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Section I. Introduction
The Embedded Design Handbook complements the primary documentation for the 
Altera® tools for embedded system development. It describes how to most effectively 
use the tools, and recommends design styles and practices for developing, debugging, 
and optimizing embedded systems using Altera-provided tools. The handbook 
introduces concepts to new users of Altera’s embedded solutions, and helps to 
increase the design efficiency of the experienced user.

This section includes the following chapters:

■ Chapter 1, First Time Designer's Guide

1 For information about the revision history for chapters in this section, refer to each 
individual chapter for that chapter’s revision history. 
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ED51001-2.1
1. First Time Designer's Guide
Introduction
Altera® provides various tools for development of hardware and software for 
embedded systems. This handbook complements the primary documentation for 
these tools by describing how to most effectively use the tools. It recommends design 
styles and practices for developing, debugging, and optimizing embedded systems 
using Altera-provided tools. The handbook introduces concepts to new users of 
Altera’s embedded solutions, and helps to increase the design efficiency of the 
experienced user.

This handbook is not a comprehensive reference guide. For general reference and 
detailed information, refer to the primary documentation cited in this handbook.

This first chapter of the handbook contains information about the Altera embedded 
development process and procedures for the first time user. The remaining chapters 
focus on specific aspects of embedded development for Altera FPGAs.

First Time Designer’s Guide Introduction
This chapter is for first time users of Altera's embedded development tools for 
hardware and software development. The chapter provides information about the 
design flow and development tools interaction, and describes the differences between 
the Nios® II processor flow and a typical discrete microcontroller design flow.

However, this chapter does not replace the basic reference material for the first time 
designer, such as the Nios II Processor Reference Handbook, the Nios II Software 
Developer’s Handbook, volumes 4 and 5 of the Quartus II Handbook, and the Nios II Flash 
Programmer’s Guide.

FPGAs and Soft-Core Processors
FPGAs can implement logic that functions as a complete microprocessor while 
providing many flexibility options. 

An important difference between discrete microprocessors and FPGAs is that an 
FPGA contains no logic when it powers up. Before you run software on a Nios II 
based system, you must configure the FPGA with a hardware design that contains a 
Nios II processor. To configure an FPGA is to electronically program the FPGA with a 
specific logic design. The Nios II processor is a true soft-core processor: it can be 
placed anywhere on the FPGA, depending on the other requirements of the design. 
Three different sizes of the processor are available, each with flexible features.

To enable your FPGA-based embedded system to behave as a discrete 
microprocessor-based system, your system should include the following:

■ A JTAG interface to support FPGA configuration and hardware and software 
debugging

■ A power-up FPGA configuration mechanism
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If your system has these capabilities, you can begin refining your design from a 
pretested hardware design loaded in the FPGA. Using an FPGA also allows you to 
modify your design quickly to address problems or to add new functionality. You can 
test these new hardware designs easily by reconfiguring the FPGA using your 
system's JTAG interface.

The JTAG interface supports hardware and software development. You can perform 
the following tasks using the JTAG interface:

■ Configure the FPGA 

■ Download and debug software

■ Communicate with the FPGA through a UART-like interface (JTAG UART)

■ Debug hardware (with the SignalTap® II embedded logic analyzer)

■ Program flash memory

After you configure the FPGA with your Nios II processor-based design, the software 
development flow is similar to the flow for discrete microcontroller designs.

Embedded System Design

FPGA Hardware Design
Whether you are a hardware designer or a software designer, read the Nios II 
Hardware Development Tutorial to start learning about designing embedded systems on 
an Altera FPGA. The “Nios II System Development Flow” section is particularly 
useful in helping you to decide how to approach system design using Altera's 
embedded hardware and software development tools. Altera recommends that you 
read this tutorial before starting your first design project. The tutorial teaches you the 
basic hardware and software flow for developing Nios II processor-based systems.

Designing with FPGAs gives you the flexibility to implement some functionality in 
discrete system components, some in software, and some in FPGA-based hardware. 
This flexibility makes the design process more complex. The SOPC Builder system 
design tool helps to manage this complexity. Even if you decide a soft-core processor 
doesn't meet your application's needs, SOPC Builder can still play a vital role in your 
system by providing mechanisms for peripheral expansion or processor off load.
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Figure 1–1 illustrates the FPGA hardware design process and Nios II software flow.

Although you develop your FPGA-based design in SOPC Builder, you must perform 
the following tasks in other tools:

■ Connect signals from your FPGA-based design to your board level design 

■ Connect signals from your SOPC Builder system to other signals in the FPGA logic

■ Constrain your design 

Figure 1–1. System Design Flow
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Connecting Your FPGA Design to Your Board
To connect your FPGA-based design to your board-level design, perform the 
following two tasks:

1. Identify the top level of your FPGA design.

2. Assign signals in the top level of your FPGA design to pins on your FPGA using 
any of the methods mentioned at the Altera I/O Management, Board 
Development Support, and Signal Integrity Analysis Resource Center, at 
www.altera.com/support/software/io-board/sof-qts-io.html

1 The top level of your FPGA-based design might be your SOPC Builder system. 
However, the FPGA can include additional design logic.

Connecting Signals to your SOPC Builder System
You must define the clock and reset pins for your SOPC Builder system. You must 
also define each I/O signal that is required for proper system operation. Figure 1–2 
shows the top level block diagram of an SOPC Builder system that includes a Nios II 
processor. The large symbol in this top-level diagram, labeled std_1s40, represents the 
SOPC Builder system. The flag-shaped pin symbols in this diagram represent off-chip 
(off-FPGA) connections. 

f For more information about connecting your FPGA pins, refer to the Altera I/O 
Management, Board Development Support, and Signal Integrity Analysis Resource 
Center web page.

Figure 1–2. Top Level Block Diagram
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Constraining Your FPGA-Based Design
To ensure your design meets timing and other requirements, you must constrain the 
design to meet these requirements explicitly using tools provided in the Quartus® II 
software or by a third party EDA provider. The Quartus II software uses your 
constraint information during design compilation to achieve Altera’s best possible 
results.

f Altera’s third-party EDA partners and the tools they provide are listed at 
www.altera.com/products/software/partners/eda_partners/eda-tools.html

SOPC Builder Design
SOPC Builder simplifies the task of building complex hardware systems on an FPGA. 
SOPC Builder allows you to describe the topology of your system using a graphical 
user interface (GUI) and then generate the hardware description language (HDL) files 
for that system. The Quartus II software compiles the HDL files to create an FPGA 
programming file.

f For additional information about SOPC Builder, refer to Volume 4: SOPC Builder of the 
Quartus II Handbook.

SOPC Builder allows you to choose the processor core type and the level of cache, 
debugging, and custom functionality for each Nios II processor. Your design can use 
on-chip resources such as memory, PLLs, DSP functions, and high-speed transceivers. 
You can construct the optimal processor for your design using SOPC Builder.

After you construct your system using SOPC Builder, and after you add any required 
custom logic to complete your top-level design, you must create pin assignments 
using the Quartus II software. The FPGA’s external pins have flexible functionality, 
and a range of pins is available to connect to clocks, control signals, and I/O signals.

f For information about how to create pin assignments, refer to the Quartus II online 
Help and to the I/O Management chapter in volume 2 of the Quartus II Handbook.

Altera recommends that you start your design from a small pretested project and 
build it incrementally. Start with one of the many SOPC Builder example designs 
provided with the Nios II Embedded Design Suite (EDS), or with a design example 
from the Nios II Hardware Development Tutorial.

The Nios II EDS includes several SOPC Builder-based hardware example designs and 
corresponding software examples. The software examples are located in the hardware 
project directory of your Altera Nios development board type—for example, 
$SOPC_KIT_NIOS2\examples\verilog\niosII_cycloneII_2c35—in the 
software_examples subdirectory for your design type.

f For more information about the examples provided in the Nios II EDS, refer to the 
"Using Nios II Example Design Scripts" section of the Using the Nios II Software Build 
Tools chapter of the Nios II Software Developer’s Handbook.

1 As you add each hardware component to the system, test it with software. If you do 
not know how to develop software to test new hardware components, Altera 
recommends that you work with a software engineer to test the components.
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After you run a simple software design—such as the simplest built-in example, Hello 
World Small—build individual systems based on this design to test the additional 
interfaces or custom options that your system requires. Altera recommends that you 
start with a simple system that includes a processor with a JTAG debug module, an 
on-chip memory component, and a JTAG UART component, and create a new system 
for each new untested component, rather than adding in new untested components 
incrementally.

After you verify that each new hardware component functions correctly in its own 
separate system, you can combine the new components incrementally in a single 
SOPC Builder system. SOPC Builder supports this design methodology well, by 
allowing you to add components and regenerate the project easily.

f For detailed information about how to implement the recommended incremental 
design process, refer to the Verification and Board Bring-Up chapter of the Embedded 
Design Handbook.

Design Replication
The recommended design flow requires that you maintain several small SOPC 
Builder systems, each with its Quartus II project and the software you use to test the 
new hardware. An SOPC Builder design requires the following files and folders:

■ Quartus II project file (.qpf)

■ Quartus II settings file (.qsf)

The .qsf file contains all of the device, pin, timing, and compilation settings for the 
Quartus II project.

■ A top level design file – schematic (.bdf), Verilog HDL (.v), or VHDL (.vhd)

If SOPC Builder generates your top-level design file, you do not need to preserve a 
separate top-level file.

1 SOPC Builder generates most of the HDL files for your system, so you do 
not need to maintain them when preserving a project. You need only 
preserve the HDL files that you add to the design directly. 

f For details about the design file types, refer to the Quartus II online Help.

■ Internal SOPC Builder description file (.sopc)

■ SOPC Builder description file (.sopcinfo)

This file contains an XML description of your SOPC Builder system. SOPC Builder 
and downstream tools, including the software build tools, derive information 
about your system from this file.

■ Your software application source files

To replicate an entire project (both hardware and software), first copy the required 
files to a separate directory, and then open the new project. You can open the new 
project in the Quartus II software, in SOPC Builder, or in the Nios II Integrated 
Development Environment (IDE). You can also create a script to automate the 
copying process.
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f For more information about all of these files, refer to the Archiving SOPC Builder 
Projects chapter in volume 4 of the Quartus II Handbook.

Customization and Acceleration
FPGA-based designs provide you with the flexibility to modify your design easily, 
and to experiment to determine the best balance between hardware and software 
implementation of your design. In a discrete microcontroller-based design process, 
you must determine the processor resources—cache size and built-in peripherals, for 
example—before you reach the final design stages. You may be forced to make these 
resource decisions before you know your final processor requirements. If you 
implement some or all of your system's critical design components in an FPGA, you 
can easily redesign your system as your final product needs become clear. If you use 
the Nios II processor, you can experiment with the correct balance of processor 
resources to optimize your system for your needs. SOPC Builder facilitates this 
flexibility, by allowing you to add and modify system components and regenerate 
your project easily.

Similarly, if you implement your system in an FPGA, you can experiment with the 
best balance of hardware and software resource usage. If you find you have a 
software bottleneck in some part of your application, you can consider accelerating 
the relevant algorithm by implementing it in hardware instead of software. SOPC 
Builder facilitates experimenting with the balance of software and hardware 
implementation. You can even design custom hardware accelerators for specific 
system tasks. 

To help you solve system performance issues, the following acceleration 
methodologies are available:

■ Custom peripherals

■ Custom instructions

■ C2H accelerated software

The method of acceleration you choose depends on the operation you wish to 
accelerate. To accelerate streaming operations on large amounts of data, a custom 
peripheral may be a good solution. Hardware interfaces (such as implementations of 
the Ethernet or serial peripheral interface (SPI) protocol) may also be implemented 
efficiently as custom peripherals. The current floating-point custom instruction is a 
good example of the type of operations that are typically best accelerated using 
custom instructions.

Working with a software or systems engineer, use the C2H Compiler to help analyze 
sophisticated algorithms to determine potential hardware acceleration gains. As in 
any hardware acceleration methodology, you must make trade-offs between 
performance and resource consumption. When a C compiler compiles code using a 
high level of optimization, the resulting executable program typically runs faster, but 
also often consumes more memory than similar code compiled with a lower level of 
optimization. Similarly, accelerators built with the C2H Compiler typically run faster 
than the unaccelerated code, but they consume more FPGA resources.
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f For information about hardware acceleration, refer to the Hardware Acceleration and 
Coprocessing chapter of the Embedded Design Handbook. For information about how to 
use the C2H Compiler, refer to the Nios II C2H Compiler User Guide and to the 
Optimizing Nios II C2H Compiler Results chapter of the Embedded Design Handbook. For 
information on custom instructions, refer to the Nios II Custom Instruction User Guide. 
For information on creating custom peripherals, refer to the Developing Components for 
SOPC Builder chapter in volume 4 of the Quartus II Handbook.

Software Design
This section contains brief descriptions of the software design tools provided by the 
Nios II EDS, the Nios II IDE development flow, and the software build tools 
development flow.

Tools Description
The Nios II EDS provides the following tools for software development:

■ GNU toolchain: GCC-based compiler with the GNU binary utilities 

f For an overview of these and other Altera-provided utilities, refer to the 
Nios II Command-Line Tools chapter of the Embedded Design Handbook.

■ Nios II processor-specific port of the newlib C library

■ Hardware abstraction layer (HAL)

The HAL provides a simple device driver interface for programs to communicate 
with the underlying hardware. It provides many useful features such as a 
POSIX-like application program interface (API) and a virtual-device file system.

f For more information about the Altera HAL, refer to The Hardware 
Abstraction Layer section of the Nios II Software Developer’s Handbook.

■ Nios II IDE

The Nios II IDE is a GUI that supports creating, modifying, building, running, and 
debugging Nios II programs. It is based on the Eclipse open development platform 
and Eclipse C/C++ development toolkit (CDT) plug-ins.

■ Nios II software build tools flow

The Nios II software build tools development flow is a scriptable, command-line 
based development flow that uses the software build tools independent of the 
Nios II IDE.

f For more information about the Nios II software build tools flow, refer to 
the Developing Nios II Software chapter of the Embedded Design Handbook.

Nios II IDE Flow
To learn about the Nios II IDE, refer to the Nios II software development tutorial. 
Unlike the Nios II Hardware Development Tutorial, this tutorial is contained in the 
Nios II IDE Help system. To open this Help system, in the Nios II IDE, on the Help 
menu, click Welcome. A PDF version is also available at 
www.altera.com/literature/ug/ug_nios2_ide_help.pdf.
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The Nios II software development tutorial teaches you about the following key 
elements of the flow:

■ System library project

■ Software abstraction of the SOPC Builder hardware design 

■ Application project 

■ The software that drives your application 

It also teaches you to develop your own software applications. However, Altera 
recommends that you view and begin your design with one of the available software 
examples that are installed with the Nios II EDS. From simple "Hello, World" 
programs to networking and RTOS-based software, these examples provide good 
reference points and starting points for your own software development projects. The 
Hello World Small example program illustrates how to reduce your code size without 
losing all of the conveniences of the HAL.

1 Altera recommends that you use an Altera Nios II development kit or custom 
prototype board for software development and debugging. Many peripheral and 
system-level features are available only when your software runs on an actual board.

f For more detailed information, refer to the Nios II Software Developer's Handbook. 

Debugging Options

The Nios II EDS provides the following programs to aid in debugging your hardware 
and software system:

■ A built-in Nios II IDE Debugger

■ Several distinct interfaces to the GNU Debugger (GDB)

■ A Nios II-specific implementation of the First Silicon Solutions, Inc. FS2 console 
(available on Windows platforms only)

■ System Console, a system debug console

You can begin debugging software immediately using the built-in Nios II IDE 
Debugger. This debugging environment includes advanced features such as trace, 
watchpoints, and hardware breakpoints.

The Nios II EDS includes the following three interfaces to the GDB debugger:

■ GDB console (accessible through the Nios II IDE)

■ Standard GDB client (nios2-elf-gdb)

■ Insight GDB interface (Tcl/Tk based GUI)

Additional GDB interfaces such as Data Display Debugger (DDD), and Curses GDB 
(CGDB) interface also function with the Nios II version of the GDB debugger.

f For more information about these interfaces to the GDB debugger, refer to the Nios II 
Command-Line Tools and Debugging Nios II Designs chapters of the Embedded Design 
Handbook. 
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f For detailed information about the FS2 console, refer to the documentation in the 
$SOPC_KIT_NIOS2\bin\fs2\doc directory and to the Verification and Board 
Bring-Up chapter of the Embedded Design Handbook.

The System Console is a system debug console that provides the SOPC Builder 
designer with a Tcl-based, scriptable command-line interface for performing system 
or individual component testing. It is available in Nios II EDS version 8.0 and later.

f For detailed information about the System Console, refer to the System Console User 
Guide. On-line training is available at http://www.altera.com/training.

Third party debugging environments are also available from vendors such as 
Lauterbach Datentechnik GmBH and First Silicon Solutions, Inc.

Command Line

You can use the Nios II IDE to create your project. The Nios II IDE guides you if you 
are unfamiliar with the Nios II software toolchain. It also provides easy access to 
newlib library functions and the HAL software layer.

However, some actions, such as rebuilding software after minor source code edits, do 
not require the IDE. In these cases, you may rebuild the project from a Nios II 
command shell, using your application's makefile. For example, to build or rebuild 
your software, perform the following steps:

1. Open a Nios II command shell.

To start the Nios II command shell on Windows platforms, on the Start menu, 
click All Programs. On the All Programs menu, on the Altera submenu, on the 
Nios II EDS <version> submenu, click Nios II <version> Command Shell. 
On Linux platforms, type the following command:
$SOPC_KIT_NIOS2/sdk_shell r

2. Change to the directory in which your makefile is located. If you use the 
Nios II IDE for development, the correct location is often the Debug or Release 
subdirectory of your software project directory. 

3. In the command shell, type one of the following commands:
make r
or
make -s r

Example 1–1 illustrates the output of the make command run on a sample system.
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1 If you add new files to your project or rebuild your project after significant hardware 
changes, you should build your project from the Nios II IDE. The Nios II IDE 
recreates the makefile for the new version of your system after the modifications.

Software Build Tools Flow
The Nios II software build tools flow uses the software build tools to provide a 
flexible, portable, and scriptable software build environment. Altera recommends that 
you use this flow if you prefer a command-line environment, or if you want a set of 
build tools that fits easily in your preferred software or system development 
environment. The Nios II software build tools are the basis for Altera’s future 
development.

The software build tools flow requires that you have an SOPC file (.sopc) generated 
by SOPC Builder for your system. The flow includes the following steps to create 
software for your system:

1. Create a board support package (BSP) for your system. The BSP is a layer of 
software that interacts with your development system. It is a makefile-based 
project.

2. Create your application software:

a. Write your code.

b. Generate a makefile-based project that contains your code.

3. Iterate through one or both of these steps until your design is complete.

f For more information, refer to the software design examples based on this flow that 
are shipped with every release of the Nios II EDS. For more information about these 
examples, refer to the "Using Nios II Example Design Scripts" section of the Using the 
Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Board Design Considerations
You must choose the method to configure, or program, your FPGA, and the method 
to boot your Nios II processor. 

Example 1–1. Sample Output From make -s Command

[SOPC Builder]$ make -s
Creating generated_app.mk...
Creating generated_all.mk...
Creating system.h...
Creating alt_sys_init.c...
Creating generated.sh...
Creating generated.gdb...
Creating generated.x...
Compiling src1.c...
Compiling src2.c...
Compiling src3.c...
Compiling src4.c...
Compiling src5.c...
Linking project_name.elf...
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Configuration
Many FPGA configuration options are available to you. The two most commonly 
used options configure the FPGA from flash memory. One option uses a CPLD and a 
CFI flash device to configure the FPGA, and the other uses a serial flash EPCS 
configuration device. The Nios II development kits use these two configuration 
options by default. 

Choose the first option, which uses a CPLD and a CFI-compliant flash memory, in the 
following cases:

■ Your FPGA is large

■ You must configure multiple FPGAs

■ You require a large amount of flash memory for software storage

■ Your design requires multiple FPGA hardware images (safe factory images and 
user images) or multiple software images

EPCS configuration devices are often used to configure small, single-FPGA systems.

1 The default Nios II boot loader does not support multiple FPGA images in EPCS 
devices.

f For help in configuring your particular device, refer to the device family information 
at www.altera.com/products/devices/dev-index.jsp.

Figure 1–3 shows the block diagram of the configuration controller used on the 
Nios II Development Kit, Cyclone® II Edition. This controller design is used on many 
of the development kits, and is a good starting point for your design.

f For more information about controller designs, refer to AN346: Using the Nios 
Development Board Configuration Controller Reference Designs.
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altremote_update Megafunction-Based Configuration

Newer devices such as the Cyclone III, Stratix® II, and later devices include the 
built-in ALTREMOTE_UPDATE megafunction to help you configure your FPGA. For 
these newer devices, no additional Programmable Logic Device (PLD) is necessary for 
configuration control. However, older devices require a configuration controller 
device, as shown in Figure 1–3.

For information about the ALTREMOTE_UPDATE megafunction, refer to the Remote 
Update Circuitry Megafunction User Guide (ALTREMOTE_UPDATE). The Application 
Selector example uses this megafunction in the Nios II Embedded Evaluation Kit 
(NEEK), Cyclone III Edition.

Booting
Many Nios II booting options are available. The following options are the most 
commonly used:

■ Boot from CFI Flash

■ Boot from EPCS

■ Boot from on-chip RAM

The default boot loader that is included in the Nios II EDS supports boot from CFI 
flash memory and from EPCS flash memory. If you use an on-chip RAM that supports 
initialization, such as the M4K and M9K types of RAM, you can boot from the on-chip 
RAM without a boot loader.

Figure 1–3. Configuration Controller for Cyclone II Devices
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f For additional information on Nios II boot methodologies, refer to AN458: Alternative 
Nios II Boot Methods.

Additional Design Considerations
Consider the following topics as you design your system:

■ JTAG signal integrity

■ Extra memory space for prototyping

■ System verification

JTAG Signal Integrity

The JTAG signal integrity on your system is very important. You must debug your 
hardware and software, and program your FPGA, through the JTAG interface. Poor 
signal integrity on the JTAG interface can prevent you from debugging over the JTAG 
connection, or cause inconsistent debugger behavior.

You can use the System Console to verify the JTAG chain.

1 JTAG signal integrity problems are extremely difficult to diagnose. To increase the 
probability of avoiding these problems, and to help you diagnose them should they 
arise, Altera recommends that you follow the guidelines outlined in 
AN428: MAX II CPLD Design Guidelines and in the Verification and Board Bring-Up 
chapter of the Embedded Design Handbook when designing your board.

f For more information about the System Console, refer to the System Console User 
Guide.

Extra Memory Space For Prototyping

Even if your final product includes no off-chip memory, Altera recommends that your 
prototype board include a connection to some region of off-chip memory. This 
component in your system provides additional memory capacity that enables you to 
focus on refining code functionality without worrying about code size. Later in the 
design process, you can substitute a smaller memory device to store your software.

System Verification

f For useful information about design techniques for your embedded system, refer to 
the Verification and Board Bring-Up chapter of the Embedded Design Handbook. Altera 
recommends that you read this chapter before you begin your design.

Resources
This section contains a list of resources to help you find design help. Your resource 
options include traditional Altera-based support such as online documentation, 
training, and My Support, as well as web-based forums and Wikis. The best option 
depends on your inquiry and your current stage in the design cycle. 
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Support
Altera recommends that you seek support in the following order:

1. Search www.altera.com for answers to your questions.

Relevant literature appears on the Altera literature pages, especially on the Nios II 
Processor literature page and the SOPC Builder literature page.

2. Contact your local Altera sales office or sales representative, or your field 
application engineer (FAE).

3. Contact technical support at www.altera.com/mysupport to get support directly 
from Altera.

4. Consult the community-owned Nios Forum and Wiki:

■ www.niosforum.com

■ www.nioswiki.com

1 Altera is not responsible for the contents of the Nios Forum and Nios Wiki websites, 
which are maintained by groups outside of Altera.

To learn how the tools work together and to use them in an instructor-led 
environment, register for training.

Training
Several training options are available. For information about general training, refer to 
Altera's Education and Events website at 
www.altera.com/education/edu-index.html.

For detailed information on available courses and their locations, visit the Altera 
Technical Training website at 
www.altera.com/education/training/curriculum/embedded_sw/
trn-embedded_sw.html. This website contains information on both online and 
instructor-led training. 

Documentation
Documentation about the Nios II processor and embedded design is located in your 
Nios II EDS installation directory at $SOPC_KIT_NIOS2/documents/index.htm. To 
access this page directly on Windows platforms, on the Start menu, click All 
Programs. On the All Programs menu, on the Altera submenu, on the Nios II EDS 
<version> submenu, click Nios II <version> Documentation. This web page contains 
links to the latest Nios II documentation. 

The Nios II literature page includes a list and links to available documentation at 
www.altera.com/literature/lit-nio2.jsp. At the bottom of this page, you can find links 
to various product pages that include Nios II processor online demonstrations and 
embedded design information.

Useful information for first time Nios II IDE users appears on the Welcome page. This 
page appears the first time you open the Nios II IDE after a new installation. You can 
also open it at any time from the Nios II IDE by clicking Welcome on the Help menu. 
A PDF version is also available at 
www.altera.com/literature/ug/ug_nios2_ide_help.pdf.
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The other chapters in the Embedded Design Handbook are a valuable source of 
information about embedded hardware and software design, verification, and 
debugging. Each chapter contains links to the relevant overview documentation.

Third Party Intellectual Property
Many third parties have participated in developing solutions for embedded designs 
with Altera FPGAs through the Altera AMPPSM Program. For up-to-date information 
on the third-party solutions available for the Nios II processor, refer to the Altera 
embedded processing web pages at www.altera.com/embedded, and click 
Embedded Software Partners. 

Several community forums are also available. These forums are not controlled by 
Altera. The Nios Forum's Marketplace provides third-party hard and soft embedded 
systems-related IP. The forum also includes an unsupported projects repository of 
useful example designs. You are welcome to contribute to these forum pages.

Traditional support is available from the Support Center or through your local Field 
Application Engineer (FAE). You can obtain more informal support by visiting the 
Nios Forum at www.niosforum.com or by browsing the information contained on the 
Nios Wiki, at www.nioswiki.com. Many experienced developers, from Altera and 
elsewhere, contribute regularly to Wiki content and answer questions on the Nios 
Forum.

Glossary
The following definitions explain some of the unique terminology for describing 
SOPC Builder and Nios II processor-based systems:

■ System interconnect fabric—An interface through which the Nios II processor 
communicates to on- and off-chip peripherals. This fabric provides many 
convenience and performance-enhancing features.

■ Component—A named module in SOPC Builder that contains the hardware and 
software necessary to access a corresponding hardware peripheral.

■ Custom instruction—Custom hardware processing integrated into the Nios II 
processor's ALU. The programmable nature of the Nios II processor and SOPC 
Builder-based design supports this implementation of software algorithms in 
custom hardware. Custom instructions accelerate common operations. (The 
Nios II processor floating-point instructions are implemented as custom 
instructions).

■ Custom peripheral—An accelerator implemented in hardware. Unlike custom 
instructions, custom peripherals are not connected to the CPU's ALU. They are 
accessed through the system interconnect fabric. (See System interconnect fabric). 
Custom peripherals off-load data transfer operations from the processor in data 
streaming applications.

■ ELF (Executable and Loadable Format)—The executable format used by the 
Nios II processor. This format is arguably the most common of the available 
executable formats. It is used in most of today's popular Linux/BSD operating 
systems.
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■ HAL (Hardware Abstraction Layer)—A lightweight runtime environment that 
provides a simple device driver interface for programs to communicate with the 
underlying hardware. It provides a POSIX-like software layer and wrapper to the 
newlib C library.

■ Nios II C-To-Hardware Acceleration (C2H) Compiler—A push-button ANSI 
C-to-hardware compiler that allows you to explore algorithm acceleration and 
design-space options in your embedded system.

■ Nios II Command Shell—The command shell you use to access Nios II and SOPC 
Builder command-line utilities.

■ On Windows platforms, a Nios II command shell is a Cygwin bash with the 
environment properly configured to access command-line utilities.

■ On Linux platforms, to run a properly configured bash, type
$SOPC_KIT_NIOS2/sdk_shell r

■ Nios II Embedded Development Suite (EDS)—The complete software 
environment required to build and debug software applications for the Nios II 
processor. The EDS includes the Nios II IDE. (See Nios II IDE).

■ Nios II IDE—An Eclipse-based development environment for Nios II embedded 
designs that provides software project management, build, and debugging 
capabilities.

■ SOPC Builder—Software that provides a GUI-based system builder and related 
build tools for the creation of FPGA-based subsystems, with or without a 
processor.

Conclusion
This chapter is a basic overview of the Altera embedded development process and 
tools for the first time user. The chapter focuses on using these tools and where to find 
more information. It references other Altera documents that provide detailed 
information on the individual tools and procedures. It contains resource and glossary 
sections to help orient the first time user of Altera’s embedded development tools for 
hardware and software development.

Referenced Documents
This chapter references the following documents:

■ AN346: Using the Nios Development Board Configuration Controller Reference Designs

■ AN428: MAX II CPLD Design Guidelines

■ AN458: Alternative Nios II Boot Methods

■ Archiving SOPC Builder Projects chapter in volume 4 of the Quartus II Handbook

■ Debugging Nios II Designs chapter of the Embedded Design Handbook

■ Developing Components for SOPC Builder chapter in volume 4 of the Quartus II 
Handbook

■ Developing Nios II Software chapter of the Embedded Design Handbook

■ Embedded Design Handbook
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■ Hardware Acceleration and Coprocessing chapter of the Embedded Design Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ Nios II Command-Line Tools chapter of the Embedded Design Handbook

■ Nios II Custom Instruction User Guide

■ Nios II Flash Programmer User Guide

■ Nios II Hardware Development Tutorial

■ Nios II Processor Reference Handbook

■ Nios II Software Developer's Handbook

■ Optimizing Nios II C2H Compiler Results chapter of the Embedded Design Handbook

■ Remote Update Circuitry Megafunction User Guide (ALTREMOTE_UPDATE)

■ System Console User Guide

■ Using the Nios II Software Build Tools chapter of the Nios II Software Developer’s 
Handbook

■ Verification and Board Bring-Up chapter of the Embedded Design Handbook

■ Volume 4: SOPC Builder of the Quartus II Handbook

■ Volume 5: Embedded Peripherals of the Quartus II Handbook

Document Revision History
Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History

Date and 
Document Version Changes Made Summary of Changes

January 2009
v2.1

Updated Nios Wiki hyperlink. Updated Nios Wiki hyperlink.

November 2008
v2.0

Added System Console. Added System Console.

March 2008
v1.0

Initial release. —
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Section II. Nios II Software Development
This section of the Embedded Design Handbook describes how to most effectively use 
the Altera® tools for embedded system software development, and recommends 
design styles and practices for developing, debugging, and optimizing the software 
for embedded systems using Altera-provided tools. The section introduces concepts 
to new users of Altera’s embedded solutions, and helps to increase the design 
efficiency of the experienced user.

This section includes the following chapters:

■ Chapter 2, Developing Nios II Software

■ Chapter 3, Debugging Nios II Designs

■ Chapter 4, Nios II Command-Line Tools

■ Chapter 5, Optimizing Nios II C2H Compiler Results

1 For information about the revision history for chapters in this section, refer to each 
individual chapter for that chapter’s revision history. 
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ED51002-1.1
2. Developing Nios II Software
Introduction
This chapter provides in-depth information about software development for the 
Altera® Nios® II processor. It complements the Nios II Software Developer’s Handbook by 
providing the following additional information:

■ Recommended design practices—Best practice information for Nios II software 
design, development, and deployment.

■ Implementation information—Additional in-depth information about the 
implementation of APIs and source code for each topic, if available.

■ Pointers to topics—Informative background and resource information for each 
topic, if available.

Before reading this document, you should be familiar with the process of creating a 
board-support package (BSP) project and an application project using the Nios II 
software development flow. The new Nios II software development flow, first 
supported by the Nios II Embedded Design Suite (EDS) v7.1, is very different from 
the older Nios II Integrated Development Environment (IDE) software development 
flow. The following resources provide training on the new Nios II software 
development flow, called the Nios II software build tools flow:

■ Online training demonstrations located at 
www.altera.com/education/training/curriculum/embedded_sw/
trn-embedded_sw.html:

■ Developing Software for the Nios II Processor: Tools Overview

■ Developing Software for the Nios II Processor: Design Flow

■ Developing Software for the Nios II Processor: Software Build Flow (Part 1)

■ Developing Software for the Nios II Processor: Software Build Flow (Part 2)

■ Documentation located at www.altera.com/literature/lit-nio2.jsp, especially the 
Introduction to the Nios II Software Build Tools chapter of the Nios II Software 
Developer's Handbook

■ Example designs provided with the Nios II EDS. The online training 
demonstrations describe these software design examples, which you can use as-is 
or as the basis for your own more complex designs.

This chapter is structured according to the Nios II software development process. 
Each section describes Altera’s recommended design practices to accomplish a 
specific task.

This chapter contains the following sections:

■ “Software Development Cycle”

■ “Software Project Mechanics” on page 2–5

■ “Developing With the Hardware Application Layer” on page 2–16

■ “Optimizing the Application” on page 2–34
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■ “Linking Applications” on page 2–40

■ “Application Boot Loading and Programming System Memory” on page 2–42

Software Development Cycle
The Nios II EDS includes a complete set of C/C++ software development tools for the 
Nios II processor. In addition, a set of third-party embedded software tools is 
provided with the Nios II EDS. This set includes the MicroC/OS-II real-time 
operating system and the NicheStack TCP/IP networking stack. This chapter focuses 
on the use of the Altera-created tools for Nios II software generation. It also includes 
some discussion of third-party tools.

The Nios II EDS is a collection of software generation, management, and deployment 
tools for the Nios II processor. The toolchain includes tools that perform low-level 
tasks and tools that perform higher-level tasks using the lower-level tools.

This section contains the following subsections:

■ “Altera System on a Programmable Chip (SOPC) Solutions”

■ “Nios II Software Development Process” on page 2–3

Altera System on a Programmable Chip (SOPC) Solutions
To understand the Nios II software development process, you must understand the 
definition of an SOPC Builder system. SOPC Builder is a system development tool for 
creating systems including processors, peripherals, and memories. The tool enables 
you to define and generate a complete SOPC very efficiently. SOPC Builder does not 
require that your system contain a Nios II processor, although it provides complete 
support for integrating Nios II processors into your system.

An SOPC Builder system is similar in many ways to a conventional embedded 
system; however, the two kinds of system are not identical. An in-depth 
understanding of the differences increases your efficiency when designing your SOPC 
Builder system.

In Altera SOPC Builder solutions, the hardware design is implemented in an FPGA 
device. An FPGA device, in contrast to a normal ASIC device, is volatile—contents are 
lost when the power is turned off—and reprogrammable. When an FPGA is 
programmed, the logic cells inside it are configured and connected to create an SOPC 
system, which can contain Nios II processors, memories, peripherals, and other 
structures. The system components are connected with Avalon® interfaces. After the 
FPGA is programmed to implement a Nios II processor, you can download, run, and 
debug your system software on the system.
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Understanding the following basic characteristics of FPGAs and Nios II processors is 
critical for developing your Nios II software application efficiently:

■ FPGA devices and SOPC Builder—basic properties:

■ Volatility—The FPGA is functional only after it is configured, and it can be 
reconfigured at any time.

■ Design—Most Altera SOPC systems are designed using SOPC Builder and the 
Quartus® II software, and may include multiple peripherals and processors.

■ Configuration—FPGA configuration can be performed through a 
programming cable, such as the USB-Blaster™ cable, which is also used for 
Nios II software debugging operations.

■ Peripherals—Peripherals are created from FPGA resources and can appear 
anywhere in the Avalon memory space. Most of these peripherals are 
internally parameterizeable.

■ Nios II processor—basic properties:

■ Volatility—The Nios II processor is volatile and is only present after the FPGA 
is configured. It must be implemented in the FPGA as a system component, 
and, like the other system components, it does not exist in the FPGA unless it is 
implemented explicitly.

■ Parametrization—Many properties of the Nios II processor are 
parameterizeable in SOPC Builder, including core type, cache memory 
support, and custom instructions, among others.

■ Processor Memory—The Nios II processor must boot from and run code 
loaded in an internal or external memory device.

■ Debug support—To enable software debug support, you must configure the 
Nios II processor with a debug core. Debug communication is performed 
through a programming cable, such as the USB-Blaster cable.

■ Reset vector—The reset vector address can be configured to any memory 
location.

■ Exception vector—The exception vector address can be configured to any 
memory location.

Nios II Software Development Process
This section provides an overview of the Nios II software development process and 
introduces terminology. The rest of the chapter elaborates the description in this 
section.

The Nios II software generation process includes the following stages and main 
hardware configuration tools:

1. Hardware configuration

■ SOPC Builder

■ Quartus II software
© June 2008 Altera Corporation Embedded Design Handbook
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2. Software project management

■ BSP configuration

■ Application project configuration

■ Editing and building the software project

■ Running, debugging, and communicating with the target 

■ Ensuring hardware and software coherency

■ Project management

3. Software project development

■ Developing with the Hardware Abstraction Layer (HAL)

■ Programming the Nios II processor to access memory

■ Writing exception handlers

■ Optimizing the application for performance and size

4. Application deployment

■ Linking (run-time memory)

■ Boot loading the system application 

■ Programming flash memory

In this list of stages and tools, the subtopics under the topics Software project 
management, Software project development, and Application deployment 
correspond closely to sections in the chapter.

You create the hardware for the system using the Quartus II and SOPC Builder 
software. The main output produced by generating the hardware for the system is the 
SRAM Object File (.sof), which is the hardware image of the system, and the SOPC 
Builder system file (.sopc), which is the specification file that describes the hardware 
components and connections.

The software generation tools use the .sopc file to create a BSP project. The BSP project 
is a collection of C source, header and initialization files, and a makefile for building a 
custom library for the hardware in the system. This custom library is the BSP library 
file (.a). The BSP library file is compiled with your application project to create an 
executable binary file for your system, called an application image. The combination 
of the BSP project and your application project is called the software project.

The application project is your application C source and header files and a makefile 
that you can generate by running Altera-provided tools. You can edit these files and 
compile them with the BSP library file using the makefile. Your application sources 
can reference all resources provided by the BSP library file. The BSP library file 
contains services provided by the hardware abstraction layer (HAL), which your 
application sources can reference. After you build your application image, you can 
download it to the target system, and communicate with it through a terminal 
application. You can also import the generated project file to the Nios II IDE 
framework, which provides you with editing, compilation, and debugging support. 

1 In the Nios II IDE design flow, the BSP library file is called a system library.
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The software project is flexible: you can regenerate it if the system hardware changes, 
or modify it to add or remove functionality, or tune it for your particular system. 
Changes to the hardware require that you create a new BSP library file with updated 
header files. You can also modify the BSP library file to include additional 
Altera-supplied components, such as the read-only file system (ZIPFS) or TCP/IP 
networking stack (the NicheStack TCP/IP Stack). Both the BSP library file and the 
application project can be configured to build with different parameters, such as 
compiler optimizations and linker settings.

1 The key file required to generate the application software is the SOPC database file, 
the .sopc file. This file describes the target system hardware configuration.

Software Project Mechanics
This section describes the Nios II software build tools flow, which is the 
recommended design flow for hardware designs that contain a Nios II processor. It 
describes how to configure BSP and application projects, and the process of 
developing a software project that contains a Nios II processor, including ensuring 
coherency between the software and hardware designs.

This section contains the following subsections:

■ “Software Tools Background”

■ “Development Flow Guidelines” on page 2–6

■ “Nios II Software Build Tools Flow” on page 2–6

■ “Configuring BSP and Application Projects” on page 2–7

■ “Software Project Development Mechanics” on page 2–10

■ “Ensuring Software Project Coherency” on page 2–12

Software Tools Background
The Nios II EDS provides a sophisticated set of software project generation tools to 
build your application image. In version 7.2 of the Nios II EDS, two separate 
software-development methodologies are available for project creation—the 
Nios II IDE flow and the Nios II software build tools flow.

Of the two software-generation flows available to you, the Nios II IDE 
software-development flow predates the other. The Nios II IDE 
software-development flow was initially released with version 1.0 of the Nios II 
processor. Its goal was to provide users with a GUI environment for configuring, 
building, and debugging software projects. The Nios II software build tools flow was 
initially released in version 7.1 of the Nios II EDS. It was designed to provide users 
with a command-line and script-driven, easily controllable development environment 
for creating, managing, and configuring software applications. The Nios II IDE is still 
available for editing, building, and debugging software applications.

1 Altera recommends that you use the Nios II software build tools flow for generating 
new software projects. The Nios II software build tools are the basis for Altera’s future 
development. 
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f For information about migrating existing Nios II IDE projects to the Nios II software 
build tools flow, refer to the "Porting Nios II IDE Projects" section of the Using the 
Software Build Tools chapter of the Nios II Software Developer's Handbook.

Development Flow Guidelines
The Nios II software build tools flow provides many services and functions for your 
use. Until you become familiar with these services and functions, Altera recommends 
that you adhere to the following guidelines to simplify your development effort:

■ Begin with a known hardware design—The Nios II EDS includes a set of known 
working designs, called hardware example designs, which are excellent starting 
points for your own design.

■ Begin with a known software example design—The Nios II EDS includes a set of 
preconfigured application and BSP projects for you to use as the starting point of 
your own application. Use one of these designs and parameterize it to suit your 
application goals.

■ Follow pointers to documentation—Many of the application and BSP project files 
include inline comments that provide additional information. 

■ Make incremental changes—Regardless of your end-application goals, develop 
your software application by making incremental, testable changes, to 
compartmentalize your software development process. Altera recommends that 
you use a version control system to maintain distinct versions of your source files 
as you develop your project.

The following section describes how to implement these guidelines.

Nios II Software Build Tools Flow
The Nios II software build tools are a collection of command-line utilities and scripts. 
These tools allow you to build a BSP project and an application project into an 
application image. The BSP project is a parameterizeable library, customized for the 
hardware capabilities and peripherals in your system. When you create a BSP library 
file from the BSP project, you create it with a specific set of parameter values. The 
application project consists of your application source files and the application 
makefile. The source files can reference services provided by the BSP library file.

The BSP and application projects are built using the following command-line tools:

■ nios2-bsp—This script creates a makefile that builds a BSP library file from the 
BSP project.

■ nios2-app-generate-makefile—This utility creates a makefile that builds an 
application image from the application project and the BSP library file.

Both of these commands allow parameterization of their respective projects through 
the use of Tcl commands and settings. 

f For the full list of generators, utilities, and scripts in the Nios II software build tools 
flow, refer to the "Generators, Utilities, and Scripts" section of the Using the Nios II 
Software Build Tools chapter of the Nios II Software Developer's Handbook. 
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Configuring BSP and Application Projects
This section describes some methods for configuring the BSP and application projects 
that comprise your software application, while encouraging you to begin your 
software development with a software example design.

f For information about using version control, copying, moving and renaming a BSP 
project, and transferring a BSP project to another person, refer to the "Common BSP 
Tasks" section of the Using the Nios II Software Build Tools chapter of the Nios II Software 
Developer's Handbook.

Software Example Designs
While you are still becoming acquainted with the Nios II software build flow, the 
easiest way to begin developing software for the Nios II processor is to use one of the 
pre-existing software example designs that are provided with the Nios II EDS. The 
software example designs are preconfigured software applications that you can use as 
the basis for your own software development. They are shell scripts that use the 
nios2-bsp and nios2-app-generate-makefile commands with different parameters.

f For more information about the software example designs provided in the Nios II 
EDS, refer to the "Using Nios II Example Design Scripts" section of the Using the 
Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook.

To use a software example design, perform the following steps:

1. Set up a working directory that contains your system hardware, including the 
system .sopc file.

2. In your Quartus II installation, in the hardware project directory of your Altera 
Nios development board type—for example, 
C:\altera\72\nios2eds\examples\verilog\niosII_cycloneII_2c35 —in 
software_examples, select an example you are interested in using.

3. Copy the entire software_examples directory to your working directory.

4. In the Nios II command shell, change to your chosen example directory in the new 
working subdirectory.

5. Type the following command at the command prompt:
./create-this-app r
You have generated the software application image of both the application and 
BSP projects for your system hardware.

1 You must ensure that your system hardware satisfies the requirements for the 
software example design. If you use a standard Altera development kit, the supplied 
software example designs are guaranteed to work with the particular hardware 
configuration for that board.

Configuring the BSP Project
The BSP project is a configurable library. You can configure your BSP project to 
incorporate your optimization preferences—size, speed, or other features—in the 
custom library you create. This custom library is the BSP project file (.a) that is used 
by the application project.
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Creating the BSP project populates the target directory with the BSP library file source 
and build file scripts. Some of these files are copied from other directories and are not 
overwritten when you recreate the BSP project. Others are generated when you create 
the BSP project. Altera recommends that you not edit the generated files directly, 
because they can be overwritten by the BSP generation tools.

To configure a BSP project, Altera recommends that you create a Tcl configuration file 
and pass it to the nios2-bsp command using the --script option. 

Selecting Core Services (HAL versus MicroC/OS-II RTOS)

You have a choice of two separate run-time environments that you can incorporate in 
your BSP library file. These two environments are the Nios II hardware abstraction 
layer (HAL) and the MicroC/OS-II real-time operating system (RTOS), which you 
specify as ucosii. The HAL environment is a lightweight, POSIX-like, 
single-threaded library, and is sufficient for many applications. The MicroC/OS-II 
RTOS enables multi-threaded processing and HAL-level services. To enable one of 
these two services, type the following command:

nios2-bsp <hal or ucosii> <bsp-dir> r
MicroC/OS-II RTOS Configuration Tips

If you use the MicroC/OS-II RTOS (UCOSII) environment, be aware of the following 
properties of this environment:

■ UCOSII BSP settings—The MicroC/OS-II RTOS component supports many 
configuration options. Some of these options are enabled by default, while others 
are enabled with BSP settings. A comprehensive list of options appears in the 
"Settings" section of the Nios II Software Build Tools Reference chapter of the Nios II 
Software Developer's Handbook.

■ UCOSII setting modification—Setting or clearing the UCOSII options modifies 
the system.h file, which is used to compile the BSP library file.

■ UCOSII initialization—The core MicroC/OS-II component is initialized during 
the execution of the C run-time initialization (crt0) code block. After the crt0 
code block runs, the MicroC/OS-II RTOS resources are available for your 
application to use. For more information, refer to “crt0 Initialization” on 
page 2–18.

■ UCOSII configuration script—Altera recommends that you create a configuration 
script to store your UCOSII configuration settings (Example 2–1).

Example 2–1. UCOSII Tcl Configuration Script Example (ucosii_conf.tcl)

#enable code for UCOSII timers
set_setting ucosii.os_tmr_en 1

#enable a maximum of 4 UCOSII timers
set_setting ucosii.timer.os_tmr_cfg_max 4

#enable code for UCOSII queues
set_setting ucosii.os_q_en 1
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The UCOSII configuration script in Example 2–1 enables the UCOSII timer and queue 
code, and defines a maximum of four timers for use. To run this script during BSP 
generation, type the following command line:

nios2-bsp UCOSII . ../system.sopc --script ucosii_conf.tcl r

HAL Configuration Tips

If you use the HAL environment, be aware of the following properties of this 
environment:

■ HAL BSP settings—A comprehensive list of HAL configuration options appears 
in the "Settings" section of the Nios II Software Build Tools Reference chapter of the 
Nios II Software Developer's Handbook.

■ HAL setting modification—Setting or clearing the HAL options modifies the 
system.h file, which is used to compile the BSP library file.

■ HAL initialization—The core HAL component is initialized during the execution 
of the C run-time initialization (crt0) code block. After the crt0 code block runs, 
the HAL resources are available for your application to use. For more information, 
refer to “crt0 Initialization” on page 2–18.

■ HAL configuration script—Altera recommends that you create a configuration 
script to store your HAL configuration settings (Example 2–2). 

Adding Additional Components

Altera supplies several add-on software packages in the Nios II EDS. These add-on 
components are available for your application to use. The following components are 
provided:

■ Host File System—Allows a Nios II system to access a file system that resides on 
the workstation. For more information, refer to “HOSTFS: Workstation-Based File 
System” on page 2–29.

■ Read-Only Zip File System—Provides access to a simple file system stored in 
flash memory. For more information, refer to “ZIPFS: Read-Only File System” on 
page 2–29.

■ NicheStack TCP/IP Stack – Nios II Edition—Enables support of the NicheStack 
TCP/IP networking stack component. 

f For more information about the NicheStack TCP/IP networking stack, 
refer to the Ethernet and the TCP/IP Networking Stack - Nios II Edition 
chapter of the Nios II Software Developer's Handbook.

Configuring the Application Project
Configure the application project by specifying user source files and a valid BSP 
project, along with other command-line options.

Example 2–2. HAL Tcl Configuration Script Example (hal_conf.tcl)

#set up stdio file handles to point to a UART
set default_stdio my_uart
set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio
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Application Configuration Tips

Use the following tips to increase your efficiency in designing your application 
project:

■ Makefile modification—For quick experimentation, edit the generated makefile. 
This method is faster than regenerating the entire application project.

■ Source file inclusion—Several options are available for specifying the user source 
files in your application project. If all your source files are in the same directory, 
use the --src-dir command-line option.

■ Makefile variables—Set makefile variables with the --set <var> <value> 
command-line option during configuration of the application project. Examine a 
generated application makefile to ensure you understand the current and default 
settings.

■ Creating top level generation script—Simplify the parameterization of your 
application project by creating a top level shell script to control the configuration. 
The create-this-app scripts mentioned in “Software Example Designs” on 
page 2–7 are good models for your configuration script.

Linking User Libraries

You can also create and use your own user libraries in the Nios II software 
development flow, as follows:

1. Create the library using the nios2-lib-generate-makefile command. This 
command generates a public.mk file.

2. Configure the application project with the new library by running the 
nios2-app-generate-makefile command with the --use-lib-dir option. The 
value for the option specifies the path to the library's public.mk file.

Software Project Development Mechanics
This section describes the recommended ways to edit, build, download, run, and 
debug your software application, with and without the Nios II IDE.

The Role of the Nios II IDE

Although the Nios II software build tools flow is recommended for configuring your 
software application, the Nios II IDE is a good graphical tool for editing, debugging, 
and running the application on the target system. Before you can use the Nios II IDE 
for developing your software application, you must import the project, which 
includes both the application and BSP projects. 

f For more information, refer to the "Importing User-Managed Projects" section of the 
Nios II Integrated Development Environment chapter of the Nios II Software Developer's 
Handbook.

Editing the Project

In the Nios II IDE, you can edit the application source files, BSP project files, and user 
library files, all of which appear in the project navigator. However, any modifications 
to the BSP project files are overwritten when you regenerate the BSP project.
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1 Altera recommends that you not edit the BSP project files unless absolutely necessary, 
because of the project maintenance implications. Modifying the source code for the 
Altera-supplied BSP libraries, device drivers, or add-on components creates your own 
custom version of the Altera libraries. Before you edit the BSP project files, confirm 
that you cannot make your desired modifications with BSP settings or by modifying 
driver or package settings.

Building the Project

To build your application, use the makefiles created for the application and BSP 
projects. These makefiles use the Nios II GNU toolchain, which is provided with the 
Nios II EDS.

1 Alternatively, you can use the TASKING VX toolset to build your application. This 
toolset is available for purchase from Altium Limited (www.altium.com).

Downloading and Running the Software

From the command line, download and run your application image by typing the 
following command:

nios2-download -g <myapp>.elf r
This command line downloads the application image .elf file to the target device and 
runs the .elf file.

1 Before you run your target application, ensure that your FPGA is configured with 
your target hardware image.

In the Nios II IDE environment, you must import the BSP and application projects 
and make a Run or Debug configuration for your project.

f For information about using the Nios II IDE to download and run the software 
application, refer to the Nios II Integrated Development Environment chapter of the 
Nios II Software Developer’s Handbook.

Communicating with the Target

If you configured your application to use the stdio functions in a UART or JTAG 
UART interface, you can use the nios2-terminal application to communicate with 
your target subsystem. Unfortunately, the Nios II IDE and the nios2-terminal 
application handle input characters very differently.

