug modules appear in the listing. Use this listing to
confirm you have created JTAG debug modules for the Nios II processors you
intended.

FS2 Console
On Windows platforms, you can use a Nios II-compatible version of the First Silicon
Solutions, Inc. (FS2) console. The FS2 console is very helpful for low-level system
debug, especially when bringing up a system or a new board. It provides a TCL-based
scripting environment and many features for testing your system, from low-level
register and memory access to debugging your software (trace, breakpoints, and
single-stepping).

To run the FS2 console in the Nios II IDE, on the Debugger tab of the Debug dialog
box, turn on Use FS2 console window for trace and watchpoint support. To run the
FS2 console using the software build tools, use the nios2-console command.

f For more details about the Nios II-compatible version of the FS2 console, refer to the
FS2-provided documentation in your Nios II installation, at
$SOPC_KIT_NIOS2\bin\fs2\doc.

In the FS2 console, the sld info command returns information about the JTAG nodes
connected to the system-level debug (SLD) hubs—one SLD hub per FPGA—in your
system. If you receive a failure response, refer to the FS2-provided documentation for
more information.

Use the sld info command to verify your system configuration. After communication
is established, you can perform simple memory reads and writes to verify basic
system functionality. The FS2 console can write bytes or words, if Avalon®
Memory-Mapped (Avalon-MM) interface byteenable signals are present. In
contrast, the Nios II IDE memory window can perform only 32-bit reads and writes
regardless of the 8- or 16-bit width settings for the values retrieved. If you encounter
any issues, you can perform these reads and writes and capture SignalTap® II
embedded logic analyzer traces of related hardware signals to diagnose a hardware
level problem in the memory access paths.
© June 2008 Altera Corporation Embedded Design Handbook

3–10 Chapter 3: Debugging Nios II Designs
Debuggers
SignalTap II Embedded Logic Analyzer
The SignalTap II embedded logic analyzer can help you to catch some
software-related problems, such as an interrupt service routine that does not properly
clear the interrupt signal.

f For information about the SignalTap II embedded logic analyzer, refer to the Design
Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of the
Quartus II Handbook and AN323: Using SignalTap II Embedded Logic Analyzers in SOPC
Builder Systems, and the Verification and Board Bring-Up chapter of the Embedded Design
Handbook.

The Nios II plug-in for the SignalTap II embedded logic analyzer enables you to
capture a Nios II processor's program execution.

f For more information about the Nios II plug-in for the SignalTap II embedded logic
analyzer, refer to AN446: Debugging Nios II Systems with the SignalTap II Logic Analyzer.

Lauterbach Trace32 Debugger and PowerTrace Hardware
Lauterbach Datentechnik GmBH (Lauterbach) (www.lauterbach.com) provides the
Trace32 ICD-Debugger for the Nios II processor. The product contains both hardware
and software. In addition to a connection for the 10-pin JTAG connector that is used
for the Altera USB-Blaster cable, the PowerTrace hardware has a 38-pin mictor
connection option.

Lauterbach also provides a module for off-chip trace capture. For more information,
refer to the downloadable Nios II Debugger and Trace document (file name
debugger_nios.pdf) on the Lauterbach website (www.lauterbach.com). This
document is also available in the latest distribution of the Lauterbach Trace32
software. If the document does not appear in your Lauterbach Trace32 installation
directory, under PDF, Altera recommends that you download the latest distribution
of the software from the Lauterbach website. Currently, this document is also
available from the Lauterbach website Support section, under Update Online
Manuals, as a separate PDF file for download.

Lauterbach also provides an instruction-set simulator for Nios II systems.

The Nios II Debugger and Trace document from Lauterbach contains important
information about the order in which devices must be powered up. The Lauterbach
PowerTrace hardware must always be powered when power to the FPGA hardware is
applied or terminated. The Lauterbach PowerTrace hardware’s protection circuitry is
enabled after the module is powered up.

Debugging the Lauterbach PowerTrace to Nios II Processor Connection
A script is available for diagnosing difficulties with the Lauterbach PowerTrace
connection and execution of the Trace32 System.Up command.

f This script is available in the Altera online solutions database. Go to the support
center at www.altera.com and click Browse Support Solutions, or in the Altera
website Search field, type rd03052008_529 and click Search.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com
http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.lauterbach.com
http://www.lauterbach.com
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51010.pdf

Chapter 3: Debugging Nios II Designs 3–11
Run-Time Analysis Debug Techniques
C Source Correlation
A script is available for setting up software paths so that the Lauterbach Trace32
debugger can match source code locations to the loaded .elf file contents. This
mapping enables the Trace32 software to display source code, and enables you to set
breakpoints in the displayed C source code files.

f This script is available in the Altera online solutions database. Go to the support
center at www.altera.com and click Browse Support Solutions, or in the Altera
website Search field, type rd03052008_123 and click Search.

Registering Trace Signals
Trace signals must have uniform timing. Uniform timing can be achieved by ensuring
uniform length traces on the board, or by registering the output signals.

f A solution that includes descriptions for using a single PLL and for registering trace
signals is available from the Lauterbach website. Refer to the downloadable online
Nios II Instantiating the Off-chip Trace Logic document (file name app_nios.pdf) on the
Lauterbach website (www.lauterbach.com). Currently, this document is available
from the Lauterbach website Support section, under Update Online Manuals, as a
separate PDF file for download.

Insight and Data Display Debuggers
The Tcl/Tk-based Insight GDB GUI installs with the Altera-specific GNU GDB
distribution that is part of the Nios II Embedded Design Suite (EDS). To launch the
Insight debugger from the Nios II command shell, type the following command:
nios2-debug <file>.elf r
Although the Insight debugger has fewer features than the Nios II IDE, this debugger
supports faster communication between host and target, and therefore provides a
more responsive debugging experience.

Another alternative debugger is the Data Display Debugger (DDD). This debugger is
compatible with GDB commands—it is a user interface to the GDB debugger—and
can therefore be used to debug Nios II software designs. The DDD can display data
structures as graphs.

Run-Time Analysis Debug Techniques
This section discusses methods and tools available to analyze a running software
system.

Software Profiling
Altera provides the following tools to profile the run-time behavior of your software
system:

■ GNU profiler—The Nios II EDS toolchain includes the gprof utility for profiling
your application. This method of profiling reports how long various functions run
in your application.
© June 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com
http://www.lauterbach.com

3–12 Chapter 3: Debugging Nios II Designs
Run-Time Analysis Debug Techniques
■ High resolution timer—The SOPC Builder timer peripheral is a simple time
counter that can determine the amount of time a given subroutine or code segment
runs. You can read it at various points in the source code to calculate elapsed time
between timer samples.

■ Performance counter peripheral—The SOPC Builder performance counter
peripheral can profile several different sections of code with a series of counter
peripherals. This peripheral includes a simple software API that enables you to
print out the results of these timers through the Nios II processor's stdio services.

f For more information about how to profile your software application, refer to
AN391: Profiling Nios II Systems.

f For additional information about the SOPC Builder timer peripheral, refer to the Timer
Core chapter in volume 5 of the Quartus II Handbook, and to the Developing Nios II
Software chapter of the Embedded Design Handbook.

f For additional information about the SOPC Builder performance counter peripheral,
refer to the Performance Counter Core chapter in volume 5 of the Quartus II Handbook.

Watchpoints
Watchpoints provide a powerful method to capture all writes to a global variable that
appears to be corrupted. The Nios II IDE supports watchpoints directly or through the
FS2 console. Before you can set watchpoints in the Nios II IDE directly, you must
make sure that, on the Debugger tab of the Debug dialog box, Use FS2 console
window for trace and watchpoint support is turned off.

For more information about watchpoints, refer to the Nios II online Help. In the
Nios II IDE, on the Help menu, click Search. In the search field, type watchpoint,
and select the topic Working with breakpoints and watchpoints.

To enable watchpoints, you must configure the Nios II processor’s debug level in
SOPC Builder to debug level 2 or higher. To configure the Nios II processor’s debug
level in SOPC Builder to the appropriate level, perform the following steps:

1. On the SOPC Builder System Contents tab, click the desired Nios II processor
component. A list of options appears.

2. On the list, click Edit. The Nios II processor configuration page appears.

3. Click the JTAG Debug Module tab, shown in Figure 3–5 on page 3–14.

4. Select Level 2, Level 3, or Level 4.

5. Click Finish.

Depending on the debug level you select, a maximum of four watchpoints, or data
triggers, are available. Figure 3–5 on page 3–14 shows the number of data triggers
available for each debug level. The higher your debug level, the more logic resources
you use on the FPGA.

f For more information about the Nios II processor debug levels, refer to the
Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf

Chapter 3: Debugging Nios II Designs 3–13
Run-Time Analysis Debug Techniques
Stack Overflow
You can enable the Nios II IDE to check for stack overflow. On the System Properties
configuration page of your system library project, turn on Run time stack checking.
Stack overflow is a common problem in embedded systems, because their limited
memory requires that your application have a limited stack size. When your system
runs a real-time operating system, each running task has its own stack, increasing the
probability of a stack overflow condition. As an example of how this condition may
occur, consider a recursive function, such as a function that calculates a factorial
value. In a typical implementation of this function, factorial(n) is the result of
multiplying the value n by another invocation of the factorial function,
factorial(n-1). For large values of n, this recursive function causes many call
stack frames to be stored on the stack, until it eventually overflows before calculating
the final function return value.

Hardware Abstraction Layer (HAL)
The Altera HAL provides the interfaces and resources required by the device drivers
for most SOPC Builder system peripherals. You can customize and debug these
drivers for your own SOPC Builder system. To learn more about debugging HAL
device drivers and SOPC Builder peripherals, refer to AN459: Guidelines for Developing
a Nios II HAL Device Driver.

Breakpoints
You can set hardware breakpoints on code located in read-only memory such as flash
memory. If you set a breakpoint in a read-only area of memory, a hardware
breakpoint, rather than a software breakpoint, is selected automatically.

To enable hardware breakpoints, you must configure the Nios II processor’s debug
level in SOPC Builder to debug level 2 or higher. To configure the Nios II processor’s
debug level in SOPC Builder to the appropriate level, perform the following steps:

1. On the SOPC Builder System Contents tab, click the desired Nios II processor
component. A list of options appears.

2. On the list, click Edit. The Nios II processor configuration page appears.

3. Click the JTAG Debug Module tab, shown in Figure 3–5.

4. Select Level 2, Level 3, or Level 4.

5. Click Finish.

Depending on the debug level you select, a maximum of four hardware breakpoints
are available. Figure 3–5 shows the number of hardware breakpoints available for
each debug level. The higher your debug level, the more logic resources you use on
the FPGA.
© June 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/an/an459.pdf

3–14 Chapter 3: Debugging Nios II Designs
Run-Time Analysis Debug Techniques
f For more information about the Nios II processor debug levels, refer to the
Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook.

Debugger Stepping and Using No Optimizations
Use the None (–O0) optimization level compiler switch to disable optimizations for
debugging. Otherwise, the breakpoint and stepping behavior of your debugger may
not match the source code you wrote. This behavior mismatch between code
execution and high-level original source code may occur even when you click the
i button to use the instruction stepping mode at the assembler instruction level. This
mismatch occurs because optimization and in-lining by the compiler eliminated some
of your original source code.

To set the None (–O0) optimization level compiler switch in the Nios II IDE, perform
the following steps:

1. In the Nios II C/C++ perspective, right-click your application project. A list of
options appears.

2. On the list, click Properties.

3. In the left pane, click C/C++ Build.

4. Under Configuration Settings, click the Tool Settings tab.

5. On the list to the left, under Nios II Compiler, click General.

6. In the Optimization Levels list, click None (-O0).

Figure 3–5. Nios II Processor — JTAG Debug Module — SOPC Builder Configuration Page
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

Chapter 3: Debugging Nios II Designs 3–15
Conclusion
To set this switch in the Nios II software build tools flow, modify the application
makefile to assign APP_CFLAGS_OPTIMIZATION := -O0.

Conclusion
Successful debugging of Nios II designs requires expertise in board layout, FPGA
configuration, and Nios II software tools and application software. Altera and
third-party tools are available to help you debug your Nios II application. This
chapter describes debugging techniques and tools to address difficult
embedded design problems.

Referenced Documents
This chapter references the following documents:

■ AN323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder Systems

■ AN391: Profiling Nios II Systems

■ AN446: Debugging Nios II Systems with the SignalTap II Logic Analyzer

■ AN459: Guidelines for Developing a Nios II HAL Device Driver

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook

■ Developing Nios II Software chapter of the Embedded Design Handbook

■ Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook

■ Introduction to the Nios II Software Build Tools chapter of the Nios II Software
Developer's Handbook

■ Performance Counter Core chapter in volume 5 of the Quartus II Handbook

■ System ID Core chapter in volume 5 of the Quartus II Handbook

■ Timer Core chapter in volume 5 of the Quartus II Handbook

■ Verification and Board Bring-Up chapter of the Embedded Design Handbook

Document Revision History
Table 3–1 shows the revision history for this chapter.

Table 3–1. Document Revision History

Date and
Document Version Changes Made Summary of Changes

June 2008

v1.1

Corrected Table of Contents —

March 2008

v1.0

Initial release. —
© June 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51010.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51014.pdf

3–16 Chapter 3: Debugging Nios II Designs
Document Revision History
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

© November 2008 Altera Corporation

ED51004-2.0
4. Nios II Command-Line Tools
Introduction
This chapter describes the Nios® II command-line tools that are provided with the
Nios II Embedded Development Suite (EDS). The chapter describes both the Altera®
tools and the GNU tools. Most of the commands are located in the
$SOPC_KIT_NIOS2\bin and $SOPC_KIT_NIOS2\sdk2 subdirectories of your
Nios II EDS installation.

The Altera command line tools are useful for a range of activities, from board and
system-level debugging to programming an FPGA configuration file (.sof). For these
tools, the examples expand on the brief descriptions of the Altera-provided
command-line tools for developing Nios II programs in the Altera-Provided
Development Tools chapter of the Nios II Software Developer’s Guide. The Nios II GCC
toolchain contains the GNU Compiler Collection, GNU Binary Utilities (binutils), and
newlib C library.

1 All of the commands described in this chapter are available in the Nios II
command shell. For most of the commands, you can obtain help in this shell
by typing
<command name> --help r
To start the Nios II command shell on Windows platforms, on the Start
menu, click All Programs. On the All Programs menu, on the Altera
submenu, on the Nios II EDS <version> submenu, click Nios II <version>
Command Shell.
On Linux platforms, type the following command:
$SOPC_KIT_NIOS2/sdk_shell r
The command shell is a Bourne-again shell (bash) with a pre-configured
environment.

Altera Command-Line Tools for Board Bringup and Diagnostics
This section describes Altera command-line tools useful for Nios development board
bringup and debugging.

jtagconfig
This command returns information about the devices connected to your host PC
through the JTAG interface, for your use in debugging or programming. Use this
command to determine if you configured your FPGA correctly.

Many of the other commands depend on successful JTAG connection. If you are
unable to use other commands, check whether your JTAG chain differs from the
simple, single-device chain used as an example in this chapter.

Type jtagconfig --help from a Nios II command shell to display a list of options
and a brief usage statement.
Embedded Design Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52011.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52011.pdf

4–2 Chapter 4: Nios II Command-Line Tools
Altera Command-Line Tools for Board Bringup and Diagnostics
jtagconfig Usage Example
To use the jtagconfig command, perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, type the following command:
jtagconfig -n r

Example 4–1 shows a typical system response to the jtagconfig -n command.

The information in the response varies, depending on the particular FPGA, its
configuration, and the JTAG connection cable type. Table 4–1 describes the
information that appears in the response in Example 4–1.

The device name is read from the text file pgm_parts.txt in your Quartus® II
installation. In Example 4–1, the name is EP1S40/_HARDCOPY_FPGA_PROTOTYPE
because the silicon identification number on the JTAG chain for the FPGA device is
020050DD, which maps to the names EP1S40<device-specific name>, a couple of
which end in the string _HARDCOPY_FPGA_PROTOTYPE. The internal nodes are
nodes on the system-level debug (SLD) hub. All JTAG communication to an Altera
FPGA passes through this hub, including advanced debugging capabilities such as
the SignalTap® II embedded logic analyzer and the debugging capabilities in the
Nios II Integrated Development Environment (IDE).

Example 4–1 illustrates a single cable connected to a single-device JTAG chain.
However, your computer can have multiple JTAG cables, connected to different
systems. Each of these systems can have multiple devices in its JTAG chain. Each
device can have multiple JTAG debug modules, JTAG UART modules, and other
kinds of JTAG nodes. Use the jtagconfig -n command to help you understand the
devices with JTAG connections to your host PC and how you can access them.

Example 4–1. jtagconfig Example Response

[SOPC Builder]$ jtagconfig -n
1) USB-Blaster [USB-0]

020050DD EP1S40/_HARDCOPY_FPGA_PROTOTYPE
Node 11104600
Node 0C006E00

Table 4–1. Interpretation of jtagconfig Command Response

Value Description

USB-Blaster [USB-0] The type of cable. You can have multiple cables connected to your
workstation.

EP1S40/_HARDCOPY_FPGA_PROTOTYPE The device name, as identified by silicon identification number.

Node 11104600 The node number of a JTAG node inside the FPGA. The appearance of a
node number between 11104600 and 11046FF, inclusive, in the
response confirms that you have a Nios II processor with a JTAG debug
module.

Note 0C006E00 The node number of a JTAG node inside the FPGA. The appearance of a
node number between 0C006E00 and 0C006EFF, inclusive, in the
response confirms that you have a JTAG UART component.
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

Chapter 4: Nios II Command-Line Tools 4–3
Altera Command-Line Tools for Board Bringup and Diagnostics
nios2-configure-sof
This command downloads the specified .sof and configures the FPGA according to its
contents. At a Nios II command shell prompt, type
nios2-configure-sof --help for a list of available command-line options.

1 You must specify the cable and device when you have more than one JTAG cable
(USB-Blaster™ or ByteBlaster™ cable) connected to your computer or when you have
more than one device (FPGA) in your JTAG chain. Use the --cable and --device
options for this purpose.

nios2-configure-sof Usage Example
To use the nios2-configure-sof command, perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, change to the directory in which your .sof is located. By
default, the correct location is the top-level Quartus II project directory.

3. In the command shell, type the following command:
nios2-configure-sof r
The Nios II IDE searches the current directory for a .sof and programs it through
the specified JTAG cable.

system-console
The system-console command starts a Tcl-based command shell that supports
low-level JTAG chain verification and full system-level validation.This tool is
available in the Nios II EDS starting in version 8.0.

This application is very helpful for low-level system debug, especially when bringing
up a system. It provides a Tcl-based scripting environment and many features for
testing your system.

The following important command-line options are available for the
system-console command:

■ The --script=<your script>.tcl option directs the System Console to run your
Tcl script.

■ The --cli option directs the System Console to open in your existing shell, rather
than opening a new window.

■ The --debug option directs the System Console to redirect additional debug
output to stderr.

■ The --project-dir=<project dir> option directs the System Console to the
location of your hardware project. Ensure that you’re working with the project
you intend—the JTAG chain details and other information depend on the specific
project.

■ The --jdi=<JDI file> option specifies the name-to-node mapping for the JTAG
chain elements in your project.
© November 2008 Altera Corporation Embedded Design Handbook

4–4 Chapter 4: Nios II Command-Line Tools
Altera Command-Line Tools for Hardware Development
f For System Console usage examples and a comprehensive list of system console
commands, refer to the System Console User Guide. On-line training is available at
http://www.altera.com/training.

Altera Command-Line Tools for Hardware Development
This section describes Altera command-line tools useful for hardware project
development. They are useful for all projects created with SOPC Builder, whether or
not the project includes a Nios II processor.

quartus_cmd and sopc_builder
These commands create scripts that automate generation of SOPC Builder systems
and compilation of the corresponding Quartus II projects.

You can use these commands to create a flow that maintains only the minimum
source files required to build your Quartus II project. If you copy an existing project to
use as the basis for development of a new project, you should copy only this
minimum set of source files. Similarly, when you check in files to your version control
system, you want to check in only the minimum set required to reconstruct the
project.

To reconstruct an SOPC Builder system, the following files are required:

■ <project>.qpf (Quartus II project file)

■ <project>.qsf (Quartus II settings file)

■ <SOPC Builder system>.sopc (SOPC Builder system description)

■ The additional HDL, BDF, or BSF files in your existing project

If you work with the hardware design examples that are provided with the Quartus II
installation, Altera recommends that you copy each set of source files to a working
directory to avoid modifying the original source files inadvertently. Run the script on
the new working directory.

To create a flow that maintains only the minimum source files, perform the following
steps:

1. Copy the required source files to a working directory, maintaining a correct copy
of each source file elsewhere.

2. Change to this working directory.

3. To generate a .sof to configure your FPGA, type the following command sequence:

sopc_builder –-no_splash –s –-generate r
quartus_cmd <project>.qpf -c <project>.qsf r

The shell script in Example 4–2 illustrates these commands. This script automates the
process of generating SOPC Builder systems and compiling Quartus II projects across
any number of subdirectories. The script is an example only, and may require
modification for your project. If you want to compile the Quartus II projects, set the
COMPILE_QUARTUS variable in the script to 1.
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/education/training/courses/OEMB1117

Chapter 4: Nios II Command-Line Tools 4–5
Altera Command-Line Tools for Hardware Development
Example 4–2. Script to Generate SOPC Builder System and Compile Quartus II Projects (Part 1 of 2)

#!/bin/sh
COMPILE_QUARTUS=0
#
Resolve TOP_LEVEL_DIR, default to PWD if no path provided.
#
if [$# -eq 0]; then

TOP_LEVEL_DIR=$PWD
else

TOP_LEVEL_DIR=$1
fi
echo "TOP_LEVEL_DIR is $TOP_LEVEL_DIR"
echo
#
Generate SOPC list...
#
SOPC_LIST=`find $TOP_LEVEL_DIR -name "*.sopc"`
#
Generate Quartus II project list.
#
PROJ_LIST=`find $TOP_LEVEL_DIR -name "*.qpf" | sed s/\.qpf//g`
#
Main body of the script. First "generate" all of the SOPC Builder
systems that are found, then compile the Quartus II projects.
#
#
Run SOPC Builder to "generate" all of the systems that were found.
#
for SOPC_FN in $SOPC_LIST
do

cd `dirname $SOPC_FN`
if [! -e `basename $SOPC_FN .sopc`.vhd -a ! -e `basename $SOPC_FN .sopc`.v]; then

echo; echo
echo "INFO: Generating $SOPC_FN SOPC Builder system."
sopc_builder -s --generate=1 --no_splash
if [$? -ne 4]; then

echo; echo
echo "ERROR: SOPC Builder generation for $SOPC_FN has failed!!!"
echo "ERROR: Please check the SOPC file and data " \

"in the directory `dirname $SOPC_FN` for errors."
fi

else
echo; echo
echo "INFO: HDL already exists for $SOPC_FN, skipping Generation!!!"

fi
cd $TOP_LEVEL_DIR

done
#
Continued...
#

© November 2008 Altera Corporation Embedded Design Handbook

4–6 Chapter 4: Nios II Command-Line Tools
Altera Command-Line Tools for Flash Programming
c The commands and script in Example 4–2 are provided for example purposes only.
Altera does not guarantee the functionality for your particular use.

Altera Command-Line Tools for Flash Programming
This section describes the command-line tools for programming your Nios II-based
design in flash memory.

When you use the Nios II IDE to program flash memory, the Nios II IDE generates a
shell script that contains the flash conversion commands and the programming
commands. You can use this script as the basis for developing your own
command-line flash programming flow.

f For more details about the Nios II IDE and command-line usage of the Nios II Flash
Programmer and related tools, refer to the Nios II Flash Programmer User Guide.

nios2-flash-programmer
This command programs common flash interface (CFI) memory. Because the Nios II
flash programmer uses the JTAG interface, the nios2-flash-programmer
command has the same options for this interface as do other commands. You can
obtain information about the command-line options for this command with the
--help option.

nios2-flash-programmer Usage Example
You can perform the following steps to program a CFI device:

1. Follow the steps in “nios2-download” on page 4–9, or use the Nios II IDE, to
program your FPGA with a design that interfaces successfully to your CFI device.

#
Now, generate all of the Quartus II projects that were found.
#
if [$COMPILE_QUARTUS]; then

for PROJ in $PROJ_LIST
do

cd `dirname $PROJ`
if [! -e `basename $PROJ`.sof]; then

echo; echo
echo "INFO: Compiling $PROJ Quartus II Project."
quartus_cmd `basename $PROJ`.qpf -c `basename $PROJ`.qsf
if [$? -ne 4]; then

echo; echo
echo "ERROR: Quartus II compilation for $PROJ has failed!!!."
echo "ERROR: Please check the Quartus II project “ \

“in `dirname $PROJ` for details."
fi

else
echo; echo
echo "INFO: SOF already exists for $PROJ, skipping compilation."

fi
cd $TOP_LEVEL_DIR

done
fi

Example 4–2. Script to Generate SOPC Builder System and Compile Quartus II Projects (Part 2 of 2)
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Chapter 4: Nios II Command-Line Tools 4–7
Altera Command-Line Tools for Flash Programming
2. Type the following command to verify that your flash device is detected correctly:

nios2-flash-programmer –debug –base=<base address>r
where <base address> is the base address of your flash device. The base address of
each component is displayed in SOPC Builder. If the flash device is detected, the
flash memory’s CFI table contents are displayed.

3. Convert your file to flash format (.flash) using one of the utilities elf2flash,
bin2flash, or sof2flash described in the section “elf2flash, bin2flash, and
sof2flash”.

4. Type the following command to program the resulting .flash file in the CFI device:

nios2-flash-programmer –base=<base address> <file>.flashr
5. Optionally, type the following command to reset and start the processor at its reset

address:

nios2-download –g –rr

elf2flash, bin2flash, and sof2flash
These three commands are often used with the nios2-flash-programmer
command. The resulting .flash file is a standard .srec file.

The following two important command-line options are available for the elf2flash
command:

■ The -boot=<boot copier file>.srec option directs the elf2flash command to
prepend a bootloader S-record file to the converted ELF file.

■ The -after=<flash file>.flash option places the generated .flash file—the
converted ELF file—immediately following the specified .flash file in flash
memory.

The -after option is commonly used to place the .elf file immediately following
the .sof in an erasable, programmable, configurable serial (EPCS) flash device.

c If you use an EPCS device, you must program the hardware image in the device
before you program the software image. If you disregard this rule your software
image will be corrupted.

Before it writes to any flash device, the Nios II flash programmer erases the entire
sector to which it expects to write. In EPCS devices, however, if you generate the
software image using the elf2flash -after option, the Nios II flash programmer
places the software image directly following the hardware image, not on the next
flash sector boundary. Therefore, in this case, the Nios II flash programmer does not
erase the current sector before placing the software image. However, it does erase the
current sector before placing the hardware image.

When you use the flash programmer through the Nios II IDE, you automatically
create a script that contains some of these commands. Running the flash programmer
creates a shell script (.sh) in the Debug or Release target directory of your project.
This script contains the detailed command steps you used to program your flash
memory.

Example 4–3 shows a sample auto-generated script.
© November 2008 Altera Corporation Embedded Design Handbook

4–8 Chapter 4: Nios II Command-Line Tools
Altera Command-Line Tools for Software Development and Debug
The paths, file names, and addresses in the auto-generated script change depending
on the names and locations of the files that are converted and on the configuration of
your hardware design.

bin2flash Usage Example
To program an arbitrary binary file to flash memory, perform the following steps:

1. Type the following command to generate your .flash file:

bin2flash --location=<offset from the base address> \
-input=<your file> --output=<your file>.flash r

2. Type the following command to program your newly created file to flash memory:

nios2-flash-programmer -base=<base address> <your file>.flash r

Altera Command-Line Tools for Software Development and Debug
This section describes Altera command-line tools that are useful for software
development and debugging.

Example 4–3. Sample Auto-Generated Script:

#!/bin/sh
#
This file was automatically generated by the Nios II IDE Flash Programmer.
#
It will be overwritten when the flash programmer options change.
#

cd <full path to your project>/Debug

Creating .flash file for the FPGA configuration
#"$SOPC_KIT_NIOS2/bin/sof2flash" --offset=0x400000 --input="full path to your SOF" \

--output="<your design>.flash"

Programming flash with the FPGA configuration
#"$SOPC_KIT_NIOS2/bin/nios2-flash-programmer" --base=0x00000000 --sidp=0x00810828 \

--id=1436046714 --timestamp=1169569475 --instance=0 "<your design>.flash"
#
Creating .flash file for the project
"$SOPC_KIT_NIOS2/bin/elf2flash" --base=0x00000000 --end=0x7fffff --reset=0x0 \

--input="<your project name>.elf" --output="ext_flash.flash" \
--boot="<path to the bootloader>/boot_loader_cfi.srec"

Programming flash with the project
"$SOPC_KIT_NIOS2/bin/nios2-flash-programmer" --base=0x00000000 --sidp=0x00810828 \

--id=1436046714 --timestamp=1169569475 --instance=0 "ext_flash.flash"

Creating .flash file for the read only zip file system
"$SOPC_KIT_NIOS2/bin/bin2flash" --base=0x00000000 --location=0x100000\

--input="<full path to your binary file>" --output="<filename>.flash"

Programming flash with the read only zip file system
"$SOPC_KIT_NIOS2/bin/nios2-flash-programmer" --base=0x00000000 --sidp=0x00810828 \

--id=1436046714 --timestamp=1169569475 --instance=0 "<filename>.flash"
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

Chapter 4: Nios II Command-Line Tools 4–9
Altera Command-Line Tools for Software Development and Debug
nios2-terminal
This command establishes contact with stdin, stdout, and stderr in a Nios II processor
subsystem. stdin, stdout, and stderr are routed through a UART (standard UART or
JTAG UART) module within this system.

The nios2-terminal command allows you to monitor stdout, stderr, or both, and
to provide input to a Nios II processor subsystem through stdin. This command
behaves the same as the nios2-configure-sof command described in
“nios2-configure-sof” on page 4–3 with respect to JTAG cables and devices. However,
because multiple JTAG UART modules may exist in your system, the
nios2-terminal command requires explicit direction to apply to the correct JTAG
UART module instance. Specify the instance using the -instance command-line
option. The first instance in your design is 0 (-instance "0"). Additional instances
are numbered incrementally, starting at 1 (-instance "1").

nios2-download
This command parses Nios II .elf files, downloads them to a functioning Nios II
processor, and optionally runs the .elf file.

As for other commands, you can obtain command-line option information with the
--help option. The nios2-download command has the same options as the
nios2-terminal command for dealing with multiple JTAG cables and Nios II
processor subsystems.

nios2-download Usage Example
To download (and run) a Nios II .elf program:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located. If you use the Nios II IDE
for development, the correct location is often the Debug or Release subdirectory
of your top-level project.

3. In the command shell, type the following command to download and start your
program:
nios2-download -g <project name>.elf r

4. Optionally, use the nios2-terminal command to connect to view any output or
provide any input to the running program.

nios2-stackreport
This command returns a brief report on the amount of memory still available for stack
and heap from your project's .elf file.

This command does not help you to determine the amount of stack or heap space
your code consumes during runtime, but it does tell you how much space your code
has to work in.

Example 4–4 illustrates the information this command provides.
© November 2008 Altera Corporation Embedded Design Handbook

4–10 Chapter 4: Nios II Command-Line Tools
Altera Command-Line Tools for Software Development and Debug
nios2-stackreport Usage Example
To use the nios2-stackreport command, perform the following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

3. In the command shell, type the following command:

nios2-stackreport <your project>.elf r

validate_zip
The Nios II IDE uses this command to validate that the files you use for the Read Only
Zip Filing System are uncompressed. You can use it for the same purpose.

validate_zip Usage Example
To use the validate_zip command, perform the following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your .zip file is located.

3. In the command shell, type the following command:

validate_zip <file>.zip r
If no response appears, your .zip file is not compressed.

nios2-ide
On Linux and Windows systems, you can type nios2-ide in a command shell to
launch the Nios II IDE. On Windows systems, you can also use the Nios II IDE launch
icon in SOPC Builder.

The nios2-ide command does not call the executable file directly. Instead, it runs a
simple Bourne shell wrapper script, which calls the nios2-ide executable file. The
Linux and Windows platform versions of the wrapper script follow.

Linux wrapper script
#!/bin/sh
This is the linux-gtk version of the nios2-ide launcher script
set the default workspace location for linux
WORKSPACE="$HOME/nios2-ide-workspace-7.2"
WORKSPACE_ARGS="-data $WORKSPACE"
if -data is already passed in, we can't specify it
again when calling nios2-ide
for i in $*
do
 if ["x$i" = "x-data"]; then

Example 4–4. nios2-stackreport Command and Response

[SOPC Builder]$ nios2-stackreport <your project>.elf
Info: (<your project>.elf) 6312 KBytes program size (code + initialized data).
Info: 10070 KBytes free for stack + heap.
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

Chapter 4: Nios II Command-Line Tools 4–11
Altera Command-Line Tools for Software Development and Debug
 WORKSPACE_ARGS=""
 fi
done
exec $SOPC_KIT_NIOS2/bin/eclipse/nios2-ide -configuration
$HOME/.nios2-ide-6.1 $WORKSPACE_ARGS "$@"

Windows wrapper script
#!/bin/sh
This is the win32 version of the nios2-ide launcher script
It simply invokes the binary with the same arguments as
passed in.
By doing this, the user will default to the same workspace as
when launched using the Windows shortcut, as "persisted"
in the configuration/.settings/org.eclipse.ui.ide.prefs file.
cd "$SOPC_KIT_NIOS2/bin/eclipse"
exec ./nios2-ide-console "$@"

nios2-gdb-server
This command starts a GNU Debugger (GDB) JTAG conduit that listens on a specified
TCP port for a connection from a GDB client, such as a nios2-elf-gdb client.

Occasionally, you may have to terminate a GDB server session. If you no longer have
access to the Nios II command shell session in which you started a GDB server
session, or if the offending GDB server process results from an errant Nios II IDE
debugger session, you should stop the nios2-gdb-server.exe process on Windows
platforms, or type the following command on Linux platforms:
pkill -9 -f nios2-gdb-server r

nios2-gdb-server Usage Example
The Nios II IDE and most of the other available debuggers use the
nios2-gdb-server and nios2-elf-gdb commands for debugging. You should
never have to use these tools at this low level. However, in case you prefer to do so,
this section includes instructions to start a GDB debugger session using these
commands, and an example GDB debugging session.

You can perform the following steps to start a GDB debugger session:

1. Open a Nios II command shell.

2. In the command shell, type the following command to start the GDB server on the
machine that is connected through a JTAG interface to the Nios II system you wish
to debug:
nios2-gdb-server --tcpport 2342 --tcppersist r
If the transfer control protocol port 2342 is already in use, use a different port.

Following is the system response:

Using cable "USB-Blaster [USB-0]", device 1, instance 0x00
Pausing target processor: OK
Listening on port 2342 for connection from GDB:

Now you can connect to your server (locally or remotely) and start debugging.

3. Type the following command to start a GDB client that targets your .elf file:
nios2-elf-gdb <file>.elf r
© November 2008 Altera Corporation Embedded Design Handbook

4–12 Chapter 4: Nios II Command-Line Tools
Altera Command-Line Tools for Software Development and Debug
Example 4–5 shows a sample session.

Possible commands include the standard debugger commands load, step,
continue, run, and quit. Press Ctrl+c to terminate your GDB server session.

nios2-debug
This command is a wrapper around the Tcl/Tk-based Insight GDB GUI, which
installs with the Altera-specific GNU GDB distribution that is part of the Nios II EDS.

The command-line option -save-gdb-script saves the session script, and the
option -command=<GDB script name> restores a previous GDB session by executing
its previously saved GDB script. Use this option to restore break and watch points.

f For more information about the Insight GDB GUI, refer to the Insight documentation
available at sources.redhat.com.

nios2-debug Usage Example
After you generate the .elf file manually or using the Nios II IDE, perform the
following steps to open an Insight debugger session:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

If you use the Nios II IDE for development, the correct location is often the Debug
or Release subdirectory of your top-level project.

Example 4–5. Sample Debugging Session

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-cygwin --target=nios2-elf"...
(gdb) target remote <your_host>:2342
Remote debugging using <your_host>:2342
OS_TaskIdle (p_arg=0x0) at sys/alt_irq.h:127
127 {
(gdb) load
Loading section .exceptions, size 0x1b0 lma 0x1000020
Loading section .text, size 0x3e4f4 lma 0x10001d0
Loading section .rodata, size 0x4328 lma 0x103e6c4
Loading section .rwdata, size 0x2020 lma 0x10429ec
Start address 0x10001d0, load size 281068
Transfer rate: 562136 bits/sec, 510 bytes/write.
(gdb) step
.
.
.
(gdb) quit
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

http://sources.redhat.com/

Chapter 4: Nios II Command-Line Tools 4–13
Altera Command-Line Nios II Software Build Tools
3. In the command shell, type the following command:

nios2-debug <file>.elf r
Your .elf file is parsed and downloaded to memory in your Nios II subsystem, and
the main debugger window opens, with the first executable line in the main()
function highlighted. This debugger window displays your Insight debugging
session. Simply click on the Continue menu item to run your code, or set some
breakpoints to experiment.

Altera Command-Line Nios II Software Build Tools
The Nios II software build tools are command-line utilities available from a Nios II
command shell that enable you to create application, board support package (BSP),
and library software for a particular Nios II hardware system. Use these tools to create
a portable, self-contained makefile-based project that can be easily modified later to
suit your build flow.

Unlike the Nios II IDE-based flow, proficient use of these tools requires some
expertise with the GNU make-based software build flow. Before you use these tools,
refer to the Introduction to the Nios II Software Build Tools and the Using the Nios II
Software Build Tools chapters of the Nios II Software Developer's Handbook. The
software_examples directory for each current Nios II development board contains
examples that use the GNU make-based software build flow. The examples for your
development board are located in the following location:

$SOPC_KIT_NIOS2/examples/[verilog|vhdl]/<dev_board>/
<design>/software_examples

The following sections summarize the commands available for generating a BSP for
your hardware design and for generating your application software. Many additional
options are available in the Nios II software build tools.

f For an overview of the tools summarized in this section, refer to the Introduction to the
Nios II Software Build Tools chapter of the Nios II Software Developer's Handbook.

f For information on the many additional options available to you in the Nios II
software build tools, refer to the Introduction to the Nios II Software Build Tools, Using
the Nios II Software Build Tools, and Nios II Software Build Tools Reference chapters of the
Nios II Software Developer's Handbook, and the Developing Nios II Software chapter of the
Embedded Design Handbook.

BSP Related Tools
Use the following command-line tools to create a BSP for your hardware design:

■ nios2-bsp-create-settings creates a BSP settings file.

■ nios2-bsp-update-settings updates a BSP settings file.

■ nios2-bsp-query-settings queries an existing BSP settings file.

■ nios2-bsp-generate-files generates all the files related to a given BSP
settings file.
© November 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–14 Chapter 4: Nios II Command-Line Tools
GNU Command-Line Tools
■ nios2-bsp is a script that includes most of the functionality of the preceding
commands.

■ create-this-bsp is a high-level script that creates a BSP for a specific hardware
design example.

Application Related Tools
Use the following commands to create and manipulate Nios II application and library
projects:

■ nios2-app-generate-makefile creates a makefile for your application.

■ nios2-lib-generate-makefile creates a makefile for your application
library.

■ nios2-c2h-generate-makefile creates a makefile fragment for the C2H
compiler.

■ create-this-app is a high-level script that creates an application for a specific
hardware design example.

