
Preliminary Information

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Using the NicheStack TCP/IP Stack
Nios II Edition Tutorial

http://www.altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation
 January 2007

TU-01001-1.0

Altera Corporation iii
January 2007

Contents

About this Tutorial ... v
Revision History .. v
How to Find Information ... v
How to Contact Altera .. vi
Typographic Conventions .. vi

Chapter 1. Using the NicheStack TCP/IP Stack
Introduction .. 1–1
Hardware & Software Requirements ... 1–2
Tutorial Design Files ... 1–2
Software Development Flow ..1–4

Create a New Nios II IDE Project ... 1–4
Configure the System Library .. 1–6
Examine the Simple Socket Server Project Files .. 1–10
Build & Run the Simple Socket Server Project ... 1–11
Interacting with the Simple Socket Server .. 1–13

Simple Socket Server Design Overview ... 1–16
Nios II Software Architecture ... 1–17
Software Design Naming Convention .. 1–19
MicroC-OS/II Resources ... 1–20

Tasks ... 1–20
Inter-Task Communication Resources ... 1–21

NicheStack TCP/IP Stack Initialization .. 1–21
Simple Socket Server Commands and Structures ... 1–22

LED Command Definitions ... 1–22
SSS_Socket Structure .. 1–23

Simple Socket Server Implementation Details ... 1–23
Important NicheStack TCP/IP Stack Concepts .. 1–24

Error Handling ... 1–24
NicheStack TCP/IP Stack Default Task Creation .. 1–24
Creating Tasks that Use the NicheStack TCP/IP Stack Sockets Interface 1–25
Task Priorities in the Simple Socket Server Design ... 1–28

MicroC/OS-II Internal Tasks .. 1–29
NicheStack TCP/IP Stack Internal Tasks .. 1–29
Networking Initialization Task ... 1–29
User Networking Tasks ... 1–29
User Non-Networking Tasks .. 1–29

Task Stack Size .. 1–30
Where to Go Next .. 1–30

iv Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Contents

Appendix A. Hardware Setup Details
Introduction ... A–1
Network Connection .. A–1

Appendix B. Upgrading from lwIP to NicheStack TCP/IP Stack
Introduction ... B–1
Issues in Upgrading ... B–1

New Method for TCP/IP Stack Initialization ... B–1
New Method for Notification that the TCP/IP Stack Is Ready .. B–1
New Method for Creation of Tasks that Will Use TCP/IP Stack ... B–2
Different Customization Process and Include Files ... B–2
New Function Prototype and Parameter Type Definitions for Network_utilities.c B–2
New BOOLEAN Type Definition ... B–3

Altera Corporation v
January 2007

About this Tutorial

This tutorial introduces you to the Nios® II integrated development
environment (IDE) and the MicroC/OS-II and NicheStack TCP/IP Stack
development flow. It shows you how to use the Nios II IDE to create a
new Nios II C/C++ project that configures, builds, and runs a
MicroC/OS-II and NicheStack TCP/IP Stack program on the Nios
development board.

Revision History The table below displays the revision history for this tutorial.

How to Find
Information

■ The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click the binoculars toolbar icon to open the Find dialog
box.

■ Bookmarks serve as an additional table of contents.
■ Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
■ Numerous links, shown in green text, allow you to jump to related

information.

Date Version Changes Made

January 2007 1.0 Initial release.

vi Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

How to Contact Altera

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera® worldwide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Typographic
Conventions

This document uses the typographic conventions shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

+1 408-544-8767
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

Product literature www.altera.com www.altera.com

Altera literature services literature@altera.com (1) literature@altera.com (1)

Non-technical customer
service

(800) 767-3753 + 1 408-544-7000
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of online help topics are
shown in quotation marks. Example: “Typographic Conventions.”

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:literature@altera.com
mailto:literature@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

Altera Corporation vii
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

About this Tutorial

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Visual Cue Meaning

viii Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Typographic Conventions

Altera Corporation 1–1
January 2007

1. Using the NicheStack
TCP/IP Stack

Introduction This tutorial familiarizes you with the NicheStack TCP/IP Stack –
Nios® II Edition (NicheStack TCP/IP Stack) software component
included in your Nios II development kit. Topics covered include:

■ Configuring and initializing the NicheStack TCP/IP Stack software
component

■ Managing a TCP/IP connection with MicroC/OS-II real-time
operating system (RTOS) tasks

■ Using the Nios II IDE to develop programs with the NicheStack
TCP/IP Stack software component

The Nios II IDE offers software designers a rich development platform
for Nios II applications. The Nios II IDE contains the MicroC/OS-II
real-time operating system (RTOS) and NicheStack TCP/IP Stack
software component, providing designers with the ability to build
networked embedded systems applications for the Nios II processor
quickly. This tutorial provides step-by-step instructions for building a
simple program based on the MicroC/OS-II RTOS and NicheStack
TCP/IP Stack networking stack.

This tutorial describes C design files that demonstrate communication
with a telnet client on a development host PC. The telnet client offers a
convenient way of issuing commands over a TCP/IP socket to the
Ethernet-connected NicheStack TCP/IP Stack running on the Nios II
development board with a simple TCP/IP socket server example. This
socket server example receives commands sent over a TCP/IP connection
and manipulates LEDs according to the commands. The example consists
of a socket server task that listens for commands on a TCP/IP port and
dispatches those commands to a set of LED management tasks.

Details on setup requirements for the NicheStack TCP/IP Stack software
component and the MicroC-OS/II real-time operating system are
covered.

1 The Nios II target system does not actually implement a full
telnet server.

f For complete details on MicroC/OS-II for the Nios II processor, refer to
the MicroC/OS-II Real-Time Operating System chapter in the Nios II
Software Developer's Handbook.

1–2 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Hardware & Software Requirements

f For complete details on NicheStack TCP/IP Stack initialization and
configuration for the Nios II processor, refer to the Ethernet & the
NicheStack TCP/IP Stack – Nios II Edition chapter in the Nios II Software
Developer's Handbook.

Hardware &
Software
Requirements

This tutorial requires the following hardware and software:

■ Quartus® II software version 6.1 or later
■ Nios II development kit version 6.1 or later
■ Nios development board, Stratix® II Edition, Stratix Edition, Stratix

Professional Edition, Cyclone® II Edition, or Cyclone Edition
■ Altera® USB-Blaster™ cable
■ RJ-45 connected Ethernet cable on the same network as the PC

development host

To complete this tutorial, you must have the Nios II IDE installed, and
your Nios development board must be connected to a host PC. Refer to
Appendix A, Hardware Setup Details, for detailed hardware-setup
instructions.

