
Advanced RISC Machines

ARM

Document Number: ARM DAI 0028A

Issued: December 1995

Copyright Advanced RISC Machines Ltd (ARM) 1995

All rights reserved

Application Note 28

The ARM7TDMI Debug Architecture

ii
Application Note 28

ARM DAI 0028A

Proprietary Notice
ARM, the ARM Powered logo, EmbeddedICE are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this
application note may be adapted or reproduced in any material form except with the prior written
permission of the copyright holder.

The product described in this application note is subject to continuous developments and
improvements. All particulars of the product and its use contained in this application note are
given by ARM in good faith. However, all warranties implied or expressed, including but not
limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This application note is intended only to assist the reader in the use of the product. ARM Ltd shall
not be liable for any loss or damage arising from the use of any information in this application
note, or any error or omission in such information, or any incorrect use of the product.

Change Log
Issue Date By Change

A Dec 95 BP/AP/EH Created

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

1

Table of Contents
1 Introduction 2

2 The ARM Debug Architecture—an Overview 3

3 The ARM7TDMI Debug Architecture 5

4 Use of JTAG Scan Cells 6

5 Use of the Scan Chains 8

6 Configuration of the Scan Chains in the ARM macrocell 13

7 The EmbeddedICE Macrocell 15

8 Debug Signals 17

9 Entering Debug State 19

10 Determining the Core State 19

11 Determining System State 21

12 Exiting Debug State 22

13 Entering Debug from Thumb State 22

14 Control Registers within the EmbeddedICE macrocell 23

14 Control Registers within the EmbeddedICE macrocell 23

15 The ARM7TDMI Debug Communication Channel 24

16 Implications for ARM Debuggers 26

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

2

1 Introduction
A vital stage of any product development cycle is the debugging and testing of the
system. With the increasing complexity of designs, the software development and
system debugging stage of a product now contributes to a significant proportion of the
time to market and in order to remain competitive the product development cycle
needs to be kept to a minimum. In deeply embedded designs the microprocessor core
is not directly accessible from the periphery of the chip, adding to the problem of
debugging the system.

This application note describes how the problem has been overcome by the
ARM7TDMI Debug Architecture and the advantages of using this approach.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

3

2 The ARM Debug Architecture—an Overview
The ARM Debug Architecture uses a protocol converter box to allow the debugger to
talk via a JTAG (Joint Test Action Group) port directly to the core. In effect the scan
chains in the core that are required for test are re-used for debugging.

The architecture uses the scan chains to insert instructions directly in to the ARM core.
The instructions are executed on the core and depending on the type of instruction that
has been inserted, the core or the system state can be examined, saved or changed.
The architecture has the ability to execute instructions at a slow debug speed or to
execute instructions at system speed (for example if access to an external memory
was required).

The fact that the debugger is actually using the JTAG scan chains to access the core
is of no importance to the user as the front end debugger remains exactly the same.
The user could still use the debugger with a monitor program running on the target
system or with an instruction set simulator that runs on the debugger host. In each
case the debugging environment is the same.

The advantages of using the JTAG port are:

• hardware access required by a system for test is re-used for debug.

• core state and system state can be examined via the JTAG port.

• the target system does not have to be running in order to start debug.
A monitor program for example requires that some target resources are
running in order for the monitor program to run.

• the traditional breakpoints and watchpoints are available.

• on-chip resources can be added to.
For example the ARM Debug Architecture uses and an on-chip macrocell to
enhance the debugging facilities available.

• a separate UART to communicate with the monitor program is not required.

The debugging of the target system requires the following:

• a host computer to run the debugger software. The host could be a PC running
Windows, a Sun workstation or an HP workstation.

• an Embedded ICE Protocols Converter. A separate box which converts the
serial interface to signals compatible with the JTAG interface and a target
system with a JTAG interface and an ARM Debug Architecture compliant
core.