GNU Command-Line Tools
The Nios II GCC toolchain contains the GNU Compiler Collection, the GNU binutils,
and the newlib C library. You can follow links to detailed documentation from the
Nios II EDS documentation launchpad found in your Nios II EDS distribution. To
start the launchpad on Windows platforms, on the Start menu, click All Programs. On
the All Programs menu, on the Altera submenu, on the Nios II EDS <version>
submenu, click Literature. On Linux platforms, run the program in the file
$SOPC_KIT_NIOS2/documents/index.htm. In addition, more information about the
GNU GCC toolchain is available on the World Wide Web.

nios2-elf-addr2line
This command returns a source code line number for a specific memory address. The
command is similar to but more specific than the nios2-elf-objdump command
described in “nios2-elf-objdump” on page 4–21 and the nios2-elf-nm command
described in “nios2-elf-nm” on page 4–20.

Use the nios2-elf-addr2line command to help validate code that should be
stored at specific memory addresses. Example 4–6 illustrates its usage and results:

Example 4–6. nios2-elf-addr2line Utility Usage Example

[SOPC Builder]$ nios2-elf-addr2line --exe=<your project>.elf 0x1000020
${SOPC_KIT_NIOS2}/components/altera_nios2/HAL/src/alt_exception_entry.S:99
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

Chapter 4: Nios II Command-Line Tools 4–15
GNU Command-Line Tools
nios2-elf-addr2line Usage Example
To use the nios2-elf-addr2line command, perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, type the following command:

nios2-elf-addr2line <your project>.elf <your_address_0>,\
<your_address_1>,...,<your_address_n> r
If your project file contains source code at this address, its line number appears.

nios2-elf-gdb
This command is a GDB client that provides a simple shell interface, with built-in
commands and scripting capability. A typical use of this command is illustrated in the
section “nios2-gdb-server” on page 4–11.

nios2-elf-readelf
Use this command to parse information from your project's .elf file. The command is
useful when used with grep, sed, or awk to extract specific information from your .elf
file.

nios2-elf-readelf Usage Example
To display information about all instances of a specific function name in your .elf file,
perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, type the following command:

nios2-elf-readelf -symbols <project>.elf | grep <function name> r
Example 4–7 shows a search for the http_read_line() function in a .elf file.

Table 4–2 lists the meanings of the individual columns in Example 4–7.

Example 4–7. Search for the http_read_line Function Using nios2-elf-readelf

[SOPC Builder]$ nios2-elf-readelf.exe –s my_file.elf | grep http_read_line
1106: 01001168 160 FUNC GLOBAL DEFAULT 3 http_read_line

Table 4–2. Interpretation of nios2-elf-readelf Command Response

Value Description

1106 Symbol instance number

0100168 Memory address, in hexadecimal format

160 Size of this symbol, in bytes

FUNC Type of this symbol (function)

GLOBAL Binding (values: GLOBAL, LOCAL, and WEAK)

DEFAULT Visibility (values: DEFAULT, INTERNAL, HIDDEN, and PROTECTED)

3 Index

http_read_line Symbol name
© November 2008 Altera Corporation Embedded Design Handbook

4–16 Chapter 4: Nios II Command-Line Tools
GNU Command-Line Tools
You can obtain further information about the ELF file format online. Each of the ELF
utilities has its own man page.

nios2-elf-ar
This command generates an archive (.a) file containing a library of object (.o) files. The
Nios II IDE uses this command to archive the System Library project.

nios2-elf-ar Usage Example
To archive your object files using the nios2-elf-ar command, perform the
following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your object files are located.

3. In the command shell, type the following command:
nios2-elf-ar q <archive_name>.a <object files>

Example 4–8 shows how to create an archive of all of the object files in your current
directory. In Example 4–8, the q option directs the command to append each object file
it finds to the end of the archive. After the archive file is created, it can be distributed
for others to use, and included as an argument in linker commands, in place of a long
object file list.

Linker
Use the nios2-elf-g++ command to link your object files and archives into the
final executable format, ELF.

Linker Usage Example
To link your object files and archives into a .elf file, open a Nios II command shell and
call nios2-elf-g++ with appropriate arguments. The following example
command line calls the linker:

nios2-elf-g++ -T'<linker script>' -msys-crt0='<crt0.o file>' \
-msys-lib=<system library> -L '<The path where your libraries reside>' \
-DALT_DEBUG -O0 -g -Wall -mhw-mul -mhw-mulx -mno-hw-div \
-o <your project>.elf <object files> -lm r
The exact linker command line to link your executable may differ. When you build a
project in the Nios II IDE, you can see the command line used to link your application.
To turn on this option in the Nios II IDE, on the Window menu, click Preferences,
select the Nios II tab, and enable Show command lines when running make. You
can also force the command lines to display by running make without the -s option
from a Nios II command shell.

Example 4–8. nios2-elf-ar Command Response

[SOPC Builder]$ nios2-elf-ar q <archive_name>.a *.o
nios2-elf-ar: creating <archive_name>.a
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

Chapter 4: Nios II Command-Line Tools 4–17
GNU Command-Line Tools
1 Altera recommends that you not use the native linker nios2-elf-ld to link your
programs. For the Nios II processor, as for all softcore processors, the linking flow is
complex. The g++ (nios2-elf-g++) command options simplify this flow. Most of
the options are specified by the -m command-line option, but the options available
depend on the processor choices you make.

nios2-elf-size
This command displays the total size of your program and its basic code sections.

nios2-elf-size Usage Example
To display the size information for your program, perform the following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

3. In the command shell, type the following command:
nios2-elf-size <project>.elf

Example 4–9 shows the size information this command provides.

nios2-elf-strings
This command displays all the strings in a .elf file.

nios2-elf-strings Usage Example
The command has a single required argument:

nios2-elf-strings <project>.elf

nios2-elf-strip
This command strips all symbols from object files. All object files are supported,
including ELF files, object files (.o) and archive files (.a).

nios2-elf-strip Usage Example
nios2-elf-strip <options> <project>.elf

nios2-elf-strip Usage Notes
The nios2-elf-strip command decreases the size of the .elf file.

This command is useful only if the Nios II processor is running an operating system
that supports ELF natively.If ELF is the native executable format, the entire .elf file is
stored in memory, and the size savings matter.If not, the file is parsed and the
instructions and data stored directly in memory, without the symbols in any case.

Linux is one operating system that supports ELF natively; uClinux is another. uClinux
uses the flat (FLT) executable format, which is translated directly from the ELF.

Example 4–9. nios2-elf-size Command Usage

[SOPC Builder]$ nios2-elf-size my_project.elf
text data bss dec hex filename
272904 8224 6183420 6464548 62a424 my_project.elf
© November 2008 Altera Corporation Embedded Design Handbook

4–18 Chapter 4: Nios II Command-Line Tools
GNU Command-Line Tools
nios2-elf-gdbtui
This command starts a GDB session in which a terminal displays source code next to
the typical GDB console.

The syntax for the nios2-elf-gdbtui command is identical to that for the
nios2-elf-gdb command described in “nios2-elf-gdb” on page 4–15.

1 Two additional GDB user interfaces are available for use with the Nios II GDB
Debugger. CGDB, a cursor-based GDB UI, is available at www.sourceforge.net. The
Data Display Debugger (DDD) is highly recommended.

nios2-elf-gprof
This command allows you to profile your Nios II system.

f For details about this command and the Nios II IDE-based results GUI, refer to
AN 391: Profiling Nios II Systems.

nios2-elf-insight
The nios2-debug command described in “nios2-debug” on page 4–12 uses this
command to start an Insight debugger session on the supplied .elf file.

nios2-elf-gcc and g++
These commands run the GNU C and C++ compiler, respectively, for the Nios II
processor.

Compilation Command Usage Example
The following simple example shows a command line that runs the GNU C or C++
compiler:

nios2-elf-gcc(g++) <options> -o <object files> <C files>
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/an/an391.pdf
http://www.sourceforge.net

Chapter 4: Nios II Command-Line Tools 4–19
GNU Command-Line Tools
More Complex Compilation Example
Example 4–10 is a Nios II IDE-generated command line that compiles C code in
multiple files in many directories.

nios2-elf-c++filt
This command demangles C++ mangled names. C++ allows multiple functions to
have the same name if their parameter lists differ; to keep track of each unique
function, the compiler mangles, or decorates, function names. Each compiler mangles
functions in a particular way.

f For a full explanation, including more details about how the different compilers
mangle C++ function names, refer to standard reference sources for the C++ language
compilers.

nios2-elf-c++filt Usage Example
To display the original, demangled function name that corresponds to a particular
symbol name, you can type the following command:

nios2-elf-c++filt -n <symbol name> r
For example,

nios2-elf-c++filt -n _Z11my_functionv r

More Complex nios2-elf-c++filt Example
The following example command line causes the display of all demangled function
names in an entire file:

nios2-elf-strings <file>.elf | grep ^_Z | nios2-elf-c++filt -n

In this example, the nios2-elf-strings operation outputs all strings in the .elf
file. This output is piped to a grep operation that identifies all strings beginning with
_Z. (GCC always prepends mangled function names with _Z). The output of the
grep command is piped to a nios2-elf-c++filt command. The result is a list of
all demangled functions in a GCC C++ .elf file.

Example 4–10. Example nios2-elf-gcc Command Line

nios2-elf-gcc -xc -MD -c \
-DSYSTEM_BUS_WIDTH=32 -DALT_NO_C_PLUS_PLUS -DALT_NO_INSTRUCTION_EMULATION \
-DALT_USE_SMALL_DRIVERS -DALT_USE_DIRECT_DRIVERS -DALT_PROVIDE_GMON \
-I.. -I/cygdrive/c/Work/Projects/demo_reg32/Designs/std_2s60_ES/software/\
reg_32_example_0_syslib/Release/system_description \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_timer/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_timer/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_jtag_uart/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_jtag_uart/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_pio/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_lcd_16207/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_lcd_16207/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_sysid/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_sysid/inc \
-I/cygdrive/c/altera/70_b31/nios2eds/components/altera_nios2/HAL/inc \
-I/cygdrive/c/altera/70_b31/nios2eds/components/altera_hal/HAL/inc \
-DALT_SINGLE_THREADED -D__hal__ -pipe -DALT_RELEASE -O2 -g -Wall\
-mhw-mul -mhw-mulx -mno-hw-div -o obj/reg_32_buttons.o ../reg_32_buttons.c
© November 2008 Altera Corporation Embedded Design Handbook

4–20 Chapter 4: Nios II Command-Line Tools
GNU Command-Line Tools
nios2-elf-nm
This command list the symbols in a .elf file.

nios2-elf-nm Usage Example
The following two simple examples illustrate the use of the nios2-elf-nm
command:

■ nios2-elf-nm <project>.elf r
■ nios2-elf-nm <project>.elf | sort -n r

More Complex nios2-elf-nm Example
To generate a list of symbols from your .elf file in ascending address order, use the
following command:

nios2-elf-nm <project>.elf | sort -n > <project>.elf.nm

The <project>.elf.nm file contains all of the symbols in your executable file, listed in
ascending address order. In this example, the nios2-elf-nm command creates the
symbol list. In this text list, each symbol’s address is the first field in a new line. The
-n option for the sort command specifies that the symbols be sorted by address in
numerical order instead of the default alphabetical order.

nios2-elf-objcopy
Use this command to copy from one binary object format to another, optionally
changing the binary data in the process.

Though typical usage converts from or to ELF files, the objcopy command is not
restricted to conversions from or to ELF files. You can use this command to convert
from, and to, any of the formats listed in Table 4–3.

f You can obtain information about the TekHex, ihex, and other text-based binary
representation file formats on the World Wide Web. As of the initial publication of
this handbook, you can refer to the www.sbprojects.com knowledge-base entry on file
formats.

Table 4–3. -objcopy Binary Formats

Command
(...-objcopy) Comments

elf32-littlenios2,
elf32-little

Header little endian, data little endian, the default and most commonly used
format

elf32-bignios2,
elf32-big

Header big endian, data big endian

srec S-Record (SREC) output format

symbolsrec SREC format with all symbols listed in the file header, preceding the SREC data

tekhex Tektronix hexadecimal (TekHex) format

binary Raw binary format
Useful for creating binary images for storage in flash on your embedded system

ihex Intel hexadecimal (ihex) format
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

http://www.sbprojects.com

Chapter 4: Nios II Command-Line Tools 4–21
Referenced Documents
nios2-elf-objcopy Usage Example
To create an SREC file from an ELF file, use the following command:

nios2-elf-objcopy –O srec <project>.elf <project>.srec

ELF is the assumed binary format if none is listed. For information about how to
specify a different binary format, in a Nios II command shell, type the following
command:

nios2-elf-objcopy --help r

nios2-elf-objdump
Use this command to display information about the object file, usually an ELF file.

The nios2-elf-objdump command supports all of the binary formats that the
nios2-elf-objcopy command supports, but ELF is the only format that produces
useful output for all command-line options.

nios2-elf-objdump Usage Description
The Nios II IDE uses the following command line to generate object dump files:

nios2-elf-objdump -D -S -x <project>.elf > <project>.elf.objdump

nios2-elf-ranlib
Calling nios2-elf-ranlib is equivalent to calling nios2-elf-ar with the -s
option (nios2-elf-ar -s).

For further information about this command, refer to “nios2-elf-ar” on page 4–16 or
type nios2-elf-ar --help in a Nios II command shell.

Referenced Documents
This chapter references the following documents:

■ Altera-Provided Development Tools chapter of the Nios II Software Developer’s Guide

■ AN 391: Profiling Nios II Systems

■ Developing Nios II Software chapter of the Embedded Design Handbook

■ Introduction to the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook

■ Nios II Flash Programmer User Guide

■ Nios II Software Build Tools Reference chapter of the Nios II Software Developer's
Handbook

■ Nios II Software Developer's Handbook

■ System Console User Guide

■ Using the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook

■ Verification and Board Bring-Up chapter of the Embedded Design Handbook
© November 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52011.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51010.pdf
http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–22 Chapter 4: Nios II Command-Line Tools
Document Revision History
Document Revision History
Table 4–4 shows the revision history for this chapter.

Table 4–4. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2008
v2.0

Add System Console. Add System Console.

March 2008
v1.0

Initial release. —
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary

© June 2008 Altera Corporation

ED51005-1.1
5. Optimizing Nios II C2H Compiler
Results
Introduction
The Nios® II C2H Compiler is a powerful tool that generates hardware accelerators for
software functions. The C2H Compiler enhances design productivity by allowing you
to use a compiler to accelerate software algorithms in hardware. You can quickly
prototype hardware functional changes in C, and explore hardware-software design
tradeoffs in an efficient, iterative process. The C2H Compiler is well suited to
improving computational bandwidth, as well as memory throughput. It is possible to
achieve substantial performance gains with minimal engineering effort.

The structure of your C code affects the results you get from the C2H Compiler.
Although the C2H Compiler can accelerate most ANSI C code, you might need to
modify your C code to meet resource usage and performance requirements. This
document describes how to improve the performance of hardware accelerators, by
refactoring your C code with C2H-specific optimizations.

Prerequisites
To make effective use of this chapter, you should be familiar with the following
topics:

■ ANSI C syntax and usage

■ Defining and generating Nios II hardware systems with SOPC Builder

■ Compiling Nios II hardware systems with the Altera® Quartus® II development
software

■ Creating, compiling, and running Nios II software projects

■ Nios II C2H Compiler theory of operation

■ Data caching

f To familiarize yourself with the basics of the C2H Compiler, refer to the Nios II C2H
Compiler User Guide, especially the Introduction to the C2H Compiler and Getting Started
Tutorial chapters. To learn about defining, generating, and compiling Nios II systems,
refer to the Nios II Hardware Development Tutorial. To learn about Nios II software
projects, refer to the Nios II Software Development Tutorial, available in the Nios II IDE
help system. To learn about data caching, refer to the Cache and Tightly-Coupled
Memory in the Nios II Processor Reference Handbook.

Cost and Performance
When writing C code for the C2H Compiler, you can optimize it relative to several
optimization criteria. Often you must make tradeoffs between these criteria, which are
listed below:
Embedded Design Handbook

http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

5–2 Chapter 5: Optimizing Nios II C2H Compiler Results
Overview of the C2H Optimization Process
■ Hardware cost—C2H accelerators consume hardware resources such as LEs,
multipliers, and on-chip memory. This document uses the following terms to
describe the hardware cost of C language constructs:

■ Free—the construct consumes no hardware resources.

■ Cheap—the construct consumes few hardware resources. The acceleration
obtained is almost always worth the cost.

■ Moderate—the construct consumes some hardware resources. The acceleration
obtained is usually worth the cost.

■ Expensive—the construct consumes substantial hardware resources. The
acceleration obtained is sometimes worth the cost, depending on the nature of
the application.

■ Algorithm performance—A C2H accelerator performs the same algorithm as the
original C software executed by a Nios II processor. Typically the accelerator uses
many fewer clock cycles than the software implementation. This document
describes the algorithm performance of C constructs as fast or slow. The concept of
algorithm performance includes the concepts of latency and throughput. These
concepts are defined under “Cycles Per Loop Iteration (CPLI)” on page 5–12.

■ Hardware performance impact—Certain C language constructs, when converted
to logic by the C2H Compiler, can result in long timing paths that can degrade fMAX
for the entire system or for the clock domain containing the C2H accelerator. This
document clearly notes such situations and offers strategies for avoiding them.

Overview of the C2H Optimization Process
It is unlikely that you can meet all of your optimization goals in one iteration. Instead,
plan on making the one or two optimizations that appear most relevant to your cost
and performance issues. When you profile your system with the optimized
accelerator, you can determine whether further optimizations are needed, and then
you can identify the next most important optimization issue to address. By optimizing
your accelerator one step at a time, you apply only the optimizations needed to
achieve your goals.

Getting Started
The most important first step is to decide on a clear performance goal. Depending on
your application, you may require a specific performance level from your algorithm.
If you have already selected a target device, and if other hardware in the system is
well defined, you might have specific hardware cost limitations. Alternatively, if you
are in early phases of development, you might only have some general guidelines for
conserving hardware resources. Finally, depending on your design needs and the fMAX
of your existing design, you might be concerned with possible fMAX degradation. Refer
to “Meeting Your Cost and Performance Goals” on page 5–3 for more information
about cost and performance criteria.

The next step is to develop your algorithm in C, and, if possible, test it conventionally
on the Nios II processor. This step is very helpful in establishing and maintaining
correct functionality. If the Nios II processor is not fast enough for in-circuit testing of
your unaccelerated algorithm, consider simulation options for testing.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–3
Factors Affecting C2H Results
When you are confident of your algorithm's correctness, you are ready to accelerate it.
This first attempt provides a set of baseline acceleration metrics. These metrics help
you assess the overall success of the optimization process.

Altera recommends that you maintain two copies of your algorithm in parallel: one
accelerated and the other unaccelerated. By comparing the results of the accelerated
and unaccelerated algorithms, you immediately discover any errors which you might
inadvertently introduce while optimizing the code.

Iterative Optimization
The iteration phase of C2H Compiler optimization consists of these steps:

1. Profile your accelerated system.

2. Identify the most serious performance bottleneck.

3. Identify an appropriate optimization from the “Optimization Techniques” on
page 5–14 section.

4. Apply the optimization and rebuild the accelerated system.

f For instructions on profiling Nios II systems, refer to AN391: Profiling Nios II Systems.

Meeting Your Cost and Performance Goals
Having a clear set of optimization goals helps you determine when to stop
optimization. Each time you profile your accelerated system, compare the results with
your goals. You might find that you have reached your cost and performance goals
even if you have not yet applied all relevant optimizations.

If your optimization goals are flexible, consider keeping track of your baseline
acceleration metrics, and the acceleration metrics achieved at each optimization step.
You might wish to stop if you reach a point of diminishing returns.

Factors Affecting C2H Results
This section describes key differences in the mapping of C constructs by a C compiler
and the Nios II C2H Compiler. You must understand these differences to create
efficient hardware.

C code originally written to run on a processor does not necessarily produce efficient
hardware. A C compiler and the Nios II C2H Compiler both use hardware resources
such as adders, multipliers, registers, and memories to execute the C code. However,
while a C compiler assumes a sequential model of computing, the C2H Compiler
assumes a concurrent model of computing. A C compiler maps C code to instructions
which access shared hardware resources. The C2H Compiler maps C code to one or
more state machines which access unique hardware resources. The C2H Compiler
pipelines the computation as much as possible to increase data throughput.
Example 5–1 illustrates this point.
© June 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/an/an391.pdf

5–4 Chapter 5: Optimizing Nios II C2H Compiler Results
Factors Affecting C2H Results
The sumfunc() function takes four integer arguments and returns their sum. A C
compiler maps the function to three add instructions sharing one adder. The
processor executes the three additions sequentially. The C2H Compiler maps the
function to one state machine and three adders. The accelerator executes the additions
for sum1 and sum2 concurrently, followed by the addition for result. The addition
for result cannot execute concurrently with the sum1 and sum2 additions because
of the data dependency on the sum1 and sum2 variables.

Different algorithms require different C structures for optimal hardware
transformation. This chapter lists possible optimizations to identify in C code. Each C
scenario describes the best methods to refactor the C code. The “Optimization
Techniques”section discusses how to address the following potential problem areas:

■ Memory Accesses and Variables

■ Arithmetic and Logical Operations

■ Statements

■ Control Flow

■ Subfunction Calls

■ Resource Sharing

■ Data Dependencies

■ Memory Architecture

Memory Accesses and Variables
Memory accesses can occur when your C code reads or writes the value of a variable.
Table 5–1 provides a summary of the key differences in the mapping of memory
accesses between a C compiler and the C2H Compiler.

A C compiler generally allocates many types of variables in your data memory. These
include scalars, arrays, and structures that are local, static, or global. When allocated
in memory, variables are relatively cheap due to the low cost per bit of memory
(especially external memory) and relatively slow due to the overhead of load or store
instructions used to access them. In some situations, a C compiler is able to use
processor registers for local variables. When allocated in processor registers, these
variables are relatively fast and expensive.

The C2H Compiler allocates local scalar variables in registers implemented with logic
elements (LEs), which have a moderate cost and are fast.

A C compiler maps pointer dereferences and array accesses to a small number of
instructions to perform the address calculation and access to your data memory.
Pointer dereferences and array accesses are relatively cheap and slow.

Example 5–1. Pipelined Computation

int sumfunc(int a, int b, int c, int d)
{
int sum1 = a + b;
int sum2 = c + d;
int result = sum1 + sum2;
return result;
}

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–5
Factors Affecting C2H Results
The C2H Compiler maps pointer dereferences and array accesses to a small amount of
logic to perform the address calculation and creates a unique Avalon®
Memory-Mapped (Avalon-MM) master port to access the addressed memory. This
mapping is expensive due to the logic required to create an Avalon-MM master port.
It is slow or fast depending on the type of memory connected to the port. Local arrays
are fast because the C2H Compiler implements them as on-chip memories.

Arithmetic and Logical Operations
Table 5–2 provides a summary of the key differences in the mapping of arithmetic and
logical operations between a C compiler and the C2H Compiler.

A C compiler maps arithmetic and logical operations into one or more instructions. In
many cases, it can map them to one instruction. In other cases, it might need to call a
function to implement the operation. An example of the latter occurs when a Nios II
processor that does not have a hardware multiplier or divider performs a multiply
operation.

The C2H Compiler implements the following logical operations simply as wires
without consuming any logic at all.

■ Shifts by a constant

■ Multiplies and divides by a power of two constant

■ Bitwise ANDs and ORs by a constant

As a result, these operations are fast and free. The following is an example of one of
these operations:

int result = some_int >> 2;

A C compiler maps this statement to a right shift instruction. The C2H Compiler maps
the statement to wires that perform the shift.

Table 5–1. Memory Accesses

C Construct C Compiler Implementation
C2H Implementation

Local scalar variables Allocated in memory (cheap, slow) or
allocated in processor registers
(expensive, fast)

Allocated in registers based on logic
elements (LEs) (moderate cost, fast)

Uninitialized local array variables Allocated in memory (cheap, slow) Allocated in on-chip memory.
(expensive, fast)

Initialized local array variables Allocated in memory (cheap, slow) Allocated in memory (cheap, slow)

All other types of variables Allocated in memory (cheap, slow) Allocated in memory (cheap, slow)

Pointer dereferences and nonlocal array
accesses

Access normal data memory (cheap,
slow)

Avalon-MM master port (expensive,
slow or fast)
© June 2008 Altera Corporation Embedded Design Handbook

5–6 Chapter 5: Optimizing Nios II C2H Compiler Results
Factors Affecting C2H Results
Statements
A C compiler maps long expressions (those with many operators) to instructions. The
C2H Compiler maps long expressions to logic which could create a long timing path.
The following is an example of a long expression:

int sum = a + b + c + d + e + f + g + h;

A C compiler creates a series of add instructions to compute the result. The C2H
Compiler creates several adders chained together. The resulting computation has a
throughput of one data transfer per clock cycle and a latency of one cycle.

A C compiler maps a large function to a large number of instructions. The C2H
Compiler maps a large function to a large amount of logic which is expensive and
potentially degrades fMAX. If possible, remove from the function any C code that does
not have to be accelerated.

Table 5–2. Arithmetic and Logical Operations

C Construct C Compiler Implementation C2H Implementation

Shift by constant or multiply or divide
by power of 2 constant. (1)

Example: y = x/2;

Shift instruction (cheap, fast) Wires (free, fast)

Shift by variable

Example: y = x >> z;

Shift instruction (cheap, fast) Barrel shifter (expensive, fast)

Multiply by a value that is not a power
of 2 (constant or variable

Example: y = x × z;

Multiply operation (cheap, slow) If the Quartus II software can produce
an optimized multiply circuit (cheap,
fast); otherwise a multiply circuit
(expensive, fast)

Divide by a value that is not a power of
2 (constant or variable)

Example: y = x/z;

Divide operation (cheap, slow) Divider circuit (expensive, slow)

Bitwise AND or bitwise OR with
constant

Example: y = x | 0xFFFF;

AND or OR instruction (cheap, fast) Wires (free, fast)

Bitwise AND or bitwise OR with variable

Example: y = x & z;

AND or OR instruction (cheap, fast) Logic (cheap, fast)

Notes to Table 5–2:

(1) Dividing by a negative power of 2 is expensive.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–7
Factors Affecting C2H Results
A C compiler maps mutually exclusive, multiple assignments to a local variable as
store instructions or processor register writes, which are both relatively cheap and
fast. However, the C2H Compiler creates logic to multiplex between the possible
assignments to the selected variable. Example 5–2 illustrates such a case.

A C compiler maps this C code to a series of conditional branch instructions and
associated expression evaluation instructions. The C2H Compiler maps this C code to
logic to evaluate the conditions and a three-input multiplexer to assign the correct
value to result. Each assignment to result adds another input to the multiplexer.
The assignments increase the amount of the logic, and might create a long timing
path. Table 5–3 summarizes the key differences between the C compiler and C2H
Compiler in handing C constructs.

Control Flow
Table 5–4 provides a summary of the differences in the mapping of control flow
between a C compiler and the C2H Compiler.

If Statements
The C2H compiler maps the expression of the if statement to control logic. The
statement is controlled by the expression portion of the if statement.

Example 5–2. Multiple Assignments to a Single Variable

int result;
if (a > 100)
{
result = b;
}
else if (a > 10)
{
result = c;
}
else if (a > 1)
{
result = d;
}

Table 5–3. Statements

C Construct C Compiler Implementation C2H Implementation

Long expressions Several instructions (cheap, slow) Logic (cheap, degrades fMAX)

Large functions Many instructions (cheap, slow) Logic (expensive, degrades fMAX)

Multiple assignments to a local variable Store instructions or processor register
writes (cheap, fast)

Logic (cheap, degrades fMAX)
© June 2008 Altera Corporation Embedded Design Handbook

5–8 Chapter 5: Optimizing Nios II C2H Compiler Results
Factors Affecting C2H Results
Loops
Loops include for loops, do loops, and while loops. A C compiler and the C2H
Compiler both treat the expression evaluation part of a loop just like the expression
evaluation in an if statement. However, the C2H Compiler attempts to pipeline each
loop iteration to achieve a throughput of one iteration per cycle. Often there is no
overhead for each loop iteration in the C2H accelerator, because it executes the loop
control concurrently with the body of the loop. The data and control paths pipelining
allows the control path to control the data path. If the control path (loop expression) is
dependent on a variable calculated within the loop, the throughput decreases because
the data path must complete before control path can allow another loop iteration.

The expression, while (++a < 10) { b++ };runs every cycle because there is no
data dependency. On the other hand, while (a < 10) { a++ }; takes 2 cycles to
run because the value of <a> is calculated in the loop.

A C compiler maps switch statements to the equivalent if statements or possibly to
a jump table. The C2H Compiler maps switch statements to the equivalent if
statements.

Subfunction Calls
A C compiler maps subfunction calls to a few instructions to pass arguments to or
from the subfunction and a few instructions to call the subfunction. A C compiler
might also convert the subfunction into inline code. The C2H Compiler maps a
subfunction call made in your top-level accelerated function into a new accelerator.
This technique is expensive, and stalls the pipeline in the top-level accelerated
function. It might result in a severe performance degradation.

Table 5–4. Control Flow

C Construct C Compiler Implementation C2H Implementation

if statements A few instructions (cheap, slow) Logic (cheap, fast)

Loops A few instructions of overhead per loop iteration (cheap, slow) Logic (moderate, fast)

Switch statements A few instructions (cheap, slow) Logic (moderate, fast)

Ternary operation A few instructions (cheap, slow) Logic (cheap, fast)
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–9
Factors Affecting C2H Results
However, if the subfunction has a fixed, deterministic execution time, the outer
function attempts to pipeline the subfunction call, avoiding the performance
degradation. In Example 5–3, the subfunction call is pipelined.

Resource Sharing
By default, the C2H Compiler creates unique instances of hardware resources for each
operation encountered in your C code. If this translation consumes too many
resources, you can change your C code to share resources. One mechanism to share
resources is to use shared subfunctions in your C code. Simply place the code to be
shared in a subfunction and call it from your main accelerated function. The C2H
Compiler creates only one instance of the hardware in the function, shared by all
function callers.

Example 5–4 uses a subfunction to share one multiplier between two multiplication
operations.

Data Dependencies
A data dependency occurs when your C code has variables whose values are
dependent on the values of other variables. Data dependency prevents a C compiler
from performing some optimizations which typically result in minor performance
degradation. When the C2H Compiler maps code to hardware, a data dependency
causes it to schedule operations sequentially instead of concurrently, which can cause
a dramatic performance degradation.

Example 5–3. Pipeline Stall

int abs(int a)
{
return (a < 0) ? –a : a;
}
int abs_sum(int* arr, int num_elements)
{
int i;
int result = 0;
for (i = 0; i < num_elements; i++)
{
result += abs(*arr++);
}
return result;
}

Example 5–4. Shared Multiplier

int mul2(int x, int y)
{

return x * y;
}
int muladd(int a, int b, int c, int d)
{

int prod1 = mul2(a, b);
int prod2 = mul2(c, d);
int result = prod1 + prod2;
return result;

}

© June 2008 Altera Corporation Embedded Design Handbook

5–10 Chapter 5: Optimizing Nios II C2H Compiler Results
Factors Affecting C2H Results
The algorithm in Example 5–5 shows data dependency.

The C2H Compiler schedules the additions for sum1 and result sequentially due to
the dependency on sum1.

Memory Architecture
The types of memory and how they are connected to your system, including the C2H
accelerator, define the memory system architecture. For many algorithms, appropriate
memory architecture is critical to achieving high performance with the C2H Compiler.
With an inappropriate memory architecture, an accelerated algorithm can perform
more poorly than the same algorithm running on a processor.

Due to the concurrency possible in a C2H accelerator, compute-limited algorithms
might become data-limited algorithms. To achieve the highest levels of performance,
carefully consider the best memory architecture for your algorithm and modify your
C code accordingly to increase memory bandwidth.

For the following discussion, assume that the initial memory architecture is a
processor with a data cache connected to an off-chip memory such as DDR SDRAM.

The C code in Example 5–6 is data-limited when accelerated by the C2H Compiler
because the src and dst dereferences both create Avalon-MM master ports that
access the same Avalon-MM slave port. An Avalon-MM slave port can only handle
one read or write operation at any given time; consequently, the accesses are
interleaved, limiting the throughput to the memory bandwidth.

The C2H Compiler is able to achieve a throughput of one data transfer per clock cycle
if the code is modified and the appropriate memory architecture is available. The
changes required to achieve this goal are covered in “Efficiency Metrics” on
page 5–11.

Example 5–5. Data Dependency

int sum3(int a, int b, int c)
{
int sum1 = a + b;
int result = sum1 + c;
return result;
}

Example 5–6. Memory Bandwidth Limitation

void memcpy(char* dst, char* src, int num_bytes)
{
while (num_bytes-- > 0)
{
*dst++ = *src++;
}
}

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–11
Efficiency Metrics
Data Cache Coherency
When a C2H accelerator accesses memory, it uses its own Avalon-MM master port,
which bypasses the Nios II data cache. Before invoking the accelerator, if the data is
potentially stored in cache, the Nios II processor must write it to memory, thus
avoiding the typical cache coherency problem. This cache coherency issue is found in
any multimaster system that lacks support for hardware cache coherency protocols.

When you configure the C2H accelerator, you choose whether or not the Nios II
processor flushes the data cache whenever it calls the accelerated function. If you
enable this option, it adds to the overhead of calling the accelerator and causes the rest
of the C code on the processor to temporarily run more slowly because the data cache
must be reloaded.

You can avoid flushing the entire data cache. If the processor never shares data
accessed by the accelerator, it does not need to flush the data cache. However, if you
use memory to pass data between the processor and the accelerator, as is often the
case, it might be possible to change the C code running on the processor to use
uncacheable accesses to the shared data. In this case, the processor does not need to
flush the data cache, but it has slower access to the shared data. Alternatively, if the
size of the shared data is substantially smaller than the size of the data cache, the
processor only needs to flush the shared data before calling the accelerator.

Another option is to use a processor without a data cache. Running without a cache
slows down all processor accesses to memory but the acceleration provided by the
C2H accelerator might be substantial enough to result in the overall fastest solution.

DRAM Architecture
Memory architectures consisting of a single DRAM typically require modification to
maximize C2H accelerator performance. One problem with the DRAM architecture is
that memory performance degrades if accesses to it are nonsequential. Because the
DRAM has only one port, multiple Avalon-MM master ports accessing it concurrently
prevent sequential accesses by one Avalon-MM master from occurring.

The default behavior of the arbiter in an SOPC Builder system is round-robin. If the
DRAM controller (such as the Altera Avalon SDRAM controller) can only keep one
memory bank open at a time, the master ports experience long stalls and do not
achieve high throughput. Stalls can cause the performance of any algorithm
accelerated using the C2H Compiler to degrade if it accesses memory nonsequentially
due to multiple master accesses or nonsequential addressing.

f For additional information about optimizing memory architectures in a Nios II
system, refer to the Cache and Tightly-Coupled Memory in the Nios II Software Developer’s
Handbook.

Efficiency Metrics
There are several ways to measure the efficiency of a C2H accelerator. The relative
importance of these metrics depends on the nature of your application. This section
explains each efficiency metric in detail.
© June 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

5–12 Chapter 5: Optimizing Nios II C2H Compiler Results
Efficiency Metrics
Cycles Per Loop Iteration (CPLI)
The C2H report section contains a CPLI value for each loop in an accelerated function.
The CPLI value represents the number of clock cycles each iteration of the loop takes
to complete once the initial latency is overcome. The goal is to minimize the CPLI
value for each loop to increase the data throughput. It is especially important that the
innermost loop of the function have the lowest possible CPLI because it executes the
most often.

The CPLI value does not take into account any hardware stalls that might occur. A
shared resource such as memory stalls the loop if it is not available. If you nest
looping structures the outer loops stall and, as a result, reduce the throughput of the
outer loops even if their CPLI equals one. The “Optimization Techniques” on
page 5–14 section offers methods for maximizing the throughput of loops accelerated
with the C2H Compiler.

Optimizations that can help CPLI are as follows:

■ Reducing data dependencies

■ Reducing the system interconnect fabric by using the connect_variable
pragma

fMAX is the maximum frequency at which a hardware design can run. The longest
register-to-register delay or critical path determines fMAX. The Quartus II software
reports the fMAX of a design after each compilation.

Adding accelerated functions to your design can potentially affect fMAX in two ways:
by adding a new critical path, or by adding enough logic to the design that the
Quartus II fitter fails to fit the elements of the critical path close enough to each other
to maintain the path's previous delay. The optimizations that can help with fMAX are as
follows:

■ Pipelined calculations

■ Avoiding division

■ Reducing system interconnect fabric by using the connect_variable pragma

■ Reducing unnecessary memory connections to the Nios II processor

FPGA Resource Usage
Because an accelerated function is implemented in FPGA hardware, it consumes
FPGA resources such as logic elements and memory. Sometimes, an accelerator
consumes more FPGA resources than is desired or expected. Unanticipated resource
usage has the disadvantage of consuming resources that are needed for other logic
and can also degrade system fMAX.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–13
Efficiency Metrics
Avalon-MM Master Ports
The number of Avalon-MM master ports on the accelerator can heavily influence logic
utilization. The C2H report, which the Nios II IDE displays after accelerating the
function, reports how many Avalon-MM ports are generated. Multiple master ports
can help increase the parallelization of logic when attached to separate memories.
However, they have a cost in logic, and can also promote the creation of excessive
arbitration logic when connected to the same memory port, as shown in Figure 5–1.

Embedded Multipliers
Multiplication logic is often available on the FPGA as dedicated hardware or created
using logic elements. When you use dedicated hardware, be aware that having a large
amount of multiplication logic can degrade the routing of your design because the
fitter cannot place the multiplier columns to achieve a better fit. When creating
multiplication logic from logic elements, be aware that this is expensive in resource
usage, and can degrade fMAX.

If one of the operands in a multiplication is a constant, the Quartus II software
determines the most efficient implementation. Example 5–7 shows a optimization the
Quartus II software might make:

Because the optimized equation includes multiplications by a constant factor of 2, the
Quartus II software turns them into 2 shifts plus a add.

Figure 5–1. Too Many Master Ports

Example 5–7. Quartus II Software Optimization for Multiplication by a Constant

/* C code mulitplication by a constant */
c = 7 × a;

/* Quartus II software optimization */
c = (4 × a) + (2 × a) + a;

SDRAM

CPU

C2H
Accelerator

On-Chip
RAM

Arbiter

Arbiter

Master

Master
Master
Master
Master
Master
Master
© June 2008 Altera Corporation Embedded Design Handbook

5–14 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
Embedded Memory
Embedded memory is a valuable resource for many hardware accelerators due to its
high speed and fixed latency. Another benefit of embedded memory is that it can be
configured with dual ports. Dual-ported memory allows two concurrent accesses to
occur, potentially doubling the memory bandwidth. Whenever your code declares an
uninitialized local array in an accelerated function, the C2H Compiler instantiates
embedded memory to hold its contents. Use embedded memory only when it is
appropriate; do not waste it on operations that do not benefit from its high
performance.

Optimization tips that can help reduce FPGA resource use are:

■ Using wide memory accesses

■ Keeping loops rolled up

■ Using narrow local variables

Data Throughput
Data throughput for accelerated functions is difficult to quantify. The Altera
development tools do not report any value that directly corresponds to data
throughput. The only true data throughput metrics reported are the number of clock
cycles and the average number of clock cycles it takes for the accelerated function to
complete. One method of measuring the data throughput is to use the amount of data
processed and divide by the amount of time required to do so. You can use the Nios II
processor to measure the amount of time the accelerator spends processing data to
create an accurate measurement of the accelerator throughput.