On the command line, you must use the nios2-terminal application to communicate 
with your target. To start the application, type the following command:
nios2-terminal r
When you use the nios2-terminal application, characters you type in the shell are 
transmitted, one by one, to the target.

The Nios II IDE automatically provides a console window in which you can 
communicate with your system. When you use the Nios II IDE to communicate with 
the target, characters you input are transmitted to the target line by line. Characters 
are visible to the target only after the Enter key is pressed on your keyboard.
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Software Debugging

The Nios II IDE helps you to debug the application by providing breakpoint, source 
navigation, and memory viewing support. To use the Nios II IDE in debug mode, you 
must create and run a debug configuration, which downloads the .elf file and runs the 
debugger.

Alternatively, you can debug your application using the Tcl/Tk-based Insight GDB 
GUI, which installs with the Nios II EDS distribution, or using a third party debugger.

f For more information about using the Nios II IDE to debug your application, refer to 
the Debugging Nios II Designs chapter of the Embedded Design Handbook.

Enabling the hal.enable_runtime_stack_checking setting when you 
configure your BSP project turns on stack checking. This setting causes subroutine 
calls to generate an exception if the stack collides with the heap or with statically 
allocated data in memory.

f For more information about this and other BSP configuration settings, refer to the 
"Settings" section of the Nios II Software Build Tools Reference chapter of the Nios II 
Software Developer's Handbook.

Ensuring Software Project Coherency
In some engineering environments, maintaining coherency between the software and 
system hardware projects is difficult. For example, in a mixed team environment in 
which a hardware engineering team creates new versions of the hardware, 
independent of the software engineering team, the potential for using the incorrect 
version of the software on a particular version of the system hardware is high. Such 
an error may cause engineers to spend time debugging phantom issues. This section 
discusses several design and software architecture practices that can help you avoid 
this problem. 

Recommended Development Practice

The safest software development practice for avoiding the software coherency 
problem is to follow a strict hardware and software project hierarchy, and to use 
scripts to generate your application and BSP projects. 

One best practice is to structure your application hierarchy with parallel application 
project and BSP project folders, as in the Nios II installation software_examples 
directories. In Figure 2–1, a top-level hardware project folder includes the Quartus II 
project file, the SOPC Builder-generated files, and the software project folder. The 
software project folder contains a subfolder for the application project and a subfolder 
for the BSP project. The application project folder contains a create-this-app script, 
and the BSP project folder contains a create-this-bsp script. 
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For your own software project, you must create the create-this-app and 
create-this-bsp scripts. Altera recommends that you also create clean-this-app and 
clean-this-bsp scripts. These scripts perform the following tasks:

■ create-this-app—This bash script uses the nios2-app-generate-makefile 
command to create the application project, using the application software source 
files for your project. The script verifies that the BSP project was properly 
configured (a settings.bsp file is present in the BSP project directory), and runs the 
create-this-bsp script if necessary. The Altera-supplied create-this-app scripts that 
are included in the software project example designs provide good models for this 
script.

■ clean-this-app—This bash script performs all necessary clean-up tasks for the 
whole project, including the following:

■ Call the application makefile with the clean-all target.

■ Call the clean-this-bsp shell script.

■ create-this-bsp—This bash script generates the BSP project. The script uses the 
nios2-bsp command, which can optionally call the configuration script 
bsp_settings.tcl. The nios2-bsp command references the <system_name>.sopc file 
located in the hardware project folder. Running this script creates all the BSP 
project files for the system.

■ clean-this-bsp—This bash script calls the clean target in the BSP project makefile 
and deletes the settings.bsp file.

The complete system generation process, from hardware to BSP and application 
projects, must be repeated every time a change is made to the system in SOPC 
Builder. The system generation process follows:

1. Hardware files generation—Using SOPC Builder, write the updated system 
description to the <system_name>.sopc and <system_name>.ptf files.

2. Regenerate BSP project—Generate the BSP project with the create-this-bsp script.

Figure 2–1. Recommended Directory Structure

Note for Figure 2–1:

(1) is a Tcl configuration file. For more information about the Tcl configuration file, refer to “Configuring the BSP Project” 
on page 2–7.

       APP project folder

       clean-this-app

       create-this-app

       application software source files

hardware project folder

software project folder

       BSP project folder 

       

       clean-this-bsp

       create-this-bsp

       bsp_settings.tcl  (optional) (1)

<system_name>.ptf

<system_name>.sopc

<system_name>.sof
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3. Regenerate application project—Generate the application project with the 
create-this-app script. This script also runs the makefile to generate the BSP library 
file.

4. Build the system—Build the system software using the application and BSP 
makefile scripts.

To implement this system generation process, Altera recommends that you use the 
following checklists for handing off responsibility between the hardware and 
software groups.

1 This method assumes that the hardware engineering group installs the Nios II EDS. If 
so, the hardware and software engineering groups must use the same version of the 
Nios II EDS toolchain.

To hand off the project from the hardware group to the software group, perform the 
following steps:

1. Hardware project hand-off—At minimum, the hardware group provides copies 
of the <system_name>.sopc, <system_name>.ptf, and <system_name>.sof files. The 
software group copies these files to the software group’s hardware project folder.

2. Recreate software project—The software team recreates the software application 
for the new hardware by running the create-this-app script. This script runs the 
create-this-bsp script.

3. Build—The software team runs make in its application project directory to 
regenerate the software application.

To hand off the project from the software group to the hardware group, perform the 
following steps:

1. Clean project directories—The software group runs the clean-this-app script.

2. Software project folder hand-off—The software group provides the hardware 
group with the software project folder structure it generated for the latest 
hardware version. Ideally, the software project folder contains only the application 
project user files and the application project and BSP generation scripts.

3. Reconfigure software project—The hardware group runs the create-this-app 
script to reconfigure the group’s application and BSP projects.

4. Build—The hardware group runs make in the application project directory to 
regenerate the software application.

Recommended Architecture Practice

Many of the hardware and software coherency issues that arise during the creation of 
the application software are problems of misplaced peripheral addresses. Because of 
the flexibility provided by SOPC Builder, almost any peripheral in the system can be 
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assigned an arbitrary address, or have its address modified during system creation. 
Implement the following practices to prevent this type of coherency issue during the 
creation of your software application:

■ Peripheral and Memory Addressing—The Nios II software build tools 
automatically generate a system header file, system.h, that defines a set of 
#define symbols for every peripheral in the system. These definitions specify the 
peripheral name, address location, and address span. To protect against coherency 
issues, access all system peripherals and memory components with their system.h 
name and address span symbols. This method guarantees access regardless of a 
peripheral's addressable location.

For example, if your system includes a UART peripheral named UART1, located at 
address 0x1000, access it using the system.h address symbol 
(iowr_32(UART1_BASE, 0x0, 0x10101010)) rather than using its address 
(iowr_32(0x1000, 0x0, 0x10101010)).

■ Checking peripheral values with the preprocessor—If you work in a large team 
environment, and your software has a dependency on a particular hardware 
address, you can create a set of C preprocessor #ifdef statements that validate 
the hardware during the software compilation process. These #ifdef statements 
validate the #define values in the system.h file for each peripheral.

For example, for the peripheral UART1, assume the #define values in system.h 
appear as follows:

#define UART1_NAME "/dev/uart1" 
#define UART1_BASE 0x1000 
#define UART1_SPAN 32 
#define UART1_IRQ 6
. . .

In your C/C++ source files, add a preprocessor macro to verify that your expected 
peripheral settings remain unchanged in the hardware configuration. For 
example, the following code checks that the base address of UART1 remains at the 
expected value:

#if (UART1_BASE != 0x1000)
#error UART should be at 0x1000, but it is not

#endif

■ Ensuring coherency through the System ID core—Use the System ID core. The 
System ID core is an SOPC Builder peripheral that provides a unique identifier for 
a generated system. This identifier is stored in a hardware register readable by the 
Nios II processor. This unique identifier is also stored in the .sopc file, which is 
then used to generate the BSP project for the system. You can use the system ID 
core to ensure coherency between the hardware and software by two methods. 
The first method is automatically implemented during system software 
development, when the .elf file is downloaded to the Nios II target. During the 
software download process, the value of the system ID core is checked against the 
value present in the BSP library file. If the two values do not match, this condition 
is reported. The second method for using the system ID peripheral is useful in 
systems that do not have a Nios II debug port, or in situations in which running 
the Nios II software download utilities is not practical. In this method you use the 
C function alt_avalon_sysid_test(). This function reports whether the 
hardware and software system IDs match.
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f For more information about the System ID core, refer to the System ID Core 
chapter in volume 5 of the Quartus II Handbook.

Developing With the Hardware Application Layer
The hardware application layer (HAL) for the Nios II processor is a lightweight 
runtime environment that provides a simple device driver interface for programs to 
communicate with the underlying hardware. The HAL application program interface 
(API) is integrated with the ANSI C standard library. The HAL API allows you to 
access devices and files using familiar C library functions.

This section contains the following subsections:

■ “Overview of the HAL” on page 2–16

■ “System Startup in HAL-Based Applications” on page 2–17

■ “HAL Peripheral Services” on page 2–20

■ “Accessing Memory With the Nios II Processor” on page 2–31

■ “Handling Exceptions” on page 2–33

■ “Modifying the Exception Handler” on page 2–34

Overview of the HAL
This section describes how to use HAL services in your Nios II software. It provides 
information about the HAL configuration options, and the details of system startup 
and HAL services in HAL-based applications.

HAL Configuration Options
To support the Nios II software development flow, the HAL system library is 
self-configuring to some extent. By design, the HAL attempts to enable as many 
services as possible, based on the peripherals present in the system hardware. This 
approach provides your application with the least restrictive environment possible—
a useful feature during the product development and board bringup cycle.

The HAL is configured with a set of settings whose values are determined by Tcl 
commands, which are called during the creation of the BSP project. As mentioned in 
“Configuring the BSP Project” on page 2–7, Altera recommends you create a separate 
Tcl file that contains your HAL configuration settings.

HAL configuration settings control the boot loading process, and provide detailed 
control over the initialization process, system optimization, and the configuration of 
peripherals and services. For each of these topics, this section provides pointers to the 
relevant material elsewhere in this chapter.
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Configuring the Boot Environment

Your particular system may require a boot loader to configure the application image 
before it can begin execution. For example, if your application image is stored in flash 
memory and must be copied to non-volatile memory for execution, a boot loader must 
configure the application image in the non-volatile memory. This configuration 
process occurs before the HAL system library configuration routines execute, and 
before the crt0 code block executes. A boot loader implements this process. For more 
information, refer to “Linking Applications” on page 2–40 and “Application 
Boot Loading and Programming System Memory” on page 2–42.

Controlling HAL Initialization

As noted in “HAL Initialization” on page 2–19, although most user applications begin 
execution in a main() function, some applications require the ability to control 
overall system initialization after the crt0 initialization routine runs and before 
main() is called. 

For an example of this kind of application, refer to the hello_alt_main software 
example design supplied with the Nios II EDS installation.

Minimizing the Code Footprint and Increasing Performance

For information about increasing your application's performance, or minimizing the 
code footprint, refer to “Optimizing the Application” on page 2–34.

Configuring Peripherals and Services

For information about configuring and using HAL services, refer to “HAL Peripheral 
Services” on page 2–20. 

System Startup in HAL-Based Applications
System startup in HAL-based applications is a three-stage process. First, the system 
initializes, then the crt0 code section runs, and finally the HAL services initialize. 
The following sections describe these three system-startup stages.

System Initialization
The system initialization sequence begins when the system powers up. The 
initialization sequence steps for FPGA designs that contain a Nios II processor are the 
following:

1. Hardware reset event—The board receives a power-on reset signal, which resets 
the FPGA. 

2. FPGA configuration—The FPGA is programmed with a .sof, from a specialized 
configuration memory or an external hardware master. The external hardware 
master can be a CPLD device or an external processor.

3. System reset—The SOPC Builder system, composed of one or more Nios II 
processors and other peripherals, receives a hardware reset signal and enters the 
components’ combined reset state.

4. Nios II processor(s)—Each Nios II processor jumps to its pre-configured reset 
address, and begins running instructions found at this address.
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5. Boot loader or program code—Depending on your system design, the reset 
address vector contains a packaged boot loader, called a boot image, or your 
application image. Use the boot loader if the application image must be copied 
from non-volatile memory to volatile memory for program execution. This case 
occurs, for example, if the program is stored in flash memory but runs from 
SDRAM. If no boot loader is present, the reset vector jumps directly to the .crt0 
section of the application image. Do not use a boot loader if you wish your 
program to run in-place from non-volatile or preprogrammed memory. For 
additional information about both of these cases, refer to “Application 
Boot Loading and Programming System Memory” on page 2–42.

6. crt0 execution—After the boot loader executes, the processor jumps to the 
beginning of the program's initialization block—the .crt0 code section. The 
function of the crt0 code block is detailed in the next section.

crt0 Initialization
The crt0 code block contains the C run-time initialization code—software 
instructions needed to enable execution of C or C++ applications, and potentially 
usable for assembly language as well. The Altera-provided crt0 block performs the 
following initialization steps:

1. Calls alt_load macros—If the application is designed to run from flash memory 
(the .text section runs from flash memory), the remaining sections are copied to 
volatile memory. For additional information, refer to “Configuring the Boot 
Environment” on page 2–17.

2. Initializes instruction cache—If the processor has an instruction cache, this cache 
is initialized. All instruction cache lines are zeroed (without flushing) with the 
initi instruction.

1 SOPC Builder determines the processors that have instruction caches, and 
configures these caches at system generation. The software build tools 
insert the instruction-cache initialization code block if necessary.

3. Initializes data cache—If the processor has a data cache, this cache is initialized. 
All data cache lines are zeroed (without flushing) with the initd instruction. As 
for the instruction caches, this code is enabled if the processor has a data cache.

4. Sets the stack pointer—The stack pointer is initialized. You can set the stack 
pointer address. For additional information refer to “HAL Linking Behavior” on 
page 2–40.

5. Clears the .bss section—The .bss section is initialized. You can set the .bss 
section address. For additional information refer to “HAL Linking Behavior” on 
page 2–40.

6. Initializes stack overflow protection—Stack overflow checking is initialized. For 
additional information, refer to “Software Debugging” on page 2–12.

7. Jumps to alt_main—The processor jumps to the alt_main code block, which 
begins initializing the HAL system library. 

1 If you use a third-party, real-time operating system (RTOS) or environment 
for your BSP library file, the alt_main() function could be different than 
the one provided by the Nios II EDS.
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary



Chapter 2. Developing Nios II Software 2–19
Developing With the Hardware Application Layer
If you use a third-party compiler or library, the C run-time initialization behavior may 
differ from this description.

The crt0 code includes initialization short-cuts only if you perform hardware 
simulations of your design. These optimizations are controlled by the 
hal.enable_sim_optimize BSP setting, documented in the "Settings" section of 
the Nios II Software Build Tools Reference chapter of the Nios II Software Developer's 
Handbook.

After you generate your BSP project, the crt0.s source file is located in the HAL/src 
directory.

HAL Initialization
As for any other C program, the first part of the HAL's initialization is implemented 
by the Nios II processor's crt0.s routine. For more information, see “crt0 
Initialization” on page 2–18. After crt0.s completes the C run-time initialization, it 
calls the HAL alt_main() function, which initializes the HAL system library and 
subsystems. 

The HAL alt_main() function performs the following steps:

1. Initializes interrupts—Sets up interrupt support for the Nios II processor (with 
the alt_irq_init() function). 

2. Starts MicroC/OS-II—Starts the MicroC/OS-II real-time operation system 
(RTOS), if this RTOS is configured to run (with the ALT_OS_INIT and 
ALT_SEM_CREATE functions). For additional information on MicroC/OS-II use 
and initialization, refer to “Selecting Core Services (HAL versus MicroC/OS-II 
RTOS)” on page 2–8.

3. Initializes device drivers—Initializes device drivers (with the alt_sys_init() 
function). The Nios II software build tools automatically find all peripherals 
supported by the HAL, and automatically insert a call to a device configuration 
function for each peripheral in the alt_sys_init() code. You can override this 
behavior in the BSP project by using the 
--cmd set_driver <peripheral_name> none command-line option in the call 
to the nios2-bsp script. For information about removing a device configuration 
function, refer to “Optimizing the Application” on page 2–34.

4. Configures stdio functions—Initializes stdio services for stdin, stderr, and 
stdout. These services enable the application to use the GNU newlib stdio 
functions and maps the file pointers to supported character devices. For more 
information about configuring the stdio services, refer to “Character Mode 
Devices” on page 2–22.

5. Initializes C++ CTORS and DTORS—Handles initialization of C++ constructor 
and destructor functions. These function calls are necessary if your application is 
written in the C++ programming language. By default, the HAL configuration 
mechanism enables support for the C++ programming language. Disabling this 
feature reduces your application's code footprint, as noted in “Optimizing the 
Application” on page 2–34.

6. Calls main()—Calls user function main(), or application program. Most user 
applications are constructed using a main() function declaration, and begin 
execution at this function.
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1 If you use a system library other than the HAL and need to initialize it after the 
crt0.s routine runs, define your own alt_main() function. For an example, see 
the main() and alt_main() functions in the hello_alt_main.c file at 
$SOPC_KIT_NIOS2\examples\software\hello_alt_main.

After you generate your BSP project, the alt_main.c source file is located in the 
HAL/src directory.

HAL Peripheral Services
The HAL provides your application with a set of services, typically relying on the 
presence of a hardware peripheral to support the services. By default, if you configure 
your HAL BSP project from the command-line by running the nios2-bsp script, each 
peripheral in the system is initialized, operational, and usable as a service at the entry 
point of your C/C++ application (main()).

This section describes the core set of Altera-supplied, HAL-accessible peripherals and 
the services they provide for your application. It also describes application design 
guidelines for using the supplied service, and background and configuration 
information, where appropriate.

f For more information about the HAL peripheral services, refer to the Developing 
Programs Using the Hardware Abstraction Layer chapter of the Nios II Software 
Developer's Handbook.

f For more information about HAL BSP configuration settings, refer to the Nios II 
Software Build Tools Reference chapter of the Nios II Software Developer's Handbook.

Timers
The HAL provides two types of timer services, a system clock timer and a timestamp 
timer. The system clock timer is used to control, monitor, and schedule system events. 
The timestamp variant is used to make high performance timing measurements. Each 
of these timer services is assigned to a single Altera Avalon Timer peripheral.

f For more information about this peripheral, refer to the Timer Core chapter in volume 5 
of the Quartus II Handbook.

System Clock Timer

The system clock timer resource is used to trigger periodic events—alarms— and as a 
time-keeping device that counts system clock ticks. The system clock timer service 
requires that a timer peripheral be present in the SOPC Builder system. This timer 
peripheral must be dedicated to the HAL system clock timer service. 

1 Only one system clock timer service may be identified in the BSP library file. This 
timer should be accessed only by HAL supplied routines.

The hal.sys_clk_timer setting controls the BSP project configuration for the 
system clock timer. Altera provides separate APIs for user-level system clock 
functionality and for generating alarms.
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User-level system clock functionality is provided through two separate classes of 
APIs, one Nios II specific and the other Unix-like. The Altera function alt_nticks 
returns the number of clock ticks that have elapsed. You can convert this value to 
seconds by dividing by the value returned by the alt_ticks_per_second() 
function. For most embedded applications, this function is sufficient for rudimentary 
time keeping. 

The POSIX-like getttimeofday() function behaves differently in the HAL than on 
a Unix workstation. On a workstation, with a battery backed-up, real-time clock, this 
function returns an absolute time value, with the value zero representing 00:00 
Coordinated Universal Time (UTC), January 1, 1970, whereas in the HAL, this 
function returns a time value starting from system power-up. By default, the function 
assumes system power-up to have occurred on January 1, 1970. Use the 
settimeofday() function to correct the HAL gettimeofday() response. The 
times() function exhibits the same behavior difference.

Consider the following common issues and important points before you implement a 
system clock timer:

■ System Clock Resolution—The timer’s period value specifies the rate at which 
the HAL BSP project increments the internal variable for the system clock counter. 
If the system clock increments too slowly for your application, you can decrease 
the timer's period in SOPC Builder.

■ Rollover—The internal, global variable that stores the number of system clock 
counts (since reset) is a 32-bit unsigned integer. No rollover protection is offered 
for this variable. Therefore, you should calculate when the rollover event will 
occur in your system, and plan the application accordingly.

■ Performance Impact—Every clock tick causes the execution of an interrupt service 
routine. Executing this routine leads to a minor performance penalty. If your 
system hardware specifies a short timer period, the cumulative interrupt latency 
may impact your overall system performance.

The alarm API allows you to schedule events based on the system clock timer, in the 
same way an alarm clock operates. The API consists of the alt_alarm_start() 
function, which registers an alarm, and the alt_alarm_stop() function, which 
disables a registered alarm.

Consider the following common issues and important points before you implement 
an alarm:

■ Interrupt Service Routine (ISR) context—A common mistake is to program the 
alarm callback function to call a service that depends on interrupts being enabled 
(such as the printf() function). This mistake causes the system to deadlock, 
because the alarm callback function occurs in an interrupt context, while 
interrupts are disabled.

■ Resetting the alarm—The callback function can reset the alarm by returning a 
non-zero value. Internally, the alt_alarm_start() function is called by the 
callback function with this value.

■ Chaining—The alt_alarm_start() function is capable of handling one or 
more registered events, each with its own callback function and number of system 
clock ticks to the alarm.
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■ Rollover—The alarm API handles clock rollover conditions for registered alarms 
seamlessly. 

1 A good timer period for most embedded systems is 50 ms. This value provides 
enough resolution for most system events, but does not seriously impact performance 
nor roll over the system clock counter too quickly.

Timestamp Timer

The timestamp timer service provides applications with an accurate way to measure 
the duration of an event in the system. The timestamp timer service requires that a 
timer peripheral be present in the SOPC Builder system. This timer peripheral must be 
dedicated to the HAL timestamp timer service. 

1 Only one timestamp timer service may be identified in the BSP library file. This timer 
should be accessed only by HAL supplied routines.

The hal.timestamp_timer setting controls the BSP configuration for the timer. 
Altera provides a timestamp API.

The timestamp API is very simple. It includes the alt_timestamp_start() 
function, which makes the timer operational, and the alt_timestamp() function, 
which returns the current timer count.

Consider the following common issues and important points before you implement a 
timestamp timer:

■ Timer Frequency—The timestamp timer decrements at the clock rate of the clock 
that feeds it in the SOPC Builder system. You can modify this frequency in SOPC 
Builder.

■ Rollover—The timestamp timer has no rollover event. When the 
alt_timestamp() function returns the value 0, the timer has run down.

■ Maximum Time—The timer peripheral has 32 bits available to store the timer 
value. Therefore, the maximum duration a timestamp timer can count is ((1/timer 
frequency) × 232) seconds.

f For more information about the APIs that control the timestamp and system clock 
timer services, refer to the HAL API Reference appendix of the Nios II Software 
Developer's Handbook.

Character Mode Devices

stdin, stdout, and stderr

The HAL can support the stdio functions provided in the GNU newlib library. 
Using the stdio library allows you to communicate with your application using 
functions such as printf() and scanf().

Currently, Altera supplies two system components that can support the stdio 
library, the UART and JTAG UART components. These devices can function as 
standard I/O devices. To enable this functionality, use the --default_stdio 
<device> option during Nios II BSP configuration.
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The stdin character input file variable and the stdout and stderr character output 
file variables can also be individually configured with the HAL BSP settings 
hal.stdin, hal.stdout, and hal.stderr.

After your target system is configured to use the stdin, stdout, and stderr file 
variables with either the UART or JTAG UART peripheral, you can communicate with 
the target Nios II system through the Nios II EDS development tools. For more 
information about performing this task, refer to “Communicating with the Target” on 
page 2–11.

f For more information about the --default_stdio <device> option, refer to the 
"Nios II Software Build Tools Utilities" section of the Nios II Software Build Tools 
Reference chapter of the Nios II Software Developer's Handbook.

Blocking versus Non-Blocking I/O

Character mode devices can be configured to operate in blocking mode or 
non-blocking mode. The mode is specified in the device’s file descriptor. In blocking 
mode, a function call to read from the device waits until the device receives new data. 
In non-blocking mode, the function call to read new data returns immediately and 
reports whether new data was received. Depending on the function you use to read 
the file handle, an error code is returned, specifying whether or not new data arrived.

The UART and JTAG UART components are initialized in blocking mode. However, 
each component can be made non-blocking with the fnctl or the ioctl() function, 
as seen in the following open system call, which specifies that the device being 
opened is to function in non-blocking mode:

fd = open ("/dev/<your uart name>", O_NONBLOCK | O_RDWR);

The fnctl() system call shown in Example 2–3 specifies that a device that is already 
open is to function in non-blocking mode:

The code fragment in Example 2–4 illustrates the use of a non-blocking device:

Example 2–3. fnctl System Call

/* You can specify <file_descriptor> to be
* STDIN_FILENO, STDOUT_FILENO, or STDERR_FILENO
* if you are using STDIO
*/
fnctl(<file_descriptor>, F_SETFL, O_NONBLOCK);

Example 2–4. Non-Blocking Device Code Fragment

input_chars[128];
return_chars = scanf("%128s", &input_chars);
if(return_chars == 0)
{
if(errno != EWOULDBLOCK)
{
/* check other errnos */
}
}
else
{
/* process received characters */
}
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The behavior of the UART and JTAG UART peripherals can also be modified with an 
ioctl() function call. The ioctl() function supports the following parameters:

■ For UART peripherals:

■ TIOCMGET (reports baud rate of UART)

■ TIOCMSET (sets baud rate of UART)

■ For JTAG UART peripherals: 

■ TIOCSTIMEOUT (timeout value for connecting to workstation)

■ TIOCGCONNECTED (find out whether host is connected)

The altera_avalon_uart_driver.enable_ioctl BSP setting enables and 
disables the ioctl() function for the UART peripherals. The ioctl() function is 
automatically enabled for the JTAG UART peripherals.

Adding Your Own Character Mode Device

If you have a custom device capable of character mode operation, you can create a 
custom device driver that the stdio library functions can use.

f For information about how to develop the device driver, refer to AN459: Guidelines for 
Developing a Nios II HAL Device Driver.

Flash Memory Devices
The HAL system library supports parallel common flash interface (CFI) memory 
devices and Altera erasable, programmable, configurable serial (EPCS) flash memory 
devices. A uniform API is available for both flash memory types, providing users with 
read, write, and erase capabilities.

Memory Initialization, Querying, and Device Support

Every flash memory device is queried by the HAL during system initialization to 
determine the kind of flash memory and the functions that should be used to manage 
it. This process is automatically performed by the alt_sys_init() function, if the 
device drivers were not explicitly omitted and the small driver configuration was not 
set.

After initialization, you can query the flash memory for status information with the 
alt_flash_get_flash_info() function. This function returns a pointer to an 
array of flash region structures—C structures of type struct flash_region—and 
the number of regions on the flash device.

1 For additional information about the struct flash_region structure, refer to the 
source file HAL/inc/sys/alt_flash_types.h in the BSP project directory.

Accessing the Flash Memory

The alt_flash_open() function opens a flash memory device and returns a 
descriptor for that flash memory device. After you complete reading and writing the 
flash memory, call the alt_flash_close() function to close it safely.
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The HAL flash memory device model provides you with two flash access APIs, one 
simple and one fine-grained The simple API takes a buffer of data and writes it to the 
flash memory device, erasing the sectors if necessary. The fine-grained API enables 
you to manage your flash device on a block-by-block basis. 

Both APIs can be used in the system. The type of data you store determines the most 
useful API for your application. The following general design guidelines help you 
determine which API to use for your data storage needs:

Simple API—This API is useful for storing arbitrary streams of bytes, if the exact flash 
sector location is not important. Examples of this type of data are log or data files 
generated by the system during run-time, which must be accessed later in a 
continuous stream somewhere in flash memory.

Fine-Grained API—This API is useful for storing units of data, or data sets, which 
must be aligned on absolute sector boundaries. Examples of this type of data include 
persistent user configuration values, FPGA hardware images, and application images, 
which must be stored and accessed in a given flash sector (or sectors). 

f For examples that demonstrate the use of APIs, refer to the "Using Flash Devices" 
section in the Developing Programs Using the Hardware Abstraction Layer chapter of the 
Nios II Software Developer's Handbook.

Configuration and Use Limitations

If you use flash memories in your system, be aware of the following properties of this 
memory:

■ Code Storage—If your application runs code directly from the flash memory, the 
flash manipulation functions are disabled. This setting prevents the processor 
from erasing the memory that holds the code it is running. In this case, the 
symbols ALT_TEXT_DEVICE, ALT_RODATA_DEVICE, and 
ALT_EXCEPTIONS_DEVICE must all have values different from the flash memory 
peripheral. (Note that each of these #define symbols names a memory device, 
not an address within a memory device).

■ Small Driver—If the small driver flag is set for the software—the 
hal.enable_reduced_device_drivers setting is enabled—then the flash 
memory peripherals are not automatically initialized. In this case, your application 
must call the initialization routines explicitly.

■ Thread safety—Most of the flash access routines are not thread-safe. If you use 
any of these routines, construct your application so that only one thread in the 
system accesses these function.

■ EPCS flash memory limitations—The Altera EPCS memory has a serial interface. 
Therefore, it cannot run Nios II instructions and is not visible to the Nios II 
processor as a standard random-access memory device. Use the Altera-supplied 
flash memory access routines to read data from this device.

■ File System—The HAL flash memory API does not support a flash file system in 
which data can be stored and retrieved using a conventional file handle. However, 
you can store your data in flash memory before you run your application, using 
the ZIPFS file system and the Nios II flash programmer utility. For information 
about the ZIPFS file system, refer to “ZIPFS: Read-Only File System” on page 2–29.
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f For more information about the configuration and use limitations of flash memory, 
refer to the "Using Flash Devices" section in the Developing Programs Using the 
Hardware Abstraction Layer chapter of the Nios II Software Developer's Handbook.

f For more information about the API for the flash memory access routines, refer to the 
HAL API Reference appendix of the Nios II Software Developer’s Handbook.

Direct Memory Access (DMA) Devices
The HAL DMA model uses DMA transmit and receive channels. A DMA operation 
places a transaction request on a channel. A DMA peripheral can have a transmit 
channel, a receive channel, or both. This section describes three possible hardware 
configurations for a DMA peripheral, and shows how to activate each kind of DMA 
channel using the HAL memory access functions.

The DMA peripherals are initialized by the alt_sys_init() function call, and are 
automatically enabled by the nios2-bsp script. 

DMA Configuration and Use Model

The following examples illustrate use of the DMA transmit and receive channels in a 
system. The information complements the information available in the "Using DMA 
Devices" section of the Developing Programs Using the Hardware Abstraction Layer 
chapter of the Nios II Software Developer's Handbook.

Regardless of the DMA peripheral connections in the system, initialize a transmit 
channel by running the alt_dma_txchan_open() function, and initialize a receive 
DMA channel by running the alt_dma_rxchan_open() function. The following 
sections describe the use model for some specific cases.

RX-Only DMA Component 

A typical RX-only DMA component moves the data it receives from another 
component to memory. In this case, the receive channel of the DMA peripheral reads 
continuously from a fixed location in memory, which is the other peripheral's data 
register. The following sequence of operations directs the DMA peripheral:

1. Open the DMA peripheral—Call the alt_dma_rxchan_open() function to 
open the receive DMA channel.

2. Enable DMA ioctl operations—Call the alt_dma_rxchan_ioctl() function 
to set the ALT_DMA_RX_ONLY_ON flag. Use the ALT_DMA_SET_MODE_<n> flag to 
set the data width to match that of the other peripheral’s data register.

3. Configure the other peripheral to run—The Nios II processor configures the other 
peripheral to begin loading new data in its data register.

4. Queue the DMA transaction requests—Call the alt_avalon_dma_prepare() 
function to begin a DMA operation. In the function call, you specify the DMA 
receive channel, the other peripheral’s data register address, the number of bytes 
to transfer, and a callback function to run when the transaction is complete.
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TX-Only DMA Component

A typical TX-only DMA component moves data from memory to another component. 
In this case, the transmit channel of the DMA peripheral writes continuously to a 
fixed location in memory, which is the other peripheral's data register. The following 
sequence of operations directs the DMA peripheral:

1. Open the DMA peripheral—Call the alt_dma_txchan_open() function to open 
the transmit DMA channel.

2. Enable DMA ioctl operations—Call the alt_dma_txchan_ioctl() function 
to set the ALT_DMA_TX_ONLY_ON flag. Use the ALT_DMA_SET_MODE_<n> flag to 
set the data width to match that of the other peripheral’s data register.

3. Configure the other peripheral to run—The Nios II processor configures the other 
peripheral to begin receiving new data in its data register.

4. Queue the DMA transaction requests—Call the alt_avalon_dma_send() 
function to begin a DMA operation. In the function call, you specify the DMA 
transmit channel, the other peripheral’s data register address, the number of bytes 
to transfer, and a callback function to run when the transaction is complete.

RX and TX DMA Component

A typical RX and TX DMA component performs memory-to-memory copy 
operations. The application must open, configure, and assign transaction requests to 
both DMA channels explicitly. The following sequence of operations directs the DMA 
peripheral:

1. Open the DMA RX channel—Call the alt_dma_rxchan_open() function to 
open the DMA receive channel.

2. Enable DMA RX ioctl operations—Call the alt_dma_rxchan_ioctl() 
function to set the ALT_DMA_RX_ONLY_OFF flag. Use the 
ALT_DMA_SET_MODE_<n> flag to set the data width to the correct value for the 
memory transfers.

3. Open the DMA TX channel—Call the alt_dma_txchan_open() function to 
open the DMA transmit channel. 

4. Enable DMA TX ioctl operations—Call the alt_dma_txchan_ioctl() 
function to set the ALT_DMA_TX_ONLY_OFF flag. Use the 
ALT_DMA_SET_MODE_<n> flag to set the data width to the correct value for the 
memory transfers.

5. Queue the DMA RX transaction requests—Call the 
alt_avalon_dma_prepare() function to begin a DMA RX operation. In the 
function call, you specify the DMA receive channel, the address from which to 
begin reading, the number of bytes to transfer, and a callback function to run when 
the transaction is complete.

6. Queue the DMA TX transaction requests—Call the alt_avalon_dma_send() 
function to begin a DMA TX operation. In the function call, you specify the DMA 
transmit channel, the address to which to begin writing, the number of bytes to 
transfer, and a callback function to run when the transaction is complete.

1 The DMA peripheral does not begin the transaction until the DMA TX transaction 
request is issued.
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f For examples of DMA device use, refer to the "Using DMA Devices" section of the 
Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II Software 
Developer's Handbook.

DMA Data-Width Parameter

The DMA data-width parameter is configured in SOPC Builder to specify the widths 
that are supported. In writing the software application, you must specify the width to 
use for a particular transaction. The width of the data you transfer must match the 
hardware capability of the component.

Consider the following points about the data-width parameter before you implement 
a DMA peripheral:

■ Peripheral width—When a DMA component moves data from another 
peripheral, the DMA component must use a single-operation transfer size equal to 
the width of the peripheral’s data register.

■ Transfer length—The byte transfer length specified to the DMA peripheral must 
be a multiple of the data width specified.

■ Odd transfer sizes—If you must transfer an uneven number of bytes between 
memory and a peripheral using a DMA component, you must divide up your data 
transfer operation. Implement the longest allowed transfer using the DMA 
component, and transfer the remaining bytes using the Nios II processor. For 
example, if you must transfer 1023 bytes of data from memory to a peripheral with 
a 32-bit data register, perform 255 32-bit transfers with the DMA and then have the 
Nios II processor write the remaining 3 bytes.

Configuration and Use Limitations

If you use DMA components in your system, be aware of the following properties of 
these components:

■ Hardware configuration—The following aspects of the hardware configuration of 
the DMA peripheral determine the HAL service:

■ DMA components connected to peripherals other than memory support only 
half of the HAL API (receive or transmit functionality). The application 
software should not attempt to call API functions that are not available.

■ The hardware parameterization of the DMA component determines the data 
width of its transfers, a value which the application software must take into 
account.

■ IOCTL control—The DMA ioctl() function call enables the setting of a single 
flag only. To set multiple flags for a DMA channel, you must call ioctl() 
multiple times.

■ DMA transaction slots—The current driver is limited to 4 transaction slots. If you 
must increase the number of transaction slots, you can specify the number of slots 
using the macro ALT_AVALON_DMA_NSLOTS. The value of this macro must be a 
multiple of two.

■ Interrupts—The HAL DMA service requires that the DMA peripheral's interrupt 
line be connected in the system. 
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■ User controlled DMA accesses—If the default HAL DMA access routines are too 
unwieldy for your application, you can create your own access functions. For 
information about how to remove the default HAL DMA driver routines, refer to 
“Reducing Code Size” on page 2–38.

f For more information about the HAL API for accessing DMA devices, refer to the 
"Using DMA Devices" section of the Developing Programs Using the Hardware 
Abstraction Layer chapter of the Nios II Software Developer's Handbook and to the HAL 
API Reference appendix of the Nios II Software Developer's Handbook.

Files and File Systems
The HAL provides two simple file systems and an API for dealing with file data. The 
HAL uses the GNU newlib library's file access routines, found in file.h, to provide 
user access to files. In addition, the HAL provides two file systems, one that enables a 
Nios II system to access the workstation's file system (HOSTFS), and a simple 
read-only file system that enables access to the system’s on-board files (ZIPFS).

1 Several conventional (read/ write) file systems are available through third-party 
vendors. For up-to-date information about the file system solutions available for the 
Nios II processor, refer to the Altera embedded processing web pages at 
www.altera.com/embedded, and click Embedded Software Partners.

HOSTFS: Workstation-Based File System

The HOSTFS file system enables the Nios II system to manipulate files on a 
workstation through a JTAG connection. The API is a transparent way to access data 
files. The system does not require a physical block device. 

Consider the following points about the HOSTFS file system before you use it:

■ Communication speed—Reading and writing large files to the Nios II system 
using this file system is slow.

■ Debug use mode—HOSTFS is only available during debug sessions from the 
Nios II IDE. Therefore, you should use HOSTFS only during system debugging 
and prototyping operations.

■ Incompatibility with direct drivers—HOSTFS only works if the HAL system 
library is configured with direct driver mode disabled. However, enabling this 
mode reduces the size of the application image. For more information, refer to 
“Optimizing the Application” on page 2–34.

f For more information, refer to the Nios II IDE online Help and the host file system 
Nios II software example design listed in the "Using Nios II Example Design Scripts" 
section of the Using the Nios II Software Build Tools chapter of the Nios II Software 
Developer’s Handbook.

ZIPFS: Read-Only File System

ZIPFS was designed to be a lightweight, read-only file system for the Nios II 
processor, targeting flash memory. 

Consider the following points about the ZIPFS file system before you use it:

■ Read Only—ZIPFS is a read-only file system. 
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■ Configuring the file system—To create the ZIP file system you must create a 
binary file on your workstation and use the Nios II flash programmer utility to 
program it in the Nios II system. 

■ Incompatibility with direct drivers—ZIPFS only works if the HAL system library 
is configured with direct driver mode disabled. However, enabling this mode 
reduces the size of the application image. For more information, refer to 
“Optimizing the Application” on page 2–34.

f For more information, refer to the Read-Only Zip File System and Developing Programs 
Using the Hardware Abstraction Layer chapters of the Nios II Software Developer's 
Handbook, and the zip file system Nios II software example design listed in the "Using 
Nios II Example Design Scripts" section of the Using the Nios II Software Build Tools 
chapter of the Nios II Software Developer’s Handbook.

Ethernet Devices
Ethernet devices are a special case for the HAL service model. To make them 
accessible to the application, these devices require an additional software library, a 
TCP/IP stack. Altera supplies a TCP/IP networking stack called NicheStack, which 
provides your application with a socket-based interface for communicating over 
Ethernet networks. 

f For more information, refer to the Ethernet and the NicheStack TCP/IP Stack – Nios II 
Edition chapter of the Nios II Software Developer’s handbook.

Unsupported Devices
The HAL provides a wide variety of native device support for Altera-supplied 
peripherals. However, your system may require a device or peripheral that Altera 
does not provide. In this case, one or both of the following two options may be 
available to you:

■ Altera’s third-party program supports your device

■ You can incorporate your own device

Altera's third party program information is available on the Nios II embedded 
software partners page. Refer to the Altera embedded processing web pages at 
www.altera.com/embedded, and click Embedded Software Partners.

Incorporating your own custom peripheral is a two-stage process. First you must 
incorporate the peripheral in the hardware, and then you must develop a device 
driver. 

f For more information about how to incorporate a new peripheral in the hardware, 
refer to the Nios II Hardware Development Tutorial.

f For more information about how to develop a device driver, refer to the Developing 
Device Drivers for the Hardware Abstraction Layer chapter of the Nios II Software 
Developer's Handbook. 
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Accessing Memory With the Nios II Processor
It can be difficult to create software applications that program the Nios II processor to 
interact correctly with data and instruction caches when it reads and writes to 
peripherals and memories. There are also subtle differences in how the different 
Nios II processor cores handle these operations, that can cause problems when you 
migrate from one Nios II processor core to another.

This section helps you avoid the most common pitfalls. It provides background 
critical to understanding how the Nios II processor reads and writes peripherals and 
memories, and describes the set of software utilities available to you, as well as 
providing sets of instructions to help you avoid some of the more common problems 
in programming these read and write operations.

Creating General C/C++ Applications
You can write most C/C++ applications without worrying about whether the 
processor's read and write operations bypass the data cache. However, you do need to 
make sure the operations do not bypass the data cache in the following cases:

■ Your application must guarantee that a read or write transaction actually reaches a 
peripheral or memory.

■ Your application shares a block of memory with another processor or Avalon 
interface master peripheral.

Accessing Peripherals 
If your application accesses peripheral registers, or performs only a small set of 
memory accesses, Altera recommends that you use the default HAL I/O macros, 
IORD and IOWR. These macros guarantee that the accesses bypass the data cache.

1 Two types of cache-bypass macros are available. The HAL access routines whose 
names end in _32DIRECT, _16 DIRECT, and _8 DIRECT interpret the offset as a byte 
address. The other routines treat this offset as a count to be multiplied by four bytes, 
the number of bytes in the 32-bit connection between the Nios II processor and the 
system interconnect fabric. The _32DIRECT, _16DIRECT, and _8DIRECT routines are 
designed to access memory regions, and the other routines are designed to access 
peripheral registers.

Example 2–5 shows how to write a series of half-word values into memory. Because 
the target addresses are not all on a 32-bit boundary, this code sample uses the 
IOWR_16DIRECT macro.

Example 2–6 shows how to access a peripheral register. In this case, the write is to a 
32-bit boundary address, and the code sample uses the IOWR macro.

Example 2–5. Writing Half-Word Locations

/* Loop across 100 memory locations, writing 0xdead to */
/* every half word location... */
for(i=0, j=0;i<100;i++, j+=2)
{
IOWR_16DIRECT(MEM_START, j, (unsigned short)0xdead);
}
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1 Altera recommends that you use the HAL-supplied macros for accessing external 
peripherals and memory.

Sharing Uncached Memory
If your application must allocate some memory, operate on that memory, and then 
share the memory region with another peripheral (or processor), use the 
HAL-supplied alt_uncached_malloc() and alt_uncached_free() functions. 
Both of these functions operate on pointers to bypass cached memory.

To share uncached memory between a Nios II processor and a peripheral, perform the 
following steps:

1. malloc memory—Run the alt_uncached_malloc() function to claim a block 
of memory from the heap. If this operation is successful, the function returns a 
pointer that bypasses the data cache.

2. Operate on memory—Have the Nios II processor read or write the memory using 
the pointer. Your application can perform normal pointer-arithmetic operations on 
this pointer. 

3. Convert pointer—Run the alt_remap_cached() function to convert the 
pointer to a memory address that is understood by external peripherals.

4. Pass pointer—Pass the converted pointer to the external peripheral to enable it to 
perform operations on the memory region.

Sharing Memory With Cache Performance Benefits
Another way to share memory between a data-cache enabled Nios II processor and 
other external peripherals safely without sacrificing processor performance is the 
delayed data-cache flush method. In this method, the Nios II processor performs 
operations on memory using standard C or C++ operations until it needs to share this 
memory with an external peripheral.

1 Your application can share non-cache-bypassed memory regions with external 
masters if it runs the alt_dcache_flush() function before it allows the external 
master to operate on the memory.

To implement delayed data-cache flushing, the application image programs the 
Nios II processor to perform the following steps:

1. Processor operates on memory—The Nios II processor performs reads and writes 
to a memory region. These reads and writes are C/C++ pointer or array based 
accesses or accesses to data structures, variables, or a malloc'ed region of memory. 

Example 2–6. Peripheral Register Access

 unsigned int control_reg_val = 0;
/* Read current control register value */
control_reg_val = IORD(BAR_BASE_ADDR, CONTROL_REG);

/* Enable "start" bit */
control_reg_val |= 0x01;

/* Write "start" bit to control register to start peripheral */
IOWR(BAR_BASE_ADDR, CONTROL_REG, control_reg_val);
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2. Processor flushes cache—After the Nios II processor completes the read and write 
operations, it calls the alt_dcache_flush() instruction with the location and 
length of the memory region to be flushed. The processor can then signal to the 
other memory master peripheral to operate on this memory.

3. Processor operates on memory again—When the other peripheral has completed 
its operation, the Nios II processor can operate on the memory once again. Because 
the data cache was previously flushed, any additional reads or writes update the 
cache correctly.

Example 2–7 shows an implementation of delayed data-cache flushing for memory 
accesses to a C array of structures. In the example, the Nios II processor initializes one 
field of each structure in an array, flushes the data cache, signals to another master 
that it may use the array, waits for the other master to complete operations on the 
array, and then sums the values the other master is expected to set.

Example 2–8 shows an implementation of delayed data-cache flushing for memory 
accesses to a memory region the Nios II processor acquired with malloc.

1 The alt_dcache_flush_all() function call flushes the entire data cache, but this 
function is not efficient. Altera recommends that you flush from the cache only the 
entries for the memory region that you make available to the other master peripheral.

Handling Exceptions
The HAL infrastructure provides users with a robust interrupt handling service 
routine and an API for exception handling. The Nios II processor can handle 
exceptions caused by hardware interrupts, unimplemented instructions, and software 
traps.

f For information about the exception handler software routines, HAL-provided 
services, and programmer API, refer to the Exception Handling chapter of the Nios II 
Software Developer's Handbook. 

Example 2–7. Data-Cache Flushing With Arrays of Structures

struct input foo[100];

for(i=0;i<100;i++)
foo[i].input = i;

alt_dcache_flush(&foo, sizeof(struct input)*100);
signal_master(&foo);
for(i=0;i<100;i++)

sum += foo[i].output;

Example 2–8. Data-Cache Flushing With Memory Acquired Using malloc

char * data = (char*)malloc(sizeof(char) * 1000);

write_operands(data);
alt_dcache_flush(data, sizeof(char) * 1000);
signal_master(data);
result = read_results(data);
free(data);
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Consider the following common issues and important points before you use the 
HAL-provided exception handler:

■ Prioritization of interrupts—The Nios II processor does not prioritize its 32 
interrupt vectors, but the HAL exception handler assigns higher priority to lower 
numbered interrupts. You must modify the IRQ prioritization of your peripherals 
in SOPC Builder.

■ Nesting of interrupts—The HAL infrastructure allows interrupts to be nested—
higher priority interrupts can preempt processor control from an exception 
handler that is servicing a lower priority interrupt. However, Altera recommends 
that you not nest your interrupts because of the associated performance penalty.

■ Exception handler environment—When creating your exception handler, you 
must ensure that the handler does not run interrupt-dependent functions and 
services, because this can cause deadlock. For example, an exception handler 
should not call the IRQ-driven version of the printf() function.

Modifying the Exception Handler
In some very special cases, you may wish to modify the existing HAL exception 
handler routine or to insert your own interrupt handler for the Nios II processor. 
However, in most cases you need not modify the interrupt handler routines for the 
Nios II processor for your software application.

Consider the following common issues and important points before you modify or 
replace the HAL-provided exception handler:

■ Interrupt vector address—The interrupt vector address for each Nios II processor 
is set during compilation of the FPGA design. You can modify it during hardware 
configuration in SOPC Builder.

■ Modifying the exception handler—The HAL-provided exception handler is fairly 
robust, reliable, and efficient. Modifying the exception handler could break the 
HAL-supplied user interrupt handling API, and cause problems in the device 
drivers for other peripherals that use interrupts, such as the UART and the JTAG 
UART.

You may wish to modify the behavior of the exception handler to increase overall 
performance. For guidelines for increasing the exception handler’s performance, refer 
to “Accelerating Interrupt Service Routines” on page 2–38.

Optimizing the Application
This section examines techniques to increase your software application's performance 
and decrease its size.

This section contains the following subsections:

■ “Performance Tuning Background”

■ “Speeding Up System Processing Tasks” on page 2–35

■ “Accelerating Interrupt Service Routines” on page 2–38

■ “Reducing Code Size” on page 2–38
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Performance Tuning Background
Software performance is the speed with which a certain task or series of tasks can be 
performed in the system. To increase software performance, you must first determine 
the sections of the code in which the processing time is spent.

An application's tasks can be divided into interrupt tasks and system processing 
tasks. Interrupt task performance is the speed with which the processor completes an 
interrupt service routine to handle an external event or condition. System processing 
task performance is the speed with which the system performs a task explicitly 
described in the application code.

A complete analysis of application performance examines the performance of the 
system processing tasks and the interrupt tasks, as well as the footprint of the 
software image.

Speeding Up System Processing Tasks
To increase your application’s performance, determine how you can speed up the 
system processing tasks it performs. First analyze the current performance and 
identify the slowest tasks in your system, then determine whether you can accelerate 
any part of your application by increasing processor efficiency, creating a hardware 
accelerator, or improving the applications’s methods for data movement.

Analyzing the Problem
The first step to accelerate your system processing is to identify the slowest task in 
your system. Altera provides the following tools to profile your application:

■ GNU Profiler—The Nios II EDS toolchain includes a method for profiling your 
application with the GNU Profiler. This method of profiling reports how long 
various functions run in your application.

■ High resolution timer—The interval timer peripheral is a simple time counter that 
can determine the amount of time a given subroutine runs.

■ Performance counter peripheral—The performance counter unit can profile 
several different sections of code with a collection of counters. This peripheral 
includes a simple software API that enables you to print out the results of these 
counters through the Nios II processor's stdio services.

Use one or more of these tools to determine the tasks in which your application is 
spending most of its processing time. 

f For more information about how to profile your software application, refer to 
AN391: Profiling Nios II Systems. 

Accelerating your Application
This section describes several techniques to accelerate your application. Because of the 
flexible nature of the FPGA, most of these techniques modify the system hardware to 
improve the processor's execution performance. This section describes the following 
performance enhancement methods:

■ Methods to increase processor efficiency

■ Methods to accelerate select software algorithms using hardware accelerators
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■ Using a DMA peripheral to increase the efficiency of sequential data movement 
operations

Increasing Processor Efficiency

An easy way to increase the software application's performance is to increase the rate 
at which the Nios II processor fetches and processes instructions, while decreasing the 
number of instructions the application requires. The following techniques can 
increase processor efficiency in running your application:

■ Processor clock frequency—Modify the processor clock frequency using SOPC 
Builder. The faster the execution speed of the processor, the more quickly it is able 
to process instructions.

■ Nios II processor improvements—Select the most efficient version of the Nios II 
processor and parameterize it properly. The following processor settings can be 
modified using SOPC Builder:

■ Processor type—Select the fastest Nios II processor core possible. In order of 
performance, from fastest to slowest, the processors are the Nios II/f, 
Nios II/s, and Nios II/e cores.

■ Instruction and data cache—Include an instruction or data cache, especially if 
the memory you select for code execution—where the application image and 
the data are stored—has high access time or latency.

■ Multipliers—Use hardware multipliers to increase the efficiency of relevant 
mathematical operations.

f For more information about the processor configuration options, refer to 
the Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II 
Processor Reference Handbook.

