

Flash Controller User Guide

Version 1.0 March 2009

Agate Logic, Inc.

Contents

1.1	Device Family Support4						
1.2	Introd	luction	4				
1.3	Featu	res	4				
2.1	Flash	Controller Interfaces	5				
2.2	Interface Signals						
2.3	Flash	Controller Usage	6				
	2.3.1.	Registers	6				
	2.3.2.	Flash operation command	6				
	2.3.3.	Write and Read Flash Operation	6				
3.1	.1 Simulating Your Design						
4.1	1 SPI User Interface IP Instantiation						
Abc	About Agate Logic						
	Technical Support Assistance						
	11						

About This Guide

The Flash Controller IP v1.0 User Guide describes the read and write operation of a flash, as well as information about designing and implementing the IP.

Section 1

1.1 Device Family Support

The Flash Controller IP supports the following target AGATELOGIC device families:

• Angelo

1.2 Introduction

Users can operate the configurable flash chip by the flash controller IP. This IP offers a very simple parallel interface to user.

1.3 Features

- Support erase flash one sector one time only
- Support write flash 1 to 256 bytes one time
- Support read flash 4N bytes

2.1 Flash Controller Interfaces

Figure 1 illustrates the flash controller interfaces.

Figure 1 Flash Controller Interfaces

2.2 Interface Signals

Table 2 defines the signals for the SPI user interface.

Table 1 SPI User Interface Signals

Name	Direction	Width	Description
clk	Input	1	system clock: above 15MHz
reset_n	Input	1	reset signal: active low
	loout	1	write enable: the rising wr_en signal, data is
wr_en	input		written to registers
usr_addr	Input	3	register address
usr_data_in	lutput	32	write into data
usr_data_out	Output	32	read out data
busy	Output	1	write busy signal: active high
rd_vld	Output	1	read valid: active high

2.3 Flash Controller Usage

2.3.1. Registers

PP

Table 2 describes the flash controller IP registers. All the control flash commands will be written to flash command register. The start address of read and write operation will be written to start address register. Read and write flash length amount will be written to operation length register. If read operation, the MSB of operation length register must be 1, and the write operation the MSB of operation length register must be 0.

Register name	Width	Register address	Comment
Flash command register	32	0	Refer to table 3
Start address register	32	1	Start address of read and write operation
Operation length register	32	2	The length of read and write operation
Input data register	32	3	

Table 2 User Registers

2.3.2. Flash operation command

Tab	ie 5 i lasti Operatio			
Function Name	Encoded Value	Description		
WREN	32'h00000006	Write Enable		
READ	32'h0000003	Read operation		
SE	32'h000000d8	Sector Erase		

32'h0000002

 Table 3
 Flash Operation Command

Write operation

2.3.3. Write and Read Flash Operation

In Angelo devices, the capacity of a configurable flash is 4M bits. The first 2M-bit space only deposits the FPGA configurable data which can neither be read and written by users. The other 2M-bit space is available for users to read and write. The corresponding sector addresses must be erased before the flash is written. Users can write data, from 1 to 256 bytes each time, to the flash. If users want to write 30 bytes to flash and must write 29 to the operation length register. The rule also applies to the read operation. In this IP of data interface is 32-bit width and the MSB will be written to flash first. If users want to write 0x1234 to flash, they must set the operation length to 1 and write 0x12340000 to input data register. If the busy signal is high, users can't write command or data to the IP. The length of read operation must be a multiple of 4. When the rd_vld signal is valid, users can read 32-bit data from flash one time. If the data are not read, the data will be covered when the next rd_vld comes.

Erase Flash Flow

- Set flash write enable (write 32'h00000006 to flash command register)
- Set the erase sector address (write address to start address register)
- Set flash erase sector command (write 32'h000000d8 to flash command register) Figure 2 describes the ease flash timing. Users must wait for 1.5ms to start a new write operation after sending erase command.

clk	
wr_en	
usr_data_in	X 32'h00000006 Address X 32'h00000006 32'h0000000d8
usr_addr	
busy	7

Write Flash Flow

- Set flash write enable (write 32'h00000006 to flash command register)
- Set the write operation start address (write address to start address register)
- Set the write operation length (write operation length to operation length register)
- Set flash write command (write 32'h00000002 to flash command register)
- Send the written data (write data to input data register)

Figure 3 describes the write flash timing. The interval of two write operations must exceed 1.5ms. When the busy signal is high, don't write any data and command to registers.

Figure 3 Write Flash Timing

Read Flash Flow

- Set flash write enable (write 32'h00000006 to flash command register)
- Set the read operation start address (write address to start address register)
- Set the read operation length (write operation length to operation length register)
- Set flash write enable (write 32'h00000006 to flash command register)
- Set flash read command (write 32'h00000003 to flash command register)

Figure 4	describes	the read	l flash	timing.	User	must	note	that	the	data	will	be	covered	when
the next	rd_vld cor	nes.												

clk	www.www.www.www.
wr_en	
usr_data_in	X32'h0000006X Address Length X32'h00000003X I
usr_addr	
usr_data_out	
rd_vld	
busy	7

Section 3

3.1 Simulating Your Design

The AGATELOGIC provides the behavioral model to customers for simulation.

The behavioral models are considered to be zero-delay models, as the modeled write-to-read latency is nearly zero. The behavioral models are functionally correct, and will represent the behavioral of the flash controller.

FETTE IP Instantiation

Section 4

4.1 SPI User Interface IP Instantiation

module ip_module_name(
 clk,
 reset_n,
 wr_en,
 usr_data_in,
 usr_data_out,
 usr_addr,
 busy,
 rd_vld);

input clk; input reset_n; input wr_en; input [2:0] usr_addr; input [31:0] usr_data_in; output [31:0] usr_data_out; outputt busy; output rd_vld;

flash_controller inst (
 .clk(clk),
 .reset_n (reset_n),
 .wr_en (wr_en),
 .usr_addr (usr_addr),
 .usr_data_in (usr_data_in),
 .usr_data_out(usr_data_out),
 .busy (busy),
 .rd_vld (rd_vld));

About Agate Logic

Agate Logic is the global pioneer and leader of the innovative Adaptable Programmable Gate Array (APGA) technologies. The company offers a full spectrum of programmable logic devices, software design tools, intellectual property (IP) and design services. Focusing on multiple applications such as telecommunication equipments, industrial control systems and consumer products, we use the Chinese leading foundry partner, SMIC, to manufacture our chips to offer solutions tailored for the market in China.

Technical Support Assistance

- Tel: +86 10 82150100
- E-mail: <u>support@agatelogic.com</u>
- Website: www.agatelogic.com.cn

Copyright © 2005-2009 Agate Logic, Inc. All rights reserved. No part of this document may be copied, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the written permission of Agate Logic, Inc. All trademarks are the property of their respective companies.