Tutorial Design
Files

The tutorial software design is a C source code file collection, provided
with the Nios II development kit. You will find the NicheStack TCP/IP
Stack tutorial software design files in the <Nios II kit path>\examples\
software\simple_socket_server directory.

Figure 1–1. Simple Socket Server: Using the NicheStack TCP/IP Stack Tutorial Software Design Files

Altera Corporation 1–3
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

The Nios II development kit includes the reference hardware designs.
The software design will work with either the standard or full-featured
hardware reference design.

After you install the Nios II development kit, you can find the hardware
design files in the Nios II development kit directory structure. For
demonstration purposes, this tutorial uses the Nios II development kit,
Stratix Professional Edition, featuring the Stratix EP1S40 device, and uses
the Verilog full-featured hardware reference design. The hardware
reference design files are located in the following directory:

<Nios II kit installation path>\examples\verilog\niosII_stratix_1s40\
full_featured

Throughout this tutorial, where path names are listed, replace
nios_II_stratix_1s40 with the matching directory for your particular Nios
development board, verilog with vhdl, and full_featured with standard
where appropriate to match your FPGA device, hardware description
language, and hardware reference design selection.

The following list of eight source-code files make up the Simple Socket
Server application for this tutorial:

■ alt_error_handler.c—Contains the implementation of three error
handlers, one each for the Simple Socket Server (SSS), NicheStack
TCP/IP Stack, and MicroC/OS-II.

■ alt_error_handler.h—Contains definitions and function prototypes
for the three software component-specific error handlers.

■ led.c—Contains LED management tasks.
■ iniche_init.c—Defines main(), which initializes MicroC/OS-II and

NicheStack TCP/IP Stack.
■ network_utilities.c—Defines functions to manipulate the MAC and

IP addresses.
■ network_utilities.h—Defines the function prototype to manipulate

the MAC address.
■ simple_socket_server.c—Defines all of the tasks and functions that

utilize the NicheStack TCP/IP Stack sockets interface, and creates all
of the MicroC/OS-II resources.

■ simple_socket_server.h—Defines all of the task prototypes, task
priorities, and other MicroC/OS-II resources used in this tutorial.

1–4 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Software Development Flow

Software
Development
Flow

The process for creating a NicheStack TCP/IP Stack and MicroC-OS/II
software image for the Nios II processor consists of the following general
steps:

1. Creating a new Nios II IDE C/C++ application project with the
Simple Socket Server project template.

2. Configuring the system library project, including MicroC/OS-II and
the NicheStack TCP/IP Stack software component.

3. Building the application project.

4. Running (and debugging where necessary) the application project.

Create a New Nios II IDE Project

In this section, you create a new Nios II IDE project using a project
template. Perform the following steps:

1. To start the Nios II IDE, on the Start menu, point to Programs, point
to Altera, point to Nios II EDS 6.1, and click Nios II 6.1 IDE.

2. On the File menu, point to New and click Nios II C/C++
Application. The first page of the New Project wizard appears.

3. Under Select Project Template, select Simple Socket Server. The
project name and project path are filled in for you automatically.

4. Under Select Target Hardware, click Browse.

5. In the Browse dialog box, browse to the full_featured hardware
reference design directory for the Nios development board that you
are targeting, for example, <6.1_installation_path>\nios2eds\
examples\verilog\niosII_stratix_1s40\full_featured.

6. Select the SOPC Builder system file (.ptf) for the full_featured
design, for example, full_1s40.ptf.

7. Click Open.

The Browse dialog box closes and you are returned to the New Project
wizard. As shown in Figure 1–2, the SOPC Builder System box under
Select Target Hardware contains the path to the SOPC Builder system file
(.ptf) for the full_featured example design. Additionally, the CPU box
contains the name of one of the available Nios II CPUs as defined in SOPC
Builder.

Altera Corporation 1–5
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

The Nios II development board hardware reference designs contain a
single CPU. The single CPU is selected automatically when you choose
the SOPC Builder System. Keep the default CPU as displayed in the CPU
selection box.

Figure 1–2. New Project Wizard

8. Click Finish to complete creation of the application and system
library projects.

The wizard creates two projects in the Nios II IDE C/C++ Projects tab, as
shown in Figure 1–3.

1–6 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Software Development Flow

Figure 1–3. New Projects in the Nios II C/C++ Projects Perspective

Configure the System Library

After you create a new system library, you may want to configure it
further (for example, defining stdin, stdout, stderr, and other
parameters). Refer to the Nios II IDE online Nios II Software Development
Tutorial for more details. For this NicheStack tutorial, you must configure
the MicroC/OS-II and NicheStack TCP/IP Stack software components.
Perform the following steps to configure the MicroC/OS-II kernel:

1. With a left mouse click, select the syslib project.

2. With a right mouse click, select System Library Properties.

3. Read the License Notification, and then click OK.

Altera Corporation 1–7
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

Figure 1–4. System Library Properties Page

4. In the RTOS drop-down menu, select MicroC/OS-II.

5. Read the License Notification, and then click OK.

6. Click RTOS Options under RTOS. The MicroC/OS-II RTOS
Options dialog box opens, as shown in Figure 1–5.

1–8 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Software Development Flow

Figure 1–5. MicroC/OS-II RTOS Options

7. Click the icon in the left panel to expand the contents under
MicroC/OS-II, as shown in Figure 1–5. The MicroC/OS-II kernel is
highly configurable. The options you select in this dialog box
determine which MicroC/OS-II options are included in the binary
image. Examine the options you can select by clicking each of the
options categories under MicroC/OS-II in the left panel of the
screen.

1 Although this example software design does not use all of the
MicroC/OS-II system calls, the NicheStack TCP/IP Stack
internally uses many more MicroC/OS-II system calls than are
used by the Simple Socket Server application itself. Do not
disable any system calls unless you need to be very conservative
with your code size requirements. Be prepared to re-enable
system calls that you try to disable if the link stage of the build
fails with unresolved symbols.

f For details about the various MicroC/OS-II features, refer to the
MicroC/OS-II Real-Time Operating System chapter in the Nios II Software
Developer's Handbook.

Altera Corporation 1–9
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

8. For this tutorial, choose the default settings and click OK. You are
returned to the System Library options properties page.