■ Nios II instruction and data memory speed—Select memory with low access time 
and latency for the main program execution. The memory you select for main 
program execution impacts overall performance, especially if the Nios II caches 
are not enabled. The Nios II processor stalls while it fetches program instructions 
and data.

■ Tightly coupled memories—Select a tightly coupled memory for the main 
program execution. A tightly coupled memory is a fast general purpose memory 
that is connected directly to the Nios II processor's instruction or data paths, or 
both, and bypasses any caches. A tightly coupled memory must guarantee a 
single-cycle access time. Therefore, it is usually implemented in an FPGA memory 
block.

f For more information about tightly coupled memories, refer to the Using 
Nios II Tightly Coupled Memory Tutorial and to the Cache and Tightly-Coupled 
Memory chapter of the Nios II Software Developer's Handbook.

■ Compiler Settings—More efficient code execution can be attained through the use 
of compiler optimizations. Increase the compiler optimization setting to -03, the 
fastest compiler optimization setting, to attain more efficient code execution.
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f For information about configuring the compiler optimization level, refer 
to the hal.make.bsp_cflags_optimization BSP setting in the 
Nios II Software Build Tools Reference chapter of the Nios II Software 
Developer’s Handbook.

Accelerating Hardware

Slow software algorithms can be accelerated through the use of custom instructions, 
dedicated hardware accelerators, and use of the C-to-Hardware (C2H) compiler tool. 
The following techniques can increase processor efficiency in running your 
application:

■ Custom instructions—Use custom instructions to augment the Nios II processor's 
ALU with a block of dedicated, user-defined hardware to accelerate a 
task-specific, computational operation. This hardware accelerator is associated 
with a user-defined operation code, which the application software can call. 

f For information about how to create a custom instruction, refer to the 
Using Nios II Floating-Point Custom Instructions tutorial.

■ Hardware accelerators—Use hardware accelerators for bulk processing operations 
that can be performed independently of the Nios II processor. Hardware 
accelerators are custom, user-defined peripherals designed to speed up the 
processing of a specific system task. They increase the efficiency of operations that 
are performed independently of the Nios II processor.

f For more information about hardware acceleration, refer to the Hardware 
Acceleration and Coprocessing chapter of the Embedded Design Handbook.

■ C2H Compiler—Use the C2H Compiler to accelerate standard ANSI C functions 
by converting them to dedicated hardware blocks.

f For more information about the C2H Compiler, refer to the Nios II C2H 
Compiler User Guide and to the Optimizing Nios II C2H Compiler Results 
chapter of the Embedded Design Handbook.

Improving Data Movement

If your application performs many sequential data movement operations, a DMA 
peripheral might increase the efficiency of these operations. Altera provides the 
following two DMA peripherals for your use:

■ DMA—Simple DMA peripheral that can perform single operations before being 
serviced by the CPU. For more information about using the DMA peripheral, refer 
to “HAL Peripheral Services” on page 2–20. 

f For information about the DMA peripheral, refer to the DMA Controller 
Core chapter in volume 5 of the Quartus II Handbook. 

■ Scatter-Gather DMA (SGDMA)—Descriptor-based DMA peripheral that can 
perform multiple operations before being serviced by CPU. 

f For more information, refer to the Scatter-Gather DMA Controller Core 
chapter in volume 5 of the Quartus II Handbook.
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Accelerating Interrupt Service Routines
To increase the efficiency of your interrupt service routines, determine how you can 
speed up the tasks they perform. First analyze the current performance and identify 
the slowest parts of your interrupt dispatch and handler time, then determine 
whether you can accelerate any part of your interrupt handling.

Analyzing the Problem
The total amount of time consumed by an interrupt service routine is equal to the 
latency of the HAL interrupt dispatcher plus the interrupt handler running time. Use 
the following methods to profile your interrupt handling:

■ Interrupt dispatch time—Calculate the interrupt handler entry time using the 
method found in design files that accompany the Using Nios II Tightly Coupled 
Memory Tutorial on the Altera literature pages. You can download the design files 
from the Nios II literature web page at www.altera.com/literature/lit-nio2.jsp.

■ Interrupt service routine time—Use a timer to measure the time from the entry to 
the exit point of the service routine.

Accelerating the Interrupt Service Routine
The following techniques can increase interrupt handling efficiency when running 
your application:

■ General software performance enhancements—Apply the general techniques for 
improving your application's performance to the ISR and ISR handler. Place the 
.exception code section in a faster memory region.

■ IRQ priority—Set the interrupt priority of your hardware device to the lowest 
number available. The HAL ISR service routine uses a priority based system in 
which the lowest number interrupt has the highest priority.

■ Custom instruction and tightly coupled memories—Decrease the amount of time 
spent by the interrupt handler by using the interrupt-vector custom instruction 
and tightly coupled memory regions.

f For more information about how to improve the performance of the Nios II exception 
handler, refer to the Exception Handling chapter of the Nios II Software Developer's 
Handbook.

Reducing Code Size
Reducing the memory space required by your application image also enhances 
performance. This section describes how to measure and decrease your code 
footprint.

Analyzing the Problem
The easiest way to analyze your application's code footprint is to use the GNU Binary 
Utilities tool nios2-elf-size. This tool analyzes your compiled .elf binary file and 
reports the total size of your application, as well as the subtotals for the .text, 
.data, and .bss code sections. Example 2–9 shows a nios2-elf-size command 
response.
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Reducing the Code Footprint
The following methods help you to reduce your code footprint:

■ Compiler options—Setting the -Os flag for the GCC causes the compiler to apply 
size optimizations for code size reduction. Use the 
hal.make.bsp_cflags_optimization BSP setting to set this flag.

■ Reducing the HAL footprint—Use the HAL system library configuration settings 
to reduce the size of the HAL system library component of your BSP library file. 
However, enabling the size-reduction settings for the HAL system library often 
impacts the flexibility and performance of the system. The configuration settings 
for size optimization are as follows:

■ hal.max_file_descriptors 4 

■ hal.enable_small_c_library true 

■ hal.sys_clk_timer none 

■ hal.timestamp_timer none 

■ hal.enable_exit false 

■ hal.enable_c_plus_plus false 

■ hal.enable_lightweight_device_driver_api true 

■ hal.enable_clean_exit false 

■ hal.enable_sim_optimize false 

■ hal.enable_reduced_device_drivers true 

■ hal.make.bsp_cflags_optimization \"-Os\"

f For more information about these settings, refer to the "Setting"s section of 
the Nios II Software Build Tools Reference chapter of the Nios II Software 
Developer's Handbook. For an example, refer to the BSP project 
hal_reduced_footprint, included in your Quartus II installation, in the 
hardware project directory of your Altera Nios development board type, 
in software_examples/bsp/hal_reduced_footprint.

Example 2–9. Example Use of nios2-elf-size Command

> nios2-elf-size -d application.elf 
text data bss dec hex filename
203412 8288 4936 216636 34e3c application.elf
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■ Removing unused HAL device drivers—Configure the HAL with support only 
for system peripherals your application uses.

■ By default, the HAL configuration mechanism includes device driver support 
for all system peripherals present. If you do not plan on accessing all of these 
peripherals using the HAL device drivers, you can elect to have them omitted 
during configuration of the HAL system library by using the set_driver 
command when you configure the BSP project.

■ The HAL can be configured to include various software modules, such as the 
NicheStack networking stack and the ZIPFS file system, whose presence 
increases the overall footprint of the application. However, the HAL does not 
enable these modules by default.

Linking Applications
This section discusses how the Nios II software development tools create a default 
linker script, what this script does, and how to override its default behavior. The 
section also includes instructions to control some common linker behavior, and 
descriptions of the circumstances in which you may need them.

This section contains the following subsections:

■ “Background”

■ “Linker Sections and Application Configuration”

■ “HAL Linking Behavior” on page 2–40

Background
The create-this-bsp script and the underlying nios2-bsp script are responsible for 
creating two linker-related files for your project, linker.x and linker.h. linker.x is the 
linker command file that the generated application's makefile uses to create the .elf 
binary file. All linker setting modifications you make to the HAL BSP project affect the 
contents of these two files.

Linker Sections and Application Configuration
Every Nios II application contains .text, .rodata, .rwdata, .bss, .heap, and 
.stack sections. Additional user sections can be added to the .elf file to hold user 
code and data. 

These sections are placed in named memory regions, defined to correspond with 
physical memory devices and addresses. By default, these sections are automatically 
generated by the HAL. However, you can control them for a particular application.

HAL Linking Behavior
This section describes the default linking behavior of the BSP generation tools and 
how to control the linking explicitly.
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Default BSP Linking
During BSP configuration, the tools perform the following steps automatically:

1. Assign memory region names—Assign a name to each system memory device, 
and add each name to the linker file as a memory region. 

2. Find largest memory—Identify the largest read-and-write memory region in the 
linker file.

3. Assign sections—Place the default sections (.text, .rodata, .rwdata, .bss, 
.heap, and .stack) in the memory region identified in the previous step.

4. Write files—Write the linker.x and linker.h files.

Usually, this section allocation scheme works during the software development 
process, because the application is guaranteed to function if the memory is large 
enough. 

1 The rules for the HAL default linking behavior are contained in the Altera-generated 
Tcl scripts bsp-set-defaults.tcl and bsp-linker-utils.tcl found in the sdk2/bin 
directory. These scripts are called by the nios2-bsp-create-settings configuration 
application. Do not modify these scripts directly.

User-Controlled BSP Linking
You can control the default linking behavior of the BSP tools by calling certain Tcl 
functions during BSP configuration. You can incorporate these functions in a Tcl 
script called by the nios2-bsp-create-settings or nios2-bsp command, or pass them to 
one of these commands as an argument. You should not modify the Altera-generated 
scripts, but you can write scripts that override their behavior. The following two 
commands are useful for manipulating linker sections:

■ add_memory_region—Maps a memory region name to a physical memory 
device

■ add_section_mapping—Maps a section name to a memory region

f For more information about the linker-related BSP configuration commands, refer to 
the Nios II Software Built Tools Reference chapter of the Nios II Software Developer's 
Handbook.

You can override the default linking behavior of the BSP configuration tools by 
creating a Tcl script and passing it to the nios2-bsp tool as an argument. Example 2–10 
shows a Tcl configuration script mem_link.tcl that is called with the following 
command:

nios2-bsp HAL . ../system.sopc --script mem_link.tcl r
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To create the script in Example 2–10, you must know the default names of the memory 
regions created by the HAL BSP generator. The script also uses a non-default memory 
region called onchip_ram0 that you must create in SOPC Builder. The 
add_section_mapping commands locate the default sections and map your own 
section, called .myown, to your custom region called onchip_ram0. The 
hal.linker commands in the script are explained in “Application Boot Loading 
and Programming System Memory”.

The nios2-bsp script automatically creates memory region names for all memory 
components discovered in system hardware. The names of these memory regions are 
the names assigned in SOPC Builder. After the initial settings.bsp file is generated, 
you can run the following two commands to discover the default memory regions and 
section mappings:

■ Discover the names, base addresses, and spans of all the memory regions in your 
system by running the following command:

nios2-bsp-query-settings --settings settings.bsp --cmd puts \ 
[get_current_memory_regions] r
■ Discover the section mappings by running the following command:

nios2-bsp-query-settings --settings settings.bsp --cmd puts \ 
[get_current_section_mappings] r

Application Boot Loading and Programming System Memory
Most Nios II systems require some method to configure the hardware and software 
images in system memory before the processor can begin executing your application 
program. This section describes various possible memory topologies for your system 
(both volatile and non-volatile), their use, their requirements, and their configuration. 
The Nios II software application requires a boot loader application to configure the 
system memory if the system software is stored in flash memory, but is configured to 

Example 2–10. Example Tcl (mem_link.tcl) File for Configuring Memory Linking and Boot Loading

# The names used below are created by the BSP generation tools
# We are just assigning some variables for convenience
set text_region_name ext_flash
set data_region_name ddr_sdram_0
# Add our own memory region
add_memory_region onchip_ram0 onchip_ram0 0 0x100000
# Set up our linker sections
add_section_mapping .text $text_region_name
add_section_mapping .rodata $data_region_name
add_section_mapping .rwdata $data_region_name
add_section_mapping .bss $data_region_name
add_section_mapping .heap $data_region_name
add_section_mapping .stack $data_region_name
add_section_mapping .myown onchip_ram0
# Configure the boot loader facilities
set_setting hal.linker.allow_code_at_reset 1
set_setting hal.linker.enable_alt_load 1
set_setting hal.linker.enable_alt_load_copy_rwdata 1
set_setting hal.linker.enable_alt_load_copy_rodata 1
set_setting hal.linker.enable_alt_load_copy_exceptions 1 
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run from volatile memory. If the Nios II processor is running from flash memory—the 
.text section is in flash memory—a copy routine, rather than a boot loader, loads the 
other program sections to volatile memory. In some cases, such as when your system 
application occupies internal FPGA memory, or is pre-loaded into external memory 
by another CPU, no configuration of the system memory is required.

This section contains the following subsections:

■ “Default BSP Boot Loading Configuration”

■ “Boot Configuration Options” on page 2–43

■ “Generating and Programming System Memory Images” on page 2–47

Default BSP Boot Loading Configuration
The nios2-bsp script determines whether the system requires a boot loader and 
whether to enable the copying of the default sections.

By default, the nios2-bsp script makes these decisions using the following rules:

■ Boot loader—The nios2-bsp script assumes that a boot loader is being used if the 
following conditions are met:

■ The Nios II processor's reset address is not in the .text section.

■ The Nios II processor's reset address is in flash memory.

■ Copying default sections—The nios2-bsp script enables the copying of the 
default volatile sections if the Nios II processor's reset address is set to an address 
in the .text section.

If the default boot loader behavior is appropriate for your system, you do not need to 
intervene in the boot loading process. 

Boot Configuration Options
You can modify the default nios2-bsp script behavior for application loading by using 
the following settings:

■ hal.linker.allow_code_at_reset

■ hal.linker.enable_alt_load

■ hal.linker.enable_alt_load_copy_rwdata

■ hal.linker.enable_alt_load_copy_exceptions

■ hal.linker.enable_alt_load_copy_rodata

If you enable these settings, you can override the BSP's default behavior for boot 
loading. Altera recommends that you list the settings in a Tcl script that you pass to 
the BSP generation tools. Example 2–10 on page 2–42 shows such a script.

1 These settings are created in the settings.bsp configuration file whether or not you 
override the default BSP generation behavior. However, you may override their 
default values.
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f For more information about BSP configuration settings, refer to the "Settings" section 
in the Nios II Software Build Tools Reference chapter of the Nios II Software Developer's 
Handbook.

f For more information about boot loading options and for advanced boot loader 
examples, refer to AN458: Alternative Nios II Boot Methods.

Booting and Running From Flash Memory
If your program is loaded in and runs from flash memory, the application's .text 
section is not copied. However, during C run-time initialization—execution of the 
crt0 code block—some of the other code sections may be copied to volatile memory 
in preparation for running the application.

For more information about the behavior of the crt0 code, refer to “crt0 
Initialization” on page 2–18.

1 Altera recommends that you avoid this configuration during the normal development 
cycle because downloading the compiled application requires reprogramming the 
flash memory. In addition, software breakpoint capabilities are not available through 
the debugger when using this configuration.

Prepare for BSP configuration by performing the following steps to configure your 
application to boot and run from flash memory:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address 
is in flash memory. Configure the reset address and flash memory addresses in 
SOPC Builder. 

2. Text section linker setting—Ensure that the .text section maps to the flash 
memory address region (for example, with the command 
add_section_mapping .text ext_flash) in the Tcl settings file.

3. Other sections linker setting—Ensure that all of the other sections, with the 
possible exception of the .rodata section, are mapped to volatile memory 
regions. The .rodata section can map to a flash-memory region.

4. HAL C run-time configuration settings—Use the following HAL C run-time 
configuration settings:

■ hal.linker.allow_code_at_reset 1

■ hal.linker.enable_alt_load 1

■ hal.linker.enable_alt_load_copy_rwdata 1

■ hal.linker.enable_alt_load_copy_exceptions 1

■ hal.linker.enable_alt_load_copy_rodata 1

If your application contains custom, user-defined memory sections, you must 
manually load the custom sections. Use the alt_load_section() HAL library 
function to ensure that these sections are loaded before your program runs.

1 The HAL system library disables the flash memory service to prevent accidental 
override of the application image.
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Booting From Flash Memory and Running From Volatile Memory
If your application image is stored in flash memory, but executes from volatile 
memory with assistance from a boot loader program, prepare for BSP configuration 
by performing the following steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address 
is an address in flash memory. Configure this option using SOPC Builder. 

2. Text section linker setting—Ensure that the .text section maps to a volatile 
region of system memory, and not to the flash memory.

3. Other sections linker setting—Ensure that all of the other sections, with the 
possible exception of the .rodata section, are mapped to volatile memory 
regions. The .rodata section can map to a flash-memory region.

4. HAL C run-time configuration settings—Use the following HAL C run-time 
configuration settings:

■ hal.linker.allow_code_at_reset 0

■ hal.linker.enable_alt_load 0

■ hal.linker.enable_alt_load_copy_rwdata 0

■ hal.linker.enable_alt_load_copy_exceptions 0

■ hal.linker.enable_alt_load_copy_rodata 0

Booting and Running From Volatile Memory
This configuration is use in cases where the Nios II processor's memory is loaded 
externally by another processor or interconnect switch fabric master port. In this case, 
prepare for BSP configuration by performing the same steps as in “Booting From 
Flash Memory and Running From Volatile Memory”, except that the Nios II processor 
reset address should be changed to the memory that holds the code that the processor 
executes initially. Prepare for BSP configuration by performing the following steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address 
is in volatile memory. Configure this option using SOPC Builder. 

2. Text section linker setting—Ensure that the .text section maps to the reset 
address memory.

3. Other sections linker setting—Ensure that all of the other sections, including the 
.rodata section, also map to the reset address memory.

4. HAL C run-time configuration settings—Use the following HAL C run-time 
configuration settings:

■ hal.linker.allow_code_at_reset 1

■ hal.linker.enable_alt_load 0

■ hal.linker.enable_alt_load_copy_rwdata 0

■ hal.linker.enable_alt_load_copy_exceptions 0

■ hal.linker.enable_alt_load_copy_rodata 0

This type of boot loading and sequencing requires additional supporting hardware 
modifications, which are beyond the scope of this chapter.
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Booting From Altera EPCS Memory and Running From Volatile Memory
This configuration is a special case of the configuration described in “Booting From 
Flash Memory and Running From Volatile Memory” on page 2–45. However, in this 
configuration, the processor does not perform the initial boot loading operation. The 
EPCS flash memory stores the FPGA hardware image and the application image. 
During system power up, the FPGA configures itself from EPCS memory. Then the 
Nios II processor resets control to a small FPGA memory resource in the EPCS 
memory controller, and executes a small boot loader application that copies the 
application from EPCS memory to the application’s run-time location.

1 To make this configuration work, you must instantiate the EPCS device controller 
core in your system hardware. Add the component using SOPC Builder.

Prepare for BSP configuration by performing the following steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address 
is in the EPCS memory controller. Configure this option using SOPC Builder. 

2. Text section linker setting—Ensure that the .text section maps to a volatile 
region of system memory.

3. Other sections linker setting—Ensure that all of the other sections, including the 
.rodata section, map to volatile memory. 

4. HAL C run-time configuration settings—Use the following HAL C run-time 
configuration settings:

■ hal.linker.allow_code_at_reset 0

■ hal.linker.enable_alt_load 0

■ hal.linker.enable_alt_load_copy_rwdata 0

■ hal.linker.enable_alt_load_copy_exceptions 0

■ hal.linker.enable_alt_load_copy_rodata 0

Booting and Running From FPGA Memory
In this configuration, the program is loaded in and runs from internal FPGA memory 
resources. The FPGA memory resources are automatically configured when the FPGA 
device is configured, so no additional boot loading operations are required. 

Prepare for BSP configuration by performing the following steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset address 
is in the FPGA internal memory. Configure this option using SOPC Builder.

2. Text section linker setting—Ensure that the .text section maps to the internal 
FPGA memory.

3. Other sections linker setting—Ensure that all of the other sections map to the 
internal FPGA memory.
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4. HAL C run-time configuration settings—Use the following HAL C run-time 
configuration settings:

■ hal.linker.allow_code_at_reset 1

■ hal.linker.enable_alt_load 0

■ hal.linker.enable_alt_load_copy_rwdata 0

■ hal.linker.enable_alt_load_copy_exceptions 0

■ hal.linker.enable_alt_load_copy_rodata 0

1 This configuration requires that you generate FPGA memory HEX files for 
compilation to the FPGA image. This step is described in the following section.

Generating and Programming System Memory Images
After you configure your linker settings and boot loader configuration and build the 
application image .elf file, you must create a memory programming file. The flow for 
creating the memory programming file depends on your choice of FPGA, flash, or 
EPCS memory.

The easiest way to generate the memory files for your system is to use the 
application-generated makefile targets. The available mem_init.mk targets are listed 
in the "Creating Memory Initialization Files" section in the Using the Nios II Software 
Build Tools chapter of the Nios II Software Developer's Handbook. You can also perform 
the same process manually, as shown in the following sections.

Generating memory programming files is not necessary if you want to download and 
run the application on the target system, for example, during the development and 
debug cycle.

Programming FPGA Memory
If your software application is designed to run from an internal FPGA memory 
resource, you must convert the application image .elf file to one or more HEX 
memory files. The Quartus II software compiles these HEX memory files to an FPGA 
image (.sof). When this image is loaded in the FPGA it initializes the internal memory 
blocks. 

To create a HEX memory file from your .elf file, type the following command:

elf2mem --infile=<myapp>.elf --ptf=<system>.ptf r
This command creates one or more HEX memory files from application image 
<myapp>.elf, based on the SOPC Builder hardware description file <system>.ptf.

Compile the HEX memory files to an FPGA image using the Quartus II software. 
Initializing FPGA memory resources requires some knowledge of SOPC Builder and 
the Quartus II software.

Configuring and Programming Flash Memory
After you configure and build your BSP project and your application image .elf file, 
you must generate a flash programming file. The nios2-flash-programmer tool uses 
this file to configure the flash memory device through a programming cable, such as 
the USB-Blaster cable.
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Creating a Flash Image File

If a boot loader application is required in your system, then you must first create a 
flash image file for your system. This section shows some standard commands to 
create a flash image file. The section does not address the case of programming and 
configuring the FPGA image from flash memory. 

The following standard commands create a flash image file for your flash memory 
device:

■ Boot loader required and EPCS flash device used—To create an EPCS flash 
device image, type the following command:

elf2flash --epcs --after=<standard>.flash --input=<myapp>>.elf \
--output=<myapp>.flash r
This command converts the application image in the file <myapp>.elf to a flash 
record format, and creates the new file <myapp>.flash that contains the new flash 
record appended to the FPGA hardware image in <standard>.flash. 

■ Boot loader required and CFI flash memory used—To create a CFI flash memory 
image, type the following command:

elf2flash --base=0x0 --reset=0x0 --end=0x1000000 \
--boot=<boot_loader_cfi>.srec \
--input=<myapp>.elf --output=<myapp>.flash r

This command converts the application image in the file <myapp>.elf to a flash 
record format, and creates the new file <myapp>.flash that contains the new flash 
record appended to the CFI boot loader in <boot_loader_cfi>.srec. The flash record 
is to be downloaded to the reset address of the Nios II processor, 0x0, and the base 
address of the flash device is 0x0. If you use the Altera-supplied boot loader, your 
user-created program sections are also loaded from the flash memory to their 
run-time locations.

■ No boot loader required and CFI flash memory used—To create a CFI flash 
memory image, if no boot loader is required, type the following command:

elf2flash --base=0x0 --reset=0x0 --end=0x1000000 \
--input=<myapp>.elf --output=<myapp>.flash r

This command and its effect are almost identical to those of the command to create 
a CFI flash memory image if a boot loader is required. In this case, no boot loader 
is required, and therefore the --boot command-line option is not present. 

The Nios II EDS includes two precompiled boot loaders for your use, one for CFI flash 
devices and another for EPCS flash devices. The source code for these boot loaders can 
be found in the <nios2eds dir>/components/altera_nios2/boot_loader_sources/ 
directory.

Programming Flash Memory

The easiest way to program your system flash memory is to use the 
application-generated makefile target called program-flash. This target automatically 
downloads the flash image file to your development board through a JTAG download 
cable. You can also perform this process manually, using the nios2-flash-programmer 
utility. This utility takes a flash file and some command line arguments, and 
programs your system's flash memory. The following command-line examples 
illustrate use of the nios2-flash-programmer utility to program your system flash 
memory:
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■ Programming CFI Flash Memory—To program CFI flash memory with your flash 
image file, type the following command:

nios2-flash-programmer --base=0x0 <myapp>.flash r
This command programs a flash memory located at base address 0x0 with a flash 
image file called <myapp>.flash.

■ Programming EPCS Flash Memory—To program EPCS flash memory with your 
flash image file, type the following command:

nios2-flash-programmer --epcs --base=0x0 <myapp>.flash r
This command programs an EPCS flash memory located at base address 0x0 with 
a flash image file called <myapp>.flash. 

The nios2-flash-programmer utility requires that your FPGA has already been 
configured with your system hardware image. You must download your .sof file with 
the nios2-configure-sof command before running the nios2-flash-programmer 
utility.

f For more information about how to configure, program, and manage your flash 
memory devices, refer to the Nios II Flash Programmer User Guide.

Conclusion
Altera recommends that you use the Nios II software build tools flow for hardware 
designs that contain a Nios II processor. This chapter provides information about the 
Nios II software build tools flow that complements the Nios II Software Developer’s 
Handbook. It discusses recommended design practices and implementation 
information, and provides pointers to related topics for more in-depth information.
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3. Debugging Nios II Designs
This chapter describes best practices for debugging Nios® II processor software 
designs. Debugging these designs involves debugging both hardware and software, 
which requires familiarity with multiple disciplines. Successful debugging requires 
expertise in board layout, FPGA configuration, and Nios II software tools and 
application software. This chapter includes the following sections that discuss 
debugging techniques and tools to address difficult embedded design problems:

■ “Debuggers”

■ “Run-Time Analysis Debug Techniques” on page 3–11

Debuggers
The Nios II development environments offer several tools for debugging Nios II 
software systems. This section describes the debugging capabilities available in the 
following development environments:

■ “Nios II Software Development Tools”

■ “FS2 Console” on page 3–9

■ “SignalTap II Embedded Logic Analyzer” on page 3–10

■ “Lauterbach Trace32 Debugger and PowerTrace Hardware” on page 3–10

■ “Insight and Data Display Debuggers” on page 3–11

Nios II Software Development Tools
The Nios II Integrated Development Environment (IDE) is a graphical user interface 
(GUI) that supports creating, modifying, building, running, and debugging Nios II 
programs. The Nios II software build tools are command-line utilities available from a 
Nios II command shell. Using the software build tools provides fine control over the 
build process and project settings, but also requires more expertise than does using 
the Nios II IDE.

SOPC Builder is a system development tool for creating systems including processors, 
peripherals, and memories. The tool enables you to define and generate a complete 
FPGA system very efficiently. SOPC Builder does not require that your system 
contain a Nios II processor. However, it provides complete support for integrating 
Nios II processors in your system, including some critical debugging features.

This section contains the following subsections, which describe the debugging tools 
and support features available in the Nios II software development tools:

■ “Nios II System ID”

■ “Project Templates” on page 3–3

■ “Configuration Options” on page 3–3

■ “Nios II GDB Console and GDB Commands” on page 3–5

■ “Nios II Terminal Window and stdio Library Functions” on page 3–6
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■ “Importing Projects Created Using the Nios II Software Build Tools” on page 3–7

■ “Selecting a Processor Instance in a Multiple Processor Design” on page 3–7

■ “Debugging the Lauterbach PowerTrace to Nios II Processor Connection” on 
page 3–10

■ “C Source Correlation” on page 3–11

Nios II System ID
The system ID feature is available as a system component in SOPC Builder. The 
component allows the debugger to identify attempts to download software projects 
with system libraries that were generated for a different SOPC Builder system. This 
feature protects you from inadvertently using an executable and loadable format (.elf) 
file built for a Nios II hardware design that is not currently loaded in the FPGA. If 
your application image does not run on the hardware implementation for which it 
was compiled, the results are unpredictable.

To start your design with this basic safety net, always select Validate Nios II system 
ID before software download on the Main tab of the Nios II IDE Debug dialog box, 
as shown in Figure 3–4 on page 3–8.

The system ID feature requires that the SOPC Builder design include a system ID 
component. Figure 3–1 shows an SOPC Builder system with a system ID component.

f For more information about the System ID component, refer to the System ID Core 
chapter in volume 5 of the Quartus II Handbook.

Figure 3–1. SOPC Builder System With System ID Component
Embedded Design Handbook © June 2008 Altera Corporation
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Project Templates
The Nios II IDE helps you to create a simple, small, and pretested software project to 
test a new board.

The Nios II IDE provides a mechanism to create new software projects using project 
templates. To create a new project for which you already have source code, perform 
the following steps:

1. In the Nios II C/C++ perspective, on the File menu, on the New submenu, click 
Nios II C/C++ Application. 

The New Project wizard for Nios II C/C++ application projects appears, 
pre-selecting the current SOPC Builder system .ptf file.

2. Click Next. 

3. In the Select Project Template list, click Blank Project.

4. If your project contains multiple Nios II processors, in the CPU list, click the CPU 
you wish to run this application software.

5. Click Finish.

6. On the Nios II IDE C/C++ Projects page, copy your source code files to the new 
project by dragging them onto the newly created project label.

To create a simple test program to test a new board, perform these steps with the 
following exceptions:

■ In step 3, click Hello World Small

■ Do not perform step 6. 

The Hello World Small template is a very simple, small application. Using a simple, 
small application minimizes the number of potential failures that can occur as you 
bring up a new piece of hardware.

Configuration Options
The following Nios II IDE configuration options increase the amount of debugging 
information available for your application image .elf file:

■ Objdump File

■ Show Make Commands

■ Show Line Numbers

Objdump File

You can direct the Nios II build process to generate helpful information about your 
.elf file in an object dump text file (.objdump). The .objdump file contains 
information about the memory sections and their layout, the addresses of functions, 
and the original C source code interleaved with the assembly code. Example 3–1 
shows part of the C and assembly code section of an .objdump file for the Nios II 
built-in Hello World Small project.
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To enable this option in the Nios II IDE, perform the following steps:

1. On the Window menu, click Preferences. 

2. On the list to the left, click Nios II.

3. On the Nios II page, turn on Generate objdump file.

After the next build, the .objdump file is found in the same directory as the 
newly built .elf file.

After the next build generates the .elf file, the build runs the nios2-elf-objdump 
command with the options --disassemble-all, --source, and --all-headers 
on the generated .elf file. 

In the Nios II user-managed tool flow, you can edit the settings in the application 
makefile that determine the options with which the nios2-elf-objdump command 
runs. Running the create-this-app script, or the nios2-app-generate-makefile script, 
creates the following lines in the application makefile:

#Options to control objdump.
CREATE_OBJDUMP := 1
OBJDUMP_INCLUDE_SOURCE :=0
OBJDUMP_FULL_CONTENTS := 0

Example 3–1. Piece of Code in .objdump File From Hello World Small Project

06000170 <main>:

include "sys/alt_stdio.h"

int main()
{ 
6000170:deffff04 addisp,sp,-4
alt_putstr("Hello from Nios II!\n");
6000174:01018034 movhir4,1536
6000178:2102ba04 addir4,r4,2792
600017c:dfc00015 stwra,0(sp)
6000180:60001c00 call60001c0 <alt_putstr>
6000184:003fff06 br6000184 <main+0x14>

06000188 <alt_main>:
* the users application, i.e. main().
*/

void alt_main (void)
{
6000188:deffff04 addisp,sp,-4
600018c:dfc00015 stwra,0(sp)

static ALT_INLINE void ALT_ALWAYS_INLINE 
alt_irq_init (const void* base)
{
NIOS2_WRITE_IENABLE (0);
6000190:000170fa wrctlienable,zero
NIOS2_WRITE_STATUS (NIOS2_STATUS_PIE_MSK);
6000194:00800044 movir2,1
6000198:1001703a wrctlstatus,r2
Embedded Design Handbook © June 2008 Altera Corporation
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Edit these options to control the .objdump file according to your preferences for the 
project:

■ CREATE_OBJDUMP—The value 1 directs nios2-elf-objdump to run with the 
options --disassemble, --syms, --all-header, and --source.

■ OBJDUMP_INCLUDE_SOURCE—The value 1 adds the option --source to the 
nios2-elf-objdump command line.

■ OBJDUMP_FULL_CONTENTS—The value 1 adds the option --full-contents to 
the nios2-elf-objdump command line.

1 For detailed information about the information each command-line option generates, 
in a Nios II command shell, type the following command:
nios2-elf-objdump --help r
Show Make Commands

To enable a verbose mode for the make command in the Nios II IDE, perform the 
following steps:

1. On the Window menu, click Preferences. 

2. On the list to the left, click Nios II. 

3. On the Nios II page, turn on Show command lines when running 'make' (i.e. 
Don't use '-s' flag on make).

Show Line Numbers

To enable display of C source-code line numbers in the Nios II IDE, follow these steps:

1. On the Window menu, click Preferences. 

2. On the list to the left, under General, under Editors, select Text Editors.

3. On the Text Editors page, turn on Show line numbers.

Nios II GDB Console and GDB Commands
The Nios II GDB console allows you to send GDB commands to the Nios II processor 
directly. 

First, enable the GDB console on the Debugger tab of the Debug dialog box, by 
turning on Verbose console mode. This mode displays all of the GDB commands that 
are sent to and received by the Nios II processor on the GDB console. 

To display this console, which allows you to view these commands and to enter your 
own GDB commands, click the blue monitor icon on the lower right corner of the 
Nios II Debug perspective. If multiple consoles are connected, click the black arrow 
next to the blue monitor icon to list the available consoles. On the list, select the Nios II 
GDB console. Figure 3–2 shows the console list icon—the blue monitor icon and black 
arrow—that allow you to display the GDB console.
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An example of a useful command you can enter in the Nios II GDB console is
dump binary memory <file> <start_addr> <end_addr> r
This command dumps the contents of a specified address range in memory to a file on 
the host computer. The file type is binary. You can view the generated binary file 
using the HexEdit hexadecimal-format editor that is available from 
www.expertcomsoft.com.

Nios II Terminal Window and stdio Library Functions
If the Nios II processor outputs characters using the stdio library functions, but no 
terminal session exists to receive these characters, the Nios II software system 
deadlocks. If you use the alt_log() function, rather than the printf() function, to 
transmit characters to a nios2-terminal session or to the Nios II IDE terminal window, 
the system does not deadlock if no terminal session is available to receive the 
transmitted characters.

If neither of the consoles is connected, the output buffer fills. Then the system hangs 
on the next stdio library function write. If you select the Reduced Device Drivers 
option on the System Properties page in SOPC Builder, stdout uses the 
polling-mode device driver. This driver polls in a loop, waiting for the character 
output buffer to empty before the driver can transmit more characters. If no real-time 
operating system is running, and the E_WOULD_BLOCK ioctl() control code is 
not sent to the UART driver for the Nios II terminal, the Nios II software system 
hangs waiting to transmit characters as the result of a printf() statement in 
application code.

Figure 3–2. Console List Icon

Console
list
icon
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.expertcomsoft.com


Chapter 3: Debugging Nios II Designs 3–7
Debuggers
f For more information about the alt_log() function, refer to AN459: Guidelines for 
Developing a Nios II HAL Device Driver.

Importing Projects Created Using the Nios II Software Build Tools
Whether a project is created and built using the Nios II software build tools or using 
the Nios II IDE, you can debug the resulting .elf image file in the Nios II IDE. 

f For information about how to import a project created with the Nios II software build 
tools to the Nios II IDE, refer to the "Getting Started" section in the Introduction to the 
Nios II Software Build Tools chapter of the Nios II Software Developer's Handbook.

Selecting a Processor Instance in a Multiple Processor Design
In a design with multiple Nios II processors, you must create a different software 
project for each processor. When you create the application project, the Nios II IDE 
generates a system library. For system library generation, you must specify the CPU 
to which the application project is targeted.

Figure 3–3 shows how you specify the CPU for the application in the Nios II IDE. The 
Nios II C/C++ Application page of the New Project wizard collects the information 
required for system library creation. This page derives the list of available CPU 
choices from the .ptf for the system.

Figure 3–3. Nios II IDE Nios II C/C++ Application Page — CPU Selection
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In the Main tab of the Debug dialog box, shown in Figure 3–4, click the Load JDI File 
button to select the JTAG debug interface (.jdi) file for your SOPC Builder project. The 
.jdi file is typically located in the same directory as the SRAM object file (.sof) for the 
project. The .jdi file is parsed and its contents compared to the name of the CPU you 
select for the current project, to determine the correct instance ID number. The 
command-line option --instance = <instance ID> is appended to the implicit 
debug command that the Nios II IDE runs. The text for the command-line option 
appears in the Additional nios2-download arguments field next to the Load JDI File 
button. Clicking this button ensures that the proper instance ID is used for the 
selected CPU, whether or not the Quartus II software modified the instance IDs.

From the Nios II command shell, the jtagconfig –n command identifies available 
JTAG devices and the number of CPUs in the subsystem connected to each JTAG 
device. Example 3–2 shows the system response to a jtagconfig -n command.

Figure 3–4. Nios II IDE Debug Configuration Page — Load JDI File Button

Load
JDI file
button

Example 3–2. Two-FPGA System Response to jtagconfig Command

[SOPC Builder]$ jtagconfig -n
1) USB-Blaster [USB-0]
120930DD EP2S60
Node 11104600
Node 0C006E00

2) USB-Blaster [USB-1]
020B40DD EP2C35
Node 11104601
Node 11104602
Node 11104600
Node 0C006E00
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The response in Example 3–2 lists two different FPGAs, connected to the running 
JTAG server through different USB-Blaster™ cables. The cable attached to the USB-0 
port is connected to a JTAG node in an SOPC Builder subsystem with a single Nios II 
core. The cable attached to the USB-1 port is connected to a JTAG node in an SOPC 
Builder subsystem with three Nios II cores. The node numbers represent JTAG nodes 
inside the FPGA. The appearance of the node number 0x111046xx in the response 
confirms that your FPGA implementation has a Nios II processor with a JTAG debug 
module. The appearance of a node number 0x0C006Exx in the response confirms 
that the FPGA implementation has a JTAG UART component. The CPU instances are 
identified by the least significant byte of the Nodes beginning with 111. The JTAG 
UART instances are identified by the least significant byte of the Nodes beginning 
with 0C. Instance IDs begin with 0.

Only the CPUs that have JTAG debug modules appear in the listing. Use this listing to 
confirm you have created JTAG debug modules for the Nios II processors you 
intended.

FS2 Console
On Windows platforms, you can use a Nios II-compatible version of the First Silicon 
Solutions, Inc. (FS2) console. The FS2 console is very helpful for low-level system 
debug, especially when bringing up a system or a new board. It provides a TCL-based 
scripting environment and many features for testing your system, from low-level 
register and memory access to debugging your software (trace, breakpoints, and 
single-stepping).

To run the FS2 console in the Nios II IDE, on the Debugger tab of the Debug dialog 
box, turn on Use FS2 console window for trace and watchpoint support. To run the 
FS2 console using the software build tools, use the nios2-console command.

f For more details about the Nios II-compatible version of the FS2 console, refer to the 
FS2-provided documentation in your Nios II installation, at 
$SOPC_KIT_NIOS2\bin\fs2\doc.

In the FS2 console, the sld info command returns information about the JTAG nodes 
connected to the system-level debug (SLD) hubs—one SLD hub per FPGA—in your 
system. If you receive a failure response, refer to the FS2-provided documentation for 
more information.

Use the sld info command to verify your system configuration. After communication 
is established, you can perform simple memory reads and writes to verify basic 
system functionality. The FS2 console can write bytes or words, if Avalon® 
Memory-Mapped (Avalon-MM) interface byteenable signals are present. In 
contrast, the Nios II IDE memory window can perform only 32-bit reads and writes 
regardless of the 8- or 16-bit width settings for the values retrieved. If you encounter 
any issues, you can perform these reads and writes and capture SignalTap® II 
embedded logic analyzer traces of related hardware signals to diagnose a hardware 
level problem in the memory access paths.
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SignalTap II Embedded Logic Analyzer
The SignalTap II embedded logic analyzer can help you to catch some 
software-related problems, such as an interrupt service routine that does not properly 
clear the interrupt signal. 

f For information about the SignalTap II embedded logic analyzer, refer to the Design 
Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of the 
Quartus II Handbook and AN323: Using SignalTap II Embedded Logic Analyzers in SOPC 
Builder Systems, and the Verification and Board Bring-Up chapter of the Embedded Design 
Handbook.

The Nios II plug-in for the SignalTap II embedded logic analyzer enables you to 
capture a Nios II processor's program execution. 

f For more information about the Nios II plug-in for the SignalTap II embedded logic 
analyzer, refer to AN446: Debugging Nios II Systems with the SignalTap II Logic Analyzer. 

Lauterbach Trace32 Debugger and PowerTrace Hardware
Lauterbach Datentechnik GmBH (Lauterbach) (www.lauterbach.com) provides the 
Trace32 ICD-Debugger for the Nios II processor. The product contains both hardware 
and software. In addition to a connection for the 10-pin JTAG connector that is used 
for the Altera USB-Blaster cable, the PowerTrace hardware has a 38-pin mictor 
connection option.

Lauterbach also provides a module for off-chip trace capture. For more information, 
refer to the downloadable Nios II Debugger and Trace document (file name 
debugger_nios.pdf) on the Lauterbach website (www.lauterbach.com). This 
document is also available in the latest distribution of the Lauterbach Trace32 
software. If the document does not appear in your Lauterbach Trace32 installation 
directory, under PDF, Altera recommends that you download the latest distribution 
of the software from the Lauterbach website. Currently, this document is also 
available from the Lauterbach website Support section, under Update Online 
Manuals, as a separate PDF file for download.

Lauterbach also provides an instruction-set simulator for Nios II systems.

The Nios II Debugger and Trace document from Lauterbach contains important 
information about the order in which devices must be powered up. The Lauterbach 
PowerTrace hardware must always be powered when power to the FPGA hardware is 
applied or terminated. The Lauterbach PowerTrace hardware’s protection circuitry is 
enabled after the module is powered up.

Debugging the Lauterbach PowerTrace to Nios II Processor Connection
A script is available for diagnosing difficulties with the Lauterbach PowerTrace 
connection and execution of the Trace32 System.Up command.

f This script is available in the Altera online solutions database. Go to the support 
center at www.altera.com and click Browse Support Solutions, or in the Altera 
website Search field, type rd03052008_529 and click Search.
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C Source Correlation
A script is available for setting up software paths so that the Lauterbach Trace32 
debugger can match source code locations to the loaded .elf file contents. This 
mapping enables the Trace32 software to display source code, and enables you to set 
breakpoints in the displayed C source code files.

f This script is available in the Altera online solutions database. Go to the support 
center at www.altera.com and click Browse Support Solutions, or in the Altera 
website Search field, type rd03052008_123 and click Search.

Registering Trace Signals
Trace signals must have uniform timing. Uniform timing can be achieved by ensuring 
uniform length traces on the board, or by registering the output signals. 

f A solution that includes descriptions for using a single PLL and for registering trace 
signals is available from the Lauterbach website. Refer to the downloadable online 
Nios II Instantiating the Off-chip Trace Logic document (file name app_nios.pdf) on the 
Lauterbach website (www.lauterbach.com). Currently, this document is available 
from the Lauterbach website Support section, under Update Online Manuals, as a 
separate PDF file for download.

Insight and Data Display Debuggers
The Tcl/Tk-based Insight GDB GUI installs with the Altera-specific GNU GDB 
distribution that is part of the Nios II Embedded Design Suite (EDS). To launch the 
Insight debugger from the Nios II command shell, type the following command:
nios2-debug <file>.elf r
Although the Insight debugger has fewer features than the Nios II IDE, this debugger 
supports faster communication between host and target, and therefore provides a 
more responsive debugging experience.

Another alternative debugger is the Data Display Debugger (DDD). This debugger is 
compatible with GDB commands—it is a user interface to the GDB debugger—and 
can therefore be used to debug Nios II software designs. The DDD can display data 
structures as graphs.

Run-Time Analysis Debug Techniques
This section discusses methods and tools available to analyze a running software 
system.

Software Profiling
Altera provides the following tools to profile the run-time behavior of your software 
system:

■ GNU profiler—The Nios II EDS toolchain includes the gprof utility for profiling 
your application. This method of profiling reports how long various functions run 
in your application.
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■ High resolution timer—The SOPC Builder timer peripheral is a simple time 
counter that can determine the amount of time a given subroutine or code segment 
runs. You can read it at various points in the source code to calculate elapsed time 
between timer samples.

■ Performance counter peripheral—The SOPC Builder performance counter 
peripheral can profile several different sections of code with a series of counter 
peripherals. This peripheral includes a simple software API that enables you to 
print out the results of these timers through the Nios II processor's stdio services.

f For more information about how to profile your software application, refer to 
AN391: Profiling Nios II Systems.

f For additional information about the SOPC Builder timer peripheral, refer to the Timer 
Core chapter in volume 5 of the Quartus II Handbook, and to the Developing Nios II 
Software chapter of the Embedded Design Handbook.

f For additional information about the SOPC Builder performance counter peripheral, 
refer to the Performance Counter Core chapter in volume 5 of the Quartus II Handbook.

Watchpoints
Watchpoints provide a powerful method to capture all writes to a global variable that 
appears to be corrupted. The Nios II IDE supports watchpoints directly or through the 
FS2 console. Before you can set watchpoints in the Nios II IDE directly, you must 
make sure that, on the Debugger tab of the Debug dialog box, Use FS2 console 
window for trace and watchpoint support is turned off. 

For more information about watchpoints, refer to the Nios II online Help. In the 
Nios II IDE, on the Help menu, click Search. In the search field, type watchpoint, 
and select the topic Working with breakpoints and watchpoints.

To enable watchpoints, you must configure the Nios II processor’s debug level in 
SOPC Builder to debug level 2 or higher. To configure the Nios II processor’s debug 
level in SOPC Builder to the appropriate level, perform the following steps:

1. On the SOPC Builder System Contents tab, click the desired Nios II processor 
component. A list of options appears.

2. On the list, click Edit. The Nios II processor configuration page appears. 

3. Click the JTAG Debug Module tab, shown in Figure 3–5 on page 3–14. 

4. Select Level 2, Level 3, or Level 4.

5. Click Finish.

Depending on the debug level you select, a maximum of four watchpoints, or data 
triggers, are available. Figure 3–5 on page 3–14 shows the number of data triggers 
available for each debug level. The higher your debug level, the more logic resources 
you use on the FPGA.

f For more information about the Nios II processor debug levels, refer to the 
Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor 
Reference Handbook.
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Stack Overflow
You can enable the Nios II IDE to check for stack overflow. On the System Properties 
configuration page of your system library project, turn on Run time stack checking. 
Stack overflow is a common problem in embedded systems, because their limited 
memory requires that your application have a limited stack size. When your system 
runs a real-time operating system, each running task has its own stack, increasing the 
probability of a stack overflow condition. As an example of how this condition may 
occur, consider a recursive function, such as a function that calculates a factorial 
value. In a typical implementation of this function, factorial(n) is the result of 
multiplying the value n by another invocation of the factorial function, 
factorial(n-1). For large values of n, this recursive function causes many call 
stack frames to be stored on the stack, until it eventually overflows before calculating 
the final function return value.

Hardware Abstraction Layer (HAL)
The Altera HAL provides the interfaces and resources required by the device drivers 
for most SOPC Builder system peripherals. You can customize and debug these 
drivers for your own SOPC Builder system. To learn more about debugging HAL 
device drivers and SOPC Builder peripherals, refer to AN459: Guidelines for Developing 
a Nios II HAL Device Driver.

Breakpoints
You can set hardware breakpoints on code located in read-only memory such as flash 
memory. If you set a breakpoint in a read-only area of memory, a hardware 
breakpoint, rather than a software breakpoint, is selected automatically.

To enable hardware breakpoints, you must configure the Nios II processor’s debug 
level in SOPC Builder to debug level 2 or higher. To configure the Nios II processor’s 
debug level in SOPC Builder to the appropriate level, perform the following steps:

1. On the SOPC Builder System Contents tab, click the desired Nios II processor 
component. A list of options appears.

2. On the list, click Edit. The Nios II processor configuration page appears. 

3. Click the JTAG Debug Module tab, shown in Figure 3–5. 

4. Select Level 2, Level 3, or Level 4.

5. Click Finish.

Depending on the debug level you select, a maximum of four hardware breakpoints 
are available. Figure 3–5 shows the number of hardware breakpoints available for 
each debug level. The higher your debug level, the more logic resources you use on 
the FPGA. 
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f For more information about the Nios II processor debug levels, refer to the 
Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor 
Reference Handbook.

Debugger Stepping and Using No Optimizations
Use the None (–O0) optimization level compiler switch to disable optimizations for 
debugging. Otherwise, the breakpoint and stepping behavior of your debugger may 
not match the source code you wrote. This behavior mismatch between code 
execution and high-level original source code may occur even when you click the 
i button to use the instruction stepping mode at the assembler instruction level. This 
mismatch occurs because optimization and in-lining by the compiler eliminated some 
of your original source code.

To set the None (–O0) optimization level compiler switch in the Nios II IDE, perform 
the following steps:

1. In the Nios II C/C++ perspective, right-click your application project. A list of 
options appears.

2. On the list, click Properties. 

3. In the left pane, click C/C++ Build. 

4. Under Configuration Settings, click the Tool Settings tab.

5. On the list to the left, under Nios II Compiler, click General. 

6. In the Optimization Levels list, click None (-O0). 

Figure 3–5. Nios II Processor — JTAG Debug Module — SOPC Builder Configuration Page
Embedded Design Handbook © June 2008 Altera Corporation
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Conclusion
To set this switch in the Nios II software build tools flow, modify the application 
makefile to assign APP_CFLAGS_OPTIMIZATION := -O0.

Conclusion
Successful debugging of Nios II designs requires expertise in board layout, FPGA 
configuration, and Nios II software tools and application software. Altera and 
third-party tools are available to help you debug your Nios II application. This 
chapter describes debugging techniques and tools to address difficult 
embedded design problems.
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4. Nios II Command-Line Tools
Introduction
This chapter describes the Nios® II command-line tools that are provided with the 
Nios II Embedded Development Suite (EDS). The chapter describes both the Altera® 
tools and the GNU tools. Most of the commands are located in the 
$SOPC_KIT_NIOS2\bin and $SOPC_KIT_NIOS2\sdk2 subdirectories of your 
Nios II EDS installation.

The Altera command line tools are useful for a range of activities, from board and 
system-level debugging to programming an FPGA configuration file (.sof). For these 
tools, the examples expand on the brief descriptions of the Altera-provided 
command-line tools for developing Nios II programs in the Altera-Provided 
Development Tools chapter of the Nios II Software Developer’s Guide. The Nios II GCC 
toolchain contains the GNU Compiler Collection, GNU Binary Utilities (binutils), and 
newlib C library.

1 All of the commands described in this chapter are available in the Nios II 
command shell. For most of the commands, you can obtain help in this shell 
by typing
<command name> --help r
To start the Nios II command shell on Windows platforms, on the Start 
menu, click All Programs. On the All Programs menu, on the Altera 
submenu, on the Nios II EDS <version> submenu, click Nios II <version> 
Command Shell. 
On Linux platforms, type the following command:
$SOPC_KIT_NIOS2/sdk_shell r
The command shell is a Bourne-again shell (bash) with a pre-configured 
environment.

Altera Command-Line Tools for Board Bringup and Diagnostics
This section describes Altera command-line tools useful for Nios development board 
bringup and debugging.

jtagconfig
This command returns information about the devices connected to your host PC 
through the JTAG interface, for your use in debugging or programming. Use this 
command to determine if you configured your FPGA correctly. 

Many of the other commands depend on successful JTAG connection. If you are 
unable to use other commands, check whether your JTAG chain differs from the 
simple, single-device chain used as an example in this chapter.