Before accelerating a function, profile the source code to locate the sections of your
algorithm that are the most time-consuming. If possible, leave the profiling features in
place while you are accelerating the code, so you can easily judge the benefits of using
the accelerator. The following general optimizations can maximize the throughput of
an accelerated function:

■ Using wide memory accesses

■ Using localized data

f For more information about profiling Nios II systems, refer to Application Note 391:
Profiling Nios II Systems.

Optimization Techniques

Pipelining Calculations
Although condensing multiple mathematical operations to a single line of C code, as
in Example 5–8, can reduce the latency of an assignment, it can also reduce the clock
speed of the entire design.

Example 5–8. Non-Pipelined Calculation (Lower Latency, Degraded fMAX)

int result = a + b + c + d + e + f + g + h;
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/an/an391.pdf

Chapter 5: Optimizing Nios II C2H Compiler Results 5–15
Optimization Techniques
Figure 5–2 shows the hardware generated for Example.

Often, you can break the assignment into smaller steps, as shown in Example 5–9. The
smaller steps increase the loop latency, avoiding fMAX degradation.

Figure 5–3 shows the hardware generated for Example 5–9.

Figure 5–2. Non-Pipelined Calculations

Example 5–9. Pipelined Calculation (Higher Latency, No fMAX Degradation)

int result_abcd = a + b + c + d;
int result_efgh = e + f + g + h;
int result = result_abcd + result_efgh;

Figure 5–3. Pipelined Calculations

result

h

c

d

e

f

g

b

a

h

g

c

d

b

a

result

f

e

© June 2008 Altera Corporation Embedded Design Handbook

5–16 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
Increasing Memory Efficiency
The following sections discuss coding practices that improve C2H performance.

Use Wide Memory Accesses
When software runs on a processor with a data cache, byte and halfword accesses to
DRAM become full word transfers to and from the cache to guarantee efficient use of
memory bandwidth. By contrast, when you make byte and halfword DRAM accesses
in a C2H accelerator, as shown in Example 5–10, the Avalon-MM master port
connected to the DRAM uses narrow accesses and fails to take advantage of the full
data width of the memory.

Figure 5–4 shows the hardware generated for Example 5–10.

Example 5–10. Narrow Memory Access (Slower Memory Access)

unsigned char narrow_array[1024];
char a, b, c, d;
for(i = 0; i < 1024; i+=4)
{
a = narrow_array[i];
b = narrow_array[i+1];
c = narrow_array[i+2];
d = narrow_array[i+3];
}

Figure 5–4. Narrow Memory Access

a = 8-bit read

c = 8-bit read

d = 8-bit read
i+=4

b = 8-bit read

i < 1024?
true

false

State 0

State 1

State 2

State 3
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–17
Optimization Techniques
In a situation where multiple narrow memory accesses are needed, it might be
possible to combine those multiple narrow accesses into a single wider access, as
shown in Example 5–11. Combining accesses results in the use of fewer memory clock
cycles to access the same amount of data. Consolidating four consecutive 8-bit
accesses into one 32-bit access effectively increases the performance of those accesses
by a factor of four.

Figure 5–5 shows the hardware generated for Example 5–11.

Example 5–11. Wide Memory Access (Faster Memory Access)

unsigned int *wide_array = (unsigned int *) narrow_array;
unsigned int temp;
for(i = 0; i < 256; i++)
{
temp = wide_array[i];

a = (char)(temp and 0x000000FF);
b = (char)((temp and 0x0000FF00) >> 8);
c = (char)((temp and 0x00FF0000) >> 16);
d = (char)((temp and 0xFF000000) >> 24);
}

Figure 5–5. Wide Memory Access

temp = 32-bit read

i < 256?
true

false

State 0

State 1

a = temp & 0x000000FF
b = temp & 0x0000FF00 >> 8
c = temp & 0x00FF0000 >> 16
d = temp & 0xFF000000 >> 24
i++
© June 2008 Altera Corporation Embedded Design Handbook

5–18 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
Segment the Memory Architecture
Memory segmentation is an important strategy to increase the throughput of the
accelerator. Memory segmentation leads to concurrent memory access, increasing the
memory throughput. There are multiple ways to segment your memory and the
method used is typically application specific. Refer to Example 5–12 for the following
discussions of memory segmentation optimizations.

If the src and dst memory regions can be moved from the DRAM to an on-chip or
off-chip SRAM, better performance is possible. To add on-chip memories, use SOPC
Builder to instantiate an on-chip memory component (called onchip_mem_0 in this
example) with a 32-bit wide Avalon-MM slave port. Add the following pragmas to
your C code before memcpy:

#pragma altera_accelerate connect_variable memcpy/dst to onchip_mem_0

#pragma altera_accelerate connect_variable memcpy/src to onchip_mem_0

The pragmas state that dst and src only connect to the onchip_mem_0 component.
This memory architecture offers better performance because SRAMs do not require
large bursts like DRAMs to operate efficiently and on-chip memories operate at very
low latencies. Figure Figure 5–6 shows the hardware generated for Example 5–12 with
the data residing in on-chip RAM.

However, both master ports still share the single-port SRAM, onchip_mem_0, which
can lead to a maximum throughput of one loop iteration every two clock cycles (a
CPLI of 2). There are two solutions to this problem: Either create another SRAM so
that each Avalon-MM master port has a dedicated memory, or configure the
memories with dual-ports. For the latter solution, open your system in SOPC Builder
and change the onchip_mem_0 component to have two ports. This change creates
slave ports called s1 and s2 allowing the connection pragmas to use each memory
port as follows:

Example 5–12. Memory Copy

void memcpy(char* dst, char* src, int num_bytes)
{
while (num_bytes-- > 0)
{
*dst++ = *src++;
}
}

Figure 5–6. Use On-Chip Memory - Partition Memory for Better Bandwidth

SDRAMCPU

onchip_mem_0Arbiter
C2H

Accelerator

*src

*dst
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–19
Optimization Techniques
#pragma altera_accelerate connect_variable memcpy/dst to onchip_mem_0/s1

#pragma altera_accelerate connect_variable memcpy/src to onchip_mem_0/s2

These pragmas state that dst only accesses slave port s1 of the onchip_mem_0
component and that src only accesses slave port s2 of the onchip_mem_0
component. This new version of memcpy along with the improved memory
architecture achieves a maximum throughput of one loop iteration per cycle (a CPLI
of 1). Figure 5–7 shows the hardware generated for Example 5–12 with the data stored
in dual-port on-chip RAM.

Use Localized Data
Pointer dereferences and array accesses in accelerated functions always result in
memory transactions though an Avalon-MM master port. Therefore, if you use a
pointer to store temporary data inside an algorithm, as in Example 5–13, there is a
memory access every time that temporary data is needed, which might stall the
pipeline.

Often, storing that temporary data in a local variable, as in Example 5–14, increases
the performance of the accelerator by reducing the number of times the accelerator
must make an Avalon-MM access to memory. Local variables are the fastest type of
storage in an accelerated function and are very effective for storing temporary data.

Figure 5–7. Use Dual-Port On-Chip Memory

Example 5–13. Temporary Data in Memory (Slower)

for(i = 0; i < 1024; i++)
{
for(j = 0; j < 10; j++)
{/* read and write to the same location */
AnArray[i] += AnArray[i] * 3;
}
}

SDRAMCPU

onchip_mem_0

Arbiter

C2H
Accelerator

*src

*dst

*src and *dst can access memory concurrently

s1

s2
© June 2008 Altera Corporation Embedded Design Handbook

5–20 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
Although local variables can help performance, too many local variables can lead to
excessive resource usage. This is a tradeoff you can experiment with when
accelerating a function with the C2H Compiler.

Reducing Data Dependencies
The following sections provide information on reducing data dependencies.

Use __restrict__
By default, the C2H Compiler cannot pipeline read and write pointer accesses because
read and write operations may occur at the same memory location. If you know that
the src and dst memory regions do not overlap, add the __restrict__ keyword
to the pointer declarations, as shown in Example 5–15.

The __restrict__ declaration on a pointer specifies that accesses via that pointer
do not alias any memory addresses accessed by other pointers. Without
__restrict__, the C2H Compiler must schedule accesses to pointers strictly as
written which can severely reduce performance.

It is very important that you verify that your algorithm operates correctly when using
__restrict__ because this option can cause sequential code to fail when
accelerated. The most common error is caused by a read and write pointer causing
overlapping accesses to a dual port memory. You might not detect this situation when
the function executes in software, because a processor can only perform one access at
a time, however by using __restrict__ you are allowing the C2H Compiler to
potentially schedule the read and write accesses of two pointers to occur concurrently.

Example 5–14. Temporary Data in Registers (Faster)

int temporary;
for(i = 0; i < 1024; i++)
{
temporary = AnArray[i]; /* read from location i */
for(j = 0; j < 10; j++)
{

 /* read and write to a registered value */
temporary += temporary * 3;
}
AnArray[i] = temporary; /* write to location i */
}

Example 5–15. __ restrict__ Usage

void memcpy(char* __restrict__ dst, char* __restrict__ src, int
num_bytes)
{
while (num_bytes-- > 0)
{
*dst++ = *src++;
}
}

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–21
Optimization Techniques
The most common type of data dependency is between scalar data variables. A scalar
data dependency occurs when an assignment relies on the result of one or more other
assignments. The C code in Example 5–16 shows a data dependency between sum1
and result:

A C compiler attempts to schedule the instructions to prevent the processor pipeline
from stalling. There is no limit to the number of concurrent operations which you can
exploit with the C2H Compiler. Adding all three integers in one assignment removes
the data dependency, as shown in Example 5–17.

The other common type of data dependency is between elements of an array of data.
The C2H Compiler treats the array as a single piece of data, assuming that all accesses
to the array overlap. For example, the swap01 function in Example 5–18 swaps the
values at index 0 and index 1 in the array pointed to by <p>.

Example 5–16. Scalar Data Dependency

int sum3(int a, int b, int c)
{
int sum1 = a + b;
int result = sum1 + c;
return result;
}

Example 5–17. Scalar Data Dependency Removed

int sum3(int a, int b, int c)
{
int result = a + b + c;
return result;
}

Example 5–18. Array Data Dependency

void swap01(int* p)
{
int tmp = p[0];
p[0] = p[1];
p[1] = tmp;
}

© June 2008 Altera Corporation Embedded Design Handbook

5–22 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
The C2H Compiler is unable to detect that the p[0] and p[1] accesses are to different
locations so it schedules the assignments to p[0] and p[1] sequentially. To force the
C2H Compiler to schedule these assignments concurrently, add __restrict__ to
the pointer declaration, as shown in Example 5–19.

Now, the C2H Compiler attempts to perform the assignments to p[0] and p[1]
concurrently. In this example, there is only a significant performance increase if the
memory containing p[0] and p[1] has two or more write ports. If the memory is
single-ported then one access stalls the other and little or no performance is gained.

A form of scalar or array data dependency is the in-scope data dependency.
Example 5–20 exhibits an in-scope dependency, because it takes pointers to two arrays
and their sizes and returns the sum of the contents of both arrays.

There is a dependency on the sum variable which causes C2H accelerator to execute
the two loops sequentially. There is no dependency on the loop index variable <i>
between the two loops because the algorithm reassigns <i> to 0 in the beginning of the
second loop.

Example 5–19. Array Data Dependency Removed

void swap01(int* p)
{
int* __restrict__ p0 = andp[0];
int* __restrict__ p1 = andp[1];
int tmp0 = *p0;
int tmp1 = *p1;
*p0 = tmp1;
*p1 = tmp0;
}

Example 5–20. In-Scope Data Dependency

int sum_arrays(int* arr_a, int* arr_b,
int size_a, int size_b)
{
int i;
int sum = 0;
for (i = 0; i < size_a; i++)
{
sum += arr_a[i];
}
for (i = 0; i < size_b; i++)
{
sum += arr_b[i];
}
return sum;
}

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–23
Optimization Techniques
Example 5–21 shows a new version of sum_arrays that removes the in-scope
dependency:

Using separate sum variables in each loop removes the in-scope dependency. The
accelerator adds the two independent sums together at the end of the function to
produce the final sum. Each loop runs concurrently although the longest loop
determines the execution time. For best performance, connect arr_a and arr_b to a
memory with two read ports or two separate memories.

Sometimes it is not possible to remove data dependencies by simple changes to the C
code. Instead, you might need to use a different algorithm to implement the same
functionality. In Example 5–22, the code searches for a value in a linked list and
returns 1 if the value found and 0 if it is not found. Arguments to the search function
are the pointer to the head of the linked list and the value to match against.

Example 5–21. In-Scope Data Dependency Removed

int sum_arrays(int* arr_a, int* arr_b,
int size_a, int size_b)
{
int i;
int sum_a = 0;
int sum_b = 0;
for (i = 0; i < size_a; i++)
{
sum_a += arr_a[i];
}
for (i = 0; i < size_b; i++)
{
sum_b += arr_b[i];
}
return sum_a + sum_b;
}

Example 5–22. Pointer-Based Data Dependency

struct item
{
int value;
struct item* next;
};
int search(struct item* head, int match_value)
{
struct item* p;
for (p=head; p != NULL; p=p->next)
{
if (p->value == match_value)
{
return 1; // Found a match
}
}
return 0; // No match found
}

© June 2008 Altera Corporation Embedded Design Handbook

5–24 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
The C2H Compiler is not able to achieve a throughput of one comparison per cycle
due to the p=p->next <p> does not occur until the next pointer location has been
read from memory, causing a latency penalty to occur each time the loop state
machine reaches this line of C code. To achieve better performance, use a different
algorithm that supports more parallelism. For example, assume that the values are
stored in an array instead of a linked list, as in Example 5–23. Arguments to the new
search function are the pointer to the array, the size of the array, and the value to
match against.

This new search function achieves a throughput of one comparison per cycle
assuming there is no contention for memory containing the arr array. Prototype such
a change in software before accelerating the code, because the change affects the
functionality of the algorithm.

Reducing Logic Utilization
The following sections discuss coding practices you can adopt to reduce logic
utilization.

Use "do-while" rather than "while"
The overhead of do loops is lower than those of the equivalent while and for loops
because the accelerator checks the loop condition after one iteration of the loop has
executed. The C2H Compiler treats a while loop like a do loop nested in an if
statement. Example 5–24 illustrates code that the C2H Compiler transforms into a do
loop and nested if statement.

Example 5–23. Pointer-Based Data Dependency Removed

int search(int* arr, int num_elements, int match_value)
{
for (i = 0; i < num_elements; i++)
{
if (arr[i] == match_value)
{
return 1; // Found a match
}
}
return 0; // No match found
}

Example 5–24. while Loop

int sum(int* arr, int num_elements)
{
int result = 0;
while (num_elements-- > 0)
{
result += *arr++;
}
return result;
}

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–25
Optimization Techniques
Example 5–25 is the same function rewritten to show how the C2H Compiler converts
a while loop to an if statement and a do loop.

Notice that an extra if statement outside the do loop is required to convert the while
loop to a do loop. If you know that the sum function is never called with an empty
array, that is, the initial value of num_elements is always greater than zero, the most
efficient C2H code uses a do loop instead of the original while loop. Example 5–26
illustrates this optimization.

Use Constants
Constants provide a minor performance advantage in C code compiled for a
processor. However, they can provide substantial performance improvements in a
C2H accelerator.

Example 5–27 demonstrates a typical add and round function.

Example 5–25. Converted while Loop

int sum(int* arr, int num_elements)
{
int result = 0;
if (num_elements > 0)
{
do
{
result += *arr++;
} while (--num_elements > 0);
}
return result;
}

Example 5–26. do Loop

int sum(int* arr, int num_elements)
{
int result = 0;
do
{
result += *arr++;
} while (--num_elements > 0);
return result;
}

Example 5–27. Add and Round with Variable Shift Value

int add_round(int a, int b, int sft_amount)
{
int sum = a + b;
return sum >> sft_amount;
}

© June 2008 Altera Corporation Embedded Design Handbook

5–26 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
As written above, the C2H Compiler creates a barrel shifter for the right shift
operation. If add_round is always called with the same value for sft_amount, you
can improve the accelerated function's efficiency by changing the sft_amount
function parameter to a #define value and changing all your calls to the function.
Example 5–28 is an example of such an optimization.

Alternatively, if add_round is called with a few possible values for sft_amount,
you can still avoid the barrel shifter by using a switch statement which just creates a
multiplexer and a small amount of control logic. Example 5–29 is an example of such
an optimization.

You can also use these techniques to avoid creating a multiplier or divider. This
technique is particularly beneficial for division operations because the hardware
responsible for the division is large and relatively slow.

Example 5–28. Add and Round with Constant Shift Value

#define SFT_AMOUNT 1
int add_round(int a, int b)
{
int sum = a + b;
return sum >> SFT_AMOUNT;
}

Example 5–29. Add and Round with a Finite Number of Shift Values

int add_round(int a, int b, int sft_amount)
{
int sum = a + b;
switch (sft_amount)
{
case 1:
return sum >> 1;
case 2:
return sum >> 2;
}
return 0; // Should never be reached
}

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–27
Optimization Techniques
Leave Loops Rolled Up
Sometimes developers unroll loops to achieve better results using a C compiler.
Because the C2H Compiler attempts to pipeline all loops, unrolling loops is
unnecessary for C2H code. In fact, unrolled loops tend to produce worse results
because the C2H Compiler creates extra logic. It is best to leave the loop rolled up.
Example 5–30 shows an accumulator algorithm that was unrolled in order to execute
faster on a processor.

This function is passed an array of 100 integers, accumulates each element, and
returns the sum. To achieve higher performance on a processor, the developer has
unrolled the inner loop four times, reducing the loop overhead by a factor of four
when executed on a processor. When the C2H Compiler maps this code to hardware,
there is no loop overhead because the accelerator executes the loop overhead
statements concurrently with the loop body.

As a result of unrolling the code, the C2H Compiler creates four times more logic
because four separate assignments are used. The C2H Compiler creates four
Avalon-MM master ports in the loop. However, an Avalon-MM master port can only
perform one read or write operation at any given time. The four master ports must
interleave their accesses, eliminating any advantage of having multiple masters.

Example 5–30 shows how resource sharing (memory) can cause parallelism to be
nullified. Instead of using four assignments, roll this loop up as shown in
Example 5–31.

Example 5–30. Unrolled Loop

int sum(int* arr)
{
int i;
int result = 0;
for (i = 0; i < 100; i += 4)
{
result += *arr++;
result += *arr++;
result += *arr++;
result += *arr++;
}
return result;
}

Example 5–31. Rolled-Up Loop

int sum(int* arr)
{
int i;
int result = 0;
for (i = 0; i < 100; i++)
{
result += *arr++;
}
return result;
}

© June 2008 Altera Corporation Embedded Design Handbook

5–28 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
This implementation achieves the same throughput as the previous unrolled example
because this loop can potentially iterate every clock cycle. The unrolled algorithm
iterates every four clock cycles due to memory stalls. Because these two algorithms
achieve the same throughput, the added benefit of the rolling optimization is savings
on logic resources such as Avalon-MM master ports and additional accumulation
logic.

Use ++ to Sequentially Access Arrays
The unrolled version of the sum function in Example 5–30 uses *arr++ to
sequentially access all elements of the array. This procedure is more efficient than the
alterative shown in Example 5–32.

The C2H Compiler must create pointer dereferences for both arr[i] and *arr++.
However, the instantiated logic is different for each case. For *arr++ the value used
to address memory is the pointer value itself, which is capable of incrementing. For
arr[i] the accelerator must add base address arr to the counter value i. Both
require counters, however in the case of arr[i] an adder block is necessary, which
creates more logic.

Avoid Excessive Pointer Dereferences
Any pointer dereference via the dereference operator * or array indexing might create
an Avalon-MM master port. Avoid using excessive pointer dereference operations
because they lead to both additional logic which degrades the fMAX of the design.

1 Any local arrays within the accelerated function instantiate on-chip memory
resources. Do not declare large local arrays because the amount of on-chip memory is
limited and excessive use affects the routing of the design.

Avoid Multipliers
Embedded multipliers have become a standard feature of FPGAs; however, they are
still limited resources. When you accelerate source code that uses a multiplication
function, the C2H accelerator instantiates a multiplier. Embedded multiplier blocks
have various modes that allow them to be segmented into smaller multiplication units
depending on the width of the data being used. They also have the ability to perform
multiply and accumulate functionality.

Example 5–32. Traversing Array with Index

int sum(int* arr)
{
int i;
int result = 0;
for (i = 0; i < 100; i++)
{
result += arr[i];
}
return result;
}

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–29
Optimization Techniques
When using multipliers in accelerated code validate the data width of the
multiplication to reduce the logic. The embedded multiplier blocks handle 9 by 9
(char *char), 18 by 18 (short *short), and 36 by 36 (long *long) modes which
are set depending on the size of the largest width input. Reducing the input width of
multiplications not only saves resources, but also improves the routing of the design,
because multiplier blocks are fixed resources. If multiplier blocks are not available or
the design requires too many multiplications, the Quartus II software uses logic
elements to create the multiplication hardware. Avoid this situation if possible,
because multipliers implemented in logic elements are expensive in terms of
resources and design speed.

Multiplications by powers of two do not instantiate multiplier logic because the
accelerator can implement them with left shift operations. The C2H Compiler
performs this optimization automatically, so it is not necessary to use the << operator.
When multiplication is necessary, try to use powers of two in order to save logic
resources and to benefit from the fast logic created for this operation. An assignment
that uses a multiplication by a power of two becomes a register-to-register path in
which the data is shifted in the system interconnect fabric.

When multiplying by a constant the Quartus II software optimizes the LEs either
using memory or logic optimizations. Example 5–33 shows an optimization for
multiplication by a constant.

C2H offloads the intelligence of multiplies, divides, and modulo to Quartus II
synthesis to do the right thing when possible.

Avoid Arbitrary Division
If at all possible, avoid using arbitrary division in accelerated functions, including the
modulus % operator. Arbitrary division occurs whenever the divisor is unknown at
compile time. True division operations in hardware are expensive and slow.

The exception to this rule is division by denominators which are positive powers of
two. Divisions by positive powers of two simply become binary right-shift operations.
Dividing by two can be accomplished by shifting the value right one bit. Dividing by
four is done by shifting right two bits, and so on. If the accelerated function uses the /
division operator, and the right-hand argument is a constant power of two, the C2H
Compiler converts the divide into a fixed-bit shift operation. In hardware, fixed-bit
shift operations result in only wires, which are free.

Example 5–33. Multiplication by Constants

/* This multiplication by a constant is optimized */
y = a × 3;

/*The optimization is shift and add: (2*a + a = 3*a) */
y = a << 1 + a

Example 5–34. Arbitrary Division (Expensive, Slow):

z = y / x; /* x can equal any value */
© June 2008 Altera Corporation Embedded Design Handbook

5–30 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
If a division operation in an accelerated function always uses a denominator that is a
power of two, but can use various multiples of two, you can use a ternary operation to
convert the divides to the appropriate fixed-bit shift, as shown in Example 5–35.

Figure 5–8 shows the hardware generated for Example.

The logic created by this optimization is relatively cheap and fast, consisting of a
multiplexer and minimal control logic. Because the assignments to z are just shifted
copies of y the multiplexer is the only logic in the register-to-register path. If there are
many possible denominator values, explore the tradeoff between latency and
frequency discussed in the“Improve Conditional Frequency” on page 5–37.

The other possible optimization to avoid generating an expensive and slow division
circuit is to implement a serial divider. Serial dividers have a high latency, but tend
not to degrade fMAX. Another benefit of using serial division is the relatively low cost of
the hardware generated because the operations performed are on bits instead of
words.

You can use macros in c2h_division.h and c2h_modulo.h to implement serial
division or modulo operations in your own system. These files are available on the
Nios II literature page. A hyperlink to the software files appears next to Optimizing
Nios II C2H Compiler Results (this document), at www.altera.com/literature/lit-
nio2.jsp. The two header files are distributed in a zip file.

Example 5–35. Division using Shifts with a Ternary Operator (Cheap, Fast)

z = (x == 2)? y >> 1:((x == 4)? y >> 2: y >> 4);

Figure 5–8. . Ternary Shift Divide

x

z

y >> 1 (zero logic)

>> 4 (zero logic)

>> 2 (zero logic) D Q
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51005.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51005.pdf

Chapter 5: Optimizing Nios II C2H Compiler Results 5–31
Optimization Techniques
Use Masks
Both the C compiler for a 32-bit processor and the C2H Compiler convert data types
smaller than integers to 32-bit integers. If you want to override this default behavior to
save logic and avoid degrading the fMAX of the design, add a bitwise AND with a mask.
In Example 5–36, the C2H Compiler promotes b1 and b2 to 32-bit integers when
performing the addition so that it instantiates a 32-bit adder in hardware. However,
because b1 and b2 are unsigned characters, the sum of b1 and b2 is guaranteed to fit
in nine bits, so you can mask the addition to save bits. The C2H Compiler still
instantiates a 32-bit adder but Quartus II synthesis removes the unnecessary bits,
resulting in a 9-bit adder in hardware.

1 This optimization can cause a failure if you mistakenly reduce the width of the
calculation so that needed data resolution is lost. Another common mistake is to use
bit masks with signed data. Signed data, stored using 2's complement format, requires
that the accelerator preserve and extend the sign bit through the masking operation.

Use Powers of Two in Multi-Dimensional Arrays
A conventional C compiler implements a multidimensional array as a
one-dimensional array stored in row-major order. For example, a two-dimensional
array might appear as follows:

#define NUM_ROWS 10
#define NUM_COLS 12
int arr2d[NUM_ROWS][NUM_COLS];

The first array index is the row and the second is the column. A conventional C
compiler implements this as a one-dimensional array with NUM_ROWS x
NUM_COLS elements. The compiled code computes the offset into the
one-dimensional array using the following equation:

offset = row * NUM_COLS + col;

The C2H Compiler follows this implementation of multidimensional arrays.
Whenever your C code indexes into a multidimensional array, an implicit
multiplication is created for each additional dimension. If the multiplication is by a
power of two, the C2H Compiler implements the multiplication with a wired shift,
which is free. If you can increase that dimension of the array to a power of two, you
save a multiplier. This optimization comes at the cost of some memory, which is
cheap. In the example, just make the following change:

#define NUM_COLS 16

To avoid all multipliers for multidimensional array accesses of <n> dimensions, you
must use an integer power of two array size for each of the final <n-1> dimensions.
The first dimension can have any length because it does not influence the decision
made by the C2H Compiler to instantiate multipliers to create the index.

Example 5–36. Use Bitwise And with a Mask

unsigned int add_chars(unsigned char b1, unsigned char b2)
{
 return (b1 + b2) & 0x1ff;
}

© June 2008 Altera Corporation Embedded Design Handbook

5–32 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
Use Narrow Local Variables
The use of local variables that are larger data types than necessary can waste
hardware resources in an accelerator. Example 5–37 includes a variable that is known
to contain only the values 0–229. Using a long int variable type for this variable
creates a variable that is much larger than needed. This type of optimization is usually
not applicable to pointer variables. Pointers always cost 32 bits, regardless of their
type. Reducing the type size of a pointer variable affects the size of the data the
pointer points to, not the pointer itself. It is generally best to use large pointer types to
take advantage of wide memory accesses. Refer to “Use Wide Memory Accesses” on
page 5–16 for details.

An unsigned char variable type, as shown in Example 5–38, is large enough
because it can store values up to 255, and only costs 8 bits of logic, whereas a long
int type costs 32 bits of logic. Excessive logic utilization wastes FPGA resources and
can degrade system fMAX.

Optimizing Memory Connections
The following sections discuss ways to optimize memory connectivity.

Remove Unnecessary Connections to Memory Slave ports
The Avalon-MM master ports associated with the src and dst pointers in
Example 5–39 are connected to all of the Avalon-MM slave ports that are connected to
the processor's data master. Typically, the accelerator does not need to access all these
slave ports. This extra connectivity adds unnecessary logic to the system interconnect
fabric, which increases the hardware resources and potentially creates long timing
paths, degrading fMAX.

The C2H Compiler supports pragmas added to your C code to inform the C2H
Compiler which slave ports each pointer accesses in your accelerator. For example, if
the src and dst pointers can only access the DRAM (assume it is called dram_0), add
these pragmas before memcpy in your C code.

Example 5–37. Wide Local Variable i Costs 32 Bits

int i;
int var;
for(i = 0; i < 230; i++)
{
var += *ptr + i;
}

Example 5–38. Narrow Local Variable i Costs 8 Bits

unsigned char i;
int var;
for(i = 0; i < 230; i++)
{
var += *ptr + i;
}

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–33
Optimization Techniques
#pragma altera_accelerate connect_variable memcpy/dst to dram_0

#pragma altera_accelerate connect_variable memcpy/src to dram_0

These pragmas state that dst and src only access the dram_0 component. The C2H
Compiler connects the associated Avalon-MM ports only to the dram_0 component.

Reduce Avalon-MM Interconnect Using #pragma
Accelerated functions use Avalon-MM ports to access data related to pointers in the C
code. By default, each master generated connects to every memory slave port that is
connected to the Nios II data master port. This connectivity can result in large
amounts of arbitration logic when you generate an SOPC Builder system, which is
expensive and can degrade system fMAX. In most cases, pointers do not need to access
every memory in the system.

You can reduce the number of master-slave port connections in your SOPC Builder
system by explicitly specifying the memories to which a pointer dereference must
connect. You can make connections between pointers and memories with the
connect_variable pragma directive, as shown in Example 5–40. In Figure 5–9,
three pointers, output_data, input_data1, and input_data2 are connected to

Example 5–39. Memory Interconnect

void memcpy(char* dst, char* src, int num_bytes)
{
while (num_bytes-- > 0)
{
*dst++ = *src++;
}
}

© June 2008 Altera Corporation Embedded Design Handbook

5–34 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
memories named sdram, onchip_dataram1, and onchip_dataram2, respectively.
Using the connect_variable pragma directive ensures that each of the accelerated
function's three Avalon-MM master ports connects to a single memory slave port. The
result is a more efficient overall because it has no unnecessary master-slave port
connections.

Example 5–40. Reducing Memory Interconnect

#pragma altera_accelerate connect_variable my_c2h_function/output_data to sdram

#pragma altera_accelerate connect_variable my_c2h_function/input_data1 to onchip_dataram1
#pragma altera_accelerate connect_variable my_c2h_function/input_data2 to onchip_dataram2

void my_c2h_function(int *input_data1,
 int *input_data2,
 int* output_data)
{
 char i;
 for(i = 0; i < 52; i++)
 {
 *(output_data + i) = *(input_data1 + i) + *(input_data2 + i);
 }
}

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–35
Optimization Techniques
Remove Unnecessary Memory Connections to Nios II Processor
As part of your optimization, you might have added on-chip memories to the system
to allow an accelerated function access to multiple pointers in parallel, as in “Segment
the Memory Architecture” on page 5–18. During implementation and debug, it is
important that these on-chip memories have connections to both the appropriate
accelerator Avalon-MM master port and to the Nios II data master port, so the
function can run in both accelerated and non-accelerated modes. In some cases
however, after you are done debugging, you can remove the memory connections to
the Nios II data master if the processor does not access the memory when the function
is accelerated. Removing connections lowers the cost and avoids degrading system
fMAX.

Optimizing Frequency Versus Latency
The following sections describe tradeoffs you can make between frequency and
latency to improve performance.

Figure 5–9. Pragma Connect

SDRAMCPU

C2H
Accelerator

onchip_dataram_1

onchip_dataram_2

Arbiter

Arbiter

Arbiter

SDRAMCPU

C2H
Accelerator

onchip_dataram_1

onchip_dataram_2

Arbiter

Arbiter

Arbiter

All connections (unnecessary arbitration logic)

Only necessary connections (less arbitration logic)
© June 2008 Altera Corporation Embedded Design Handbook

5–36 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
Improve Conditional Latency
Algorithms that contain if or case statements use registered control paths when
accelerated. The C2H Compiler accelerates the code show in Example 5–41 in this
way.

You can modify your software to make use of the ternary operator, (?:), as in
Example 5–42, to reduce the latency of the control path. The ternary operator does not
register signals on the control path, so this optimization results in lower latency at the
expense of fMAX. This optimization primarily helps reduce the CPLI of the accelerator
when a data dependency prevents the conditional statement from becoming fully
pipelined. Do not use this optimization if the CPLI of the loop containing the
conditional statement is already equal to one.

Figure 5–10 shows the hardware generated for Example 5–42.

Example 5–41. Registered Control Path

if(testValue < Threshold)
{
a = x;
}
else
{
a = y;
}

Example 5–42. Unregistered Control Path

a = (testValue < Threshold)? x : y;

Figure 5–10. Conditional Latency Improvement

<

1

0

testValue

1 clock cycle

x

y
a

Threshold
D Q

D Q

D Q

D Q
D Q

1

0

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–37
Optimization Techniques
Improve Conditional Frequency
If you wish to avoid degrading fMAX in exchange for an increase in latency, consider
removing ternary operators. By using an if or case statement to replace the ternary
operator the control path of the condition becomes registered and shortens the timing
paths in that portion of the accelerator. In the case of the conditional statement being
executed infrequently (outside of a loop), this optimization might prove a small price
to pay to increase the overall frequency of the hardware design.

Example 5–43 and Example 5–44 show how you can rewrite a ternary operator as an
if statement.

Figure 5–11 shows the hardware the C2H Compiler generates for Example 5–44.

Example 5–43. Unregistered Conditional Statement

a = (testValue < Threshold)? x : y;

Example 5–44. Registered Conditional Statement

if(testValue < Threshold)
{
a = x;
}
else
{
a = y;
}

Figure 5–11. Conditional Frequency Improvement

<

1

0

testValue

x

y
a

2 clock cycles

Threshold
D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

1

0

© June 2008 Altera Corporation Embedded Design Handbook

5–38 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
Improve Throughput
To increase the computational throughput, focus on two main areas: achieving a low
CPLI, and performing many operations within one loop iteration.

Avoid Short Nested Loops
Because a loop has a fixed latency before any iteration can occur, nesting looping
structures can lead to unnecessary delays. The accelerator incurs the loop latency
penalty each time it enters the loop. Rolling software into loops adds the possible
benefit of pipelining, and the benefits of this pipelining usually outweigh the latency
associated with loop structures. Generally, if the latency is greater than the maximum
number of iterations times the CPLI then the looping implementation is slower. You
must take into account that leaving a loop unrolled usually increases the resource
usage of the hardware accelerator.

Assuming no memory stalls occur, the total number of clock cycles is as follows:

Due to the high latency of the inner loop the total time for this example is 147 clock
cycles.

Assuming no memory stalls occur, the total number of clock cycles is as follows:

Example 5–45. Nested Loops

for(loop1 = 0; loop1 < 10; loop1++) /* Latency = 3, CPLI = 2 */
{
 /* statements requiring two clock cycles per loop1 iteration */
 for(loop2 = 0; loop2 < 5; loop2++) /* Latency = 10, CPLI = 1 */
 {
 /* statements requiring one clock cycle per loop2 iteration */
 }
}

Example 5–46. Single Loop

for(loop1 = 0; loop1 < 10; loop1++) /* Latency = 3, CPLI = 7 */
{
 /* statements requiring two clock cycles per loop1 iteration */
 /* statements that were previously contained in loop2 */
}

Innerloop latency iterations 1–() CPLI innerlooptime+()+=

Innerloop 10 4 1 0+()+=

Innterloop 14cycles=

Outerloop 3 9 2 14+()+=

Outerloop 147cycles=

Outerloop latency iterations 1–() CPLI innerlooptime+()+=

Outerloop 3 9 7 0+()+=

Outerloop 66cycles=
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–39
Optimization Techniques
The inner loop (loop2) has been eliminated and consequently is 0 in these equations.
Combining the inner loop with the outer loop dramatically decreases the total time to
complete the same outer loop. This optimization assumes that unrolling the inner
loop resulted in adding five cycles per iteration to the outer loop. The combination of
the loops would most likely result in a hardware utilization increase which you must
take into consideration.

Remove In-place Calculations
Some software algorithms perform in-place calculations, in which results overwrite
the input data as they are calculated. This technique conserves memory, but produces
suboptimal performance when compiled to a C2H accelerator. Example 5–47 shows
such an algorithm. Unfortunately this approach leads to memory stalls because
in-place algorithms read and write to the same memory locations.

Figure 5–12 shows the dataflow in hardware generated for Example.

Example 5–47. Two Avalon-MM Ports Using The Same Memory

for(i = 0; i < 4; i++)
{
for(j = 0; j < 1024; j++)
{
AnArray[j] = (AnArray[j] * 3) >> 1;
}
}

Figure 5–12. In-Place Calculation

Four
iterations

AnArray

(AnArray[j]*3) >> 1
© June 2008 Altera Corporation Embedded Design Handbook

5–40 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
To solve this problem, remove the in-place behavior of the algorithm by adding a
"shadow" memory to the system, as shown in Example 5–48. Instead of the input and
output residing in the same memory, each uses an independent memory. This
optimization prevents memory stalls because the input and output data reside in
separate memories.

Figure 5–13 shows the dataflow of hardware generated for Example 5–48.

Example 5–48. Two Avalon-MM Ports Using Separate Memories

int * ptr;
for(i = 0; i < 4; i++)
{
for(j = 0; j < 1024; j++)
{
/* In from one memory and out to the other */
AnArrayOut[j] = (AnArrayIn[j] * 3) >> 1;
}
/* Swap the input and output pointers and do it all
over again */
ptr = AnArrayOut;
AnArrayOut = AnArrayIn;
AnArrayIn = ptr;
}

Figure 5–13. In-Place Calculation

AnArrayOut

AnArrayIn

Memory A Memory B

0

1

2

3

AnArrayIn

AnArrayIn

AnArrayIn

AnArrayOut

AnArrayOut

AnArrayOut

AnArrayIn AnArrayOut

Done

Outer Loop
Variable 'i'

(AnArrayIn[j]*3) >> 1

(AnArrayIn[j]*3) >> 1

(AnArrayIn[j]*3) >> 1

(AnArrayIn[j]*3) >> 1

Pointer Swap

Pointer Swap

Pointer Swap

Pointer Swap

Pointer Swap

Pointer Swap

Pointer Swap

Pointer Swap
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–41
Optimization Techniques
You can also use this optimization if the data resides in on-chip memory. Most on-
chip memory can be dual-ported to allow for simultaneous read and write access.
With a dual-port memory, the accelerator can read the data from one port without
waiting for the other port to be written. When you use this optimization, the read and
write addresses must not overlap, because that could lead to data corruption. A
method for preventing a read and a write from occurring simultaneously at the same
address is to read the data into a variable before the write occurs.

Replace Arrays
Often software uses data structures that are accessed via a base pointer location and
offsets from that location, as shown in Example 5–49. When the hardware accelerator
accesses the data in these structures, memory accesses result.

You can replace these memory accesses using a single pointer and registers, as in
Example 5–50. The overall structure of the hardware created resembles a FIFO.

Example 5–49. Individual Memory Accesses

int a = Array[0];
int b = Array[1];
int c = Array[2];
int d = Array[3];

Example 5–50. FIFO Memory Accesses

/* initialize variables */
int a = 0;
int b = 0;
int c = 0;
int d = 0;
for(i = 0; i < 4; i++)
{

d = Array[i];
c = d;

b = c;
a = b;

}

© June 2008 Altera Corporation Embedded Design Handbook

5–42 Chapter 5: Optimizing Nios II C2H Compiler Results
Optimization Techniques
Figure 5–14 shows the hardware generated for Example 5–50.

Use Polled Accelerators
When you create a hardware accelerator using the C2H Compiler, it creates a wrapper
file that is linked at compile time, allowing the main program to call both the software
and hardware versions of the algorithm using the same function name. The wrapper
file performs the following three tasks:

■ Writes the passed parameters to the accelerator

■ Polls the accelerator to determine when the computation is complete

■ Sends the return value back to the caller

Because the wrapper file is responsible for determining the status of the accelerator,
the Nios II processor must wait for the wrapper code to complete. This behavior is
called blocking.