9. Click Software Components.

10. Select NicheStack TCP/IP Stack in the left panel.

11. Read the License Notification, and then click OK.

12. Under NicheStack TCP/IP Stack – Nios II Edition, turn on Add
this software component.

13. If a DHCP Server is available on your network, turn on the Use
DHCP to automatically assign IP address option. If no DHCP
server is available, make sure the option is turned off. Instead,
provide IP addresses, specified in simple_socket_server.h, for the
Nios development board, the gateway, and the network mask.

14. Click the icon in the left panel to expand the contents under
NicheStack TCP/IP Stack, as shown in Figure 1–6.

1–10 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Software Development Flow

Figure 1–6. NicheStack TCP/IP Stack Options

1 Do not enable the Lightweight TCP/IP Stack (lwIP). Use of the
lwIP stack is not compatible with simultaneous use of the
NicheStack TCP/IP Stack.

15. Click OK to complete the configuration of the NicheStack TCP/IP
Stack.

16. Click OK in the System Library Properties page to complete
configuration of the system library.

Examine the Simple Socket Server Project Files

You can click the icon to the left of the simple_socket_server_0 folder
icon to view the source files, as shown in Figure 1–7.

Altera Corporation 1–11
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

Figure 1–7. Simple Socket Server Project Files

You have finished creating and configuring both the
simple_socket_server_0 and the associated system library project. You
are now ready to build and run the example described in the following
section.

f For more information about building and running programs with the
Nios II IDE, refer to the Nios II Software Development Tutorial in the
Nios II IDE online help.

Build & Run the Simple Socket Server Project

In this section, you will run the example design on a Nios development
board. You will build the application, configure the development board
with the full-featured hardware design, and download the executable
software file. Perform the following steps:

1. On the Tools menu, click Quartus II Programmer.

1–12 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Software Development Flow

2. In the Quartus II Programmer dialog box, on the File menu, click
Open.

3. Select the FPGA configuration file (.sof), for example,
full_featured.sof.

4. Click Open. You return to the Quartus II Programmer dialog box.

5. Turn on the Program/Configure option, as shown in Figure 1–8.

Figure 1–8. Quartus II Programmer Dialog Box

6. Click Start to configure the FPGA on the development board.

7. On the File menu, click Exit to close the Quartus II Programmer, or
minimize the Quartus II Programmer, and return to the Nios II IDE.
If you receive a message that asks if you want to save the changes to
the chain1.cdf file, click No.

Altera Corporation 1–13
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

8. In the Nios II IDE, select the simple_socket_server_0 project in the
Nios II C/C++ Projects tab.

9. On the Run menu, point to Run As and click Nios II Hardware to
build the program, download it to the board, and run it.

The build process takes several minutes. After the Nios II IDE builds the
executable, it attempts to download the image to your Nios development
board using the default run configuration.

f For additional information about using the Nios II IDE to build projects,
set up run configurations, and download programs to the board, refer to
the Nios II Software Development Tutorial within the Nios II IDE online
help.

Interacting with the Simple Socket Server

After the image is downloaded to your Nios development board, the
seven-segment LED banks flash in a random pattern. The STDOUT
configured console displays a message with the default IP address as
configured in simple_socket_server.h. If DHCP is enabled, the DHCP
server-supplied IP address is displayed after a message that indicates a
DHCP IP address has been acquired by the DHCP client for the Ethernet
interface.

The message “Simple Socket Server starting up” is displayed when the
NicheStack TCP/IP Stack is ready to accept commands.

To start a telnet session, click Run in the Windows Start menu. In the Run
dialog box, enter the following command:

telnet <IP_address> 30

Specify either the static IP address or the DHCP server-provided IP
address, as shown in Figure 1–9. Click OK.

Figure 1–9. Connecting to the Simple Socket Server

1–14 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Software Development Flow

If the connection to port 30 on the Nios development board is successful,
the menu of available commands is displayed in a DOS command
window, as shown in Figure 1–10.

Figure 1–10. Interacting with the Simple Socket Server Via Telnet

Commands entered at the DOS command prompt are sent over the telnet
connection via Ethernet to a task waiting on a socket for commands. This
task responds to those commands by sending instructions to another task
that manipulates the LEDs.

Figure 1–10 shows the Simple Socket Server menu, along with commands
1, 2, S, and Q. Figure 1–11 shows the corresponding output on the Nios II
Terminal Window during the telnet session.

Altera Corporation 1–15
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

Figure 1–11. Nios II Terminal Window Output During Telnet Session

To test the functionality of the Simple Socket Server, enter commands in
the telnet session. Entering a number from zero through seven, followed
by a return, causes the corresponding LEDs D0 – D7 to toggle on or off on
the Nios development board. Entering the letter S stops the random
blinking LED pattern on the seven-segment LED bank. Entering the S
command again restarts the light show.

1–16 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Simple Socket Server Design Overview

To reproduce the specific run-time behavior shown in Figures 1–10 and
1–11, do the following at the DOS command prompt:

1. Type 1 r
The LED D1 is toggled. The Nios II Terminal Window displays two
messages:

processing RX data
Value for LED_PIO_BASE set to 2.

2. Type 2 r
The LED D2 is toggled. The Nios II Terminal Window displays the
following message:

Value for LED_PIO_BASE set to 6.

The value for LED_PIO_BASE is displayed on the LEDs in binary
format.

3. Type the letter S r
The seven-segment LED display stops flashing.

4. Type the letter Q r
The socket connection on the Nios development board is terminated
and the telnet command exits.

Simple Socket
Server Design
Overview

The following sections describe the Simple Socket Server design:

■ “Nios II Software Architecture” on page 1–17
Describes the architectural model of a Nios II software application
and how it fits in with the rest of the Nios II system software
components.

■ “Software Design Naming Convention” on page 1–19
Identifies the naming convention used in the example design source
code files.

■ “MicroC-OS/II Resources” on page 1–20
Describes the tasks, queue, event flag, and semaphores used to
implement the Simple Socket Server software application.

Altera Corporation 1–17
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

■ “NicheStack TCP/IP Stack Initialization” on page 1–21
Describes the tutorial’s tasks and functions that are required to
establish and maintain the Ethernet TCP/IP socket connection.

■ “Simple Socket Server Commands and Structures” on page 1–22
Details the actual commands passed over Ethernet to the socket
server task and on to the LED management tasks, as well as the
structure used to maintain the socket connection.

