
Copyright © 2001 ARM Limited. All rights reserved.

Application Note
LCD and Keyboard ARMulator model for ADS

Document number: ARM DAI 0092A

Issued: September 2001

Copyright ARM Limited 2001

92

Copyright © 2001 ARM Limited. All rights reserved.

Application Note 92
LCD and Keyboard ARMulator model for ADS

Copyright © 2001 ARM Limited. All rights reserved.

Release information

The following changes have been made to this Application Note.

Change history

Date Issue Change

Sept 2001 A First release

Proprietary notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM
Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE,
ARM7TDMI, ARM9TDMI, TDMI and STRONG are trademarks of ARM Limited.

All other products, or services, mentioned herein may be trademarks of their respective
owners

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to
errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for addtions and improvements are also welcome.

ARM web address

http://www.arm.com

Contents

Copyright © 2001 ARM Limited. All rights reserved.

Table of Contents

1 Introduction ..4

2 Memory Map ...5

3 Using the Model ...6

4 Example Application ..7
4.1 Introduction..7
4.2 Design ...7
4.3 Building the Application ...8

5 The ARMulator Model ..9
5.1 Introduction..9
5.2 Design ...9
5.3 Building the Model...10

6 The Viewer Application..11

Introduction

4 Copyright © 2001 ARM Limited. All rights reserved. Application Note 92
ARM DAI 0092A

1 Introduction

Engineers designing embedded systems based around an ARM core often employ an
LCD display and keyboard as the primary I/O devices. It is of great benefit to be able to
prototype these peripherals in a realistic manner prior to implementation on hardware.

This AppsNote describes in full the processes involved in modelling these two devices as
memory-mapped peripherals that are accessed by the ARMulator (the processor
simulator provided with the ARM Developer Suite (ADS)). A simple demonstration
program written in a combination of C and ARM assembler illustrates how to use them
effectively. This is executed from a debugger such as AXD, also provided in the ADS.

The provided source code has been tested using ADS 1.1 and ADS 1.2. This is currently
a Windows-only implementation and has been tested on:

• Windows NT4 Service Pack 6

• Windows 98

• Windows 2000

For general information on extending ARMulator, please refer to Application Note 32
revision E – “The ARMulator”.

Memory Map

Application Note 92 Copyright © 2001 ARM Limited. All rights reserved. 5
ARM DAI 0092A

2 Memory Map

The memory map used in this example for the LCD and keyboard is as follows. It can be
altered to suit your needs:

Symbol Address Purpose

DISP_BASE 0x0C000000 Base address of entire model.

DISP_ISR (DISP_BASE+0x0000) Display interrupt Register

DISP_CSR (DISP_BASE+0x0004) Display control Register

DISP_XSIZE (DISP_BASE+0x0008) Stores the number of
horizontal pixels in LCD

DISP_YSIZE (DISP_BASE+0x000C) Stores the number of vertical
pixels in LCD

DISPLAY_PTR (DISP_BASE+0x10) Address of base of LCD
region.

REG_BASE

CPU_BASE

(DISPLAY_PTR + 1024*768) Base for Registers, top of
display memory.

CPU_ISR (CPU_BASE+0x0) interrupt status register

Used to enable keyboard
interrupts.

CPU_MR (CPU_BASE+0x4) Interrupt mask register

KB_BASE (CPU_MR+0x08) Keyboard base

KB_CSR (KB_BASE+0x0000) Keyboard status register

KB_ISR (KB_BASE+0x0004) Keyboard interrupt register

Note that the memory-mapped LCD begins at DISPLAY_PTR and ends at REG_BASE (equal
to CPU_BASE). Be careful not to write to the display past this limit, as registers will be
corrupted.

To change the memory map, do the following:

• Modify constant definitions in console.h. All locations are relative to DISP_BASE
and therefore the whole model may be moved by changing this constant.

• To increase the memory reserved for the LCD, change the value of REG_BASE.