The hardware accelerator blocks the Nios II processor from progressing until the
accelerator has reached completion. The wrapper file is responsible for this blocking
action. Using the same pragma statement to create the interrupt include file, you can
access the macros defined in it to implement a custom polling algorithm common in
systems that do not use a real time operating system.

Instead of using the interrupt to alert Nios II that the accelerator has completed its
calculation, the software polls the busy value associated with the accelerator. The
macros necessary to manually poll the accelerator to determine if it has completed are
in the include file created under either the Debug or Release directory of your
application project. These macros are shown in Table 5–5.

While the accelerator is busy, the rest of the software must not attempt to read the
return value because it might be invalid.

Figure 5–14. Array Replacement

Memory

Array
(Avalon-MM

 Master)

d(Array[3]) c(Array[2]) b(Array[1]) a(Array[0])

D Q D Q D Q D Q

Table 5–5. C2H Accelerator Polling Macros

Purpose Macro Name

Busy value ACCELERATOR_<Project Name>_<Function Name>_BUSY()

Return value ACCELERATOR_<Project Name>_<Function Name>_GET_RETURN_VALUE()
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–43
Glossary
Use an Interrupt-Based Accelerator
The blocking behavior of a polled accelerator might be undesirable if there are
processing tasks which the Nios II processor can carry out while the accelerator is
running. In this case, you can create an interrupt-based accelerator.

Create the hardware accelerator with the standard flow first, because interrupts add
an extra level of complexity. Before proceeding to the interrupt flow, debug the
system to make sure the accelerator behaves correctly. Add enhancements in polled
mode, as well.

To use the hardware accelerator in a non-blocking mode, add the following line to
your function source code:

#pragma altera_accelerate enable_interrupt_for_function<function name>

At the next software compilation, the C2H Compiler creates a new wrapper file
containing all the macros needed to use the accelerator and service the interrupts it
generates. The hardware accelerator does not have an IRQ level so you must open the
system in SOPC Builder and manually assign this value. After assigning the IRQ level
you must click the Generate button to regenerate your SOPC Builder system.

The macros necessary to service the accelerator interrupt are in the include file created
under either the Debug or Release directory of your application project. These macros
are shown in Table 5–6.

f Refer to the Exception Handling chapter in the Nios II Software Developer's Handbook for
more information about creating interrupt service routines.

Glossary
This document uses the following terminology:

■ Accelerator throughput—the throughput achieved by a C2H accelerator during a
single invocation. Accelerator throughput might be less than peak throughput if
pipeline stalls occur. Accelerator throughput does not include latency. See also
CPLI, throughput, peak throughput, application throughput.

■ Application throughput—the throughput achieved by a C2H accelerator in the
context of the application, involving multiple accelerator invocations and
including the number of cycles of latency.

■ Barrel shifter – hardware that shifts a byte or word of data an arbitrary number of
bits in one clock cycle. Barrel shifters are fast and expensive, and can degrade fMAX.

Table 5–6. C2H Accelerator Interrupt Macros

Purpose Macro Name

IRQ level value ACCELERATOR_<Project Name>_<Function Name>_IRQ()

Return value ACCELERATOR_<Project Name>_<Function Name>_GET_RETURN_VALUE()

Interrupt clear ACCELERATOR_<Project Name>_<Function Name>_CLEAR_IRQ()
© June 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

5–44 Chapter 5: Optimizing Nios II C2H Compiler Results
Glossary
■ Cache coherency—the integrity of cached data. When a processor accesses
memory through a cache and also shares that memory with a coprocessor (such as
a C2H accelerator), it must ensure that the data in memory matches the data in
cache whenever the coprocessor accesses the data. If the coprocessor can access
data in memory that has not been updated from the cache, there is a
cache-coherency problem.

■ Compute-limited—describes algorithms whose speed is restricted by how fast
data can be processed. When an algorithm is compute-limited, there is no benefit
from increasing the efficiency of memory or other hardware. See also data-limited.

■ Control path—a chain of logic controlling the output of a multiplexer

■ CPLI—cycles per loop iteration. The number of clock cycles required to execute
one loop iteration. CPLI does not include latency.

■ Critical timing path—the longest timing path in a clock domain. The critical
timing path limits fMAX or the entire clock domain. See also timing path.

■ Data dependency—a situation where the result of an assignment depends on the
result of one or more other assignments, as in Example 5–5.

■ Data-limited—describes algorithms whose speed is restricted by how fast data
can be transferred to or from memory or other hardware. When an algorithm is
data-limited, there is no benefit from increasing processing power. See also
compute-limited.

■ DRAM—dynamic random access memory. It is most efficient to access DRAM
sequentially, because there is a time penalty when it is accessed randomly.
SDRAM is a common type of DRAM.

■ Latency—a time penalty incurred each time the accelerator enters a loop.

■ Long timing path—a critical timing path that degrades fMAX.

■ Peak throughput—the throughput achieved by a C2H accelerator, assuming no
pipeline stalls and disregarding latency. For a given loop, peak throughput is
inversely proportional to CPLI. See also throughput, accelerator throughput,
application throughput, CPLI, latency.

■ Rolled-up loop—A normal C loop, implementing one algorithmic iteration per
processor iteration. See also unrolled loop.

■ SDRAM—synchronous dynamic random access memory. See DRAM.

■ SRAM—static random access memory. SRAM can be accessed randomly without
a timing penalty.

■ Subfunction—a function called by an accelerated function. If apple() is a
function, and apple() calls orange(), orange() is a subfunction of apple().
If orange() calls banana(), banana() is also a subfunction of apple().

■ Throughput—the amount of data processed per unit time. See also accelerator
throughput, application throughput, and peak throughput.

■ Timing path—a chain of logic connecting the output of a hardware register to the
input of the next hardware register.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 5: Optimizing Nios II C2H Compiler Results 5–45
Referenced Documents
■ Unrolled loop—A C loop that is deconstructed to implement more than one
algorithmic iteration per loop iteration, as illustrated in Example 5–30. See also
rolled-up loop.

Referenced Documents
This chapter references the following documents:

■ AN391: Profiling Nios II Systems

■ Cache and Tightly-Coupled Memory in the Nios II Processor Reference Handbook

■ Exception Handling chapter in the Nios II Software Developer's Handbook

■ Nios II C2H Compiler User Guide

■ Nios II Hardware Development Tutorial

■ Nios II Processor Reference Handbook

Document Revision History
Table 5–7 shows the revision history for this chapter.

Table 5–7. Document Revision History

Date and Document Version Changes Made Summary of Changes

June 2008

v1.1

Corrected Table of Contents —

March 2008

v1.0

Initial release This chapter was previously released as AN
420: Optimizing Nios II C2H Compiler
Results.
© June 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

5–46 Chapter 5: Optimizing Nios II C2H Compiler Results
Document Revision History
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

© February 2009 Altera Corporation
Section III. System-Level Design
This section of the Embedded Design Handbook recommends design styles and
practices for developing, verifying, debugging, and optimizing hardware for use in
Altera FPGAs. The section introduces concepts to new users of Altera’s devices and
helps to increase the design efficiency of the experienced user.

This section includes the following chapters:

■ Chapter 6, Avalon Memory-Mapped Design Optimizations

■ Chapter 7, Memory System Design

■ Chapter 8, Hardware Acceleration and Coprocessing

■ Chapter 9, Verification and Board Bring-Up

■ Chapter 10, Interfacing an External Processor to an Altera FPGA

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Embedded Design Handbook

III–ii Section III: System-Level Design
Embedded Design Handbook © February 2009 Altera Corporation

© June 2008 Altera Corporation

ED51007-1.1
6. Avalon Memory-Mapped Design
Optimizations
The Avalon® Memory-Mapped (Avalon-MM) system interconnect fabric is a flexible,
partial crossbar fabric that connects master and slave components. Understanding
and optimizing this system interconnect fabric in can help you create higher
performance designs. When you use the Altera® system-on-a-programmable-chip
(SOPC) design tool, SOPC builder automatically generates optimized interconnect
logic to your specifications, saving you from time-consuming and error-prone task.

This chapter provides recommendations to optimize the performance, resource
utilization, and power consumption of your Avalon-MM design. The following topics
are discussed:

■ Selecting Hardware Architecture

■ Understanding Concurrency

■ Increasing Transfer Throughput

■ Increasing System Frequency

■ Reducing Logic Utilization

■ Reducing Power Utilization

One of the key advantages of FPGAs for system design is the high availability of
parallel resources. SOPC Builder uses the parallel resources inherent in the FPGA
fabric to maximize concurrency. You use the SOPC Builder GUI to specify the
connectivity between blocks of your design. SOPC Builder automatically generates
the optimal HDL from your specification.

Selecting Hardware Architecture
Hardware systems typically use one of four architectures to connect the blocks of a
design:

■ Bus

■ Full Crossbar Switch

■ Partial Crossbar Switch

■ Streaming

No single architecture can be used efficiently for all systems. The following sections
discuss the characteristics, advantages and disadvantages of each of these
interconnect architectures.
Embedded Design Handbook
Preliminary

6–2 Chapter 6: Avalon Memory-Mapped Design Optimizations
Selecting Hardware Architecture
Bus
Bus architectures can achieve relatively high clock frequencies at the expense of little
or no concurrency. Bus architectures connect masters and slaves using a common
arbitration unit. The arbiter must grant a master access to the bus before a data
transfer can occur. A shared bus architecture can lead to a significant performance
penalty in systems with many bus masters because all masters compete for access to
the shared bus rather than a particular slave device.

Full Crossbar Switch
Crossbar switches, unlike bus architectures, support concurrent transactions. A
crossbar switch allows any number of masters to connect to any number of slaves.
Networking and high performance computing applications typically use crossbars
because they are flexible and provide high throughput. Crossbars are implemented
with large multiplexers. The crossbar switch includes the arbitration function.
Crossbars provide a high degree of concurrency. The hardware resource utilization
grows exponentially as more masters and slaves are added; consequently, FPGA
designs avoid large crossbar switches because logic utilization must be optimized.

Figure 6–1. Bus Architecture

Master A

Slave 1

Slave 4

Slave 3

Slave 2

Master B

Arbiter
Granted B
Request B
Granted A
Request A

Granted 4
Granted 3
Granted 2
Granted 1

Shared Bus
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–3
Selecting Hardware Architecture
Partial Crossbar Switch
In many embedded systems, individual masters only require connectivity to a subset
of the slaves so that a partial crossbar switch provides the optimal connectivity. There
are two significant advantages to the partial crossbar switch:

■ The reduction in connectivity results in system interconnect fabric that operates at
higher clock frequencies

■ The system interconnect fabric consumes fewer resources.

These two advantages make partial crossbar switches ideal for ASIC or FPGA
interconnect structures. Figure 6–3 illustrates an SOPC Builder system with masters
and slaves connected by a partial crossbar switch.

Figure 6–2. Crossbar Switch

M

M

M

M

M

M

M

M

S S S S S S S S

Inactive connection Active connection
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–4 Chapter 6: Avalon Memory-Mapped Design Optimizations
Selecting Hardware Architecture
SOPC Builder generates logic that implements the partial crossbar system
interconnect fabric using slave side arbitration. An arbiter included in the system
interconnect fabric performs slave side arbitration. This architecture significantly
reduces the contention for resources that is inherent in a shared bus architecture. The
arbiter selects among all requesting masters so that unless two or more masters are
requesting access in the same cycle, there is no contention. In contrast, a shared bus
architecture requires all masters to arbitrate for the bus, regardless of the actual slave
device to which the masters requires access.

In Figure 6–3, the system CPU has its own program memory and I/O; there is never
any contention for these two slave resources. The system CPU shares a memory with
the DSP master; consequently, there is a slave-side arbiter to control access. The DSP
is the only master that accesses the custom hardware accelerator; there is no
contention for this device. The DSP and I/O CPU master share a memory, and access
is controlled by a slave-side arbiter. The I/O CPU master has it own program memory
and I/O device.

The partial crossbar switch that SOPC Builder generates is ideal in FPGA designs
because SOPC Builder only generates the logic necessary to connect masters and
slaves that communicate with each other. Using SOPC Builder, you gain the
performance of a switch fabric with the flexibility of an automatically generated
interconnect architecture. Because SOPC Builder automatically generates the system
interconnect fabric, you can regenerate it automatically if your system design
changes.

Figure 6–3. Partial Crossbar Switch – SOPC Builder System Interconnect

DSP
Master B

Program
Memory

Program
Memory

I/O 2

Data
Memory

Custom HW
Accelerator

IO CPU
Master C

System CPU
Master A

Switch
Fabric

I/O 1

Data
Memory

Arbiter

Arbiter
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–5
Selecting Hardware Architecture
Streaming
Applications that require high speed data transfers use streaming interconnect. SOPC
Builder supports Avalon Streaming (Avalon-ST) which creates point-to-point
connections between source and sink components. Each streaming connection
includes a single source and sink pair, eliminating arbitration. Because SOPC Builder
supports both partial crossbar and streaming connections you can design systems that
require the partial crossbar for the control plane, typically used to program registers
and set up data transfers, and streaming for the data plane, typically used for high
speed data transfers.

Full and partial crossbar switches and streaming architectures are all commonly used
to implement data planes. The control plane usually includes a processor or state
machine to control the flow of data. Full or partial crossbar switches or a shared bus
architecture implement control planes.

SOPC Builder generates interconnect logic for both data and control planes. The
system interconnect fabric connects Avalon-MM and Avalon-ST interfaces
automatically based on connectivity information that you provide. Figure 6–4 shows a
video processing application designed using SOPC Builder. This application uses
Avalon-MM interfaces for control and Avalon-ST interfaces to transfer data. The
video imaging pipeline includes five hardware blocks with Avalon-ST interfaces: a
video decoder, a frame buffer, a two-dimensional filter, a compression engine and a
direct memory access (DMA) master. All of the hardware blocks, with the exception
of the video decoders, also include an Avalon-MM interface for control.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–6 Chapter 6: Avalon Memory-Mapped Design Optimizations
Selecting Hardware Architecture
Dynamic Bus Sizing
A common issue in system design is integration of hardware blocks of different data
widths. SOPC Builder automatically adapts mixed width Avalon-MM components by
inserting the correct adapter logic between masters and slaves of different widths. For
example, if you connect a 32-bit master to a 16-bit slave, the system interconnect fabric
creates an adapter that segments the 32-bit transfer into two, separate 16-bit transfers.
In creating adapters, the system interconnect fabric employs byte enables to qualify
each byte lane.

Figure 6–4. Video Data and Control Planes

Streaming System Interconnect Fabric

Frame
Buffer

Manager
(DMA)

Video
Decoder

Nios II
Processor

Memory Mapped System Interconnect Fabric

Video
Decoder

Video
Decoder

Video
Decoder

Avalon Master Port

Avalon Slave Port

Avalon Source Port

Avalon Sink Port

Data Plane

Control Plane

snksrc

src

src

src

src

src

snk

snk

snk

snk

M M

M

DDR
SDRAM

S

S

2D Filter

snk src

Flash

S

UART

S

USB 2.0

S

Serial Rapid IO

MS S

S

S

Compression

snk src

S

DMA

snk

M

M

M

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–7
Understanding Concurrency
Understanding Concurrency
One of the key benefits of designing with FPGAs is the re-programmable parallel
hardware. Because the underlying FPGA structure supports massive parallelism, the
system interconnect fabric is tailored to utilize parallel hardware. You can use parallel
hardware to create concurrency so that several computational processes are executing
at the same time.

The following sections outline other design choices you can make to increase the
concurrency in your system.

Create Multiple Masters
Your system must have multiple masters to take advantage of the concurrency that
the system interconnect fabric supports. Systems that include a Nios® II processor
always contain at least two masters, because the Nios II processor includes separate
instruction and data masters. Master components typically fall into three main
categories:

■ General purpose processors, such as Nios II

■ DMA engines

■ Communication interfaces, such as PCI Express

Because SOPC Builder generates system interconnect fabric with slave side
arbitration, every master in your system can issue transfers concurrently. As long as
two or more masters are not posting transfers to a single slave, no master stalls. The
system interconnect fabric contains the arbitration logic that determines wait states
and drives the waitrequest signal to the master when a slave must stall. Figure 6–5
illustrates a system with three masters. The bold wires in this figure indicate
connections that can be active simultaneously.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–8 Chapter 6: Avalon Memory-Mapped Design Optimizations
Understanding Concurrency
Create Separate Datapaths
Concurrency is limited by the number of masters sharing any particular slave because
the system interconnect fabric uses slave side arbitration. If your system design
requires higher data throughput, you can increase the number of masters and slaves
to increase the number of transfers that occur simultaneously.

Use DMA Engines
DMA engines also increase data throughput. Because a DMA engine transfers all data
between a programmed start and end address without any programmatic
intervention, the data throughput is dictated by the components connected to the
DMA. The factors that affect data throughput include data width and clock frequency.
By including more DMA engines, a system can sustain more concurrent read and
write operations as Figure 6–6 illustrates.

Figure 6–5. Multi Master Parallel Access

Avalon Master Port

Avalon Slave Port

Nios II
Processor

DMA
Engine

M

M

MMM

PCI Express
Interface

MS

Dual-Port On-Chip
Memory

S

S

S

External Memory
Controller

S

External Memory
Controller

S

Arbiter Arbiter

concurrent access possible
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–9
Understanding Concurrency
Include Multiple Master or Slave Ports
Creating multiple slave ports for a particular function increases the concurrency in
your design. Figure 6–7 illustrates two channel processing

Figure 6–6. Single or Dual DMA Channels

DMA
Engine

MM

Read
 Buffer 2

S

Read
 Buffer 1

S

Write
 Buffer 1

S

Write
 Buffer 2

S

Maximum of one read and one write per clock cycle

Single DMA Channel

DMA
Engine 1

MM

Write
 Buffer 1

S

Read
 Buffer 1

S

DMA
Engine 2

MM

Write
 Buffer 2

S

Read
 Buffer 2

S

Maximum of two read and two writes per clock cycle

Dual DMA Channels
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–10 Chapter 6: Avalon Memory-Mapped Design Optimizations
Understanding Concurrency
systems. In the first, four hosts must arbitrate for the single slave port of the channel
processor. In the second, each host drives a dedicated slave port, allowing all masters
to access the component’s slave ports simultaneously.

Create Separate Sub-Systems
You can also use hierarchy to sub-divide a system into smaller, more manageable
sub-systems. This form of concurrency is implemented by limiting the number of
slaves to which a particular master connects. You can create multiple independent
sub-systems within a single SOPC Builder system. When communication between
sub-systems is necessary, you can use shared memory, message passing, or FIFOs to
transfer information.

Figure 6–7. Before and After Separate Slaves

M

S

Host 1

MHost 2

MHost 3

MHost 4

Arbiter

Compute
Engine 1

Compute
Engine 4

Compute
Engine 2

Compute
Engine 3

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Single Channel Access

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1MHost 1

MHost 2

MHost 3

MHost 4

S

S

S

S

Compute
Engine 1

Compute
Engine 4

Compute
Engine 2

Compute
Engine 3

Channel Processor

Quad Channel Access
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–11
Understanding Concurrency
f For more information, refer to Creating Multiprocessor Nios II Systems Tutorial and
Multiprocessor Coordination Peripherals.

Alternatively, if the subsystems are identical, you can design a single SOPC Builder
system and instantiate it multiple times in your FPGA design. This approach has the
advantage of being easier to maintain than a heterogeneous system. In addition, such
systems are easier to scale because once you know the logic utilization and efficiency
of a single instance, you can estimate how much logic is necessary for multiple
subsystems. Systems that process multiple data channels are frequently designed by
instantiating the same sub-system for each channel.

Figure 6–8. Message Passing

Nios II
Processor

M M

Nios II
Processor

M M

PIO

S

On-Chip
Memory

S

Mutex

S

UART

S

On-Chip
Memory

S

Shared
 On-Chip
Memory

S

UART

S

PIO

S

Arbiter Arbiter ArbiterArbiter

Shared memory for message passing
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/tt/tt_nios2_multiprocessor_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3_04.pdf

6–12 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing Transfer Throughput
Increasing Transfer Throughput
Increasing the transfer efficiency of the master and slave ports in your system
increases the throughput of your design. Designs with strict cost or power
requirements benefit from increasing the transfer efficiency because less expensive,
lower frequency devices can be used. At the other end of the spectrum, designs
requiring high performance also benefit from increased transfer efficiency because it
improves the performance of frequency–limited hardware.

Using Pipelined Transfers
Pipelined transfers increase the read efficiency by allowing a master to post multiple
reads before data from the earlier reads returns. Masters that support pipelined
transfers post transfers continuously, relying on the readdatavalid signal to
indicate valid data. Slaves support pipelined transfers by including the
readdatavalid signal or operating with a fixed read latency.

Figure 6–9. Multi-Channel System

Channel 1 SystemInput Data Stream Output Data Stream

Channel 2 SystemInput Data Stream Output Data Stream

Channel N SystemInput Data Stream Output Data Stream

Nios II
Processor

M M

Input Data
Stream

S

On-Chip
Memory

S

Input Data
Stream

S

Arbiter
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–13
Increasing Transfer Throughput
Maximum Pending Reads
SOPC Builder updates the maximum pending reads property when it generates the
system interconnect fabric. If you create a custom component with a slave port
supporting reads, you must specify this value in the Component Editor. This value
represents the maximum number of read transfers your pipelined slave component
can handle. If the number of reads presented to the slave port exceeds the maximum
pending reads parameter your component must assert waitrequest.

Selecting the Maximum Pending Reads Value
Optimizing the value of the maximum pending reads parameter requires a good
understanding of the latencies of your custom components. This parameter should be
based on the component’s longest delay. For example, if your pipelined component
has two modes, one requiring two clock cycles and the other five, set the maximum
pending reads value to five. Doing so allows your component to pipeline five
transfers, eliminating dead cycles after the initial five-cycle latency.

Another way to determine the correct value for the maximum pending reads
parameter is to monitor the number of reads that are actually pending during system
simulation or while running the actual hardware. To use this method, set the
maximum pending reads to a very high value and use a master that issues read
requests on every clock. You can use a DMA for this task as long as the data is written
to a location that does not assert waitrequest frequently. If you run this experiment
with the actual hardware, you can use a logic analyzer or built-in monitoring
hardware to observe your component.

Overestimating Versus Underestimating the Maximum Pending Reads Value
Choosing the correct value for the maximum pending reads value of your custom
pipelined read component is very important. If you underestimate the maximum
pending reads value you either loose data or cause a master port to stall indefinitely.
The system interconnect fabric has no timeout mechanism to handle long delays.

The maximum pending reads value dictates the depth of the readdatavalid FIFO
inserted into the system interconnect fabric for each master connected to the slave.
Because this FIFO is only one bit wide it does not consume significant hardware
resources. Overestimating the maximum pending reads value for your custom
component results in a slight increase in hardware utilization. For these reasons, if
you are not sure of the optimal value, it is better to overestimate this value.

Pipelined Read Masters
A pipelined read master can post multiple reads before data returns. Pipelined read
masters hide the latency of read operations by posting reads as frequently as every
clock cycle. A pipelined read master can prefetch data when no data dependencies are
present. Examples of common pipelined read masters include the following:

■ DMA engines

■ Nios II processor (with a cache line size greater than four bytes)

■ C2H read masters
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–14 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing Transfer Throughput
Requirements
The logic for the control and datapaths of pipelined read masters must be carefully
designed. The control logic must extend a read cycle whenever the waitrequest
signal is asserted. This logic must also control the master address, byteenable,
and read signals. To achieve maximum throughput, pipelined read masters should
post reads continuously as long as waitrequest is deasserted. While read is
asserted the address presented to the system interconnect fabric is stored.

The datapath logic includes the readdata and readdatavalid signals. If your
master can return data on every clock cycle, you can register the data using
readdatavalid as the enable bit. If your master cannot handle a continuous stream
of read data, it must buffer the data in a FIFO. The control logic must stop issuing
reads when the FIFO reaches a predetermined fill level.

f Refer to the Avalon Interface Specifications to learn more about the signals that
implement a pipelined read master.

Throughput Improvement
The throughput gain that you achieve by using a pipelined read master is typically
directly proportional to the latency of the slave port. For example, if the read latency is
two cycles, you can double your throughput using a pipelined read master, assuming
the slave port also supports pipeline transfers. If either the master or slave does not
support pipelined read transfers then the system interconnect fabric asserts
waitrequest until the transfer completes.

When both the master and slave ports support pipelined read transfers, data flows in
a continues stream after the initial latency. Figure 6–10 illustrates the case where reads
are not pipelined. The system pays a penalty of 3 cycles latency for each read, making
the overall throughput 25 percent. Figure 6–11 illustrates the case where reads are
pipelined. After the initial penalty of 3 cycles latency, the data flows continuously.

Figure 6–10. Low Efficiency Read Transfer

clk

address

read

waitrequest

readdata

A0 A1

D0 D1

Overhead

Read Latency

Overhead

Read Latency
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–15
Increasing Transfer Throughput
Pipelined Read Master Example
Figure 6–12 illustrates a pipelined read master that stores data in a FIFO that can be
used to implement a custom DMA, hardware accelerator, or off-chip communication
interface. To simplify the design, the control and data logic are separate. The master
performs word accesses that are word-aligned and reads from sequential memory
addresses. The transfer length is a multiple of the word size.

Figure 6–11. High Efficiency Read Transfer

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

D0 D1 D2 D3 D4 D5 D6 D7 D8

Overhead

Read Latency

Figure 6–12. Latency Aware Master

d

count enable

load

d

count enable

load

d

write

q

read acknowledge

empty

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_empty

user_data_read

length[31:0]

readdatavalid

fifo_used[]

used[]

readdata[31:0]

readdatavalid

Look-Ahead FIFO

Tracking Logic
State Machine

increment_address

read

master_address[31:0]

Vcc

byteenable[3:0]

Down
Counter

Up
Counter
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–16 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing Transfer Throughput
When the go bit is asserted, the master registers the start_address and
transfer_length signals. The master begins issuing reads on the next clock and
does not stop until the length register reaches zero. In this example, the word size is
4 bytes so that the address always increments by 4 and the length decrements by 4.
The read signal remains asserted unless the FIFO fills to a predetermined level. The
address register increments and the length register decrements if the length has
not reached 0 and a read is posted.

The master posts a read transfer every time the read signal is asserted and the
waitrequest is deasserted. The master issues reads until the entire buffer has been
read or waitrequest is asserted. An optional tracking block times the done bit.
When the length register reaches 0, some reads will be outstanding. The tracking
logic guarantees that done is not asserted until the last read completes. The tracking
logic monitors the number of reads posted to the system interconnect fabric so that is
does not exceed the space remaining in the readdata FIFO. This logic includes a
counter that counts if the following conditions are met:

■ If a read is posted and readdatavalid is deasserted, the counter increments.

■ If a read is not posted and readdatavalid is asserted, the counter decrements.

When the length register and the tracking logic counter reach 0, all the reads have
completed and the done bit is asserted. The done bit is important if a second master
overwrites the memory locations that the pipelined read master accesses. This bit
guarantees that all the reads have completed before the original data is overwritten.

To learn more about creating Avalon-MM masters refer to the following design
examples and documentation:

■ Nios II Embedded Processor Design Examples

■ Developing Components for SOPC Builder in volume 4 of the Quartus II Handbook.

Arbitration Shares and Bursts
Arbitration shares provide control over the arbitration process. By default, the
arbitration algorithm provides equal fairness, with all masters receiving one share.
You can tune the arbitration process to your system requirements by assigning a
larger number of shares to the masters that need greater throughput. The larger the
arbitration share, the more transfers are allocated to the master to access a slave.

If a master cannot post a transfer and other masters are waiting to gain access to a
particular slave, the arbiter grants another master access in a round robin fashion.
This mechanism prevents a master from using arbitration cycles if it cannot post
back-to-back transfers.

Bursts allow a master to maintain access to a slave for more than a single word
transfer. If a bursting master posts a write transfer with a burst length of 8, it is
guaranteed arbitration for 8 write cycles.

Differences between Arbitration Shares and Bursts
The following three key characteristics distinguish between arbitration shares and
bursts:

■ Arbitration lock

■ Sequential addressing
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/support/examples/nios2/exm-nios2.html
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–17
Increasing Transfer Throughput
■ Burst adapters

Arbitration Lock

When a master posts a burst transfer, the arbitration is locked for that master;
consequently, the bursting master should be capable of sustaining transfers for the
duration of the locked period. If, after the fourth write, the master deasserts the
write signal for fifty cycles, all other masters continue to wait for access during this
stalled period.

To avoid wasting bandwidth, your master designs should wait until a full burst
transfer is ready before requesting access to a slave device. Alternatively, you can
avoid wasted bandwidth by posting burst counts equal to the amount of data that is
ready. For example, if you have created a custom bursting write master with a
maximum burst count of 8, but only 3 words of data are ready, you can simply
present a burst count of 3. This strategy does not result in optimal use of the system
bandwidth; however, it prevents starvation for other masters in the system.

Sequential Addressing

By definition, a burst transfer includes a base address and a burst count. The burst
count represents the number of words of data to be transferred starting from the base
address and incrementing sequentially. Burst transfers are common for processors,
DMAs, and buffer processing accelerators; however, there are occasions when a
master must access non-sequential addresses. Consequently, a bursting master must
set the burst count to the number of sequential addresses and then reset the burst
count for the next location.

The arbitration share algorithm has no restrictions on addresses; therefore, your
custom master can update the address it presents to the system interconnect fabric for
every read or write transaction.

Burst Adapters

SOPC Builder allows you to create systems that mix bursting and non-bursting master
and slave ports. It also allows you to connect bursting master and slave ports that
support different maximum burst lengths. In order to support all these cases, SOPC
Builder generates burst adapters when appropriate.

SOPC Builder inserts a burst adapter whenever a master port burst length exceeds the
burst length of the slave port. SOPC Builder assigns non-bursting masters and slave
ports a burst length of one. The burst adapter divides long bursts into shorter bursts.
As a result, the burst adapter adds logic to the address and burstcount paths between
the master and slave ports.

Choosing Interface Types
To avoid inefficient transfers, custom master or slave ports must use the appropriate
interfaces. The are three possible interface types: simple, pipelined and burst. Each is
described below:
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–18 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing Transfer Throughput
Simple

Simple interfaces do not support pipelining or bursting for reads or writes;
consequently, their performance is limited. Simple interfaces are appropriate for
transfers between masters and infrequently used slave ports. In SOPC Builder, the
PIO, UART, and Timer include slave ports that operate at peak efficiency using simple
transfers.

When designing a custom component, Altera recommends that you start with a
simple interface. If performance becomes an issue, you can modify the component to
support either pipelined reads or bursting.

Pipelined

In many systems, read throughput becomes inadequate if simple reads are used. If
your system requires high read throughput and is not overly sensitive to read latency,
then your component can implement pipelined transfers. If you define a component
with a fixed read latency, SOPC Builder automatically provides the logic necessary to
support pipelined reads. If your component has a variable latency response time, use
the readdatavalid signal to indicate valid data. SOPC Builder implements a
readdatavalid FIFO to handle the maximum number of pending read requests.

To use components that support pipelined read transfers efficiently, your system
must contain pipelined masters. Refer to the “Pipelined Read Master Example” on
page 6–15 for an example of a pipelined read master.

Burst

Burst transfers are commonly used for latent memories and off-chip communication
interfaces. To use a burst-capable slave port efficiently, you must connect it to a
bursting master. Components that require bursting to operate efficiently typically
have an overhead penalty associated with short bursts or non-bursting transfers.

Altera recommends that you design a burst-capable slave port if you know that your
component requires sequential transfers to operate efficiently. Because DDR SDRAM
memories incur a penalty when switching banks or rows, performance improves
when they are accessed sequentially using bursts.

Any shared address and data bus architecture also benefits from bursting. Whenever
an address is transferred over a shared address and data bus, the throughput of the
data transfer is reduced. Because the address phase adds overhead, using large bursts
increases the throughput of the bus.

Burst Master Example
Figure 6–13 illustrates the architecture of a bursting write master that receives data
from a FIFO and writes the contents to memory. You can use this master as a starting
point for your own bursting components, such as custom DMAs, hardware
accelerators, or off-chip communication interfaces. In Figure 6–13, the master
performs word accesses and writes to sequential memory locations.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–19
Increasing Transfer Throughput
When go is asserted, the address and length are registered. On the following clock
cycle, the control logic asserts burst_begin. The burst_begin signal synchronizes
the internal control signals in addition to the master_address and
master_burstcount presented to the system interconnect fabric. The timing of
these two signals is important because during bursting write transfers address,
byteenable, and burstcount must be held constant for the entire burst.

To avoid inefficient writes, the master only posts a burst when enough data has been
buffered in the FIFO. To maximize the burst efficiency, the the master should only
stall when a slave asserts waitrequest. In this example the FIFO’s used signal
tracks the number of words of data that are stored in the FIFO and determines when
enough data has been buffered.

The address register increments after every word transfer, and the length register
decrements after every word transfer. The address remains constant throughout the
burst. Because a transfer is not guaranteed to complete on burst boundaries,
additional logic is necessary to recognize the completion of short bursts.

The Accelerated FIR with Built-in Direct Memory Access Example, includes a pipelined
read master and bursting write master similar to those used in Figure 6–13.

Figure 6–13. Bursting Write Master

d

count enable

load

d

count enable

load

d

read acknowledge

q

write

full

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_full

user_data_write

length[31:0]

fifo_used[]

used[]

writedata[31:0]

increment_address

Look-Ahead FIFO

master_burstcount[2:0]

burst_begin

burst_count[2:0]

write

increment_address

master_address[31:0]

Vcc

byteenable[3:0]

Down
Counter

Up
Counter

burst_begin

EN

D Q

s

1

0

Tracking Logic/
State Machine
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/support/examples/nios2/exm-accelerated-fir.html

6–20 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing System Frequency
Increasing System Frequency
In SOPC Builder, you can introduce bridges to reduce the amount of logic that SOPC
Builder generates and increase the clock frequency.

In SOPC Builder, you can use bridges to control the system interconnect topology.
Bridges allow you to subdivide the system interconnect fabric, giving you more
control over pipelining and clock crossing functionality.

f This section assumes that you have read Avalon Memory-Mapped Bridges chapter in
volume 4 of the Quartus II Handbook. To see an example of a design containing
bridges, refer to the Nios II High-Performance Example With Bridges.

Use Pipeline Bridges
The pipeline bridge contains Avalon-MM master and slave ports. Transfers to the
bridge slave port are propagated to the master port which connects to components
downstream from the bridge. You have the option to add the following pipelining
features between the bridge ports:

■ Master-to-Slave Pipelining

■ Slave-to-Master Pipelining

■ waitrequest Pipelining

The pipeline bridge options can increase your logic utilization and read latency. As a
result, you should carefully consider the effects of the following options described in
this section.

Master-to-Slave Pipelining
Master-to-slave pipelining is advantageous when many masters share a slave device.
The arbitration logic for the slave port must multiplex the address, writedata, and
burstcount signals. The multiplexer width increases as the number of masters
connecting to a single slave port increases, causing timing problems if the slave
component does not register the input signals.

This option is helpful if the waitrequest signal becomes part of a critical timing
path. Because waitrequest is dependent on arbitration logic, which is driven by the
master address, enabling master-to-slave pipelining helps pipeline this path. If the
waitrequest signal remains a part of a critical timing path, you should explore
using the waitrequest pipelining feature of the pipelined bridge.

If a single pipeline bridge provides insufficient improvement, you can instantiate this
bridge multiple times, in a binary tree structure, to increase the pipelining and further
reduce the width of the multiplexer at the slave port as Figure 6–14 illustrates.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54020.pdf
http://www.altera.com/support/examples/nios2/exm-high-perf-bridge.html

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–21
Increasing System Frequency
Slave-to-Master Pipelining
Slave-to-master pipelining is advantageous for masters that connect to many slaves
that support read transfers. The system interconnect fabric inserts a multiplexer for
every read datapath back to the master. As the number of slaves supporting read
transfers connecting to the master increases, so does the width of the read data
multiplexer. As with master-to-slave pipelining, if the performance increase is
insufficient, you can use multiple bridges to improve fMAX using a binary tree
structure.

waitrequest Pipelining
waitrequest pipelining can be advantageous in cases where a single master
connects to many slaves. Because slave components and system interconnect fabric
drive waitrequest, the logic depth grows as the number of slaves connected to the
master increases. waitrequest pipelining is also useful when multiple masters
connect to a single slave, because it pipelines the arbitration logic.

In many cases waitrequest is a combinational signal because it must be asserted
during the same cycle that a read or write transaction is posted. Because
waitrequest is typically dependent on the master read or write signals, it creates
a timing path from the master to the slave and back to the master. Figure 6–15
illustrates this round-trip path with the thick wire.

Figure 6–14. Tree of Bridges

Master 1

M

Master 2

M

M

S

Pipeline Bridge

Master 3

M

Master 4

M

M

S

Pipeline Bridge

arb

arb arb

write data and
control signals

read data

Shared
Slave

S

© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–22 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing System Frequency
To prevent this round-trip path from impacting the fMAX of your system, you can use
master-to-slave pipelining to reduce the path length. If the waitrequest signal
remains part of the critical timing path, you can consider using the waitrequest
pipelining feature. Another possibility is to register the waitrequest signal and
keep it asserted, even when the slave is not selected. When the slave is selected, it has
a full cycle to determine whether it can respond immediately.

Use a Clock Crossing Bridge
The clock crossing bridge contains an Avalon-MM master port and an Avalon-MM
slave port. Transfers to the slave port are propagated to the master port. The clock
crossing bridge contains a pair of clock crossing FIFOs which isolate the master and
slave interfaces in separate, asynchronous clock domains.

Because FIFOs are used for the clock domain crossing, you gain the added benefit of
data buffering when using the clock crossing bridge. The buffering allows pipelined
read masters to post multiple reads to the bridge even if the slaves downstream from
the bridge do not support pipelined transfers.

Increasing Component Frequencies
One of the most common uses of the clock crossing bridge is to place high and low
frequency components in separate clock domains. If you limit the fast clock domain to
the portion of your design that requires a high performance, you can achieve a higher
fMAX for this portion of the design.

Reducing Low-Priority Component Frequencies
The majority of components included in embedded designs do not benefit from
operating at higher frequencies. Examples components that do not require high
frequencies are timers, UARTs, and JTAG controllers.

Figure 6–15. Typical Slow Waitrequest Path

waitrequest

write

address

read

Avalon-MM
Master Port

Avalon-MM
Slave Port

read

write

waitrequest

waitrequest from
other slave ports

or waitrequest
logic

user_logic_busy

arbiter

chipselect
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–23
Increasing System Frequency
When you compile a design using the Quartus II design software, the fitter places
your logic into regions of the FPGA. The higher the clock frequency of your system,
the longer a compilation takes. The compilation takes more time because the fitter
needs more time to place registers to achieve the required fMAX. To reduce the amount
of effort that the fitter uses on low priority and low performance components, you can
place these behind a clock crossing bridge operating at a lower frequency, allowing
the fitter to increase the effort placed on the higher priority and higher frequency
datapaths.

Consequences of Using Bridges
Before using the pipeline or clock crossing bridges in your design, you should
carefully consider their effects. The bridges can have any combination of the
following effects on your design:

■ Increased Latency

■ Limited Concurrency

■ Address Space Translation

Depending on your system, these effects could be positive or negative. You can use
benchmarks to test your system before and after inserting bridges to determine their
effects. The following sections discuss the effects of adding bridges.

Increased Latency
Adding either type of bridge to your design has an effect on the read latency between
the master and the slave. Depending on the system requirements and the type of
master and slave this latency increase may or may not be acceptable in your design.