■ “Simple Socket Server Implementation Details” on page 1–23
Details each of the functions for each software component, including
main(), MicroC/OS-II initialization, and the details of each of the
SSS, LED, and NETUTIL software modules.

Nios II Software Architecture

The onion model in Figure 1–12 shows the architectural layers of a Nios II
software application.

Figure 1–12. Layered Software Model

Each layer encapsulates the specific implementation details of that layer,
providing a data abstraction for the next outer layer. Following is a
description of each layer:

Application

Application-Specific System Initialization

NicheStack TCP/IP Stack Software ComponentMicroC/OS-II

HAL API

Software Device Drivers

Nios II Processor
System Hardware

Hardware

Software

1–18 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Simple Socket Server Design Overview

■ Nios II Processor System Hardware—The core of the onion model
contains the Nios II soft core processor and hardware peripherals
implemented in the FPGA.

■ Software Device Drivers—The software device drivers layer contains
the software functions that manipulate the Ethernet and other
hardware peripherals. These drivers contain the physical details of
the peripheral devices, abstracting those details from the outer
layers.

■ HAL API—The hardware abstraction layer applications
programming interface (API) provides a standardized interface to
the software device drivers, presenting a POSIX-like API to the outer
layers.

■ MicroC/OS-II—The MicroC/OS-II real-time operating system layer
provides multi-tasking and inter-task communication services to the
NicheStack TCP/IP Networking Stack and the Simple Socket Server.

■ NicheStack TCP/IP Stack Software Component—The NicheStack
TCP/IP Stack software component layer provides networking
services to the application layer and application-specific system
initialization layer via the sockets API.

■ Application-Specific System Initialization—The application-specific
system initialization layer includes the MicroC/OS-II and
NicheStack TCP/IP Stack software component initialization
functions invoked from main(), as well as creation of all application
tasks, and all of the semaphores, queue, and event flag real-time
operating system inter-task communication resources.

■ Application—The outermost application layer contains the Simple
Socket Server task and LED management tasks.

Figure 1–13 illustrates the structure of the example design. The diagram
shows the state of the system after everything has been initialized. The
Iniche_net_ready global variable is set when the NicheStack TCP/IP
Stack is ready. The Ethernet packet containing an LED command sent
from a telnet client program is received by the NicheStack TCP/IP Stack
software component. The NicheStack TCP/IP Stack processes the
incoming Ethernet packets via the TCP/IP protocol, and presents the
data packet to the socket server task via the sockets API. The LED
command contained within the data packet is then extracted and posted
to the LED command queue for processing by the LED management
tasks.

Altera Corporation 1–19
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

Figure 1–13. Simple Socket Server Data Flow Diagram

The following sections describe in detail the function of each element in
the diagram.

Software Design Naming Convention

The naming convention used in the Simple Socket Server design employs
capitalized acronyms for software module references as prefixes to
variables to identify public resources for each software module, while
lowercase variables with underscores indicate a private resource or
function used internally to a software module. The software modules are
named and have capitalized acronym identifiers, as shown in Table 1–1.

LED
Management

Task

LED 7 Seg
Lightshow

Task

NicheStack
TCP/IP
Task

SSS LED Event Flag

SSS LED Lightshow Sem

TCP/IP Ethernet packet exchange with Telnet client on Host PC via NicheStack sockets API

NicheStack
Timer
Task

A single MicroC/OS-II software component function call

NicheStack Software Component Interface consisting of many sockets' function calls

SSS LED Command Q

S 2 1Q

NicheStack Software Component

Ethernet packet

SSS Simple
Socket

Server Task
OSSemPend

OSSemPost

OSSemPend

OSQPendOSQPost

OSFlagPost

OSSemPost

1–20 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Simple Socket Server Design Overview

MicroC-OS/II Resources

This section describes the tasks, queue, event flag, and semaphores used
to implement the Simple Socket Server application.

Tasks

The MicroC/OS-II tasks shown in Table 1–2 implement the simple socket
server application.

The tasks listed in Table 1–2 are all created directly by the application.
There are two additional software component layer tasks that are created
by the NicheStack TCP/IP Networking Stack: a main task used to operate
the networking stack, and a time-keeping task that is used by the main
task. The NicheStack TCP/IP Stack main task (tk_netmain) is created in
the netmain() call with a priority of TK_NETMAIN_TPRIO. The
time-keeping task (tk_nettick) is also created in the netmain() call,
and is assigned a priority level of TK_NETTICK_TPRIO. For more
information about these tasks, and how to set their priorities and stack
sizes, refer to “Important NicheStack TCP/IP Stack Concepts” on
page 1–24.

Table 1–1. Software Module Acronyms & Names

Acronym Name

SSS Simple Socket Server software module

LED Light Emitting Diode Management software module

NETUTILS Network Utilities software module

OS MicroC/OS-II Real-Time Operating System software component

Table 1–2. MicroC/OS-II Tasks for the Simple Socket Server

Task Description

SSSInitialTask() Initializes the NicheStack TCP/IP Stack, calls functions to create
operating system data structures and other tasks.

SSSSimpleSocketServerTask() Listens for a socket connection and handles the connection. This
task only handles one connection at a time.

LEDManagementTask() Receives and executes commands via SSSLEDCommandQ passed
from SSSSimpleSocketServerTask().

LED7SegLightshowTask() Blinks random patterns on the seven-segment LED display.

Altera Corporation 1–21
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

Inter-Task Communication Resources

The following global handles (or pointers) are used to create and
manipulate your MicroC/OS-II inter-task communication resources. All
of the resources begin with SSS, indicating a public resource provided by
the Simple Socket Server that is shared between software modules. These
resources are declared and created in the simple_socket_server.c file by
the SSSCreateOSDataStructs function, which is invoked from
SSSInitialTask().

■ SSSLEDCommandQ
SSSLEDCommandQ is a MicroC/OS-II message queue used to send
commands from the simple socket server task to the Nios
development board LED control task, LEDManagementTask().

■ SSSLEDEventFlag
SSSLEDEventFlag is the handle to the MicroC/OS-II LED Event
Flag Group. Each flag corresponds to one of the LEDs (D0 – D7) on
the Nios development board.