Figure 1: ARM debug system on page 4 shows how the system is connected.

Once the system is connected, the debugger can start communicating with the target
system via the Embedded ICE Interface Converter.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

4

 Figure 1: ARM debug system

Embedded ICE Interface
Protocol Converter

Host Computer
(PC, Sun or HP)

Target System
with ARM7TDMI

RS232 Interface

JTAG Interface

JTAG Port

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

5

3 The ARM7TDMI Debug Architecture
The ARM7TDMI Debug Architecture uses the existing JTAG (Joint Test Action Group)
port as a method of accessing the core. The scan chains that are around the core for
production test are reused in debug state to capture information from the databus and
to insert new information into the core or the memory.

There are effectively two scan chains around the core:

• a scan chain around the whole periphery of the core

• a subset of the first scan chain, covering only the databus and breakpoint

The shorter scan chain on the databus allows instructions and data to be inserted into
the core without the overhead of clocking the data around the entire periphery of the
ARM7TDMI processor core.

In addition to the scan chains, the ARM7TDMI Debug Architecture uses a macrocell
called the EmbeddedICE macrocell. The EmbeddedICE macrocell resides on chip
with the ARM7T processor core. The EmbeddedICE has its own scan chain that is
used to insert watchpoints and breakpoints for the ARM7TDMI processor core.

The ARM Debug Architecture allows programs to execute at full system speed and for
the ARM7TDMI processor core to be halted by the EmbeddedICE macrocell when a
breakpoint or watchpoint is seen by the EmbeddedICE macrocell. The ARM7TDMI
processor core then enters a debug state which allows the internal system state to be
examined and changed if required. The system can be restarted once the debug
session is over.

The ARM7TDMI processor core has three additional signals that are controlled by the
EmbeddedICE macrocell to force the processor into and out of Debug state. The
signals are:

DBGRQ Debug Request. This is a level sensitive input which, when HIGH,
causes the ARM7TDMI processor core to enter debug state after
executing the current instruction. This allows external hardware to
force the ARM7TDMI processor core into the debug state.

DBGACK Debug Acknowledge. This signal is an output from the ARM7TDMI
processor core which, when HIGH, indicates that the ARM7TDMI
processor core is in debug state.

BREAKPT Breakpoint. This signal is an input to the ARM7TDMI processor core.
When HIGH, the current memory access is breakpointed. If the
memory access is an instruction fetch, the ARM7TDMI processor
core will enter debug state if the instruction reaches the execute stage
of the ARM7TDMI processor core pipeline. If the memory access is
for data, the ARM7TDMI processor core will enter debug state after
the current instruction completes execution.

The debug signals can also be brought to the periphery of the ASIC so that external
hardware can control the ARM7TDMI processor core if required.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

6

4 Use of JTAG Scan Cells
The JTAG specification (IEEE 1149.1) was originally developed to aid the testability of
larger ASIC devices. The technique uses scan cells that can apply inputs to the
macrocell while isolating the input from the rest of the circuit and can also sample
outputs from the macrocell.

The inputs and outputs can be applied and sampled serially through a JTAG port. The
JTAG port is the connection to the rest of the circuit. The JTAG port connections are:

TMS Test Mode Select. The TMS signal selects the next state in the TAP
state machine.

TCK Test Clock. This allows shifting of the data in, on the TMS and TDI
pins. It is a positive edge-triggered clock with the TMS and TCK pins
that define the internal state of the device. A sixteen state finite state
machine, with certain states allocated functions within the JTAG
specification, is controlled by the clocks and the test mode.

TDI Test Data In. This is the serial data input for the shift register. It
connects to all the storage elements in the device and allows shifting
of binary data patterns to either set up the inputs to the macrocell or
the outputs to the system internal scan chain.