Acceptable Latency Increase

For the pipeline bridge, a cycle of latency is added for each pipeline option that is
enabled. The buffering in the clock crossing bridge also adds latency. If you use a
pipelined or burst master that posts many read transfers, the increase in latency does
not impact performance to a significant degree because it is very small compared to
the length data transfer.

For example, if you use a pipelined read master such as a DMA controller to read data
from a component with a fixed read latency of 4 clock cycles but only perform a single
word transfer, the overhead is 3 clock cycles out of the total 4. The read throughput is
only 25%.

Figure 6–16. Low Efficiency Read Transfer

clk

address

read

waitrequest

readdata

A0 A1

D0 D1

Overhead

Read Latency

Overhead

Read Latency
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–24 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing System Frequency
On the other hand, if 100 words of data are transferred without interruptions, the
overhead is 3 cycles out of the total of 103 clock cycles, corresponding to a read
efficiency of approximately 97%. Adding a pipeline bridge to this read path adds two
extra clock cycles of latency. The transfer requires 105 cycles to complete,
corresponding to an efficiency of approximately 94%. Although the efficiency
decreased by 3%, adding the bridge increases the fMAX by 5%. The overall throughput
improves. As the number of words transferred increases the efficiency will increase to
approach 100%, whether or not a pipeline bridge is present.

Unacceptable Latency Increase

Processors are sensitive to high latency read times. They typically fetch data for use in
calculations that cannot proceed until it arrives. Before adding a bridge to the
datapath of a processor instruction or data master, determine whether the clock
frequency increase justifies the added latency.

The following example design illustrates this point. The original design contains a
Nios II processor and memory operating at 100 MHz. The Nios II processor
instruction master has a cache memory with a read latency of 4 cycles. Eight
sequential words of data return for each read. At 100 MHz, the first read takes 40 ns to
complete. Each successive word takes 10 ns so that 8 reads complete in 110 ns.

Figure 6–17. High Efficiency Read Transfer

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

D0 D1 D2 D3 D4 D5 D6 D7 D8

Overhead

Read Latency

Figure 6–18. Eight Reads with Four Cycles Latency

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

40 ns

110 ns
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–25
Increasing System Frequency
Adding a clock crossing bridge allows the memory to operate 125 MHz. However,
this increase in frequency is negated by the increase in latency for the following
reasons. Assume that the clock crossing bridge adds 6 clock cycles of latency at
100 MHz. The memory still operates with a read latency of 4 clock cycles;
consequently, the first read from memory takes 100 ns and each successive word takes
10 ns because reads arrive at the processor’s frequency, 100 MHz. In total, all 8 reads
complete after 170 ns. Although the memory operates at a higher clock frequency, the
frequency at which the master operates limits the throughput.

Limited Concurrency
Placing an Avalon bridge between multiple Avalon-MM master and slave ports limits
the number of concurrent transfers your system can initiate. This limitation is no
different than connecting multiple master ports to a single slave port. The bridge’s
slave port is shared by all the masters and arbitration logic is created as a result. If the
components placed behind a bridge are infrequently accessed, this concurrency
limitation may be acceptable.

Bridges can have a severe negative impact on system performance if used
inappropriately. For instance, if multiple memories are used by several masters, you
should not place them all behind a bridge. The bridge limits the memory performance
by preventing concurrent memory accesses. Placing multiple memory components
behind a bridge, causes the separate slave interfaces to appear as one monolithic
memory to the masters accessing the bridge; they must all access the same slave port.
Figure 6–20 illustrates this configuration.

Figure 6–19. Eight Reads with Ten Cycles latency

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

100 ns

170 ns
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–26 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing System Frequency
If the fMAX of your memory interfaces is low, you can place each memory behind its
own bridge, which increases the fMAX of the system without sacrificing concurrency as
Figure 6–21 illustrates.

Figure 6–20. Poor Memory Pipelining

Nios II
Processor

M M

M

DMA

M M

DDR
SDRAM

S

DDR
SDRAM

S

DDR
SDRAM

S

Bridge

S bottleneck

Arbiter

DDR
SDRAM

S

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–27
Increasing System Frequency
Address Space Translation
The slave port of a pipeline or clock crossing bridge has a base address and address
span. You can set the base address or allow SOPC Builder to set it automatically. The
slave port’s address is the base offset address of all the components connected to the
bridge. The address of components connected to the bridge is the sum of the base
offset and that component’s address. The address span of the bridge is automatically
calculated by SOPC Builder based on the address range of all the components
connected to it.

Address Shifting
The master port of the bridge only drives the address bits that represent the offset
from the base address of the bridge slave port. Any time an Avalon-MM master
accesses a slave through a bridge, both addresses must be added together, otherwise
the transfer fails. Clicking the Address Map button in SOPC Builder displays the
addresses of the slaves connected to each master taking into account any address
translations caused by bridges in the system.

Figure 6–22 illustrates how this address translation takes place. In this example,
the Nios II processor connects to a bridge located at base address 0x1000. A slave
connects to the bridge master port at an offset of 0x20 and the processor performs a
write transfer to the fourth 32-bit word within the slave. Nios II drives the address
0x102C to system interconnect fabric which lies within the address range of the
bridge. The bridge master port drives 0x2C which lies within the address range of the
slave and the transfer completes

Figure 6–21. Efficient Memory Pipelining

Nios II
Processor

M M

DMA

M M

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–28 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing System Frequency
Address Coherency
To avoid unnecessary complications in software, all masters should access slaves at
the same location. In many systems a processor passes buffer locations to other
mastering components such as a DMA controller. If the processor and DMA controller
do not access the slave at the same location, software must compensate for the
differences.

In the following example, a Nios II processor and DMA controller access a slave port
located at address 0x20. The processor connects directly to the slave port. The DMA
controller connects to a pipeline bridge located at address 0x1000 which then connects
to the slave port. Because the DMA controller accesses the pipeline bridge first, it
must drive 0x1020 to access the first location of the slave port. Because the processor
accesses the slave from a different location, the software developer must maintain two
base addresses for the slave device.

To avoid this issue, you can add an additional bridge to the design and set its base
address to 0x1000. You can disable all the pipelining options in this second bridge so
that it has a minimal impact on the system timing and resource utilization. Because
this second bridge has the same base address as the bridge the DMA controller
connects to, both the processor and DMA controller access the slave port using the
same address range.

Figure 6–22. Avalon Bridge Address Translation

SMM

Nios II Processor PeripheralBridge

S0x102C

baseAddr = 0x1000 baseAddr = 0x20

0x2C 0x2C 0xC Addr
Decoder

Address Translation Address Translation

Figure 6–23. Slave at Different Addresses, Complicating the Software

M

Bridge

SM

DMA

0x1020

0x1000

0x20

0x20

Address Translation

S

Peripheral

0x20

0x0 Addr
Decoder

Arbiter
masters drive

different addresses

0x20

M

Nios II Processor
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–29
Increasing System Frequency
Minimize System Interconnect Logic
In SOPC Builder, you have control over the address space of your system, as well as
the connections between master sand slaves. This control allows you to make minor
changes to your system in order to increase the overall system performance. The
following sections explain design changes you can make to improve the fMAX of your
system.

■ Use Unique Address Bits

■ Create Dedicated Master and Slave Connections

■ Remove Unnecessary Connections

Use Unique Address Bits
For every slave in your system, SOPC Builder inserts comparison logic to drive the
arbiter to select a slave. This comparison logic determines if the master is performing
an access to the slave port by determining if the address presented is in the slave
port’s address range. This result is ANDed with the master read and write signals to
determine if the transfer is destined for the slave port.

The comparison logic can become part of a failing timing path because the result is
used to drive the slave port. To reduce this path length, you can move the slave port
base address to use unique MSBs for the comparison. Frequently, you can reduce the
comparison logic to a single logic element if you avoid using a base address that
shares MSBs with other slave ports.

Consider a design with 4 slave ports each having an address range of 0x10 bytes
connected to a single master. If you use the Auto-Assign Base Addresses option in
SOPC Builder, the base addresses for the 4 slaves is set to 0x0, 0x10, 0x20, and 0x30,
which corresponds to the following binary numbers: 6b’000000, 6b’010000, 6’b100000,
and 6b’110000. The two MSBs must be decoded to determine if a transfer is destined
for any of the slave ports.

Figure 6–24. Address Translation Corrected Using Bridge

M

DMA

M

Nios II Processor

0x1020 M

Bridge

S

Base = 0x1000

0x20

M

Bridge

S

Base = 0x1000

0x20

0x20

0x200x1020

Address Translation

Address Translation

S

Peripheral

Base = 0x20

0x0 Addr
Decoder

Arbiter
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–30 Chapter 6: Avalon Memory-Mapped Design Optimizations
Reducing Logic Utilization
If the addresses are located at 0x10, 0x20, 0x40, and 0x80, no comparison logic is
necessary. These binary locations are: 6’b00010000, 6b’00100000, 6b’01000000, and
6b’10000000. This technique is referred to as one-hot encoding because a single
asserted address bit replaces comparison logic to determine if a slave transfer is taking
place. In this example, the performance gained by moving the addresses would be
minimal; however, when you connect many slave ports of different address spans to a
master this technique can result in a significant improvement.

Create Dedicated Master and Slave Connections
In some circumstances it is possible to modify a system so that a master port connects
to a single slave port. This configuration eliminates address decoding, arbitration, and
return data multiplexing, greatly simplifying the system interconnect fabric.
Dedicated master-to-save connections attain the same clock frequencies as Avalon-ST
connections with the added benefits offered by Avalon-MM.

Typically these one-to-one connections include an Avalon-MM bridge or hardware
accelerator. For example, if you insert a pipeline bridge between a slave and all other
master ports, the logic between the bridge master and slave port is reduced to wires.
Figure 6–21 illustrates this technique. If a hardware accelerator only connects to a
dedicated memory, no system interconnect logic is generated between the master and
slave pair.

Remove Unnecessary Connections
The number of connections between master and slave ports has a great influence on
the fMAX of your system. Every master port that you connect to a slave port increases
the multiplexer select width. As a multiplexer width increases, so does the logic depth
and width that implements the multiplexer in the FPGA. To improve your system
performance, only connect masters and slaves when necessary.

In the case of a master port connecting to many slave ports, the multiplexer for the
readdata signal grows as well. Use bridges to help control this depth of
multiplexers, as Figure 6–14 illustrates.

Reducing Logic Utilization
The system interconnect fabric supports the Avalon-MM and Avalon-ST interfaces.
Although the system interconnect fabric for Avalon-ST interfaces is lightweight, the
same is not always true for the Avalon-MM. This section describes design changes
you can make to reduce the logic footprint of the system interconnect fabric.

Minimize Arbitration Logic by Consolidating Components
As the number of components in your design increases, so does the amount logic
required to implement the system interconnect fabric. The number of arbitration
blocks increases for every slave port that is shared by multiple master ports. The
width of the readdata multiplexer increases as the number of slave ports supporting
read transfers increases on a per master port basis. For these reasons you should
consider implementing multiple blocks of logic as a single component to reduce the
system interconnect fabric logic utilization.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–31
Reducing Logic Utilization
Logic Consolidation Tradeoffs
Consider the following two tradeoffs before making any modifications to your system
or components. First, consider the impact on concurrency that consolidating
components has. When your system has four master components and four slave
components, it can initiate four concurrent accesses. If you consolidate all four slave
components into a single component, all four masters must compete for access.
Consequently, you should only combine low priority components such as low speed
parallel I/O devices where the combination will not impact the performance.

Second, determine whether consolidation introduces new decode and multiplexing
logic for the slave port that the system interconnect fabric previously included. If a
component contains multiple read and write address locations it already contains the
necessary decode and multiplexing logic. When you consolidate components, you
typically reuse the decoder and multiplexer blocks already present in one of the
original components; however, it is possible that combining components will simply
move the decode and multiplexer logic, rather than eliminating duplication.

Combined Component Example
Figure 6–25 illustrates set of four output registers that support software read back.
The registers can be implemented using four PIO components in SOPC Builder;
however, this example provides a more efficient implementation of the same logic.
You can use this example as a template to implement any component that contains
multiple registers mapped to memory locations.

Components that implement reads and writes require three main building blocks: an
address decoder, a register file, and a read multiplexer. In this example, the read data
is a copy of the register file outputs. The read back functionality may seem redundant;
however, it is useful for verification.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–32 Chapter 6: Avalon Memory-Mapped Design Optimizations
Reducing Logic Utilization
The decoder enables the appropriate 32-bit PIO register for writes. For reads, the
address bits drive the multiplexer selection bits. The read signal registers the data
from the multiplexer so that the component can achieve a high clock frequency. In the
SOPC Builder component editor, this component would be described as having 0
write wait states and 1 read wait state. Alternatively, you could set both the read and
write wait states to 0 and specify a read latency of 1 because this component also
supports pipelined reads.

Use Bridges to Minimize System Interconnect Fabric Logic
Bridges reduce the system interconnect fabric logic by reducing the amount of
arbitration and multiplexer logic that SOPC Builder generates. This reduction occurs
because bridges limit the number of concurrent transfers that can occur. The
following sections discuss how you can use bridges to minimize the logic generated
by SOPC Builder and optimize system performance.

Figure 6–25. Four PIOs

write

writedata[31:0]

address[1:0]

read

readdata[31:0]

Avalon-MM
Slave Port

EN

D Q

EN

D Q

EN

EN

D Q

EN

D Q

EN

Q D

0

2

3

1

Read Back
 Multiplexer

s

Decode
2:1

Register File Exported
Signals
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–33
Reducing Logic Utilization
SOPC Builder Speed Optimizations
The system interconnect fabric SOPC Builder generates supports slave-side
arbitration. As a result, SOPC Builder creates arbitration logic for every Avalon-MM
slave port that is shared by multiple Avalon-MM master ports. SOPC Builder inserts
multiplexer logic between master ports that connect to multiple slave ports if both
support read datapaths. The amount of logic generated for the system interconnect
fabric grows as the system grows.

Even though the interconnect fabric supports multiple concurrent transfers, the
master and slave ports in your system can only handle one transfer at a time. If four
masters connect to a single slave, the arbiter grants each access in a round robin
sequence. If all four masters connect to an Avalon bridge and the bridge masters the
slave port, the arbitration logic moves from the slave port to the bridge.

In Figure 6–26 a pipeline bridge registers the arbitration logic’s output signals,
including address and writedata. A multiplexer in the arbitration block drives
these signals. Because a logic element (LE) includes both combinational and register
logic, this additional pipelining has little or no effect on the logic footprint. And, the
additional pipeline stage reduces the amount of logic between registers, increasing
system performance.

If you can increase the fMAX of your design, you may be able to turn off Perform
register duplication on the Physical Synthesis Optimizations page in the Settings
dialog box of the Quartus II software. Register duplication duplicates logic in two or
more physical locations in the FPGA in an attempt to reduce register-to-register
delays. You may also avoid selecting Speed for the Optimization Technique on the
Analysis & Synthesis Settings page in the Settings dialog box of the Quartus II
software. This setting typically results in larger hardware footprint. By making use of
the registers or FIFOs available in the Avalon-MM bridges, you can increase the
design speed and avoid needless logic duplication or speed optimizations thereby
reducing the logic utilization of the design.

Figure 6–26. Four Masters to Slave Four Masters to Bridge

S

M

Bridge

S

Arbiter

S

Arbiter

M MM M M M MM

Bridge Inserted
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–34 Chapter 6: Avalon Memory-Mapped Design Optimizations
Reducing Logic Utilization
Reduced Concurrency
Most embedded designs contain components that are either incapable of supporting
high data throughput or simply do not need to be accessed frequently. These
components can contain Avalon-MM master or slave ports. Because the system
interconnect fabric supports concurrent accesses, you may wish to limit this
concurrency by inserting bridges into the datapath to limit the amount of arbitration
and multiplexer logic generated. For example, if your system contains three masters
and three slave ports that are all interconnected, SOPC Builder generates three
arbiters and three multiplexers for the read datapath.

Assuming these masters do not require a significant amount of throughput, you can
simply connect all three masters to a pipeline bridge. The bridge masters all three
slave ports, effectively reducing the system interconnect fabric into a bus structure.
SOPC Builder creates one arbitration block between the bridge and the three masters
and single read datapath multiplexer between the bridge and three slaves. This
architecture prevents concurrency, just as standard bus structures do. Therefore, this
method should not be used for high throughput datapaths. Figure 6–27 illustrates the
difference in architecture between system with and without the pipeline bridge.

Figure 6–27. Switch Fabric to Bus

S S S

Arbiter Arbiter Arbiter

SSS

M

Bridge

S

Arbiter

M M M M MM M

Writedata and Control Signals

Readdata

Concurrency No Concurrency
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–35
Reducing Logic Utilization
Use Bridges to Minimize Adapter Logic
SOPC Builder generates adapter logic for clock crossing and burst support when there
is a mismatch between the clock domains or bursting capabilities of the master and
slave port pairs. Burst adapters are created when the maximum burst length of the
master is greater than the master burst length of the slave. The adapter logic creates
extra logic resources which can be substantial when your system contains
Avalon-MM master ports connected to many components that do not share the same
characteristics. By placing bridges in your design, you can reduce the amount of
adapter logic that SOPC Builder generates.

Effective Placement of Bridges
First, analyze each master in your system to determine if the connected slave devices
support different bursting capabilities or operate in a different clock domain. The
maximum burstcount of a device may be visible as the burstcount parameter in the
GUI. If it is not, check the width of the burstcount signal in the component’s HDL
file. The maximum burst length is 2 (width(burstcount -1)), so that if the width is 4 bits, the
burstcount is 8. If no burstcount signal is present, the component does not support
bursting or has a burst length of 1.

To determine if a clock crossing adapter is required between the master and slave
ports, check the clock column beside the master and slave ports in SOPC Builder. If
the clock shown is different for the master and slave ports, SOPC Builder inserts a
clock crossing adapter between them. To avoid creating multiple adapters, you can
place the components containing slave ports behind a bridge so that only one adapter
is created. By placing multiple components with the same burst or clock
characteristics behind a bridge, you limit concurrency and the number of adapters.

Compact System Example
Figure 6–28 illustrates a system with a mix of components with different burst
capabilities. It includes a Nios II/e core, a Nios II/f core and an external processor
which offloads some processing tasks to the Nios II/f core. The Nios II/e core
maintains communication between the Nios II /f core and external processors. The
Nios II/f core supports a maximum burst size of eight. The external processor
interface supports a maximum burst length of 64. The Nios II/e core does not support
bursting. The only memory in the system is DDR SDRAM with an Avalon maximum
burst length of two.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–36 Chapter 6: Avalon Memory-Mapped Design Optimizations
Reducing Logic Utilization
SOPC Builder automatically inserts burst adapters to compensate for burst length
mismatches. The adapters reduce bursts to a length of two or single transfers. For the
external processor interface connecting to DDR SDRAM, a burst of 64 words is
divided into 32 burst transfers, each with a burst length of 2.

At system generation time, SOPC Builder inserts burst adapters based on maximum
burstcount values; consequently, the system interconnect fabric includes burst
adapters between masters and slave pairs that do not require bursting, if the master is
capable of bursts. In Figure 6–28, SOPC Builder inserts a burst adapter between the
Nios II processors and the timer, system ID and PIO peripherals. These components
do not support bursting and the Nios II processor only performs single word read and
write accesses to these devices.

To reduce the number of adapters, you can add pipeline bridges, as Figure 6–29
illustrates. The pipeline bridge between the Nios II/f core and the peripherals that do
not support bursts eliminates three burst adapters from Figure 6–28. A second
pipeline bridge between the Nios II/f core and the DDR SDRAM, with its maximum
burst size set to eight, eliminates another burst adapter.

Figure 6–28. Mixed Bursting System

Nios II/e Core

M M

Nios II/f Core

M M

Host Processor
Interface

M

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

1

8

B

B

1

8

8

B

1

8

B

1

8

B

1

64

B

2

8

B

2

8

B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–37
Reducing Power Utilization
Reducing Power Utilization
Although SOPC Builder does not provide specific features to support low power
modes, there are opportunities for you to reduce the power of your system. This
section explores the various low power design changes that you can make in order to
reduce the power consumption of the system interconnect fabric and your custom
components.

Reduce Clock Speeds of Non-Critical Logic
Reducing the clock frequency reduces power consumption. Because SOPC Builder
supports clock crossing, you can reduce the clock frequency of the logic that does not
require a high frequency clock, allowing you to reduce power consumption. You can
use either clock crossing bridges or clock crossing adapters to separate clock domains.

Figure 6–29. Mixed Bursting System with Bridges

Nios II/e Core

M M

Nios II/f Core

M M

Host Processor
Interface

M

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

8

B

1

64

8 8
B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

B

1

8

B

2

8

M

Bridge

S

M

Bridge

S

© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–38 Chapter 6: Avalon Memory-Mapped Design Optimizations
Reducing Power Utilization
Clock Crossing Bridge
You can use the clock crossing bridge to connect Avalon-MM master ports operating
at a higher frequency to slave ports running a a lower frequency. Only low
throughput or low priority components should be placed behind a clock crossing
bridge that operates at a reduced clock frequency. Examples of typical components
that can be effectively placed in a slower clock domain are:

■ PIOs

■ UARTs (JTAG or RS-232)

■ System identification (SysID)

■ Timers

■ PLL (instantiated within SOPC Builder)

■ Serial peripheral interface (SPI)

■ EPCS controller

■ Tristate bridge and the components connected to the bridge

Figure 6–30. Low Power Using Bridge

Nios II

M M

Arbiter

DDR
SDRAM

S

On-Chip
Memory

S

Arbiter

PIO

S

UART

S

Timer

S

System ID

S

PLL

S

SPI

S

EPCS
Controller

S

M

Tristate
Bridge

S

M

Clock
Crossing
Bridge

S

Arbiter

200 MHz

5 MHz

Flash

S

Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–39
Reducing Power Utilization
Placing these components behind a clock crossing bridge increases the read latency;
however, if the component is not part of a critical section of your design the increased
latency is not an issue. By reducing the clock frequency of the components connected
to the bridge, you reduce the dynamic power consumption of your design. Dynamic
power is a function of toggle rates, and decreasing the clock frequency decreases the
toggle rate.

Clock Crossing Adapter
SOPC Builder automatically inserts clock crossing adapters between Avalon-MM
master and slave ports that operate at different clock frequencies. The clock crossing
adapter uses a handshaking state-machine to transfer the data between clock
domains. The HDL code that defines the clock crossing adapters resembles that of
other SOPC components. Adapters do not appear in the SOPC Builder Connection
column because you do not insert them. The differences between clock crossing
bridges and clock crossing adapters should help you determine which are appropriate
for your design.

Throughput

Because the clock crossing bridge uses FIFOs to implement the clock crossing logic, it
buffers transfers and data. Clock crossing adapters do not buffer data, so that each
transaction is blocking until it completes. Blocking transactions may lower the
throughput substantially; consequently, if you wish to reduce power consumption
without limiting the throughput significantly you should use the clock crossing
bridge. However, if the design simply requires single read transfer, a clock crossing
adapter is preferable because the latency is lower than the clock crossing bridge.

Resource Utilization

The clock crossing bridge requires very few logic resources besides on-chip memory.
The number of on-chip memory blocks used is proportional to the address span, data
width, buffering depth, and bursting capabilities of the bridge. The clock crossing
adapter does not use any on-chip memory and requires a moderate number of logic
resources. The address span, data width, and bursting capabilities of the clock
crossing adapter and also determine the resource utilization of the device.

Throughput versus Memory Tradeoffs

The choice between the clock crossing bridge and clock crossing adapter is between
throughput and memory utilization. If on-chip memory resources are limited, you
may be forced to choose the clock crossing adapter. Using the clock crossing bridge to
reduce the power of a single component may not justify the additional resources
required. However, if you can place all your low priority components behind a single
clock crossing bridge you reduce power consumption in your design. In contrast,
SOPC Builder inserts a clock crossing adapter between each master and slave pair that
run at different frequencies if you have not included a clock crossing bridge,
increasing the logic utilization in your design.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–40 Chapter 6: Avalon Memory-Mapped Design Optimizations
Reducing Power Utilization
Minimize Toggle Rates
Your design consumes power whenever logic transitions between on and off states.
When the state is held constant between clock edges, no charging or discharging
occurs. This section discusses three design techniques you can use to reduce the
toggle rates of your system:

■ Registering Component Boundaries

■ Enabling Clocks

■ Inserting Bridges

Registering Component Boundaries
The system interconnect fabric is purely combinational when no adapters or bridges
are present. When a slave port is not selected by a master, various signals may toggle
and propagate into the component. By registering the boundary of your component at
the Avalon-MM master or slave interface you can minimize the toggling of the system
interconnect fabric and your component. When you register the signals at the port
level you must ensure that the component continues to operate within the
Avalon-MM specification.

waitrequest is usually the most difficult signal to synchronize when you add
registers to your component. waitrequest must be asserted during the same clock
cycle that a master asserts read or write to prolong the transfer. A master interface
may read the waitrequest signal too early and post more reads and writes
prematurely.

For slave interfaces, the system interconnect fabric manages the begintransfer
signal which is asserted during the first clock cycle of any read or write transfer. If
your waitrequest is one clock cycle late you can logically OR your waitrequest
and the begintransfer signals to form a new waitrequest signal that is properly
synchronized.

Or, your component can assert waitrequest before it is selected, guaranteeing that
the waitrequest is already asserted during the first clock cycle of a transfer.

Figure 6–31. Variable Latency

waitrequest

begintransfer

readdata

read

write

writedata

Avalon-MM
Slave Port

Remainder of
Component

Logic

ready
(synchronous)
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–41
Reducing Power Utilization
Enabling Clocks
You can use clock enables to hold your logic in a steady state. You can use the write
and read signals as clock enables for Avalon-MM slave components. Even if you add
registers to your component boundaries, your interface can still potentially toggle
without the use of clock enables.

You can also use the clock enable to disable combinational portions of your
component. For example, you can use an active high clock enable to mask the inputs
into your combinational logic to prevent it from toggling when the component is
inactive. Before preventing inactive logic from toggling, you must determine if the
masking causes your circuit to function differently. If this masking causes a functional
failure, it may be possible to use a register stage to hold the combinational logic
constant between clock cycles.

Inserting Bridges
If you do not wish to modify the component by using boundary registers or clock
enables, you can use bridges to help reduce toggle rates. A bridge acts as a repeater
where transfers to the slave port are repeated on the master port. If the bridge is not
being accessed, the components connected to its master port are also not being
accessed. The master port of the bridge remains idle until a master accesses the bridge
slave port.

Bridges can also reduce the toggle rates of signals that are inputs to other master
ports. These signals are typically readdata, readdatavalid, and waitrequest.
Slave ports that support read accesses drive these signals. Using a bridge you can
insert either a register or clock crossing FIFO between the slave port and the master to
reduce the toggle rate of the master input signals.

Disable Logic
There are typically two types of low power modes: volatile and non-volatile. A
volatile low power mode holds the component in a reset state. When the logic is
reactivated the previous operational state is lost. A non-volatile low power mode
restores the previous operational state. This section covers two ways to disable a
component to reduce power using either software- or hardware-controlled sleep
modes.

Software Controlled Sleep Mode
To design a component that supports software controlled sleep mode, create a single
memory mapped location that enables and disables logic, by writing a 0 or 1. Use the
register’s output as a clock enable or reset depending on whether the component has
non-volatile requirements. The slave port must remain active during sleep mode so
that the enable bit can be set when the component needs to be activated.

If multiple masters can access a component that supports sleep mode, you can use the
mutex core available in SOPC Builder to provide mutual exclusive accesses to your
component. You can also build in the logic to re-enable the component on the very
first access by any master in your system. If the component requires multiple clock
cycles to re-activate then it must assert waitrequest to prolong the transfer as it
exits sleep mode.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–42 Chapter 6: Avalon Memory-Mapped Design Optimizations
Referenced Documents
f To learn more about the mutex core refer to the Mutex Core in volume 5 of the
Quartus II Handbook.

Hardware Controlled Sleep Mode
You can implement a timer in your component that automatically causes it to enter a
sleep mode based upon a timeout value specified in clock cycles between read or
write accesses. Each access resets the timer to the timeout value. Each cycle with no
accesses decrements the timeout value by 1. If the counter reaches 0, the hardware
enters sleep mode until the next access. Figure 6–32 provides a schematic for this
logic. If it takes a long time to restore the component to an active state, use a long
timeout value so that the component is not continuously entering and exiting sleep
mode.

The slave port interface must remain functional while the rest of the component is in
sleep mode. When the component exits sleep mode it, must assert the waitrequest
signal until it is ready for read or write accesses.

f For more information on reducing power utilization, refer to Power Optimization in
volume 2 of the Quartus II Handbook.

Referenced Documents
This chapter references the following documents:

■ Accelerated FIR with Built-in Direct Memory Access Example

■ Avalon Interfaces Specifications

■ Avalon Memory-Mapped Bridges chapter in volume 4 of the Quartus II Handbook

■ Creating Multiprocessor Nios II Systems Tutorial

■ Developing Components for SOPC Builder in volume 4 of the Quartus II Handbook

■ Multiprocessor Coordination Peripherals

■ Mutex Core in volume 5 of the Quartus II Handbook

■ Nios II Embedded Processor Design Examples

■ Nios II High-Performance Example With Bridges

■ Power Optimization in volume 2 of the Quartus II Handbook

Figure 6–32. Hardware Controlled Sleep Components

q

wake
read

write

d count

count enable
load

Down
Counter

waitrequest sleep_n

= 0?Timeout Value reset

busy
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51020.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/support/examples/nios2/exm-accelerated-fir.html
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54020.pdf
http://www.altera.com/literature/tt/tt_nios2_multiprocessor_tutorial.pdf
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3_04.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51020.pdf
http://www.altera.com/support/examples/nios2/exm-nios2.html
http://www.altera.com/support/examples/nios2/exm-high-perf-bridge.html
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf

Chapter 6: Avalon Memory-Mapped Design Optimizations 6–43
Document Revision History
Document Revision History
Table 6–1 shows the revision history for this chapter.

Table 6–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

June 2008

v1.1

Corrected Table of Contents —

March 2008

v1.0

Initial release —
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

6–44 Chapter 6: Avalon Memory-Mapped Design Optimizations
Document Revision History
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

© June 2008 Altera Corporation

ED51008-1.1
7. Memory System Design
Overview
This document describes the efficient use of memories in SOPC Builder embedded
systems. Efficient memory use increases the performance of FPGA-based embedded
systems. Embedded systems use memories for a range of tasks, such as the storage of
software code and lookup tables (LUTs) for hardware accelerators.

Your system’s memory requirements depend heavily on the nature of the applications
which you plan to run on the system. Memory performance and capacity
requirements are small for simple, low cost systems. In contrast, memory throughput
can be the most critical requirement in a complex, high performance system. The
following general types of memories can be used in embedded systems.

Volatile Memory
A primary distinction in memory types is volatility. Volatile memories only hold their
contents while power is applied to the memory device. As soon as power is removed,
the memories lose their contents; consequently, volatile memories are unacceptable if
data must be retained when the memory is switched off. Examples of volatile
memories include static RAM (SRAM), synchronous static RAM (SSRAM),
synchronous dynamic RAM (SDRAM), and FPGA on-chip memory.

Non-volatile Memory
Non-volatile memories retain their contents when power is switched off, making them
good choices for storing information that must be retrieved after a system
power-cycle. CPU boot-code, persistent application settings, and FPGA configuration
data are typically stored in non-volatile memory. Although non-volatile memory has
the advantage of retaining its data when power is removed, it is typically much
slower to write to than volatile memory, and often has more complex writing and
erasing procedures. Non-volatile memory is also usually only guaranteed to be
erasable a given number of times, after which it may fail. Examples of non-volatile
memories include all types of flash, EPROM, and EEPROM. Most modern embedded
systems use some type of flash memory for non-volatile storage.

Many embedded applications require both volatile and non-volatile memories
because the two memory types serve unique and exclusive purposes. The following
sections discuss the use of specific types of memory in embedded systems.

On-Chip Memory
On-chip memory is the simplest type of memory for use in an FPGA-based embedded
system. The memory is implemented in the FPGA itself; consequently, no external
connections are necessary on the circuit board. To implement on-chip memory in your
design, simply select the On-Chip Memory from the System Contents tab in SOPC
Builder. You can then specify the size, width, and type of on-chip memory, as well as
special on-chip memory features such as dual-port access.
Embedded Design Handbook
Preliminary

7–2 Chapter 7: Memory System Design
On-Chip Memory
f For details about the On-Chip Memory SOPC Builder component, refer to the
Building Memory Subsystems Using SOPC Builder chapter in volume 4 of Quartus II
Handbook.

Advantages
On-chip memory is the highest throughput, lowest latency memory possible in an
FPGA-based embedded system. It typically has a latency of only one clock cycle.
Memory transactions can be pipelined, making a throughput of one transaction per
clock cycle typical.

Some variations of on-chip memory can be accessed in dual-port mode, with separate
ports for read and write transactions. Dual-port mode effectively doubles the
potential bandwidth of the memory, allowing the memory to be written over one port,
while simultaneously being read over the second port.

Another advantage of on-chip memory is that it requires no additional board space or
circuit-board wiring because it is implemented on the FPGA directly. Using on-chip
memory can often save development time and cost.

Finally, some variations of on-chip memory can be automatically initialized with
custom content during FPGA configuration. This memory is useful for holding small
bits of boot code or LUT data which needs to be present at reset.

f For more information about which types of on-chip memory can be initialized upon
FPGA configuration, refer to the Building Memory Subsystems Using SOPC Builder
chapter of the Quartus II Handbook.

Disadvantages
While on-chip memory is very fast, it is somewhat limited in capacity. The amount of
on-chip memory available on an FPGA depends solely on the particular FPGA device
being used, but capacities range from around 15 KBytes in the smallest Cyclone II
device to just under 2 MBytes in the largest Stratix III device.

Because most on-chip memory is volatile, it loses its contents when power is
disconnected. However, some types of on-chip memory can be initialized
automatically when the FPGA is configured, essentially providing a kind of
non-volatile function. For details, refer to the embedded memory chapter of the
device handbook for the particular FPGA family you are using or Quartus® II Help.

Best Applications
The following sections describe the best uses of on-chip memory.

Cache
Because it is low latency, on-chip memory functions very well as cache memory for
microprocessors. The Nios II processor uses on-chip memory for its instruction and
data caches. The limited capacity of on-chip memory is usually not an issue for caches
because they are typically relatively small.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

Chapter 7: Memory System Design 7–3
On-Chip Memory
Tightly Coupled Memory
The low latency access of on-chip memory also makes it suitable for tightly-coupled
memories. Tightly coupled memories are memories which are mapped in the normal
address space, but have a dedicated interface to the microprocessor, and possess the
high-speed, low-latency properties of cache memory.

f For more information regarding tightly-coupled memories, refer to the Using Nios II
Tightly Coupled Memory Tutorial.

Look Up Tables
For some software programming functions, particularly mathematical functions, it is
sometimes fastest to use a LUT to store all the possible outcomes of a function, rather
than computing the function in software. On-chip memories work well for this
purpose as long as the number of possible outcomes fits reasonably in the capacity of
on-chip memory available.

FIFO
Embedded systems often need to regulate the flow of data from one system block to
another. FIFOs can buffer data between processing blocks that run most efficiently at
different speeds. Depending on the size of the FIFO your application requires, on-chip
memory can serve as very fast and convenient FIFO storage.

f For more information regarding FIFO buffers, refer to the On-Chip FIFO Memory Core
chapter in volume 5 of the Quartus II Handbook.

Poor Applications
On-chip memory is poorly suited for applications which require large memory
capacity. Because on-chip memory is relatively limited in capacity, avoid using it to
store large amounts of data; however, some tasks can take better advantage of on-chip
memory than others. If your application utilizes multiple small blocks of data, and not
all of them fit in on-chip memory, you should carefully consider which blocks to
implement in on-chip memory. If high system performance is your goal, place the
data which is accessed most often in on-chip memory.

On-Chip Memory Types
Depending on the type of FPGA you are using, there are several types of on-chip
memory available. For details on the different types of on-chip memory available to
you, refer to the device handbook for the particular FPGA family you are using.

Best Practices
To optimize the use of the on-chip memory in your system, follow these guidelines:

■ Set the on-chip memory data width to match the data-width of its primary system
master. For example, if you are connecting the on-chip memory to the data master
of a Nios II processor, you should set the data width of the on-chip memory to 32
bits, the same as the data-width of the Nios II data master. Otherwise, the access
latency could be longer than one cycle because the system interconnect fabric
performs width translation.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55002.pdf

7–4 Chapter 7: Memory System Design
External SRAM
■ If more than one master connects to an on-chip memory component, consider
enabling the dual-port feature of the on-chip memory. The dual-port feature
removes the need for arbitration logic when two masters access the same on-chip
memory. In addition, dual-ported memory allows concurrent access from both
ports, which can dramatically increase efficiency and performance when the
memory is accessed by two or more masters. However, writing to both slave ports
of the RAM can result in data corruption if there is not careful coordination
between the masters.

To minimize FPGA logic and memory utilization, follow these guidelines:

■ Choose the best type of on-chip memory for your application. Some types are
larger capacity; others support wider data-widths. The embedded memory section
in the device handbook for the appropriate FPGA family provides details on the
features of on-chip memories.

■ Choose on-chip memory sizes that are a power of 2 bytes. Implementing memories
which are not a power of 2 can result in inefficient memory and logic use.

External SRAM
The term external SRAM refers to any static RAM (SRAM) device that you connect
externally to a FPGA. There are several varieties of external SRAM devices. The choice
of external SRAM and its type depends upon the nature of the application. Designing
with SRAM memories presents both advantages and disadvantages.

Advantages
External SRAM devices provide larger storage capacities than on-chip memories, and
are still quite fast, although not as fast as on-chip memories. Typical external SRAM
devices have capacities ranging from around 128 KBytes to 10 MBytes. Specialty
SRAM devices can even be found in smaller and larger capacities. SRAMs are
typically very low latency and high throughput devices, slower than on-chip memory
only because they connect to the FPGA over a shared, bidirectional bus. The SRAM
interface is very simple, making connecting to an SRAM from an FPGA a simple
design task. You can also share external SRAM buses with other external SRAM
devices, or even with external memories of other types, such as flash or SDRAM.

f See Building Memory Subsystems Using SOPC Builder in volume 4 of the Quartus II
Handbook, for more information regarding shared external buses.

Disadvantages
The primary disadvantages of external SRAM in an FPGA-based embedded system
are cost and board real estate. SRAM devices are more expensive per MByte than
other high-capacity memory types such as SDRAM. They also consume more board
space per MByte than both SDRAM and FPGA on-chip memory which consumes
none.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

Chapter 7: Memory System Design 7–5
External SRAM
Best Applications
External SRAM is quite effective as a fast buffer for medium-size blocks of data. You
can use external SRAM to buffer data that does not fit in on-chip memory and
requires lower latency than SDRAM provides. You can also group multiple SRAM
memories to increase capacity.

SRAM is also optimal for accessing random data. Many SRAM devices can access
data at non-sequential addresses with the same low-latency as sequential addresses,
an area where SDRAM performance suffers. SRAM is the ideal memory type for a
large LUT holding the data for color conversion algorithm that is too large to fit in
on-chip memory.

External SRAM performs relatively well when used as execution memory for a CPU
with no cache. The low latency properties of external SRAM help improve CPU
performance if the CPU has no cache to mask the higher latency of other types of
memory.

Poor Applications
Poor uses for external SRAM include systems which require large amounts of storage
and systems which are cost-sensitive. If your system requires a block of memory
larger than 10 MBytes, you may want to consider a different type of memory, such as
SDRAM, which is less expensive.

External SRAM Types
There are several types of SRAM devices. The most popular types are listed below.

■ Asynchronous SRAM—This is the slowest type of SRAM because it is not
dependent on a clock.