■ SSSLEDLightshowSem
SSSLEDLightshowSem is the handle to the MicroC/OS-II LED
Lightshow Semaphore. The semaphore is checked by the
LED7SegLightshowTask each time it updates the seven-segment
LED displays U8 and U9. The LEDManagementTask() takes the
semaphore, via pend, away from the LED7SegLightshowTask()
to toggle the lightshow off, and gives up the semaphore, via post, to
toggle the lightshow back on. The LEDManagementTask() does
this in response to the CMD_LEDS_LIGHTSHOW command sent from
the SSSSimpleSocketServerTask() when you send the toggle
lightshow command over the TCP/IP socket.

NicheStack TCP/IP Stack Initialization

As described in the “NicheStack TCP/IP Stack Tasks” and “Initializing
the Stack” sections of the Ethernet & the NicheStack TCP/IP Stack – Nios II
Edition chapter in the Nios II Software Developer's Handbook, the
NicheStack TCP/IP Stack must be initialized from the Simple Socket
Server application code as follows.

Two NicheStack functions must be called:

■ alt_iniche_init(), called from SSSInitialTask in
iniche_init.c

■ netmain(), called from SSSInitialTask in iniche_init.c

1–22 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Simple Socket Server Design Overview

Two NicheStack functions must be provided, get_mac_addr() and
get_ip_addr(), which are defined in network_utilities.c for this
example.

An initialization task called SSSInitialTask has been provided that
calls both alt_iniche_init() and netmain() initialization
functions in the proper sequence, and then waits until the NicheStack
TCP/IP Stack has become fully operational by waiting for the global
variable iniche_net_ready to be set to TRUE before creating the
application level task SSSSimpleSocketServerTask().

SSSSimpleSocketServerTask() is defined in
simple_socket_server.c and created with priority
SSS_SIMPLE_SOCKET_SERVER_TASK_PRIORITY.

1 You are encouraged to re-utilize the task SSSInitialTask()
in your own networking application using MicroC/OS-II and
the NicheStack TCP/IP Stack.

Simple Socket Server Commands and Structures

The Simple Socket Server example design uses the following data
elements:

LED Command Definitions

These definitions are the actual commands passed from the telnet client
to the socket on the Nios development board, and on to the LED
management tasks. These commands are the elements that flow through
the data flow diagram shown in Figure 1–13 on page 1–19.

■ CMD_LEDS_BIT_0_TOGGLE '0'
■ CMD_LEDS_BIT_1_TOGGLE '1'
■ CMD_LEDS_BIT_2_TOGGLE '2'
■ CMD_LEDS_BIT_3_TOGGLE '3'
■ CMD_LEDS_BIT_4_TOGGLE '4'
■ CMD_LEDS_BIT_5_TOGGLE '5'
■ CMD_LEDS_BIT_6_TOGGLE '6'
■ CMD_LEDS_BIT_7_TOGGLE '7'
■ CMD_LEDS_LIGHTSHOW 'S'
■ CMD_QUIT 'Q'

Altera Corporation 1–23
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

SSS_Socket Structure

This structure is used to manage a single socket connection.

typedef struct SSS_SOCKET
{
enum { READY, COMPLETE, CLOSE } state;
int fd;
int close;
INT8U rx_buffer[SSS_RX_BUF_SIZE]; /* circular buffer */
INT8U *rx_rd_pos; /* position we've read up to */
INT8U *rx_wr_pos; /* position we've written up to */
} SSSConn;

Simple Socket Server Implementation Details

This section provides details about the simple socket server tasks and
functions.

main() (iniche_init.c)
Calls OSTimeSet()
Calls SSSInitialTask() (via OSTaskCreateExt)
Calls alt_uCOSIIErrorHandler()
Calls OSStart() to begin multithreading

SSSInitialTask() (iniche_init.c) is used to initialize the NicheStack
TCP/IP Stack software, initialize the operating system data structures,
and launch any user-defined networking tasks and regular tasks. The
convention of creating a task that is used to initialize the rest of the
application is advocated by Micrium’s MicroC/OS-II examples. This
ensures that stack checking initializes correctly if that feature is enabled.
This task does the following:

■ Calls alt_iniche_init() to perform pre-initialization of the
NicheStack Networking Stack

■ Calls netmain() to initialize and start the NicheStack Networking
Stack

■ Instantiates ssstask (via TK_NEWTASK) to start the Simple Socket
Server networking task

■ Calls SSSCreateOSDataStructs() to create data structures
(SSSLEDCommandQ, SSSLEDLightshowSemaphore, and
SSSLEDEventFlag real-time operating system resources) for the
Simple Socket Server application

■ Calls SSSCreateTasks() to create non-NicheStack TCP/IP Stack
dependent tasks, including the LED tasks

■ Calls OSTaskDel() to delete itself as a task

1–24 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Important NicheStack TCP/IP Stack Concepts

SSSSimpleSocketServerTask() (simple_socket_server.c) does the
following:

■ Creates a socket to serve a TCP/IP connection, binds to the socket,
and listens for TCP/IP connection requests from a client.

■ Calls sss_handle_accept() for an incoming TCP/IP connection.
■ Calls sss_handle_receive() to serve the TCP/IP connection. If

you require multiple TCP/IP connections, you can modify this task
to create other tasks that handle each individual TCP/IP connection.

■ Calls sss_reset_connection(), sss_send_menu(), and
sss_exec_command().

■ When data packets are received, the LED commands are extracted
and passed to LEDManagementTask() via the SSSLEDCommandQ.

LED Tasks (leds.c) include the following:

■ LEDManagementTask() consumes LED commands received on the
SSSLEDCommandQ. The commands received are executed by
toggling the SSSLEDLightshowSem semaphore in response to the
command CMD_LEDS_LIGHTSHOW, or posting to the
SSSLEDEventFlag to manipulate LEDS D0 – D7 in response to
CMD_LEDS_BIT_TOGGLE commands. The application is terminated
in response to the CMD_QUIT command.

■ LED7SegLightshowTask() blinks random patterns on the
seven-segment LED display. This task suspends and resumes its
LED update based on the SSSLEDLightshowSem semaphore,
which is controlled by a single command sent to the
LEDManagementTask(), CMD_LEDS_LIGHTSHOW.

Important
NicheStack
TCP/IP Stack
Concepts

The following topics may have a significant impact on your design.

Error Handling

Error handling of the Simple Socket Server application, NicheStack
TCP/IP Stack, and MicroC-OS/II system call error-codes are checked
with a suite of error-handling functions defined in
alt_error_handler(). All system, socket, and application calls check
for error conditions whenever an error could exist.

