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Introduction
1 Introduction
EmbeddedICE is an extension to the architecture of the ARM family of RISC 
processors, and provides the ability to debug cores that have been deeply 
embedded into systems. It consists of three parts:

• A set of debug extensions to the ARM core.
• The EmbeddedICE macrocell, which adds a JTAG TAP controller and 

breakpoint/watchpoint logic to the basic debug extensions.
• A protocol converter, to provide communication between the 

EmbeddedICE macrocell and the host computer, such as the 
EmbeddedICE interface or Multi-ICE. For full details on how to use 
Multi-ICE, refer to the Multi-ICE User Guide [ARM DUI 0048].

This application note examines some of the issues involved with debugging a 
system using an EmbeddedICE interface, and also some of the 
considerations which need to be made when designing such a system. Much 
of this information is also applicable if you are using a Multi-ICE.

Throughout this application note, it is assumed that you are using the ARM 
Software Development Toolkit, version 2.5. If you are using an earlier version 
of the SDT (such as SDT 2.11a), you should refer to the supplied user guide 
for details.
Named Partner Confidential - Preliminary Draft
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EmbeddedICE Principles
2 EmbeddedICE Principles

2.1 Debug extensions to the ARM core

The presence of debug extensions to the ARM core are indicated by the D 
suffix on the core name. The extensions consist of a number of scan chains 
around the core and some additional pins that are used to control the behavior 
of the core for debug purposes.

The three most significant pins are:

BREAKPT allows external hardware to halt processor execution for 
debug purposes. When HIGH, the current memory access is 
tagged as breakpointed. If the memory access is an 
instruction fetch, the core enters debug state if and when the 
instruction reaches the execute stage of the pipeline. If the 
memory access is for data, the core enters debug state when 
the current instruction completes execution. The 
EmbeddedICE macrocell can also assert this input to the 
core.

DBGRQ is a level-sensitive input that causes the core to enter debug 
state immediately after the current instruction has completed 
execution. This allows external hardware to force the ARM 
into debug state.

DBGACK is an output from the ARM that goes HIGH when the core is 
in debug state. This allows other peripherals or the debugging 
system to determine the current state of the core, and act 
accordingly.

For more details, please refer to the debug interface section of the relevant 
ARM core datasheet or technical reference manual.

2.2 EmbeddedICE macrocell

The EmbeddedICE macrocell is the integrated on-chip logic that provides 
debug support for ARM cores. Its presence is indicated by the I suffix on the 
core name. 

The EmbeddedICE macrocell is programmed in a serial manner through the 
Test Access Port (TAP) controller on the ARM using the JTAG interface (see 
12 System Design Considerations for details of designing this into your own 
target). 

The EmbeddedICE macrocell consists of two real-time watchpoint units, 
together with a control and status register, and a set of registers implementing 
a communications link with the debugger, referred to as the Debug 
Communications Channel. For more details on this link, see Applications Note 
38 (Debug Communications Channel). One or both watchpoint units can be 
programmed to halt the execution of instructions by the ARM core by way of 
its BREAKPT signal. Execution is halted when a match occurs between the 
values programmed into the EmbeddedICE macrocell and the values 
currently appearing on the address bus, data bus, and various control signals. 
Any bit can be masked to prevent it from affecting the comparison. Either 
watchpoint unit can be configured to be a watchpoint (monitoring data 
accesses) or a breakpoint (monitoring instruction fetches).
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EmbeddedICE Principles
For more information, please refer to relevant section of the appropriate ARM 
data sheet or a technical reference manual.

2.3 The protocol converter

This translates the debug protocol messages sent out by the debugger into 
JTAG signals that can be sent to the EmbeddedICE macrocell (and vice 
versa). At the time of writing, ARM has produced two such protocol 
converters: the EmbeddedICE Interface and the Multi-ICE Unit.

The EmbeddedICE Interface

The EmbeddedICE interface is ARM’s original protocol converter. The 
interface can be connected to the host computer using either the built-in serial 
port or both the built-in serial port and the parallel port. The serial port can be 
used for bidirectional transfers, but if the parallel port is used, it will only be 
used to increase the download speed (up to around 15KB per second).

The Multi-ICE Unit

Short for Multiprocessor EmbeddedICE Interface, this unit is a more recent 
design that can communicate with a wider range of ARM cores, and also 
several ARM cores within the same ASIC. Multi-ICE is connected to the host 
computer by way of the parallel port and has a download performance of 
around 100KB per second on modern PCs (processor-dependent and parallel 
port-dependent).