■ Synchronous SRAM (SSRAM)—Synchronous SRAM operates synchronously to a
clock. It is faster than asynchronous SRAM but also more expensive.

■ Pseudo-SRAM—Pseudo-SRAM (PSRAM) is a type of dynamic RAM (DRAM)
which has an SSRAM interface.

■ ZBT SRAM—ZBT (zero bus turnaround) SRAM can switch from read to write
transactions with zero turn around cycles, making it a very low-latency. ZBT
SRAM typically requires a special controller to take advantage of its low-latency
features.

Best Practices
To get the best performance from your external SRAM devices, follow these
guidelines:

■ Use SRAM interfaces which are the same data width as the data width of the
primary system master which accesses the memory.

■ If pin utilization or board real estate is a larger concern than the performance of
your system, you can use SRAM devices with a smaller data width than the
masters that will access them to reduce the pincount of your FPGA and possibly
the number of memory devices on the PCB. However, this change results in
reduced performance of the SRAM interface.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

7–6 Chapter 7: Memory System Design
Flash
Flash
Flash memory is a non-volatile memory type used frequently in embedded systems.
In FPGA-based embedded systems, flash is always external because FPGAs do not
contain flash memory. Because flash memory retains its contents after power is
removed, it is commonly used to hold microprocessor boot code as well as any data
which needs to be preserved in the case of a power failure. Flash memories are
available with either a parallel or a serial interface. The fundamental storage
technology for parallel and serial flash devices is the same.

Unlike SRAM, flash cannot be updated with a simple write transaction. Every write to
a flash device uses a write command consisting of a fixed sequence of consecutive
read and write transactions. Before flash can be written, it must be erased. All flash
devices are divided into some number of erase blocks, or sectors, which vary in size,
depending on the flash vendor and device size. Entire sections of flash must be erased
as a unit; individual words cannot be erased. These requirements sometimes make
flash devices difficult to use.

Advantages
The primary advantage of flash memory is that is non-volatile. Modern embedded
systems use flash extensively to store not only boot code and settings, but large blocks
of data such as audio or video streams. Many embedded systems use flash memory as
a low-power, high-reliability substitute for a hard drive.

Among other non-volatile types of memory, flash is the most popular for four
reasons:

■ It is durable

■ It is erasable

■ It permits a large number of erase cycles

■ It is low-cost

You can share flash buses with other flash devices, or even with external memories of
other types, such as external SRAM or SDRAM.

f Refer to Building Memory Subsystems Using SOPC Builder in volume 4 of the Quartus II
Handbook for more information regarding shared external buses.

Disadvantages
A major disadvantage of flash is its write-speed. Because you can only write to flash
devices using special commands, multiple bus transactions are required for each flash
write. Furthermore, the actual write time, once the write command has been sent, can
be several microseconds. Depending on clock speed, the actual write time can be in
the hundreds of clock cycles. Because of the sector-erase restriction, if you need to
change a data word in the flash, you must complete the following steps:

1. Copy the entire contents of the sector into a temporary buffer

2. Erase the sector

3. Change the single data word in the temporary buffer

4. Write the temporary buffer back to flash.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

Chapter 7: Memory System Design 7–7
Flash
This procedure contributes to the poor write-speed of flash memory devices. Because
of its poor write-speed, flash is typically only used for storing data which must be
preserved after power is turned off.

Typical Applications
Flash memory is effective for storing any data that you wish to preserve if power is
removed from the system. Common uses of flash include storage of the following
items:

■ Microprocessor boot code

■ Microprocessor application code to be copied to RAM upon system startup

■ Persistent system settings, including:

■ Network MAC address

■ Calibration data

■ User preferences

■ FPGA configuration images

■ Media (audio, video)

Poor Applications
Because of flash memory's slow write speeds, do not use it for anything that does not
need to be preserved after power-off. SRAM is a much better alternative if volatile
memory is an option. Systems which use flash memory usually also include some
SRAM as well.

One particularly poor use of flash is direct execution of microprocessor application
code. If any of the code's writeable sections are located in flash, the software simply
will not work, because flash cannot be written without using its special write
commands. Systems which store application code in flash usually copy the
application to SRAM before executing it.

Flash Types
There are several types of flash devices. The most popular types are listed below:

■ CFI flash – This is the most common type of flash memory. It has a parallel
interface. CFI stands for common flash interface, a standard to which all CFI flash
devices adhere. SOPC Builder and the Nios II processor have built-in support for
CFI flash.

f For more details, refer to the following documentation: Common Flash
Interface Controller Core in volume 5 of the Quartus II Handbook and the
Nios II Flash Programmer User Guide.

■ Serial flash – This flash has a serial interface to preserve device pins and board
space. Because many serial flash devices have their own specific interface protocol,
it is best to thoroughly read a serial flash device's datasheet before choosing it.
Altera EPCS configuration devices are a type of serial flash.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51013.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51013.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

7–8 Chapter 7: Memory System Design
SDRAM
f For more information about EPCS configuration devices, refer to the Altera
Configuration Devices chapter in volume 2 of Altera's Configuration
Handbook.

■ NAND flash – NAND flash is a newer type of flash memory which has recently
begun to gain popularity. NAND flash can achieve very high capacities, up to
multiple GBytes per device. The interface to NAND flash is a bit more complicated
than that of CFI flash. It requires either a special controller or intelligent low-level
driver software. You can use NAND Flash with Altera FPGAs; however, Altera
does not provide any built-in support.

SDRAM
SDRAM is another type of volatile memory. It is similar to SRAM, except that it is
dynamic and must be refreshed periodically to maintain its content. The dynamic
memory cells in SDRAM are much smaller than the static memory cells used in
SRAM. This difference in size translates into very high-capacity and low-cost memory
devices.

In addition to the refresh requirement, SDRAM has other very specific interface
requirements which typically necessitate the use of special controller hardware.
Unlike SRAM which has a static set of address lines, SDRAM divides up its memory
space into banks, rows, and columns. Switching between banks and rows incurs some
overhead, so that efficient use of SDRAM involves the careful ordering of accesses.
SDRAM also multiplexes the row and column addresses over the same address lines,
which reduces the pin count necessary to implement a given size of SDRAM. Higher
speed varieties of SDRAM such as DDR, DDR2, and DDR3 also have strict signal
integrity requirements which need to be carefully considered during the design of the
PCB.

SDRAM devices are among the least expensive and largest-capacity types of RAM
devices available, making them one of the most popular. Most modern embedded
systems use SDRAM. A major part of an SDRAM interface is the SDRAM controller.
The SDRAM controller manages all the address-multiplexing, refresh and row and
bank switching tasks, allowing the rest of the system to access SDRAM without
knowledge of its internal architecture.

f For information on the SDRAM controllers available for use in Altera FPGAs, refer to
the following documents:

■ DDR and DDR2 SDRAM High-Performance Controller User Guide,

■ DDR3 SDRAM High-Performance Controller User Guide

■ AN 398: Using DDR/DDR2 SDRAM with SOPC Builder.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/cfg/section_1_vol_2.pdf
http://www.altera.com/literature/hb/cfg/section_1_vol_2.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
http://www.altera.com/literature/ug/ug_ddr3_sdram.pdf
http://www.altera.com/literature/an/an398.pdf

Chapter 7: Memory System Design 7–9
SDRAM
Advantages
SDRAM's most significant advantages are its capacity and cost. No other type of RAM
combines the low-cost and large capacity of SDRAM, which makes it a very popular
choice. SDRAM also makes efficient use of pins. Because row and column addresses
are multiplexed over the same address pins, fewer pins are required to implement a
given capacity of memory. Finally, SDRAM generally consumes less power than an
equivalent SRAM device.

In some cases, you can also share SDRAM buses between multiple SDRAM devices,
or even with external memories of other types, such as external SRAM or flash.

f Refer to Building Memory Subsystems Using SOPC Builder in volume 4 of the Quartus II
Handbook for more information regarding shared external buses.

Disadvantages
Along with the high-capacity and low-cost of SDRAM, comes additional complexity
and latency. The complexity of the SDRAM interface requires that you must always
use an SDRAM controller to manage SDRAM refresh cycles, address multiplexing,
and interface timing. Such a controller consumes FPGA logic elements which would
normally be available for other logic.

SDRAM suffers from a significant amount of access latency. Most SDRAM controllers
take measures to minimize the amount of latency, but the nature of SDRAM dictates
that latency is always greater than that of regular external SRAM or FPGA on-chip
memory. However, while first-access latency is high, SDRAM throughput can
actually be quite high once the initial access latency is overcome because consecutive
accesses can be pipelined. Some types of SDRAM can achieve higher clock
frequencies than SRAM, further improving throughput. The SDRAM interface
specification also employs a burst feature to help improve overall throughput.

Best Applications
SDRAM is generally a good choice in the following circumstances:

■ Storing large blocks of data—SDRAM's large capacity makes it the best choice for
buffering any large blocks of data such as network packets, video frame buffers,
and audio data.

■ Executing microprocessor code—SDRAM is commonly used to store instructions
and data for microprocessor software, particularly when the program being
executed is large. Instruction and data caches improve performance for large
programs. Depending on the system topography and the SDRAM controller used,
the sequential reads typical of cache line fills can potentially take advantage of
SDRAM's pipeline and burst capabilities.

Poor Applications
SDRAM may not be the best choice in the following situations:

■ Whenever low-latency memory access is required—Although high throughput is
possible using SDRAM, its first-access latency is quite high. If low latency access to
a particular block of data is a requirement of your application, SDRAM is probably
not a good candidate for holding that block of data.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

7–10 Chapter 7: Memory System Design
SDRAM
■ Small blocks of data—When only a small amount of storage is needed, SDRAM
may be unnecessary. An on-chip memory may be able to meet your memory
requirements without adding another memory device to the PCB.

■ Small, simple embedded systems—If your system uses a small FPGA in which
logic resources are scarce and your application does not require the capacity that
SDRAM provides, you may prefer to use a small external SRAM or on-chip
memory rather than devoting FPGA logic elements to an SDRAM controller.

SDRAM Types
There are a several types of SDRAM devices. The most common types are listed
below:

■ SDR SDRAM—Single data rate (SDR) SDRAM is the original type of SDRAM. It is
either referred to as just SDRAM or SDR SDRAM to distinguish it from newer,
double data rate (DDR) types. The name single data rate refers to the fact that a
maximum of a single word of data can be transferred per clock cycle. SDR SDRAM
is still in wide use, although newer types of DDR SDRAM are becoming more
common.

■ DDR SDRAM—Double data rate (DDR) SDRAM is a newer type of SDRAM that
supports higher data throughput by transferring a data word on both the rising
and falling edge of the clock. DDR SDRAM uses 2.5 V SSTL signaling. The use of
DDR SDRAM requires a custom memory controller.

■ DDR2 SDRAM—DDR2 SDRAM is a newer variation of standard DDR SDRAM
memory which builds on the success of DDR by implementing slightly improved
interface requirements such as lower power 1.8 V SSTL signaling and on-chip
signal termination.

■ DDR3 SDRAM—DDR3 is another variant of DDR SDRAM which again improves
the potential bandwidth of the memory by improving signal integrity and
increasing clock frequencies.

SDRAM Controller Types Available From Altera
Table 7–1 lists the SDRAM controllers that Altera provides. They are available without
licenses.

Table 7–1. Memory Controller Available from Altera (Part 1 of 2)

Controller Name Description

SDR SDRAM Controller This is the only SDR SDRAM controller Altera offers. It is a simple, easy-to-use
controller that works with most available SDR SDRAM devices.

For more information refer to SDRAM Controller Core chapter in volume 5
of the Quartus II Handbook.

DDR/DDR2 Controller Megacore
Function

This controller is a legacy component which is maintained for existing designs only.
Altera does not recommend it for new designs.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf

Chapter 7: Memory System Design 7–11
SDRAM
Best Practices
When using the high performance DDR or DDR2 SDRAM controller, it is important to
determine whether full-rate or half-rate clock mode is optimal for your application.

Half-Rate Mode
Half-rate mode is optimal in cases where you require the highest possible SDRAM
clock frequency, or when the complexity of your system logic means that you are not
able to achieve the clock frequency you need for the DDR SDRAM. In half-rate mode,
the internal Avalon interface to the SDRAM controller is half of the external SDRAM
frequency.

In half-rate mode, the local data width (the data width inside the SOPC Builder
system) of the SDRAM controller is four times the data width of the physical DDR
SDRAM device. For example, if your SDRAM device is 8 bits wide, the internal
Avalon data port of the SDRAM controller is 32 bits. This design choice facilitates
bursts of four accesses to the SDRAM device.

Full-Rate Mode
In full-rate mode, the internal Avalon interface to the SDRAM controller runs at the
full external DDR SDRAM clock frequency. Use full-rate mode if your system logic is
simple enough that it can easily achieve DDR SDRAM clock frequencies, or when
running the system logic at half the clock rate of the SDRAM interface is too slow for
your requirements.

When using full-rate mode, the local data width of the SDRAM controller is two times
the data width of the physical DDR SDRAM itself. For example, if your SDRAM
device is 16-bits wide, the internal Avalon data port of the SDRAM controller in full-
rate mode is 32 bits. Again, this choice facilitate bursts to the SDRAM device

High Performance DDR/DDR2
Controller

This is the DDR/DDR2 controller that Altera recommends for new designs. It supports
two primary clocking modes, full-rate and half-rate.

■ Full-rate mode presents data to the SOPC Builder system at twice the width of the
actual DDR SDRAM device at the full SDRAM clock rate.

■ Half-rate mode presents data to the SOPC Builder system at four times the native
SDRAM device data width at half the SDRAM clock rate.

For more information about this controller, refer to the DDR and DDR2 SDRAM
High-Performance Controller User Guide.

High Performance DDR3
Controller

This is the DDR3 controller that Altera recommends for new designs. It is similar to the
high performance DDR/DDR2 controller. It also supports full- and half-rate clocking
modes.

For more information about this controller, refer to the DDR3 SDRAM
High-Performance Controller User Guide.

Table 7–1. Memory Controller Available from Altera (Part 2 of 2)

Controller Name Description
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
http://www.altera.com/literature/ug/ug_ddr3_sdram.pdf
http://www.altera.com/literature/ug/ug_ddr3_sdram.pdf

7–12 Chapter 7: Memory System Design
SDRAM
Sequential Access
SDRAM performance benefits from sequential accesses. When access is sequential,
data is written or read from consecutive addresses and it may be possible to increase
throughput by using bursting. In addition, the SDRAM controller can optimize the
accesses to reduce row and bank switching. Each row or bank change incurs a delay,
so that reducing switching increases throughput.

Bursting
SDRAM devices employ bursting to improve throughput. Bursts group a number of
transactions to sequential addresses, allowing data to be transferred back-to-back
without the incurring the overhead of requests for individual transactions. If you are
using the high performance DDR/DDR2 SDRAM controller, you may be able to take
advantage of bursting in the system interconnect fabric as well. Bursting is only useful
if both the master and slave involved in the transaction are burst-enabled. Refer to the
documentation for the master in question to see if bursting is supported.

Selecting the burst size for the high performance DDR/DDR2 SDRAM controller
depends on the mode in which you use the controller. In half-rate mode, the
Avalon-MM data port is four times the width of the actual SDRAM device;
consequently, four transactions are initiated to the SDRAM device for each single
transfer in the system interconnect fabric. A burst size of four is used for those four
transactions to SDRAM. This is the maximum size burst supported by the high
performance DDR/DDR2 SDRAM controller. Consequently, using bursts for the high
performance DDR/DDR2 SDRAM controller in half-rate mode does not increase
performance because the system interconnect fabric is already using its maximum
supported burst-size to carry out each single transaction.

However, in full-rate mode, you can use a burst size of two with the high performance
DDR/DDR2 SDRAM controller. In full-rate mode, each Avalon transaction results in
two SDRAM device transactions, so two Avalon transactions can be combined in a
burst before the maximum supported SDRAM controller burst size of four is reached.

SDRAM Minimum Frequency
Many SDRAM devices, particularly DDR, DDR2, and DDR3 devices have minimum
clock frequency requirements. The minimum clock rate depends on the particular
SDRAM device. Refer to the datasheet of the SDRAM device you are using to find the
device's minimum clock frequency.

SDRAM Device Speed
SDRAM devices, both SDR and DDR, come in several speed grades. When using
SDRAM with FPGAs, the operating frequency of the FPGA system is usually lower
than the maximum capability of the SDRAM device. Therefore, it is typically not
worth the extra cost to use fast speed-grade SDRAM devices. Before committing to a
specific SDRAM device, consider both the expected SDRAM frequency of your
system, and the maximum and minimum operating frequency of the particular
SDRAM device.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 7: Memory System Design 7–13
Memory Optimization
Memory Optimization
This section presents tips and tricks that can be helpful when implementing any type
of memory in your SOPC Builder system. These techniques can help improve system
performance and efficiency.

Isolate Critical Memory Connections
For many systems, particularly complex ones, isolating performance-critical memory
connections is beneficial. To achieve the maximum throughput potential from
memory, connect it to the fewest number of masters possible and share those masters
with the fewest number of slaves possible. Minimizing connections reduces the size of
the data multiplexers required, increasing potential clock speed and also reduces the
amount of arbitration necessary to access the memory.

f You can use bridges to isolate memory connections. For more information on efficient
system topology refer to the following documents:

■ Avalon Memory-Mapped Bridges chapter in volume 4 of the Quartus II Handbook.

■ Avalon Memory-Mapped Design Optimizations chapter of the Embedded Design
Handbook.

Match Master and Slave Data Width
Matching the data widths of master and slave pairs in SOPC Builder is advantageous.
Whenever a master port is connected to a slave of a different data width, SOPC
Builder inserts adapter logic to translate between them. This logic can add additional
latency to each transaction, reducing throughput. Whenever possible, try to keep the
data width consistent for performance-critical master and slave connections. In cases
where masters are connected to multiple slaves, and slaves are connected to multiple
masters, it may be impossible to make all the master and slave connections the same
data width. In these cases, you should concentrate on the master-to-slave connections
which have the most impact on system performance.

For instance, if Nios II CPU performance is critical to your overall system
performance, and the CPU is configured to run all its software from an SDRAM
device, you should use a 32-bit SDRAM device because that is the native data width
of the Nios II processor, and it delivers the best performance. Using a narrower or
wider SDRAM device can negatively impact CPU performance because of greater
latency and lower throughput. However, if you are using a 64-bit DMA to move data
to and from SDRAM, the overall system performance may be more dependent on
DMA performance. In these cases, it may be advantageous to implement a 64-bit
SDRAM interface.

Use Separate Memories to Exploit Concurrency
Any time multiple masters in your system access the same memory, each master is
only granted access some fraction of the time. Shared access may hurt system
throughput if a master is starved for data.
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii54020.pdf
http://www.altera.com/literature/hb/nios2/edh_51007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

7–14 Chapter 7: Memory System Design
Case Study
If you create separate memory interfaces for each master, they can access memory
concurrently at full speed, removing the memory bandwidth bottleneck. Separate
interfaces are quite useful in systems which employ a DMA, or in multiprocessor
systems where the potential for parallelism is significant.

In SOPC Builder, it is easy to create separate memory interfaces. Simply instantiate
multiple on-chip memory components instead of one. You can also use this technique
with external memory devices such as external SRAM and SDRAM by adding more,
possibly smaller, memory devices to the board and connecting them to separate
interfaces in SOPC Builder. Adding more memory devices presents tradeoffs between
board real estate, FPGA pins, and FPGA logic resources, but can certainly improve
system throughput. Your system topology should reflect your system requirements.

f For more information regarding topology tradeoffs refer to Avalon Memory-Mapped
Design Optimizations chapter of the Embedded Design Handbook.

Understand the Nios II Instruction Master Address Space
This Nios II CPU instruction master cannot address more than a 256 MByte span of
memory; consequently, providing more than 256 MBytes to run Nios II software
wastes memory resources. This restriction does not apply to the Nios II data master
that can address up to 2 GBytes.

Test Memory
You should rigorously test the memory in your system to ensure that it is physically
connected and setup properly before relying on it in an actual application. The Nios II
Development Kit ships with a memory test example which is a good starting point for
building a thorough memory test for your system.

Case Study
The section describes the optimization of memory partitioning in a video processing
application to illustrate the concepts discussed earlier in this document.

Application Description
This video processing application employs an algorithm that operates on a full frame
of video data, line by line. Other details of the algorithm do not impact design of the
memory subsystem. The data flow includes the following steps:

1. A dedicated DMA engine copies the input data from the video source into a
buffer.

2. A Nios II CPU operates on that buffer, performing the video processing algorithm
and writing the result to another buffer.

3. A second dedicated DMA engine copies the output from the CPU result buffer to
the video output device.

4. The two DMAs provide an element of concurrency by copying input data to the
next input buffer, and copying output data from the previous output buffer at the
same time the CPU is processing the current buffer, a technique commonly called
ping-ponging.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

Chapter 7: Memory System Design 7–15
Case Study
Figure 7–1 shows the basic architecture of the system.

Initial Memory Partitioning
As a starting point, the application uses SDRAM for all of its storage and buffering, a
commonly used memory architecture. The input DMA copies data from the video
source to an input buffer in SDRAM. The CPU performs its processing by reading
from that SDRAM input buffer, writing its result to an output buffer, also located in
SDRAM. In addition, the CPU uses SDRAM for both its instruction and data memory.
(Refer to Figure 7–2.)

Functionally, there is nothing wrong with this implementation. It is a frequently used,
traditional type of embedded system architecture. It is also relatively inexpensive,
because it uses only one external memory device; however, it is somewhat inefficient,
particularly regarding its use of SDRAM. As Figure 7–2 illustrates, there are 6
different channels of data being accessed in the SDRAM.

1. CPU instruction

2. CPU data

3. Input data from DMA

Figure 7–1. Sample Application Architecture

System Interconnect Fabric

Nios II
CPU

ping pong

ping pong

Input
DMA

Nios II
CPU

Output
DMA

Input
Device

Output
Device

Buffer

Buffer

Buffer

Buffer

Figure 7–2. All Memory Implemented in SDRAM

Nios II
CPU

Input
DMA

Nios II
CPU

Output
DMA

Input
Device

Output
Device

ping pong
Buffer

Buffer

ping pong
Buffer

Buffer

Instr Mem

Data Mem

SDRAM

Instr
Cache

Data
Cache
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

7–16 Chapter 7: Memory System Design
Case Study
4. Input data to CPU

5. Output data from CPU

6. Output data to DMA

With this many channels moving in and out of SDRAM simultaneously, especially at
the high data-rates required by video, the SDRAM bandwidth is easily the most
significant performance bottleneck in the design.

Optimized Memory Partitioning
This design can be optimized to operate more efficiently. These optimizations are
described in the following sections.

Add An External SRAM for input buffers
The first optimization to improve efficiency is to move the input buffering from the
SDRAM to an external SRAM device. This technique creates performance gains for
three reasons:

■ First, the input side of the application achieves higher throughput because it now
uses its own dedicated external SRAM to bring in video data.

■ Second, two of the high-bandwidth channels from the SDRAM are eliminated,
allowing the remaining SDRAM channels to achieve higher throughput.

■ Third, because eliminating two channels reduces the number of accesses to the
SDRAM memory, there are fewer row changes in the SDRAM, leading to higher
throughput.

The redesigned system processes data faster, at the expense of more complexity and
higher cost. Figure 7–3 illustrates the redesigned system.

1 If the video frames are small enough to fit in FPGA on-chip memory, you can use
on-chip memory for the input buffers, saving the expense and complexity of adding
an external SRAM device.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 7: Memory System Design 7–17
Case Study
Notice that there are still four channels connected to SDRAM:

1. CPU instruction

2. CPU data

3. Output data from CPU

4. Output data to DMA

While we could probably achieve some additional performance benefit by adding a
second external SRAM for the output channel, the benefit would not likely be
significant enough to outweigh the added cost and complexity. The reason is that
only two of the four remaining channels require significant bandwidth from the
SDRAM, the two video output channels. Assuming our CPU contains both instruction
and data caches, the SDRAM bandwidth required by the CPU is likely to be relatively
small. Therefore, sharing the SDRAM for CPU instruction and data, and the video
output channel is probably acceptable. If necessary, increasing the CPU cache sizes
can further reduce the CPU's reliance on SDRAM bandwidth.

Add On-Chip Memory for Video Line Buffers
The final optimization is to add small on-chip memory buffers for input and output
video lines. Because the processing algorithm operates on the video input one line at a
time, buffering entire lines of input data in an on-chip memory improves
performance. It enables the CPU to read all its input data from on-chip RAM—the
fastest, lowest latency type of memory available.

The DMA fills these buffers ahead of the CPU in a ping-pong scheme, in a manner
analogous to the input frame buffers used for the external SRAM. The same on-chip
memory line buffering scheme is used for CPU output. The CPU writes its output
data to an on-chip memory line buffer, which is copied to the output frame buffer by a
DMA once both the input and output ping-pong buffers flip, and the CPU begins
processing the next line. Figure 7–4 illustrates this memory architecture.

Figure 7–3. Input Channel Moved to External SSRAM

Nios II
CPU

Input
DMA

Nios II
CPU

Output
DMA

Input
Device

Output
Device

ping pong
Buffer

Buffer

ping pong
Buffer

Buffer

Instr Mem

Data Mem

SDRAM

SRAM

Instr
Cache

Data
Cache
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

7–18 Chapter 7: Memory System Design
Referenced Documents
Referenced Documents
This chapter references the following documents:

■ Altera Configuration Devices chapter in volume 2 of the Configuration Handbook

■ AN 398: Using DDR/DDR2 SDRAM with SOPC Builder

■ Avalon Memory-Mapped Bridges in volume 4 of the Quartus II Handbook

■ Avalon Memory-Mapped Design Optimizations chapter of the Embedded Design
Handbook

■ Building Memory Subsystems Using SOPC Builder in volume 4 of Quartus II
Handbook

■ Common Flash Interface Controller Core in volume 5 of the Quartus II Handbook

■ DDR and DDR2 SDRAM High-Performance Controller User Guide

■ DDR3 SDRAM High-Performance Controller User Guide

■ Nios II Flash Programmer User Guide

■ On-Chip FIFO Memory Core in volume 5 of the Quartus II Handbook

■ SDRAM Controller Core in volume 5 of the Quartus II Handbook

■ Using Nios II Tightly Coupled Memory Tutorial

Figure 7–4. On-Chip Memories Added As Line Buffers

Input
DMA

Line Buffer
DMA

Line Buffer
DMA

Nios II CPU

Output
DMA

Input
Device

Output
Device

ping pong
Buffer

Buffer

ping pong
Buffer

Buffer

Instr Mem

Data Mem

SDRAM

SRAM

On-Chip
Mem

On-Chip
Mem

Instr
Cache

Data
Cache
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/cfg/cfg_ch1_vol_2.pdf
http://www.altera.com/literature/an/an398.pdf
http://www.altera.com/literature/hb/qts/qts_qii54020.pdf
http://www.altera.com/literature/hb/nios2/edh_51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51013.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
http://www.altera.com/literature/ug/ug_ddr3_sdram.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf?GSA_pos=3&WT.oss_r=1&WT.oss=tightly%20coupled%20memory
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/hb/cfg/cfg_ch1_vol_2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf

Chapter 7: Memory System Design 7–19
Document Revision History
Document Revision History
Table 7–1 shows the revision history for this chapter.

Table 7–2. Document Revision History

Date and Document
Version Changes Made Summary of Changes

June 2008
v1.1

Corrected Table of Contents —

March 2008
v1.0

Initial release. —
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

7–20 Chapter 7: Memory System Design
Document Revision History
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

© June 2008 Altera Corporation

ED51006-1.1
8. Hardware Acceleration and
Coprocessing
This chapter discusses how you can use hardware accelerators and coprocessing to
create more efficient, higher throughput designs in SOPC Builder. This chapter
discusses the following topics:

■ Accelerating Cyclic Redundancy Checking (CRC)

■ Creating Nios II Custom Instructions

■ Using the C2H Compiler

■ Creating Multicore Designs

■ Pre- and Post-Processing

■ Replacing State Machines

Hardware Acceleration
Hardware accelerators implemented in FPGAs offer a scalable solution for
performance-limited systems. Other alternatives for increasing system performance
include choosing higher performance components or increasing the system clock
frequency. Although these other solutions are effective, in many cases they lead to
additional cost, power, or design time.

Accelerating Cyclic Redundancy Checking (CRC)
CRC is significantly more efficient in hardware than software; consequently, you can
improve the throughput of your system by implementing a hardware accelerator for
CRC. In addition, by eliminating CRC from the tasks that the processor must run, the
processor has more bandwidth to accomplish other tasks. Figure 8–1 illustrates a
system in which a Nios® II processor offloads CRC processing to a hardware
accelerator. In this system, the Nios II processor reads and writes registers to control
the CRC using its Avalon® Memory-Mapped (Avalon-MM) slave port. The CRC
component’s Avalon-MM master port reads data for the CRC check from memory.

f This design example and the HDL files to implement it are fully explained in the
Developing Components for SOPC Builder chapter in volume 4 of the Quartus II
Handbook.
Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54007.pdf

8–2 Chapter 8: Hardware Acceleration and Coprocessing
Hardware Acceleration
An alternative approach includes a dedicated DMA engine in addition to the Nios II
processor. Figure 8–2 illustrates this design. In this system, the Nios II processor
programs the DMA engine which transfers data from memory to the CRC.

Although Figure 8–2 shows the DMA and CRC as separate blocks, you can combine
them as a custom component which includes both an Avalon-MM master and slave
port. You can import this component into your SOPC Builder system using the
component editor.

1 To learn more about using component editor, refer to the Component Editor
in volume 4 of the Quartus II Handbook. You can find additional examples of
hardware acceleration on Altera’s Hardware Acceleration web page.

Figure 8–1. A Hardware Accelerator for CRC

Figure 8–2. DMA and Hardware Accelerator for CRC

MMM S

CRC Hardware
Accelerator

Nios II
Processor

S

Memory

Arbiter

MM

S

CRC Hardware
Accelerator

Nios II
Processor

S

Memory

MM

DMA

Arbiter Arbiter
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/support/examples/nios2/exm-nios2.html

Chapter 8: Hardware Acceleration and Coprocessing 8–3
Hardware Acceleration
Matching I/O Bandwidths
I/O bandwidth can have a large impact on overall performance. Low I/O bandwidth
can cause a high-performance hardware accelerator to perform poorly when the
dedicated hardware requires higher throughput than the I/O can support. You can
increase the overall system performance by matching the I/O bandwidth to the
computational needs of your system.

Typically, memory interfaces cause the most problems in systems that contain
multiple processors and hardware accelerators. The following recommendations on
interface design can maximize the throughput of your hardware accelerator:

■ Match high performance memory and interfaces to the highest priority tasks your
system must perform.

■ Give high priority tasks a greater share of the I/O bandwidth if any memory or
interface is shared.

■ If you have multiple processors in your system, but only one of the processors
provides real-time functionality, assign it a higher arbitration share.

Pipelining Algorithms
A common problem in systems with multiple Avalon-MM master ports is
competition for shared resources. You can improve performance by pipelining the
algorithm and buffering the intermediate results in separate on-chip memories.
Figure 8–3 illustrates this approach. Two hardware accelerators write their
intermediate results to on-chip memory. The third module writes the final result to an
off-chip memory. Storing intermediate results in on-chip memories reduces the I/O
throughput required of the off-chip memory. By using on-chip memories as
temporary storage you also reduce read latency because on-chip memory has a fixed,
low-latency access time.

f To learn more about the topics discussed in this section refer to the following
documentation: System Interconnect Fabric for Memory-Mapped Interfaces in volume 4 of
the Quartus II Handbook and Building Memory Subsystems Using SOPC Builder in
volume 4 of the Quartus II Handbook. To learn more about optimizing memory design
refer to Memory System Design in volume 3 of the Embedded Design Handbook.

Figure 8–3. Using On-Chip Memory to Achieve High Performance

Processor/
Hardware

Accelerator

Processor/
Hardware

Accelerator

Dual Port
On-Chip
Memory
 Buffer

Dual Port
On-Chip
Memory
 Buffer

Processor/
Hardware

Accelerator

FPGA

External
MemoryI/O
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51008.pdf

8–4 Chapter 8: Hardware Acceleration and Coprocessing
Hardware Acceleration
Creating Nios II Custom Instructions
The Nios II processor employs a RISC architecture which can be expanded with
custom instructions. The Nios II processor includes a standard interface that you can
use to implement your own custom instruction hardware in parallel with the
arithmetic logic unit (ALU).

All custom instructions have the same structure. They include up to two inputs and
one output. If you need to add hardware acceleration that requires many inputs and
outputs, a custom hardware accelerator with an Avalon-MM slave port is a more
appropriate solution. Custom instructions are blocking operations that prevent the
processor from executing additional instructions until the custom instruction has
completed. To avoid stalling the processor while your custom instruction is running,
you can convert your custom instruction into a hardware accelerator with an
Avalon-MM slave port. If you do so, the processor and custom peripheral can operate
in parallel. Figure 8–4 illustrates the differences in implementation between a custom
instruction and a hardware accelerator.

Figure 8–4. Implementation Differences between a Custom Instruction and Hardware Accelerator

Nios II Processor Core

General
Purpose
Registers

Custom
Instruction
(Operator)

Operand A

Operand B

Custom Instruction Interface

Hardware Accelerator

decoder

Operator

Operand A

Operand B

address[0]

write

Avalon-
MM

Slave
Port

System
 Interconnect

Fabric

readdata[31:0]

writedata[31:0]
D

E

D

E

Q

Q

ALU
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 8: Hardware Acceleration and Coprocessing 8–5
Hardware Acceleration
Because custom instructions extend the Nios II processor’s ALU, the logic must meet
timing or the fMAX of the processor will suffer. As you add custom instructions to the
processor, the ALU multiplexer grows in width as Figure 8–5 illustrates. This
multiplexer selects the output from the ALU hardware (c[31:0] in Figure 8–5).
Although you can pipeline custom instructions, you have no control over the
automatically inserted ALU multiplexer. As a result, you cannot pipeline the
multiplexer for higher performance.

Instead of adding several custom instructions, you can combine the functionality into
a single logic block as shown in Figure 8–6. When you combine custom instructions
you use selector bits to select the required functionality. If you create a combined
custom instruction, you must insert the multiplexer in your logic manually. This
approach gives you full control over the multiplexer logic that generates the output.
You can pipeline the multiplexer to prevent your combined custom instruction from
becoming part of a critical timing path.

Figure 8–5. Individual Custom Instructions

ALU

>>
<<

+
-

&
|

Custom 0

Custom 1

Custom

Custom 3

a[31:0]

b[31:0]

2

c[31:0]
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

8–6 Chapter 8: Hardware Acceleration and Coprocessing
Hardware Acceleration
With multiple custom instructions built into a logic block, you can pipeline the output
if it fails timing. To combine custom instructions, each must have identical latency
characteristics.

Custom instructions are either fixed latency or variable latency. You can convert fixed
latency custom instructions to variable latency by adding timing logic. Figure 8–7
shows the simplest method to implement this conversion by shifting the start bit by
<n> clock cycles and logically ORing all the done bits.

f For more information about creating and using custom instructions see the Nios II
Custom Instruction User Guide.

Figure 8–6. Combined Custom Instruction

Notes to Figure 8–6:

(1) The Nios II compiler calls the select wires to the multiplexer <n>.

Combined
Custom

Instruction

ALU

>>
<<

+
-

&
|

D Q

Custom 0

Custom 1

Custom 2

Custom 3

c[31..0]

select[1:0]

a[31:0]

b[31:0]

Figure 8–7. Sequencing Logic for Mixed Latency Combined Custom Instruction

D Q D Q D Qstart

n

ci_done

done

Custom Instruction 0
with Variable Latency

Custom Instruction 1
with a Fixed Latency
of 3 Clock Cycles

done_0

done_1
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf

Chapter 8: Hardware Acceleration and Coprocessing 8–7
Hardware Acceleration
Using the C2H Compiler
You can use the Nios II C2H Compiler to compile your C source code into HDL
synthesizable source code. SOPC Builder automatically places your hardware
accelerator into your system. SOPC Builder automatically connects all the master
ports to the necessary memories and connects the Nios II processor data master to the
accelerator slave port which is used to transfer data.

Choose the Nios II C2H Compiler instead of custom instructions when your
algorithm requires access to memory. The C2H Compiler creates Avalon-MM masters
that access memory. If your algorithm accesses several memories, the C2H Compiler
creates a master per memory access, allowing you to benefit from the concurrent
access feature of the system interconnect fabric. You can also use the C2H Compiler to
create hardware accelerators that are non-blocking so that you can use the accelerator
in parallel with other software functionality.

In figure Figure 8–8 the two-dimensional DCT algorithm is accelerated to offload a
Nios II processor. The DCT algorithm requires access to input and output buffers as
well as a cosine lookup table. Assuming that each resides in separate memories, the
hardware accelerator can access all three memories concurrently.

For more information please refer to the Nios II C2H Compiler User Guide and the
Optimizing C2H Compiler Results chapter in the Embedded Design Handbook. There are
also C2H examples available on the Altera website.

Figure 8–8. C2H Discrete Cosine Transform (DCT) Block Diagram

Nios II Processor
DCT Hardware Accelerator

Code & Data
Memory

SMM MMM

S

Input Buffer
Memory

S

Cosine Table
Memory

S

Output Buffer
Memory

S

Arbiter Arbiter Arbiter Arbiter

(Generated by C2H)
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51005.pdf
http://www.altera.com/support/examples/nios2/exm-nios2.html

8–8 Chapter 8: Hardware Acceleration and Coprocessing
Coprocessing
Coprocessing
Partitioning system functionality between a Nios II processor and hardware
accelerators or between multiple Nios II processors in your FPGA can help you
control costs. The following sections demonstrate how you can use coprocessing to
create high performance systems.

Creating Multicore Designs
Multicore designs combine multiple processor cores in a single FPGA to create a
higher performance computing system. Typically, the processors in a multicore
design can communicate with each other. Designs including the Nios II processor can
implement inter-processor communication, or the processors can operate
autonomously.

When a design includes more than one processor you must partition the algorithm
carefully to make efficient use of all of the processors. The following example includes
a Nios II-based system that performs video over IP, using a network interface to
supply data to a discrete DSP processor. The original design overutilizes the Nios II
processor. The system performs the following steps to transfer data from the network
to the DSP processor:

1. The network interface signals when a full data packet has been received.

2. The Nios II processor uses a DMA engine to transfer the packet to a dual-port
on-chip memory buffer.

3. The Nios II processor processes the packet in the on-chip memory buffer.

4. The Nios II processor uses the DMA engine to transfer the video data to the DSP
processor.

In the original design, the Nios II processor is also responsible for communications
with the following peripherals that include Avalon-MM slave ports:

■ Hardware debug interface

■ User interface

■ Power management

■ Remote control receiver

Figure 8–9 illustrates this design.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

Chapter 8: Hardware Acceleration and Coprocessing 8–9
Coprocessing
Adding a second Nios II processor to the system, allows the workload to be divided
so that one processor handles the network functionality and the other the control
interfaces. Figure 8–10 illustrates the revised design.

Because the revised design has two processors, you must create two software projects;
however, each of these software projects handles fewer tasks and is simpler to create
and maintain. You must also create a mechanism for inter-processor communication.
The inter-processor communication in this system is relatively simple and is justified
by the system performance increase.

f For more information on designing hardware and software for inter-processor
communication, refer to the Creating Multiprocessor Nios II Systems Tutorial and
Multiprocessor Coordination Peripherals in volume 5 of the Quartus II Handbook. Refer to
the Nios II Processor Reference Handbook for complete information on this soft core
processor. A Nios II Multiprocessor Design Example is available on the Altera
website.