Type jtagconfig --help from a Nios II command shell to display a list of options 
and a brief usage statement.
Embedded Design Handbook
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jtagconfig Usage Example
To use the jtagconfig command, perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, type the following command:
jtagconfig -n r

Example 4–1 shows a typical system response to the jtagconfig -n command.

The information in the response varies, depending on the particular FPGA, its 
configuration, and the JTAG connection cable type. Table 4–1 describes the 
information that appears in the response in Example 4–1.

The device name is read from the text file pgm_parts.txt in your Quartus® II 
installation. In Example 4–1, the name is EP1S40/_HARDCOPY_FPGA_PROTOTYPE 
because the silicon identification number on the JTAG chain for the FPGA device is 
020050DD, which maps to the names EP1S40<device-specific name>, a couple of 
which end in the string _HARDCOPY_FPGA_PROTOTYPE. The internal nodes are 
nodes on the system-level debug (SLD) hub. All JTAG communication to an Altera 
FPGA passes through this hub, including advanced debugging capabilities such as 
the SignalTap® II embedded logic analyzer and the debugging capabilities in the 
Nios II Integrated Development Environment (IDE).

Example 4–1 illustrates a single cable connected to a single-device JTAG chain. 
However, your computer can have multiple JTAG cables, connected to different 
systems. Each of these systems can have multiple devices in its JTAG chain. Each 
device can have multiple JTAG debug modules, JTAG UART modules, and other 
kinds of JTAG nodes. Use the jtagconfig -n command to help you understand the 
devices with JTAG connections to your host PC and how you can access them.

Example 4–1. jtagconfig Example Response

[SOPC Builder]$ jtagconfig -n
1) USB-Blaster [USB-0]

020050DD   EP1S40/_HARDCOPY_FPGA_PROTOTYPE
Node 11104600
Node 0C006E00

Table 4–1. Interpretation of jtagconfig Command Response

Value Description

USB-Blaster [USB-0] The type of cable. You can have multiple cables connected to your 
workstation.

EP1S40/_HARDCOPY_FPGA_PROTOTYPE The device name, as identified by silicon identification number.

Node 11104600 The node number of a JTAG node inside the FPGA. The appearance of a 
node number between 11104600 and 11046FF, inclusive, in the 
response confirms that you have a Nios II processor with a JTAG debug 
module.

Note 0C006E00 The node number of a JTAG node inside the FPGA. The appearance of a 
node number between 0C006E00 and 0C006EFF, inclusive, in the 
response confirms that you have a JTAG UART component.
Embedded Design Handbook © November 2008 Altera Corporation
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nios2-configure-sof 
This command downloads the specified .sof and configures the FPGA according to its 
contents. At a Nios II command shell prompt, type 
nios2-configure-sof --help for a list of available command-line options. 

1 You must specify the cable and device when you have more than one JTAG cable 
(USB-Blaster™ or ByteBlaster™ cable) connected to your computer or when you have 
more than one device (FPGA) in your JTAG chain. Use the --cable and --device 
options for this purpose.

nios2-configure-sof Usage Example
To use the nios2-configure-sof command, perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, change to the directory in which your .sof is located. By 
default, the correct location is the top-level Quartus II project directory.

3. In the command shell, type the following command:
nios2-configure-sof r
The Nios II IDE searches the current directory for a .sof and programs it through 
the specified JTAG cable.

system-console
The system-console command starts a Tcl-based command shell that supports 
low-level JTAG chain verification and full system-level validation.This tool is 
available in the Nios II EDS starting in version 8.0.

This application is very helpful for low-level system debug, especially when bringing 
up a system. It provides a Tcl-based scripting environment and many features for 
testing your system.

The following important command-line options are available for the 
system-console command:

■ The --script=<your script>.tcl option directs the System Console to run your 
Tcl script.

■ The --cli option directs the System Console to open in your existing shell, rather 
than opening a new window.

■ The --debug option directs the System Console to redirect additional debug 
output to stderr.

■ The --project-dir=<project dir> option directs the System Console to the 
location of your hardware project. Ensure that you’re working with the project 
you intend—the JTAG chain details and other information depend on the specific 
project.

■ The --jdi=<JDI file> option specifies the name-to-node mapping for the JTAG 
chain elements in your project.
© November 2008 Altera Corporation Embedded Design Handbook
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f For System Console usage examples and a comprehensive list of system console 
commands, refer to the System Console User Guide. On-line training is available at 
http://www.altera.com/training.

Altera Command-Line Tools for Hardware Development
This section describes Altera command-line tools useful for hardware project 
development. They are useful for all projects created with SOPC Builder, whether or 
not the project includes a Nios II processor. 

quartus_cmd and sopc_builder
These commands create scripts that automate generation of SOPC Builder systems 
and compilation of the corresponding Quartus II projects.

You can use these commands to create a flow that maintains only the minimum 
source files required to build your Quartus II project. If you copy an existing project to 
use as the basis for development of a new project, you should copy only this 
minimum set of source files. Similarly, when you check in files to your version control 
system, you want to check in only the minimum set required to reconstruct the 
project. 

To reconstruct an SOPC Builder system, the following files are required:

■ <project>.qpf (Quartus II project file)

■ <project>.qsf (Quartus II settings file)

■ <SOPC Builder system>.sopc (SOPC Builder system description)

■ The additional HDL, BDF, or BSF files in your existing project

If you work with the hardware design examples that are provided with the Quartus II 
installation, Altera recommends that you copy each set of source files to a working 
directory to avoid modifying the original source files inadvertently. Run the script on 
the new working directory.

To create a flow that maintains only the minimum source files, perform the following 
steps:

1. Copy the required source files to a working directory, maintaining a correct copy 
of each source file elsewhere. 

2. Change to this working directory.

3. To generate a .sof to configure your FPGA, type the following command sequence:

sopc_builder –-no_splash –s –-generate r
quartus_cmd <project>.qpf -c <project>.qsf r

The shell script in Example 4–2 illustrates these commands. This script automates the 
process of generating SOPC Builder systems and compiling Quartus II projects across 
any number of subdirectories. The script is an example only, and may require 
modification for your project. If you want to compile the Quartus II projects, set the 
COMPILE_QUARTUS variable in the script to 1.
Embedded Design Handbook © November 2008 Altera Corporation
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Example 4–2. Script to Generate SOPC Builder System and Compile Quartus II Projects (Part 1 of 2)

#!/bin/sh
COMPILE_QUARTUS=0
#
# Resolve TOP_LEVEL_DIR, default to PWD if no path provided.
#
if [ $# -eq 0 ]; then

TOP_LEVEL_DIR=$PWD
else

TOP_LEVEL_DIR=$1
fi
echo "TOP_LEVEL_DIR is $TOP_LEVEL_DIR"
echo
#
# Generate SOPC list...
#
SOPC_LIST=`find $TOP_LEVEL_DIR -name "*.sopc"`
#
# Generate Quartus II project list.
#
PROJ_LIST=`find $TOP_LEVEL_DIR -name "*.qpf" | sed s/\.qpf//g`
#
# Main body of the script.  First "generate" all of the SOPC Builder 
# systems that are found, then compile the Quartus II projects.
#
#
# Run SOPC Builder to "generate" all of the systems that were found.
#
for SOPC_FN in $SOPC_LIST
do

cd `dirname $SOPC_FN`
if [ ! -e `basename $SOPC_FN .sopc`.vhd -a ! -e `basename $SOPC_FN .sopc`.v ]; then

echo; echo
echo "INFO:  Generating $SOPC_FN SOPC Builder system."
sopc_builder -s --generate=1 --no_splash
if [ $? -ne 4 ]; then

echo; echo
echo "ERROR:  SOPC Builder generation for $SOPC_FN has failed!!!"
echo "ERROR:  Please check the SOPC file and data " \

"in the directory `dirname $SOPC_FN` for errors."
fi

else
echo; echo
echo "INFO:  HDL already exists for $SOPC_FN, skipping Generation!!!"

fi
cd $TOP_LEVEL_DIR

done
#
# Continued...
#
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c The commands and script in Example 4–2 are provided for example purposes only. 
Altera does not guarantee the functionality for your particular use.

Altera Command-Line Tools for Flash Programming
This section describes the command-line tools for programming your Nios II-based 
design in flash memory.

When you use the Nios II IDE to program flash memory, the Nios II IDE generates a 
shell script that contains the flash conversion commands and the programming 
commands. You can use this script as the basis for developing your own 
command-line flash programming flow.

f For more details about the Nios II IDE and command-line usage of the Nios II Flash 
Programmer and related tools, refer to the Nios II Flash Programmer User Guide.

nios2-flash-programmer
This command programs common flash interface (CFI) memory. Because the Nios II 
flash programmer uses the JTAG interface, the nios2-flash-programmer 
command has the same options for this interface as do other commands. You can 
obtain information about the command-line options for this command with the 
--help option.

nios2-flash-programmer Usage Example
You can perform the following steps to program a CFI device:

1. Follow the steps in “nios2-download” on page 4–9, or use the Nios II IDE, to 
program your FPGA with a design that interfaces successfully to your CFI device.

#
# Now, generate all of the Quartus II projects that were found.
#
if [ $COMPILE_QUARTUS ]; then

for PROJ in $PROJ_LIST
do

cd `dirname $PROJ`
if [ ! -e `basename $PROJ`.sof ]; then

echo; echo
echo "INFO:  Compiling $PROJ Quartus II Project."
quartus_cmd `basename $PROJ`.qpf -c `basename $PROJ`.qsf
if [ $? -ne 4]; then

echo; echo
echo "ERROR:  Quartus II compilation for $PROJ has failed!!!."
echo "ERROR:  Please check the Quartus II project “ \

“in `dirname $PROJ` for details."
fi

else
echo; echo
echo "INFO:  SOF already exists for $PROJ, skipping compilation."

fi
cd $TOP_LEVEL_DIR

done
fi

Example 4–2. Script to Generate SOPC Builder System and Compile Quartus II Projects (Part 2 of 2)
Embedded Design Handbook © November 2008 Altera Corporation
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2. Type the following command to verify that your flash device is detected correctly:

nios2-flash-programmer –debug –base=<base address>r
where <base address> is the base address of your flash device. The base address of 
each component is displayed in SOPC Builder. If the flash device is detected, the 
flash memory’s CFI table contents are displayed.

3. Convert your file to flash format (.flash) using one of the utilities elf2flash, 
bin2flash, or sof2flash described in the section “elf2flash, bin2flash, and 
sof2flash”.

4. Type the following command to program the resulting .flash file in the CFI device:

nios2-flash-programmer –base=<base address> <file>.flashr
5. Optionally, type the following command to reset and start the processor at its reset 

address:

nios2-download –g –rr

elf2flash, bin2flash, and sof2flash
These three commands are often used with the nios2-flash-programmer 
command. The resulting .flash file is a standard .srec file.

The following two important command-line options are available for the elf2flash 
command:

■ The -boot=<boot copier file>.srec option directs the elf2flash command to 
prepend a bootloader S-record file to the converted ELF file.

■ The -after=<flash file>.flash option places the generated .flash file—the 
converted ELF file—immediately following the specified .flash file in flash 
memory.

The -after option is commonly used to place the .elf file immediately following 
the .sof in an erasable, programmable, configurable serial (EPCS) flash device.

c If you use an EPCS device, you must program the hardware image in the device 
before you program the software image. If you disregard this rule your software 
image will be corrupted.

Before it writes to any flash device, the Nios II flash programmer erases the entire 
sector to which it expects to write. In EPCS devices, however, if you generate the 
software image using the elf2flash -after option, the Nios II flash programmer 
places the software image directly following the hardware image, not on the next 
flash sector boundary. Therefore, in this case, the Nios II flash programmer does not 
erase the current sector before placing the software image. However, it does erase the 
current sector before placing the hardware image.

When you use the flash programmer through the Nios II IDE, you automatically 
create a script that contains some of these commands. Running the flash programmer 
creates a shell script (.sh) in the Debug or Release target directory of your project. 
This script contains the detailed command steps you used to program your flash 
memory.

Example 4–3 shows a sample auto-generated script.
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The paths, file names, and addresses in the auto-generated script change depending 
on the names and locations of the files that are converted and on the configuration of 
your hardware design.

bin2flash Usage Example
To program an arbitrary binary file to flash memory, perform the following steps:

1. Type the following command to generate your .flash file:

bin2flash --location=<offset from the base address> \
-input=<your file> --output=<your file>.flash r

2. Type the following command to program your newly created file to flash memory:

nios2-flash-programmer -base=<base address> <your file>.flash r

Altera Command-Line Tools for Software Development and Debug
This section describes Altera command-line tools that are useful for software 
development and debugging.

Example 4–3. Sample Auto-Generated Script:

#!/bin/sh
#
# This file was automatically generated by the Nios II IDE Flash Programmer.
#
# It will be overwritten when the flash programmer options change.
#

cd <full path to your project>/Debug

# Creating .flash file for the FPGA configuration
#"$SOPC_KIT_NIOS2/bin/sof2flash" --offset=0x400000 --input="full path to your SOF" \

--output="<your design>.flash"

# Programming flash with the FPGA configuration
#"$SOPC_KIT_NIOS2/bin/nios2-flash-programmer" --base=0x00000000 --sidp=0x00810828 \

--id=1436046714 --timestamp=1169569475 --instance=0 "<your design>.flash"
#
# Creating .flash file for the project
"$SOPC_KIT_NIOS2/bin/elf2flash" --base=0x00000000 --end=0x7fffff --reset=0x0 \

--input="<your project name>.elf" --output="ext_flash.flash" \
--boot="<path to the bootloader>/boot_loader_cfi.srec"

# Programming flash with the project
"$SOPC_KIT_NIOS2/bin/nios2-flash-programmer" --base=0x00000000 --sidp=0x00810828 \

--id=1436046714 --timestamp=1169569475 --instance=0 "ext_flash.flash"

# Creating .flash file for the read only zip file system
"$SOPC_KIT_NIOS2/bin/bin2flash" --base=0x00000000 --location=0x100000\

--input="<full path to your binary file>" --output="<filename>.flash"

# Programming flash with the read only zip file system
"$SOPC_KIT_NIOS2/bin/nios2-flash-programmer" --base=0x00000000 --sidp=0x00810828 \

--id=1436046714 --timestamp=1169569475 --instance=0 "<filename>.flash"
Embedded Design Handbook © November 2008 Altera Corporation
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nios2-terminal
This command establishes contact with stdin, stdout, and stderr in a Nios II processor 
subsystem. stdin, stdout, and stderr are routed through a UART (standard UART or 
JTAG UART) module within this system.

The nios2-terminal command allows you to monitor stdout, stderr, or both, and 
to provide input to a Nios II processor subsystem through stdin. This command 
behaves the same as the nios2-configure-sof command described in 
“nios2-configure-sof” on page 4–3 with respect to JTAG cables and devices. However, 
because multiple JTAG UART modules may exist in your system, the 
nios2-terminal command requires explicit direction to apply to the correct JTAG 
UART module instance. Specify the instance using the -instance command-line 
option. The first instance in your design is 0 (-instance "0"). Additional instances 
are numbered incrementally, starting at 1 (-instance "1").

nios2-download
This command parses Nios II .elf files, downloads them to a functioning Nios II 
processor, and optionally runs the .elf file.

As for other commands, you can obtain command-line option information with the 
--help option. The nios2-download command has the same options as the 
nios2-terminal command for dealing with multiple JTAG cables and Nios II 
processor subsystems.

nios2-download Usage Example
To download (and run) a Nios II .elf program:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located. If you use the Nios II IDE 
for development, the correct location is often the Debug or Release subdirectory 
of your top-level project.

3. In the command shell, type the following command to download and start your 
program:
nios2-download -g <project name>.elf r

4. Optionally, use the nios2-terminal command to connect to view any output or 
provide any input to the running program.

nios2-stackreport
This command returns a brief report on the amount of memory still available for stack 
and heap from your project's .elf file.

This command does not help you to determine the amount of stack or heap space 
your code consumes during runtime, but it does tell you how much space your code 
has to work in.

Example 4–4 illustrates the information this command provides.
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nios2-stackreport Usage Example
To use the nios2-stackreport command, perform the following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

3. In the command shell, type the following command:

nios2-stackreport <your project>.elf r

validate_zip
The Nios II IDE uses this command to validate that the files you use for the Read Only 
Zip Filing System are uncompressed. You can use it for the same purpose.

validate_zip Usage Example
To use the validate_zip command, perform the following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your .zip file is located.

3. In the command shell, type the following command:

validate_zip <file>.zip r
If no response appears, your .zip file is not compressed.

nios2-ide
On Linux and Windows systems, you can type nios2-ide in a command shell to 
launch the Nios II IDE. On Windows systems, you can also use the Nios II IDE launch 
icon in SOPC Builder.

The nios2-ide command does not call the executable file directly. Instead, it runs a 
simple Bourne shell wrapper script, which calls the nios2-ide executable file. The 
Linux and Windows platform versions of the wrapper script follow.

Linux wrapper script
#!/bin/sh
# This is the linux-gtk version of the nios2-ide launcher script
# set the default workspace location for linux
WORKSPACE="$HOME/nios2-ide-workspace-7.2"
WORKSPACE_ARGS="-data $WORKSPACE"
# if -data is already passed in, we can't specify it
# again when calling nios2-ide
for i in $*
do
  if [ "x$i" = "x-data" ]; then

Example 4–4. nios2-stackreport Command and Response

[SOPC Builder]$ nios2-stackreport <your project>.elf
Info: (<your project>.elf) 6312 KBytes program size (code + initialized data).
Info:                    10070 KBytes free for stack + heap.
Embedded Design Handbook © November 2008 Altera Corporation
Preliminary



Chapter 4: Nios II Command-Line Tools 4–11
Altera Command-Line Tools for Software Development and Debug
        WORKSPACE_ARGS=""
  fi
done
exec $SOPC_KIT_NIOS2/bin/eclipse/nios2-ide -configuration 
$HOME/.nios2-ide-6.1 $WORKSPACE_ARGS "$@"

Windows wrapper script
#!/bin/sh
# This is the win32 version of the nios2-ide launcher script
# It simply invokes the binary with the same arguments as 
# passed in.
# By doing this, the user will default to the same workspace as
# when launched using the Windows shortcut, as "persisted"
# in the configuration/.settings/org.eclipse.ui.ide.prefs file.
cd "$SOPC_KIT_NIOS2/bin/eclipse"
exec ./nios2-ide-console "$@"

nios2-gdb-server
This command starts a GNU Debugger (GDB) JTAG conduit that listens on a specified 
TCP port for a connection from a GDB client, such as a nios2-elf-gdb client. 

Occasionally, you may have to terminate a GDB server session. If you no longer have 
access to the Nios II command shell session in which you started a GDB server 
session, or if the offending GDB server process results from an errant Nios II IDE 
debugger session, you should stop the nios2-gdb-server.exe process on Windows 
platforms, or type the following command on Linux platforms:
pkill -9 -f nios2-gdb-server r

nios2-gdb-server Usage Example
The Nios II IDE and most of the other available debuggers use the 
nios2-gdb-server and nios2-elf-gdb commands for debugging. You should 
never have to use these tools at this low level. However, in case you prefer to do so, 
this section includes instructions to start a GDB debugger session using these 
commands, and an example GDB debugging session.

You can perform the following steps to start a GDB debugger session:

1. Open a Nios II command shell.

2. In the command shell, type the following command to start the GDB server on the 
machine that is connected through a JTAG interface to the Nios II system you wish 
to debug:
nios2-gdb-server --tcpport 2342 --tcppersist r
If the transfer control protocol port 2342 is already in use, use a different port.

Following is the system response:

Using cable "USB-Blaster [USB-0]", device 1, instance 0x00
Pausing target processor: OK
Listening on port 2342 for connection from GDB:

Now you can connect to your server (locally or remotely) and start debugging. 

3. Type the following command to start a GDB client that targets your .elf file:
nios2-elf-gdb <file>.elf r
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Example 4–5 shows a sample session.

Possible commands include the standard debugger commands load, step, 
continue, run, and quit. Press Ctrl+c to terminate your GDB server session.

nios2-debug
This command is a wrapper around the Tcl/Tk-based Insight GDB GUI, which 
installs with the Altera-specific GNU GDB distribution that is part of the Nios II EDS.

The command-line option -save-gdb-script saves the session script, and the 
option -command=<GDB script name> restores a previous GDB session by executing 
its previously saved GDB script. Use this option to restore break and watch points.

f For more information about the Insight GDB GUI, refer to the Insight documentation 
available at sources.redhat.com.

nios2-debug Usage Example
After you generate the .elf file manually or using the Nios II IDE, perform the 
following steps to open an Insight debugger session:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

If you use the Nios II IDE for development, the correct location is often the Debug 
or Release subdirectory of your top-level project.

Example 4–5. Sample Debugging Session

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-cygwin --target=nios2-elf"...
(gdb) target remote <your_host>:2342
Remote debugging using <your_host>:2342
OS_TaskIdle (p_arg=0x0) at sys/alt_irq.h:127
127     {
(gdb) load
Loading section .exceptions, size 0x1b0 lma 0x1000020
Loading section .text, size 0x3e4f4 lma 0x10001d0
Loading section .rodata, size 0x4328 lma 0x103e6c4
Loading section .rwdata, size 0x2020 lma 0x10429ec
Start address 0x10001d0, load size 281068
Transfer rate: 562136 bits/sec, 510 bytes/write.
(gdb) step
.
.
.
(gdb) quit
Embedded Design Handbook © November 2008 Altera Corporation
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3. In the command shell, type the following command:

nios2-debug <file>.elf r
Your .elf file is parsed and downloaded to memory in your Nios II subsystem, and 
the main debugger window opens, with the first executable line in the main() 
function highlighted. This debugger window displays your Insight debugging 
session. Simply click on the Continue menu item to run your code, or set some 
breakpoints to experiment.

Altera Command-Line Nios II Software Build Tools
The Nios II software build tools are command-line utilities available from a Nios II 
command shell that enable you to create application, board support package (BSP), 
and library software for a particular Nios II hardware system. Use these tools to create 
a portable, self-contained makefile-based project that can be easily modified later to 
suit your build flow.

Unlike the Nios II IDE-based flow, proficient use of these tools requires some 
expertise with the GNU make-based software build flow. Before you use these tools, 
refer to the Introduction to the Nios II Software Build Tools and the Using the Nios II 
Software Build Tools chapters of the Nios II Software Developer's Handbook. The 
software_examples directory for each current Nios II development board contains 
examples that use the GNU make-based software build flow. The examples for your 
development board are located in the following location:

$SOPC_KIT_NIOS2/examples/[verilog|vhdl]/<dev_board>/
<design>/software_examples

The following sections summarize the commands available for generating a BSP for 
your hardware design and for generating your application software. Many additional 
options are available in the Nios II software build tools.

f For an overview of the tools summarized in this section, refer to the Introduction to the 
Nios II Software Build Tools chapter of the Nios II Software Developer's Handbook.

f For information on the many additional options available to you in the Nios II 
software build tools, refer to the Introduction to the Nios II Software Build Tools, Using 
the Nios II Software Build Tools, and Nios II Software Build Tools Reference chapters of the 
Nios II Software Developer's Handbook, and the Developing Nios II Software chapter of the 
Embedded Design Handbook.

BSP Related Tools
Use the following command-line tools to create a BSP for your hardware design:

■ nios2-bsp-create-settings creates a BSP settings file.

■ nios2-bsp-update-settings updates a BSP settings file.

■ nios2-bsp-query-settings queries an existing BSP settings file.

■ nios2-bsp-generate-files generates all the files related to a given BSP 
settings file.
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■ nios2-bsp is a script that includes most of the functionality of the preceding 
commands.

■ create-this-bsp is a high-level script that creates a BSP for a specific hardware 
design example.

Application Related Tools
Use the following commands to create and manipulate Nios II application and library 
projects:

■ nios2-app-generate-makefile creates a makefile for your application.

■ nios2-lib-generate-makefile creates a makefile for your application 
library.

■ nios2-c2h-generate-makefile creates a makefile fragment for the C2H 
compiler.

■ create-this-app is a high-level script that creates an application for a specific 
hardware design example.

GNU Command-Line Tools
The Nios II GCC toolchain contains the GNU Compiler Collection, the GNU binutils, 
and the newlib C library. You can follow links to detailed documentation from the 
Nios II EDS documentation launchpad found in your Nios II EDS distribution. To 
start the launchpad on Windows platforms, on the Start menu, click All Programs. On 
the All Programs menu, on the Altera submenu, on the Nios II EDS <version> 
submenu, click Literature. On Linux platforms, run the program in the file 
$SOPC_KIT_NIOS2/documents/index.htm. In addition, more information about the 
GNU GCC toolchain is available on the World Wide Web.

nios2-elf-addr2line
This command returns a source code line number for a specific memory address. The 
command is similar to but more specific than the nios2-elf-objdump command 
described in “nios2-elf-objdump” on page 4–21 and the nios2-elf-nm command 
described in “nios2-elf-nm” on page 4–20.

Use the nios2-elf-addr2line command to help validate code that should be 
stored at specific memory addresses. Example 4–6 illustrates its usage and results:

Example 4–6. nios2-elf-addr2line Utility Usage Example

[SOPC Builder]$ nios2-elf-addr2line --exe=<your project>.elf 0x1000020
${SOPC_KIT_NIOS2}/components/altera_nios2/HAL/src/alt_exception_entry.S:99
Embedded Design Handbook © November 2008 Altera Corporation
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nios2-elf-addr2line Usage Example
To use the nios2-elf-addr2line command, perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, type the following command:

nios2-elf-addr2line <your project>.elf <your_address_0>,\
<your_address_1>,...,<your_address_n> r
If your project file contains source code at this address, its line number appears.

nios2-elf-gdb
This command is a GDB client that provides a simple shell interface, with built-in 
commands and scripting capability. A typical use of this command is illustrated in the 
section “nios2-gdb-server” on page 4–11.

nios2-elf-readelf
Use this command to parse information from your project's .elf file. The command is 
useful when used with grep, sed, or awk to extract specific information from your .elf 
file.

nios2-elf-readelf Usage Example
To display information about all instances of a specific function name in your .elf file, 
perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, type the following command:

nios2-elf-readelf -symbols <project>.elf | grep <function name> r
Example 4–7 shows a search for the http_read_line() function in a .elf file.

Table 4–2 lists the meanings of the individual columns in Example 4–7.

Example 4–7. Search for the http_read_line Function Using nios2-elf-readelf

[SOPC Builder]$ nios2-elf-readelf.exe –s my_file.elf | grep http_read_line
1106: 01001168   160 FUNC    GLOBAL DEFAULT    3 http_read_line

Table 4–2. Interpretation of nios2-elf-readelf Command Response

Value Description

1106 Symbol instance number

0100168 Memory address, in hexadecimal format

160 Size of this symbol, in bytes

FUNC Type of this symbol (function)

GLOBAL Binding (values: GLOBAL, LOCAL, and WEAK)

DEFAULT Visibility (values: DEFAULT, INTERNAL, HIDDEN, and PROTECTED)

3 Index

http_read_line Symbol name
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You can obtain further information about the ELF file format online. Each of the ELF 
utilities has its own man page.

nios2-elf-ar
This command generates an archive (.a) file containing a library of object (.o) files. The 
Nios II IDE uses this command to archive the System Library project.

nios2-elf-ar Usage Example
To archive your object files using the nios2-elf-ar command, perform the 
following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your object files are located.

3. In the command shell, type the following command:
nios2-elf-ar q <archive_name>.a <object files>

Example 4–8 shows how to create an archive of all of the object files in your current 
directory. In Example 4–8, the q option directs the command to append each object file 
it finds to the end of the archive. After the archive file is created, it can be distributed 
for others to use, and included as an argument in linker commands, in place of a long 
object file list.

Linker
Use the nios2-elf-g++ command to link your object files and archives into the 
final executable format, ELF.

Linker Usage Example
To link your object files and archives into a .elf file, open a Nios II command shell and 
call nios2-elf-g++ with appropriate arguments. The following example 
command line calls the linker:

nios2-elf-g++ -T'<linker script>' -msys-crt0='<crt0.o file>' \
-msys-lib=<system library> -L '<The path where your libraries reside>' \
-DALT_DEBUG -O0 -g -Wall -mhw-mul -mhw-mulx -mno-hw-div \
-o  <your project>.elf <object files> -lm r
The exact linker command line to link your executable may differ. When you build a 
project in the Nios II IDE, you can see the command line used to link your application. 
To turn on this option in the Nios II IDE, on the Window menu, click Preferences, 
select the Nios II tab, and enable Show command lines when running make. You 
can also force the command lines to display by running make without the -s option 
from a Nios II command shell.

Example 4–8. nios2-elf-ar Command Response

[SOPC Builder]$ nios2-elf-ar q <archive_name>.a *.o
nios2-elf-ar: creating <archive_name>.a
Embedded Design Handbook © November 2008 Altera Corporation
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1 Altera recommends that you not use the native linker nios2-elf-ld to link your 
programs. For the Nios II processor, as for all softcore processors, the linking flow is 
complex. The g++ (nios2-elf-g++) command options simplify this flow. Most of 
the options are specified by the -m command-line option, but the options available 
depend on the processor choices you make.

nios2-elf-size
This command displays the total size of your program and its basic code sections.

nios2-elf-size Usage Example
To display the size information for your program, perform the following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

3. In the command shell, type the following command:
nios2-elf-size <project>.elf

Example 4–9 shows the size information this command provides.

nios2-elf-strings
This command displays all the strings in a .elf file.

nios2-elf-strings Usage Example
The command has a single required argument:

nios2-elf-strings <project>.elf

nios2-elf-strip
This command strips all symbols from object files. All object files are supported, 
including ELF files, object files (.o) and archive files (.a).

nios2-elf-strip Usage Example
nios2-elf-strip <options> <project>.elf

nios2-elf-strip Usage Notes
The nios2-elf-strip command decreases the size of the .elf file. 

This command is useful only if the Nios II processor is running an operating system 
that supports ELF natively.If ELF is the native executable format, the entire .elf file is 
stored in memory, and the size savings matter.If not, the file is parsed and the 
instructions and data stored directly in memory, without the symbols in any case. 

Linux is one operating system that supports ELF natively; uClinux is another. uClinux 
uses the flat (FLT) executable format, which is translated directly from the ELF.

Example 4–9. nios2-elf-size Command Usage

[SOPC Builder]$ nios2-elf-size my_project.elf
text    data     bss     dec     hex filename
272904    8224 6183420 6464548  62a424 my_project.elf
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nios2-elf-gdbtui
This command starts a GDB session in which a terminal displays source code next to 
the typical GDB console.

The syntax for the nios2-elf-gdbtui command is identical to that for the 
nios2-elf-gdb command described in “nios2-elf-gdb” on page 4–15.

1 Two additional GDB user interfaces are available for use with the Nios II GDB 
Debugger. CGDB, a cursor-based GDB UI, is available at www.sourceforge.net. The 
Data Display Debugger (DDD) is highly recommended.

nios2-elf-gprof
This command allows you to profile your Nios II system. 

f For details about this command and the Nios II IDE-based results GUI, refer to 
AN 391: Profiling Nios II Systems.

nios2-elf-insight
The nios2-debug command described in “nios2-debug” on page 4–12 uses this 
command to start an Insight debugger session on the supplied .elf file.

nios2-elf-gcc and g++
These commands run the GNU C and C++ compiler, respectively, for the Nios II 
processor.

Compilation Command Usage Example
The following simple example shows a command line that runs the GNU C or C++ 
compiler:

nios2-elf-gcc(g++) <options> -o <object files> <C files>
Embedded Design Handbook © November 2008 Altera Corporation
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More Complex Compilation Example
Example 4–10 is a Nios II IDE-generated command line that compiles C code in 
multiple files in many directories.

nios2-elf-c++filt
This command demangles C++ mangled names. C++ allows multiple functions to 
have the same name if their parameter lists differ; to keep track of each unique 
function, the compiler mangles, or decorates, function names. Each compiler mangles 
functions in a particular way. 

f For a full explanation, including more details about how the different compilers 
mangle C++ function names, refer to standard reference sources for the C++ language 
compilers.

nios2-elf-c++filt Usage Example
To display the original, demangled function name that corresponds to a particular 
symbol name, you can type the following command:

nios2-elf-c++filt -n <symbol name> r
For example, 

nios2-elf-c++filt -n _Z11my_functionv r

More Complex nios2-elf-c++filt Example
The following example command line causes the display of all demangled function 
names in an entire file:

nios2-elf-strings <file>.elf | grep ^_Z | nios2-elf-c++filt -n

In this example, the nios2-elf-strings operation outputs all strings in the .elf 
file. This output is piped to a grep operation that identifies all strings beginning with 
_Z. (GCC always prepends mangled function names with _Z). The output of the 
grep command is piped to a nios2-elf-c++filt command. The result is a list of 
all demangled functions in a GCC C++ .elf file. 

Example 4–10. Example nios2-elf-gcc Command Line

nios2-elf-gcc -xc -MD -c \
-DSYSTEM_BUS_WIDTH=32 -DALT_NO_C_PLUS_PLUS -DALT_NO_INSTRUCTION_EMULATION \
-DALT_USE_SMALL_DRIVERS -DALT_USE_DIRECT_DRIVERS -DALT_PROVIDE_GMON \
-I.. -I/cygdrive/c/Work/Projects/demo_reg32/Designs/std_2s60_ES/software/\
reg_32_example_0_syslib/Release/system_description \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_timer/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_timer/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_jtag_uart/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_jtag_uart/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_pio/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_lcd_16207/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_lcd_16207/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_sysid/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_sysid/inc \
-I/cygdrive/c/altera/70_b31/nios2eds/components/altera_nios2/HAL/inc \
-I/cygdrive/c/altera/70_b31/nios2eds/components/altera_hal/HAL/inc \
-DALT_SINGLE_THREADED -D__hal__ -pipe -DALT_RELEASE -O2 -g -Wall\
-mhw-mul -mhw-mulx -mno-hw-div -o obj/reg_32_buttons.o ../reg_32_buttons.c
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nios2-elf-nm
This command list the symbols in a .elf file.

nios2-elf-nm Usage Example
The following two simple examples illustrate the use of the nios2-elf-nm 
command:

■ nios2-elf-nm <project>.elf r
■ nios2-elf-nm <project>.elf | sort -n r

More Complex nios2-elf-nm Example
To generate a list of symbols from your .elf file in ascending address order, use the 
following command:

nios2-elf-nm <project>.elf | sort -n > <project>.elf.nm

The <project>.elf.nm file contains all of the symbols in your executable file, listed in 
ascending address order. In this example, the nios2-elf-nm command creates the 
symbol list. In this text list, each symbol’s address is the first field in a new line. The 
-n option for the sort command specifies that the symbols be sorted by address in 
numerical order instead of the default alphabetical order.

nios2-elf-objcopy
Use this command to copy from one binary object format to another, optionally 
changing the binary data in the process.

Though typical usage converts from or to ELF files, the objcopy command is not 
restricted to conversions from or to ELF files. You can use this command to convert 
from, and to, any of the formats listed in Table 4–3.

f You can obtain information about the TekHex, ihex, and other text-based binary 
representation file formats on the World Wide Web. As of the initial publication of 
this handbook, you can refer to the www.sbprojects.com knowledge-base entry on file 
formats.

Table 4–3. -objcopy Binary Formats

Command
(...-objcopy) Comments

elf32-littlenios2,
elf32-little

Header little endian, data little endian, the default and most commonly used 
format

elf32-bignios2,
elf32-big

Header big endian, data big endian

srec S-Record (SREC) output format

symbolsrec SREC format with all symbols listed in the file header, preceding the SREC data

tekhex Tektronix hexadecimal (TekHex) format

binary Raw binary format
Useful for creating binary images for storage in flash on your embedded system

ihex Intel hexadecimal (ihex) format
Embedded Design Handbook © November 2008 Altera Corporation
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nios2-elf-objcopy Usage Example
To create an SREC file from an ELF file, use the following command: 

nios2-elf-objcopy –O srec <project>.elf <project>.srec 

ELF is the assumed binary format if none is listed. For information about how to 
specify a different binary format, in a Nios II command shell, type the following 
command:

nios2-elf-objcopy --help r 

nios2-elf-objdump
Use this command to display information about the object file, usually an ELF file.

The nios2-elf-objdump command supports all of the binary formats that the 
nios2-elf-objcopy command supports, but ELF is the only format that produces 
useful output for all command-line options.

nios2-elf-objdump Usage Description
The Nios II IDE uses the following command line to generate object dump files:

nios2-elf-objdump -D -S -x <project>.elf > <project>.elf.objdump

nios2-elf-ranlib
Calling nios2-elf-ranlib is equivalent to calling nios2-elf-ar with the -s 
option (nios2-elf-ar -s). 

For further information about this command, refer to “nios2-elf-ar” on page 4–16 or 
type nios2-elf-ar --help in a Nios II command shell.

Referenced Documents
This chapter references the following documents:

■ Altera-Provided Development Tools chapter of the Nios II Software Developer’s Guide

■ AN 391: Profiling Nios II Systems

■ Developing Nios II Software chapter of the Embedded Design Handbook

■ Introduction to the Nios II Software Build Tools chapter of the Nios II Software 
Developer’s Handbook

■ Nios II Flash Programmer User Guide

■ Nios II Software Build Tools Reference chapter of the Nios II Software Developer's 
Handbook

■ Nios II Software Developer's Handbook

■ System Console User Guide

■ Using the Nios II Software Build Tools chapter of the Nios II Software Developer’s 
Handbook

■ Verification and Board Bring-Up chapter of the Embedded Design Handbook
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Document Revision History
Table 4–4 shows the revision history for this chapter.

Table 4–4. Document Revision History

Date and Document 
Version Changes Made Summary of Changes

November 2008
v2.0

Add System Console. Add System Console.

March 2008
v1.0

Initial release. —
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ED51005-1.1
5. Optimizing Nios II C2H Compiler
Results
Introduction
The Nios® II C2H Compiler is a powerful tool that generates hardware accelerators for 
software functions. The C2H Compiler enhances design productivity by allowing you 
to use a compiler to accelerate software algorithms in hardware. You can quickly 
prototype hardware functional changes in C, and explore hardware-software design 
tradeoffs in an efficient, iterative process. The C2H Compiler is well suited to 
improving computational bandwidth, as well as memory throughput. It is possible to 
achieve substantial performance gains with minimal engineering effort.

The structure of your C code affects the results you get from the C2H Compiler. 
Although the C2H Compiler can accelerate most ANSI C code, you might need to 
modify your C code to meet resource usage and performance requirements. This 
document describes how to improve the performance of hardware accelerators, by 
refactoring your C code with C2H-specific optimizations. 

Prerequisites
To make effective use of this chapter, you should be familiar with the following 
topics:

■ ANSI C syntax and usage

■ Defining and generating Nios II hardware systems with SOPC Builder

■ Compiling Nios II hardware systems with the Altera® Quartus® II development 
software

■ Creating, compiling, and running Nios II software projects

■ Nios II C2H Compiler theory of operation

■ Data caching

f To familiarize yourself with the basics of the C2H Compiler, refer to the Nios II C2H 
Compiler User Guide, especially the Introduction to the C2H Compiler and Getting Started 
Tutorial chapters. To learn about defining, generating, and compiling Nios II systems, 
refer to the Nios II Hardware Development Tutorial. To learn about Nios II software 
projects, refer to the Nios II Software Development Tutorial, available in the Nios II IDE 
help system. To learn about data caching, refer to the Cache and Tightly-Coupled 
Memory in the Nios II Processor Reference Handbook. 

Cost and Performance
When writing C code for the C2H Compiler, you can optimize it relative to several 
optimization criteria. Often you must make tradeoffs between these criteria, which are 
listed below:
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Overview of the C2H Optimization Process
■ Hardware cost—C2H accelerators consume hardware resources such as LEs, 
multipliers, and on-chip memory. This document uses the following terms to 
describe the hardware cost of C language constructs:

■ Free—the construct consumes no hardware resources.

■ Cheap—the construct consumes few hardware resources. The acceleration 
obtained is almost always worth the cost.

■ Moderate—the construct consumes some hardware resources. The acceleration 
obtained is usually worth the cost.

■ Expensive—the construct consumes substantial hardware resources. The 
acceleration obtained is sometimes worth the cost, depending on the nature of 
the application.

■ Algorithm performance—A C2H accelerator performs the same algorithm as the 
original C software executed by a Nios II processor. Typically the accelerator uses 
many fewer clock cycles than the software implementation. This document 
describes the algorithm performance of C constructs as fast or slow. The concept of 
algorithm performance includes the concepts of latency and throughput. These 
concepts are defined under “Cycles Per Loop Iteration (CPLI)” on page 5–12.

■ Hardware performance impact—Certain C language constructs, when converted 
to logic by the C2H Compiler, can result in long timing paths that can degrade fMAX 
for the entire system or for the clock domain containing the C2H accelerator. This 
document clearly notes such situations and offers strategies for avoiding them.

Overview of the C2H Optimization Process
It is unlikely that you can meet all of your optimization goals in one iteration. Instead, 
plan on making the one or two optimizations that appear most relevant to your cost 
and performance issues. When you profile your system with the optimized 
accelerator, you can determine whether further optimizations are needed, and then 
you can identify the next most important optimization issue to address. By optimizing 
your accelerator one step at a time, you apply only the optimizations needed to 
achieve your goals.

Getting Started
The most important first step is to decide on a clear performance goal. Depending on 
your application, you may require a specific performance level from your algorithm. 
If you have already selected a target device, and if other hardware in the system is 
well defined, you might have specific hardware cost limitations. Alternatively, if you 
are in early phases of development, you might only have some general guidelines for 
conserving hardware resources. Finally, depending on your design needs and the fMAX 
of your existing design, you might be concerned with possible fMAX degradation. Refer 
to “Meeting Your Cost and Performance Goals” on page 5–3 for more information 
about cost and performance criteria.

The next step is to develop your algorithm in C, and, if possible, test it conventionally 
on the Nios II processor. This step is very helpful in establishing and maintaining 
correct functionality. If the Nios II processor is not fast enough for in-circuit testing of 
your unaccelerated algorithm, consider simulation options for testing.
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Factors Affecting C2H Results
When you are confident of your algorithm's correctness, you are ready to accelerate it. 
This first attempt provides a set of baseline acceleration metrics. These metrics help 
you assess the overall success of the optimization process.

Altera recommends that you maintain two copies of your algorithm in parallel: one 
accelerated and the other unaccelerated. By comparing the results of the accelerated 
and unaccelerated algorithms, you immediately discover any errors which you might 
inadvertently introduce while optimizing the code.

Iterative Optimization
The iteration phase of C2H Compiler optimization consists of these steps:

1. Profile your accelerated system.

2. Identify the most serious performance bottleneck.

3. Identify an appropriate optimization from the “Optimization Techniques” on 
page 5–14 section.

4. Apply the optimization and rebuild the accelerated system.

f For instructions on profiling Nios II systems, refer to AN391: Profiling Nios II Systems.

Meeting Your Cost and Performance Goals
Having a clear set of optimization goals helps you determine when to stop 
optimization. Each time you profile your accelerated system, compare the results with 
your goals. You might find that you have reached your cost and performance goals 
even if you have not yet applied all relevant optimizations.

If your optimization goals are flexible, consider keeping track of your baseline 
acceleration metrics, and the acceleration metrics achieved at each optimization step. 
You might wish to stop if you reach a point of diminishing returns.

Factors Affecting C2H Results
This section describes key differences in the mapping of C constructs by a C compiler 
and the Nios II C2H Compiler. You must understand these differences to create 
efficient hardware. 

C code originally written to run on a processor does not necessarily produce efficient 
hardware. A C compiler and the Nios II C2H Compiler both use hardware resources 
such as adders, multipliers, registers, and memories to execute the C code. However, 
while a C compiler assumes a sequential model of computing, the C2H Compiler 
assumes a concurrent model of computing. A C compiler maps C code to instructions 
which access shared hardware resources. The C2H Compiler maps C code to one or 
more state machines which access unique hardware resources. The C2H Compiler 
pipelines the computation as much as possible to increase data throughput. 
Example 5–1 illustrates this point.
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Factors Affecting C2H Results
The sumfunc() function takes four integer arguments and returns their sum. A C 
compiler maps the function to three add instructions sharing one adder. The 
processor executes the three additions sequentially. The C2H Compiler maps the 
function to one state machine and three adders. The accelerator executes the additions 
for sum1 and sum2 concurrently, followed by the addition for result. The addition 
for result cannot execute concurrently with the sum1 and sum2 additions because 
of the data dependency on the sum1 and sum2 variables.

Different algorithms require different C structures for optimal hardware 
transformation. This chapter lists possible optimizations to identify in C code. Each C 
scenario describes the best methods to refactor the C code. The “Optimization 
Techniques”section discusses how to address the following potential problem areas:

■ Memory Accesses and Variables

■ Arithmetic and Logical Operations

■ Statements

■ Control Flow

■ Subfunction Calls

■ Resource Sharing

■ Data Dependencies

■ Memory Architecture

Memory Accesses and Variables
Memory accesses can occur when your C code reads or writes the value of a variable. 
Table 5–1 provides a summary of the key differences in the mapping of memory 
accesses between a C compiler and the C2H Compiler.

A C compiler generally allocates many types of variables in your data memory. These 
include scalars, arrays, and structures that are local, static, or global. When allocated 
in memory, variables are relatively cheap due to the low cost per bit of memory 
(especially external memory) and relatively slow due to the overhead of load or store 
instructions used to access them. In some situations, a C compiler is able to use 
processor registers for local variables. When allocated in processor registers, these 
variables are relatively fast and expensive.

The C2H Compiler allocates local scalar variables in registers implemented with logic 
elements (LEs), which have a moderate cost and are fast.

A C compiler maps pointer dereferences and array accesses to a small number of 
instructions to perform the address calculation and access to your data memory. 
Pointer dereferences and array accesses are relatively cheap and slow.

Example 5–1. Pipelined Computation

int sumfunc(int a, int b, int c, int d)
{
int sum1 = a + b;
int sum2 = c + d;
int result = sum1 + sum2;
return result;
}
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Factors Affecting C2H Results
The C2H Compiler maps pointer dereferences and array accesses to a small amount of 
logic to perform the address calculation and creates a unique Avalon® 
Memory-Mapped (Avalon-MM) master port to access the addressed memory. This 
mapping is expensive due to the logic required to create an Avalon-MM master port. 
It is slow or fast depending on the type of memory connected to the port. Local arrays 
are fast because the C2H Compiler implements them as on-chip memories.

Arithmetic and Logical Operations
Table 5–2 provides a summary of the key differences in the mapping of arithmetic and 
logical operations between a C compiler and the C2H Compiler.

A C compiler maps arithmetic and logical operations into one or more instructions. In 
many cases, it can map them to one instruction. In other cases, it might need to call a 
function to implement the operation. An example of the latter occurs when a Nios II 
processor that does not have a hardware multiplier or divider performs a multiply 
operation.

The C2H Compiler implements the following logical operations simply as wires 
without consuming any logic at all. 

■ Shifts by a constant

■ Multiplies and divides by a power of two constant

■ Bitwise ANDs and ORs by a constant

As a result, these operations are fast and free. The following is an example of one of 
these operations:

int result = some_int >> 2;

A C compiler maps this statement to a right shift instruction. The C2H Compiler maps 
the statement to wires that perform the shift. 

Table 5–1. Memory Accesses

C Construct C Compiler Implementation
C2H Implementation

Local scalar variables Allocated in memory (cheap, slow) or 
allocated in processor registers 
(expensive, fast)

Allocated in registers based on logic 
elements (LEs) (moderate cost, fast)

Uninitialized local array variables Allocated in memory (cheap, slow) Allocated in on-chip memory. 
(expensive, fast)

Initialized local array variables Allocated in memory (cheap, slow) Allocated in memory (cheap, slow)

All other types of variables Allocated in memory (cheap, slow) Allocated in memory (cheap, slow)

Pointer dereferences and nonlocal array 
accesses

Access normal data memory (cheap, 
slow)

Avalon-MM master port (expensive, 
slow or fast)
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Statements
A C compiler maps long expressions (those with many operators) to instructions. The 
C2H Compiler maps long expressions to logic which could create a long timing path. 
The following is an example of a long expression:

int sum = a + b + c + d + e + f + g + h;

A C compiler creates a series of add instructions to compute the result. The C2H 
Compiler creates several adders chained together. The resulting computation has a 
throughput of one data transfer per clock cycle and a latency of one cycle.

A C compiler maps a large function to a large number of instructions. The C2H 
Compiler maps a large function to a large amount of logic which is expensive and 
potentially degrades fMAX. If possible, remove from the function any C code that does 
not have to be accelerated.

Table 5–2. Arithmetic and Logical Operations

C Construct C Compiler Implementation C2H Implementation

Shift by constant or multiply or divide 
by power of 2 constant. (1)

Example: y = x/2;

Shift instruction (cheap, fast) Wires (free, fast)

Shift by variable

Example: y = x >> z;

Shift instruction (cheap, fast) Barrel shifter (expensive, fast)

Multiply by a value that is not a power 
of 2 (constant or variable

Example: y = x × z;

Multiply operation (cheap, slow) If the Quartus II software can produce 
an optimized multiply circuit (cheap, 
fast); otherwise a multiply circuit 
(expensive, fast)

Divide by a value that is not a power of 
2 (constant or variable)

Example: y = x/z;

Divide operation (cheap, slow) Divider circuit (expensive, slow)

Bitwise AND or bitwise OR with 
constant

Example: y = x | 0xFFFF;

AND or OR instruction (cheap, fast) Wires (free, fast)

Bitwise AND or bitwise OR with variable

Example: y = x & z;

AND or OR instruction (cheap, fast) Logic (cheap, fast)

Notes to Table 5–2:

(1) Dividing by a negative power of 2 is expensive.
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A C compiler maps mutually exclusive, multiple assignments to a local variable as 
store instructions or processor register writes, which are both relatively cheap and 
fast. However, the C2H Compiler creates logic to multiplex between the possible 
assignments to the selected variable. Example 5–2 illustrates such a case.

A C compiler maps this C code to a series of conditional branch instructions and 
associated expression evaluation instructions. The C2H Compiler maps this C code to 
logic to evaluate the conditions and a three-input multiplexer to assign the correct 
value to result. Each assignment to result adds another input to the multiplexer. 
The assignments increase the amount of the logic, and might create a long timing 
path. Table 5–3 summarizes the key differences between the C compiler and C2H 
Compiler in handing C constructs. 

Control Flow
Table 5–4 provides a summary of the differences in the mapping of control flow 
between a C compiler and the C2H Compiler.

If Statements
The C2H compiler maps the expression of the if statement to control logic. The 
statement is controlled by the expression portion of the if statement.

Example 5–2. Multiple Assignments to a Single Variable

int result;
if (a > 100)
{
result = b;
}
else if (a > 10)
{
result = c;
}
else if (a > 1)
{
result = d;
}

Table 5–3. Statements

C Construct C Compiler Implementation C2H Implementation

Long expressions Several instructions (cheap, slow) Logic (cheap, degrades fMAX)

Large functions Many instructions (cheap, slow) Logic (expensive, degrades fMAX)

Multiple assignments to a local variable Store instructions or processor register 
writes (cheap, fast)

Logic (cheap, degrades fMAX)
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Loops
Loops include for loops, do loops, and while loops. A C compiler and the C2H 
Compiler both treat the expression evaluation part of a loop just like the expression 
evaluation in an if statement. However, the C2H Compiler attempts to pipeline each 
loop iteration to achieve a throughput of one iteration per cycle. Often there is no 
overhead for each loop iteration in the C2H accelerator, because it executes the loop 
control concurrently with the body of the loop. The data and control paths pipelining 
allows the control path to control the data path. If the control path (loop expression) is 
dependent on a variable calculated within the loop, the throughput decreases because 
the data path must complete before control path can allow another loop iteration.

The expression, while (++a < 10) { b++ };runs every cycle because there is no 
data dependency. On the other hand, while (a < 10) { a++ }; takes 2 cycles to 
run because the value of <a> is calculated in the loop.

A C compiler maps switch statements to the equivalent if statements or possibly to 
a jump table. The C2H Compiler maps switch statements to the equivalent if 
statements.