NicheStack TCP/IP Stack Default Task Creation

The NicheStack TCP/IP Stack creates one or more system level tasks
during system initialization, when the netmain() function is called.
Users have complete control over these system level tasks through a
global configuration file called ipport.h, located in the directory structure
for the system library project, in the Debug/system_description path.

Altera Corporation 1–25
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

You can edit the #define statements in ipport.h to configure the
following options for the NicheStack TCP/IP Stack:

■ Module Inclusion—Identifies which built-in NicheStack modules
should be started

■ Module Priority—Identifies what MicroC/OS-II priority the module
task should use

■ Module Stack Size—Identifies what MicroC/OS-II stack size the
module should use

f For details on other NicheStack TCP/IP Stack options that can be
enabled at run-time, refer to the NicheStack TCP/IP Stack
documentation in the NicheStackRef.zip file located in the <Nios II EDS
install path>/components/altera_iniche/UCOSII/src/downloads/
packages directory.

In the “Simple Socket Server” design example, only the minimum
required NicheStack TCP/IP Stack tasks have been configured to run.
These tasks are as follows:

■ tk_netmain—Initializes the stack, including networking interfaces
■ tk_nettick—A time management task used by the networking

stack

For more information about these NicheStack TCP/IP Stack tasks, refer
to “Task Priorities in the Simple Socket Server Design” on page 1–28.

Creating Tasks that Use the NicheStack TCP/IP Stack Sockets
Interface

The function call TK_NEWTASK must be used to create any tasks that will
use the NicheStack networking services. Tasks that do not use
networking services should be created with the MicroC/OS-II function
OSTaskCreate().

TK_NEWTASK (defined in the file osportco.c) is a function used by the
NicheStack Networking Stack to launch MicroC/OS-II tasks that use the
networking services. TK_NEWTASK accepts a single argument, struct
inet_taskinfo * nettask (defined in osport.h), which is used to
specify the task name, the MicroC/OS-II thread priority, and the stack
size. Both files are located in the <Nios II EDS install path>/components/
altera_iniche/UCOSII/src/downloads/30src/nios2 directory. The
struct inet_taskinfo structure is defined as follows:

1–26 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Important NicheStack TCP/IP Stack Concepts

struct inet_taskinfo {
TK_OBJECT_PTR(tk_ptr); /* pointer to static task object */
char * name; /* name of task */
TK_ENTRY_PTR(entry); /* pointer to code that starts task*/
int priority; /* MicroC/OS-II priority of the task */
int stacksize; /* size (bytes) of task’s stack */
char* stackbase; /* base of task’s stack */

};

A local struct inet_taskinfo structure with the elements defined
must be declared for every networking task you create in your
application. These elements are listed below, along with a brief
explanation of their function:

■ TK_OBJECT_PTR(tk_ptr)—A pointer to a static task object,
defined for a given task via the TK_OBJECT macro. The NicheStack
Networking Stack makes use of the tk_ptr element during the
operation. After declaring the variable name via the TK_OBJECT and
populating the TK_OBJECT_PTR(tk_ptr), you do not need to do
anything more.

■ char * name—This element contains a character string that
corresponds to the name of the task. You can set it with any character
string you choose.

■ TK_ENTRY_PTR(entry)—This element corresponds to the entry
point or defined function name of the task you want to run.

■ int priority—The MicroC/OS-II priority level for the task.
■ int stacksize—The MicroC/OS-II stack size for the task.
■ char* stackbase—This element in the structure is used by the

NicheStack software and should not be changed by you.

In addition to declaring the struct inet_taskinfo structure, you
must invoke two macro definitions: TK_OBJECT and TK_ENTRY. These
macros have the following uses:

■ TK_OBJECT(name)—Creates the static task object called name,
which is used by NicheStack during operation. The static task object
is also set in TK_OBJECT_PTR(tk_ptr). A NicheStack naming
convention for the name parameter is to set it to the string “to_”,
followed by the declared name of the struct inet_taskinfo
instance.

■ TK_ENTRY(name)—Used to create a declaration of the task’s entry
point, or function name. The name parameter is identical to the
function name you specified for the task you want to create, which
must have the form void name (void). The name parameter is
also used to set TK_ENTRY_PTR(entry).

Altera Corporation 1–27
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

To create your own application tasks that use the services offered by the
NicheStack TCP/IP Stack, perform the following steps:

1. Invoke Task Macros—Include the TK_OBJECT and TK_ENTRY
macros, with information about your task.

2. Define Task Parameters—Define your task application by filling in
a local inet_taskinfo structure in your code.

3. Wait for Stack Initialization—Before launching your task, wait
until the external variable iniche_net_ready is set to TRUE. This
variable is set to FALSE at run-time and is changed to TRUE when
the NicheStack TCP/IP Networking Stack is operational.

4. Launch Task—Call TK_NEWTASK while passing in a pointer to the
inet_taskinfo structure for your task.

Following is a code sample for creating your own application task:

// Declaration of SSSSimpleSocketServerTask
void SSSSimpleSocketServerTask(void){
 // task specific code
}

// Creation of NicheStack networking task
TK_OBJECT(to_ssstask);
TK_ENTRY(SSSSimpleSocketServerTask);

struct inet_taskinfo ssstask = {
&to_ssstask,
"simple socket server",
SSSSimpleSocketServerTask,
TASK_PRIORITY,
APP_STACK_SIZE,

};

while (!iniche_net_ready)
 TK_SLEEP(1);

/* Create the main simple socket server task. */
TK_NEWTASK(&ssstask);

Networking tasks can hand off large processing jobs that are independent
of networking to other tasks. This task load segmentation has the
advantage of increasing control over memory usage for task stacks, as
well as greater control over prioritization of jobs.

1–28 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Important NicheStack TCP/IP Stack Concepts

Be careful not to overutilize job distribution among several tasks at the
same time, for the following reasons:

■ Additional tasks require additional CPU execution time to do task
context-switching.

■ There are a limited number of priorities. Each task must have its own
unique priority in MicroC/OS-II, and you do not want to run out of
task priorities.

Task Priorities in the Simple Socket Server Design

Task priorities in the application directly affect how the application runs,
or if the task functions correctly at all. The MicroC/OS-II operating
system uses a unique priority number scheme for running its tasks, where
tasks assigned a lower priority number are treated as higher priority
tasks. Because the Altera version of the NicheStack TCP/IP Stack requires
the use of the MicroC/OS-II RTOS for operation, all tasks run on the
system must be assigned a unique priority number. For the Simple Socket
Server demo application, all tasks have been assigned non-conflicting
priorities. For your own application, however, you should verify that all
tasks in your system are assigned unique priority numbers at run-time.