TDO Test Data Output. This is the serial data output from the shift register.
Data is shifted out of the device on the negative edge of the TCK pin.
The data out is either the results from the macrocell or the signals
being applied to it.

nTRST Test Reset. The test reset pin is an optional pin. The nTRST pin can
be used to reset the test logic within the macrocell. The pin is optional
because it is possible to force the test logic into reset using a
combination of the TMS and TCK pins.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

7

The configuration of the scan cell is shown in Figure 2: Scan cells .

 Figure 2: Scan cells

The scan cell is placed on an input or an output of the ARM macrocell. The scan cells
can be configured to:

• apply inputs to the macrocell

• sample outputs from the macrocell

• link the scan cells together in a shift register that allows the data to be shifted
in or out of the macrocell via the TDI and TDO pins

G1

1
1

1D

C1

1D

C1

G1

1
1

Shift/load

From last

From logic

cell

or pin

To next

To logic

cell

or pin

Clock Update Mode

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

8

5 Use of the Scan Chains
Figure 3: Example device with scan cells below shows a small example of a circuit
with scan cells around it. For clarity the control signals to each scan cell have been
omitted.

 Figure 3: Example device with scan cells

Figure 4: Sequence of diagrams on page 9 shows how the outputs from the
macrocell can be sampled and scanned out of the device and new inputs to the
macrocell scanned in and applied to the device.

0 X 0

0 X 0

0 X 0

x x x x x x

0 X 0

0 X 0

0 X 0

1 0 1 0 1 0

O

O

O

I

I

DEVICE
UNDER
TEST

01

02

03

Center elements form shift register

I1

I2

I3 I

TDOTDI

Scan data in Sampled data
scanned out

TCK

Output dataInput data

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

9

 Figure 4: Sequence of diagrams

0 X 0

0 X 0

0 X 0

x x x x x x

1 X 1

1 X 1

1 X 1

1 0 1 0 1 0

DUT

01

02

03

I1

I2

I3

TDOTDI

Stage 1

Halt device
Shift register
elements are
don’t care

0 0 0

0 0 0

0 0 0

x x x x x x

1 1 1

1 1 1

1 1 1

1 0 1 0 1 0

DUT

01

02

03

I1

I2

I3

TDOTDI

Stage 2

Sample inputs
I1 - I3 outputs
from DUT into
shift register
elements

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

10

Figure 4: Sequence of diagrams (continued)

0 1 0

0 0 0

0 0 0

0 x x x x x

1 1 1

1 1 1

1 1 1

0 1 0 1 0 x

DUT

01

02

03

I1

I2

I3

TDOTDI

Stage 3

0 1 0

0 1 0

0 0 0

0 0 x x x x

1 1 1

1 1 1

1 0 1

1 0 1 0 x x

O

O

O

I

I

DUT

01

02

03

I1

I2

I3 I

TDOTDI

Stage 4

Clock TCK to
move shift
register along
one place.
First sample
clocked into I3
scan cell from
input buffer.
The sample on
O3 scan cell
clocked into
output buffer.

Second tick
moves shift
register along
another place.
Sample from O2
is now in the
output buffer
and the input
buffer has two
values moved
out.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

11

Figure 4: Sequence of diagrams (continued)

0 1 0

0 0 0

0 1 0

1 1 1 0 0 0

1 0 1

1 1 1

1 0 1

x x x x x x

DUT

01

02

03

I1

I2

I3

TDOTDI

Stage 5

0 1 1

0 0 0

0 1 1

1 1 1 0 0 0

1 0 0

1 1 1

1 0 0

x x x x x x

O

O

O

I

I

DUT

01

02

03

I1

I2

I3 I

TDOTDI

Stage 6

After 6 TCKs
the value
originally in the
input buffer is
now in the scan
chain. The input
and outputs
originally
sampled by the
scan chain are
now in the
output buffer.

New inputs now
applied to the DUT
and new outputs
applied from the
DUT. The DUT
can now be run
normally until
new inputs are
required to be
applied or new
outputs sampled.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

12

Data can be sampled from the outputs of the macrocell and applied to the inputs of the
macrocell through a five wire interface.