Subfunction Calls
A C compiler maps subfunction calls to a few instructions to pass arguments to or 
from the subfunction and a few instructions to call the subfunction. A C compiler 
might also convert the subfunction into inline code. The C2H Compiler maps a 
subfunction call made in your top-level accelerated function into a new accelerator. 
This technique is expensive, and stalls the pipeline in the top-level accelerated 
function. It might result in a severe performance degradation.

Table 5–4. Control Flow

C Construct C Compiler Implementation C2H Implementation

if statements A few instructions (cheap, slow) Logic (cheap, fast)

Loops A few instructions of overhead per loop iteration (cheap, slow) Logic (moderate, fast)

Switch statements A few instructions (cheap, slow) Logic (moderate, fast)

Ternary operation A few instructions (cheap, slow) Logic (cheap, fast)
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However, if the subfunction has a fixed, deterministic execution time, the outer 
function attempts to pipeline the subfunction call, avoiding the performance 
degradation. In Example 5–3, the subfunction call is pipelined. 

Resource Sharing
By default, the C2H Compiler creates unique instances of hardware resources for each 
operation encountered in your C code. If this translation consumes too many 
resources, you can change your C code to share resources. One mechanism to share 
resources is to use shared subfunctions in your C code. Simply place the code to be 
shared in a subfunction and call it from your main accelerated function. The C2H 
Compiler creates only one instance of the hardware in the function, shared by all 
function callers.

Example 5–4 uses a subfunction to share one multiplier between two multiplication 
operations.

Data Dependencies
A data dependency occurs when your C code has variables whose values are 
dependent on the values of other variables. Data dependency prevents a C compiler 
from performing some optimizations which typically result in minor performance 
degradation. When the C2H Compiler maps code to hardware, a data dependency 
causes it to schedule operations sequentially instead of concurrently, which can cause 
a dramatic performance degradation.

Example 5–3. Pipeline Stall

int abs(int a)
{
return (a < 0) ? –a : a;
}
int abs_sum(int* arr, int num_elements)
{
int i;
int result = 0;
for (i = 0; i < num_elements; i++)
{
result += abs(*arr++);
}
return result;
}

Example 5–4. Shared Multiplier

int mul2(int x, int y)
{

return x * y;
}
int muladd(int a, int b, int c, int d)
{

int prod1 = mul2(a, b);
int prod2 = mul2(c, d);
int result = prod1 + prod2;
return result;

}
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The algorithm in Example 5–5 shows data dependency.

The C2H Compiler schedules the additions for sum1 and result sequentially due to 
the dependency on sum1.

Memory Architecture
The types of memory and how they are connected to your system, including the C2H 
accelerator, define the memory system architecture. For many algorithms, appropriate 
memory architecture is critical to achieving high performance with the C2H Compiler. 
With an inappropriate memory architecture, an accelerated algorithm can perform 
more poorly than the same algorithm running on a processor.

Due to the concurrency possible in a C2H accelerator, compute-limited algorithms 
might become data-limited algorithms. To achieve the highest levels of performance, 
carefully consider the best memory architecture for your algorithm and modify your 
C code accordingly to increase memory bandwidth.

For the following discussion, assume that the initial memory architecture is a 
processor with a data cache connected to an off-chip memory such as DDR SDRAM.

The C code in Example 5–6 is data-limited when accelerated by the C2H Compiler 
because the src and dst dereferences both create Avalon-MM master ports that 
access the same Avalon-MM slave port. An Avalon-MM slave port can only handle 
one read or write operation at any given time; consequently, the accesses are 
interleaved, limiting the throughput to the memory bandwidth. 

The C2H Compiler is able to achieve a throughput of one data transfer per clock cycle 
if the code is modified and the appropriate memory architecture is available. The 
changes required to achieve this goal are covered in “Efficiency Metrics” on 
page 5–11.

Example 5–5. Data Dependency

int sum3(int a, int b, int c)
{
int sum1 = a + b;
int result = sum1 + c;
return result;
}

Example 5–6. Memory Bandwidth Limitation

void memcpy(char* dst, char* src, int num_bytes)
{
while (num_bytes-- > 0)
{
*dst++ = *src++;
}
}
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Data Cache Coherency
When a C2H accelerator accesses memory, it uses its own Avalon-MM master port, 
which bypasses the Nios II data cache. Before invoking the accelerator, if the data is 
potentially stored in cache, the Nios II processor must write it to memory, thus 
avoiding the typical cache coherency problem. This cache coherency issue is found in 
any multimaster system that lacks support for hardware cache coherency protocols.

When you configure the C2H accelerator, you choose whether or not the Nios II 
processor flushes the data cache whenever it calls the accelerated function. If you 
enable this option, it adds to the overhead of calling the accelerator and causes the rest 
of the C code on the processor to temporarily run more slowly because the data cache 
must be reloaded.

You can avoid flushing the entire data cache. If the processor never shares data 
accessed by the accelerator, it does not need to flush the data cache. However, if you 
use memory to pass data between the processor and the accelerator, as is often the 
case, it might be possible to change the C code running on the processor to use 
uncacheable accesses to the shared data. In this case, the processor does not need to 
flush the data cache, but it has slower access to the shared data. Alternatively, if the 
size of the shared data is substantially smaller than the size of the data cache, the 
processor only needs to flush the shared data before calling the accelerator.

Another option is to use a processor without a data cache. Running without a cache 
slows down all processor accesses to memory but the acceleration provided by the 
C2H accelerator might be substantial enough to result in the overall fastest solution.

DRAM Architecture
Memory architectures consisting of a single DRAM typically require modification to 
maximize C2H accelerator performance. One problem with the DRAM architecture is 
that memory performance degrades if accesses to it are nonsequential. Because the 
DRAM has only one port, multiple Avalon-MM master ports accessing it concurrently 
prevent sequential accesses by one Avalon-MM master from occurring.

The default behavior of the arbiter in an SOPC Builder system is round-robin. If the 
DRAM controller (such as the Altera Avalon SDRAM controller) can only keep one 
memory bank open at a time, the master ports experience long stalls and do not 
achieve high throughput. Stalls can cause the performance of any algorithm 
accelerated using the C2H Compiler to degrade if it accesses memory nonsequentially 
due to multiple master accesses or nonsequential addressing.

f For additional information about optimizing memory architectures in a Nios II 
system, refer to the Cache and Tightly-Coupled Memory in the Nios II Software Developer’s 
Handbook.

Efficiency Metrics
There are several ways to measure the efficiency of a C2H accelerator. The relative 
importance of these metrics depends on the nature of your application. This section 
explains each efficiency metric in detail.
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Cycles Per Loop Iteration (CPLI)
The C2H report section contains a CPLI value for each loop in an accelerated function. 
The CPLI value represents the number of clock cycles each iteration of the loop takes 
to complete once the initial latency is overcome. The goal is to minimize the CPLI 
value for each loop to increase the data throughput. It is especially important that the 
innermost loop of the function have the lowest possible CPLI because it executes the 
most often.

The CPLI value does not take into account any hardware stalls that might occur. A 
shared resource such as memory stalls the loop if it is not available. If you nest 
looping structures the outer loops stall and, as a result, reduce the throughput of the 
outer loops even if their CPLI equals one. The “Optimization Techniques” on 
page 5–14 section offers methods for maximizing the throughput of loops accelerated 
with the C2H Compiler.

Optimizations that can help CPLI are as follows:

■ Reducing data dependencies

■ Reducing the system interconnect fabric by using the connect_variable 
pragma

fMAX is the maximum frequency at which a hardware design can run. The longest 
register-to-register delay or critical path determines fMAX. The Quartus II software 
reports the fMAX of a design after each compilation.

Adding accelerated functions to your design can potentially affect fMAX in two ways: 
by adding a new critical path, or by adding enough logic to the design that the 
Quartus II fitter fails to fit the elements of the critical path close enough to each other 
to maintain the path's previous delay. The optimizations that can help with fMAX are as 
follows:

■ Pipelined calculations

■ Avoiding division

■ Reducing system interconnect fabric by using the connect_variable pragma

■ Reducing unnecessary memory connections to the Nios II processor

FPGA Resource Usage
Because an accelerated function is implemented in FPGA hardware, it consumes 
FPGA resources such as logic elements and memory. Sometimes, an accelerator 
consumes more FPGA resources than is desired or expected. Unanticipated resource 
usage has the disadvantage of consuming resources that are needed for other logic 
and can also degrade system fMAX.
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Avalon-MM Master Ports
The number of Avalon-MM master ports on the accelerator can heavily influence logic 
utilization. The C2H report, which the Nios II IDE displays after accelerating the 
function, reports how many Avalon-MM ports are generated. Multiple master ports 
can help increase the parallelization of logic when attached to separate memories. 
However, they have a cost in logic, and can also promote the creation of excessive 
arbitration logic when connected to the same memory port, as shown in Figure 5–1.

Embedded Multipliers
Multiplication logic is often available on the FPGA as dedicated hardware or created 
using logic elements. When you use dedicated hardware, be aware that having a large 
amount of multiplication logic can degrade the routing of your design because the 
fitter cannot place the multiplier columns to achieve a better fit. When creating 
multiplication logic from logic elements, be aware that this is expensive in resource 
usage, and can degrade fMAX.

If one of the operands in a multiplication is a constant, the Quartus II software 
determines the most efficient implementation. Example 5–7 shows a optimization the 
Quartus II software might make:

Because the optimized equation includes multiplications by a constant factor of 2, the 
Quartus II software turns them into 2 shifts plus a add.

Figure 5–1. Too Many Master Ports

Example 5–7. Quartus II Software Optimization for Multiplication by a Constant

/* C code mulitplication by a constant */
c = 7 × a;

/* Quartus II software optimization */
c = (4 × a) + (2 × a) + a;
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Embedded Memory
Embedded memory is a valuable resource for many hardware accelerators due to its 
high speed and fixed latency. Another benefit of embedded memory is that it can be 
configured with dual ports. Dual-ported memory allows two concurrent accesses to 
occur, potentially doubling the memory bandwidth. Whenever your code declares an 
uninitialized local array in an accelerated function, the C2H Compiler instantiates 
embedded memory to hold its contents. Use embedded memory only when it is 
appropriate; do not waste it on operations that do not benefit from its high 
performance.

Optimization tips that can help reduce FPGA resource use are:

■ Using wide memory accesses

■ Keeping loops rolled up

■ Using narrow local variables

Data Throughput
Data throughput for accelerated functions is difficult to quantify. The Altera 
development tools do not report any value that directly corresponds to data 
throughput. The only true data throughput metrics reported are the number of clock 
cycles and the average number of clock cycles it takes for the accelerated function to 
complete. One method of measuring the data throughput is to use the amount of data 
processed and divide by the amount of time required to do so. You can use the Nios II 
processor to measure the amount of time the accelerator spends processing data to 
create an accurate measurement of the accelerator throughput.

Before accelerating a function, profile the source code to locate the sections of your 
algorithm that are the most time-consuming. If possible, leave the profiling features in 
place while you are accelerating the code, so you can easily judge the benefits of using 
the accelerator. The following general optimizations can maximize the throughput of 
an accelerated function:

■ Using wide memory accesses

■ Using localized data

f For more information about profiling Nios II systems, refer to Application Note 391: 
Profiling Nios II Systems.

Optimization Techniques

Pipelining Calculations
Although condensing multiple mathematical operations to a single line of C code, as 
in Example 5–8, can reduce the latency of an assignment, it can also reduce the clock 
speed of the entire design. 

Example 5–8. Non-Pipelined Calculation (Lower Latency, Degraded fMAX)

int result = a + b + c + d + e + f + g + h;
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary

http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/an/an391.pdf


Chapter 5: Optimizing Nios II C2H Compiler Results 5–15
Optimization Techniques
Figure 5–2 shows the hardware generated for Example.

Often, you can break the assignment into smaller steps, as shown in Example 5–9. The 
smaller steps increase the loop latency, avoiding fMAX degradation.

Figure 5–3 shows the hardware generated for Example 5–9.

Figure 5–2. Non-Pipelined Calculations

Example 5–9. Pipelined Calculation (Higher Latency, No fMAX Degradation)

int result_abcd = a + b + c + d;
int result_efgh = e + f + g + h;
int result = result_abcd + result_efgh;

Figure 5–3. Pipelined Calculations
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Increasing Memory Efficiency
The following sections discuss coding practices that improve C2H performance.

Use Wide Memory Accesses
When software runs on a processor with a data cache, byte and halfword accesses to 
DRAM become full word transfers to and from the cache to guarantee efficient use of 
memory bandwidth. By contrast, when you make byte and halfword DRAM accesses 
in a C2H accelerator, as shown in Example 5–10, the Avalon-MM master port 
connected to the DRAM uses narrow accesses and fails to take advantage of the full 
data width of the memory. 

Figure 5–4 shows the hardware generated for Example 5–10.

Example 5–10. Narrow Memory Access (Slower Memory Access)

unsigned char narrow_array[1024];
char a, b, c, d;
for(i = 0; i < 1024; i+=4)
{
a = narrow_array[i];
b = narrow_array[i+1];
c = narrow_array[i+2];
d = narrow_array[i+3];
}

Figure 5–4. Narrow Memory Access

a = 8-bit read

c = 8-bit read

d = 8-bit read
i+=4

b = 8-bit read

i < 1024?
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In a situation where multiple narrow memory accesses are needed, it might be 
possible to combine those multiple narrow accesses into a single wider access, as 
shown in Example 5–11. Combining accesses results in the use of fewer memory clock 
cycles to access the same amount of data. Consolidating four consecutive 8-bit 
accesses into one 32-bit access effectively increases the performance of those accesses 
by a factor of four.

Figure 5–5 shows the hardware generated for Example 5–11. 

Example 5–11. Wide Memory Access (Faster Memory Access)

unsigned int *wide_array = (unsigned int *) narrow_array;
unsigned int temp;
for(i = 0; i < 256; i++)
{
temp = wide_array[i];

a = (char)( temp and 0x000000FF);
b = (char)( (temp and 0x0000FF00) >> 8);
c = (char)( (temp and 0x00FF0000) >> 16);
d = (char)( (temp and 0xFF000000) >> 24);
}

Figure 5–5. Wide Memory Access

temp = 32-bit read

i < 256?
true

false

State 0

State 1

a = temp & 0x000000FF
b = temp & 0x0000FF00 >> 8
c = temp & 0x00FF0000 >> 16
d = temp & 0xFF000000 >> 24
i++
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Segment the Memory Architecture
Memory segmentation is an important strategy to increase the throughput of the 
accelerator. Memory segmentation leads to concurrent memory access, increasing the 
memory throughput. There are multiple ways to segment your memory and the 
method used is typically application specific. Refer to Example 5–12 for the following 
discussions of memory segmentation optimizations. 

If the src and dst memory regions can be moved from the DRAM to an on-chip or 
off-chip SRAM, better performance is possible. To add on-chip memories, use SOPC 
Builder to instantiate an on-chip memory component (called onchip_mem_0 in this 
example) with a 32-bit wide Avalon-MM slave port. Add the following pragmas to 
your C code before memcpy:

#pragma altera_accelerate connect_variable memcpy/dst to onchip_mem_0

#pragma altera_accelerate connect_variable memcpy/src to onchip_mem_0

The pragmas state that dst and src only connect to the onchip_mem_0 component. 
This memory architecture offers better performance because SRAMs do not require 
large bursts like DRAMs to operate efficiently and on-chip memories operate at very 
low latencies. Figure Figure 5–6 shows the hardware generated for Example 5–12 with 
the data residing in on-chip RAM.

However, both master ports still share the single-port SRAM, onchip_mem_0, which 
can lead to a maximum throughput of one loop iteration every two clock cycles (a 
CPLI of 2). There are two solutions to this problem: Either create another SRAM so 
that each Avalon-MM master port has a dedicated memory, or configure the 
memories with dual-ports. For the latter solution, open your system in SOPC Builder 
and change the onchip_mem_0 component to have two ports. This change creates 
slave ports called s1 and s2 allowing the connection pragmas to use each memory 
port as follows:

Example 5–12. Memory Copy

void memcpy(char* dst, char* src, int num_bytes)
{
while (num_bytes-- > 0)
{
*dst++ = *src++;
}
}

Figure 5–6. Use On-Chip Memory - Partition Memory for Better Bandwidth
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#pragma altera_accelerate connect_variable memcpy/dst to onchip_mem_0/s1

#pragma altera_accelerate connect_variable memcpy/src to onchip_mem_0/s2

These pragmas state that dst only accesses slave port s1 of the onchip_mem_0 
component and that src only accesses slave port s2 of the onchip_mem_0 
component. This new version of memcpy along with the improved memory 
architecture achieves a maximum throughput of one loop iteration per cycle (a CPLI 
of 1). Figure 5–7 shows the hardware generated for Example 5–12 with the data stored 
in dual-port on-chip RAM.

Use Localized Data
Pointer dereferences and array accesses in accelerated functions always result in 
memory transactions though an Avalon-MM master port. Therefore, if you use a 
pointer to store temporary data inside an algorithm, as in Example 5–13, there is a 
memory access every time that temporary data is needed, which might stall the 
pipeline. 

Often, storing that temporary data in a local variable, as in Example 5–14, increases 
the performance of the accelerator by reducing the number of times the accelerator 
must make an Avalon-MM access to memory. Local variables are the fastest type of 
storage in an accelerated function and are very effective for storing temporary data.

Figure 5–7. Use Dual-Port On-Chip Memory

Example 5–13. Temporary Data in Memory (Slower)

for(i = 0; i < 1024; i++)
{
for(j = 0; j < 10; j++)
{/* read and write to the same location */
AnArray[i] += AnArray[i] * 3; 
}
}
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Although local variables can help performance, too many local variables can lead to 
excessive resource usage. This is a tradeoff you can experiment with when 
accelerating a function with the C2H Compiler.

Reducing Data Dependencies
The following sections provide information on reducing data dependencies.

Use __restrict__  
By default, the C2H Compiler cannot pipeline read and write pointer accesses because 
read and write operations may occur at the same memory location. If you know that 
the src and dst memory regions do not overlap, add the __restrict__ keyword 
to the pointer declarations, as shown in Example 5–15.

The __restrict__ declaration on a pointer specifies that accesses via that pointer 
do not alias any memory addresses accessed by other pointers. Without 
__restrict__, the C2H Compiler must schedule accesses to pointers strictly as 
written which can severely reduce performance.

It is very important that you verify that your algorithm operates correctly when using 
__restrict__ because this option can cause sequential code to fail when 
accelerated. The most common error is caused by a read and write pointer causing 
overlapping accesses to a dual port memory. You might not detect this situation when 
the function executes in software, because a processor can only perform one access at 
a time, however by using __restrict__ you are allowing the C2H Compiler to 
potentially schedule the read and write accesses of two pointers to occur concurrently.

Example 5–14. Temporary Data in Registers (Faster)

int temporary;
for(i = 0; i < 1024; i++)
{
temporary = AnArray[i]; /* read from location i */
for(j = 0; j < 10; j++)
{

 /* read and write to a registered value */
temporary += temporary * 3; 
}
AnArray[i] = temporary; /* write to location i */
}

Example 5–15. __ restrict__  Usage

void memcpy(char* __restrict__ dst, char* __restrict__ src, int 
num_bytes)
{
while (num_bytes-- > 0)
{
*dst++ = *src++;
}
}
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The most common type of data dependency is between scalar data variables. A scalar 
data dependency occurs when an assignment relies on the result of one or more other 
assignments. The C code in Example 5–16 shows a data dependency between sum1 
and result:

A C compiler attempts to schedule the instructions to prevent the processor pipeline 
from stalling. There is no limit to the number of concurrent operations which you can 
exploit with the C2H Compiler. Adding all three integers in one assignment removes 
the data dependency, as shown in Example 5–17. 

The other common type of data dependency is between elements of an array of data. 
The C2H Compiler treats the array as a single piece of data, assuming that all accesses 
to the array overlap. For example, the swap01 function in Example 5–18 swaps the 
values at index 0 and index 1 in the array pointed to by <p>.

Example 5–16. Scalar Data Dependency

int sum3(int a, int b, int c)
{
int sum1 = a + b;
int result = sum1 + c;
return result;
}

Example 5–17. Scalar Data Dependency Removed

int sum3(int a, int b, int c)
{
int result = a + b + c;
return result;
}

Example 5–18. Array Data Dependency

void swap01(int* p)
{
int tmp = p[0];
p[0] = p[1];
p[1] = tmp;
}
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The C2H Compiler is unable to detect that the p[0] and p[1] accesses are to different 
locations so it schedules the assignments to p[0] and p[1] sequentially. To force the 
C2H Compiler to schedule these assignments concurrently, add __restrict__ to 
the pointer declaration, as shown in Example 5–19.

Now, the C2H Compiler attempts to perform the assignments to p[0] and p[1] 
concurrently. In this example, there is only a significant performance increase if the 
memory containing p[0] and p[1] has two or more write ports. If the memory is 
single-ported then one access stalls the other and little or no performance is gained.

A form of scalar or array data dependency is the in-scope data dependency. 
Example 5–20 exhibits an in-scope dependency, because it takes pointers to two arrays 
and their sizes and returns the sum of the contents of both arrays.

There is a dependency on the sum variable which causes C2H accelerator to execute 
the two loops sequentially. There is no dependency on the loop index variable <i> 
between the two loops because the algorithm reassigns <i> to 0 in the beginning of the 
second loop. 

Example 5–19. Array Data Dependency Removed

void swap01(int* p)
{
int* __restrict__ p0 = andp[0];
int* __restrict__ p1 = andp[1];
int tmp0 = *p0;
int tmp1 = *p1;
*p0 = tmp1;
*p1 = tmp0;
}

Example 5–20. In-Scope Data Dependency

int sum_arrays(int* arr_a, int* arr_b,
int size_a, int size_b)
{
int i;
int sum = 0;
for (i = 0; i < size_a; i++)
{
sum += arr_a[i];
}
for (i = 0; i < size_b; i++)
{
sum += arr_b[i];
}
return sum;
}
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Example 5–21 shows a new version of sum_arrays that removes the in-scope 
dependency:

Using separate sum variables in each loop removes the in-scope dependency. The 
accelerator adds the two independent sums together at the end of the function to 
produce the final sum. Each loop runs concurrently although the longest loop 
determines the execution time. For best performance, connect arr_a and arr_b to a 
memory with two read ports or two separate memories.

Sometimes it is not possible to remove data dependencies by simple changes to the C 
code. Instead, you might need to use a different algorithm to implement the same 
functionality. In Example 5–22, the code searches for a value in a linked list and 
returns 1 if the value found and 0 if it is not found. Arguments to the search function 
are the pointer to the head of the linked list and the value to match against.

Example 5–21. In-Scope Data Dependency Removed

int sum_arrays(int* arr_a, int* arr_b,
int size_a, int size_b)
{
int i;
int sum_a = 0;
int sum_b = 0;
for (i = 0; i < size_a; i++)
{
sum_a += arr_a[i];
}
for (i = 0; i < size_b; i++)
{
sum_b += arr_b[i];
}
return sum_a + sum_b;
}

Example 5–22. Pointer-Based Data Dependency

struct item
{
int value;
struct item* next;
};
int search(struct item* head, int match_value)
{
struct item* p;
for (p=head; p != NULL; p=p->next)
{
if (p->value == match_value)
{
return 1; // Found a match
}
}
return 0;  // No match found
}
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The C2H Compiler is not able to achieve a throughput of one comparison per cycle 
due to the p=p->next <p> does not occur until the next pointer location has been 
read from memory, causing a latency penalty to occur each time the loop state 
machine reaches this line of C code. To achieve better performance, use a different 
algorithm that supports more parallelism. For example, assume that the values are 
stored in an array instead of a linked list, as in Example 5–23. Arguments to the new 
search function are the pointer to the array, the size of the array, and the value to 
match against.

This new search function achieves a throughput of one comparison per cycle 
assuming there is no contention for memory containing the arr array. Prototype such 
a change in software before accelerating the code, because the change affects the 
functionality of the algorithm.

Reducing Logic Utilization
The following sections discuss coding practices you can adopt to reduce logic 
utilization.

Use "do-while" rather than "while"
The overhead of do loops is lower than those of the equivalent while and for loops 
because the accelerator checks the loop condition after one iteration of the loop has 
executed. The C2H Compiler treats a while loop like a do loop nested in an if 
statement. Example 5–24 illustrates code that the C2H Compiler transforms into a do 
loop and nested if statement.

Example 5–23. Pointer-Based Data Dependency Removed

int search(int* arr, int num_elements, int match_value)
{
for (i = 0; i < num_elements; i++)
{
if (arr[i] == match_value)
{
return 1;  // Found a match
}
}
return 0;  // No match found
}

Example 5–24. while Loop

int sum(int* arr, int num_elements)
{
int result = 0;
while (num_elements-- > 0)
{
result += *arr++;
}
return result;
}
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Example 5–25 is the same function rewritten to show how the C2H Compiler converts 
a while loop to an if statement and a do loop.

Notice that an extra if statement outside the do loop is required to convert the while 
loop to a do loop. If you know that the sum function is never called with an empty 
array, that is, the initial value of num_elements is always greater than zero, the most 
efficient C2H code uses a do loop instead of the original while loop. Example 5–26 
illustrates this optimization.

Use Constants
Constants provide a minor performance advantage in C code compiled for a 
processor. However, they can provide substantial performance improvements in a 
C2H accelerator. 

Example 5–27 demonstrates a typical add and round function.

Example 5–25. Converted while Loop

int sum(int* arr, int num_elements)
{
int result = 0;
if (num_elements > 0)
{
do
{
result += *arr++;
} while (--num_elements > 0);
}
return result;
}

Example 5–26. do Loop

int sum(int* arr, int num_elements)
{
int result = 0;
do
{
result += *arr++;
} while (--num_elements > 0);
return result;
}

Example 5–27. Add and Round with Variable Shift Value

int add_round(int a, int b, int sft_amount)
{
int sum = a + b;
return sum >> sft_amount;
}
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As written above, the C2H Compiler creates a barrel shifter for the right shift 
operation. If add_round is always called with the same value for sft_amount, you 
can improve the accelerated function's efficiency by changing the sft_amount 
function parameter to a #define value and changing all your calls to the function. 
Example 5–28 is an example of such an optimization.

Alternatively, if add_round is called with a few possible values for sft_amount, 
you can still avoid the barrel shifter by using a switch statement which just creates a 
multiplexer and a small amount of control logic. Example 5–29 is an example of such 
an optimization.

You can also use these techniques to avoid creating a multiplier or divider. This 
technique is particularly beneficial for division operations because the hardware 
responsible for the division is large and relatively slow.

Example 5–28. Add and Round with Constant Shift Value

#define SFT_AMOUNT 1
int add_round(int a, int b)
{
int sum = a + b;
return sum >> SFT_AMOUNT;
}

Example 5–29. Add and Round with a Finite Number of Shift Values

int add_round(int a, int b, int sft_amount)
{
int sum = a + b;
switch (sft_amount)
{
case 1:
return sum >> 1;
case 2:
return sum >> 2;
}
return 0;  // Should never be reached
}
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Leave Loops Rolled Up
Sometimes developers unroll loops to achieve better results using a C compiler. 
Because the C2H Compiler attempts to pipeline all loops, unrolling loops is 
unnecessary for C2H code. In fact, unrolled loops tend to produce worse results 
because the C2H Compiler creates extra logic. It is best to leave the loop rolled up. 
Example 5–30 shows an accumulator algorithm that was unrolled in order to execute 
faster on a processor.

This function is passed an array of 100 integers, accumulates each element, and 
returns the sum. To achieve higher performance on a processor, the developer has 
unrolled the inner loop four times, reducing the loop overhead by a factor of four 
when executed on a processor. When the C2H Compiler maps this code to hardware, 
there is no loop overhead because the accelerator executes the loop overhead 
statements concurrently with the loop body.

As a result of unrolling the code, the C2H Compiler creates four times more logic 
because four separate assignments are used. The C2H Compiler creates four 
Avalon-MM master ports in the loop. However, an Avalon-MM master port can only 
perform one read or write operation at any given time. The four master ports must 
interleave their accesses, eliminating any advantage of having multiple masters.

Example 5–30 shows how resource sharing (memory) can cause parallelism to be 
nullified. Instead of using four assignments, roll this loop up as shown in 
Example 5–31.

Example 5–30. Unrolled Loop

int sum(int* arr)
{
int i;
int result = 0;
for (i = 0; i < 100; i += 4)
{
result += *arr++;
result += *arr++;
result += *arr++;
result += *arr++;
}
return result;
}

Example 5–31. Rolled-Up Loop

int sum(int* arr)
{
int i;
int result = 0;
for (i = 0; i < 100; i++)
{
result += *arr++;
}
return result;
}
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This implementation achieves the same throughput as the previous unrolled example 
because this loop can potentially iterate every clock cycle. The unrolled algorithm 
iterates every four clock cycles due to memory stalls. Because these two algorithms 
achieve the same throughput, the added benefit of the rolling optimization is savings 
on logic resources such as Avalon-MM master ports and additional accumulation 
logic.

Use ++ to Sequentially Access Arrays
The unrolled version of the sum function in Example 5–30 uses *arr++ to 
sequentially access all elements of the array. This procedure is more efficient than the 
alterative shown in Example 5–32.

The C2H Compiler must create pointer dereferences for both arr[i] and *arr++. 
However, the instantiated logic is different for each case. For *arr++ the value used 
to address memory is the pointer value itself, which is capable of incrementing. For 
arr[i] the accelerator must add base address arr to the counter value i. Both 
require counters, however in the case of arr[i] an adder block is necessary, which 
creates more logic.

Avoid Excessive Pointer Dereferences
Any pointer dereference via the dereference operator * or array indexing might create 
an Avalon-MM master port. Avoid using excessive pointer dereference operations 
because they lead to both additional logic which degrades the fMAX of the design. 

1 Any local arrays within the accelerated function instantiate on-chip memory 
resources. Do not declare large local arrays because the amount of on-chip memory is 
limited and excessive use affects the routing of the design.

Avoid Multipliers 
Embedded multipliers have become a standard feature of FPGAs; however, they are 
still limited resources. When you accelerate source code that uses a multiplication 
function, the C2H accelerator instantiates a multiplier. Embedded multiplier blocks 
have various modes that allow them to be segmented into smaller multiplication units 
depending on the width of the data being used. They also have the ability to perform 
multiply and accumulate functionality.

Example 5–32. Traversing Array with Index

int sum(int* arr)
{
int i;
int result = 0;
for (i = 0; i < 100; i++)
{
result += arr[i];
}
return result;
}
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When using multipliers in accelerated code validate the data width of the 
multiplication to reduce the logic. The embedded multiplier blocks handle 9 by 9 
(char *char), 18 by 18 (short *short), and 36 by 36 (long *long) modes which 
are set depending on the size of the largest width input. Reducing the input width of 
multiplications not only saves resources, but also improves the routing of the design, 
because multiplier blocks are fixed resources. If multiplier blocks are not available or 
the design requires too many multiplications, the Quartus II software uses logic 
elements to create the multiplication hardware. Avoid this situation if possible, 
because multipliers implemented in logic elements are expensive in terms of 
resources and design speed.

Multiplications by powers of two do not instantiate multiplier logic because the 
accelerator can implement them with left shift operations. The C2H Compiler 
performs this optimization automatically, so it is not necessary to use the << operator. 
When multiplication is necessary, try to use powers of two in order to save logic 
resources and to benefit from the fast logic created for this operation. An assignment 
that uses a multiplication by a power of two becomes a register-to-register path in 
which the data is shifted in the system interconnect fabric. 

When multiplying by a constant the Quartus II software optimizes the LEs either 
using memory or logic optimizations. Example 5–33 shows an optimization for 
multiplication by a constant.

C2H offloads the intelligence of multiplies, divides, and modulo to Quartus II 
synthesis to do the right thing when possible.

Avoid Arbitrary Division
If at all possible, avoid using arbitrary division in accelerated functions, including the 
modulus % operator. Arbitrary division occurs whenever the divisor is unknown at 
compile time. True division operations in hardware are expensive and slow. 

The exception to this rule is division by denominators which are positive powers of 
two. Divisions by positive powers of two simply become binary right-shift operations. 
Dividing by two can be accomplished by shifting the value right one bit. Dividing by 
four is done by shifting right two bits, and so on. If the accelerated function uses the / 
division operator, and the right-hand argument is a constant power of two, the C2H 
Compiler converts the divide into a fixed-bit shift operation. In hardware, fixed-bit 
shift operations result in only wires, which are free.

Example 5–33. Multiplication by Constants

/* This multiplication by a constant is optimized */
y = a × 3;

/*The optimization is shift and add: (2*a + a = 3*a) */
y = a << 1 + a

Example 5–34. Arbitrary Division (Expensive, Slow):

z = y / x;  /* x can equal any value */
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If a division operation in an accelerated function always uses a denominator that is a 
power of two, but can use various multiples of two, you can use a ternary operation to 
convert the divides to the appropriate fixed-bit shift, as shown in Example 5–35.

Figure 5–8 shows the hardware generated for Example. 

The logic created by this optimization is relatively cheap and fast, consisting of a 
multiplexer and minimal control logic. Because the assignments to z are just shifted 
copies of y the multiplexer is the only logic in the register-to-register path. If there are 
many possible denominator values, explore the tradeoff between latency and 
frequency discussed in the“Improve Conditional Frequency” on page 5–37.

The other possible optimization to avoid generating an expensive and slow division 
circuit is to implement a serial divider. Serial dividers have a high latency, but tend 
not to degrade fMAX. Another benefit of using serial division is the relatively low cost of 
the hardware generated because the operations performed are on bits instead of 
words. 

You can use macros in c2h_division.h and c2h_modulo.h to implement serial 
division or modulo operations in your own system. These files are available on the 
Nios II literature page. A hyperlink to the software files appears next to Optimizing 
Nios II C2H Compiler Results (this document), at www.altera.com/literature/lit-
nio2.jsp. The two header files are distributed in a zip file. 

Example 5–35. Division using Shifts with a Ternary Operator (Cheap, Fast)

z = (x == 2)? y >> 1:((x == 4)? y >> 2: y >> 4);

Figure 5–8. . Ternary Shift Divide

x

z

y >> 1 (zero logic)

>> 4 (zero logic)

>> 2 (zero logic) D Q
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Use Masks
Both the C compiler for a 32-bit processor and the C2H Compiler convert data types 
smaller than integers to 32-bit integers. If you want to override this default behavior to 
save logic and avoid degrading the fMAX of the design, add a bitwise AND with a mask. 
In Example 5–36, the C2H Compiler promotes b1 and b2 to 32-bit integers when 
performing the addition so that it instantiates a 32-bit adder in hardware. However, 
because b1 and b2 are unsigned characters, the sum of b1 and b2 is guaranteed to fit 
in nine bits, so you can mask the addition to save bits. The C2H Compiler still 
instantiates a 32-bit adder but Quartus II synthesis removes the unnecessary bits, 
resulting in a 9-bit adder in hardware. 

1 This optimization can cause a failure if you mistakenly reduce the width of the 
calculation so that needed data resolution is lost. Another common mistake is to use 
bit masks with signed data. Signed data, stored using 2's complement format, requires 
that the accelerator preserve and extend the sign bit through the masking operation.

Use Powers of Two in Multi-Dimensional Arrays
A conventional C compiler implements a multidimensional array as a 
one-dimensional array stored in row-major order. For example, a two-dimensional 
array might appear as follows:

#define NUM_ROWS 10
#define NUM_COLS 12
int arr2d[NUM_ROWS][NUM_COLS];

The first array index is the row and the second is the column. A conventional C 
compiler implements this as a one-dimensional array with NUM_ROWS x 
NUM_COLS elements. The compiled code computes the offset into the 
one-dimensional array using the following equation:

offset = row * NUM_COLS + col;

The C2H Compiler follows this implementation of multidimensional arrays. 
Whenever your C code indexes into a multidimensional array, an implicit 
multiplication is created for each additional dimension. If the multiplication is by a 
power of two, the C2H Compiler implements the multiplication with a wired shift, 
which is free. If you can increase that dimension of the array to a power of two, you 
save a multiplier. This optimization comes at the cost of some memory, which is 
cheap. In the example, just make the following change:

#define NUM_COLS 16

To avoid all multipliers for multidimensional array accesses of <n> dimensions, you 
must use an integer power of two array size for each of the final <n-1> dimensions. 
The first dimension can have any length because it does not influence the decision 
made by the C2H Compiler to instantiate multipliers to create the index.

Example 5–36. Use Bitwise And with a Mask 

unsigned int add_chars(unsigned char b1, unsigned char b2)
{
  return (b1 + b2) & 0x1ff;
}
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Use Narrow Local Variables
The use of local variables that are larger data types than necessary can waste 
hardware resources in an accelerator. Example 5–37 includes a variable that is known 
to contain only the values 0–229. Using a long int variable type for this variable 
creates a variable that is much larger than needed. This type of optimization is usually 
not applicable to pointer variables. Pointers always cost 32 bits, regardless of their 
type. Reducing the type size of a pointer variable affects the size of the data the 
pointer points to, not the pointer itself. It is generally best to use large pointer types to 
take advantage of wide memory accesses. Refer to “Use Wide Memory Accesses” on 
page 5–16 for details.

An unsigned char variable type, as shown in Example 5–38, is large enough 
because it can store values up to 255, and only costs 8 bits of logic, whereas a long 
int type costs 32 bits of logic. Excessive logic utilization wastes FPGA resources and 
can degrade system fMAX.

Optimizing Memory Connections
The following sections discuss ways to optimize memory connectivity. 

Remove Unnecessary Connections to Memory Slave ports
The Avalon-MM master ports associated with the src and dst pointers in 
Example 5–39 are connected to all of the Avalon-MM slave ports that are connected to 
the processor's data master. Typically, the accelerator does not need to access all these 
slave ports. This extra connectivity adds unnecessary logic to the system interconnect 
fabric, which increases the hardware resources and potentially creates long timing 
paths, degrading fMAX.

The C2H Compiler supports pragmas added to your C code to inform the C2H 
Compiler which slave ports each pointer accesses in your accelerator. For example, if 
the src and dst pointers can only access the DRAM (assume it is called dram_0), add 
these pragmas before memcpy in your C code.

Example 5–37. Wide Local Variable i Costs 32 Bits

int i;
int var;
for(i = 0; i < 230; i++)
{
var += *ptr + i;
}

Example 5–38. Narrow Local Variable i Costs 8 Bits

unsigned char i;
int var;
for(i = 0; i < 230; i++)
{
var += *ptr + i;
}
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#pragma altera_accelerate connect_variable memcpy/dst to dram_0

#pragma altera_accelerate connect_variable memcpy/src to dram_0

These pragmas state that dst and src only access the dram_0 component. The C2H 
Compiler connects the associated Avalon-MM ports only to the dram_0 component.

Reduce Avalon-MM Interconnect Using #pragma
Accelerated functions use Avalon-MM ports to access data related to pointers in the C 
code. By default, each master generated connects to every memory slave port that is 
connected to the Nios II data master port. This connectivity can result in large 
amounts of arbitration logic when you generate an SOPC Builder system, which is 
expensive and can degrade system fMAX. In most cases, pointers do not need to access 
every memory in the system.

You can reduce the number of master-slave port connections in your SOPC Builder 
system by explicitly specifying the memories to which a pointer dereference must 
connect. You can make connections between pointers and memories with the 
connect_variable pragma directive, as shown in Example 5–40. In Figure 5–9, 
three pointers, output_data, input_data1, and input_data2 are connected to 

Example 5–39. Memory Interconnect

void memcpy(char* dst, char* src, int num_bytes)
{
while (num_bytes-- > 0)
{
*dst++ = *src++;
}
}
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memories named sdram, onchip_dataram1, and onchip_dataram2, respectively. 
Using the connect_variable pragma directive ensures that each of the accelerated 
function's three Avalon-MM master ports connects to a single memory slave port. The 
result is a more efficient overall because it has no unnecessary master-slave port 
connections.

Example 5–40. Reducing Memory Interconnect

#pragma altera_accelerate connect_variable my_c2h_function/output_data to sdram

#pragma altera_accelerate connect_variable my_c2h_function/input_data1 to onchip_dataram1
#pragma altera_accelerate connect_variable my_c2h_function/input_data2 to onchip_dataram2

void my_c2h_function( int *input_data1,
                      int *input_data2,
                      int* output_data )
{
  char i;
  for( i = 0; i < 52;  i++ )
  {
    *(output_data + i) = *(input_data1 + i) + *(input_data2 + i);
  }
}
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Remove Unnecessary Memory Connections to Nios II Processor
As part of your optimization, you might have added on-chip memories to the system 
to allow an accelerated function access to multiple pointers in parallel, as in “Segment 
the Memory Architecture” on page 5–18. During implementation and debug, it is 
important that these on-chip memories have connections to both the appropriate 
accelerator Avalon-MM master port and to the Nios II data master port, so the 
function can run in both accelerated and non-accelerated modes. In some cases 
however, after you are done debugging, you can remove the memory connections to 
the Nios II data master if the processor does not access the memory when the function 
is accelerated. Removing connections lowers the cost and avoids degrading system 
fMAX.

Optimizing Frequency Versus Latency 
The following sections describe tradeoffs you can make between frequency and 
latency to improve performance.

Figure 5–9. Pragma Connect
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Improve Conditional Latency 
Algorithms that contain if or case statements use registered control paths when 
accelerated. The C2H Compiler accelerates the code show in Example 5–41 in this 
way.

You can modify your software to make use of the ternary operator, (?: ), as in 
Example 5–42, to reduce the latency of the control path. The ternary operator does not 
register signals on the control path, so this optimization results in lower latency at the 
expense of fMAX. This optimization primarily helps reduce the CPLI of the accelerator 
when a data dependency prevents the conditional statement from becoming fully 
pipelined. Do not use this optimization if the CPLI of the loop containing the 
conditional statement is already equal to one.

Figure 5–10 shows the hardware generated for Example 5–42. 

Example 5–41. Registered Control Path

if(testValue < Threshold)
{
a = x;
}
else
{
a = y;
}

Example 5–42. Unregistered Control Path

a = (testValue < Threshold)? x : y;

Figure 5–10. Conditional Latency Improvement
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Improve Conditional Frequency 
If you wish to avoid degrading fMAX in exchange for an increase in latency, consider 
removing ternary operators. By using an if or case statement to replace the ternary 
operator the control path of the condition becomes registered and shortens the timing 
paths in that portion of the accelerator. In the case of the conditional statement being 
executed infrequently (outside of a loop), this optimization might prove a small price 
to pay to increase the overall frequency of the hardware design.

Example 5–43 and Example 5–44 show how you can rewrite a ternary operator as an 
if statement.

Figure 5–11 shows the hardware the C2H Compiler generates for Example 5–44.

Example 5–43. Unregistered Conditional Statement

a = (testValue < Threshold)? x : y;

Example 5–44. Registered Conditional Statement

if(testValue < Threshold)
{
a = x;
}
else
{
a = y;
}

Figure 5–11. Conditional Frequency Improvement
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Improve Throughput 
To increase the computational throughput, focus on two main areas: achieving a low 
CPLI, and performing many operations within one loop iteration.

Avoid Short Nested Loops
Because a loop has a fixed latency before any iteration can occur, nesting looping 
structures can lead to unnecessary delays. The accelerator incurs the loop latency 
penalty each time it enters the loop. Rolling software into loops adds the possible 
benefit of pipelining, and the benefits of this pipelining usually outweigh the latency 
associated with loop structures. Generally, if the latency is greater than the maximum 
number of iterations times the CPLI then the looping implementation is slower. You 
must take into account that leaving a loop unrolled usually increases the resource 
usage of the hardware accelerator.

Assuming no memory stalls occur, the total number of clock cycles is as follows:

 

Due to the high latency of the inner loop the total time for this example is 147 clock 
cycles.

Assuming no memory stalls occur, the total number of clock cycles is as follows:

Example 5–45. Nested Loops

for(loop1 = 0; loop1 < 10; loop1++) /* Latency = 3, CPLI = 2 */
{
  /* statements requiring two clock cycles per loop1 iteration */
  for(loop2 = 0; loop2 < 5; loop2++)  /* Latency = 10, CPLI = 1 */
  {
     /* statements requiring one clock cycle per loop2 iteration */
  }
}

Example 5–46. Single Loop

for(loop1 = 0; loop1 < 10; loop1++) /* Latency = 3, CPLI = 7 */
{
  /* statements requiring two clock cycles per loop1 iteration */
  /* statements that were previously contained in loop2 */
}

Innerloop latency iterations 1–( ) CPLI innerlooptime+( )+=

Innerloop 10 4 1 0+( )+=

Innterloop 14cycles=

Outerloop 3 9 2 14+( )+=

Outerloop 147cycles=

Outerloop latency iterations 1–( ) CPLI innerlooptime+( )+=

Outerloop 3 9 7 0+( )+=

Outerloop 66cycles=
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The inner loop (loop2) has been eliminated and consequently is 0 in these equations. 
Combining the inner loop with the outer loop dramatically decreases the total time to 
complete the same outer loop. This optimization assumes that unrolling the inner 
loop resulted in adding five cycles per iteration to the outer loop. The combination of 
the loops would most likely result in a hardware utilization increase which you must 
take into consideration.

Remove In-place Calculations
Some software algorithms perform in-place calculations, in which results overwrite 
the input data as they are calculated. This technique conserves memory, but produces 
suboptimal performance when compiled to a C2H accelerator. Example 5–47 shows 
such an algorithm. Unfortunately this approach leads to memory stalls because 
in-place algorithms read and write to the same memory locations. 

Figure 5–12 shows the dataflow in hardware generated for Example. 

Example 5–47. Two Avalon-MM Ports Using The Same Memory

for(i = 0; i < 4; i++)
{
for(j = 0; j < 1024; j++)
{
AnArray[j] = (AnArray[j] * 3) >> 1;
}
}

Figure 5–12. In-Place Calculation
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To solve this problem, remove the in-place behavior of the algorithm by adding a 
"shadow" memory to the system, as shown in Example 5–48. Instead of the input and 
output residing in the same memory, each uses an independent memory. This 
optimization prevents memory stalls because the input and output data reside in 
separate memories.

Figure 5–13 shows the dataflow of hardware generated for Example 5–48. 

Example 5–48. Two Avalon-MM Ports Using Separate Memories

int * ptr;
for(i = 0; i < 4; i++)
{
for(j = 0; j < 1024; j++)
{
/* In from one memory and out to the other */
AnArrayOut[j] = (AnArrayIn[j] * 3) >> 1;
}
/* Swap the input and output pointers and do it all
over again */
ptr = AnArrayOut;
AnArrayOut = AnArrayIn;
AnArrayIn = ptr;
}

Figure 5–13. In-Place Calculation
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You can also use this optimization if the data resides in on-chip memory. Most on-
chip memory can be dual-ported to allow for simultaneous read and write access. 
With a dual-port memory, the accelerator can read the data from one port without 
waiting for the other port to be written. When you use this optimization, the read and 
write addresses must not overlap, because that could lead to data corruption. A 
method for preventing a read and a write from occurring simultaneously at the same 
address is to read the data into a variable before the write occurs.

Replace Arrays 
Often software uses data structures that are accessed via a base pointer location and 
offsets from that location, as shown in Example 5–49. When the hardware accelerator 
accesses the data in these structures, memory accesses result.

You can replace these memory accesses using a single pointer and registers, as in 
Example 5–50. The overall structure of the hardware created resembles a FIFO.

Example 5–49. Individual Memory Accesses

int a = Array[0];
int b = Array[1];
int c = Array[2];
int d = Array[3];

Example 5–50. FIFO Memory Accesses

/* initialize variables */
int a = 0;
int b = 0;
int c = 0;
int d = 0;
for(i = 0; i < 4; i++)
{

d = Array[i];
c = d;

b = c;
a = b;

}
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Figure 5–14 shows the hardware generated for Example 5–50.

Use Polled Accelerators
When you create a hardware accelerator using the C2H Compiler, it creates a wrapper 
file that is linked at compile time, allowing the main program to call both the software 
and hardware versions of the algorithm using the same function name. The wrapper 
file performs the following three tasks:

■ Writes the passed parameters to the accelerator

■ Polls the accelerator to determine when the computation is complete

■ Sends the return value back to the caller

Because the wrapper file is responsible for determining the status of the accelerator, 
the Nios II processor must wait for the wrapper code to complete. This behavior is 
called blocking.

The hardware accelerator blocks the Nios II processor from progressing until the 
accelerator has reached completion. The wrapper file is responsible for this blocking 
action. Using the same pragma statement to create the interrupt include file, you can 
access the macros defined in it to implement a custom polling algorithm common in 
systems that do not use a real time operating system. 

Instead of using the interrupt to alert Nios II that the accelerator has completed its 
calculation, the software polls the busy value associated with the accelerator. The 
macros necessary to manually poll the accelerator to determine if it has completed are 
in the include file created under either the Debug or Release directory of your 
application project. These macros are shown in Table 5–5.

While the accelerator is busy, the rest of the software must not attempt to read the 
return value because it might be invalid.

Figure 5–14. Array Replacement
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Table 5–5. C2H Accelerator Polling Macros

Purpose Macro Name

Busy value ACCELERATOR_<Project Name>_<Function Name>_BUSY()

Return value ACCELERATOR_<Project Name>_<Function Name>_GET_RETURN_VALUE()
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Use an Interrupt-Based Accelerator
The blocking behavior of a polled accelerator might be undesirable if there are 
processing tasks which the Nios II processor can carry out while the accelerator is 
running. In this case, you can create an interrupt-based accelerator.

Create the hardware accelerator with the standard flow first, because interrupts add 
an extra level of complexity. Before proceeding to the interrupt flow, debug the 
system to make sure the accelerator behaves correctly. Add enhancements in polled 
mode, as well. 

To use the hardware accelerator in a non-blocking mode, add the following line to 
your function source code:

#pragma altera_accelerate enable_interrupt_for_function<function name>

At the next software compilation, the C2H Compiler creates a new wrapper file 
containing all the macros needed to use the accelerator and service the interrupts it 
generates. The hardware accelerator does not have an IRQ level so you must open the 
system in SOPC Builder and manually assign this value. After assigning the IRQ level 
you must click the Generate button to regenerate your SOPC Builder system.

The macros necessary to service the accelerator interrupt are in the include file created 
under either the Debug or Release directory of your application project. These macros 
are shown in Table 5–6.

f Refer to the Exception Handling chapter in the Nios II Software Developer's Handbook for 
more information about creating interrupt service routines.

Glossary
This document uses the following terminology:

■ Accelerator throughput—the throughput achieved by a C2H accelerator during a 
single invocation. Accelerator throughput might be less than peak throughput if 
pipeline stalls occur. Accelerator throughput does not include latency. See also 
CPLI, throughput, peak throughput, application throughput.

■ Application throughput—the throughput achieved by a C2H accelerator in the 
context of the application, involving multiple accelerator invocations and 
including the number of cycles of latency.

■ Barrel shifter – hardware that shifts a byte or word of data an arbitrary number of 
bits in one clock cycle. Barrel shifters are fast and expensive, and can degrade fMAX.

Table 5–6. C2H Accelerator Interrupt Macros

Purpose Macro Name

IRQ level value ACCELERATOR_<Project Name>_<Function Name>_IRQ()

Return value ACCELERATOR_<Project Name>_<Function Name>_GET_RETURN_VALUE()

Interrupt clear ACCELERATOR_<Project Name>_<Function Name>_CLEAR_IRQ()
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■ Cache coherency—the integrity of cached data. When a processor accesses 
memory through a cache and also shares that memory with a coprocessor (such as 
a C2H accelerator), it must ensure that the data in memory matches the data in 
cache whenever the coprocessor accesses the data. If the coprocessor can access 
data in memory that has not been updated from the cache, there is a 
cache-coherency problem.

■ Compute-limited—describes algorithms whose speed is restricted by how fast 
data can be processed. When an algorithm is compute-limited, there is no benefit 
from increasing the efficiency of memory or other hardware. See also data-limited.

■ Control path—a chain of logic controlling the output of a multiplexer

■ CPLI—cycles per loop iteration. The number of clock cycles required to execute 
one loop iteration. CPLI does not include latency.

■ Critical timing path—the longest timing path in a clock domain. The critical 
timing path limits fMAX or the entire clock domain. See also timing path.

■ Data dependency—a situation where the result of an assignment depends on the 
result of one or more other assignments, as in Example 5–5.