Figure 8–9. Over-utilized Video System

Nios II/f
Core

DMA

SDRAM

Dual-Port
On-Chip
Memory
Buffer

Network
Interface

External DSP
Interface

Hardware
Debug

Interface

User
Interface

Power
Management

Remote
Control

Receiver

Data Plane

Control Plane
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/tt/tt_nios2_multiprocessor_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3_04.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/support/examples/nios2/exm-multi-nios2-hardware.html

8–10 Chapter 8: Hardware Acceleration and Coprocessing
Coprocessing
In Figure 8–10, the second Nios II processor added to the system performs primarily
low-level maintenance tasks; consequently, the Nios II/e core is used. The Nios II/e
core implements only the most basic processor functionality in an effort to trade off
performance for a small hardware footprint. This core is approximately one-third the
size of the Nios II/f core.

f To learn more about the three Nios II processor cores refer to the Nios II Core
Implementation Details chapter in the Nios II Processor Reference Handbook.

Pre- and Post-Processing
The high performance video system illustrated in Figure 8–10 distributes the
workload by separating the control and data planes in the hardware. Figure 8–11
illustrates a different approach. All three stages of a DSP workload are implemented
in software running on a discrete processor. This workload includes the following
stages:

■ Input processing—typically removing packet headers and error correction
information

■ Algorithmic processing and error correction—processing the data

■ Output processing—typically adding error correction, converting data stream to
packets, driving data to I/O devices

By off loading the processing required for the inputs or outputs to an FPGA, the
discrete processor has more computation bandwidth available for the algorithmic
processing.

Figure 8–10. High Performance Video System

Nios II/f
Core

Nios II/e
Core

DMA

SDRAM

Dual-Port
On-Chip
Memory
Buffer

Network
Interface

External DSP
Interface

Hardware
Debug

Interface

User
Interface

Power
Management

Remote
Control

Receiver

Data Plane

Control Plane
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf

Chapter 8: Hardware Acceleration and Coprocessing 8–11
Coprocessing
If the discrete processor requires more computational bandwidth for the algorithm,
dedicated coprocessing can be added. Figure 8–12 below shows examples of
dedicated coprocessing at each stage.

Replacing State Machines
You can use the Nios II processor to implement scalable and efficient state machines.
When you use dedicated hardware to implement state machines, each additional state
or state transition increases the hardware utilization. In contrast, adding the same
functionality to a state machine that runs on the Nios II processor only increases the
memory utilization of the Nios II processor.

Figure 8–11. Discrete Processing Stages

Discrete Processor

Input
Processing

Inputs Outputs
Algorithmic
Processing

Output
Processing

Figure 8–12. Pre- Dedicated, and Post-Processing

Discrete ProcessorFPGA Pre-Processing

Discrete Processor

Discrete Processor

FPGA Dedicated
Processing

Inputs Outputs

Inputs Outputs

Inputs Outputs

FPGA Post-Processing

Example 1:

Example 2:

Example 3:

FPGA

Discrete Processor
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

8–12 Chapter 8: Hardware Acceleration and Coprocessing
Coprocessing
A key benefit of using Nios II for state machine implementation is the reduction of
complexity that results from using software instead of hardware. A processor, by
definition, is a state machine that contains many states. These states can be stored in
either the processor register set or the memory available to the processor;
consequently, state machines that would not fit in the footprint of a FPGA can be
created using memory connected to the Nios II processor.

When designing state machines to run on the Nios II processor, you must understand
the necessary throughput requirements of your system. Typically, a state machine is
comprised of decisions (transitions) and actions (outputs) based on stimuli (inputs).
The processor you have chosen determines the speed at which these operations take
place. The state machine speed also depends on the complexity of the algorithm being
implemented. You can subdivide the algorithm into separate state machines using
software modularity or even multiple Nios II processor cores that interact together.

Low-Speed State Machines
Low-speed state machines are typically used to control peripherals. The Nios II/e
processor pictured in Figure 8–10 on page 8–10 could implement a low speed state
machine to control the peripherals.

1 Even though the Nios II/e core does not include a data cache, Altera recommends
that the software accessing the peripherals use data cache bypassing. Doing so avoids
potential cache coherency issues if the software is ever run on a Nios II/f core that
includes a data cache.

f For information regarding data cache bypass methods, refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook.

State machines implemented in SOPC Builder require the following components:

■ A Nios II processor

■ Program and data memory

■ Stimuli interfaces

■ Output interfaces

The building blocks you use to construct a state machine in SOPC Builder are no
different than those you would use if you were creating a state machine manually.
One noticeable difference in the SOPC Builder environment is accessing the interfaces
from the Nios II processor. The Nios II processor uses an Avalon-MM master port to
access peripherals. Instead of accessing the interfaces using signals, you communicate
via memory-mapped interfaces. Memory-mapped interfaces simplify the design of
large state machines because managing memory is much simpler than creating
numerous directly connected interfaces.

f For more information on the Avalon-MM interface, refer to the Avalon Interface
Specifications.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 8: Hardware Acceleration and Coprocessing 8–13
Referenced Documents
High-Speed State Machines
You should implement high throughput state machine using a Nios II/f core. To
maximize performance, focus on the I/O interfaces and memory types. The following
recommendations on memory usage can maximize the throughput of your state
machine:

■ Use on-chip memory to store logic for high-speed decision making.

■ Use tightly-coupled memory if the state machine must operate with deterministic
latency. Tightly-coupled memory has the same access time as cache memory;
consequently, you can avoid using cache memory and the cache coherency
problems that might result.

f Refer to the Cache and Tightly-Coupled Memory chapter of the Nios II Software
Developer's Handbook for more information on tightly-coupled memory.

Subdivided State Machines
Subdividing a hardware-based state machine into smaller more manageable units can
be difficult. If you choose to keep some of the state machine functionality in a
hardware implementation, you can use the Nios II processor to assist it. For example,
you may wish to use a hardware state machine for the high data throughput
functionality and Nios II for the slower operations. If you have partitioned a
complicated state machine into smaller, hardware based state machines, you can use
the Nios II processor for scheduling.

Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

■ Building Memory Subsystems Using SOPC Builder in volume 4 of the Quartus II
Handbook

■ Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer's
Handbook

■ Component Editor in volume 4 of the Quartus II Handbook

■ Creating Multiprocessor Nios II Systems Tutorial

■ Developing Components for SOPC Builder chapter in volume 4 of the Quartus II
Handbook

■ Memory Systedm Design in volume 3 of the Embedded Design Handbook

■ Nios II C2H Compiler User Guide

■ Nios II Custom Instruction User Guide

■ Optimizing C2H Compiler Results chapter in the Embedded Design Handbook

■ Multiprocessor Coordination Peripherals in volume 5 of the Quartus II Handbook

■ Nios II Core Implementation Details chapter in the Nios II Processor Reference Handbook

■ Processor Architecture chapter of the Nios II Processor Reference Handbook
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/tt/tt_nios2_multiprocessor_tutorial.pdf
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51008.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51005.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3_04.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf

8–14 Chapter 8: Hardware Acceleration and Coprocessing
Document Revision History
■ System Interconnect Fabric for Memory-Mapped Interfaces in volume 4 of the
Quartus II Handbook

Document Revision History
Table 8–1 shows the revision history for this chapter.

Table 8–1. Document Revision History

Date and Document Version Changes Made Summary of Changes

June 2008
v1.1

Corrected Table of Contents —

March 2008
v1.0

Initial release —
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf

© November 2008 Altera Corporation

ED51010-1.2
9. Verification and Board Bring-Up
Introduction
This chapter provides an overview of the tools available in the Quartus® II software
and the Nios® II Embedded Design Suite (EDS) that you can use to verify and bring
up your embedded system.

This chapter covers the following topics:

■ Verification Methods

■ Board Bring-up

■ System Verification

Verification Methods
Embedded systems can be difficult to debug because they have limited memory and
I/O and consist of a mixture of hardware and software components. Altera® provides
the following tools and strategies to help you overcome these difficulties:

■ FS2 Console

■ System Console

■ SignalTap II Embedded Logic Analyzer

■ External Instrumentation

■ Stimuli Generation

Prerequisites
To make effective use of this chapter, you should be familiar with the following
topics:

■ Defining and generating Nios II hardware systems with SOPC Builder

■ Compiling Nios II hardware systems with the Quartus II development software
Embedded Design Handbook

9–2 Chapter 9: Verification and Board Bring-Up
Verification Methods
FS2 Console
The FS2 console, developed by First Silicon Solutions (FS2) extends the verification
functionality of the Nios II processor. The FS2 console communicates with the Nios II
JTAG debug module that is available for all three variants of the Nios II processor. FS2
optionally uses an external system analyzer hardware module that creates additional
trace support to the Nios II JTAG debug module. Figure 9–1 illustrates the
connectivity between an FS2 console and an SOPC Builder system.

The Nios II JTAG debug module uses the Nios II data master port to communicate
with components that contain Avalon® Memory-Mapped (Avalon-MM) slave ports.
Although the Nios II JTAG debug module is tightly integrated with the Nios II
processor, it does not rely on any additional support being provided by the processor.
As a result, you can use the Nios II JTAG debug module and the FS2 console to verify
a system without having to write software.

1 The FS2 console does not support host machines running the Linux operating system.

SOPC Builder Test Integration
Even if you do not intend to include a Nios II processor or an SOPC Builder system in
your final design, you can still include a Nios II processor during the debug phase to
take advantage of the embedded tools that Altera provides. The Nios II processor
contains a data master which you can use to perform read and write accesses to your
hardware blocks.

Figure 9–1. FS2 Console Communication Path

SOPC Builder System

Nios II Processor

JTAG
Debug
Module

Instruction
Master

Data
Master

Host System
Running FS2

Console

USB Blaster JTAG
Logic

System Interconnect Fabric

SPI

Memory

Flash

VGA

PWM

UART USB Timer

FPGA
Embedded Design Handbook © November 2008 Altera Corporation

Chapter 9: Verification and Board Bring-Up 9–3
Verification Methods
To include a JTAG debug module in your system follow these steps:

1. On the System Contents tab, double-click the Nios II Processor component.

2. In the Nios II Processor wizard, click the JTAG Debug Module tab.

3. Make sure Level 1 is selected.

The JTAG debug module is required for communication between your system and the
FS2 console.

Capabilities of the FS2 Console
You can launch the F2S console from within the Nios II IDE or from the Nios II
command shell. Once the FS2 console is open, you have access to the command line
and scripting capabilities of the software. The command line within the FS2 console is
sufficient for lightweight debugging. To access help for FS2, simply type help for a
list of available commands. The help system is hierarchical. When you type help, the
help system lists the top-level command hierarchy. You can refine your help
searching by typing help <command_name> to learn more about the commands
available. For example, if you type help memory The FS2 console displays a list all of
the commands to access memory, including: addr, asm, byte, compare, copy, dasm,
dump, and so on.

Using the FS2 console you can query the FPGA to determine if there are any Nios II
debug modules present. The FS2 console can access a Nios II debug module anywhere
on the JTAG chain. Because your design may have multiple Nios II debug modules,
you can specify the debug module you prefer.

The Nios II processor has a 32-bit data master. Using the FS2 console, you can perform
either byte (byte), half word (half), or word (word) accesses to any Avalon-MM
slave port.

The FS2 console supports the Tcl/Tk scripting language. Scripting memory accesses is
particularly useful if you have many hardware blocks to test or need to instrument
regression testing. A Tcl/Tk reference guide is integrated into the FS2 console help
menu.

sld info Command

The sld info command lists the JTAG chains that are available on your board. For
the chain that it is being used to access your board, this command provides
identifying information for the JTAG cable (hw), FPGA device or devices (device) and
debug modules (node). Figure 9–2 shows typical output from this command. In this
example, communication occurs over the second JTAG chain, Hw 1: USB-Blaster
[USB-0]. There is a single FPGA in this JTAG chain, device 1: EP2C35, and there is a
single debug module on this chain, node 0: owner: First Silicon Solutions.

You must specify these components to the FS2 Console using the config command.
For the JTAG chain illustrated in Figure 9–2, you must type the following three
commands:

■ config sldHW 1—selects the second programming cable

■ config sldDev 1—selects the second device on the JTAG chain
© November 2008 Altera Corporation Embedded Design Handbook

9–4 Chapter 9: Verification and Board Bring-Up
Verification Methods
■ config sldNode 0—selects the first debug module in the FPGA

You can update this configuration information to communicate over a different JTAG
cable to a different device and debug module. For example, to communicate over the
fourth programming cable to the third device using the second Nios II debug module,
you would type the following commands:

■ config sldHW 3

■ config sldDev 2

■ config sldNode 1

When you first bring up the FS2 Console, it is initialized to communicate over the first
cable, to the first device and using the debug module in the first FPGA. However, if
you update this information, your changes are persistent.

After you compile your design with the Quartus II software, the JTAG debug interface
file (.jdi) in your project directory includes the debug module instance numbers. If
your design includes two SOPC Builder systems in a single FPGA, the debug module
instance numbers may change when you recompile. Each debug module is referenced
by its full name and level of hierarchy in the design. The debug module number is
stored as sld_instance_index. For example, if a debug module is assigned to
three, the .jdi file includes the following setting:

<parameter name="sld_instance_index" type="dec" value="3"/>

This is the value you use when setting sldNode.

FS2 Examples

The following procedure writes 0x5A followed by 0xA5 to an 8-bit hardware block:

1. Download the hardware image file SRAM object file (.sof).

2. In the Nios II command shell, type nios2-console to start the FS2 console.

3. In the FS2 console, type openport sld to establish communication with a
remote debugger.

4. Type halt to stop the Nios II processor.

5. Type byte 0x00810880 0x5A to write 0x5A to memory location 0x00810880.

6. Type byte 0x00810880 0xA5 to write 0xA5 to memory location 0x00810880.

Figure 9–2. sld info Command
Embedded Design Handbook © November 2008 Altera Corporation

Chapter 9: Verification and Board Bring-Up 9–5
Verification Methods
Example 9–1 writes a repeating pattern to an address range. Before trying this
example, check the Base (address) column for a memory device in your SOPC Builder
system, so that you write and read valid locations. In this example, an on-chip
memory has a base address of 0x02100000.

All the commands sent to the JTAG debug module from the FS2 console use the JTAG
interface of the FPGA. JTAG is a relatively slow communication medium. You cannot
rely on an FS2 console to stress test your memory interfaces. Refer to “Board
Bring-up” on page 9–10 for strategies to stress test memory.

f To learn more about the FS2 console refer to the First Silicon Solutions website at
www.fs2.com. The Nios II Embedded Design Suite (EDS) installation also includes
documentation for the FS2 console. You can find this documentation at:
$SOPC_KIT_NIOS2\bin\fs2\doc.

System Console
You can use the System Console to perform low–level debugging of an SOPC Builder
system. You access the System Console functionality in command line mode. You can
work interactively or run a Tcl script. The System Console prints responses to your
commands in the terminal window. To facilitate debugging with the System Console,
you can include one of the four SOPC Builder components with interfaces that the
System Console can use to send commands and receive data. Table 9–1 lists these
components.

The System Console allows you to perform any of the following tasks:

■ Access memory and peripherals

■ Start or stop a Nios II processor

Example 9–1. Writing a Repeating Pattern to an Address Range

write a repeating pattern of 0x5a5a5a5a to an address range
word 0x02100000..0x021000FF 0x5a5a5a5a
read back the data from the address range
dump 0x02100000..0x021000FF word

Table 9–1. SOPC Builder Components for Communication with the System Console (Note 1)

Component Name Debugs Components with the Following Interface Types

The Nios® II processor with JTAG debug
enabled

Components that include an Avalon-MM slave interface. The JTAG debug
module can also control the Nios II processor for debug functionality,
including starting, stopping, and stepping the processor.

JTAG to Avalon master bridge Components that include an Avalon-MM slave interface

Avalon Streaming (Avalon-ST) JTAG Interface Components that include an Avalon-ST interface

JTAG UART The JTAG UART is an Avalon-MM slave device that can be used in
conjunction with the System Console to send and receive byte streams.

Note to Table 9–1:

(1) The System Console can also send and receive byte streams from any SLD node, whether it is instantiated in an SOPC Builder component
provided by Altera, a custom component, or part of your Quartus II project. However, this approach requires detailed knowledge of the JTAG
commands.
© November 2008 Altera Corporation Embedded Design Handbook

9–6 Chapter 9: Verification and Board Bring-Up
Verification Methods
■ Access a Nios II processor register set and step through software

■ Verify JTAG connectivity

■ Access the reset signal

■ Sample the system clock

Using the System Console you can test your own custom components in real
hardware without creating a testbench or writing test code for the Nios II processor.
By coding a Tcl script to access a component with an Avalon-MM slave port, you
create a testbench that abstracts the Avalon-MM master accesses to a higher level. You
can use this strategy to quickly test components, I/O, or entire memory-mapped
systems.

Embedded control systems typically include inputs such as sensors, outputs such as
actuators, and a processor that determines the outputs based on input values. You can
test your embedded control system in isolation by creating an additional system to
exercise the embedded system in hardware. This approach allows you to perform
automated testing of hardware-in-the-loop (HIL) by using the System Console to
drive the inputs into the system and measure the outputs. This approach has the
advantage of allowing you to test your embedded system without modifying the
design. Figure 9–3 illustrates HIL testing using the System Console.
Embedded Design Handbook © November 2008 Altera Corporation

Chapter 9: Verification and Board Bring-Up 9–7
Verification Methods
f To learn more about the System Console refer to the System Console User Guide.

SignalTap II Embedded Logic Analyzer
The SignalTap® II embedded logic analyzer is available in the Quartus II software. It
reuses the JTAG pins of the FPGA and has a low Quartus II fitter priority, allowing it
to be non-intrusive. Because this logic analyzer is integrated in your design
automatically, it takes synchronized measurements without the undesirable side
effects of output pin capacitance or I/O delay. The SignalTap II embedded logic
analyzer also supports Tcl scripting so that you can automate data capture,
duplicating the functionality that external logic analyzers provide.

This logic analyzer can operate while other JTAG components, including the Nios II
JTAG debug module and JTAG UART, are in use, allowing you to perform
co-verification. You can use the plug-in support available with the SignalTap II
embedded logic analyzer to enhance your debug capability with any of the following:

Figure 9–3. Hardware-in-the-Loop Testing Using the System Console

Host PC Driving Test
with System Console Display

Output
PIO

Output
PIO

Output
PIO

Output
PIO

Output
PIO

Output
PIO

Output
PIO

Output
PIO

Nios II
Processor

Memory
Watchdog

Timer
Timer

Control System
(Device Under Test)

System Tester

JTAG to Avalon
Master Bridge

Input
PIO

Input
PIO

Input
PIO

Input
PIO

Input
PIO

Input
PIO

Input
PIO

Input
PIO
© November 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/ug/ug_system_console.pdf

9–8 Chapter 9: Verification and Board Bring-Up
Verification Methods
■ Instruction address triggering

■ Non-processor related triggering

■ Software disassembly

■ Instruction display (in hexadecimal or symbolic format)

You can also use this logic analyzer to capture data from your embedded system for
analysis by the MATLAB software from Mathworks. The MATLAB software receives
the data using the JTAG connection and can perform post processing analysis. Using
looping structures, you can perform multiple data capture cycles automatically in the
MATLAB software, instead of manually controlling the logic analyzer using the
Quartus II design software.

Because the SignalTap II embedded logic analyzer uses the FPGA’s JTAG connection,
continuous data triggering may result in lost samples. For example, if you capture
data continuously at 100 MHz, you should not expect all of your samples to be
displayed in the logic analyzer GUI. The logic analyzer buffers the data at 100 MHz;
however, if the JTAG interface becomes saturated, samples are lost.

f To learn more about SignalTap II embedded logic analyzer and co-verification, refer
to the following documentation: Design Debugging Using the SignalTap II Embedded
Logic Analyzer chapter in volume 3 of the Quartus II Handbook and AN 323: Using
SignalTap II Embedded Logic Analyzers in SOPC Builder Systems.

External Instrumentation
If your design does not have enough on-chip memory to store trace buffers, you can
use an external logic analyzer for debugging. External instrumentation is also
necessary if you require any of the following:

■ Data collection with pin loading

■ Complex triggers

■ Asynchronous data capture

Altera provides procedures to connect external verification devices such as
oscilloscopes, logic analyzers, and protocol analyzers to your FPGA.

SignalProbe
The SignalProbe incremental routing feature allows you to route signals to output
pins of the FPGA without affecting the existing fit of a design to a significant degree.
You can use SignalProbe to investigate internal device signals without rewriting your
HDL code to pass them up through multiple layers of the design hierarchy to a pin.
Creating such revisions manually is time-consuming and error-prone.

Altera recommends SignalProbe when there are enough pins to route internal signals
out of the FPGA for verification. If FPGA pins are not available, you have the
following three alternatives:

■ Reduce the number of pins used by the design to make more pins available to
SignalProbe

■ Use the SignalTap II embedded logic analyzer

■ Use the Logic Analyzer Interface
Embedded Design Handbook © November 2008 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an323.pdf

Chapter 9: Verification and Board Bring-Up 9–9
Verification Methods
Revising your design to increase the number of pins available for verification
purposes requires design changes and can impact the design schedule. Using the
SignalTap II embedded logic analyzer is a viable solution if you do not require
continuous sampling at a high rate. The SignalTap II embedded logic analyzer does
not require any additional pins to be routed; however, you must have enough
unallocated logic and memory resources in your design to incorporate it. If neither of
these approaches is viable, you can use the logic analyzer interface.

f To learn more about SignalProbe, refer to the Quick Design Debugging Using
SignalProbe chapter in volume 3 of the Quartus II Handbook.

Logic Analyzer Interface
The Quartus II Logic Analyzer Interface is a JTAG programmable method of driving
multiple time-domain multiplexed signals to pins for external verification. Because
the Logical Analyzer Interface multiplexes pins, it minimizes the pincount
requirement. Groups of signals are assigned to a bank. Using JTAG as a
communication channel, you can switch between banks.

You should use this approach when SignalTap II embedded logic analyzer is
insufficient for your verification needs. Some external logic analyzer manufacturers
support the Logic Analyzer Interface. These logic analyzers have various amounts of
support. The most important feature is the ability to let the measurement tools cycle
through the signal banks automatically.

The ability to cycle through signal banks is not limited to logic analyzers. You can use
it for any external measurement tool. Some developers use low speed indicators, for
example LEDs, for verification. You can use the Logic Analyzer interface to map many
banks of signals to a small number of verification LEDs. You may wish to leave this
form of verification in your final design so that your product is capable of creating
low-level error codes after deployment.

f To learn more about the Quartus II Logic Analyzer Interface, refer to the In-System
Debugging Using External Logic Analyzers chapter in volume 3 of the Quartus II
Handbook.

Stimuli Generation
To effectively test your system you must maximize your test coverage with as few
stimuli as possible. To maximize your test coverage you should use a combination of
static and randomly generated data. The static data contains a fixed set of inputs that
you can use to test the standard functionality and corner cases of your system.

Random tests are generated at run time, but must be accessible when failures occur so
that you can analyze the failure case. Random test generation is particularly effective
after static testing has identified the majority of issues with the basic functionality of
your design. The test cases created may uncover unanticipated issues. Whenever
randomly generated test inputs uncover issues with your system, you should add
those cases to your static test data set for future testing.
© November 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

9–10 Chapter 9: Verification and Board Bring-Up
Board Bring-up
Creating random data for use as inputs to your system can be challenging because
pseudo random number generators (PRNG) tends to repeat patterns. Choose a
different seed each time you initialize the PRNG for your random test generator. The
random number generator creates the same data sequence if it is seeded with the same
value.

Seed generation is an advanced topic and is not covered in detail in this document.
The following recommendations on creating effective seed values should help you
avoid repeating data values:

■ Use a random noise measurement. One way to do this is by reading the analog
output value of an A/D converter.

■ Use multiple asynchronous counters in combination to create seed values.

■ Use a timer value as the seed (that is, the number of seconds from a fixed point in
time).

Using a combination of seed generation techniques can lead to more random
behavior. When generating random sequences, it is important to understand the
distribution of the random data generated. Some generators create linear sequences in
which the distribution is evenly spread across the random number domain. Others
create non-linear sequences that may not provide the test coverage you require.
Before you begin using a random number generator to verify your system, examine
the data created for a few sequences. Doing so helps you understand the patterns
created and avoid using an inappropriate set of inputs.

Board Bring-up
You can minimize board bring-up time by adopting a systematic strategy. First, break
the task down into manageable pieces. Verify the design in segments, not as a whole,
beginning with peripheral testing.

Peripheral Testing
The first step in the board bring-up process is peripheral testing. Add one interface at
a time to your design. After a peripheral passes the tests you have created for it, you
should remove it from the test design. Designers typically leave the peripherals that
pass testing in their design as they move on to test other peripherals. Sometimes this
is necessary; however, it should be avoided when possible because multiple
peripherals can create instability due to noise or crosstalk. By testing peripherals in a
system individually, you can isolate the issues in your design to a particular interface.

A common failure in any system is involves memory. The most problematic memory
devices operate at high speeds, which can result in timing failures. High performance
memory also requires many board traces to transfer data, address, and control signals,
which cause failures if not routed properly. You can use the Nios II processor to verify
your memory devices using verification software or a debugger such as the FS2
console. The Nios II processor is not capable of stress testing your memory but it can
be used to detect memory address and data line issues.

f For more information on debugging refer to the Debugging Nios II Designs chapter in
the Embedded Design Handbook.
Embedded Design Handbook © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/edh_ed51003.pdf

Chapter 9: Verification and Board Bring-Up 9–11
Board Bring-up
Data Trace Failure
If your board fabrication facility does not perform bare board testing, you must
perform these tests. To detect data trace failures on your memory interface you should
use a pattern typically referred to as “walking ones.” The walking ones pattern shifts
a logical 1 through all of the data traces between the FPGA and the memory device.
The pattern can be increasing or decreasing; the important factor is that only one data
signal is 1 at any given time. The increasing version of this pattern is as follows: 1, 2, 4,
8, 16, and so on.

Using this pattern you can detect a few issues with the data traces such as short or
open circuit signals. A signal is short circuited when it is accidentally connected to
another signal. A signal is open circuited when it is accidentally left unconnected.
Open circuits can have a random signal behavior unless a pull-up or pull-down
resistor is connected to the trace. If a pull-up or pull-down resistor is used, the signal
drives a 0 or 1; however, the resistor is weak relative to a signal being driven by the
test, so that test value overrides the pull-up or pull-down resistor.

To avoid mixing potential address and data trace issues in the same test, test only one
address location at a time. To perform the test, write the test value out to memory, and
then read it back. After verifying that the two values are equal, proceed to testing the
next value in the pattern. If the verification stage detects a variation between the
written and read values, a bit failure has occurred. Table 9–2 provides an example of
the process used to find a data trace failure. It makes the simplifying assumption that
sequential data bits are routed consecutively on the PCB.

Address Trace Failure
The address trace test is similar to the walking ones test used for data with one
exception. For this test you must write to all the test locations before reading back the
data. Using address locations that are powers of two, you can quickly verify all the
address traces of your circuit board.

Table 9–2. Walking Ones Example

Written Value Read Value Failure Detected

00000001 00000001 No failure detected

00000010 00000000 Error, most likely the second data bit, D[1] stuck low or shorted to ground

00000100 00000100 No failure detected, confirmed D[1] is stuck low or shorted to another trace that is
not listed in this table.

00001000 00001000 No failure detected

00010000 00010000 No failure detected

00100000 01100000 Error, most likely D[6] and D[5] short circuited

01000000 01100000 Error, confirmed that D[6] and D[5] are short circuited

10000000 10000000 No failure detected
© November 2008 Altera Corporation Embedded Design Handbook

9–12 Chapter 9: Verification and Board Bring-Up
Board Bring-up
The address trace test detects the aliasing effects that short or open circuits can have
on your memory interface. For this reason it is important to write to each location with
a different data value so that you can detect the address aliasing. You can use
increasing numbers such as 1, 2, 3, 4, and so on while you verify the address traces in
your system. Table 9–3 shows how to use powers of two in the process of finding an
address trace failure:

Device Isolation
Using device isolation techniques, you can disable features of devices on your PCB
that cause your design to fail. Typically designers use device isolation for early
revisions of the PCB, and then remove these capabilities before shipping the product.

Most designs use crystal oscillators or other discrete components to create clock
signals for the digital logic. If the clock signal is distorted by noise or jitter, failures
may occur. To guard against distorted clocks, you can route alternative clock pins to
your FPGA. If you include SMA connectors on your board, you can use an external
clock generator to create a clean clock signal. Having an alternative clock source is
very useful when debugging clock-related issues.

Sometimes the noise generated by a particular device on your board can cause
problems with other devices or interfaces. Having the ability to reduce the noise levels
of selected components can help you determine the device that is causing issues in
your design. The simplest way to isolate a noisy component is to remove the power
source for the device in question. For devices that have a limited number of power
pins, if you include 0 ohm resistors in the path between the power source and the pin.
You can cut off power to the device by removing the resistor. This strategy is typically
not possible with larger devices that contain multiple power source pins connecting
directly to a board power plane.

Instead of removing the power source from a noisy device, you can often put the
device into a reset state by driving the reset pin to an active state. Another option is to
simply not exercise the device so that it remains idle.

Table 9–3. Powers of Two Example

Address Written Value Read Value Failure Detected

00000000 1 1 No failure detected

00000001 2 2 No failure detected

00000010 3 1 Error, the second address bit, A[1], is stuck low

00000100 4 4 No failure detected

00001000 5 5 No failure detected

00010000 6 6 No failure detected

00100000 7 6 Error, A[5] and A[4] are short circuited

01000000 8 8 No failure detected

10000000 9 9 No failure detected
Embedded Design Handbook © November 2008 Altera Corporation

Chapter 9: Verification and Board Bring-Up 9–13
Board Bring-up
A noisy power supply or ground plane can create signal integrity issues. With the
typical voltage swing of digital devices frequently below a single volt, the power
supply noise margin of devices on the PCB can be as little as 0.2 volts. Power supply
noise can cause digital logic to fail. For this reason it is important to be able to isolate
the power supplies on your board. You can isolate your power supply by using fuses
that are removed so that a stable external power supply can be substituted
temporarily in your design.

JTAG
FPGAs use the JTAG interface for programming, communication, and verification.
Designers frequently connect several components, including FPGAs, discrete
processors, and memory devices, communicating with them through a single JTAG
chain. Sometimes the JTAG signal is distorted by electrical noise, causing a
communication failure for the entire group of devices. To guarantee a stable
connection, you must isolate the FPGA under test from the other devices in the same
JTAG chain.

Figure 9–4a illustrates a JTAG chain with three devices. The tdi and tdo signals
include 0 ohm resistors between each device. By removing the appropriate resistors, it
is possible to isolate a single device in the chain as Figure 9–4b illustrates. This
technique allows you to isolate one device while using a single JTAG chain.
© November 2008 Altera Corporation Embedded Design Handbook

9–14 Chapter 9: Verification and Board Bring-Up
Board Bring-up
f To learn more about JTAG refer to the IEEE 1149.1(JTAG) Boundary-Scan Testing in
Altera Devices.

Board Testing
You should convert the simulations you run to verify your intellectual property (IP)
before fabrication to test vectors that you can then run on the hardware to verify that
the simulation and hardware versions exhibit the same behavior. Manufacturing can
also use these tests as part of a regularly scheduled quality assurance test. Because the
tests are run by engineers in other organizations they must be documented and easy
to run.

Figure 9–4. JTAG Isolation

Device 1

tdi

tdo

tdi tdo

R0

R0

tdi

tdo

Device 3

tdi

tdo

R0

R0

R0*

R0*

R0*

R0*

Device 1

tdi

tdo

tdi tdo

tdi

tdo

Device 3

tdi

tdo

R0

R0

R0 Zero Ohm Resistor

R0* Zero Ohm Resistor Stuff Option

Three Device JTAG Chain

 Serial Data Flow

Device 2 Isolated From JTAG Chain

JTAG Header JTAG Header

FPGA FPGA

Figure 2a Figure 2b

tdi = test data in

tdo = test data out

(de-populated
resistor pads)
Embedded Design Handbook © November 2008 Altera Corporation

http://www.altera.com/literature/an/an039.pdf
http://www.altera.com/literature/an/an039.pdf

Chapter 9: Verification and Board Bring-Up 9–15
Board Bring-up
Minimal Test System
Whether you are creating your first embedded system in a FPGA, or are debugging a
complex issue, you should always begin with a minimal system. To minimize the
probability of signal integrity issues, reduce the pincount of your system to the
absolute minimal number of required pins. In an embedded design that includes the
Nios II processor, the minimal pincount might be clock and reset signals. Such a
system might include the following the following components:

■ Nios II processor (with a level 1 debug core)

■ On-chip memory

■ JTAG UART

■ System ID core

Using these four components you can create a functioning embedded system
including debug and terminal access. To simplify your debug process, you should use
a Nios II processor that does not contain a data cache. The Nios II/e and Nios II/s
cores do not include data caches. The Nios II/f core can also be configured without a
data cache. Figure 9–5 illustrates a minimal system. In this system, you have to route
only the clock pin and reset pins, because the JTAG signals are automatically
connected by the Quartus II software.

You can use the Nios II JTAG debug module to download software to the processor.
Before testing any additional interfaces you should execute a small program that
prints a message to the terminal to verify that your minimal system is functioning
properly.

Figure 9–5. Simple Test System

JTAG Debug Module

Nios II Processor

On-Chip
Memory

SysID

JTAG
UART

JTAG

Device Under
Test (DUT)

System Interconnect Fabric
© November 2008 Altera Corporation Embedded Design Handbook

9–16 Chapter 9: Verification and Board Bring-Up
Board Bring-up
After you verify that the simple test system functions properly, archive the design.
This design provides a stable starting point to which to add additional components as
verification proceeds. In this system, you can use any of the following for testing:

■ A Nios II processor

■ A Nios II JTAG debug module and FS2 console

■ The SignalTap II embedded logic analyzer

■ An external logic interface

■ SignalProbe

■ A direct memory access (DMA) engine

■ In-system updating of memory and constants

The Nios II processor is not capable of stress testing high speed memory devices.
Altera recommends that you use a DMA engine to stress test memories. A stress test
should access memory as frequently as possible, performing continuous reads or
writes. Typically, the most problematic access sequence for high-speed memory
involves the bus turnaround between read and write accesses. You can test these
cases by connecting the DMA read and write masters to the same memory and
transferring the contents from one location to another, as shown in Figure 9–6.

By modifying the arbitration share values for each master to memory connection, you
can control the sequence. To alternate reads and writes, you can use an arbitration
share of one for each DMA master port. To perform two reads followed by two writes,
use an arbitration value of two for each DMA master port. To create more complicated
access sequences you can create a custom master or use the Nios II C2H Compiler to
create hardware used for testing.

Figure 9–6. Using a DMA to Stress Test Memory Devices

Memory

DMA

Read Section

Write Section

Read
Master

Write
Master

Slave
Port
Embedded Design Handbook © November 2008 Altera Corporation

Chapter 9: Verification and Board Bring-Up 9–17
System Verification
f To learn more about the topics covered in this section refer to the following
documentation:

■ Nios II Hardware Development Tutorial

■ Quartus II Verification Methods web page

■ DMA Controller Core chapter in volume 5 of the Quartus II Handbook

■ In-System Updating of Memory and Constants chapter in volume 3 of the Quartus II
Handbook

System Verification
System verification is the final step of system design. This section focuses on common
mistakes designers make during system verification and methods for correcting and
avoiding them. It includes the following topics:

■ Designing with Verification in Mind

■ Accelerating Verification

■ Using Software to Verify Hardware

■ Environmental Testing

Designing with Verification in Mind
As you design, you should focus on both the development tasks and the verification
strategy. Doing so results in a design that is easier to verify. If you create large,
complicated blocks of logic and wait until the HDL code is complete before testing,
you spend more time verifying your design than if you verify it one section at a time.

Consider leaving in verification code after the individual sections of your design are
working. If you remove too much verification logic it becomes very difficult to
reintroduce it at a later time if needed. If you discover an issue during system
integration, you may need to revisit some of the smaller block designs. If you modify
one of the smaller blocks, you must re-test it to verify that you have not created
additional issues.

Designing with verification in mind is not limited to leaving verification hooks in
your design. Reserving enough hardware resources to perform proper verification is
also important. The following recommendations can help you avoid running out of
hardware resources:

■ Design and verify using a larger pin-compatible FPGA.

■ Reserve hardware resources for verification in the design plan.

■ Design the logic so that optional features can be removed to free up verification
resources.

Finally, schedule a nightly regression test of your design to increase your test
coverage between hardware or software compilations.
© November 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/products/software/products/quartus2/verification/qts-design_flow-verification2.html
http://www.altera.com/literature/hb/nios2/n2cpu_nii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53012.pdf

9–18 Chapter 9: Verification and Board Bring-Up
System Verification
Accelerating Verification
Altera recommends the verification flow illustrated in Figure 9–7. Verify each
component as it is developed. By minimizing the amount of logic being verified, you
can reduce the time it takes to compile and simulate your design. Consequently, you
minimize the iteration time to correct design issues.

After the individual components are verified, you can integrate them in an SOPC
Builder system. The integrated system must include an Avalon-MM or Avalon
Streaming (Avalon-ST) port. Using the component editor available from SOPC
Builder, you add an Avalon-MM interface to your existing component and integrate it
in your system.

After your system is created in SOPC Builder, you can continue the verification
process of the system as a whole. Typically, the verification process has the following
two steps:

1. Generate then simulate

2. Generate, compile, and then verify in hardware

The first step provides easier access to the signals in your system. When the
simulation is functioning properly, you can move the verification to hardware.
Because the hardware is orders of magnitude faster than the simulation, running test
vectors on the actual hardware saves time.
Embedded Design Handbook © November 2008 Altera Corporation

Chapter 9: Verification and Board Bring-Up 9–19
System Verification
f To learn more about component editor and system integration, refer to the following
documentation:

■ The Component Editor chapter in volume 4 of the Quartus II Handbook

■ The SOPC Builder Component Development Walkthrough chapter in volume 4 of the
Quartus II Handbook

■ The Avalon Interface Specifications

Using Software to Verify Hardware
Many hardware developers use test benches and test harnesses to verify their logic in
simulations. These strategies can be very time consuming. Instead of relying on
simulations for all your verification tasks, you can test your logic using software or
scripts, as Figure 9–8 illustrates.

Figure 9–7. IP Verification and Integration Flow

Main Hardware Project

Hardware Project C

Hardware Project B

Hardware Project A

Develop
IP Block

A

Verify IP
Block A

Architect
System

Develop
IP Block

B

Verify IP
Block B

Develop
IP Block

C

Verify IP
Block C

Verify
System

Create SOPC
Builder Ready
Component

Create SOPC
Builder Ready
Component

Create SOPC
Builder Ready
Component

Fast Compilation, Many Interations Slow Compilation, Fewer Interations
© November 2008 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

9–20 Chapter 9: Verification and Board Bring-Up
System Verification
This system uses the JTAG interface to access components connected to the system
interconnect fabric and to create stimuli for the system. If you use the JTAG server
provided by the Quartus II programmer, this system can also be located on a network
and accessed remotely. You can download software to the Nios II processor using the
Nios II IDE. You can also use the Nios II JTAG debug core to transmit files to and from
your embedded system using the host file system. Using the System Console you can
access components in your system and also run scripts for automated testing
purposes.