If an input or output, to or from the macrocell is required to be unchanged, the value
scanned into the scan chain will be the same as was previously present on the input
or output.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

13

6 Configuration of the Scan Chains in the ARM macrocell
Figure 5: Scan chains in the ARM core shows the configuration of the scan chains
in the ARM macrocell. The scan chains are arranged as follows:

Scan Chain 0 around the entire periphery of the macrocell. All the inputs
and outputs can be controlled via scan chain 0.

Scan Chain 1 around the databus and breakpoint only. Scan chain 1 is used
to scan instructions and data into the macrocell. The scan
chain has been shortened to reduce the time it takes to insert
instructions into the macrocell. It avoids the penalty of
scanning data around the periphery of the macrocell just to
control the 32 bits of the databus.

Scan Chain2 around the EmbeddedICE macrocell. The scan chain is used
to control the registers in the EmbeddedICE macrocell.

 Figure 5: Scan chains in the ARM core

ARM7D core

Scan
chain 0

Scan
chain 1 + chain 0

Address
Bus

Control Signals

EmbeddedICE
macrocell

Data Bus

TAP Controller

TAP core

JTAG Interface

Scan
chain 2

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

14

The ARM Debug architecture allows certain instructions to be performed at system
speed. For example a load multiple instruction (LDM) can be used at system speed to
examine the contents of some memory locations quickly. To do this, the ARM7TDMI
core needs to know which instructions are to be performed at system speed (running
at the MCLK frequency) and those which run at debug speed (running at DCLK
frequency). This is done by adding an extra scan cell to the scan chain across the
databus. When an instruction is scanned into the databus scan chain, the extra scan
cell is set to identify to the ARM7TDMI core that the next instruction should be
executed at system speed. When the instruction reaches the execute stage of the
pipeline, the ARM7TDMI core must resynchronize back to MCLK in order to execute
the instruction. Once the instruction has completed, the core will synchronize back to
DCLK .

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

15

7 The EmbeddedICE Macrocell
The EmbeddedICE macrocell provides on-chip debug support for the ARM7TDMI
core. The EmbeddedICE macrocell consists of two real time watchpoint registers,
together with a control and status register. One or both of the watchpoint registers can
be programmed to halt execution of instructions by the ARM7TDMI core via the
BREAKPT signal. Execution is halted when a match occurs between the values
programmed into the EmbeddedICE macrocell and the values currently appearing on
the address bus, databus and some control signals. Any bit can be masked so that its
value does not affect the comparison.

 Figure 6: EmbeddedICE macrocell

Either watchpoint can be configured as a watchpoint (ie. on a data access) or a
breakpoint (ie. on an instruction fetch).

ENABLE

CHAIN

EXTERN

nOPC

nBW

nRW

CHAIN

EXTERN

nOPC

nBW

nRW

Av[31:0] Am[31:0]

Dm[31:0]Dv[31:0]

C
om

pa
ra

to
r

Breakpoint

+

A[31:0]

D[31:0]

Control

r/w

4

Address

0

31

Data

0

32

Address
Decoder

TDO
TDI

Update

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

16

The watchpoints and breakpoints can also be combined such that:

• the conditions on both watchpoints must be satisfied before the ARM7TDMI
core is stopped. The CHAIN functionality allows two consecutive conditions to
be satisfied before the core is halted. An example of this would be to set the
first breakpoint to trigger on an access to a peripheral and the second to
trigger on the code segment that performs the task switching. Therefore when
the breakpoints trigger the information regarding which task has switched out
will be ready for examination.

• the watchpoints can be configured such that a range of addresses are
enabled for the watchpoints to be active. The RANGE function allows the
breakpoints to be combined such that a breakpoint is to occur if an access
occurs in the bottom 256 bytes of memory but not in the bottom 32 bytes.