■ Data-limited—describes algorithms whose speed is restricted by how fast data 
can be transferred to or from memory or other hardware. When an algorithm is 
data-limited, there is no benefit from increasing processing power. See also 
compute-limited.

■ DRAM—dynamic random access memory. It is most efficient to access DRAM 
sequentially, because there is a time penalty when it is accessed randomly. 
SDRAM is a common type of DRAM.

■ Latency—a time penalty incurred each time the accelerator enters a loop. 

■ Long timing path—a critical timing path that degrades fMAX.

■ Peak throughput—the throughput achieved by a C2H accelerator, assuming no 
pipeline stalls and disregarding latency. For a given loop, peak throughput is 
inversely proportional to CPLI. See also throughput, accelerator throughput, 
application throughput, CPLI, latency.

■ Rolled-up loop—A normal C loop, implementing one algorithmic iteration per 
processor iteration. See also unrolled loop.

■ SDRAM—synchronous dynamic random access memory. See DRAM.

■ SRAM—static random access memory. SRAM can be accessed randomly without 
a timing penalty.

■ Subfunction—a function called by an accelerated function. If apple() is a 
function, and apple() calls orange(), orange() is a subfunction of apple(). 
If orange() calls banana(), banana() is also a subfunction of apple().

■ Throughput—the amount of data processed per unit time. See also accelerator 
throughput, application throughput, and peak throughput.

■ Timing path—a chain of logic connecting the output of a hardware register to the 
input of the next hardware register.
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■ Unrolled loop—A C loop that is deconstructed to implement more than one 
algorithmic iteration per loop iteration, as illustrated in Example 5–30. See also 
rolled-up loop.

Referenced Documents
This chapter references the following documents:

■ AN391: Profiling Nios II Systems

■ Cache and Tightly-Coupled Memory in the Nios II Processor Reference Handbook 

■ Exception Handling chapter in the Nios II Software Developer's Handbook

■ Nios II C2H Compiler User Guide

■ Nios II Hardware Development Tutorial

■ Nios II Processor Reference Handbook

Document Revision History
Table 5–7 shows the revision history for this chapter.
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Corrected Table of Contents —
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v1.0
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Section III. System-Level Design
This section of the Embedded Design Handbook recommends design styles and 
practices for developing, verifying, debugging, and optimizing hardware for use in 
Altera FPGAs. The section introduces concepts to new users of Altera’s devices and 
helps to increase the design efficiency of the experienced user.

This section includes the following chapters:

■ Chapter 6, Avalon Memory-Mapped Design Optimizations

■ Chapter 7, Memory System Design

■ Chapter 8, Hardware Acceleration and Coprocessing

■ Chapter 9, Verification and Board Bring-Up

■ Chapter 10, Interfacing an External Processor to an Altera FPGA

1 For information about the revision history for chapters in this section, refer to each 
individual chapter for that chapter’s revision history. 
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ED51007-1.1
6. Avalon Memory-Mapped Design
Optimizations
The Avalon® Memory-Mapped (Avalon-MM) system interconnect fabric is a flexible, 
partial crossbar fabric that connects master and slave components. Understanding 
and optimizing this system interconnect fabric in can help you create higher 
performance designs. When you use the Altera® system-on-a-programmable-chip 
(SOPC) design tool, SOPC builder automatically generates optimized interconnect 
logic to your specifications, saving you from time-consuming and error-prone task. 

This chapter provides recommendations to optimize the performance, resource 
utilization, and power consumption of your Avalon-MM design. The following topics 
are discussed:

■ Selecting Hardware Architecture

■ Understanding Concurrency

■ Increasing Transfer Throughput

■ Increasing System Frequency

■ Reducing Logic Utilization

■ Reducing Power Utilization 

One of the key advantages of FPGAs for system design is the high availability of 
parallel resources. SOPC Builder uses the parallel resources inherent in the FPGA 
fabric to maximize concurrency. You use the SOPC Builder GUI to specify the 
connectivity between blocks of your design. SOPC Builder automatically generates 
the optimal HDL from your specification.

Selecting Hardware Architecture
Hardware systems typically use one of four architectures to connect the blocks of a 
design:

■ Bus

■ Full Crossbar Switch

■ Partial Crossbar Switch

■ Streaming

No single architecture can be used efficiently for all systems. The following sections 
discuss the characteristics, advantages and disadvantages of each of these 
interconnect architectures. 
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Bus
Bus architectures can achieve relatively high clock frequencies at the expense of little 
or no concurrency. Bus architectures connect masters and slaves using a common 
arbitration unit. The arbiter must grant a master access to the bus before a data 
transfer can occur. A shared bus architecture can lead to a significant performance 
penalty in systems with many bus masters because all masters compete for access to 
the shared bus rather than a particular slave device. 

Full Crossbar Switch
Crossbar switches, unlike bus architectures, support concurrent transactions. A 
crossbar switch allows any number of masters to connect to any number of slaves. 
Networking and high performance computing applications typically use crossbars 
because they are flexible and provide high throughput. Crossbars are implemented 
with large multiplexers. The crossbar switch includes the arbitration function. 
Crossbars provide a high degree of concurrency. The hardware resource utilization 
grows exponentially as more masters and slaves are added; consequently, FPGA 
designs avoid large crossbar switches because logic utilization must be optimized.

Figure 6–1. Bus Architecture
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Partial Crossbar Switch
In many embedded systems, individual masters only require connectivity to a subset 
of the slaves so that a partial crossbar switch provides the optimal connectivity. There 
are two significant advantages to the partial crossbar switch: 

■ The reduction in connectivity results in system interconnect fabric that operates at 
higher clock frequencies

■ The system interconnect fabric consumes fewer resources.

These two advantages make partial crossbar switches ideal for ASIC or FPGA 
interconnect structures. Figure 6–3 illustrates an SOPC Builder system with masters 
and slaves connected by a partial crossbar switch. 

Figure 6–2. Crossbar Switch
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SOPC Builder generates logic that implements the partial crossbar system 
interconnect fabric using slave side arbitration. An arbiter included in the system 
interconnect fabric performs slave side arbitration. This architecture significantly 
reduces the contention for resources that is inherent in a shared bus architecture. The 
arbiter selects among all requesting masters so that unless two or more masters are 
requesting access in the same cycle, there is no contention. In contrast, a shared bus 
architecture requires all masters to arbitrate for the bus, regardless of the actual slave 
device to which the masters requires access. 

In Figure 6–3, the system CPU has its own program memory and I/O; there is never 
any contention for these two slave resources. The system CPU shares a memory with 
the DSP master; consequently, there is a slave-side arbiter to control access. The DSP 
is the only master that accesses the custom hardware accelerator; there is no 
contention for this device. The DSP and I/O CPU master share a memory, and access 
is controlled by a slave-side arbiter. The I/O CPU master has it own program memory 
and I/O device. 

The partial crossbar switch that SOPC Builder generates is ideal in FPGA designs 
because SOPC Builder only generates the logic necessary to connect masters and 
slaves that communicate with each other. Using SOPC Builder, you gain the 
performance of a switch fabric with the flexibility of an automatically generated 
interconnect architecture. Because SOPC Builder automatically generates the system 
interconnect fabric, you can regenerate it automatically if your system design 
changes. 

Figure 6–3. Partial Crossbar Switch – SOPC Builder System Interconnect
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Streaming
Applications that require high speed data transfers use streaming interconnect. SOPC 
Builder supports Avalon Streaming (Avalon-ST) which creates point-to-point 
connections between source and sink components. Each streaming connection 
includes a single source and sink pair, eliminating arbitration. Because SOPC Builder 
supports both partial crossbar and streaming connections you can design systems that 
require the partial crossbar for the control plane, typically used to program registers 
and set up data transfers, and streaming for the data plane, typically used for high 
speed data transfers. 

Full and partial crossbar switches and streaming architectures are all commonly used 
to implement data planes. The control plane usually includes a processor or state 
machine to control the flow of data. Full or partial crossbar switches or a shared bus 
architecture implement control planes.

SOPC Builder generates interconnect logic for both data and control planes. The 
system interconnect fabric connects Avalon-MM and Avalon-ST interfaces 
automatically based on connectivity information that you provide. Figure 6–4 shows a 
video processing application designed using SOPC Builder. This application uses 
Avalon-MM interfaces for control and Avalon-ST interfaces to transfer data. The 
video imaging pipeline includes five hardware blocks with Avalon-ST interfaces: a 
video decoder, a frame buffer, a two-dimensional filter, a compression engine and a 
direct memory access (DMA) master. All of the hardware blocks, with the exception 
of the video decoders, also include an Avalon-MM interface for control. 
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Dynamic Bus Sizing
A common issue in system design is integration of hardware blocks of different data 
widths. SOPC Builder automatically adapts mixed width Avalon-MM components by 
inserting the correct adapter logic between masters and slaves of different widths. For 
example, if you connect a 32-bit master to a 16-bit slave, the system interconnect fabric 
creates an adapter that segments the 32-bit transfer into two, separate 16-bit transfers. 
In creating adapters, the system interconnect fabric employs byte enables to qualify 
each byte lane. 

Figure 6–4. Video Data and Control Planes
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Understanding Concurrency
One of the key benefits of designing with FPGAs is the re-programmable parallel 
hardware. Because the underlying FPGA structure supports massive parallelism, the 
system interconnect fabric is tailored to utilize parallel hardware. You can use parallel 
hardware to create concurrency so that several computational processes are executing 
at the same time. 

The following sections outline other design choices you can make to increase the 
concurrency in your system.

Create Multiple Masters
Your system must have multiple masters to take advantage of the concurrency that 
the system interconnect fabric supports. Systems that include a Nios® II processor 
always contain at least two masters, because the Nios II processor includes separate 
instruction and data masters. Master components typically fall into three main 
categories:

■ General purpose processors, such as Nios II

■ DMA engines

■ Communication interfaces, such as PCI Express

Because SOPC Builder generates system interconnect fabric with slave side 
arbitration, every master in your system can issue transfers concurrently. As long as 
two or more masters are not posting transfers to a single slave, no master stalls. The 
system interconnect fabric contains the arbitration logic that determines wait states 
and drives the waitrequest signal to the master when a slave must stall. Figure 6–5 
illustrates a system with three masters. The bold wires in this figure indicate 
connections that can be active simultaneously.
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Create Separate Datapaths
Concurrency is limited by the number of masters sharing any particular slave because 
the system interconnect fabric uses slave side arbitration. If your system design 
requires higher data throughput, you can increase the number of masters and slaves 
to increase the number of transfers that occur simultaneously.

Use DMA Engines
DMA engines also increase data throughput. Because a DMA engine transfers all data 
between a programmed start and end address without any programmatic 
intervention, the data throughput is dictated by the components connected to the 
DMA. The factors that affect data throughput include data width and clock frequency. 
By including more DMA engines, a system can sustain more concurrent read and 
write operations as Figure 6–6 illustrates.

Figure 6–5. Multi Master Parallel Access
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Include Multiple Master or Slave Ports
Creating multiple slave ports for a particular function increases the concurrency in 
your design. Figure 6–7 illustrates two channel processing

Figure 6–6. Single or Dual DMA Channels
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systems. In the first, four hosts must arbitrate for the single slave port of the channel 
processor. In the second, each host drives a dedicated slave port, allowing all masters 
to access the component’s slave ports simultaneously.

Create Separate Sub-Systems
You can also use hierarchy to sub-divide a system into smaller, more manageable 
sub-systems. This form of concurrency is implemented by limiting the number of 
slaves to which a particular master connects. You can create multiple independent 
sub-systems within a single SOPC Builder system. When communication between 
sub-systems is necessary, you can use shared memory, message passing, or FIFOs to 
transfer information. 

Figure 6–7. Before and After Separate Slaves
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f For more information, refer to Creating Multiprocessor Nios II Systems Tutorial and 
Multiprocessor Coordination Peripherals. 

Alternatively, if the subsystems are identical, you can design a single SOPC Builder 
system and instantiate it multiple times in your FPGA design. This approach has the 
advantage of being easier to maintain than a heterogeneous system. In addition, such 
systems are easier to scale because once you know the logic utilization and efficiency 
of a single instance, you can estimate how much logic is necessary for multiple 
subsystems. Systems that process multiple data channels are frequently designed by 
instantiating the same sub-system for each channel.

Figure 6–8. Message Passing
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Increasing Transfer Throughput
Increasing the transfer efficiency of the master and slave ports in your system 
increases the throughput of your design. Designs with strict cost or power 
requirements benefit from increasing the transfer efficiency because less expensive, 
lower frequency devices can be used. At the other end of the spectrum, designs 
requiring high performance also benefit from increased transfer efficiency because it 
improves the performance of frequency–limited hardware.

Using Pipelined Transfers
Pipelined transfers increase the read efficiency by allowing a master to post multiple 
reads before data from the earlier reads returns. Masters that support pipelined 
transfers post transfers continuously, relying on the readdatavalid signal to 
indicate valid data. Slaves support pipelined transfers by including the 
readdatavalid signal or operating with a fixed read latency.

Figure 6–9. Multi-Channel System
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Maximum Pending Reads
SOPC Builder updates the maximum pending reads property when it generates the 
system interconnect fabric. If you create a custom component with a slave port 
supporting reads, you must specify this value in the Component Editor. This value 
represents the maximum number of read transfers your pipelined slave component 
can handle. If the number of reads presented to the slave port exceeds the maximum 
pending reads parameter your component must assert waitrequest.

Selecting the Maximum Pending Reads Value
Optimizing the value of the maximum pending reads parameter requires a good 
understanding of the latencies of your custom components. This parameter should be 
based on the component’s longest delay. For example, if your pipelined component 
has two modes, one requiring two clock cycles and the other five, set the maximum 
pending reads value to five. Doing so allows your component to pipeline five 
transfers, eliminating dead cycles after the initial five-cycle latency. 

Another way to determine the correct value for the maximum pending reads 
parameter is to monitor the number of reads that are actually pending during system 
simulation or while running the actual hardware. To use this method, set the 
maximum pending reads to a very high value and use a master that issues read 
requests on every clock. You can use a DMA for this task as long as the data is written 
to a location that does not assert waitrequest frequently. If you run this experiment 
with the actual hardware, you can use a logic analyzer or built-in monitoring 
hardware to observe your component.

Overestimating Versus Underestimating the Maximum Pending Reads Value
Choosing the correct value for the maximum pending reads value of your custom 
pipelined read component is very important. If you underestimate the maximum 
pending reads value you either loose data or cause a master port to stall indefinitely. 
The system interconnect fabric has no timeout mechanism to handle long delays. 

The maximum pending reads value dictates the depth of the readdatavalid FIFO 
inserted into the system interconnect fabric for each master connected to the slave. 
Because this FIFO is only one bit wide it does not consume significant hardware 
resources. Overestimating the maximum pending reads value for your custom 
component results in a slight increase in hardware utilization. For these reasons, if 
you are not sure of the optimal value, it is better to overestimate this value.

Pipelined Read Masters
A pipelined read master can post multiple reads before data returns. Pipelined read 
masters hide the latency of read operations by posting reads as frequently as every 
clock cycle. A pipelined read master can prefetch data when no data dependencies are 
present. Examples of common pipelined read masters include the following:

■ DMA engines

■ Nios II processor (with a cache line size greater than four bytes)

■ C2H read masters
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Requirements
The logic for the control and datapaths of pipelined read masters must be carefully 
designed. The control logic must extend a read cycle whenever the waitrequest 
signal is asserted. This logic must also control the master address, byteenable, 
and read signals. To achieve maximum throughput, pipelined read masters should 
post reads continuously as long as waitrequest is deasserted. While read is 
asserted the address presented to the system interconnect fabric is stored.

The datapath logic includes the readdata and readdatavalid signals. If your 
master can return data on every clock cycle, you can register the data using 
readdatavalid as the enable bit. If your master cannot handle a continuous stream 
of read data, it must buffer the data in a FIFO. The control logic must stop issuing 
reads when the FIFO reaches a predetermined fill level. 

f Refer to the Avalon Interface Specifications to learn more about the signals that 
implement a pipelined read master. 

Throughput Improvement 
The throughput gain that you achieve by using a pipelined read master is typically 
directly proportional to the latency of the slave port. For example, if the read latency is 
two cycles, you can double your throughput using a pipelined read master, assuming 
the slave port also supports pipeline transfers. If either the master or slave does not 
support pipelined read transfers then the system interconnect fabric asserts 
waitrequest until the transfer completes.

When both the master and slave ports support pipelined read transfers, data flows in 
a continues stream after the initial latency. Figure 6–10 illustrates the case where reads 
are not pipelined. The system pays a penalty of 3 cycles latency for each read, making 
the overall throughput 25 percent. Figure 6–11 illustrates the case where reads are 
pipelined. After the initial penalty of 3 cycles latency, the data flows continuously.

Figure 6–10. Low Efficiency Read Transfer
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Pipelined Read Master Example
Figure 6–12 illustrates a pipelined read master that stores data in a FIFO that can be 
used to implement a custom DMA, hardware accelerator, or off-chip communication 
interface. To simplify the design, the control and data logic are separate. The master 
performs word accesses that are word-aligned and reads from sequential memory 
addresses. The transfer length is a multiple of the word size.

Figure 6–11. High Efficiency Read Transfer
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Figure 6–12. Latency Aware Master
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When the go bit is asserted, the master registers the start_address and 
transfer_length signals. The master begins issuing reads on the next clock and 
does not stop until the length register reaches zero. In this example, the word size is 
4 bytes so that the address always increments by 4 and the length decrements by 4. 
The read signal remains asserted unless the FIFO fills to a predetermined level. The 
address register increments and the length register decrements if the length has 
not reached 0 and a read is posted. 

The master posts a read transfer every time the read signal is asserted and the 
waitrequest is deasserted. The master issues reads until the entire buffer has been 
read or waitrequest is asserted. An optional tracking block times the done bit. 
When the length register reaches 0, some reads will be outstanding. The tracking 
logic guarantees that done is not asserted until the last read completes. The tracking 
logic monitors the number of reads posted to the system interconnect fabric so that is 
does not exceed the space remaining in the readdata FIFO. This logic includes a 
counter that counts if the following conditions are met:

■ If a read is posted and readdatavalid is deasserted, the counter increments.

■ If a read is not posted and readdatavalid is asserted, the counter decrements.

When the length register and the tracking logic counter reach 0, all the reads have 
completed and the done bit is asserted. The done bit is important if a second master 
overwrites the memory locations that the pipelined read master accesses. This bit 
guarantees that all the reads have completed before the original data is overwritten.

To learn more about creating Avalon-MM masters refer to the following design 
examples and documentation: 

■ Nios II Embedded Processor Design Examples 

■ Developing Components for SOPC Builder in volume 4 of the Quartus II Handbook.

Arbitration Shares and Bursts
Arbitration shares provide control over the arbitration process. By default, the 
arbitration algorithm provides equal fairness, with all masters receiving one share. 
You can tune the arbitration process to your system requirements by assigning a 
larger number of shares to the masters that need greater throughput. The larger the 
arbitration share, the more transfers are allocated to the master to access a slave.

If a master cannot post a transfer and other masters are waiting to gain access to a 
particular slave, the arbiter grants another master access in a round robin fashion. 
This mechanism prevents a master from using arbitration cycles if it cannot post 
back-to-back transfers.

Bursts allow a master to maintain access to a slave for more than a single word 
transfer. If a bursting master posts a write transfer with a burst length of 8, it is 
guaranteed arbitration for 8 write cycles.

Differences between Arbitration Shares and Bursts
The following three key characteristics distinguish between arbitration shares and 
bursts:

■ Arbitration lock

■ Sequential addressing
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■ Burst adapters 

Arbitration Lock 

When a master posts a burst transfer, the arbitration is locked for that master; 
consequently, the bursting master should be capable of sustaining transfers for the 
duration of the locked period. If, after the fourth write, the master deasserts the 
write signal for fifty cycles, all other masters continue to wait for access during this 
stalled period.

To avoid wasting bandwidth, your master designs should wait until a full burst 
transfer is ready before requesting access to a slave device. Alternatively, you can 
avoid wasted bandwidth by posting burst counts equal to the amount of data that is 
ready. For example, if you have created a custom bursting write master with a 
maximum burst count of 8, but only 3 words of data are ready, you can simply 
present a burst count of 3. This strategy does not result in optimal use of the system 
bandwidth; however, it prevents starvation for other masters in the system.

Sequential Addressing

By definition, a burst transfer includes a base address and a burst count. The burst 
count represents the number of words of data to be transferred starting from the base 
address and incrementing sequentially. Burst transfers are common for processors, 
DMAs, and buffer processing accelerators; however, there are occasions when a 
master must access non-sequential addresses. Consequently, a bursting master must 
set the burst count to the number of sequential addresses and then reset the burst 
count for the next location. 

The arbitration share algorithm has no restrictions on addresses; therefore, your 
custom master can update the address it presents to the system interconnect fabric for 
every read or write transaction.

Burst Adapters

SOPC Builder allows you to create systems that mix bursting and non-bursting master 
and slave ports. It also allows you to connect bursting master and slave ports that 
support different maximum burst lengths. In order to support all these cases, SOPC 
Builder generates burst adapters when appropriate.

SOPC Builder inserts a burst adapter whenever a master port burst length exceeds the 
burst length of the slave port. SOPC Builder assigns non-bursting masters and slave 
ports a burst length of one. The burst adapter divides long bursts into shorter bursts. 
As a result, the burst adapter adds logic to the address and burstcount paths between 
the master and slave ports.

Choosing Interface Types 
To avoid inefficient transfers, custom master or slave ports must use the appropriate 
interfaces. The are three possible interface types: simple, pipelined and burst. Each is 
described below:
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary



6–18 Chapter 6: Avalon Memory-Mapped Design Optimizations
Increasing Transfer Throughput
Simple

Simple interfaces do not support pipelining or bursting for reads or writes; 
consequently, their performance is limited. Simple interfaces are appropriate for 
transfers between masters and infrequently used slave ports. In SOPC Builder, the 
PIO, UART, and Timer include slave ports that operate at peak efficiency using simple 
transfers. 

When designing a custom component, Altera recommends that you start with a 
simple interface. If performance becomes an issue, you can modify the component to 
support either pipelined reads or bursting.

Pipelined

In many systems, read throughput becomes inadequate if simple reads are used. If 
your system requires high read throughput and is not overly sensitive to read latency, 
then your component can implement pipelined transfers. If you define a component 
with a fixed read latency, SOPC Builder automatically provides the logic necessary to 
support pipelined reads. If your component has a variable latency response time, use 
the readdatavalid signal to indicate valid data. SOPC Builder implements a 
readdatavalid FIFO to handle the maximum number of pending read requests. 

To use components that support pipelined read transfers efficiently, your system 
must contain pipelined masters. Refer to the “Pipelined Read Master Example” on 
page 6–15 for an example of a pipelined read master.

Burst

Burst transfers are commonly used for latent memories and off-chip communication 
interfaces. To use a burst-capable slave port efficiently, you must connect it to a 
bursting master. Components that require bursting to operate efficiently typically 
have an overhead penalty associated with short bursts or non-bursting transfers.

Altera recommends that you design a burst-capable slave port if you know that your 
component requires sequential transfers to operate efficiently. Because DDR SDRAM 
memories incur a penalty when switching banks or rows, performance improves 
when they are accessed sequentially using bursts. 

Any shared address and data bus architecture also benefits from bursting. Whenever 
an address is transferred over a shared address and data bus, the throughput of the 
data transfer is reduced. Because the address phase adds overhead, using large bursts 
increases the throughput of the bus. 

Burst Master Example
Figure 6–13 illustrates the architecture of a bursting write master that receives data 
from a FIFO and writes the contents to memory. You can use this master as a starting 
point for your own bursting components, such as custom DMAs, hardware 
accelerators, or off-chip communication interfaces. In Figure 6–13, the master 
performs word accesses and writes to sequential memory locations.
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When go is asserted, the address and length are registered. On the following clock 
cycle, the control logic asserts burst_begin. The burst_begin signal synchronizes 
the internal control signals in addition to the master_address and 
master_burstcount presented to the system interconnect fabric. The timing of 
these two signals is important because during bursting write transfers address, 
byteenable, and burstcount must be held constant for the entire burst.

To avoid inefficient writes, the master only posts a burst when enough data has been 
buffered in the FIFO. To maximize the burst efficiency, the the master should only 
stall when a slave asserts waitrequest. In this example the FIFO’s used signal 
tracks the number of words of data that are stored in the FIFO and determines when 
enough data has been buffered. 

The address register increments after every word transfer, and the length register 
decrements after every word transfer. The address remains constant throughout the 
burst. Because a transfer is not guaranteed to complete on burst boundaries, 
additional logic is necessary to recognize the completion of short bursts. 

The Accelerated FIR with Built-in Direct Memory Access Example, includes a pipelined 
read master and bursting write master similar to those used in Figure 6–13.

Figure 6–13. Bursting Write Master
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Increasing System Frequency
In SOPC Builder, you can introduce bridges to reduce the amount of logic that SOPC 
Builder generates and increase the clock frequency.

In SOPC Builder, you can use bridges to control the system interconnect topology. 
Bridges allow you to subdivide the system interconnect fabric, giving you more 
control over pipelining and clock crossing functionality. 

f This section assumes that you have read Avalon Memory-Mapped Bridges chapter in 
volume 4 of the Quartus II Handbook. To see an example of a design containing 
bridges, refer to the Nios II High-Performance Example With Bridges.

Use Pipeline Bridges 
The pipeline bridge contains Avalon-MM master and slave ports. Transfers to the 
bridge slave port are propagated to the master port which connects to components 
downstream from the bridge. You have the option to add the following pipelining 
features between the bridge ports:

■ Master-to-Slave Pipelining

■ Slave-to-Master Pipelining

■ waitrequest Pipelining

The pipeline bridge options can increase your logic utilization and read latency. As a 
result, you should carefully consider the effects of the following options described in 
this section. 

Master-to-Slave Pipelining
Master-to-slave pipelining is advantageous when many masters share a slave device. 
The arbitration logic for the slave port must multiplex the address, writedata, and 
burstcount signals. The multiplexer width increases as the number of masters 
connecting to a single slave port increases, causing timing problems if the slave 
component does not register the input signals. 

This option is helpful if the waitrequest signal becomes part of a critical timing 
path. Because waitrequest is dependent on arbitration logic, which is driven by the 
master address, enabling master-to-slave pipelining helps pipeline this path. If the 
waitrequest signal remains a part of a critical timing path, you should explore 
using the waitrequest pipelining feature of the pipelined bridge.

If a single pipeline bridge provides insufficient improvement, you can instantiate this 
bridge multiple times, in a binary tree structure, to increase the pipelining and further 
reduce the width of the multiplexer at the slave port as Figure 6–14 illustrates.
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Slave-to-Master Pipelining
Slave-to-master pipelining is advantageous for masters that connect to many slaves 
that support read transfers. The system interconnect fabric inserts a multiplexer for 
every read datapath back to the master. As the number of slaves supporting read 
transfers connecting to the master increases, so does the width of the read data 
multiplexer. As with master-to-slave pipelining, if the performance increase is 
insufficient, you can use multiple bridges to improve fMAX using a binary tree 
structure.

waitrequest Pipelining
waitrequest pipelining can be advantageous in cases where a single master 
connects to many slaves. Because slave components and system interconnect fabric 
drive waitrequest, the logic depth grows as the number of slaves connected to the 
master increases. waitrequest pipelining is also useful when multiple masters 
connect to a single slave, because it pipelines the arbitration logic.

In many cases waitrequest is a combinational signal because it must be asserted 
during the same cycle that a read or write transaction is posted. Because 
waitrequest is typically dependent on the master read or write signals, it creates 
a timing path from the master to the slave and back to the master. Figure 6–15 
illustrates this round-trip path with the thick wire. 

Figure 6–14. Tree of Bridges
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To prevent this round-trip path from impacting the fMAX of your system, you can use 
master-to-slave pipelining to reduce the path length. If the waitrequest signal 
remains part of the critical timing path, you can consider using the waitrequest 
pipelining feature. Another possibility is to register the waitrequest signal and 
keep it asserted, even when the slave is not selected. When the slave is selected, it has 
a full cycle to determine whether it can respond immediately.

Use a Clock Crossing Bridge
The clock crossing bridge contains an Avalon-MM master port and an Avalon-MM 
slave port. Transfers to the slave port are propagated to the master port. The clock 
crossing bridge contains a pair of clock crossing FIFOs which isolate the master and 
slave interfaces in separate, asynchronous clock domains. 

Because FIFOs are used for the clock domain crossing, you gain the added benefit of 
data buffering when using the clock crossing bridge. The buffering allows pipelined 
read masters to post multiple reads to the bridge even if the slaves downstream from 
the bridge do not support pipelined transfers.

Increasing Component Frequencies
One of the most common uses of the clock crossing bridge is to place high and low 
frequency components in separate clock domains. If you limit the fast clock domain to 
the portion of your design that requires a high performance, you can achieve a higher 
fMAX for this portion of the design. 

Reducing Low-Priority Component Frequencies
The majority of components included in embedded designs do not benefit from 
operating at higher frequencies. Examples components that do not require high 
frequencies are timers, UARTs, and JTAG controllers. 

Figure 6–15. Typical Slow Waitrequest Path
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When you compile a design using the Quartus II design software, the fitter places 
your logic into regions of the FPGA. The higher the clock frequency of your system, 
the longer a compilation takes. The compilation takes more time because the fitter 
needs more time to place registers to achieve the required fMAX. To reduce the amount 
of effort that the fitter uses on low priority and low performance components, you can 
place these behind a clock crossing bridge operating at a lower frequency, allowing 
the fitter to increase the effort placed on the higher priority and higher frequency 
datapaths. 

Consequences of Using Bridges
Before using the pipeline or clock crossing bridges in your design, you should 
carefully consider their effects. The bridges can have any combination of the 
following effects on your design:

■ Increased Latency

■ Limited Concurrency

■ Address Space Translation

Depending on your system, these effects could be positive or negative. You can use 
benchmarks to test your system before and after inserting bridges to determine their 
effects. The following sections discuss the effects of adding bridges.

Increased Latency
Adding either type of bridge to your design has an effect on the read latency between 
the master and the slave. Depending on the system requirements and the type of 
master and slave this latency increase may or may not be acceptable in your design. 

Acceptable Latency Increase

For the pipeline bridge, a cycle of latency is added for each pipeline option that is 
enabled. The buffering in the clock crossing bridge also adds latency. If you use a 
pipelined or burst master that posts many read transfers, the increase in latency does 
not impact performance to a significant degree because it is very small compared to 
the length data transfer.

For example, if you use a pipelined read master such as a DMA controller to read data 
from a component with a fixed read latency of 4 clock cycles but only perform a single 
word transfer, the overhead is 3 clock cycles out of the total 4. The read throughput is 
only 25%.

Figure 6–16. Low Efficiency Read Transfer
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On the other hand, if 100 words of data are transferred without interruptions, the 
overhead is 3 cycles out of the total of 103 clock cycles, corresponding to a read 
efficiency of approximately 97%. Adding a pipeline bridge to this read path adds two 
extra clock cycles of latency. The transfer requires 105 cycles to complete, 
corresponding to an efficiency of approximately 94%. Although the efficiency 
decreased by 3%, adding the bridge increases the fMAX by 5%. The overall throughput 
improves. As the number of words transferred increases the efficiency will increase to 
approach 100%, whether or not a pipeline bridge is present.

Unacceptable Latency Increase

Processors are sensitive to high latency read times. They typically fetch data for use in 
calculations that cannot proceed until it arrives. Before adding a bridge to the 
datapath of a processor instruction or data master, determine whether the clock 
frequency increase justifies the added latency. 

The following example design illustrates this point. The original design contains a 
Nios II processor and memory operating at 100 MHz. The Nios II processor 
instruction master has a cache memory with a read latency of 4 cycles. Eight 
sequential words of data return for each read. At 100 MHz, the first read takes 40 ns to 
complete. Each successive word takes 10 ns so that 8 reads complete in 110 ns. 

Figure 6–17. High Efficiency Read Transfer
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Figure 6–18. Eight Reads with Four Cycles Latency
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Adding a clock crossing bridge allows the memory to operate 125 MHz. However, 
this increase in frequency is negated by the increase in latency for the following 
reasons. Assume that the clock crossing bridge adds 6 clock cycles of latency at 
100 MHz. The memory still operates with a read latency of 4 clock cycles; 
consequently, the first read from memory takes 100 ns and each successive word takes 
10 ns because reads arrive at the processor’s frequency, 100 MHz. In total, all 8 reads 
complete after 170 ns. Although the memory operates at a higher clock frequency, the 
frequency at which the master operates limits the throughput.

Limited Concurrency
Placing an Avalon bridge between multiple Avalon-MM master and slave ports limits 
the number of concurrent transfers your system can initiate. This limitation is no 
different than connecting multiple master ports to a single slave port. The bridge’s 
slave port is shared by all the masters and arbitration logic is created as a result. If the 
components placed behind a bridge are infrequently accessed, this concurrency 
limitation may be acceptable.

Bridges can have a severe negative impact on system performance if used 
inappropriately. For instance, if multiple memories are used by several masters, you 
should not place them all behind a bridge. The bridge limits the memory performance 
by preventing concurrent memory accesses. Placing multiple memory components 
behind a bridge, causes the separate slave interfaces to appear as one monolithic 
memory to the masters accessing the bridge; they must all access the same slave port. 
Figure 6–20 illustrates this configuration.

Figure 6–19. Eight Reads with Ten Cycles latency
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If the fMAX of your memory interfaces is low, you can place each memory behind its 
own bridge, which increases the fMAX of the system without sacrificing concurrency as 
Figure 6–21 illustrates.

Figure 6–20. Poor Memory Pipelining
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Address Space Translation
The slave port of a pipeline or clock crossing bridge has a base address and address 
span. You can set the base address or allow SOPC Builder to set it automatically. The 
slave port’s address is the base offset address of all the components connected to the 
bridge. The address of components connected to the bridge is the sum of the base 
offset and that component’s address. The address span of the bridge is automatically 
calculated by SOPC Builder based on the address range of all the components 
connected to it.

Address Shifting
The master port of the bridge only drives the address bits that represent the offset 
from the base address of the bridge slave port. Any time an Avalon-MM master 
accesses a slave through a bridge, both addresses must be added together, otherwise 
the transfer fails. Clicking the Address Map button in SOPC Builder displays the 
addresses of the slaves connected to each master taking into account any address 
translations caused by bridges in the system.

Figure 6–22 illustrates how this address translation takes place. In this example, 
the Nios II processor connects to a bridge located at base address 0x1000. A slave 
connects to the bridge master port at an offset of 0x20 and the processor performs a 
write transfer to the fourth 32-bit word within the slave. Nios II drives the address 
0x102C to system interconnect fabric which lies within the address range of the 
bridge. The bridge master port drives 0x2C which lies within the address range of the 
slave and the transfer completes

Figure 6–21. Efficient Memory Pipelining
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Address Coherency
To avoid unnecessary complications in software, all masters should access slaves at 
the same location. In many systems a processor passes buffer locations to other 
mastering components such as a DMA controller. If the processor and DMA controller 
do not access the slave at the same location, software must compensate for the 
differences. 

In the following example, a Nios II processor and DMA controller access a slave port 
located at address 0x20. The processor connects directly to the slave port. The DMA 
controller connects to a pipeline bridge located at address 0x1000 which then connects 
to the slave port. Because the DMA controller accesses the pipeline bridge first, it 
must drive 0x1020 to access the first location of the slave port. Because the processor 
accesses the slave from a different location, the software developer must maintain two 
base addresses for the slave device.

To avoid this issue, you can add an additional bridge to the design and set its base 
address to 0x1000. You can disable all the pipelining options in this second bridge so 
that it has a minimal impact on the system timing and resource utilization. Because 
this second bridge has the same base address as the bridge the DMA controller 
connects to, both the processor and DMA controller access the slave port using the 
same address range.

Figure 6–22. Avalon Bridge Address Translation

SMM

Nios II Processor PeripheralBridge

S0x102C

baseAddr = 0x1000 baseAddr = 0x20

0x2C 0x2C 0xC Addr
Decoder

Address Translation Address Translation

Figure 6–23. Slave at Different Addresses, Complicating the Software 

M

Bridge

SM

DMA

0x1020

0x1000

0x20

0x20

Address Translation

S

Peripheral

0x20

0x0 Addr
Decoder

Arbiter
masters drive

different addresses

0x20

M

Nios II Processor
Embedded Design Handbook © June 2008 Altera Corporation
Preliminary



Chapter 6: Avalon Memory-Mapped Design Optimizations 6–29
Increasing System Frequency
Minimize System Interconnect Logic
In SOPC Builder, you have control over the address space of your system, as well as 
the connections between master sand slaves. This control allows you to make minor 
changes to your system in order to increase the overall system performance. The 
following sections explain design changes you can make to improve the fMAX of your 
system.

■ Use Unique Address Bits

■ Create Dedicated Master and Slave Connections

■ Remove Unnecessary Connections

Use Unique Address Bits
For every slave in your system, SOPC Builder inserts comparison logic to drive the 
arbiter to select a slave. This comparison logic determines if the master is performing 
an access to the slave port by determining if the address presented is in the slave 
port’s address range. This result is ANDed with the master read and write signals to 
determine if the transfer is destined for the slave port.

The comparison logic can become part of a failing timing path because the result is 
used to drive the slave port. To reduce this path length, you can move the slave port 
base address to use unique MSBs for the comparison. Frequently, you can reduce the 
comparison logic to a single logic element if you avoid using a base address that 
shares MSBs with other slave ports.

Consider a design with 4 slave ports each having an address range of 0x10 bytes 
connected to a single master. If you use the Auto-Assign Base Addresses option in 
SOPC Builder, the base addresses for the 4 slaves is set to 0x0, 0x10, 0x20, and 0x30, 
which corresponds to the following binary numbers: 6b’000000, 6b’010000, 6’b100000, 
and 6b’110000. The two MSBs must be decoded to determine if a transfer is destined 
for any of the slave ports.

Figure 6–24. Address Translation Corrected Using Bridge
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If the addresses are located at 0x10, 0x20, 0x40, and 0x80, no comparison logic is 
necessary. These binary locations are: 6’b00010000, 6b’00100000, 6b’01000000, and 
6b’10000000. This technique is referred to as one-hot encoding because a single 
asserted address bit replaces comparison logic to determine if a slave transfer is taking 
place. In this example, the performance gained by moving the addresses would be 
minimal; however, when you connect many slave ports of different address spans to a 
master this technique can result in a significant improvement.

Create Dedicated Master and Slave Connections
In some circumstances it is possible to modify a system so that a master port connects 
to a single slave port. This configuration eliminates address decoding, arbitration, and 
return data multiplexing, greatly simplifying the system interconnect fabric. 
Dedicated master-to-save connections attain the same clock frequencies as Avalon-ST 
connections with the added benefits offered by Avalon-MM.

Typically these one-to-one connections include an Avalon-MM bridge or hardware 
accelerator. For example, if you insert a pipeline bridge between a slave and all other 
master ports, the logic between the bridge master and slave port is reduced to wires. 
Figure 6–21 illustrates this technique. If a hardware accelerator only connects to a 
dedicated memory, no system interconnect logic is generated between the master and 
slave pair.

Remove Unnecessary Connections
The number of connections between master and slave ports has a great influence on 
the fMAX of your system. Every master port that you connect to a slave port increases 
the multiplexer select width. As a multiplexer width increases, so does the logic depth 
and width that implements the multiplexer in the FPGA. To improve your system 
performance, only connect masters and slaves when necessary.

In the case of a master port connecting to many slave ports, the multiplexer for the 
readdata signal grows as well. Use bridges to help control this depth of 
multiplexers, as Figure 6–14 illustrates.

Reducing Logic Utilization
The system interconnect fabric supports the Avalon-MM and Avalon-ST interfaces. 
Although the system interconnect fabric for Avalon-ST interfaces is lightweight, the 
same is not always true for the Avalon-MM. This section describes design changes 
you can make to reduce the logic footprint of the system interconnect fabric.

Minimize Arbitration Logic by Consolidating Components
As the number of components in your design increases, so does the amount logic 
required to implement the system interconnect fabric. The number of arbitration 
blocks increases for every slave port that is shared by multiple master ports. The 
width of the readdata multiplexer increases as the number of slave ports supporting 
read transfers increases on a per master port basis. For these reasons you should 
consider implementing multiple blocks of logic as a single component to reduce the 
system interconnect fabric logic utilization.
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Logic Consolidation Tradeoffs
Consider the following two tradeoffs before making any modifications to your system 
or components. First, consider the impact on concurrency that consolidating 
components has. When your system has four master components and four slave 
components, it can initiate four concurrent accesses. If you consolidate all four slave 
components into a single component, all four masters must compete for access. 
Consequently, you should only combine low priority components such as low speed 
parallel I/O devices where the combination will not impact the performance.

Second, determine whether consolidation introduces new decode and multiplexing 
logic for the slave port that the system interconnect fabric previously included. If a 
component contains multiple read and write address locations it already contains the 
necessary decode and multiplexing logic. When you consolidate components, you 
typically reuse the decoder and multiplexer blocks already present in one of the 
original components; however, it is possible that combining components will simply 
move the decode and multiplexer logic, rather than eliminating duplication.

Combined Component Example
Figure 6–25 illustrates set of four output registers that support software read back. 
The registers can be implemented using four PIO components in SOPC Builder; 
however, this example provides a more efficient implementation of the same logic. 
You can use this example as a template to implement any component that contains 
multiple registers mapped to memory locations.

Components that implement reads and writes require three main building blocks: an 
address decoder, a register file, and a read multiplexer. In this example, the read data 
is a copy of the register file outputs. The read back functionality may seem redundant; 
however, it is useful for verification.
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The decoder enables the appropriate 32-bit PIO register for writes. For reads, the 
address bits drive the multiplexer selection bits. The read signal registers the data 
from the multiplexer so that the component can achieve a high clock frequency. In the 
SOPC Builder component editor, this component would be described as having 0 
write wait states and 1 read wait state. Alternatively, you could set both the read and 
write wait states to 0 and specify a read latency of 1 because this component also 
supports pipelined reads.

Use Bridges to Minimize System Interconnect Fabric Logic
Bridges reduce the system interconnect fabric logic by reducing the amount of 
arbitration and multiplexer logic that SOPC Builder generates. This reduction occurs 
because bridges limit the number of concurrent transfers that can occur. The 
following sections discuss how you can use bridges to minimize the logic generated 
by SOPC Builder and optimize system performance.

Figure 6–25. Four PIOs
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SOPC Builder Speed Optimizations
The system interconnect fabric SOPC Builder generates supports slave-side 
arbitration. As a result, SOPC Builder creates arbitration logic for every Avalon-MM 
slave port that is shared by multiple Avalon-MM master ports. SOPC Builder inserts 
multiplexer logic between master ports that connect to multiple slave ports if both 
support read datapaths. The amount of logic generated for the system interconnect 
fabric grows as the system grows.

Even though the interconnect fabric supports multiple concurrent transfers, the 
master and slave ports in your system can only handle one transfer at a time. If four 
masters connect to a single slave, the arbiter grants each access in a round robin 
sequence. If all four masters connect to an Avalon bridge and the bridge masters the 
slave port, the arbitration logic moves from the slave port to the bridge.

In Figure 6–26 a pipeline bridge registers the arbitration logic’s output signals, 
including address and writedata. A multiplexer in the arbitration block drives 
these signals. Because a logic element (LE) includes both combinational and register 
logic, this additional pipelining has little or no effect on the logic footprint. And, the 
additional pipeline stage reduces the amount of logic between registers, increasing 
system performance.

If you can increase the fMAX of your design, you may be able to turn off Perform 
register duplication on the Physical Synthesis Optimizations page in the Settings 
dialog box of the Quartus II software. Register duplication duplicates logic in two or 
more physical locations in the FPGA in an attempt to reduce register-to-register 
delays. You may also avoid selecting Speed for the Optimization Technique on the 
Analysis & Synthesis Settings page in the Settings dialog box of the Quartus II 
software. This setting typically results in larger hardware footprint. By making use of 
the registers or FIFOs available in the Avalon-MM bridges, you can increase the 
design speed and avoid needless logic duplication or speed optimizations thereby 
reducing the logic utilization of the design.

Figure 6–26. Four Masters to Slave Four Masters to Bridge
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Reduced Concurrency 
Most embedded designs contain components that are either incapable of supporting 
high data throughput or simply do not need to be accessed frequently. These 
components can contain Avalon-MM master or slave ports. Because the system 
interconnect fabric supports concurrent accesses, you may wish to limit this 
concurrency by inserting bridges into the datapath to limit the amount of arbitration 
and multiplexer logic generated. For example, if your system contains three masters 
and three slave ports that are all interconnected, SOPC Builder generates three 
arbiters and three multiplexers for the read datapath.

Assuming these masters do not require a significant amount of throughput, you can 
simply connect all three masters to a pipeline bridge. The bridge masters all three 
slave ports, effectively reducing the system interconnect fabric into a bus structure. 
SOPC Builder creates one arbitration block between the bridge and the three masters 
and single read datapath multiplexer between the bridge and three slaves. This 
architecture prevents concurrency, just as standard bus structures do. Therefore, this 
method should not be used for high throughput datapaths. Figure 6–27 illustrates the 
difference in architecture between system with and without the pipeline bridge.

Figure 6–27. Switch Fabric to Bus
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Use Bridges to Minimize Adapter Logic
SOPC Builder generates adapter logic for clock crossing and burst support when there 
is a mismatch between the clock domains or bursting capabilities of the master and 
slave port pairs. Burst adapters are created when the maximum burst length of the 
master is greater than the master burst length of the slave. The adapter logic creates 
extra logic resources which can be substantial when your system contains 
Avalon-MM master ports connected to many components that do not share the same 
characteristics. By placing bridges in your design, you can reduce the amount of 
adapter logic that SOPC Builder generates. 

Effective Placement of Bridges
First, analyze each master in your system to determine if the connected slave devices 
support different bursting capabilities or operate in a different clock domain. The 
maximum burstcount of a device may be visible as the burstcount parameter in the 
GUI. If it is not, check the width of the burstcount signal in the component’s HDL 
file. The maximum burst length is 2 (width(burstcount -1)), so that if the width is 4 bits, the 
burstcount is 8. If no burstcount signal is present, the component does not support 
bursting or has a burst length of 1. 

To determine if a clock crossing adapter is required between the master and slave 
ports, check the clock column beside the master and slave ports in SOPC Builder. If 
the clock shown is different for the master and slave ports, SOPC Builder inserts a 
clock crossing adapter between them. To avoid creating multiple adapters, you can 
place the components containing slave ports behind a bridge so that only one adapter 
is created. By placing multiple components with the same burst or clock 
characteristics behind a bridge, you limit concurrency and the number of adapters.

Compact System Example
Figure 6–28 illustrates a system with a mix of components with different burst 
capabilities. It includes a Nios II/e core, a Nios II/f core and an external processor 
which offloads some processing tasks to the Nios II/f core. The Nios II/e core 
maintains communication between the Nios II /f core and external processors. The 
Nios II/f core supports a maximum burst size of eight. The external processor 
interface supports a maximum burst length of 64. The Nios II/e core does not support 
bursting. The only memory in the system is DDR SDRAM with an Avalon maximum 
burst length of two.
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SOPC Builder automatically inserts burst adapters to compensate for burst length 
mismatches. The adapters reduce bursts to a length of two or single transfers. For the 
external processor interface connecting to DDR SDRAM, a burst of 64 words is 
divided into 32 burst transfers, each with a burst length of 2.

At system generation time, SOPC Builder inserts burst adapters based on maximum 
burstcount values; consequently, the system interconnect fabric includes burst 
adapters between masters and slave pairs that do not require bursting, if the master is 
capable of bursts. In Figure 6–28, SOPC Builder inserts a burst adapter between the 
Nios II processors and the timer, system ID and PIO peripherals. These components 
do not support bursting and the Nios II processor only performs single word read and 
write accesses to these devices. 

To reduce the number of adapters, you can add pipeline bridges, as Figure 6–29 
illustrates. The pipeline bridge between the Nios II/f core and the peripherals that do 
not support bursts eliminates three burst adapters from Figure 6–28. A second 
pipeline bridge between the Nios II/f core and the DDR SDRAM, with its maximum 
burst size set to eight, eliminates another burst adapter.

Figure 6–28. Mixed Bursting System
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Reducing Power Utilization
Although SOPC Builder does not provide specific features to support low power 
modes, there are opportunities for you to reduce the power of your system. This 
section explores the various low power design changes that you can make in order to 
reduce the power consumption of the system interconnect fabric and your custom 
components.

Reduce Clock Speeds of Non-Critical Logic
Reducing the clock frequency reduces power consumption. Because SOPC Builder 
supports clock crossing, you can reduce the clock frequency of the logic that does not 
require a high frequency clock, allowing you to reduce power consumption. You can 
use either clock crossing bridges or clock crossing adapters to separate clock domains. 

Figure 6–29. Mixed Bursting System with Bridges
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Clock Crossing Bridge
You can use the clock crossing bridge to connect Avalon-MM master ports operating 
at a higher frequency to slave ports running a a lower frequency. Only low 
throughput or low priority components should be placed behind a clock crossing 
bridge that operates at a reduced clock frequency. Examples of typical components 
that can be effectively placed in a slower clock domain are:

■ PIOs

■ UARTs (JTAG or RS-232)

■ System identification (SysID)

■ Timers

■ PLL (instantiated within SOPC Builder)

■ Serial peripheral interface (SPI)

■ EPCS controller

■ Tristate bridge and the components connected to the bridge

Figure 6–30. Low Power Using Bridge
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Placing these components behind a clock crossing bridge increases the read latency; 
however, if the component is not part of a critical section of your design the increased 
latency is not an issue. By reducing the clock frequency of the components connected 
to the bridge, you reduce the dynamic power consumption of your design. Dynamic 
power is a function of toggle rates, and decreasing the clock frequency decreases the 
toggle rate.

Clock Crossing Adapter 
SOPC Builder automatically inserts clock crossing adapters between Avalon-MM 
master and slave ports that operate at different clock frequencies. The clock crossing 
adapter uses a handshaking state-machine to transfer the data between clock 
domains. The HDL code that defines the clock crossing adapters resembles that of 
other SOPC components. Adapters do not appear in the SOPC Builder Connection 
column because you do not insert them. The differences between clock crossing 
bridges and clock crossing adapters should help you determine which are appropriate 
for your design.

Throughput

Because the clock crossing bridge uses FIFOs to implement the clock crossing logic, it 
buffers transfers and data. Clock crossing adapters do not buffer data, so that each 
transaction is blocking until it completes. Blocking transactions may lower the 
throughput substantially; consequently, if you wish to reduce power consumption 
without limiting the throughput significantly you should use the clock crossing 
bridge. However, if the design simply requires single read transfer, a clock crossing 
adapter is preferable because the latency is lower than the clock crossing bridge.

Resource Utilization

The clock crossing bridge requires very few logic resources besides on-chip memory. 
The number of on-chip memory blocks used is proportional to the address span, data 
width, buffering depth, and bursting capabilities of the bridge. The clock crossing 
adapter does not use any on-chip memory and requires a moderate number of logic 
resources. The address span, data width, and bursting capabilities of the clock 
crossing adapter and also determine the resource utilization of the device.

Throughput versus Memory Tradeoffs

The choice between the clock crossing bridge and clock crossing adapter is between 
throughput and memory utilization. If on-chip memory resources are limited, you 
may be forced to choose the clock crossing adapter. Using the clock crossing bridge to 
reduce the power of a single component may not justify the additional resources 
required. However, if you can place all your low priority components behind a single 
clock crossing bridge you reduce power consumption in your design. In contrast, 
SOPC Builder inserts a clock crossing adapter between each master and slave pair that 
run at different frequencies if you have not included a clock crossing bridge, 
increasing the logic utilization in your design. 
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Minimize Toggle Rates
Your design consumes power whenever logic transitions between on and off states. 
When the state is held constant between clock edges, no charging or discharging 
occurs. This section discusses three design techniques you can use to reduce the 
toggle rates of your system:

■ Registering Component Boundaries

■ Enabling Clocks

■ Inserting Bridges

Registering Component Boundaries
The system interconnect fabric is purely combinational when no adapters or bridges 
are present. When a slave port is not selected by a master, various signals may toggle 
and propagate into the component. By registering the boundary of your component at 
the Avalon-MM master or slave interface you can minimize the toggling of the system 
interconnect fabric and your component. When you register the signals at the port 
level you must ensure that the component continues to operate within the 
Avalon-MM specification. 

waitrequest is usually the most difficult signal to synchronize when you add 
registers to your component. waitrequest must be asserted during the same clock 
cycle that a master asserts read or write to prolong the transfer. A master interface 
may read the waitrequest signal too early and post more reads and writes 
prematurely.