• If you make major changes to the memory map or register architecture then you
will also need to alter two functions defined in console.c:

• BEGIN_INIT() – Find the function ARMulif_ReadBusRange and ensure that
parameter 5 is the peripheral base address and parameter 6 is the number of
bytes from this base which should be decoded by the peripheral.

• MemAccess_Console – Under the comment /* Deal with writes to
the LCD display frame */ you may wish to alter the range interpreted
as writes to display memory.

Using the Model

6 Copyright © 2001 ARM Limited. All rights reserved. Application Note 92
ARM DAI 0092A

3 Using the Model

These instructions illustrate how to run the model, Viewer application and example ARM
software.

1 Read the file readme.txt supplied with the source ZIP file. If you wish to build
the models yourself you will need to copy the supplied ARMulate directory into
your ADS installation directory.

2 Copy the following files to your install_path\Bin directory where install_path
is the directory in which you installed ADS (e.g. c:\ADSv1_1). This can also be
achieved automatically by running the supplied copy_console.bat batch file.

Lcd.exe The LCD Viewer application

Logo_back.bmp An image used by the Viewer

Palette8.bmp Windows DIB Bitmap image whose colour palette is used to
match values written to the LCD memory with actual display
colours. This can be modified by the User

Console.dll The ARMulator peripheral model for the LCD and Keyboard

Console.dsc Non-editable settings for the above model

3 Make the following changes to configuration files, also located within the
install_path\Bin directory.

Default.ami

Add the following to the { PeripheralSets section of the file:

;; Console model
{Console=Default_Console
}

Peripherals.ami

Add the following to the { Peripherals section of the file:

{ Default_Console=Console
LCD_WIDTH=480
LCD_HEIGHT=240
}

Note: You may alter the dimensions of the display model by changing the above
entries. Ensure that enough memory is allocated for the display region (see
above).

4 Load the AXD debugger and open the file console_demo.axf which is located in
ARMulate\demo. You should see an LCD viewer window if debugger loaded the
model successfully.

5 Run the demo by pressing F5 or choosing Execute->Go from the menu.

Example Application

Application Note 92 Copyright © 2001 ARM Limited. All rights reserved. 7
ARM DAI 0092A

4 Example Application

4.1 Introduction
By default, the example application draws a background image, asks for your age then
either draws an animated bitmap or echoes all keystrokes. It illustrates the following
aspects of programming the console model:

• Handling interrupts generated by the keyboard.

• Retargetting standard I/O functions (normally Semihosted) to interface to the
model.

• Accessing individual pixels in different display bit depths

• Drawing bitmaps

• Optimising data transfers using inline assembler and Load/Store multiple ARM
instructions

4.2 Design
The example application consists of the following ARM source files:

• demodata.s Includes Bitmap image data using the INCBIN directive

• console_demo.c The demo application

The following additional files are required for the demo:

• Logo_back.bmp Background image used in the demo

• Armlogo.bmp Bitmap used in animation sequence

• Chars.bmp Bitmap containing characters

• makedemo.bat Batch file to build the demonstration using Visual C++

The application makes use of image data from standard Windows DIB (Device
Independent Bitmap) files. The data is loaded into memory with the program image.
These structures are exported from the file demodata.s (below) and imported into
console_demo.c.

;; Define the images to be exported
EXPORT armlogo
EXPORT chars
EXPORT backdrop

AREA ARMex, DATA, READONLY ; name this block of code

armlogo
INCBIN armlogo.bmp

chars
INCBIN chars.bmp

backdrop
INCBIN logo_back.bmp

 END ; Mark end of file

The basic structure of the DIB files is explained below. An in-depth explanation is beyond
the scope of this document. Note that with an appropriate decoding function, image data
may be loaded from a file format of your choice.