The ability to CHAIN or RANGE the breakpoints considerably enhances their
usefulness.

In addition to the CHAIN and RANGE functionality the watchpoints can also be
enabled or disabled by using two external inputs to the ARM7TDMI core. The inputs
are called EXTERN0 and EXTERN1.

EXTERN0 enables or disables watchpoint 0

EXTERN1 enables or disables watchpoint 1

An external input can also be used to control if the watchpoint is enabled or disabled.
An example might be that debugging is only required during a particular sequence in
the product functionality and at all other times the ability to stop the core and enter
debug state is disabled.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

17

8 Debug Signals
The signals that are external to the core and used in debug state were described in
3 The ARM7TDMI Debug Architecture on page 5 but the names and functionality
are recapped here.

DBGRQ Debug Request. This is a level sensitive input, which when HIGH
causes the ARM7TDMI processor core to enter debug state after
executing the current instruction. This allows external hardware to
force the ARM7TDMI processor core into the debug state.

DBGACK Debug Acknowledge. This signal is an output from the ARM7TDMI
processor core which when HIGH indicates that the ARM7TDMI
processor core is in debug state.

BREAKPT Breakpoint. This signal is an input to the ARM7TDMI processor core.
When HIGH the current memory access is breakpointed. If the
memory access is an instruction fetch the ARM7TDMI processor core
will enter debug state if the instruction reaches the execute stage of
the ARM7TDMI processor core pipeline. If the memory access is for
data, the ARM7TDMI processor core will enter debug state after the
current instruction completes execution.

In addition to these three signals there is a fourth signal that can be used to enable or
disable the debug functionality on the ARM7TDMI core. The reason for having a signal
to do this is for safety critical applications where it is essential that the developer can
guarantee that the ARM7TDMI core will not be able to enter debug state. The signal
is called DBGEN and is described below.

DBGEN Debug Enable. This signal allows the debug features of the
ARM7TDMI to be disabled completely. The signal should be driven
LOW when debugging is not required.

The timing associated with the debug signals is shown in Figure 7: Debug timing and
Figure 8: Breakpoint timing .

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

18

 Figure 7: Debug timing

 Figure 8: Breakpoint timing

Figure 7: Debug timing and Figure 8: Breakpoint timing show that the main debug
signals (DBGACK , BREAKPT and DBRQ) are timed relative to the rising edge of
MCLK . The EXTERN signals are sampled on the falling edge of MCLK .

Once the ARM7TDMI core has entered debug state the ARM7TDMI core appears to
be in an idle state relinquishing the databus such that any external activity can occur
in real time. The core may still be accessed via the JTAG port, allowing the host
computer to insert instructions and data.

MCLK

DBGACK

BREAKPT

DBGRQ

EXTERN[1:0]

Tdbgh
Tdbgd

Tbrks Tbrkh

Trqs Trqh

Texts Texth

MCLK

BREAKPT

nCPI, nEXEC
nMREQ, SEQ

Tbcems

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

19

9 Entering Debug State
The ARM7TDMI core will enter debug state under any one of the following conditions:

• when a breakpointed instruction reaches the execute stage of the instruction
pipeline

• a memory access occurs on data that has a watchpoint on it

• the DBGRQ signal is forced HIGH

Once the breakpoint has occurred the ARM7TDMI must switch from using MCLK to
using a debug clock for the core called DCLK . DCLK is controlled from the TAP state
machine. When entering debug state this is handled automatically by the core. On
entry to debug state the core asserts DBGACK to signal to the external system that
the core is now in debug state.

For simplicity it will be assumed that the debug state is entered from ARM state.

10 Determining the Core State
The instruction used to examine the processors internal state is:

STM R0, { R0 - R15 }

This causes the contents of the registers to be made visible on the databus. The
sequence of events is as follows:

1 DCLK from the TAP state machine clocks the contents of the first register out
onto the databus.

2 The databus value and hence the contents of the first register are captured
into scan chain 1.

3 The contents of scan chain 1 are clocked out of the JTAG port via TDO using
TCK. The contents of the first register are now available to the debugger.