For slave interfaces, the system interconnect fabric manages the begintransfer 
signal which is asserted during the first clock cycle of any read or write transfer. If 
your waitrequest is one clock cycle late you can logically OR your waitrequest 
and the begintransfer signals to form a new waitrequest signal that is properly 
synchronized.

Or, your component can assert waitrequest before it is selected, guaranteeing that 
the waitrequest is already asserted during the first clock cycle of a transfer.

Figure 6–31. Variable Latency
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Enabling Clocks
You can use clock enables to hold your logic in a steady state. You can use the write 
and read signals as clock enables for Avalon-MM slave components. Even if you add 
registers to your component boundaries, your interface can still potentially toggle 
without the use of clock enables.

You can also use the clock enable to disable combinational portions of your 
component. For example, you can use an active high clock enable to mask the inputs 
into your combinational logic to prevent it from toggling when the component is 
inactive. Before preventing inactive logic from toggling, you must determine if the 
masking causes your circuit to function differently. If this masking causes a functional 
failure, it may be possible to use a register stage to hold the combinational logic 
constant between clock cycles.

Inserting Bridges
If you do not wish to modify the component by using boundary registers or clock 
enables, you can use bridges to help reduce toggle rates. A bridge acts as a repeater 
where transfers to the slave port are repeated on the master port. If the bridge is not 
being accessed, the components connected to its master port are also not being 
accessed. The master port of the bridge remains idle until a master accesses the bridge 
slave port.

Bridges can also reduce the toggle rates of signals that are inputs to other master 
ports. These signals are typically readdata, readdatavalid, and waitrequest. 
Slave ports that support read accesses drive these signals. Using a bridge you can 
insert either a register or clock crossing FIFO between the slave port and the master to 
reduce the toggle rate of the master input signals.

Disable Logic
There are typically two types of low power modes: volatile and non-volatile. A 
volatile low power mode holds the component in a reset state. When the logic is 
reactivated the previous operational state is lost. A non-volatile low power mode 
restores the previous operational state. This section covers two ways to disable a 
component to reduce power using either software- or hardware-controlled sleep 
modes.

Software Controlled Sleep Mode
To design a component that supports software controlled sleep mode, create a single 
memory mapped location that enables and disables logic, by writing a 0 or 1. Use the 
register’s output as a clock enable or reset depending on whether the component has 
non-volatile requirements. The slave port must remain active during sleep mode so 
that the enable bit can be set when the component needs to be activated.

If multiple masters can access a component that supports sleep mode, you can use the 
mutex core available in SOPC Builder to provide mutual exclusive accesses to your 
component. You can also build in the logic to re-enable the component on the very 
first access by any master in your system. If the component requires multiple clock 
cycles to re-activate then it must assert waitrequest to prolong the transfer as it 
exits sleep mode. 
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f To learn more about the mutex core refer to the Mutex Core in volume 5 of the 
Quartus II Handbook.

Hardware Controlled Sleep Mode
You can implement a timer in your component that automatically causes it to enter a 
sleep mode based upon a timeout value specified in clock cycles between read or 
write accesses. Each access resets the timer to the timeout value. Each cycle with no 
accesses decrements the timeout value by 1. If the counter reaches 0, the hardware 
enters sleep mode until the next access. Figure 6–32 provides a schematic for this 
logic. If it takes a long time to restore the component to an active state, use a long 
timeout value so that the component is not continuously entering and exiting sleep 
mode.

The slave port interface must remain functional while the rest of the component is in 
sleep mode. When the component exits sleep mode it, must assert the waitrequest 
signal until it is ready for read or write accesses.

f For more information on reducing power utilization, refer to Power Optimization in 
volume 2 of the Quartus II Handbook.

Referenced Documents
This chapter references the following documents:

■ Accelerated FIR with Built-in Direct Memory Access Example 

■ Avalon Interfaces Specifications

■ Avalon Memory-Mapped Bridges chapter in volume 4 of the Quartus II Handbook

■ Creating Multiprocessor Nios II Systems Tutorial

■ Developing Components for SOPC Builder in volume 4 of the Quartus II Handbook

■ Multiprocessor Coordination Peripherals

■ Mutex Core in volume 5 of the Quartus II Handbook

■ Nios II Embedded Processor Design Examples 

■ Nios II High-Performance Example With Bridges

■ Power Optimization in volume 2 of the Quartus II Handbook

Figure 6–32. Hardware Controlled Sleep Components
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7. Memory System Design
Overview
This document describes the efficient use of memories in SOPC Builder embedded 
systems. Efficient memory use increases the performance of FPGA-based embedded 
systems. Embedded systems use memories for a range of tasks, such as the storage of 
software code and lookup tables (LUTs) for hardware accelerators.

Your system’s memory requirements depend heavily on the nature of the applications 
which you plan to run on the system. Memory performance and capacity 
requirements are small for simple, low cost systems. In contrast, memory throughput 
can be the most critical requirement in a complex, high performance system. The 
following general types of memories can be used in embedded systems.

Volatile Memory
A primary distinction in memory types is volatility. Volatile memories only hold their 
contents while power is applied to the memory device. As soon as power is removed, 
the memories lose their contents; consequently, volatile memories are unacceptable if 
data must be retained when the memory is switched off. Examples of volatile 
memories include static RAM (SRAM), synchronous static RAM (SSRAM), 
synchronous dynamic RAM (SDRAM), and FPGA on-chip memory.

Non-volatile Memory
Non-volatile memories retain their contents when power is switched off, making them 
good choices for storing information that must be retrieved after a system 
power-cycle. CPU boot-code, persistent application settings, and FPGA configuration 
data are typically stored in non-volatile memory. Although non-volatile memory has 
the advantage of retaining its data when power is removed, it is typically much 
slower to write to than volatile memory, and often has more complex writing and 
erasing procedures. Non-volatile memory is also usually only guaranteed to be 
erasable a given number of times, after which it may fail. Examples of non-volatile 
memories include all types of flash, EPROM, and EEPROM. Most modern embedded 
systems use some type of flash memory for non-volatile storage.

Many embedded applications require both volatile and non-volatile memories 
because the two memory types serve unique and exclusive purposes. The following 
sections discuss the use of specific types of memory in embedded systems.

On-Chip Memory
On-chip memory is the simplest type of memory for use in an FPGA-based embedded 
system. The memory is implemented in the FPGA itself; consequently, no external 
connections are necessary on the circuit board. To implement on-chip memory in your 
design, simply select the On-Chip Memory from the System Contents tab in SOPC 
Builder. You can then specify the size, width, and type of on-chip memory, as well as 
special on-chip memory features such as dual-port access. 
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On-Chip Memory
f For details about the On-Chip Memory SOPC Builder component, refer to the 
Building Memory Subsystems Using SOPC Builder chapter in volume 4 of Quartus II 
Handbook. 

Advantages
On-chip memory is the highest throughput, lowest latency memory possible in an 
FPGA-based embedded system. It typically has a latency of only one clock cycle. 
Memory transactions can be pipelined, making a throughput of one transaction per 
clock cycle typical.

Some variations of on-chip memory can be accessed in dual-port mode, with separate 
ports for read and write transactions. Dual-port mode effectively doubles the 
potential bandwidth of the memory, allowing the memory to be written over one port, 
while simultaneously being read over the second port.

Another advantage of on-chip memory is that it requires no additional board space or 
circuit-board wiring because it is implemented on the FPGA directly. Using on-chip 
memory can often save development time and cost.

Finally, some variations of on-chip memory can be automatically initialized with 
custom content during FPGA configuration. This memory is useful for holding small 
bits of boot code or LUT data which needs to be present at reset. 

f For more information about which types of on-chip memory can be initialized upon 
FPGA configuration, refer to the Building Memory Subsystems Using SOPC Builder 
chapter of the Quartus II Handbook.

Disadvantages
While on-chip memory is very fast, it is somewhat limited in capacity. The amount of 
on-chip memory available on an FPGA depends solely on the particular FPGA device 
being used, but capacities range from around 15 KBytes in the smallest Cyclone II 
device to just under 2 MBytes in the largest Stratix III device.

Because most on-chip memory is volatile, it loses its contents when power is 
disconnected. However, some types of on-chip memory can be initialized 
automatically when the FPGA is configured, essentially providing a kind of 
non-volatile function. For details, refer to the embedded memory chapter of the 
device handbook for the particular FPGA family you are using or Quartus® II Help.

Best Applications
The following sections describe the best uses of on-chip memory.

Cache
Because it is low latency, on-chip memory functions very well as cache memory for 
microprocessors. The Nios II processor uses on-chip memory for its instruction and 
data caches. The limited capacity of on-chip memory is usually not an issue for caches 
because they are typically relatively small.
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Tightly Coupled Memory
The low latency access of on-chip memory also makes it suitable for tightly-coupled 
memories. Tightly coupled memories are memories which are mapped in the normal 
address space, but have a dedicated interface to the microprocessor, and possess the 
high-speed, low-latency properties of cache memory. 

f For more information regarding tightly-coupled memories, refer to the Using Nios II 
Tightly Coupled Memory Tutorial. 

Look Up Tables 
For some software programming functions, particularly mathematical functions, it is 
sometimes fastest to use a LUT to store all the possible outcomes of a function, rather 
than computing the function in software. On-chip memories work well for this 
purpose as long as the number of possible outcomes fits reasonably in the capacity of 
on-chip memory available.

FIFO
Embedded systems often need to regulate the flow of data from one system block to 
another. FIFOs can buffer data between processing blocks that run most efficiently at 
different speeds. Depending on the size of the FIFO your application requires, on-chip 
memory can serve as very fast and convenient FIFO storage. 

f For more information regarding FIFO buffers, refer to the On-Chip FIFO Memory Core 
chapter in volume 5 of the Quartus II Handbook. 

Poor Applications
On-chip memory is poorly suited for applications which require large memory 
capacity. Because on-chip memory is relatively limited in capacity, avoid using it to 
store large amounts of data; however, some tasks can take better advantage of on-chip 
memory than others. If your application utilizes multiple small blocks of data, and not 
all of them fit in on-chip memory, you should carefully consider which blocks to 
implement in on-chip memory. If high system performance is your goal, place the 
data which is accessed most often in on-chip memory.

On-Chip Memory Types
Depending on the type of FPGA you are using, there are several types of on-chip 
memory available. For details on the different types of on-chip memory available to 
you, refer to the device handbook for the particular FPGA family you are using.

Best Practices
To optimize the use of the on-chip memory in your system, follow these guidelines:

■ Set the on-chip memory data width to match the data-width of its primary system 
master. For example, if you are connecting the on-chip memory to the data master 
of a Nios II processor, you should set the data width of the on-chip memory to 32 
bits, the same as the data-width of the Nios II data master. Otherwise, the access 
latency could be longer than one cycle because the system interconnect fabric 
performs width translation. 
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■ If more than one master connects to an on-chip memory component, consider 
enabling the dual-port feature of the on-chip memory. The dual-port feature 
removes the need for arbitration logic when two masters access the same on-chip 
memory. In addition, dual-ported memory allows concurrent access from both 
ports, which can dramatically increase efficiency and performance when the 
memory is accessed by two or more masters. However, writing to both slave ports 
of the RAM can result in data corruption if there is not careful coordination 
between the masters.

To minimize FPGA logic and memory utilization, follow these guidelines:

■ Choose the best type of on-chip memory for your application. Some types are 
larger capacity; others support wider data-widths. The embedded memory section 
in the device handbook for the appropriate FPGA family provides details on the 
features of on-chip memories. 

■ Choose on-chip memory sizes that are a power of 2 bytes. Implementing memories 
which are not a power of 2 can result in inefficient memory and logic use.

External SRAM
The term external SRAM refers to any static RAM (SRAM) device that you connect 
externally to a FPGA. There are several varieties of external SRAM devices. The choice 
of external SRAM and its type depends upon the nature of the application. Designing 
with SRAM memories presents both advantages and disadvantages.

Advantages
External SRAM devices provide larger storage capacities than on-chip memories, and 
are still quite fast, although not as fast as on-chip memories. Typical external SRAM 
devices have capacities ranging from around 128 KBytes to 10 MBytes. Specialty 
SRAM devices can even be found in smaller and larger capacities. SRAMs are 
typically very low latency and high throughput devices, slower than on-chip memory 
only because they connect to the FPGA over a shared, bidirectional bus. The SRAM 
interface is very simple, making connecting to an SRAM from an FPGA a simple 
design task. You can also share external SRAM buses with other external SRAM 
devices, or even with external memories of other types, such as flash or SDRAM. 

f See Building Memory Subsystems Using SOPC Builder in volume 4 of the Quartus II 
Handbook, for more information regarding shared external buses.

Disadvantages
The primary disadvantages of external SRAM in an FPGA-based embedded system 
are cost and board real estate. SRAM devices are more expensive per MByte than 
other high-capacity memory types such as SDRAM. They also consume more board 
space per MByte than both SDRAM and FPGA on-chip memory which consumes 
none.
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Best Applications
External SRAM is quite effective as a fast buffer for medium-size blocks of data. You 
can use external SRAM to buffer data that does not fit in on-chip memory and 
requires lower latency than SDRAM provides. You can also group multiple SRAM 
memories to increase capacity.

SRAM is also optimal for accessing random data. Many SRAM devices can access 
data at non-sequential addresses with the same low-latency as sequential addresses, 
an area where SDRAM performance suffers. SRAM is the ideal memory type for a 
large LUT holding the data for color conversion algorithm that is too large to fit in 
on-chip memory. 

External SRAM performs relatively well when used as execution memory for a CPU 
with no cache. The low latency properties of external SRAM help improve CPU 
performance if the CPU has no cache to mask the higher latency of other types of 
memory.

Poor Applications
Poor uses for external SRAM include systems which require large amounts of storage 
and systems which are cost-sensitive. If your system requires a block of memory 
larger than 10 MBytes, you may want to consider a different type of memory, such as 
SDRAM, which is less expensive.

External SRAM Types
There are several types of SRAM devices. The most popular types are listed below. 

■ Asynchronous SRAM—This is the slowest type of SRAM because it is not 
dependent on a clock.

■ Synchronous SRAM (SSRAM)—Synchronous SRAM operates synchronously to a 
clock. It is faster than asynchronous SRAM but also more expensive.

■ Pseudo-SRAM—Pseudo-SRAM (PSRAM) is a type of dynamic RAM (DRAM) 
which has an SSRAM interface.

■ ZBT SRAM—ZBT (zero bus turnaround) SRAM can switch from read to write 
transactions with zero turn around cycles, making it a very low-latency. ZBT 
SRAM typically requires a special controller to take advantage of its low-latency 
features.

Best Practices
To get the best performance from your external SRAM devices, follow these 
guidelines:

■ Use SRAM interfaces which are the same data width as the data width of the 
primary system master which accesses the memory.

■ If pin utilization or board real estate is a larger concern than the performance of 
your system, you can use SRAM devices with a smaller data width than the 
masters that will access them to reduce the pincount of your FPGA and possibly 
the number of memory devices on the PCB. However, this change results in 
reduced performance of the SRAM interface.
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Flash
Flash
Flash memory is a non-volatile memory type used frequently in embedded systems. 
In FPGA-based embedded systems, flash is always external because FPGAs do not 
contain flash memory. Because flash memory retains its contents after power is 
removed, it is commonly used to hold microprocessor boot code as well as any data 
which needs to be preserved in the case of a power failure. Flash memories are 
available with either a parallel or a serial interface. The fundamental storage 
technology for parallel and serial flash devices is the same.

Unlike SRAM, flash cannot be updated with a simple write transaction. Every write to 
a flash device uses a write command consisting of a fixed sequence of consecutive 
read and write transactions. Before flash can be written, it must be erased. All flash 
devices are divided into some number of erase blocks, or sectors, which vary in size, 
depending on the flash vendor and device size. Entire sections of flash must be erased 
as a unit; individual words cannot be erased. These requirements sometimes make 
flash devices difficult to use.

Advantages
The primary advantage of flash memory is that is non-volatile. Modern embedded 
systems use flash extensively to store not only boot code and settings, but large blocks 
of data such as audio or video streams. Many embedded systems use flash memory as 
a low-power, high-reliability substitute for a hard drive. 

Among other non-volatile types of memory, flash is the most popular for four 
reasons:

■ It is durable

■ It is erasable

■ It permits a large number of erase cycles

■ It is low-cost

You can share flash buses with other flash devices, or even with external memories of 
other types, such as external SRAM or SDRAM. 

f Refer to Building Memory Subsystems Using SOPC Builder in volume 4 of the Quartus II 
Handbook for more information regarding shared external buses.

Disadvantages
A major disadvantage of flash is its write-speed. Because you can only write to flash 
devices using special commands, multiple bus transactions are required for each flash 
write. Furthermore, the actual write time, once the write command has been sent, can 
be several microseconds. Depending on clock speed, the actual write time can be in 
the hundreds of clock cycles. Because of the sector-erase restriction, if you need to 
change a data word in the flash, you must complete the following steps:

1. Copy the entire contents of the sector into a temporary buffer

2. Erase the sector

3. Change the single data word in the temporary buffer

4. Write the temporary buffer back to flash. 
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This procedure contributes to the poor write-speed of flash memory devices. Because 
of its poor write-speed, flash is typically only used for storing data which must be 
preserved after power is turned off.

Typical Applications
Flash memory is effective for storing any data that you wish to preserve if power is 
removed from the system. Common uses of flash include storage of the following 
items:

■ Microprocessor boot code

■ Microprocessor application code to be copied to RAM upon system startup

■ Persistent system settings, including:

■ Network MAC address

■ Calibration data

■ User preferences

■ FPGA configuration images

■ Media (audio, video)

Poor Applications
Because of flash memory's slow write speeds, do not use it for anything that does not 
need to be preserved after power-off. SRAM is a much better alternative if volatile 
memory is an option. Systems which use flash memory usually also include some 
SRAM as well.

One particularly poor use of flash is direct execution of microprocessor application 
code. If any of the code's writeable sections are located in flash, the software simply 
will not work, because flash cannot be written without using its special write 
commands. Systems which store application code in flash usually copy the 
application to SRAM before executing it.

Flash Types
There are several types of flash devices. The most popular types are listed below:

■ CFI flash – This is the most common type of flash memory. It has a parallel 
interface. CFI stands for common flash interface, a standard to which all CFI flash 
devices adhere. SOPC Builder and the Nios II processor have built-in support for 
CFI flash.

f For more details, refer to the following documentation: Common Flash 
Interface Controller Core in volume 5 of the Quartus II Handbook and the 
Nios II Flash Programmer User Guide.

■ Serial flash – This flash has a serial interface to preserve device pins and board 
space. Because many serial flash devices have their own specific interface protocol, 
it is best to thoroughly read a serial flash device's datasheet before choosing it. 
Altera EPCS configuration devices are a type of serial flash. 
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f For more information about EPCS configuration devices, refer to the Altera 
Configuration Devices chapter in volume 2 of Altera's Configuration 
Handbook.

■ NAND flash – NAND flash is a newer type of flash memory which has recently 
begun to gain popularity. NAND flash can achieve very high capacities, up to 
multiple GBytes per device. The interface to NAND flash is a bit more complicated 
than that of CFI flash. It requires either a special controller or intelligent low-level 
driver software. You can use NAND Flash with Altera FPGAs; however, Altera 
does not provide any built-in support.

SDRAM
SDRAM is another type of volatile memory. It is similar to SRAM, except that it is 
dynamic and must be refreshed periodically to maintain its content. The dynamic 
memory cells in SDRAM are much smaller than the static memory cells used in 
SRAM. This difference in size translates into very high-capacity and low-cost memory 
devices. 

In addition to the refresh requirement, SDRAM has other very specific interface 
requirements which typically necessitate the use of special controller hardware. 
Unlike SRAM which has a static set of address lines, SDRAM divides up its memory 
space into banks, rows, and columns. Switching between banks and rows incurs some 
overhead, so that efficient use of SDRAM involves the careful ordering of accesses. 
SDRAM also multiplexes the row and column addresses over the same address lines, 
which reduces the pin count necessary to implement a given size of SDRAM. Higher 
speed varieties of SDRAM such as DDR, DDR2, and DDR3 also have strict signal 
integrity requirements which need to be carefully considered during the design of the 
PCB.

SDRAM devices are among the least expensive and largest-capacity types of RAM 
devices available, making them one of the most popular. Most modern embedded 
systems use SDRAM. A major part of an SDRAM interface is the SDRAM controller. 
The SDRAM controller manages all the address-multiplexing, refresh and row and 
bank switching tasks, allowing the rest of the system to access SDRAM without 
knowledge of its internal architecture.

f For information on the SDRAM controllers available for use in Altera FPGAs, refer to 
the following documents:

■ DDR and DDR2 SDRAM High-Performance Controller User Guide,

■ DDR3 SDRAM High-Performance Controller User Guide

■ AN 398: Using DDR/DDR2 SDRAM with SOPC Builder. 
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Advantages
SDRAM's most significant advantages are its capacity and cost. No other type of RAM 
combines the low-cost and large capacity of SDRAM, which makes it a very popular 
choice. SDRAM also makes efficient use of pins. Because row and column addresses 
are multiplexed over the same address pins, fewer pins are required to implement a 
given capacity of memory. Finally, SDRAM generally consumes less power than an 
equivalent SRAM device.

In some cases, you can also share SDRAM buses between multiple SDRAM devices, 
or even with external memories of other types, such as external SRAM or flash. 

f Refer to Building Memory Subsystems Using SOPC Builder in volume 4 of the Quartus II 
Handbook for more information regarding shared external buses.

Disadvantages
Along with the high-capacity and low-cost of SDRAM, comes additional complexity 
and latency. The complexity of the SDRAM interface requires that you must always 
use an SDRAM controller to manage SDRAM refresh cycles, address multiplexing, 
and interface timing. Such a controller consumes FPGA logic elements which would 
normally be available for other logic.

SDRAM suffers from a significant amount of access latency. Most SDRAM controllers 
take measures to minimize the amount of latency, but the nature of SDRAM dictates 
that latency is always greater than that of regular external SRAM or FPGA on-chip 
memory. However, while first-access latency is high, SDRAM throughput can 
actually be quite high once the initial access latency is overcome because consecutive 
accesses can be pipelined. Some types of SDRAM can achieve higher clock 
frequencies than SRAM, further improving throughput. The SDRAM interface 
specification also employs a burst feature to help improve overall throughput. 

Best Applications
SDRAM is generally a good choice in the following circumstances:

■ Storing large blocks of data—SDRAM's large capacity makes it the best choice for 
buffering any large blocks of data such as network packets, video frame buffers, 
and audio data. 

■ Executing microprocessor code—SDRAM is commonly used to store instructions 
and data for microprocessor software, particularly when the program being 
executed is large. Instruction and data caches improve performance for large 
programs. Depending on the system topography and the SDRAM controller used, 
the sequential reads typical of cache line fills can potentially take advantage of 
SDRAM's pipeline and burst capabilities.

Poor Applications
SDRAM may not be the best choice in the following situations:

■ Whenever low-latency memory access is required—Although high throughput is 
possible using SDRAM, its first-access latency is quite high. If low latency access to 
a particular block of data is a requirement of your application, SDRAM is probably 
not a good candidate for holding that block of data.
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■ Small blocks of data—When only a small amount of storage is needed, SDRAM 
may be unnecessary. An on-chip memory may be able to meet your memory 
requirements without adding another memory device to the PCB.

■ Small, simple embedded systems—If your system uses a small FPGA in which 
logic resources are scarce and your application does not require the capacity that 
SDRAM provides, you may prefer to use a small external SRAM or on-chip 
memory rather than devoting FPGA logic elements to an SDRAM controller.

SDRAM Types
There are a several types of SDRAM devices. The most common types are listed 
below: 

■ SDR SDRAM—Single data rate (SDR) SDRAM is the original type of SDRAM. It is 
either referred to as just SDRAM or SDR SDRAM to distinguish it from newer, 
double data rate (DDR) types. The name single data rate refers to the fact that a 
maximum of a single word of data can be transferred per clock cycle. SDR SDRAM 
is still in wide use, although newer types of DDR SDRAM are becoming more 
common.

■ DDR SDRAM—Double data rate (DDR) SDRAM is a newer type of SDRAM that 
supports higher data throughput by transferring a data word on both the rising 
and falling edge of the clock. DDR SDRAM uses 2.5 V SSTL signaling. The use of 
DDR SDRAM requires a custom memory controller.

■ DDR2 SDRAM—DDR2 SDRAM is a newer variation of standard DDR SDRAM 
memory which builds on the success of DDR by implementing slightly improved 
interface requirements such as lower power 1.8 V SSTL signaling and on-chip 
signal termination.

■ DDR3 SDRAM—DDR3 is another variant of DDR SDRAM which again improves 
the potential bandwidth of the memory by improving signal integrity and 
increasing clock frequencies.

SDRAM Controller Types Available From Altera
Table 7–1 lists the SDRAM controllers that Altera provides. They are available without 
licenses.

Table 7–1. Memory Controller Available from Altera (Part 1 of 2)

Controller Name Description

SDR SDRAM Controller This is the only SDR SDRAM controller Altera offers. It is a simple, easy-to-use 
controller that works with most available SDR SDRAM devices. 

For more information refer to SDRAM Controller Core chapter in volume 5 
of the Quartus II Handbook. 

DDR/DDR2 Controller Megacore 
Function

This controller is a legacy component which is maintained for existing designs only. 
Altera does not recommend it for new designs.
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Best Practices
When using the high performance DDR or DDR2 SDRAM controller, it is important to 
determine whether full-rate or half-rate clock mode is optimal for your application. 

Half-Rate Mode
Half-rate mode is optimal in cases where you require the highest possible SDRAM 
clock frequency, or when the complexity of your system logic means that you are not 
able to achieve the clock frequency you need for the DDR SDRAM. In half-rate mode, 
the internal Avalon interface to the SDRAM controller is half of the external SDRAM 
frequency.

In half-rate mode, the local data width (the data width inside the SOPC Builder 
system) of the SDRAM controller is four times the data width of the physical DDR 
SDRAM device. For example, if your SDRAM device is 8 bits wide, the internal 
Avalon data port of the SDRAM controller is 32 bits. This design choice facilitates 
bursts of four accesses to the SDRAM device.

Full-Rate Mode
In full-rate mode, the internal Avalon interface to the SDRAM controller runs at the 
full external DDR SDRAM clock frequency. Use full-rate mode if your system logic is 
simple enough that it can easily achieve DDR SDRAM clock frequencies, or when 
running the system logic at half the clock rate of the SDRAM interface is too slow for 
your requirements.

When using full-rate mode, the local data width of the SDRAM controller is two times 
the data width of the physical DDR SDRAM itself. For example, if your SDRAM 
device is 16-bits wide, the internal Avalon data port of the SDRAM controller in full-
rate mode is 32 bits. Again, this choice facilitate bursts to the SDRAM device

High Performance DDR/DDR2 
Controller

This is the DDR/DDR2 controller that Altera recommends for new designs. It supports 
two primary clocking modes, full-rate and half-rate. 

■ Full-rate mode presents data to the SOPC Builder system at twice the width of the 
actual DDR SDRAM device at the full SDRAM clock rate. 

■ Half-rate mode presents data to the SOPC Builder system at four times the native 
SDRAM device data width at half the SDRAM clock rate.

For more information about this controller, refer to the DDR and DDR2 SDRAM 
High-Performance Controller User Guide.

High Performance DDR3 
Controller

This is the DDR3 controller that Altera recommends for new designs. It is similar to the 
high performance DDR/DDR2 controller. It also supports full- and half-rate clocking 
modes. 

For more information about this controller, refer to the DDR3 SDRAM 
High-Performance Controller User Guide.

Table 7–1. Memory Controller Available from Altera (Part 2 of 2)

Controller Name Description
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Sequential Access
SDRAM performance benefits from sequential accesses. When access is sequential, 
data is written or read from consecutive addresses and it may be possible to increase 
throughput by using bursting. In addition, the SDRAM controller can optimize the 
accesses to reduce row and bank switching. Each row or bank change incurs a delay, 
so that reducing switching increases throughput.

Bursting
SDRAM devices employ bursting to improve throughput. Bursts group a number of 
transactions to sequential addresses, allowing data to be transferred back-to-back 
without the incurring the overhead of requests for individual transactions. If you are 
using the high performance DDR/DDR2 SDRAM controller, you may be able to take 
advantage of bursting in the system interconnect fabric as well. Bursting is only useful 
if both the master and slave involved in the transaction are burst-enabled. Refer to the 
documentation for the master in question to see if bursting is supported.

Selecting the burst size for the high performance DDR/DDR2 SDRAM controller 
depends on the mode in which you use the controller. In half-rate mode, the 
Avalon-MM data port is four times the width of the actual SDRAM device; 
consequently, four transactions are initiated to the SDRAM device for each single 
transfer in the system interconnect fabric. A burst size of four is used for those four 
transactions to SDRAM. This is the maximum size burst supported by the high 
performance DDR/DDR2 SDRAM controller. Consequently, using bursts for the high 
performance DDR/DDR2 SDRAM controller in half-rate mode does not increase 
performance because the system interconnect fabric is already using its maximum 
supported burst-size to carry out each single transaction.

However, in full-rate mode, you can use a burst size of two with the high performance 
DDR/DDR2 SDRAM controller. In full-rate mode, each Avalon transaction results in 
two SDRAM device transactions, so two Avalon transactions can be combined in a 
burst before the maximum supported SDRAM controller burst size of four is reached.

SDRAM Minimum Frequency
Many SDRAM devices, particularly DDR, DDR2, and DDR3 devices have minimum 
clock frequency requirements. The minimum clock rate depends on the particular 
SDRAM device. Refer to the datasheet of the SDRAM device you are using to find the 
device's minimum clock frequency.

SDRAM Device Speed
SDRAM devices, both SDR and DDR, come in several speed grades. When using 
SDRAM with FPGAs, the operating frequency of the FPGA system is usually lower 
than the maximum capability of the SDRAM device. Therefore, it is typically not 
worth the extra cost to use fast speed-grade SDRAM devices. Before committing to a 
specific SDRAM device, consider both the expected SDRAM frequency of your 
system, and the maximum and minimum operating frequency of the particular 
SDRAM device.
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Memory Optimization
This section presents tips and tricks that can be helpful when implementing any type 
of memory in your SOPC Builder system. These techniques can help improve system 
performance and efficiency.

Isolate Critical Memory Connections
For many systems, particularly complex ones, isolating performance-critical memory 
connections is beneficial. To achieve the maximum throughput potential from 
memory, connect it to the fewest number of masters possible and share those masters 
with the fewest number of slaves possible. Minimizing connections reduces the size of 
the data multiplexers required, increasing potential clock speed and also reduces the 
amount of arbitration necessary to access the memory.

f You can use bridges to isolate memory connections. For more information on efficient 
system topology refer to the following documents:

■ Avalon Memory-Mapped Bridges chapter in volume 4 of the Quartus II Handbook. 

■ Avalon Memory-Mapped Design Optimizations chapter of the Embedded Design 
Handbook.

Match Master and Slave Data Width
Matching the data widths of master and slave pairs in SOPC Builder is advantageous. 
Whenever a master port is connected to a slave of a different data width, SOPC 
Builder inserts adapter logic to translate between them. This logic can add additional 
latency to each transaction, reducing throughput. Whenever possible, try to keep the 
data width consistent for performance-critical master and slave connections. In cases 
where masters are connected to multiple slaves, and slaves are connected to multiple 
masters, it may be impossible to make all the master and slave connections the same 
data width. In these cases, you should concentrate on the master-to-slave connections 
which have the most impact on system performance. 

For instance, if Nios II CPU performance is critical to your overall system 
performance, and the CPU is configured to run all its software from an SDRAM 
device, you should use a 32-bit SDRAM device because that is the native data width 
of the Nios II processor, and it delivers the best performance. Using a narrower or 
wider SDRAM device can negatively impact CPU performance because of greater 
latency and lower throughput. However, if you are using a 64-bit DMA to move data 
to and from SDRAM, the overall system performance may be more dependent on 
DMA performance. In these cases, it may be advantageous to implement a 64-bit 
SDRAM interface. 

Use Separate Memories to Exploit Concurrency
Any time multiple masters in your system access the same memory, each master is 
only granted access some fraction of the time. Shared access may hurt system 
throughput if a master is starved for data. 
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If you create separate memory interfaces for each master, they can access memory 
concurrently at full speed, removing the memory bandwidth bottleneck. Separate 
interfaces are quite useful in systems which employ a DMA, or in multiprocessor 
systems where the potential for parallelism is significant.

In SOPC Builder, it is easy to create separate memory interfaces. Simply instantiate 
multiple on-chip memory components instead of one. You can also use this technique 
with external memory devices such as external SRAM and SDRAM by adding more, 
possibly smaller, memory devices to the board and connecting them to separate 
interfaces in SOPC Builder. Adding more memory devices presents tradeoffs between 
board real estate, FPGA pins, and FPGA logic resources, but can certainly improve 
system throughput. Your system topology should reflect your system requirements. 

f For more information regarding topology tradeoffs refer to Avalon Memory-Mapped 
Design Optimizations chapter of the Embedded Design Handbook. 

Understand the Nios II Instruction Master Address Space 
This Nios II CPU instruction master cannot address more than a 256 MByte span of 
memory; consequently, providing more than 256 MBytes to run Nios II software 
wastes memory resources. This restriction does not apply to the Nios II data master 
that can address up to 2 GBytes.

Test Memory
You should rigorously test the memory in your system to ensure that it is physically 
connected and setup properly before relying on it in an actual application. The Nios II 
Development Kit ships with a memory test example which is a good starting point for 
building a thorough memory test for your system.

Case Study
The section describes the optimization of memory partitioning in a video processing 
application to illustrate the concepts discussed earlier in this document.

Application Description
This video processing application employs an algorithm that operates on a full frame 
of video data, line by line. Other details of the algorithm do not impact design of the 
memory subsystem. The data flow includes the following steps:

1. A dedicated DMA engine copies the input data from the video source into a 
buffer. 

2. A Nios II CPU operates on that buffer, performing the video processing algorithm 
and writing the result to another buffer. 

3. A second dedicated DMA engine copies the output from the CPU result buffer to 
the video output device. 

4. The two DMAs provide an element of concurrency by copying input data to the 
next input buffer, and copying output data from the previous output buffer at the 
same time the CPU is processing the current buffer, a technique commonly called 
ping-ponging.
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Figure 7–1 shows the basic architecture of the system.

Initial Memory Partitioning
As a starting point, the application uses SDRAM for all of its storage and buffering, a 
commonly used memory architecture. The input DMA copies data from the video 
source to an input buffer in SDRAM. The CPU performs its processing by reading 
from that SDRAM input buffer, writing its result to an output buffer, also located in 
SDRAM. In addition, the CPU uses SDRAM for both its instruction and data memory. 
(Refer to Figure 7–2.)

Functionally, there is nothing wrong with this implementation. It is a frequently used, 
traditional type of embedded system architecture. It is also relatively inexpensive, 
because it uses only one external memory device; however, it is somewhat inefficient, 
particularly regarding its use of SDRAM. As Figure 7–2 illustrates, there are 6 
different channels of data being accessed in the SDRAM.

1. CPU instruction

2. CPU data

3. Input data from DMA

Figure 7–1. Sample Application Architecture
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4. Input data to CPU

5. Output data from CPU

6. Output data to DMA

With this many channels moving in and out of SDRAM simultaneously, especially at 
the high data-rates required by video, the SDRAM bandwidth is easily the most 
significant performance bottleneck in the design.

Optimized Memory Partitioning
This design can be optimized to operate more efficiently. These optimizations are 
described in the following sections.

Add An External SRAM for input buffers
The first optimization to improve efficiency is to move the input buffering from the 
SDRAM to an external SRAM device. This technique creates performance gains for 
three reasons: 

■ First, the input side of the application achieves higher throughput because it now 
uses its own dedicated external SRAM to bring in video data. 

■ Second, two of the high-bandwidth channels from the SDRAM are eliminated, 
allowing the remaining SDRAM channels to achieve higher throughput. 

■ Third, because eliminating two channels reduces the number of accesses to the 
SDRAM memory, there are fewer row changes in the SDRAM, leading to higher 
throughput. 

The redesigned system processes data faster, at the expense of more complexity and 
higher cost. Figure 7–3 illustrates the redesigned system.

1 If the video frames are small enough to fit in FPGA on-chip memory, you can use 
on-chip memory for the input buffers, saving the expense and complexity of adding 
an external SRAM device.
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Notice that there are still four channels connected to SDRAM:

1. CPU instruction

2. CPU data

3. Output data from CPU

4. Output data to DMA

While we could probably achieve some additional performance benefit by adding a 
second external SRAM for the output channel, the benefit would not likely be 
significant enough to outweigh the added cost and complexity. The reason is that 
only two of the four remaining channels require significant bandwidth from the 
SDRAM, the two video output channels. Assuming our CPU contains both instruction 
and data caches, the SDRAM bandwidth required by the CPU is likely to be relatively 
small. Therefore, sharing the SDRAM for CPU instruction and data, and the video 
output channel is probably acceptable. If necessary, increasing the CPU cache sizes 
can further reduce the CPU's reliance on SDRAM bandwidth.

Add On-Chip Memory for Video Line Buffers
The final optimization is to add small on-chip memory buffers for input and output 
video lines. Because the processing algorithm operates on the video input one line at a 
time, buffering entire lines of input data in an on-chip memory improves 
performance. It enables the CPU to read all its input data from on-chip RAM—the 
fastest, lowest latency type of memory available. 

The DMA fills these buffers ahead of the CPU in a ping-pong scheme, in a manner 
analogous to the input frame buffers used for the external SRAM. The same on-chip 
memory line buffering scheme is used for CPU output. The CPU writes its output 
data to an on-chip memory line buffer, which is copied to the output frame buffer by a 
DMA once both the input and output ping-pong buffers flip, and the CPU begins 
processing the next line. Figure 7–4 illustrates this memory architecture.

Figure 7–3. Input Channel Moved to External SSRAM
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This chapter references the following documents:

■ Altera Configuration Devices chapter in volume 2 of the Configuration Handbook

■ AN 398: Using DDR/DDR2 SDRAM with SOPC Builder 

■ Avalon Memory-Mapped Bridges in volume 4 of the Quartus II Handbook

■ Avalon Memory-Mapped Design Optimizations chapter of the Embedded Design 
Handbook

■ Building Memory Subsystems Using SOPC Builder in volume 4 of Quartus II 
Handbook

■ Common Flash Interface Controller Core in volume 5 of the Quartus II Handbook 

■ DDR and DDR2 SDRAM High-Performance Controller User Guide

■ DDR3 SDRAM High-Performance Controller User Guide

■ Nios II Flash Programmer User Guide

■ On-Chip FIFO Memory Core in volume 5 of the Quartus II Handbook

■ SDRAM Controller Core in volume 5 of the Quartus II Handbook

■ Using Nios II Tightly Coupled Memory Tutorial

Figure 7–4. On-Chip Memories Added As Line Buffers
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8. Hardware Acceleration and
Coprocessing
This chapter discusses how you can use hardware accelerators and coprocessing to 
create more efficient, higher throughput designs in SOPC Builder. This chapter 
discusses the following topics: 

■ Accelerating Cyclic Redundancy Checking (CRC)

■ Creating Nios II Custom Instructions

■ Using the C2H Compiler

■ Creating Multicore Designs

■ Pre- and Post-Processing

■ Replacing State Machines

Hardware Acceleration
Hardware accelerators implemented in FPGAs offer a scalable solution for 
performance-limited systems. Other alternatives for increasing system performance 
include choosing higher performance components or increasing the system clock 
frequency. Although these other solutions are effective, in many cases they lead to 
additional cost, power, or design time. 

Accelerating Cyclic Redundancy Checking (CRC) 
CRC is significantly more efficient in hardware than software; consequently, you can 
improve the throughput of your system by implementing a hardware accelerator for 
CRC. In addition, by eliminating CRC from the tasks that the processor must run, the 
processor has more bandwidth to accomplish other tasks. Figure 8–1 illustrates a 
system in which a Nios® II processor offloads CRC processing to a hardware 
accelerator. In this system, the Nios II processor reads and writes registers to control 
the CRC using its Avalon® Memory-Mapped (Avalon-MM) slave port. The CRC 
component’s Avalon-MM master port reads data for the CRC check from memory. 

f This design example and the HDL files to implement it are fully explained in the 
Developing Components for SOPC Builder chapter in volume 4 of the Quartus II 
Handbook.
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Hardware Acceleration
An alternative approach includes a dedicated DMA engine in addition to the Nios II 
processor. Figure 8–2 illustrates this design. In this system, the Nios II processor 
programs the DMA engine which transfers data from memory to the CRC.

Although Figure 8–2 shows the DMA and CRC as separate blocks, you can combine 
them as a custom component which includes both an Avalon-MM master and slave 
port. You can import this component into your SOPC Builder system using the 
component editor. 

1 To learn more about using component editor, refer to the Component Editor 
in volume 4 of the Quartus II Handbook. You can find additional examples of 
hardware acceleration on Altera’s Hardware Acceleration web page.

Figure 8–1. A Hardware Accelerator for CRC 

Figure 8–2. DMA and Hardware Accelerator for CRC
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Hardware Acceleration
Matching I/O Bandwidths
I/O bandwidth can have a large impact on overall performance. Low I/O bandwidth 
can cause a high-performance hardware accelerator to perform poorly when the 
dedicated hardware requires higher throughput than the I/O can support. You can 
increase the overall system performance by matching the I/O bandwidth to the 
computational needs of your system.

Typically, memory interfaces cause the most problems in systems that contain 
multiple processors and hardware accelerators. The following recommendations on 
interface design can maximize the throughput of your hardware accelerator:

■ Match high performance memory and interfaces to the highest priority tasks your 
system must perform.

■ Give high priority tasks a greater share of the I/O bandwidth if any memory or 
interface is shared. 

■ If you have multiple processors in your system, but only one of the processors 
provides real-time functionality, assign it a higher arbitration share.

Pipelining Algorithms
A common problem in systems with multiple Avalon-MM master ports is 
competition for shared resources. You can improve performance by pipelining the 
algorithm and buffering the intermediate results in separate on-chip memories. 
Figure 8–3 illustrates this approach. Two hardware accelerators write their 
intermediate results to on-chip memory. The third module writes the final result to an 
off-chip memory. Storing intermediate results in on-chip memories reduces the I/O 
throughput required of the off-chip memory. By using on-chip memories as 
temporary storage you also reduce read latency because on-chip memory has a fixed, 
low-latency access time.

f To learn more about the topics discussed in this section refer to the following 
documentation: System Interconnect Fabric for Memory-Mapped Interfaces in volume 4 of 
the Quartus II Handbook and Building Memory Subsystems Using SOPC Builder in 
volume 4 of the Quartus II Handbook. To learn more about optimizing memory design 
refer to Memory System Design in volume 3 of the Embedded Design Handbook.

Figure 8–3. Using On-Chip Memory to Achieve High Performance
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Hardware Acceleration
Creating Nios II Custom Instructions
The Nios II processor employs a RISC architecture which can be expanded with 
custom instructions. The Nios II processor includes a standard interface that you can 
use to implement your own custom instruction hardware in parallel with the 
arithmetic logic unit (ALU).

All custom instructions have the same structure. They include up to two inputs and 
one output. If you need to add hardware acceleration that requires many inputs and 
outputs, a custom hardware accelerator with an Avalon-MM slave port is a more 
appropriate solution. Custom instructions are blocking operations that prevent the 
processor from executing additional instructions until the custom instruction has 
completed. To avoid stalling the processor while your custom instruction is running, 
you can convert your custom instruction into a hardware accelerator with an 
Avalon-MM slave port. If you do so, the processor and custom peripheral can operate 
in parallel. Figure 8–4 illustrates the differences in implementation between a custom 
instruction and a hardware accelerator.

Figure 8–4. Implementation Differences between a Custom Instruction and Hardware Accelerator
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Hardware Acceleration
Because custom instructions extend the Nios II processor’s ALU, the logic must meet 
timing or the fMAX of the processor will suffer. As you add custom instructions to the 
processor, the ALU multiplexer grows in width as Figure 8–5 illustrates. This 
multiplexer selects the output from the ALU hardware (c[31:0] in Figure 8–5). 
Although you can pipeline custom instructions, you have no control over the 
automatically inserted ALU multiplexer. As a result, you cannot pipeline the 
multiplexer for higher performance.

Instead of adding several custom instructions, you can combine the functionality into 
a single logic block as shown in Figure 8–6. When you combine custom instructions 
you use selector bits to select the required functionality. If you create a combined 
custom instruction, you must insert the multiplexer in your logic manually. This 
approach gives you full control over the multiplexer logic that generates the output. 
You can pipeline the multiplexer to prevent your combined custom instruction from 
becoming part of a critical timing path.

Figure 8–5. Individual Custom Instructions
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Hardware Acceleration
With multiple custom instructions built into a logic block, you can pipeline the output 
if it fails timing. To combine custom instructions, each must have identical latency 
characteristics. 

Custom instructions are either fixed latency or variable latency. You can convert fixed 
latency custom instructions to variable latency by adding timing logic. Figure 8–7 
shows the simplest method to implement this conversion by shifting the start bit by 
<n> clock cycles and logically ORing all the done bits.

f For more information about creating and using custom instructions see the Nios II 
Custom Instruction User Guide.

Figure 8–6. Combined Custom Instruction
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Hardware Acceleration
Using the C2H Compiler
You can use the Nios II C2H Compiler to compile your C source code into HDL 
synthesizable source code. SOPC Builder automatically places your hardware 
accelerator into your system. SOPC Builder automatically connects all the master 
ports to the necessary memories and connects the Nios II processor data master to the 
accelerator slave port which is used to transfer data. 

Choose the Nios II C2H Compiler instead of custom instructions when your 
algorithm requires access to memory. The C2H Compiler creates Avalon-MM masters 
that access memory. If your algorithm accesses several memories, the C2H Compiler 
creates a master per memory access, allowing you to benefit from the concurrent 
access feature of the system interconnect fabric. You can also use the C2H Compiler to 
create hardware accelerators that are non-blocking so that you can use the accelerator 
in parallel with other software functionality.

In figure Figure 8–8 the two-dimensional DCT algorithm is accelerated to offload a 
Nios II processor. The DCT algorithm requires access to input and output buffers as 
well as a cosine lookup table. Assuming that each resides in separate memories, the 
hardware accelerator can access all three memories concurrently.

For more information please refer to the Nios II C2H Compiler User Guide and the 
Optimizing C2H Compiler Results chapter in the Embedded Design Handbook. There are 
also C2H examples available on the Altera website.

Figure 8–8. C2H Discrete Cosine Transform (DCT) Block Diagram

Nios II Processor
DCT Hardware Accelerator

Code & Data
Memory

SMM MMM

S

Input Buffer 
Memory

S

Cosine Table 
Memory

S

Output Buffer 
Memory

S

Arbiter Arbiter Arbiter Arbiter

(Generated by C2H)
© June 2008 Altera Corporation Embedded Design Handbook
Preliminary

http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51005.pdf
http://www.altera.com/support/examples/nios2/exm-nios2.html


8–8 Chapter 8: Hardware Acceleration and Coprocessing
Coprocessing
Coprocessing
Partitioning system functionality between a Nios II processor and hardware 
accelerators or between multiple Nios II processors in your FPGA can help you 
control costs. The following sections demonstrate how you can use coprocessing to 
create high performance systems. 

Creating Multicore Designs
Multicore designs combine multiple processor cores in a single FPGA to create a 
higher performance computing system. Typically, the processors in a multicore 
design can communicate with each other. Designs including the Nios II processor can 
implement inter-processor communication, or the processors can operate 
autonomously.

When a design includes more than one processor you must partition the algorithm 
carefully to make efficient use of all of the processors. The following example includes 
a Nios II-based system that performs video over IP, using a network interface to 
supply data to a discrete DSP processor. The original design overutilizes the Nios II 
processor. The system performs the following steps to transfer data from the network 
to the DSP processor:

1. The network interface signals when a full data packet has been received.

2. The Nios II processor uses a DMA engine to transfer the packet to a dual-port 
on-chip memory buffer.

3. The Nios II processor processes the packet in the on-chip memory buffer.

4. The Nios II processor uses the DMA engine to transfer the video data to the DSP 
processor.

In the original design, the Nios II processor is also responsible for communications 
with the following peripherals that include Avalon-MM slave ports:

■ Hardware debug interface

■ User interface

■ Power management

■ Remote control receiver

Figure 8–9 illustrates this design.
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Coprocessing
Adding a second Nios II processor to the system, allows the workload to be divided 
so that one processor handles the network functionality and the other the control 
interfaces. Figure 8–10 illustrates the revised design.

Because the revised design has two processors, you must create two software projects; 
however, each of these software projects handles fewer tasks and is simpler to create 
and maintain. You must also create a mechanism for inter-processor communication. 
The inter-processor communication in this system is relatively simple and is justified 
by the system performance increase. 

f For more information on designing hardware and software for inter-processor 
communication, refer to the Creating Multiprocessor Nios II Systems Tutorial and 
Multiprocessor Coordination Peripherals in volume 5 of the Quartus II Handbook. Refer to 
the Nios II Processor Reference Handbook for complete information on this soft core 
processor. A Nios II Multiprocessor Design Example is available on the Altera 
website.

Figure 8–9. Over-utilized Video System
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Coprocessing
In Figure 8–10, the second Nios II processor added to the system performs primarily 
low-level maintenance tasks; consequently, the Nios II/e core is used. The Nios II/e 
core implements only the most basic processor functionality in an effort to trade off 
performance for a small hardware footprint. This core is approximately one-third the 
size of the Nios II/f core. 

f To learn more about the three Nios II processor cores refer to the Nios II Core 
Implementation Details chapter in the Nios II Processor Reference Handbook.

Pre- and Post-Processing
The high performance video system illustrated in Figure 8–10 distributes the 
workload by separating the control and data planes in the hardware. Figure 8–11 
illustrates a different approach. All three stages of a DSP workload are implemented 
in software running on a discrete processor. This workload includes the following 
stages:

■ Input processing—typically removing packet headers and error correction 
information

■ Algorithmic processing and error correction—processing the data

■ Output processing—typically adding error correction, converting data stream to 
packets, driving data to I/O devices

By off loading the processing required for the inputs or outputs to an FPGA, the 
discrete processor has more computation bandwidth available for the algorithmic 
processing. 

Figure 8–10. High Performance Video System
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Coprocessing
If the discrete processor requires more computational bandwidth for the algorithm, 
dedicated coprocessing can be added. Figure 8–12 below shows examples of 
dedicated coprocessing at each stage.

Replacing State Machines
You can use the Nios II processor to implement scalable and efficient state machines. 
When you use dedicated hardware to implement state machines, each additional state 
or state transition increases the hardware utilization. In contrast, adding the same 
functionality to a state machine that runs on the Nios II processor only increases the 
memory utilization of the Nios II processor. 

Figure 8–11. Discrete Processing Stages
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Coprocessing
A key benefit of using Nios II for state machine implementation is the reduction of 
complexity that results from using software instead of hardware. A processor, by 
definition, is a state machine that contains many states. These states can be stored in 
either the processor register set or the memory available to the processor; 
consequently, state machines that would not fit in the footprint of a FPGA can be 
created using memory connected to the Nios II processor. 

When designing state machines to run on the Nios II processor, you must understand 
the necessary throughput requirements of your system. Typically, a state machine is 
comprised of decisions (transitions) and actions (outputs) based on stimuli (inputs). 
The processor you have chosen determines the speed at which these operations take 
place. The state machine speed also depends on the complexity of the algorithm being 
implemented. You can subdivide the algorithm into separate state machines using 
software modularity or even multiple Nios II processor cores that interact together.

Low-Speed State Machines
Low-speed state machines are typically used to control peripherals. The Nios II/e 
processor pictured in Figure 8–10 on page 8–10 could implement a low speed state 
machine to control the peripherals.