2.4 How EmbeddedICE differs from a debug monitor

A debug monitor, such as Angel, is an application that runs on the board in 
conjunction with the user application, and requires some resource to be 
available for it on the board. When the board powers up, Angel installs itself 
by initializing the vector table so that it takes control of the board when an 
exception occurs. Communication coming in from the host causes an 
interrupt, halting the user application and calling the appropriate code within 
Angel. Angel then returns to the user application. This can complicate matters 
if the application also requires access to interrupts. Similarly, if the application 
requests some form of I/O to the host, this is implemented within the 
application using a SWI instruction that is dealt with by Angel’s SWI handler 
(For further details, see 7 Semihosting). This means that Angel requires 
ROM to store the debug monitor code, RAM to store its data, and control over 
the exception vectors to allow it to gain control of the ARM while the user 
application is running.

The EmbeddedICE debug architecture, on the other hand, requires no such 
resource. Rather than existing as an application on the board, it works by 
using a combination of the additional debug hardware on the core and the 
interface box that handles communication between the core’s debug hardware 
and the host. The EmbeddedICE debug architecture has been designed to 
allow debugging by way of the JTAG port to be as non-intrusive as possible:

• the debuggee needs no special hardware to support debugging (the 
EmbeddedICE macrocell and the JTAG TAP controller are all that is 
required)

• no memory in the debuggee system need be set aside for debugging, 
and no special software need be incorporated to allow debugging
Named Partner Confidential - Preliminary Draft
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EmbeddedICE Principles
• execution of the debuggee should only be halted when a breakpoint 
or watchpoint has been hit, or the user requests that the debuggee is 
halted.

Note Although the EmbeddedICE debug architecture requires no memory on the 
target to operate, the target will still require some memory for executing its 
own application code.

2.5 The effect of EmbeddedICE on the target

Although EmbeddedICE debugging is generally non-intrusive, there are four 
exceptions:

• When an ARM debugger is started up, it attempts to find out the state 
of the debuggee. To do this, it halts the debuggee and inspects the 
state of the ARM registers. This, however, can be considered non-
intrusive if the debugging session is started after the debugger has 
been started.

• Watchpoints on structures or arrays larger than one word may cause 
the debuggee to halt execution when writes occur close to the 
watchpointed area. EmbeddedICE will restart execution transparently 
to the user, but this may still cause problems if the application is real-
time. For more information, see 4.1 Configuring armsd.

• Semihosting: provides a mechanism for providing I/O facilities from 
the host computer. However, in order to do this, the protocol converter 
will take control of the SWI entry in the vector table. See 7.1 Adding 
an application SWI handler when using EmbeddedICE for more 
details. 

• Vectors: provides a mechanism for trapping exceptions for which your 
application may not provide a handler, for example, during early 
development stages. However, this requires breakpoints to be set on 
the vector table. See 6 Vector Breakpoints and Exceptions for 
more details.
Application Note 31
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Connecting and Powering up the EmbeddedICE Interface
3 Connecting and Powering up the EmbeddedICE Interface
You will need to connect the EmbeddedICE interface to both a host computer 
and an ARM target board.

Note For details on connecting and powering up a Multi-ICE, refer to the Multi-ICE 
User Guide [ARM DUI 0048].

To connect and power up the EmbeddedICE interface:

1 Connect the supplied serial cable between the 9-pin serial port of 
EmbeddedICE and the serial port of the host computer. 

2 Optionally, connect the supplied 25-way D-type parallel cable 
between the EmbeddedICE and the host computer’s parallel printer 
port.

3 Power up the target board, as detailed in the appropriate 
documentation.

4 Connect the EmbeddedICE interface to an external +7 to +9V DC 
(unregulated) power supply, 500mA or greater. The recommended 
voltage is +7.5V.

Note that the 2.1mm power connector should have the positive supply 
connected to the center pin, as shown in Figure 3-1: Power 
connection:

 Figure 3-1: Power connection

5 Connect the EmbeddedICE interface to the target board using a14-
way IDC JTAG cable. (The actual location of the JTAG connection on 
the target board depends on the board you are using. Refer to the 
documentation that accompanied the board for details.)

6 Power up the EmbeddedICE interface. The red LED should light up.
7 You are now ready to run a debug session using the EmbeddedICE 

interface.

0V
ground

+7 to +9V
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Configuring the Debugger and EmbeddedICE Interface
4 Configuring the Debugger and EmbeddedICE Interface
The way in which the EmbeddedICE interface accesses your target hardware 
is controlled by the software image, or agent, in the built-in ROM. This 
software contains configuration files to allow the EmbeddedICE interface to 
talk to two ARM variants. These are: 

ARM7DI ARM7 core with debug extensions and 
EmbeddedICE macrocell (includes ARM7DMI)

ARM7TDI ARM7 core with Thumb and debug extensions and 
EmbeddedICE macrocell (includes ARM7TDMI).

When you start the EmbeddedICE interface, it automatically defaults to a 
particular configuration, according to which version of the agent is installed. 
This will normally be ARM7TDI.

You can change the current configuration easily from within the debugger. See 
4.1 Configuring armsd and 4.2 Configuring ADW/ADU for details.