Example Application

8 Copyright © 2001 ARM Limited. All rights reserved. Application Note 92
ARM DAI 0092A

The data begins with a BITMAPFILEHEADER structure which identifies whether or not the
image is a bitmap and the number of bytes to offset from this structure where the image
data lies. This structure is immediately followed by a BITMAPINFOHEADER giving image
width, height, bits per pixel any compression used and some colour information. Next
there may be some palette entries followed by the image data. It is assumed that the
palette used is the same as that defined in palette.bmp. No programmable palette
support is provided in this model. However, you may change the palette.bmp file to
adjust the palette. Note that this only applies when using 8 bit per pixel images. The
demonstration ARM program has been designed to operate in two different display
modes; 2 and 8 bits-per-pixel. To change from one to the other, do the following:

• Change the constant definition BITS_PER_PIXEL in console.h to 2 or 8 (the
default)

• Rebuild the peripheral model (see later)

• Rebuild the demo program using makedemo.bat

The application defines the bitmap structures taken from the windows header files. These
are packed by default but have to be explicitly packed when using the armcc compiler.
The RECT structure is also defined but because the display is ‘bottom-up’ the top-left
corner is actually the bottom-right. FAST_DRAW determines whether or not to use the
optimized inline assembler code to perform some graphics operations.

The way in which Windows DIBs work means that all rows must be word-aligned i.e. take
up a multiple of four bytes per row. This is accounted for by the getAlignmentTweak()
function. The main program performs the following operations:

• Call initLCD(). This clears the display by filling its address range with the
current background colour.

• An IRQ handler routine is installed at address 0x18 in the ARM vector table.

• IRQs are enabled by modifying the CPSR (current program status register).

• A demo is chosen based upon the pixel depth.

When in 2 bit-per-pixel (bpp) mode the program draws a black pixel at each corner of the
display. It then enters an infinite loop which draws randomly coloured dots in random
positions. The 8bpp demo uses several more features. A background is drawn using the
drawSpriteXY function. This is used in several contexts as the most basic bitmap
drawing function. It takes both a source and destination rectangle so that a partial image
can be drawn anywhere on the screen. Note that this will only work in an 8bpp mode.

The example proceeds to display some text by using the retargeted fputc function
defined in the same file. This means that the semihosted version of the function does not
get linked with the other object files. All other functions which use this low-level command
will output to the LCD display rather than the debugger console. Equally, this applies to
the fgetc function used for keyboard input. Depending on the option that you choose, a
moving bitmap image will be displayed or characters that you enter will be echoed to the
LCD.

The LCD model sends keystrokes from the Viewer window to the ARMulator peripheral
model. The character code is stored in the low byte of the KB_CSR register and an IRQ
signal is asserted. The IRQ may be cleared by writing to the KB_ISR register. Key Up
events have a character code 255.

See the source code for further implementation details. You may also wish to refer to the
Developer Guide (ARM DUI 0056C), Chapter 6: Writing Code for ROM for more details
on retargeting.

4.3 Building the Application
The demo is compiled and linked by running the supplied batch file makedemo.bat.
Ensure that the ADS has been installed and the relevant environment variables have been
set.

The ARMulator Model

Application Note 92 Copyright © 2001 ARM Limited. All rights reserved. 9
ARM DAI 0092A

5 The ARMulator Model

5.1 Introduction
The ARMulator peripheral model is responsible for the following:

• Registering the peripherals address range with the address decoder contained in
the ARMulator.

• Setting up a shared memory file containing the LCD data and launching the
viewer application. Also set up a Remote Procedure Call (RPC) server which is
the mechanism used for communicating keystrokes and screen dimensions
from/to the viewer.

• Handling all memory accesses and either storing or providing bytes.

• Controlling keyboard interrupts, queueing and dequeueing keyboard events.

• Shutting down the viewer and freeing up all allocated resources.

5.2 Design
The model resides within console.dll which is dependent upon the following files:

• Console.h - constant definitions used by the model, viewer and demo
applications.

• Console.c - Main peripheral model.

• Xlcd.c - Routines which handle the platform-specific LCD interface1.

• Xlcd.h - Header file for the above.

• Console_rpc_s.c - RPC interface code generated by Microsoft MIDL utility.

• Console_rpc.h - Header file for the above.