Table 1–3 lists the tasks that might be running in your system, as well as
the mechanism for configuring the priority of these tasks.

The priorities of the tasks in the simple socket server design are discussed
in the following sections:

Table 1–3. MicroC/OS-II Tasks for the Simple Socket Server

Task Type Configuration Mechanism

MicroC/OS-II Internal Tasks Nios II IDE “RTOS Options” menu
(found by selecting <Nios II system_library> and clicking Properties on
the File menu in the Nios II IDE)

NicheStack TCP/IP Stack Internal
Tasks

ipport.h source file
(found in <Nios II system_library>/Debug/system_description
directory using Nios II IDE)

Networking Initialization Task iniche_init.c source file

User Networking Tasks
(calls to TK_NEWTASK)

Created in the user application code

User Non-Networking Tasks
(calls to OSTaskCreate)

Created in the user application code

Altera Corporation 1–29
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

Using the NicheStack TCP/IP Stack

MicroC/OS-II Internal Tasks

The Simple Socket Server application has been configured not to use any
MicroC/OS-II Internal Tasks.

NicheStack TCP/IP Stack Internal Tasks

TK_NETMAIN_TPRIO, defined in ipport.h, sets the priority to a value of
2 for the main NicheStack TCP/IP Stack task, launched by netmain().
This task implements the core functionality of the NicheStack TCP/IP
Stack. To maximize the TCP/IP packet-throughput rate, the priority of
this task should be higher than application tasks that use the NicheStack
TCP/IP Networking Stack.

TK_NETTICK_TPRIO, defined in ipport.h, sets the priority to a value of
3 for the NicheStack TCP/IP Stack time-keeping task, launched by
netmain(). This task is used by the NicheStack TCP/IP Stack to keep
track of time-based events in the networking stack. Altera recommends
that the priority of this task should be set to one priority level lower than
TK_NETMAIN_TPRIO.

Networking Initialization Task

SSS_INITIAL_TASK_PRIORITY is set to a value of 5 for the first task
that MicroC/OS-II runs. This task creates the resources and all of the
other tasks before deleting itself. It is given a high priority, not due to its
high time-period rate or low latency requirement, but to create all the
real-time operating system resources and tasks before the other tasks start
using the resources.

User Networking Tasks

SSS_SIMPLE_SOCKET_SERVER_TASK_PRIORITY is set to a value of 10,
a priority that is lower than the consumer task LEDManagementTask().
The priority of this application task is set lower than all of the software
components’ system service tasks. In general, this practice allows for the
best overall scheduling latency, because the software component tasks
are designed to operate for as short a period of time as possible.

User Non-Networking Tasks

LED_MANAGEMENT_TASK_PRIORITY is set to a value of 7. This task’s
function is to receive LED command messages from the
SSSSimpleSocketServerTask.

1–30 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Where to Go Next

LED_7SEG_LIGHTSHOW_TASK_PRIORITY is set to a value of 18. The
priority of this application task is set lower than the rest of the tasks in the
system because it requires very little of the Nios II CPU’s cycles to
operate. Additionally, it only needs to operate once every 50 milliseconds
to update the LED patterns. This task should be set to the lowest priority
task in your system. LED7SegLightshowTask() then acts as a task
starvation monitor, because the LEDs will blink only if all other higher
priority tasks have had a chance to be scheduled.

Task Stack Size

Task stack space requirements depend on how the Nios II processor,
HAL, RTOS, and individual software components are configured. A
quick empirical check of the Stk[] array values at runtime, via the
Nios II IDE memory window, is an easy way to examine the top of a task
stack. Examination of a task’s Stk[] array reveals differing values
representing the used portion of the stack followed by multiple zeros
where the stack has not yet reached. The number of zeros until the
beginning of the next adjacent task stack shows how deep the stack has
grown since the last system reset.

All tasks that make run-time library calls have space allocated from the
top of the stack for the approximately 900-byte _reent structure. Each
task has its own copy of the structure positioned on the task’s stack. The
size of this structure alone reduces the amount of available stack space.

f For more details about the _reent structure, refer to the “The Newlib
ANSI C Standard Library” and the “Implementing MicroC/OS-II
Projects in the Nios II IDE” sections of the MicroC/OS-II Real-Time
Operating System chapter in the Nios II Software Developer's Handbook.

Where to Go
Next

This example is easily expandable to handle multiple TCP connections on
a single port. The SSSSimpleSocketServerTask() task could be
modified to create separate socket_connection_instance_
tasks() to handle multiple telnet connections.

There are many uses for an Ethernet connection in an embedded system.
A connection to the Internet can allow the addition of many powerful
features for any embedded product, such as remote configurability via a
web browser, or remote software upgrade for corrections or feature
enhancements to a product already in the field.

Altera Corporation A–1
January 2007

Appendix A. Hardware Setup
Details

Introduction To complete this tutorial, you must have the Nios® II IDE installed, and
your Nios development board must be connected to a host PC on both the
Ethernet and USB/JTAG ports. For details about installing the software
and connecting the Nios development board to the USB-Blaster™ cable,
refer to the Nios II Development Kit Getting Started User Guide.

The full-featured reference hardware design for the Nios development
boards includes the Ethernet device required by this NicheStack tutorial.
The Ethernet device included in these reference designs, along with the
physical MAC/PHY on each of the Stratix® II, Stratix, Stratix
Professional, Cyclone® II, and Cyclone Edition Nios development boards,
is the LAN91C111 Ethernet peripheral. The full 14-bit address width of
the chip is used, with the 8 peripheral registers accessible at locations
base+0x300 through base+0x030f. The Ethernet peripheral base
address settings for the full_featured hardware reference designs, along
with IRQ setting, can be examined in system.h.

Network
Connection

If a DHCP server is used to assign an IP address, connect your Nios
development board to your Ethernet network.

If the Nios development board is connected directly to your PC with a
crossover Ethernet cable, or a DHCP server is not available, the IP
addresses can be specified manually by entering the IP address values
into simple_socket_server.h. Be sure to turn off the Use DHCP to
automatically assign IP address option on the NicheStack Software
Components dialog box (shown turned on in Figure 1–6 on page 1–10).