Using the Quartus II In-System Memory Content Editor, you can create stimuli for the
two components that control external peripherals. You can also use the In-System
Memory Content Editor to place the embedded system in reset while new stimulus
values are sent to the system. The In-System Memory Editor supports Tcl scripting,
which you can use to automate the verification process. This approach is similar to
using the FS2 console to control logic in your system. However, unlike the FS2
console, you can use the In-System Memory Content Editor to access hardware that is
not memory-mapped. All of the verification techniques described in this chapter can
be scripted, allowing many test cycles to be executed without user interaction.

f To learn more about using the host file system refer to the Host File System software
example design available with the Nios II EDS. Developing Software for Nios II in the
Embedded Design Handbook also includes a significant amount of information about the
system file system.
Embedded Design Handbook © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf

Chapter 9: Verification and Board Bring-Up 9–21
System Verification
f To learn more about the verification and scripting abilities outlined in the example
above, refer to the following documentation:

■ First Silicon Solutions Website, www.fs2.com

■ Altera Basic Quartus II Tcl Scripting training course

■ Quartus II Scripting Reference Manual

Environmental Testing
The last stage of verification is end-user environment testing. Most verification is
performed under ideal conditions. The following conditions in the end user’s
environment can cause the system to fail:

■ Voltage variation

■ Vibration

■ Temperature variation

Figure 9–8. Script Controlled Verification

SOPC Builder System

Nios II
Processor

Memory
Based
FIFO

(Stimulus)

Constant
(Stimulus)

Temperature
Sensor

JTAG to
Avalon

Master Bridge

A/D
Interface

Onchip
Memory

System Interconnect Fabric

Constant
(Reset Hold)

JTAG
Interface

JTAG Debug
Module

reset_n

SignalTap II
Embedded

Logic Analyzer

FS2 Console Controlled

In-System Memory Content Editor Controlled

JTAG Communication Channels

SignalTap II Trace

System Console

or

FS2 Console

or

Nios II IDE

or

Quartus II
 In-System
 Memory

Content Editor
© November 2008 Altera Corporation Embedded Design Handbook

www.fs2.com
http://www.altera.com/education/training/courses/ODSW1190
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

9–22 Chapter 9: Verification and Board Bring-Up
Referenced Documents
■ Electrical noise

Because it is difficult to predict all the applications for a particular product, you
should create a list of operational specifications before designing the product. You
should verify these specifications before shipping or selling the product. The key issue
with environmental testing is the difficulty associated with obtaining measurements
while the test is underway. For example, it can be difficult to measure signals with an
external logic analyzer while your product is undergoing vibration testing.

While choosing methods to test your hardware design during the early verification
stages, you should also consider how to adapt them for environmental testing. If you
believe your product is susceptible to vibration problems, you should choose sturdy
instrumentation methods when testing memory interfaces. Alternatively, if you
believe your product may be susceptible to electrical noise, then you should choose a
highly reliable interface for debug purposes.

While performing early verification of your design, you can also begin
end-environment testing. Doing so helps you detect potential flaws in early in the
design process. For example, if you wish to test temperature variations, you can use a
heat gun on the product while you are testing. If you wish to perform voltage
variation testing, isolate the power supply in your system and vary the voltage using
an external power supply. Using these verification techniques, you can avoid late
design changes due to failures during environmental testing.

Referenced Documents
This chapter references the following documents:

■ AN 323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder Systems

■ Avalon Interface Specifications

■ Component Editor chapter in volume 4 of the Quartus II Handbook

■ DMA Controller Core chapter in volume 5 of the Quartus II Handbook

■ Debugging Nios II Designs chapter in the Embedded Design Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer in volume 3 of the
Quartus II Handbook

■ Developing Nios II Software in the Embedded Design Handbook

■ IEEE 1149.1(JTAG) Boundary-Scan Testing in Altera Devices

■ In-System Debugging Using External Logic Analyzers chapter in volume 3 of the
Quartus II Handbook

■ In-System Updating of Memory and Constants in volume 3 of the Quartus II Handbook

■ Nios II Hardware Development Tutorial

■ Quartus II Scripting Reference Manual

■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook

■ SOPC Builder Component Development Walkthrough chapter in volume 4 of the
Quartus II Handbook
Embedded Design Handbook © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf
http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51006.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51002.pdf
http://www.altera.com/literature/an/an039.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53012.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf

Chapter 9: Verification and Board Bring-Up 9–23
Document Revision History
Document Revision History
Table 9–4 shows the revision history for this chapter.

Table 9–4. Document Revision History

Date and Document Version Changes Made Summary of Changes

November 2008
v1.2

■ In the FS2 Console section, added sld info
command and an example that writes and reads a range
of memory addresses.

■ Added introductory discussion to the System Console.

■ Added JTAG to Avalon Master Bridge to Figure 9–8.

Updated to provide more
information about the FS2
Console and introduce the
System Console.

June 2008
v1.1

Corrected Table of Contents. —

March 2008
v1.0

Initial release. —
© November 2008 Altera Corporation Embedded Design Handbook

9–24 Chapter 9: Verification and Board Bring-Up
Document Revision History
Embedded Design Handbook © November 2008 Altera Corporation

© February 2009 Altera Corporation Embedded Design Handbook

10. Interfacing an External Processor to
an Altera FPGA

This chapter provides an overview of the options Altera® provides to connect an
external processor to an Altera FPGA or Hardcopy® device. These interface options
include the PCI Express, PCI, RapidIO®, serial peripheral interface (SPI) interface or a
simple custom bridge that you can design yourself.

By including both an FPGA and a commercially available processor in your system,
you can partition your design to optimize performance and cost in the following
ways:

■ Offload pre- or post- processing of data to the external processor

■ Create dedicated FPGA resources for co-processing data

■ Reduce design time by using IP from Altera’s library of components to implement
peripheral expansion for industry standard functionality

■ Expand the I/O capability of your external processor

You can instantiate the PCI Express, PCI, and RapidIO MegaCore functions using
either the MegaWizardTM Plug-In Manager or SOPC Builder design flow. The PCI Lite
and SPI cores are only available in the SOPC Builder design flow. SOPC Builder
automatically generates the HDL design files that include all of the specified
components and system connectivity. Alternatively, you can use the MegaWizard
Plug-In Manager to generate a stand-alone component outside of SOPC Builder.
Figure 10–1 shows the steps you take to instantiate a component in both design flows.

Figure 10–1. SOPC Builder and MegaWizard Plug-In Manager Design Flows

Complete SOPC
Builder System

Compile Design

Specify Constraints

Simulate System

Select Design Flow

Specify Parameters Specify Parameters

SOPC Builder
Flow

MegaWizard Plug-in
Manager Flow

Simulate with
Testbench

Instantiate MegaCore
Function in Design

Program Device

ED51011-1.0

10–2 Chapter 10: Interfacing an External Processor to an Altera FPGA
Configuration Options

Embedded Design Handbook © February 2009 Altera Corporation

The remainder of this chapter provides an overview of the MegaCore functions that
you can use to interface an Altera FPGA to an external processor. It covers the
following topics:

■ Configuration Options

■ RapidIO Interface

■ PCI Express Interface

■ PCI Interface

■ PCI Lite Interface

■ Serial Protocol Interface (SPI)

■ Custom Bridge Interfaces

Configuration Options
Figure 10–2 illustrates an SOPC Builder system design that includes a
high-performance external bus or switch to connect an industry-standard processor to
an external interface of a MegaCore function inside the FPGA. This MegaCore
function also includes an Avalon-MM master port that connects to the SOPC Builder
system interconnect fabric. As Figure 10–2 illustrates, Altera provides a library of
components, typically Avalon-MM slave devices, that connect seamlessly to the
Avalon system interconnect fabric.

Figure 10–2. FPGA with a Bus or Switch Interface Bridge for Peripheral Expansion

UART User I/O USB Timer
Memory

Controller

System Interconnect Fabric

 Interface
Component

(PCIe or RIO)

Altera FPGA or Hardcopy Device

Processor
Bus or Switch

DMA
Read

M

DMA
Write

MM

On-Chip
Memory

S

S
S S S SM

S

Avalon-MM Master

Avalon-MM Slave

Chapter 10: Interfacing an External Processor to an Altera FPGA 10–3
Configuration Options

© February 2009 Altera Corporation Embedded Design Handbook

Figure 10–3 illustrates a design that includes an external processor that interfaces to
an PCI Express endpoint inside the FPGA. The system interconnect fabric inside the
implements a partial crossbar switch between the endpoint that connects to the
external processor and two additional PCI Express root ports that interface to an
Ethernet card and a marking engine. In addition, the system includes some custom
logic, a memory controller to interface to external DDR SDRAM memory, a USB
interface port, and an interface to external flash memory. SOPC Builder automatically
generates the system interconnect fabric to connect the components in the system.

Figure 10–3. FPGA with a Processor Bus or SPI for Peripheral Expansion

Stratix IV GX Device

M

S

Avalon-MM Master

Avalon-MM Slave

PCIe
Hard IP

RP
S

M

PCIe
Hard IP

RP
S

M

BAR0-1

BAR2

USB

S S
S BAR3

Memory
Controller

System
Interconnect

Fabric

DDR
SDRAM

FlashUSB
PHY

Ethernet

Marking
Engine

PCI Link

PCIe
Hard IP

RP
Processor

PCIe
Hard IP

EP

BAR0-1
BAR2
BAR3

S

MM

S

MM

Custom
Logic

Flash
Cntl

10–4 Chapter 10: Interfacing an External Processor to an Altera FPGA
Configuration Options

Embedded Design Handbook © February 2009 Altera Corporation

Alternatively, you can also implement your logic in Verilog HDL or VHDL without
using SOPC Builder. Figure 10–4 illustrates a modular design that uses the FPGA for
co-processing with a second module to implement the interface to the processor. If
you choose this option, you must write all of the HDL to connect the modules in your
system.

Table 10–1 summarizes the components Altera provides to connect an Altera FPGA or
HardCopy device to an external processor. As this table indicates, three of the
components are also available for use in the MegaWizard Plug-In Manager design
flow in addition to the SOPC Builder. Alternative implementations of these
components are also available through the Altera Megafunction Partners Program
(AMPPSM) partners. The AMPP partners offer a broad portfolio of megafunctions
optimized for Altera devices.

f For a complete list of third-party IP for Altera FPGAs, refer to the IP MegaStore web
page: www.altera.com/products/ip/ipm-index.html. For SOPC Builder components,
search for sopc_builder_ready in the IP MegaStore megafunction search function

.

Figure 10–4. FPGA Performs Co-Processing

 Co-Processing
Implemented in
Verilog HDL or

VHDL

Direct
I/F

Processor

Altera FPGA or HardCopy Device

Table 10–1. Processor Interface Solutions Available from an Altera

Protocol Available in
SOPC Builder

 Available In
MegaWizard

Plug-In Manager

Third-Party
Solution

OpenCore Plus
Evaluation
Available

RapidIO v v v v
PCI Express v v v v
PCI v v v v
PCI Lite v — — License not

required.SPI v — —

http://www.altera.com/products/ip/ipm-index.html

Chapter 10: Interfacing an External Processor to an Altera FPGA 10–5
RapidIO Interface

© February 2009 Altera Corporation Embedded Design Handbook

Table 10–2 summarizes the most popular options for peripheral expansion in SOPC
Builder systems that include an industry-standard processor. All of these are available
in SOPC Builder. Some are also available using the MegaWizard Plug-In Manager.

f For detailed information on the components available in SOPC builder refer to
Volume 5: Embedded Peripherals of the Quartus II Handbook.

1 In some cases, you must download third-party IP solutions from the AMPP vendor
website, before you can evaluate the peripheral using the OpenCore Plus.

f For more information about the AMPP program and OpenCore Plus refer to AN343 -
OpenCore Evaluation of AMPP Megafunctions and AN320 - OpenCore Plus Evaluation of
Megafunctions.

The following sections discuss the high-performance interfaces that you can use to
interface to an external processor.

RapidIO Interface
RapidIO is a high-performance packet-switched protocol that transports data and
control information between processors, memories, and peripheral devices. The
RapidIO MegaCore function is available in SOPC Builder includes Avalon-MM ports
that translate Serial RapidIO transactions into Avalon-MM transactions. The
MegaCore function also includes an optional Avalon Streaming (Avalon-ST) interface
that you can use to send transactions directly from the transport layer to the system
interconnect fabric. When you select all optional features, the core includes the
following ports:

■ Avalon-MM I/O write master

■ Avalon-MM I/O read master

■ Avalon-MM I/O write slave

■ Avalon-MM I/O read slave

■ Avalon-MM maintenance master

■ Avalon-MM system maintenance slave

Table 10–2. Partial list of peripheral interfaces available for SOPC Builder

Protocol Available in
SOPC Builder

 Available In
MegaWizard

Plug-In Manager
Third-Party Solution OpenCore Plus

Evaluation Available

CAN v — v v
I2C v — v v
Ethernet v v v v
PIO v — — Not required

POS-PHY Level 4 (SPI 4.2) — v — v
SPI v — v Not required

UART v — v v
USB v — v v

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an343.pdf
http://www.altera.com/literature/an/an343.pdf

10–6 Chapter 10: Interfacing an External Processor to an Altera FPGA
RapidIO Interface

Embedded Design Handbook © February 2009 Altera Corporation

■ Avalon Streaming sink pass-through Tx

■ Avalon-ST source pass-through Rx

Using the SOPC Builder design flow, you can integrate a RapidIO endpoint into an
SOPC Builder system. You connect the ports using the SOPC Builder System
Contents tab and SOPC Builder automatically generates the system interconnect
fabric. Figure 10–5 illustrates an SOPC Builder system that includes a processor and a
RapidIO MegaCore function.

f Refer to the RapidIO trade association web site's product list at www.rapidio.org for a
list of processors that support a Rapid IO interface.

Figure 10–5. Example system with RapidIO Interface

UART USB User I/O
Memory

Controller

System Interconnect Fabric

RapidIO MegaCore Function

FPGA

MSSrc

S S S S
M Avalon-MM Slave I/F

M Avalon-MM Master I/F

Src Avalon Streaming Source I/F

Snk Avalon Streaming Sink I/F

Physical Layer

Transport Layer

Logical Layer

Serial RapidIO Switch

SM M SSnk

Processor

Cntl
Flash

http://www.rapidio.org/home

Chapter 10: Interfacing an External Processor to an Altera FPGA 10–7
PCI Express Interface

© February 2009 Altera Corporation Embedded Design Handbook

f Refer to the following documents for a complete description of the RapidIO
MegaCore function:

■ RapidIO MegaCore Function User Guide

■ AN 513: RapidIO Interoperability With TI 6482 DSP Reference Design

PCI Express Interface
The PCI Express MegaCore function configured using the SOPC Builder design flow
uses the PCI Express Compiler's Avalon-MM bridge module to connect the PCI
Express component to the system interconnect fabric. The bridge facilitates the design
of PCI Express systems that use the Avalon-MM interface to access SOPC Builder
components. Figure 10–6 illustrates a design that links an external processor to an
SOPC Builder system using the PCI Express MegaCore function.

You can also implement the PCI Express MegaCore function using the MegaWizard
Plug-In Manager design flow. The configuration options for the two design flows are
different. The PCI Express MegaCore function is available in Stratix IV and
Arria II GX devices as a hard IP implementation and can be used as a root port or end
point.

f For more information about using the PCI Express MegaCore function refer to the
following documents:

■ PCI Express Compiler User Guide

■ AN 513: SOPC Builder PCI Express Design with GUI Interface

■ AN 456: PCI Express High Performance Reference Design

■ AN 443: External PHY Support in PCI Express MegaCore Functions

■ AN 431: PCI Express-to-DDR2 SDRAM Reference Design.

http://www.altera.com/literature/ug/ug_pci_express.pdf
http://www.altera.com/literature/an/an513.pdf
http://www.altera.com/literature/an/an456.pdf
http://www.altera.com/literature/an/an433.pdf
http://www.altera.com/literature/an/an431.pdf
http://www.altera.com/literature/ug/ug_rapidio.pdf
http://www.altera.com/literature/an/an513.pdf
http://www.altera.com/literature/ug/ug_pci_express.pdf

10–8 Chapter 10: Interfacing an External Processor to an Altera FPGA
PCI Express Interface

Embedded Design Handbook © February 2009 Altera Corporation

Figure 10–6. Example system with PCI Express interface

UART USB User I/O
Memory

Controller

System Interconnect Fabric

PCI Express MegaCore Function

FPGA

S S S S

M Avalon-MM Slave I/F

M Avalon-MM Master I/F

Physical Layer

Data Link Layer

Transaction Layer

PCI Express Link

SM

Processor

Avalon-MM Adapter

Cntl
Flash

http://www.altera.com/literature/an/an385.pdf

Chapter 10: Interfacing an External Processor to an Altera FPGA 10–9
PCI Interface

© February 2009 Altera Corporation Embedded Design Handbook

PCI Interface
Altera offers a wide range of PCI local bus solutions that you can use to connect a host
processor to an FPGA. You can implement the PCI MegaCore function using the
MegaWizard Plug-In Manager or SOPC Builder design flow.

The PCI SOPC Builder flow is an easy way to implement a complete Avalon-MM
system which includes peripherals to expand system functionality without having to
be well-acquainted with the Avalon-MM protocol. Figure 10–7 illustrates an SOPC
Builder system using the PCI MegaCore function. You can parameterize the PCI
MegaCore function with a 32- or 64-bit interface.

f For more information refer to the PCI Compiler User Guide.

PCI Lite Interface
The PCI Lite component is optimized for low-latency and high throughput designs. It
is available only in the SOPC Builder design flow. The PCI Lite core provides a subset
of the PCI MegaCore function feature set to obtain a low-latency path that interfaces
to a processor and other peripherals connected to the system interconnect fabric in an
FPGA. This component translates PCI transactions to Avalon-MM transactions. The
PCI Lite core uses the PCI-Avalon bridge to connect the PCI bus to the system
interconnect fabric, allowing you to easily create simple PCI systems that include one
or more SOPC Builder components.

f For more information refer to the PCI Lite Core chapter in volume 5 of the Quartus II
Handbook.

Figure 10–7. PCI MegaCore Function in an SOPC Builder System

PCI
Bus

PCI Master/Target
Component

DDR2
SDRAM
Memory
Module

DDR2
SDRAM

MegaCore
Function

DMA
Engine

PCI
MegaCore
Function

System
Interconnect

Fabric

PCI-Avalon
Bridge
Logic

Altera FPGA or HardCopy Device

http://www.altera.com/literature/ug/ug_pci.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55010.pdf

10–10 Chapter 10: Interfacing an External Processor to an Altera FPGA
Serial Protocol Interface (SPI)

Embedded Design Handbook © February 2009 Altera Corporation

You can also implement the original PCI master/target and target MegaCore
functions without an Avalon-MM bridge module using the MegaWizard Plug-In
Manager design flow.

f For information, refer to following reference designs:

■ AN 390: PCI-to-DDR2 SDRAM Reference Design

■ AN 223: PCI-to-DDR SDRAM Reference Design

Serial Protocol Interface (SPI)
The SPI Slave to Avalon Master Bridge component provides a simple connection
between processors and SOPC Builder systems via a four-wire industry standard
serial interface. Host systems can initiate Avalon-MM transactions by sending
encoded streams of bytes via the core's serial interface. The core supports read and
write transactions to the SOPC Builder system for memory access and peripheral
expansion.

The SPI Slave to Avalon Master Bridge is an SOPC Builder-ready component that
integrates easily into any SOPC Builder system. Processors that include an SPI
interface can easily encapsulate Avalon-MM transactions for reads and writes using
the protocols outlined in the SPI Slave/JTAG to Avalon Master Bridge Cores chapter in
volume 5 of the Quartus II Handbook.

Figure 10–8. Example System with SPI to Avalon-MM Interface Component

UART UART USB User I/O
Memory

Controller

System Interconnect Fabric

SPI to
Avalon-MM

IF Component
DMA

On-Chip
Memory

Altera FPGA

Processor
 MOSI

MISO
M

SPI SPI

M

M S

S

S S S SAvalon-MM Master

Avalon-MM Slave

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/an/an390.pdf
http://www.altera.com/literature/an/an223.pdf

Chapter 10: Interfacing an External Processor to an Altera FPGA 10–11
Custom Bridge Interfaces

© February 2009 Altera Corporation Embedded Design Handbook

f Details of each protocol layer can be found the following documentation:

SPI Slave/JTAG to Avalon Master Bridge Cores—Provide a connection from an external
host system to an SOPC Builder system. Allow an SPI master to initiate Avalon-MM
transactions.

Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores—Provide a connection
from an external host system to an SOPC Builder system. Allow an SPI master to
initiate Avalon-ST transactions.

Avalon Packets to Transactions Converter Core—Receives streaming data from upstream
components and initiates Avalon-MM transactions. Returns Avalon-MM transaction
responses to requesting components.

Custom Bridge Interfaces
Many bus protocols can be mapped to the system interconnect fabric either directly or
with some custom bridge interface logic to compensate for differences between the
interface standards. The Avalon-MM interface standard, which SOPC Builder
supports, is a synchronous, memory-mapped interface that is easy to create custom
bridges for.

If required, you can use the component editor available in SOPC Builder to quickly
define a custom bridge component to adapt the external processor bus to the
Avalon-MM interface or any of the other standard interface that is defined in the
Avalon Interfaces Specifications. The Templates menu available in the component editor
includes menu items to add any of the standard Avalon interfaces to your custom
bridge. You can then use the Interfaces tab of the component editor to modify timing
parameters including: Setup, Read Wait, Write Wait, and Hold timing parameters, if
required.

f For more information about the component editor, refer to the Component Editor
chapter in volume 4 of the Quartus II Handbook.

1 The Avalon-MM protocol requires that all masters provide byte addresses.
Consequently, it may be necessary for your custom bridge component to add address
wires when translating from the external processor bus interface to the Avalon-MM
interface. For example, if your processor bus has a 16-bit word address, you must add
one additional low-order address bit. If processor bus drives 32-bit word addresses,
you must add two additional, low-order address bits. In both cases, the extra bits
should be tied to 0. The external processor accesses individual byte lanes using the
byte enable signals.

Consider the following points when designing a custom bridge to interface between
an external processor and the Avalon-MM interface:

■ The processor bus signals must comply or be adapted with logic to comply with
the signals used for transactions, as described in the Avalon Interfaces Specifications.

■ The external processor must support the Avalon waitrequest signal that inserts
wait-state cycles for slave components

■ The system bus must have a bus reference clock to drive SOPC Builder interface
logic in the FPGA.

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55012.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55013.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

10–12 Chapter 10: Interfacing an External Processor to an Altera FPGA
Custom Bridge Interfaces

Embedded Design Handbook © February 2009 Altera Corporation

■ No time-out mechanism is available if you are using the Avalon-MM interface.

■ You must analyze the timing requirements of the system. You should perform a
timing analysis to guarantee that all synchronous timing requirements for the
external processor and Avalon-MM interface are met. Examine the following
timing characteristics:

■ Data tSU, tH, and tCO times to the bus reference clock

■ fMAX of the system matches the performance of the bus reference clock

■ Turn-around time for a read-to-write transfer or a write-to-read transfer for the
processor is well understood

If your processor has dedicated read and write buses, you can map them to the
Avalon-MM readdata and writedata signals. If your processor uses a
bidirectional data bus, the bridge component can implement the tristate logic
controlled by the processor’s output enable signal to merge the readdata and
writedata signals into a bidirectional data bus at the pins of the FPGA. Most of the
other processor signals can pass through the bridge component if they adhere to the
Avalon-MM protocol. Figure 10–9 illustrates the use of a bridge component with a
32-bit external processor.

f For more information on designing with the Avalon-MM interface refer to the Avalon
Interfaces Specifications.

Figure 10–9. Custom Bridge to Adapt an External Processor to an Avalon-MM Slave Interface

External
Processor
(32-bit)

Altera FPGA or HardCopy Device

ready

wr_n

chipselect

rd_n

waitrequest_n

write_n

read_n

address [n:0]

byteenable[3:0]
writedata[31:0]

readdata[31:0]

addr[n:2] addr[n:2 || 2b’00]

BE[3:0] BE[3:0]

OE_n

data[31:0]

Custom
 Bridge

Custom Component

Avalon-MM Slave

System
Interconnect

Fabric

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 10: Interfacing an External Processor to an Altera FPGA 10–13
Conclusion

© February 2009 Altera Corporation Embedded Design Handbook

Conclusion
Altera offers a variety of components that you can use to connect an FPGA to an
external processor. With most of these components, you can choose either the SOPC
Builder or MegaWizard Plug-In Manager design flow. You can also build your own
custom interface to an external processor. By using the Avalon-MM interface in SOPC
Builder, you can easily extend system capabilities for processors by taking advantage
of the SOPC Builder library of components.

Referenced Documents
This chapter references the following documents:

■ AN 223: PCI-to-DDR SDRAM Reference Design

■ AN320 - OpenCore Plus Evaluation of Megafunctions

■ AN343 - OpenCore Evaluation of AMPP Megafunctions

■ AN 390: PCI-to-DDR2 SDRAM Reference Design

■ AN 431: PCI Express-to-DDR2 SDRAM Reference Design

■ AN 443: External PHY Support in PCI Express MegaCore Functions

■ AN 456: PCI Express High Performance Reference Design

■ AN 513: RapidIO Interoperability With TI 6482 DSP Reference Design

■ AN532: An SOPC Builder PCI Express Design with GUI Interface

■ Avalon Interface Specifications

■ Avalon Packets to Transactions Converter Core

■ Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores

■ Component Editor chapter in volume 4 of the Quartus II Handbook

■ PCI Compiler User Guide

■ PCI Express Compiler User Guide

■ PCI Lite Core chapter in volume 5 of the Quartus II Handbook

■ RapidIO MegaCore Function User Guide

■ SPI Slave/JTAG to Avalon Master Bridge Core

■ Volume 5: Embedded Peripherals of the Quartus II Handbook

http://www.altera.com/literature/an/an385.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/an/an343.pdf
http://www.altera.com/literature/an/an390.pdf
http://www.altera.com/literature/an/an431.pdf
http://www.altera.com/literature/an/an433.pdf
http://www.altera.com/literature/an/an456.pdf
http://www.altera.com/literature/an/an513.pdf
http://www.altera.com/literature/an/an532.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55013.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55012.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/ug/ug_pci.pdf
http://www.altera.com/literature/ug/ug_pci_express.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55010.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=PCI%20Lite
http://www.altera.com/literature/ug/ug_rapidio.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55010.pdf
http://www.altera.com/literature/an/an223.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

10–14 Chapter 10: Interfacing an External Processor to an Altera FPGA
Document Revision History

Embedded Design Handbook © February 2009 Altera Corporation

Document Revision History
Table 10–3 shows the revision history for this chapter.

Table 10–3. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

February 2009,
v1.0

Initial release —

© January 2009 Altera Corporation
Additional Information
How to Contact Altera
For the most up-to-date information about Altera products, see the following table.

Typographic Conventions
The following table shows the typographic conventions that this document uses.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names, file
names, file name extensions, and software utility names are shown in bold type.
Examples: \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital Letters Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.
Embedded Design Handbook
Preliminary

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to
the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information about a particular topic.

Visual Cue Meaning
Embedded Design Handbook © January 2009 Altera Corporation
Preliminary

	Embedded Design Handbook
	Contents
	Chapter Revision Dates
	Section I. Introduction
	1. First Time Designer's Guide
	Introduction
	First Time Designer’s Guide Introduction
	FPGAs and Soft-Core Processors

	Embedded System Design
	FPGA Hardware Design
	Connecting Your FPGA Design to Your Board
	Connecting Signals to your SOPC Builder System
	Constraining Your FPGA-Based Design

	SOPC Builder Design
	Design Replication
	Customization and Acceleration

	Software Design
	Tools Description
	Nios II IDE Flow
	Software Build Tools Flow

	Board Design Considerations
	Configuration
	Booting
	Additional Design Considerations

	Resources
	Support
	Training
	Documentation
	Third Party Intellectual Property

	Glossary
	Conclusion
	Referenced Documents
	Document Revision History

	Section II. Nios II Software Development
	2. Developing Nios II Software
	Introduction
	Software Development Cycle
	Altera System on a Programmable Chip (SOPC) Solutions
	Nios II Software Development Process

	Software Project Mechanics
	Software Tools Background
	Development Flow Guidelines
	Nios II Software Build Tools Flow
	Configuring BSP and Application Projects
	Software Example Designs
	Configuring the BSP Project
	Configuring the Application Project
	Software Project Development Mechanics

	Ensuring Software Project Coherency

	Developing With the Hardware Application Layer
	Overview of the HAL
	HAL Configuration Options

	System Startup in HAL-Based Applications
	System Initialization
	crt0 Initialization
	HAL Initialization

	HAL Peripheral Services
	Timers
	Character Mode Devices
	Flash Memory Devices
	Direct Memory Access (DMA) Devices
	Files and File Systems
	Ethernet Devices
	Unsupported Devices

	Accessing Memory With the Nios II Processor
	Creating General C/C++ Applications
	Accessing Peripherals
	Sharing Uncached Memory
	Sharing Memory With Cache Performance Benefits

	Handling Exceptions
	Modifying the Exception Handler

	Optimizing the Application
	Performance Tuning Background
	Speeding Up System Processing Tasks
	Analyzing the Problem
	Accelerating your Application

	Accelerating Interrupt Service Routines
	Analyzing the Problem
	Accelerating the Interrupt Service Routine

	Reducing Code Size
	Analyzing the Problem
	Reducing the Code Footprint

	Linking Applications
	Background
	Linker Sections and Application Configuration
	HAL Linking Behavior
	Default BSP Linking
	User-Controlled BSP Linking

	Application Boot Loading and Programming System Memory
	Default BSP Boot Loading Configuration
	Boot Configuration Options
	Booting and Running From Flash Memory
	Booting From Flash Memory and Running From Volatile Memory
	Booting and Running From Volatile Memory
	Booting From Altera EPCS Memory and Running From Volatile Memory
	Booting and Running From FPGA Memory

	Generating and Programming System Memory Images
	Programming FPGA Memory
	Configuring and Programming Flash Memory

	Conclusion
	Referenced Documents
	Document Revision History

	3. Debugging Nios II Designs
	Debuggers
	Nios II Software Development Tools
	Nios II System ID
	Project Templates
	Configuration Options
	Nios II GDB Console and GDB Commands
	Nios II Terminal Window and stdio Library Functions
	Importing Projects Created Using the Nios II Software Build Tools
	Selecting a Processor Instance in a Multiple Processor Design

	FS2 Console
	SignalTap II Embedded Logic Analyzer
	Lauterbach Trace32 Debugger and PowerTrace Hardware
	Debugging the Lauterbach PowerTrace to Nios II Processor Connection
	C Source Correlation
	Registering Trace Signals

	Insight and Data Display Debuggers

	Run-Time Analysis Debug Techniques
	Software Profiling
	Watchpoints
	Stack Overflow
	Hardware Abstraction Layer (HAL)
	Breakpoints
	Debugger Stepping and Using No Optimizations

	Conclusion
	Referenced Documents
	Document Revision History

	4. Nios II Command-Line Tools
	Introduction
	Altera Command-Line Tools for Board Bringup and Diagnostics
	jtagconfig
	jtagconfig Usage Example

	nios2-configure-sof
	nios2-configure-sof Usage Example

	system-console

	Altera Command-Line Tools for Hardware Development
	quartus_cmd and sopc_builder

	Altera Command-Line Tools for Flash Programming
	nios2-flash-programmer
	nios2-flash-programmer Usage Example

	elf2flash, bin2flash, and sof2flash
	bin2flash Usage Example

	Altera Command-Line Tools for Software Development and Debug
	nios2-terminal
	nios2-download
	nios2-download Usage Example

	nios2-stackreport
	nios2-stackreport Usage Example

	validate_zip
	validate_zip Usage Example

	nios2-ide
	Linux wrapper script
	Windows wrapper script

	nios2-gdb-server
	nios2-gdb-server Usage Example

	nios2-debug
	nios2-debug Usage Example

	Altera Command-Line Nios II Software Build Tools
	BSP Related Tools
	Application Related Tools

	GNU Command-Line Tools
	nios2-elf-addr2line
	nios2-elf-addr2line Usage Example

	nios2-elf-gdb
	nios2-elf-readelf
	nios2-elf-readelf Usage Example

	nios2-elf-ar
	nios2-elf-ar Usage Example

	Linker
	Linker Usage Example

	nios2-elf-size
	nios2-elf-size Usage Example

	nios2-elf-strings
	nios2-elf-strings Usage Example

	nios2-elf-strip
	nios2-elf-strip Usage Example
	nios2-elf-strip Usage Notes

	nios2-elf-gdbtui
	nios2-elf-gprof
	nios2-elf-insight
	nios2-elf-gcc and g++
	Compilation Command Usage Example
	More Complex Compilation Example

	nios2-elf-c++filt
	nios2-elf-c++filt Usage Example
	More Complex nios2-elf-c++filt Example

	nios2-elf-nm
	nios2-elf-nm Usage Example
	More Complex nios2-elf-nm Example

	nios2-elf-objcopy
	nios2-elf-objcopy Usage Example

	nios2-elf-objdump
	nios2-elf-objdump Usage Description

	nios2-elf-ranlib

	Referenced Documents
	Document Revision History

	5. Optimizing Nios II C2H Compiler Results
	Introduction
	Prerequisites
	Cost and Performance

	Overview of the C2H Optimization Process
	Getting Started
	Iterative Optimization
	Meeting Your Cost and Performance Goals

	Factors Affecting C2H Results
	Memory Accesses and Variables
	Arithmetic and Logical Operations
	Statements
	Control Flow
	If Statements
	Loops

	Subfunction Calls
	Resource Sharing
	Data Dependencies
	Memory Architecture
	Data Cache Coherency
	DRAM Architecture

	Efficiency Metrics
	Cycles Per Loop Iteration (CPLI)
	FPGA Resource Usage
	Avalon-MM Master Ports
	Embedded Multipliers
	Embedded Memory

	Data Throughput

	Optimization Techniques
	Pipelining Calculations
	Increasing Memory Efficiency
	Use Wide Memory Accesses
	Segment the Memory Architecture
	Use Localized Data

	Reducing Data Dependencies
	Use __restrict__

	Reducing Logic Utilization
	Use "do-while" rather than "while"
	Use Constants
	Leave Loops Rolled Up
	Use ++ to Sequentially Access Arrays
	Avoid Excessive Pointer Dereferences
	Avoid Multipliers
	Avoid Arbitrary Division
	Use Masks
	Use Powers of Two in Multi-Dimensional Arrays
	Use Narrow Local Variables

	Optimizing Memory Connections
	Remove Unnecessary Connections to Memory Slave ports
	Reduce Avalon-MM Interconnect Using #pragma
	Remove Unnecessary Memory Connections to Nios II Processor

	Optimizing Frequency Versus Latency
	Improve Conditional Latency
	Improve Conditional Frequency

	Improve Throughput
	Avoid Short Nested Loops
	Remove In-place Calculations
	Replace Arrays
	Use Polled Accelerators
	Use an Interrupt-Based Accelerator

	Glossary
	Referenced Documents
	Document Revision History

	Section III. System-Level Design
	6. Avalon Memory-Mapped Design Optimizations
	Selecting Hardware Architecture
	Bus
	Full Crossbar Switch
	Partial Crossbar Switch
	Streaming
	Dynamic Bus Sizing

	Understanding Concurrency
	Create Multiple Masters
	Create Separate Datapaths
	Use DMA Engines
	Include Multiple Master or Slave Ports
	Create Separate Sub-Systems

	Increasing Transfer Throughput
	Using Pipelined Transfers
	Maximum Pending Reads
	Selecting the Maximum Pending Reads Value
	Overestimating Versus Underestimating the Maximum Pending Reads Value

	Pipelined Read Masters
	Requirements
	Throughput Improvement
	Pipelined Read Master Example

	Arbitration Shares and Bursts
	Differences between Arbitration Shares and Bursts
	Choosing Interface Types
	Burst Master Example

	Increasing System Frequency
	Use Pipeline Bridges
	Master-to-Slave Pipelining
	Slave-to-Master Pipelining
	waitrequest Pipelining

	Use a Clock Crossing Bridge
	Increasing Component Frequencies
	Reducing Low-Priority Component Frequencies

	Consequences of Using Bridges
	Increased Latency
	Limited Concurrency
	Address Space Translation
	Address Shifting
	Address Coherency

	Minimize System Interconnect Logic
	Use Unique Address Bits
	Create Dedicated Master and Slave Connections
	Remove Unnecessary Connections

	Reducing Logic Utilization
	Minimize Arbitration Logic by Consolidating Components
	Logic Consolidation Tradeoffs
	Combined Component Example

	Use Bridges to Minimize System Interconnect Fabric Logic
	SOPC Builder Speed Optimizations
	Reduced Concurrency

	Use Bridges to Minimize Adapter Logic
	Effective Placement of Bridges
	Compact System Example

	Reducing Power Utilization
	Reduce Clock Speeds of Non-Critical Logic
	Clock Crossing Bridge
	Clock Crossing Adapter

	Minimize Toggle Rates
	Registering Component Boundaries
	Enabling Clocks
	Inserting Bridges

	Disable Logic
	Software Controlled Sleep Mode
	Hardware Controlled Sleep Mode

	Referenced Documents
	Document Revision History

	7. Memory System Design
	Overview
	Volatile Memory
	Non-volatile Memory

	On-Chip Memory
	Advantages
	Disadvantages
	Best Applications
	Cache
	Tightly Coupled Memory
	Look Up Tables
	FIFO

	Poor Applications
	On-Chip Memory Types
	Best Practices

	External SRAM
	Advantages
	Disadvantages
	Best Applications
	Poor Applications
	External SRAM Types
	Best Practices

	Flash
	Advantages
	Disadvantages
	Typical Applications
	Poor Applications
	Flash Types

	SDRAM
	Advantages
	Disadvantages
	Best Applications
	Poor Applications
	SDRAM Types
	SDRAM Controller Types Available From Altera
	Best Practices
	Half-Rate Mode
	Full-Rate Mode
	Sequential Access
	Bursting
	SDRAM Minimum Frequency
	SDRAM Device Speed

	Memory Optimization
	Isolate Critical Memory Connections
	Match Master and Slave Data Width
	Use Separate Memories to Exploit Concurrency
	Understand the Nios II Instruction Master Address Space
	Test Memory

	Case Study
	Application Description
	Initial Memory Partitioning
	Optimized Memory Partitioning
	Add An External SRAM for input buffers
	Add On-Chip Memory for Video Line Buffers

	Referenced Documents
	Document Revision History

	8. Hardware Acceleration and Coprocessing
	Hardware Acceleration
	Accelerating Cyclic Redundancy Checking (CRC)
	Matching I/O Bandwidths
	Pipelining Algorithms

	Creating Nios II Custom Instructions
	Using the C2H Compiler

	Coprocessing
	Creating Multicore Designs
	Pre- and Post-Processing
	Replacing State Machines
	Low-Speed State Machines
	High-Speed State Machines
	Subdivided State Machines

	Referenced Documents
	Document Revision History

	9. Verification and Board Bring-Up
	Introduction
	Verification Methods
	Prerequisites
	FS2 Console
	SOPC Builder Test Integration
	Capabilities of the FS2 Console

	System Console
	SignalTap II Embedded Logic Analyzer
	External Instrumentation
	SignalProbe
	Logic Analyzer Interface

	Stimuli Generation

	Board Bring-up
	Peripheral Testing
	Data Trace Failure
	Address Trace Failure
	Device Isolation
	JTAG

	Board Testing
	Minimal Test System

	System Verification
	Designing with Verification in Mind
	Accelerating Verification
	Using Software to Verify Hardware
	Environmental Testing

	Referenced Documents
	Document Revision History

	10. Interfacing an External Processor to an Altera FPGA
	Configuration Options
	RapidIO Interface
	PCI Express Interface
	PCI Interface
	PCI Lite Interface
	Serial Protocol Interface (SPI)
	Custom Bridge Interfaces
	Conclusion
	Referenced Documents
	Document Revision History
	Additional Information
	How to Contact Altera
	Typographic Conventions