4 DCLK now clocks the contents of the second register out onto the databus.

5 The databus value and hence the contents of the second register are
captured into scan chain 1.

6 The contents of scan chain 1 are clocked out of the JTAG port via TDO using
TCK. The contents of the second register are now available to the debugger.

7 The process is repeated until all sixteen registers have been clocked out of
the core, captured in scan chain 1 and clocked out to the debugger via scan
chain 1.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

20

Figure 9: Clock and data control shows how the clocks and data are controlled.

 Figure 9: Clock and data control

The STM instruction is said to execute at debug speed. Debug speed is much slower
than system speed since between each core clock, 33 scan clocks occur in order to
shift in an instruction or shift out data. Executing the instructions more slowly than is
usual does not cause a problem as the ARM7TDMI core is fully static.

While in debug state only the following instructions may legally be scanned into the
instruction pipeline for execution:

• all data processing instructions, except TEQP

• all load, store, load multiple and store multiple instructions

• MSR and MRS

MCLK

TDI

TCK

DCLK

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

21

11 Determining System State
The system state cannot be examined as easily as the core state due to the dynamic
timing requirements of the other components in the system. DRAMs, for example, can
only be accessed at system speed, otherwise they will not work correctly and data
cannot be read from or stored to the memory.

To overcome this problem, any attempt to examine the system state must take place
at normal system speed. The ARM7TDMI core can be synchronized to run from MCLK
under the control of the bit 33 in scan chain 1. If bit 33 of the scan chain is set to a 1,
the next instruction will be executed at system speed. The ARM7TDMI core needs to
be resynchronized back to system speed before the instruction that will actually be
executed at system speed is in the execute stage of the pipeline. Table 1: Use of bit
33 to control system speed access shows this.

After the system speed instruction has been scanned into the databus and clocked
into the pipeline, the BYPASS instruction must be loaded into the TAP controller. This
will cause the ARM7TDMI to automatically synchronize back to MCLK (the system
clock), execute the instruction at system speed, re-enter debug state and switch itself
back to an internally generated DCLK .

The debugger will load the TAP controller with the INTEST instruction to allow the
debugging session to resume.

The use of system speed load multiples and debug speed store multiples allow the
core and system memory state to be fed back to the host.

Instruction Bit 33 Comments

STM R0, {R0-R15} 0 Examine core registers

MOV R0, R0 0 NOP

MOV R0, R0 1 NOP but LDM instruction to be
executed at system speed

LDM R0, {R0-R15} 0 Load multiple executed at system
speed

 Table 1: Use of bit 33 to control system speed access

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

22

12 Exiting Debug State
The internal state of the ARM7TDMI core must be restored before exiting debug state.
Debug state is exited by executing a branch to the next instruction to be executed at
system speed.The penultimate instruction to be scanned into the ARM7TDMI core
must have bit 33 of scan chain 1 set to a 1 to cause the last instruction of the debug
sequence, the branch, to be executed at system speed.

The ARM7TDMI core is actually restarted at system speed by loading the RESTART
instruction into the TAP controller. When the state machine enters the RUN
TEST/IDLE state, the scan chain will revert back to system mode and the clock
synchronization back to MCLK will occur within the ARM7TDMI. The ARM7TDMI will
then resume normal operation fetching instructions from the destination of the branch.

13 Entering Debug from Thumb State
The ARM7TDMI could enter debug state from ARM state or THUMB state. The first
thing an external debugger must do is to find out if the ARM7TDMI was in ARM or
THUMB state before entering debug state. This can be achieved by examining bit 4 of
the EmbeddedICE macrocell’s Debug Status register. To do this, the external
debugger controls the JTAG port in the following sequence:

1 Scan the SCAN_2 instruction into the TAP controller to select scan chain 2 in
the EmbeddedICE macrocell.

2 Scan the address of the Debug Status register into scan chain 2 with the
read-write bit set low in order to read the register.