Figure A–1 shows the default IP address definitions in
simple_socket_server.h. The default values shown represent an IP
address for the Nios development board of 192.168.1.234, with a gateway
of 192.168.1.1, and a subnet mask of 255.255.255.0 (a class C network). In
a crossover Ethernet cable configuration, specify the IP address of your
PC as the gateway.

A–2 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Network Connection

Figure A–1. Excerpt from simple_socket_server.h

Altera Corporation B–1
January 2007

Appendix B. Upgrading from
lwIP to NicheStack TCP/IP

Stack

Introduction The process for upgrading to NicheStack TCP/IP Stack from lightweight
IP (lwIP) involves changing your lwIP-based source code to
accommodate the following issues:

■ “New Method for TCP/IP Stack Initialization”

■ “New Method for Notification that the TCP/IP Stack Is Ready”

■ “New Method for Creation of Tasks that Will Use TCP/IP Stack”

■ “Different Customization Process and Include Files”

■ “New Function Prototype and Parameter Type Definitions for
Network_utilities.c”

■ “New BOOLEAN Type Definition”

f Refer to the Simple Socket Server software example for a source code
example that uses the NicheStack TCP/IP Stack software component.

Issues in
Upgrading

New Method for TCP/IP Stack Initialization

lwIP uses a callback function, init_done_func(), which is invoked by
the TCP/IP stack when initialization is complete. NicheStack TCP/IP
Stack initialization does not provide a callback function. Instead, the
inich_net_ready global variable should be checked by a task to
determine when the stack is ready.

NicheStack TCP/IP Stack requires two initialization calls,
alt_iniche_init() and netmain(). These two calls should be made
from a task that executes with a higher priority than any task that uses the
sockets interface. Refer to iniche_init.c in the Simple Socket Server
software example. As in lwIP, the NicheStack TCP/IP Stack initialization
creates two tasks, but they have different names and capabilities.

New Method for Notification that the TCP/IP Stack Is Ready

The NicheStack TCP/IP Stack sets the global variable
iniche_net_ready to TRUE when the TCP/IP stack has obtained an IP
address for the configured Ethernet device and is ready to accept socket

B–2 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Issues in Upgrading

calls. The lwIP software example used a task called
NETUTILSDHCPTimeoutTask to determine when a DHCP IP address
was provided, and posted to a semaphore called
SSSAttainedIPAddressSem when the lwIP stack was ready. The
default timeout for waiting on a response from the DHCP server was 120
seconds, but is now 30 seconds for NicheStack.

New Method for Creation of Tasks that Will Use TCP/IP Stack

lwIP used sys_thread_new() to create tasks with a fixed stack size of
2048 bytes. The NicheStack TCP/IP Stack allows for the creation of tasks
with variable stack sizes. Refer to “Creating Tasks that Use the NicheStack
TCP/IP Stack Sockets Interface” on page 1–25.

Different Customization Process and Include Files

lwIP had a graphical configuration page accessible from the System
Properties page in the Nios II IDE that enabled customizations for
protocols and memory values. For additional NicheStack customizations,
modify the ipport.h C header file, found in the system_description folder
under the system library project build directory (for example,
simple_socket_server_0_syslib\Debug\system_description).

lwIP tasks utilizing sockets needed to include the following files:

#include "alt_lwip_dev.h"
#include "lwip/sys.h"
#include "lwip/netif.h"
#include "lwip/sockets.h"

NicheStack tasks utilizing sockets should instead include the following
two C header files:

#include "ipport.h"
#include "tcpport.h"

New Function Prototype and Parameter Type Definitions for
Network_utilities.c

The get_mac_addr() prototype has changed from get_mac_addr
(alt_lwip_dev *lwip_dev) to get_mac_addr (NET net,
unsigned char mac_addr[6]).

get_ip_addr() uses a different structure definition for struct
ip_addr.

Altera Corporation B–3
January 2007 Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial

New BOOLEAN Type Definition

The BOOLEAN type values are provided by MicroC/OS-II and defined
in ucosii.h. The valid enumerated type values for a NicheStack TCP/IP
Stack BOOLEAN structure are OS_TRUE and OS_FALSE. These values
have replaced the older enumeration values of TRUE and FALSE. This
change is not unique to the NicheStack TCP/IP Stack, just to MicroC/OS-
II. The change is described here because the Simple Socket Server
software example uses BOOLEAN variable types.

B–4 Altera Corporation
Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial January 2007

Issues in Upgrading

	Nios II Edition Tutorial
	Using the NicheStack TCP/IP Stack
	Contents
	About this Tutorial
	Revision History
	How to Find Information
	How to Contact Altera
	Typographic Conventions

	1. Using the NicheStack TCP/IP Stack
	Introduction
	Hardware & Software Requirements
	Tutorial Design Files
	Software Development Flow
	Create a New Nios II IDE Project
	Configure the System Library
	Examine the Simple Socket Server Project Files
	Build & Run the Simple Socket Server Project
	Interacting with the Simple Socket Server

	Simple Socket Server Design Overview
	Nios II Software Architecture
	Software Design Naming Convention
	MicroC-OS/II Resources
	Tasks
	Inter-Task Communication Resources

	NicheStack TCP/IP Stack Initialization
	Simple Socket Server Commands and Structures
	LED Command Definitions
	SSS_Socket Structure

	Simple Socket Server Implementation Details

	Important NicheStack TCP/IP Stack Concepts
	Error Handling
	NicheStack TCP/IP Stack Default Task Creation
	Creating Tasks that Use the NicheStack TCP/IP Stack Sockets Interface
	Task Priorities in the Simple Socket Server Design
	MicroC/OS-II Internal Tasks
	NicheStack TCP/IP Stack Internal Tasks
	Networking Initialization Task
	User Networking Tasks
	User Non-Networking Tasks

	Task Stack Size

	Where to Go Next

	Appendix A. Hardware Setup Details
	Introduction
	Network Connection

	Appendix B. Upgrading from lwIP to NicheStack TCP/IP Stack
	Introduction
	Issues in Upgrading
	New Method for TCP/IP Stack Initialization
	New Method for Notification that the TCP/IP Stack Is Ready
	New Method for Creation of Tasks that Will Use TCP/IP Stack
	Different Customization Process and Include Files
	New Function Prototype and Parameter Type Definitions for Network_utilities.c
	New BOOLEAN Type Definition