1 Even though the Nios II/e core does not include a data cache, Altera recommends 
that the software accessing the peripherals use data cache bypassing. Doing so avoids 
potential cache coherency issues if the software is ever run on a Nios II/f core that 
includes a data cache. 

f For information regarding data cache bypass methods, refer to the Processor 
Architecture chapter of the Nios II Processor Reference Handbook.

State machines implemented in SOPC Builder require the following components:

■ A Nios II processor

■ Program and data memory

■ Stimuli interfaces

■ Output interfaces

The building blocks you use to construct a state machine in SOPC Builder are no 
different than those you would use if you were creating a state machine manually. 
One noticeable difference in the SOPC Builder environment is accessing the interfaces 
from the Nios II processor. The Nios II processor uses an Avalon-MM master port to 
access peripherals. Instead of accessing the interfaces using signals, you communicate 
via memory-mapped interfaces. Memory-mapped interfaces simplify the design of 
large state machines because managing memory is much simpler than creating 
numerous directly connected interfaces. 

f For more information on the Avalon-MM interface, refer to the Avalon Interface 
Specifications. 
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High-Speed State Machines
You should implement high throughput state machine using a Nios II/f core. To 
maximize performance, focus on the I/O interfaces and memory types. The following 
recommendations on memory usage can maximize the throughput of your state 
machine:

■ Use on-chip memory to store logic for high-speed decision making.

■ Use tightly-coupled memory if the state machine must operate with deterministic 
latency. Tightly-coupled memory has the same access time as cache memory; 
consequently, you can avoid using cache memory and the cache coherency 
problems that might result. 

f Refer to the Cache and Tightly-Coupled Memory chapter of the Nios II Software 
Developer's Handbook for more information on tightly-coupled memory.

Subdivided State Machines
Subdividing a hardware-based state machine into smaller more manageable units can 
be difficult. If you choose to keep some of the state machine functionality in a 
hardware implementation, you can use the Nios II processor to assist it. For example, 
you may wish to use a hardware state machine for the high data throughput 
functionality and Nios II for the slower operations. If you have partitioned a 
complicated state machine into smaller, hardware based state machines, you can use 
the Nios II processor for scheduling. 

Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

■ Building Memory Subsystems Using SOPC Builder in volume 4 of the Quartus II 
Handbook

■ Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer's 
Handbook

■ Component Editor in volume 4 of the Quartus II Handbook

■ Creating Multiprocessor Nios II Systems Tutorial

■ Developing Components for SOPC Builder chapter in volume 4 of the Quartus II 
Handbook

■ Memory Systedm Design in volume 3 of the Embedded Design Handbook

■ Nios II C2H Compiler User Guide 

■ Nios II Custom Instruction User Guide

■ Optimizing C2H Compiler Results chapter in the Embedded Design Handbook

■ Multiprocessor Coordination Peripherals in volume 5 of the Quartus II Handbook

■ Nios II Core Implementation Details chapter in the Nios II Processor Reference Handbook

■ Processor Architecture chapter of the Nios II Processor Reference Handbook
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■ System Interconnect Fabric for Memory-Mapped Interfaces in volume 4 of the 
Quartus II Handbook 

Document Revision History
Table 8–1 shows the revision history for this chapter.

Table 8–1. Document Revision History

Date and Document Version Changes Made Summary of Changes

June 2008
v1.1

Corrected Table of Contents —

March 2008
v1.0

Initial release —
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9. Verification and Board Bring-Up
Introduction
This chapter provides an overview of the tools available in the Quartus® II software 
and the Nios® II Embedded Design Suite (EDS) that you can use to verify and bring 
up your embedded system.

This chapter covers the following topics: 

■ Verification Methods

■ Board Bring-up

■ System Verification

Verification Methods
Embedded systems can be difficult to debug because they have limited memory and 
I/O and consist of a mixture of hardware and software components. Altera® provides 
the following tools and strategies to help you overcome these difficulties: 

■ FS2 Console

■ System Console

■ SignalTap II Embedded Logic Analyzer

■ External Instrumentation

■ Stimuli Generation

Prerequisites
To make effective use of this chapter, you should be familiar with the following 
topics:

■ Defining and generating Nios II hardware systems with SOPC Builder

■ Compiling Nios II hardware systems with the Quartus II development software
Embedded Design Handbook
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Verification Methods
FS2 Console
The FS2 console, developed by First Silicon Solutions (FS2) extends the verification 
functionality of the Nios II processor. The FS2 console communicates with the Nios II 
JTAG debug module that is available for all three variants of the Nios II processor. FS2 
optionally uses an external system analyzer hardware module that creates additional 
trace support to the Nios II JTAG debug module. Figure 9–1 illustrates the 
connectivity between an FS2 console and an SOPC Builder system.

The Nios II JTAG debug module uses the Nios II data master port to communicate 
with components that contain Avalon® Memory-Mapped (Avalon-MM) slave ports. 
Although the Nios II JTAG debug module is tightly integrated with the Nios II 
processor, it does not rely on any additional support being provided by the processor. 
As a result, you can use the Nios II JTAG debug module and the FS2 console to verify 
a system without having to write software. 

1 The FS2 console does not support host machines running the Linux operating system.

SOPC Builder Test Integration
Even if you do not intend to include a Nios II processor or an SOPC Builder system in 
your final design, you can still include a Nios II processor during the debug phase to 
take advantage of the embedded tools that Altera provides. The Nios II processor 
contains a data master which you can use to perform read and write accesses to your 
hardware blocks. 

Figure 9–1. FS2 Console Communication Path
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Verification Methods
To include a JTAG debug module in your system follow these steps:

1. On the System Contents tab, double-click the Nios II Processor component.

2. In the Nios II Processor wizard, click the JTAG Debug Module tab.

3. Make sure Level 1 is selected. 

The JTAG debug module is required for communication between your system and the 
FS2 console.

Capabilities of the FS2 Console
You can launch the F2S console from within the Nios II IDE or from the Nios II 
command shell. Once the FS2 console is open, you have access to the command line 
and scripting capabilities of the software. The command line within the FS2 console is 
sufficient for lightweight debugging. To access help for FS2, simply type help for a 
list of available commands. The help system is hierarchical. When you type help, the 
help system lists the top-level command hierarchy. You can refine your help 
searching by typing help <command_name> to learn more about the commands 
available. For example, if you type help memory The FS2 console displays a list all of 
the commands to access memory, including: addr, asm, byte, compare, copy, dasm, 
dump, and so on.

Using the FS2 console you can query the FPGA to determine if there are any Nios II 
debug modules present. The FS2 console can access a Nios II debug module anywhere 
on the JTAG chain. Because your design may have multiple Nios II debug modules, 
you can specify the debug module you prefer.

The Nios II processor has a 32-bit data master. Using the FS2 console, you can perform 
either byte (byte), half word (half), or word (word) accesses to any Avalon-MM 
slave port. 

The FS2 console supports the Tcl/Tk scripting language. Scripting memory accesses is 
particularly useful if you have many hardware blocks to test or need to instrument 
regression testing. A Tcl/Tk reference guide is integrated into the FS2 console help 
menu. 

sld info Command

The sld info command lists the JTAG chains that are available on your board. For 
the chain that it is being used to access your board, this command provides 
identifying information for the JTAG cable (hw), FPGA device or devices (device) and 
debug modules (node). Figure 9–2 shows typical output from this command. In this 
example, communication occurs over the second JTAG chain, Hw 1: USB-Blaster 
[USB-0]. There is a single FPGA in this JTAG chain, device 1: EP2C35, and there is a 
single debug module on this chain, node 0: owner: First Silicon Solutions.

You must specify these components to the FS2 Console using the config command. 
For the JTAG chain illustrated in Figure 9–2, you must type the following three 
commands:

■ config sldHW 1—selects the second programming cable

■ config sldDev 1—selects the second device on the JTAG chain
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■ config sldNode 0—selects the first debug module in the FPGA

You can update this configuration information to communicate over a different JTAG 
cable to a different device and debug module. For example, to communicate over the 
fourth programming cable to the third device using the second Nios II debug module, 
you would type the following commands:

■ config sldHW 3 

■ config sldDev 2 

■ config sldNode 1

When you first bring up the FS2 Console, it is initialized to communicate over the first 
cable, to the first device and using the debug module in the first FPGA. However, if 
you update this information, your changes are persistent.

After you compile your design with the Quartus II software, the JTAG debug interface 
file (.jdi) in your project directory includes the debug module instance numbers. If 
your design includes two SOPC Builder systems in a single FPGA, the debug module 
instance numbers may change when you recompile. Each debug module is referenced 
by its full name and level of hierarchy in the design. The debug module number is 
stored as sld_instance_index. For example, if a debug module is assigned to 
three, the .jdi file includes the following setting:

<parameter name="sld_instance_index" type="dec" value="3"/>

This is the value you use when setting sldNode.

FS2 Examples 

The following procedure writes 0x5A followed by 0xA5 to an 8-bit hardware block:

1. Download the hardware image file SRAM object file (.sof). 

2. In the Nios II command shell, type nios2-console to start the FS2 console.

3. In the FS2 console, type openport sld to establish communication with a 
remote debugger.

4. Type halt to stop the Nios II processor. 

5. Type byte 0x00810880 0x5A to write 0x5A to memory location 0x00810880. 

6. Type byte 0x00810880 0xA5 to write 0xA5 to memory location 0x00810880.

Figure 9–2. sld info Command 
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Example 9–1 writes a repeating pattern to an address range. Before trying this 
example, check the Base (address) column for a memory device in your SOPC Builder 
system, so that you write and read valid locations. In this example, an on-chip 
memory has a base address of 0x02100000.

All the commands sent to the JTAG debug module from the FS2 console use the JTAG 
interface of the FPGA. JTAG is a relatively slow communication medium. You cannot 
rely on an FS2 console to stress test your memory interfaces. Refer to “Board 
Bring-up” on page 9–10 for strategies to stress test memory.

f To learn more about the FS2 console refer to the First Silicon Solutions website at 
www.fs2.com. The Nios II Embedded Design Suite (EDS) installation also includes 
documentation for the FS2 console. You can find this documentation at: 
$SOPC_KIT_NIOS2\bin\fs2\doc.

System Console
You can use the System Console to perform low–level debugging of an SOPC Builder 
system. You access the System Console functionality in command line mode. You can 
work interactively or run a Tcl script. The System Console prints responses to your 
commands in the terminal window. To facilitate debugging with the System Console, 
you can include one of the four SOPC Builder components with interfaces that the 
System Console can use to send commands and receive data. Table 9–1 lists these 
components. 

The System Console allows you to perform any of the following tasks:

■ Access memory and peripherals

■ Start or stop a Nios II processor

Example 9–1. Writing a Repeating Pattern to an Address Range

# write a repeating pattern of 0x5a5a5a5a to an address range 
word 0x02100000..0x021000FF 0x5a5a5a5a
# read back the data from the address range 
dump 0x02100000..0x021000FF word 

Table 9–1. SOPC Builder Components for Communication with the System Console (Note 1)

Component Name Debugs Components with the Following Interface Types

The Nios® II processor with JTAG debug 
enabled

Components that include an Avalon-MM slave interface. The JTAG debug 
module can also control the Nios II processor for debug functionality, 
including starting, stopping, and stepping the processor.

JTAG to Avalon master bridge Components that include an Avalon-MM slave interface

Avalon Streaming (Avalon-ST) JTAG Interface Components that include an Avalon-ST interface

JTAG UART The JTAG UART is an Avalon-MM slave device that can be used in 
conjunction with the System Console to send and receive byte streams. 

Note to Table 9–1:

(1) The System Console can also send and receive byte streams from any SLD node, whether it is instantiated in an SOPC Builder component 
provided by Altera, a custom component, or part of your Quartus II project. However, this approach requires detailed knowledge of the JTAG 
commands.
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■ Access a Nios II processor register set and step through software

■ Verify JTAG connectivity 

■ Access the reset signal

■ Sample the system clock 

Using the System Console you can test your own custom components in real 
hardware without creating a testbench or writing test code for the Nios II processor. 
By coding a Tcl script to access a component with an Avalon-MM slave port, you 
create a testbench that abstracts the Avalon-MM master accesses to a higher level. You 
can use this strategy to quickly test components, I/O, or entire memory-mapped 
systems.

Embedded control systems typically include inputs such as sensors, outputs such as 
actuators, and a processor that determines the outputs based on input values. You can 
test your embedded control system in isolation by creating an additional system to 
exercise the embedded system in hardware. This approach allows you to perform 
automated testing of hardware-in-the-loop (HIL) by using the System Console to 
drive the inputs into the system and measure the outputs. This approach has the 
advantage of allowing you to test your embedded system without modifying the 
design. Figure 9–3 illustrates HIL testing using the System Console.
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f To learn more about the System Console refer to the System Console User Guide. 

SignalTap II Embedded Logic Analyzer
The SignalTap® II embedded logic analyzer is available in the Quartus II software. It 
reuses the JTAG pins of the FPGA and has a low Quartus II fitter priority, allowing it 
to be non-intrusive. Because this logic analyzer is integrated in your design 
automatically, it takes synchronized measurements without the undesirable side 
effects of output pin capacitance or I/O delay. The SignalTap II embedded logic 
analyzer also supports Tcl scripting so that you can automate data capture, 
duplicating the functionality that external logic analyzers provide.

This logic analyzer can operate while other JTAG components, including the Nios II 
JTAG debug module and JTAG UART, are in use, allowing you to perform 
co-verification. You can use the plug-in support available with the SignalTap II 
embedded logic analyzer to enhance your debug capability with any of the following:

Figure 9–3. Hardware-in-the-Loop Testing Using the System Console
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■ Instruction address triggering

■ Non-processor related triggering

■ Software disassembly

■ Instruction display (in hexadecimal or symbolic format)

You can also use this logic analyzer to capture data from your embedded system for 
analysis by the MATLAB software from Mathworks. The MATLAB software receives 
the data using the JTAG connection and can perform post processing analysis. Using 
looping structures, you can perform multiple data capture cycles automatically in the 
MATLAB software, instead of manually controlling the logic analyzer using the 
Quartus II design software. 

Because the SignalTap II embedded logic analyzer uses the FPGA’s JTAG connection, 
continuous data triggering may result in lost samples. For example, if you capture 
data continuously at 100 MHz, you should not expect all of your samples to be 
displayed in the logic analyzer GUI. The logic analyzer buffers the data at 100 MHz; 
however, if the JTAG interface becomes saturated, samples are lost. 

f To learn more about SignalTap II embedded logic analyzer and co-verification, refer 
to the following documentation: Design Debugging Using the SignalTap II Embedded 
Logic Analyzer chapter in volume 3 of the Quartus II Handbook and AN 323: Using 
SignalTap II Embedded Logic Analyzers in SOPC Builder Systems.

External Instrumentation
If your design does not have enough on-chip memory to store trace buffers, you can 
use an external logic analyzer for debugging. External instrumentation is also 
necessary if you require any of the following: 

■ Data collection with pin loading

■ Complex triggers

■ Asynchronous data capture

Altera provides procedures to connect external verification devices such as 
oscilloscopes, logic analyzers, and protocol analyzers to your FPGA.

SignalProbe
The SignalProbe incremental routing feature allows you to route signals to output 
pins of the FPGA without affecting the existing fit of a design to a significant degree. 
You can use SignalProbe to investigate internal device signals without rewriting your 
HDL code to pass them up through multiple layers of the design hierarchy to a pin. 
Creating such revisions manually is time-consuming and error-prone.

Altera recommends SignalProbe when there are enough pins to route internal signals 
out of the FPGA for verification. If FPGA pins are not available, you have the 
following three alternatives:

■ Reduce the number of pins used by the design to make more pins available to 
SignalProbe

■ Use the SignalTap II embedded logic analyzer

■ Use the Logic Analyzer Interface
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Revising your design to increase the number of pins available for verification 
purposes requires design changes and can impact the design schedule. Using the 
SignalTap II embedded logic analyzer is a viable solution if you do not require 
continuous sampling at a high rate. The SignalTap II embedded logic analyzer does 
not require any additional pins to be routed; however, you must have enough 
unallocated logic and memory resources in your design to incorporate it. If neither of 
these approaches is viable, you can use the logic analyzer interface.

f To learn more about SignalProbe, refer to the Quick Design Debugging Using 
SignalProbe chapter in volume 3 of the Quartus II Handbook. 

Logic Analyzer Interface
The Quartus II Logic Analyzer Interface is a JTAG programmable method of driving 
multiple time-domain multiplexed signals to pins for external verification. Because 
the Logical Analyzer Interface multiplexes pins, it minimizes the pincount 
requirement. Groups of signals are assigned to a bank. Using JTAG as a 
communication channel, you can switch between banks. 

You should use this approach when SignalTap II embedded logic analyzer is 
insufficient for your verification needs. Some external logic analyzer manufacturers 
support the Logic Analyzer Interface. These logic analyzers have various amounts of 
support. The most important feature is the ability to let the measurement tools cycle 
through the signal banks automatically.

The ability to cycle through signal banks is not limited to logic analyzers. You can use 
it for any external measurement tool. Some developers use low speed indicators, for 
example LEDs, for verification. You can use the Logic Analyzer interface to map many 
banks of signals to a small number of verification LEDs. You may wish to leave this 
form of verification in your final design so that your product is capable of creating 
low-level error codes after deployment.

f To learn more about the Quartus II Logic Analyzer Interface, refer to the In-System 
Debugging Using External Logic Analyzers chapter in volume 3 of the Quartus II 
Handbook.

Stimuli Generation
To effectively test your system you must maximize your test coverage with as few 
stimuli as possible. To maximize your test coverage you should use a combination of 
static and randomly generated data. The static data contains a fixed set of inputs that 
you can use to test the standard functionality and corner cases of your system. 

Random tests are generated at run time, but must be accessible when failures occur so 
that you can analyze the failure case. Random test generation is particularly effective 
after static testing has identified the majority of issues with the basic functionality of 
your design. The test cases created may uncover unanticipated issues. Whenever 
randomly generated test inputs uncover issues with your system, you should add 
those cases to your static test data set for future testing. 
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Creating random data for use as inputs to your system can be challenging because 
pseudo random number generators (PRNG) tends to repeat patterns. Choose a 
different seed each time you initialize the PRNG for your random test generator. The 
random number generator creates the same data sequence if it is seeded with the same 
value. 

Seed generation is an advanced topic and is not covered in detail in this document. 
The following recommendations on creating effective seed values should help you 
avoid repeating data values: 

■ Use a random noise measurement. One way to do this is by reading the analog 
output value of an A/D converter.

■ Use multiple asynchronous counters in combination to create seed values.

■ Use a timer value as the seed (that is, the number of seconds from a fixed point in 
time).

Using a combination of seed generation techniques can lead to more random 
behavior. When generating random sequences, it is important to understand the 
distribution of the random data generated. Some generators create linear sequences in 
which the distribution is evenly spread across the random number domain. Others 
create non-linear sequences that may not provide the test coverage you require. 
Before you begin using a random number generator to verify your system, examine 
the data created for a few sequences. Doing so helps you understand the patterns 
created and avoid using an inappropriate set of inputs.

Board Bring-up
You can minimize board bring-up time by adopting a systematic strategy. First, break 
the task down into manageable pieces. Verify the design in segments, not as a whole, 
beginning with peripheral testing.

Peripheral Testing
The first step in the board bring-up process is peripheral testing. Add one interface at 
a time to your design. After a peripheral passes the tests you have created for it, you 
should remove it from the test design. Designers typically leave the peripherals that 
pass testing in their design as they move on to test other peripherals. Sometimes this 
is necessary; however, it should be avoided when possible because multiple 
peripherals can create instability due to noise or crosstalk. By testing peripherals in a 
system individually, you can isolate the issues in your design to a particular interface. 

A common failure in any system is involves memory. The most problematic memory 
devices operate at high speeds, which can result in timing failures. High performance 
memory also requires many board traces to transfer data, address, and control signals, 
which cause failures if not routed properly. You can use the Nios II processor to verify 
your memory devices using verification software or a debugger such as the FS2 
console. The Nios II processor is not capable of stress testing your memory but it can 
be used to detect memory address and data line issues.

f For more information on debugging refer to the Debugging Nios II Designs chapter in 
the Embedded Design Handbook.
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Data Trace Failure 
If your board fabrication facility does not perform bare board testing, you must 
perform these tests. To detect data trace failures on your memory interface you should 
use a pattern typically referred to as “walking ones.” The walking ones pattern shifts 
a logical 1 through all of the data traces between the FPGA and the memory device. 
The pattern can be increasing or decreasing; the important factor is that only one data 
signal is 1 at any given time. The increasing version of this pattern is as follows: 1, 2, 4, 
8, 16, and so on.

Using this pattern you can detect a few issues with the data traces such as short or 
open circuit signals. A signal is short circuited when it is accidentally connected to 
another signal. A signal is open circuited when it is accidentally left unconnected. 
Open circuits can have a random signal behavior unless a pull-up or pull-down 
resistor is connected to the trace. If a pull-up or pull-down resistor is used, the signal 
drives a 0 or 1; however, the resistor is weak relative to a signal being driven by the 
test, so that test value overrides the pull-up or pull-down resistor.

To avoid mixing potential address and data trace issues in the same test, test only one 
address location at a time. To perform the test, write the test value out to memory, and 
then read it back. After verifying that the two values are equal, proceed to testing the 
next value in the pattern. If the verification stage detects a variation between the 
written and read values, a bit failure has occurred. Table 9–2 provides an example of 
the process used to find a data trace failure. It makes the simplifying assumption that 
sequential data bits are routed consecutively on the PCB. 

Address Trace Failure
The address trace test is similar to the walking ones test used for data with one 
exception. For this test you must write to all the test locations before reading back the 
data. Using address locations that are powers of two, you can quickly verify all the 
address traces of your circuit board. 

Table 9–2. Walking Ones Example 

Written Value Read Value Failure Detected

00000001 00000001 No failure detected 

00000010 00000000 Error, most likely the second data bit, D[1] stuck low or shorted to ground

00000100 00000100 No failure detected, confirmed D[1] is stuck low or shorted to another trace that is 
not listed in this table. 

00001000 00001000 No failure detected

00010000 00010000 No failure detected

00100000 01100000 Error, most likely D[6] and D[5] short circuited

01000000 01100000 Error, confirmed that D[6] and D[5] are short circuited

10000000 10000000 No failure detected
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The address trace test detects the aliasing effects that short or open circuits can have 
on your memory interface. For this reason it is important to write to each location with 
a different data value so that you can detect the address aliasing. You can use 
increasing numbers such as 1, 2, 3, 4, and so on while you verify the address traces in 
your system. Table 9–3 shows how to use powers of two in the process of finding an 
address trace failure:

Device Isolation
Using device isolation techniques, you can disable features of devices on your PCB 
that cause your design to fail. Typically designers use device isolation for early 
revisions of the PCB, and then remove these capabilities before shipping the product. 

Most designs use crystal oscillators or other discrete components to create clock 
signals for the digital logic. If the clock signal is distorted by noise or jitter, failures 
may occur. To guard against distorted clocks, you can route alternative clock pins to 
your FPGA. If you include SMA connectors on your board, you can use an external 
clock generator to create a clean clock signal. Having an alternative clock source is 
very useful when debugging clock-related issues.

Sometimes the noise generated by a particular device on your board can cause 
problems with other devices or interfaces. Having the ability to reduce the noise levels 
of selected components can help you determine the device that is causing issues in 
your design. The simplest way to isolate a noisy component is to remove the power 
source for the device in question. For devices that have a limited number of power 
pins, if you include 0 ohm resistors in the path between the power source and the pin. 
You can cut off power to the device by removing the resistor. This strategy is typically 
not possible with larger devices that contain multiple power source pins connecting 
directly to a board power plane.

Instead of removing the power source from a noisy device, you can often put the 
device into a reset state by driving the reset pin to an active state. Another option is to 
simply not exercise the device so that it remains idle. 

Table 9–3. Powers of Two Example

Address Written Value Read Value Failure Detected

00000000 1 1 No failure detected

00000001 2 2 No failure detected

00000010 3 1 Error, the second address bit, A[1], is stuck low

00000100 4 4 No failure detected

00001000 5 5 No failure detected

00010000 6 6 No failure detected

00100000 7 6 Error, A[5] and A[4] are short circuited

01000000 8 8 No failure detected

10000000 9 9 No failure detected
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A noisy power supply or ground plane can create signal integrity issues. With the 
typical voltage swing of digital devices frequently below a single volt, the power 
supply noise margin of devices on the PCB can be as little as 0.2 volts. Power supply 
noise can cause digital logic to fail. For this reason it is important to be able to isolate 
the power supplies on your board. You can isolate your power supply by using fuses 
that are removed so that a stable external power supply can be substituted 
temporarily in your design.

JTAG
FPGAs use the JTAG interface for programming, communication, and verification. 
Designers frequently connect several components, including FPGAs, discrete 
processors, and memory devices, communicating with them through a single JTAG 
chain. Sometimes the JTAG signal is distorted by electrical noise, causing a 
communication failure for the entire group of devices. To guarantee a stable 
connection, you must isolate the FPGA under test from the other devices in the same 
JTAG chain. 

Figure 9–4a illustrates a JTAG chain with three devices. The tdi and tdo signals 
include 0 ohm resistors between each device. By removing the appropriate resistors, it 
is possible to isolate a single device in the chain as Figure 9–4b illustrates. This 
technique allows you to isolate one device while using a single JTAG chain.
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f To learn more about JTAG refer to the IEEE 1149.1(JTAG) Boundary-Scan Testing in 
Altera Devices. 

Board Testing
You should convert the simulations you run to verify your intellectual property (IP) 
before fabrication to test vectors that you can then run on the hardware to verify that 
the simulation and hardware versions exhibit the same behavior. Manufacturing can 
also use these tests as part of a regularly scheduled quality assurance test. Because the 
tests are run by engineers in other organizations they must be documented and easy 
to run. 

Figure 9–4. JTAG Isolation
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Minimal Test System
Whether you are creating your first embedded system in a FPGA, or are debugging a 
complex issue, you should always begin with a minimal system. To minimize the 
probability of signal integrity issues, reduce the pincount of your system to the 
absolute minimal number of required pins. In an embedded design that includes the 
Nios II processor, the minimal pincount might be clock and reset signals. Such a 
system might include the following the following components:

■ Nios II processor (with a level 1 debug core)

■ On-chip memory

■ JTAG UART

■ System ID core

Using these four components you can create a functioning embedded system 
including debug and terminal access. To simplify your debug process, you should use 
a Nios II processor that does not contain a data cache. The Nios II/e and Nios II/s 
cores do not include data caches. The Nios II/f core can also be configured without a 
data cache. Figure 9–5 illustrates a minimal system. In this system, you have to route 
only the clock pin and reset pins, because the JTAG signals are automatically 
connected by the Quartus II software. 

You can use the Nios II JTAG debug module to download software to the processor. 
Before testing any additional interfaces you should execute a small program that 
prints a message to the terminal to verify that your minimal system is functioning 
properly.

Figure 9–5. Simple Test System
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After you verify that the simple test system functions properly, archive the design. 
This design provides a stable starting point to which to add additional components as 
verification proceeds. In this system, you can use any of the following for testing:

■ A Nios II processor

■ A Nios II JTAG debug module and FS2 console

■ The SignalTap II embedded logic analyzer

■ An external logic interface

■ SignalProbe

■ A direct memory access (DMA) engine

■ In-system updating of memory and constants

The Nios II processor is not capable of stress testing high speed memory devices. 
Altera recommends that you use a DMA engine to stress test memories. A stress test 
should access memory as frequently as possible, performing continuous reads or 
writes. Typically, the most problematic access sequence for high-speed memory 
involves the bus turnaround between read and write accesses. You can test these 
cases by connecting the DMA read and write masters to the same memory and 
transferring the contents from one location to another, as shown in Figure 9–6.

By modifying the arbitration share values for each master to memory connection, you 
can control the sequence. To alternate reads and writes, you can use an arbitration 
share of one for each DMA master port. To perform two reads followed by two writes, 
use an arbitration value of two for each DMA master port. To create more complicated 
access sequences you can create a custom master or use the Nios II C2H Compiler to 
create hardware used for testing.

Figure 9–6. Using a DMA to Stress Test Memory Devices
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f To learn more about the topics covered in this section refer to the following 
documentation:

■ Nios II Hardware Development Tutorial

■ Quartus II Verification Methods web page

■ DMA Controller Core chapter in volume 5 of the Quartus II Handbook

■ In-System Updating of Memory and Constants chapter in volume 3 of the Quartus II 
Handbook

System Verification
System verification is the final step of system design. This section focuses on common 
mistakes designers make during system verification and methods for correcting and 
avoiding them. It includes the following topics:

■ Designing with Verification in Mind

■ Accelerating Verification

■ Using Software to Verify Hardware

■ Environmental Testing

Designing with Verification in Mind
As you design, you should focus on both the development tasks and the verification 
strategy. Doing so results in a design that is easier to verify. If you create large, 
complicated blocks of logic and wait until the HDL code is complete before testing, 
you spend more time verifying your design than if you verify it one section at a time. 

Consider leaving in verification code after the individual sections of your design are 
working. If you remove too much verification logic it becomes very difficult to 
reintroduce it at a later time if needed. If you discover an issue during system 
integration, you may need to revisit some of the smaller block designs. If you modify 
one of the smaller blocks, you must re-test it to verify that you have not created 
additional issues.

Designing with verification in mind is not limited to leaving verification hooks in 
your design. Reserving enough hardware resources to perform proper verification is 
also important. The following recommendations can help you avoid running out of 
hardware resources: 

■ Design and verify using a larger pin-compatible FPGA.

■ Reserve hardware resources for verification in the design plan.

■ Design the logic so that optional features can be removed to free up verification 
resources.

Finally, schedule a nightly regression test of your design to increase your test 
coverage between hardware or software compilations.
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Accelerating Verification
Altera recommends the verification flow illustrated in Figure 9–7. Verify each 
component as it is developed. By minimizing the amount of logic being verified, you 
can reduce the time it takes to compile and simulate your design. Consequently, you 
minimize the iteration time to correct design issues.

After the individual components are verified, you can integrate them in an SOPC 
Builder system. The integrated system must include an Avalon-MM or Avalon 
Streaming (Avalon-ST) port. Using the component editor available from SOPC 
Builder, you add an Avalon-MM interface to your existing component and integrate it 
in your system.

After your system is created in SOPC Builder, you can continue the verification 
process of the system as a whole. Typically, the verification process has the following 
two steps:

1. Generate then simulate

2. Generate, compile, and then verify in hardware

The first step provides easier access to the signals in your system. When the 
simulation is functioning properly, you can move the verification to hardware. 
Because the hardware is orders of magnitude faster than the simulation, running test 
vectors on the actual hardware saves time. 
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f To learn more about component editor and system integration, refer to the following 
documentation:

■ The Component Editor chapter in volume 4 of the Quartus II Handbook

■ The SOPC Builder Component Development Walkthrough chapter in volume 4 of the 
Quartus II Handbook

■ The Avalon Interface Specifications

Using Software to Verify Hardware
Many hardware developers use test benches and test harnesses to verify their logic in 
simulations. These strategies can be very time consuming. Instead of relying on 
simulations for all your verification tasks, you can test your logic using software or 
scripts, as Figure 9–8 illustrates.

Figure 9–7. IP Verification and Integration Flow
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This system uses the JTAG interface to access components connected to the system 
interconnect fabric and to create stimuli for the system. If you use the JTAG server 
provided by the Quartus II programmer, this system can also be located on a network 
and accessed remotely. You can download software to the Nios II processor using the 
Nios II IDE. You can also use the Nios II JTAG debug core to transmit files to and from 
your embedded system using the host file system. Using the System Console you can 
access components in your system and also run scripts for automated testing 
purposes.

Using the Quartus II In-System Memory Content Editor, you can create stimuli for the 
two components that control external peripherals. You can also use the In-System 
Memory Content Editor to place the embedded system in reset while new stimulus 
values are sent to the system. The In-System Memory Editor supports Tcl scripting, 
which you can use to automate the verification process. This approach is similar to 
using the FS2 console to control logic in your system. However, unlike the FS2 
console, you can use the In-System Memory Content Editor to access hardware that is 
not memory-mapped. All of the verification techniques described in this chapter can 
be scripted, allowing many test cycles to be executed without user interaction.

f To learn more about using the host file system refer to the Host File System software 
example design available with the Nios II EDS. Developing Software for Nios II in the 
Embedded Design Handbook also includes a significant amount of information about the 
system file system. 
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f To learn more about the verification and scripting abilities outlined in the example 
above, refer to the following documentation:

■ First Silicon Solutions Website, www.fs2.com

■ Altera Basic Quartus II Tcl Scripting training course

■ Quartus II Scripting Reference Manual

Environmental Testing
The last stage of verification is end-user environment testing. Most verification is 
performed under ideal conditions. The following conditions in the end user’s 
environment can cause the system to fail: 

■ Voltage variation

■ Vibration

■ Temperature variation

Figure 9–8. Script Controlled Verification
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■ Electrical noise

Because it is difficult to predict all the applications for a particular product, you 
should create a list of operational specifications before designing the product. You 
should verify these specifications before shipping or selling the product. The key issue 
with environmental testing is the difficulty associated with obtaining measurements 
while the test is underway. For example, it can be difficult to measure signals with an 
external logic analyzer while your product is undergoing vibration testing.

While choosing methods to test your hardware design during the early verification 
stages, you should also consider how to adapt them for environmental testing. If you 
believe your product is susceptible to vibration problems, you should choose sturdy 
instrumentation methods when testing memory interfaces. Alternatively, if you 
believe your product may be susceptible to electrical noise, then you should choose a 
highly reliable interface for debug purposes.

While performing early verification of your design, you can also begin 
end-environment testing. Doing so helps you detect potential flaws in early in the 
design process. For example, if you wish to test temperature variations, you can use a 
heat gun on the product while you are testing. If you wish to perform voltage 
variation testing, isolate the power supply in your system and vary the voltage using 
an external power supply. Using these verification techniques, you can avoid late 
design changes due to failures during environmental testing. 

Referenced Documents
This chapter references the following documents:

■ AN 323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder Systems

■ Avalon Interface Specifications

■ Component Editor chapter in volume 4 of the Quartus II Handbook

■ DMA Controller Core chapter in volume 5 of the Quartus II Handbook

■ Debugging Nios II Designs chapter in the Embedded Design Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer in volume 3 of the 
Quartus II Handbook

■ Developing Nios II Software in the Embedded Design Handbook

■ IEEE 1149.1(JTAG) Boundary-Scan Testing in Altera Devices

■ In-System Debugging Using External Logic Analyzers chapter in volume 3 of the 
Quartus II Handbook

■ In-System Updating of Memory and Constants in volume 3 of the Quartus II Handbook

■ Nios II Hardware Development Tutorial

■ Quartus II Scripting Reference Manual

■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II 
Handbook

■ SOPC Builder Component Development Walkthrough chapter in volume 4 of the 
Quartus II Handbook
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Document Revision History
Table 9–4 shows the revision history for this chapter.

Table 9–4. Document Revision History

Date and Document Version Changes Made Summary of Changes

November 2008
v1.2

■ In the FS2 Console section, added sld info 
command and an example that writes and reads a range 
of memory addresses. 

■ Added introductory discussion to the System Console.

■ Added JTAG to Avalon Master Bridge to Figure 9–8.

Updated to provide more 
information about the FS2 
Console and introduce the 
System Console.

June 2008 
v1.1

Corrected Table of Contents. —

March 2008
v1.0

Initial release. —
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10. Interfacing an External Processor to 
an Altera FPGA

This chapter provides an overview of the options Altera® provides to connect an 
external processor to an Altera FPGA or Hardcopy® device. These interface options 
include the PCI Express, PCI, RapidIO®, serial peripheral interface (SPI) interface or a 
simple custom bridge that you can design yourself. 

By including both an FPGA and a commercially available processor in your system, 
you can partition your design to optimize performance and cost in the following 
ways:

■ Offload pre- or post- processing of data to the external processor

■ Create dedicated FPGA resources for co-processing data

■ Reduce design time by using IP from Altera’s library of components to implement 
peripheral expansion for industry standard functionality

■ Expand the I/O capability of your external processor

You can instantiate the PCI Express, PCI, and RapidIO MegaCore functions using 
either the MegaWizardTM Plug-In Manager or SOPC Builder design flow. The PCI Lite 
and SPI cores are only available in the SOPC Builder design flow. SOPC Builder 
automatically generates the HDL design files that include all of the specified 
components and system connectivity. Alternatively, you can use the MegaWizard 
Plug-In Manager to generate a stand-alone component outside of SOPC Builder. 
Figure 10–1 shows the steps you take to instantiate a component in both design flows. 

Figure 10–1. SOPC Builder and MegaWizard Plug-In Manager Design Flows
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The remainder of this chapter provides an overview of the MegaCore functions that 
you can use to interface an Altera FPGA to an external processor. It covers the 
following topics:

■ Configuration Options

■ RapidIO Interface

■ PCI Express Interface

■ PCI Interface

■ PCI Lite Interface

■ Serial Protocol Interface (SPI)

■ Custom Bridge Interfaces

Configuration Options 
Figure 10–2 illustrates an SOPC Builder system design that includes a 
high-performance external bus or switch to connect an industry-standard processor to 
an external interface of a MegaCore function inside the FPGA. This MegaCore 
function also includes an Avalon-MM master port that connects to the SOPC Builder 
system interconnect fabric. As Figure 10–2 illustrates, Altera provides a library of 
components, typically Avalon-MM slave devices, that connect seamlessly to the 
Avalon system interconnect fabric.

Figure 10–2. FPGA with a Bus or Switch Interface Bridge for Peripheral Expansion
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Figure 10–3 illustrates a design that includes an external processor that interfaces to 
an PCI Express endpoint inside the FPGA. The system interconnect fabric inside the 
implements a partial crossbar switch between the endpoint that connects to the 
external processor and two additional PCI Express root ports that interface to an 
Ethernet card and a marking engine. In addition, the system includes some custom 
logic, a memory controller to interface to external DDR SDRAM memory, a USB 
interface port, and an interface to external flash memory. SOPC Builder automatically 
generates the system interconnect fabric to connect the components in the system.

Figure 10–3. FPGA with a Processor Bus or SPI for Peripheral Expansion
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Alternatively, you can also implement your logic in Verilog HDL or VHDL without 
using SOPC Builder. Figure 10–4 illustrates a modular design that uses the FPGA for 
co-processing with a second module to implement the interface to the processor. If 
you choose this option, you must write all of the HDL to connect the modules in your 
system.

Table 10–1 summarizes the components Altera provides to connect an Altera FPGA or 
HardCopy device to an external processor. As this table indicates, three of the 
components are also available for use in the MegaWizard Plug-In Manager design 
flow in addition to the SOPC Builder. Alternative implementations of these 
components are also available through the Altera Megafunction Partners Program 
(AMPPSM) partners. The AMPP partners offer a broad portfolio of megafunctions 
optimized for Altera devices. 

f For a complete list of third-party IP for Altera FPGAs, refer to the IP MegaStore web 
page: www.altera.com/products/ip/ipm-index.html. For SOPC Builder components, 
search for sopc_builder_ready in the IP MegaStore megafunction search function

.

Figure 10–4. FPGA Performs Co-Processing
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Table 10–1. Processor Interface Solutions Available from an Altera

Protocol Available in 
SOPC Builder 

 Available In 
MegaWizard

Plug-In Manager 

Third-Party 
Solution

OpenCore Plus 
Evaluation 
Available

RapidIO v v v v
PCI Express v v v v
PCI v v v v
PCI Lite v — — License not 

required.SPI v — —

http://www.altera.com/products/ip/ipm-index.html
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Table 10–2 summarizes the most popular options for peripheral expansion in SOPC 
Builder systems that include an industry-standard processor. All of these are available 
in SOPC Builder. Some are also available using the MegaWizard Plug-In Manager.

f For detailed information on the components available in SOPC builder refer to 
Volume 5: Embedded Peripherals of the Quartus II Handbook. 

1 In some cases, you must download third-party IP solutions from the AMPP vendor 
website, before you can evaluate the peripheral using the OpenCore Plus.

f For more information about the AMPP program and OpenCore Plus refer to AN343 - 
OpenCore Evaluation of AMPP Megafunctions and AN320 - OpenCore Plus Evaluation of 
Megafunctions.

The following sections discuss the high-performance interfaces that you can use to 
interface to an external processor.

RapidIO Interface
RapidIO is a high-performance packet-switched protocol that transports data and 
control information between processors, memories, and peripheral devices. The 
RapidIO MegaCore function is available in SOPC Builder includes Avalon-MM ports 
that translate Serial RapidIO transactions into Avalon-MM transactions. The 
MegaCore function also includes an optional Avalon Streaming (Avalon-ST) interface 
that you can use to send transactions directly from the transport layer to the system 
interconnect fabric. When you select all optional features, the core includes the 
following ports:

■ Avalon-MM I/O write master

■ Avalon-MM I/O read master

■ Avalon-MM I/O write slave

■ Avalon-MM I/O read slave

■ Avalon-MM maintenance master 

■ Avalon-MM system maintenance slave 

Table 10–2. Partial list of peripheral interfaces available for SOPC Builder

Protocol Available in 
SOPC Builder 

 Available In 
MegaWizard

Plug-In Manager 
Third-Party Solution OpenCore Plus 

Evaluation Available

CAN v — v v
I2C v — v v
Ethernet v v v v
PIO v — — Not required

POS-PHY Level 4 (SPI 4.2) — v — v
SPI v — v Not required

UART v — v v
USB v — v v

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an343.pdf
http://www.altera.com/literature/an/an343.pdf


10–6 Chapter 10: Interfacing an External Processor to an Altera FPGA
RapidIO Interface

Embedded Design Handbook © February 2009 Altera Corporation

■ Avalon Streaming sink pass-through Tx 

■ Avalon-ST source pass-through Rx

Using the SOPC Builder design flow, you can integrate a RapidIO endpoint into an 
SOPC Builder system. You connect the ports using the SOPC Builder System 
Contents tab and SOPC Builder automatically generates the system interconnect 
fabric. Figure 10–5 illustrates an SOPC Builder system that includes a processor and a 
RapidIO MegaCore function. 

f Refer to the RapidIO trade association web site's product list at www.rapidio.org for a 
list of processors that support a Rapid IO interface.

Figure 10–5. Example system with RapidIO Interface
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f Refer to the following documents for a complete description of the RapidIO 
MegaCore function: 

■ RapidIO MegaCore Function User Guide

■ AN 513: RapidIO Interoperability With TI 6482 DSP Reference Design

PCI Express Interface
The PCI Express MegaCore function configured using the SOPC Builder design flow 
uses the PCI Express Compiler's Avalon-MM bridge module to connect the PCI 
Express component to the system interconnect fabric. The bridge facilitates the design 
of PCI Express systems that use the Avalon-MM interface to access SOPC Builder 
components. Figure 10–6 illustrates a design that links an external processor to an 
SOPC Builder system using the PCI Express MegaCore function. 

You can also implement the PCI Express MegaCore function using the MegaWizard 
Plug-In Manager design flow. The configuration options for the two design flows are 
different. The PCI Express MegaCore function is available in Stratix IV  and 
Arria II GX devices as a hard IP implementation and can be used as a root port or end 
point. 

f For more information about using the PCI Express MegaCore function refer to the 
following documents: 

■ PCI Express Compiler User Guide

■ AN 513: SOPC Builder PCI Express Design with GUI Interface

■ AN 456: PCI Express High Performance Reference Design

■ AN 443: External PHY Support in PCI Express MegaCore Functions

■ AN 431: PCI Express-to-DDR2 SDRAM Reference Design.

http://www.altera.com/literature/ug/ug_pci_express.pdf
http://www.altera.com/literature/an/an513.pdf
http://www.altera.com/literature/an/an456.pdf
http://www.altera.com/literature/an/an433.pdf
http://www.altera.com/literature/an/an431.pdf
http://www.altera.com/literature/ug/ug_rapidio.pdf
http://www.altera.com/literature/an/an513.pdf
http://www.altera.com/literature/ug/ug_pci_express.pdf
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Figure 10–6. Example system with PCI Express interface
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PCI Interface
Altera offers a wide range of PCI local bus solutions that you can use to connect a host 
processor to an FPGA. You can implement the PCI MegaCore function using the 
MegaWizard Plug-In Manager or SOPC Builder design flow. 

The PCI SOPC Builder flow is an easy way to implement a complete Avalon-MM 
system which includes peripherals to expand system functionality without having to 
be well-acquainted with the Avalon-MM protocol. Figure 10–7 illustrates an SOPC 
Builder system using the PCI MegaCore function. You can parameterize the PCI 
MegaCore function with a 32- or 64-bit interface. 

f For more information refer to the PCI Compiler User Guide.

PCI Lite Interface
The PCI Lite component is optimized for low-latency and high throughput designs. It 
is available only in the SOPC Builder design flow. The PCI Lite core provides a subset 
of the PCI MegaCore function feature set to obtain a low-latency path that interfaces 
to a processor and other peripherals connected to the system interconnect fabric in an 
FPGA. This component translates PCI transactions to Avalon-MM transactions. The 
PCI Lite core uses the PCI-Avalon bridge to connect the PCI bus to the system 
interconnect fabric, allowing you to easily create simple PCI systems that include one 
or more SOPC Builder components.

f For more information refer to the PCI Lite Core chapter in volume 5 of the Quartus II 
Handbook. 

Figure 10–7. PCI MegaCore Function in an SOPC Builder System
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You can also implement the original PCI master/target and target MegaCore 
functions without an Avalon-MM bridge module using the MegaWizard Plug-In 
Manager design flow. 

f For information, refer to following reference designs:

■ AN 390: PCI-to-DDR2 SDRAM Reference Design

■ AN 223: PCI-to-DDR SDRAM Reference Design

Serial Protocol Interface (SPI)
The SPI Slave to Avalon Master Bridge component provides a simple connection 
between processors and SOPC Builder systems via a four-wire industry standard 
serial interface. Host systems can initiate Avalon-MM transactions by sending 
encoded streams of bytes via the core's serial interface. The core supports read and 
write transactions to the SOPC Builder system for memory access and peripheral 
expansion.

The SPI Slave to Avalon Master Bridge is an SOPC Builder-ready component that 
integrates easily into any SOPC Builder system. Processors that include an SPI 
interface can easily encapsulate Avalon-MM transactions for reads and writes using 
the protocols outlined in the SPI Slave/JTAG to Avalon Master Bridge Cores chapter in 
volume 5 of the Quartus II Handbook. 

Figure 10–8. Example System with SPI to Avalon-MM Interface Component
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f Details of each protocol layer can be found the following documentation:

SPI Slave/JTAG to Avalon Master Bridge Cores—Provide a connection from an external 
host system to an SOPC Builder system. Allow an SPI master to initiate Avalon-MM 
transactions.

Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores—Provide a connection 
from an external host system to an SOPC Builder system. Allow an SPI master to 
initiate Avalon-ST transactions. 

Avalon Packets to Transactions Converter Core—Receives streaming data from upstream 
components and initiates Avalon-MM transactions. Returns Avalon-MM transaction 
responses to requesting components.

Custom Bridge Interfaces
Many bus protocols can be mapped to the system interconnect fabric either directly or 
with some custom bridge interface logic to compensate for differences between the 
interface standards. The Avalon-MM interface standard, which SOPC Builder 
supports, is a synchronous, memory-mapped interface that is easy to create custom 
bridges for. 

If required, you can use the component editor available in SOPC Builder to quickly 
define a custom bridge component to adapt the external processor bus to the 
Avalon-MM interface or any of the other standard interface that is defined in the 
Avalon Interfaces Specifications. The Templates menu available in the component editor 
includes menu items to add any of the standard Avalon interfaces to your custom 
bridge. You can then use the Interfaces tab of the component editor to modify timing 
parameters including: Setup, Read Wait, Write Wait, and Hold timing parameters, if 
required.

f For more information about the component editor, refer to the Component Editor 
chapter in volume 4 of the Quartus II Handbook.

1 The Avalon-MM protocol requires that all masters provide byte addresses. 
Consequently, it may be necessary for your custom bridge component to add address 
wires when translating from the external processor bus interface to the Avalon-MM 
interface. For example, if your processor bus has a 16-bit word address, you must add 
one additional low-order address bit. If processor bus drives 32-bit word addresses, 
you must add two additional, low-order address bits. In both cases, the extra bits 
should be tied to 0. The external processor accesses individual byte lanes using the 
byte enable signals. 

Consider the following points when designing a custom bridge to interface between 
an external processor and the Avalon-MM interface:

■ The processor bus signals must comply or be adapted with logic to comply with 
the signals used for transactions, as described in the Avalon Interfaces Specifications. 

■ The external processor must support the Avalon waitrequest signal that inserts 
wait-state cycles for slave components

■ The system bus must have a bus reference clock to drive SOPC Builder interface 
logic in the FPGA.

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55012.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55013.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
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■ No time-out mechanism is available if you are using the Avalon-MM interface.

■ You must analyze the timing requirements of the system. You should perform a 
timing analysis to guarantee that all synchronous timing requirements for the 
external processor and Avalon-MM interface are met. Examine the following 
timing characteristics:

■ Data tSU, tH, and tCO times to the bus reference clock

■ fMAX of the system matches the performance of the bus reference clock

■ Turn-around time for a read-to-write transfer or a write-to-read transfer for the 
processor is well understood

If your processor has dedicated read and write buses, you can map them to the 
Avalon-MM readdata and writedata signals. If your processor uses a 
bidirectional data bus, the bridge component can implement the tristate logic 
controlled by the processor’s output enable signal to merge the readdata and 
writedata signals into a bidirectional data bus at the pins of the FPGA. Most of the 
other processor signals can pass through the bridge component if they adhere to the 
Avalon-MM protocol. Figure 10–9 illustrates the use of a bridge component with a 
32-bit external processor. 

f For more information on designing with the Avalon-MM interface refer to the Avalon 
Interfaces Specifications.

Figure 10–9. Custom Bridge to Adapt an External Processor to an Avalon-MM Slave Interface 
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Conclusion
Altera offers a variety of components that you can use to connect an FPGA to an 
external processor. With most of these components, you can choose either the SOPC 
Builder or MegaWizard Plug-In Manager design flow. You can also build your own 
custom interface to an external processor. By using the Avalon-MM interface in SOPC 
Builder, you can easily extend system capabilities for processors by taking advantage 
of the SOPC Builder library of components.

Referenced Documents
This chapter references the following documents:

■ AN 223: PCI-to-DDR SDRAM Reference Design

■ AN320 - OpenCore Plus Evaluation of Megafunctions

■ AN343 - OpenCore Evaluation of AMPP Megafunctions 

■ AN 390: PCI-to-DDR2 SDRAM Reference Design

■ AN 431: PCI Express-to-DDR2 SDRAM Reference Design

■ AN 443: External PHY Support in PCI Express MegaCore Functions

■ AN 456: PCI Express High Performance Reference Design

■ AN 513: RapidIO Interoperability With TI 6482 DSP Reference Design

■ AN532: An SOPC Builder PCI Express Design with GUI Interface

■ Avalon Interface Specifications

■ Avalon Packets to Transactions Converter Core

■ Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
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Additional Information
How to Contact Altera
For the most up-to-date information about Altera products, see the following table. 

Typographic Conventions
The following table shows the typographic conventions that this document uses.

Contact (Note 1)
Contact 
Method Address

Technical support Website www.altera.com/support 

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com 

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative. 

Visual Cue Meaning

Bold Type with Initial Capital 
Letters 

Command names, dialog box titles, checkbox options, and dialog box options are 
shown in bold, initial capital letters. Example: Save As dialog box. 

bold type External timing parameters, directory names, project names, disk drive names, file 
names, file name extensions, and software utility names are shown in bold type. 
Examples: \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital Letters Document titles are shown in italic type with initial capital letters. Example: AN 75: 
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. 
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. 
Example: <file name>, <project name>.pof file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of on-line help topics are shown 
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, 
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual 
file, such as a Report File, references to parts of files (e.g., the AHDL keyword 
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier. 
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Typographic Conventions
1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

■ ■ Bullets are used in a list of items when the sequence of the items is not important. 

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to 
the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information about a particular topic. 
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