3 Scan the data out of scan chain 2.

4 Examine bit 4 of the Debug Status register that has been scanned out serially.

If the processor was in Thumb state, the simplest course of action is to force the core
back into ARM state. To force the ARM7TDMI processor into ARM state the following
sequence of Thumb instructions should be executed on the core:

STR R0, [R0] ; Save R0 before use
MOV R0, PC ; Copy PC into R0
STR R0, [R0] ; Now save the PC in R0
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP
MOV R8, R8 ; NOP

Note Since all Thumb instructions are only 16 bits long, the simplest course of action when
shifting them into scan chain 1 is to repeat the instruction twice. The debugger does
not then have to keep a track of which half of the databus the ARM7TDMI core is
expecting to read from.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

23

14 Control Registers within the EmbeddedICE macrocell
The EmbeddedICE macrocell contains a total of 16 registers. The registers are a
combination of control, data, status and mask registers. Table 2: EmbeddedICE
macrocell registers shows the registers contained in the EmbeddedICE macrocell.

Note The Debug Communication Channel is described in 15 The ARM7TDMI Debug
Communication Channel on page 24.

The registers in the EmbeddedICE macrocell for the watchpoints each have a data
register and a mask register. For example the address for watchpoint 0 could be
programmed to a particular value and the data value either ignored completely by
setting the mask value or the data value can be used to set the condition for the
watchpoint. The use of the data mask value means, for example, that only if the value
from that address is a certain value will it cause a watchpoint.

The registers are repeated for the watchpoint 1.

The watchpoint control registers allow the watchpoint to also be dependent an some
of the external signals. For example EXTERN[0:1] can be enabled from these
registers.

Address Width Function Comments

00000 3 Debug Control Force debug state, disable ints

00001 5 Debug Status Status of debug, TBIT

00100 6 Debug Comms Control Register

00101 32 Debug Comms Data Register

01000 32 Watchpoint 0 Address Value

01001 32 Watchpoint 0 Address Mask

01010 32 Watchpoint 0 Data Value

01011 32 Watchpoint 0 Data Mask

01100 9 Watchpoint 0 Control Value

01101 8 Watchpoint 0 Control Mask

10000 32 Watchpoint 1 Address Value

10001 32 Watchpoint 1 Address Mask

10010 32 Watchpoint 1 Data Value

10011 32 Watchpoint 1 Data Mask

10100 9 Watchpoint 1 Control Value

10101 8 Watchpoint 1 Control Mask

 Table 2: EmbeddedICE macrocell registers

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

24

15 The ARM7TDMI Debug Communication Channel
The ARM7TDMI has an extra function built into it called the debug communication
channel. The debug communication channel is a method by which a program running
on the ARM7TDMI core can communicate with the host debugger or another separate
host without stopping the program flow or even entering debug state. The debug
communication channel allows the JTAG port to be used for sending and receiving
data without affecting the normal program flow.

The advantage of this channel is that the debug communication channel can be used
as a simple method of communicating with the ARM7TDMI core from the outside world
or to monitor the program flow in the ARM7TDMI core by sending monitoring
messages from the ARM7TDMI core as different tasks within the program are entered.

The ARM7TDMI debug communications channel is accessed as a coprocessor by the
program running on the ARM7TDMI core. The coprocessor is number 14. By writing
to and reading from coprocessor 14, the program can communicate with the host. Two
registers are used by the debug communications channel. The debug communication
channel register is a read-only register and allows for synchronized handshaking
between the processor and the debugger. Two bits in the control register can be read
to determine if the debug communications write register is free to write to, and whether
there is new data in the debug communications read register.