The macros BEGIN_STATE_DECL and END_STATE_DECL create a new structure called
Console_State that is passed to callback functions and stores the current state of the
registers.

BEGIN_INIT() is called whenever the module is loaded. It retrieves screen dimensions
from the Toolconf database settings in peripherals.ami. The LCD model and RPC
server are initialised then an Hourglass callback is registered (invoked by the ARMulator
every time an instruction is executed. This deals with keyboard interrupts. Finally the
memory access function MemAccess_Console is registered. Whenever an address is
accessed that falls within the registered range, this function will be called.

Similarly, BEGIN_EXIT and END_EXIT perform the appropriate clean-up operations to free
resources allocated in BEGIN_INIT.

MemAccess_Console works as follows:

• For writes to an LCD memory address, the address itself and the appropriate
number of data bytes (depending on access width) are passed to LcdModelWrite
which updates the shared memory region with the given data.

• Writes to registers are stored within the Console_State data structure. If the
register involved is the Mask Register (CPU_MR) this may change the state of the
interrupt line. The IrqUpdate function is called to handle any interrupt state
change. When writing to the keyboard status register (KB_CSR), if the KB_RDRF
bit is set then any outstanding key press in the buffer will be dequeued. This will

1 Currently only implemented for Windows

The ARMulator Model

10 Copyright © 2001 ARM Limited. All rights reserved. Application Note 92
ARM DAI 0092A

cause the low byte of KB_CSR to be set to the key code or the interrupt signal is
cleared if no key events are still buffered. Write operations to the LCD always
return a result PERIP_NODECODE which allow the data to ‘fall through’ into the
default underlying memory model. This removes the need to manually handle
read operations from the LCD memory.

• When reading from memory only register accesses are trapped by the peripheral.
The read-only registers DISP_XSIZE and DISP_YSIZE return the display
dimensions and may be used by application programs.

Every HOURGLASS_COUNT instructions the function MemHourglass will check for queued
keyboard events. Both ‘key up’ and ‘key down’ events are queued. An interrupt is
generated for each key event that is queued. Events arrive via the function QueueKey
implemented in xlcd.c. This is called by the viewer application via the RPC interface.

The ConfigChange handler stores the endian configuration of the current processor.

5.3 Building the Model
The model can be built by using the Visual C++ 6 project file supplied with the source
code. Alternatively, open a command window and change to the directory which contains
the file makefile.mak. Typing nmake will build the model. Ensure that the resulting DLL
(Dynamic Link Library) file (console.dll) is copied to the install_path\Bin directory,
where install_path is the directory in which you installed the ADS.

Note: Microsoft Visual C++ version 5 or 6 must be installed before you can rebuild the
model.

The Viewer Application

Application Note 92 Copyright © 2001 ARM Limited. All rights reserved. 11
ARM DAI 0092A

6 The Viewer Application

This section summarises the operation of the LCD viewer application that is launched by
the peripheral model when the debugger is started. This program makes use of the MFC
(Microsoft Foundation Classes). Each of the main classes will be discussed.

CApp

This object is created at program startup. The InitInstance function is called to initialise
the application. After checking the command line to determine whether or not it was
launched from the model it will either display a warning message or initialise RPC before
displaying the main window.

CWindow

The main window class. On initialisation the desired display dimensions are retrieved
from the model. Next, a CDib object is instantiated to display the image data held in the
shared memory file (or sample image if the viewer was not launched from the peripheral
model). After loading the colour palette from the file palette.bmp the DIB is passed to a
CPixelDepthChanger (see below).

CDib

This class provides functions to manipulate DIB data including drawing to a device
context, palette and file handling.

CPixelDepthChanger

This helper class performs a conversion between the source colour depth and the
destination (8-bit) colour depth by using a lookup table. This allows the use of different
source colour depths.

CIntervalTimer

CIntervalTimer provides accurately timed callbacks which are used to refresh the
LCD display. The higher the rate, the greater the overhead on the host PCs CPU.