The instructions used by the program to access the debug communications channel
registers are:

MRC CP14, 0, Rd, C0, C 0 returns the Debug Comms Control Register
into Rd

MCR CP14, 0, Rn, C1, C0 writes the value in Rn to the Comms Write
Register

MRC CP14, 0, Rd. C1, C0 returns the Debug data read register into Rd

Note Since the THUMB instruction set does not contain coprocessor instructions these will
need to be written as SWI (Software Interrupt) Handlers when in THUMB state.
Entering the SWI handler immediately puts the ARM7TDMI into ARM state where the
coprocessor instructions are available.

The debugger cannot use coprocessor 14 to access the debug communications
channel as this has no meaning to the debugger. The debugger can read and write to
the debug communications channel registers using the scan chain. The debug
communication channel data and control registers are mapped into addresses in the
EmbeddedICE macrocell.

The sequence of events for the ARM7TDMI core to communicate with the debugger
are as follows:

1 The processor checks that the debug communication channel write register is
free for use. It does this using the MRC instruction to read the debug
communications channel control register to check that the W bit is clear.

2 If the W bit is clear, the debug communication write register is clear and the
processor can write a message to it using the MCR instruction to coprocessor
14. The action of writing to the register automatically sets the W bit.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

25

If the W bit is set, the debug communication write register has not been
emptied by the debugger. The processor must then poll the W bit until it is
clear.

3 The debugger polls the debug communications control register via scan
chain 2. If the debugger sees that the W bit is set it can read the debug
communications channel data register to read the message sent by the
processor. The process of reading the data automatically clears the W bit in
the debug communication control register.

Message transfer from the debugger to the processor is the reverse process.

1 The debugger polls the debug communication control register R bit. If the R
bit is clear, the debug communication read register is clear and data can be
written there for the processor to read.

2 The debugger scans the data into the debug communication read register via
scan chain 2. The R bit in the debug communication control register is
automatically set by this.

3 The processor polls the R bit in the debug communication control register. If
the R bit is set, there is data in the debug communication read register that
can be read by the processor using the MRC instruction to read from
coprocessor 14.

The processor accesses the debug communications registers as a coprocessor
register transfer read and write whilst the debugger accesses the same registers via
the scan chain.

 Figure 10: Debug communications channel

Figure 10: Debug communications channel shows how the debug communications
channel works.

Program

MCR CP14, 0, Rd, C0, C0

MRC CP14, 0, Rn, C1, C0

Program
reads/writes
to

EmbeddedICE

Comms channel

Comms data

Debugger

Debugger uses JTAG port

JTAG

macrocell

to access comms data
and control registers

coprocessor 14

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

26

16 Implications for ARM Debuggers
The ARM Software Development Toolkit debuggers do not need to know that the
target is an ARM7TDMI with an EmbeddedICE macrocell. The debuggers still talk to
the parallel or serial port on the host using the ARM Remote Debug Protocol. The
system uses a converter box called the EmbeddedICE Interface Protocol converter
that takes the Remote Debug Protocol commands and converts them into the JTAG
data needed to access the ARM7TDMI. The user will not notice any difference from
using a conventional debug monitor running on the target system.

The big advantage of using the ARM Debug Architecture is that no target resources
are required by the debugger in order to start the debugging session.

THE ARM7TDMI Debug Architecture

Application Note 28
ARM DAI 0028A

27

ENGLAND
Advanced RISC Machines Limited
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
England
Telephone:+44 1223 400400
Facsimile:+44 1223 400410
Email:info@armltd.co.uk

GERMANY
Advanced RISC Machines Limited
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone:+49 (0) 89 608 75545
Facsimile:+49 (0) 89 608 75599
Email:info@armltd.co.uk

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone:+81 44 850 1301
Facsimile:+81 44 850 1308
Email:info@armltd.co.uk

USA
ARM USA Incorporated
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone:+1 408 399 5199
Facsimile:+1 408 399 8854
Email:info@arm.com

World Wide Web Address: http://www.arm.com/