Note Always ensure the selected configuration is correct. Otherwise, you may have 
problems when you try to run the image.

On ARM7DI, using the ARM7TDI configuration can lead to breakpoints not 
being hit. If you press ̂ C (using armsd) or the Stop button (using the ADW) to 
interrupt execution, you enter the undefined instruction trap.

On ARM7TDI, using the ARM7DI configuration can result in a blank execution 
window in the ADW.

If the following message is displayed, the wrong configuration may be being 
used and the EmbeddedICE interface has failed to synchronize with the 
target: 

Target processor not stopped

Note that this error can result from other causes. See 12 System Design 
Considerations.

You can usually ignore the following message if it is displayed when you start 
up the debugger (or reload an image):

Error during initialization: 
Recoverable error in RDI initialization

If you have problems with your current version, you are advised to contact your 
supplier and obtain the latest version of the agent. Refer to the website 
www.arm.com. At the time of writing version 2.07 is the latest version (as 
shipped with the SDT 2.11a and SDT 2.50).

Note Early EmbeddedICE interfaces were shipped with version 1.0x of the agent 
software. These communicated with the debugger using the Remote Debug 
Protocol (RDP), and these were compatible with programs that use Demon 
SWIs for semihosting (not Angel SWIs). See Application Note 39: Demon and 
RDP [ARM DAI 0039] for more details. The use of RDP is not supported in 
SDT v2.5, and therefore, if you are using 1.0x, you will need to upgrade the 
ROM to 2.0x. 
Application Note 31
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Configuring the Debugger and EmbeddedICE Interface
Using a replacement version of the agent

You can use a replacement version of the agent in either of the following ways:

• Program a new EPROM (AM27C010-120DC or equivalent) with this 
image, and replace the existing EPROM on the lower of the two circuit 
boards in the EmbeddedICE interface (taking care to reassemble the 
two boards correctly).

• Download the new image as the first thing you do during a debug 
session. This can be done from within the debugger using the 
loadagent command. See 4.1 Configuring armsd for details.
Note that the image must be reloaded whenever you cycle the power
or press the Reset button on the EmbeddedICE interface. 

Note If a new image is downloaded to the EmbeddedICE interface, any later 
debugger startup message will state that the ROM CRC has failed. This is 
because the downloaded image is CRC-checking against the ROM image 
whose checksum is usually different. This message can therefore be ignored.

4.1 Configuring armsd

Details of the options used for controlling the debugging of a remote target can 
be found in section 7.2.1 of the ARM Software Development Toolkit Reference 
Guide [ARM DUI 0041].

For example, to download the example executable to a little-endian target 
using the EmbeddedICE interface, the standard serial and parallel ports, and 
at the maximum linespeed supported by the EmbeddedICE interface, enter:

armsd -li -adp -port s,p -linespeed 38400 example 

where:

-li is the little-endian switch. Use -bi for big-endian.

-adp is the switch to select remote debugging using the Angel 
Debug Protocol.

-port s,p indicates that the standard serial and parallel ports are to 
be used.

-linespeed selects the required serial linespeed to use.

example is the filename.

Once in armsd, there are a number of commands that allow you to change the 
EmbeddedICE interface configuration and agent facilities, though these will 
not normally be required by most users. See section 7.8 of the ARM Software 
Development Toolkit Reference Guide [ARM DUI 0041] for more details.

4.2 Configuring ADW/ADU

For details of how to configure ADW/ADU to communicate with an 
EmbeddedICE interface, please see section 3.7.3 and 3.7.4 of the ARM 
Software Development Toolkit User Guide [ARM DUI 0040].
Named Partner Confidential - Preliminary Draft
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5 Watchpoints and Breakpoints
As with ARMulator, the ARM debuggers provide break, watch, unbreak, and 
unwatch facilities with EmbeddedICE linked targets. However, you should be 
aware of the following issues.

5.1 Watchpoints

All ARM debugger watchpoints are data-changed watchpoints, that is, they 
are not activated if the data point is read or written to with the same data value 
as the one currently in memory.

See 9 Accessing the EmbeddedICE Macrocell Directly for details of how 
to implement other forms of watchpoint.

Hardware versus software watchpoints

Hardware watchpoints are implemented using an EmbeddedICE macrocell 
point to spot data writes to addresses that fall inside a mask. This type of 
watchpoint is efficient because execution stops only when the relevant data is 
written. However, it completely ties up an EmbeddedICE macrocell point. Note 
also that if a structure or an array is being watchpointed, the mask is likely to 
include some addresses that are not part of the object being watchpointed. In 
this case, writes to these unwanted addresses are filtered out by the 
EmbeddedICE interface. Execution performance is slightly degraded because 
the processor is stopped when the unwanted watchpoint is hit, and then 
restarted automatically by the EmbeddedICE interface.

Software watchpoints make no use of the EmbeddedICE macrocell. Instead, 
after each instruction is executed, the data locations concerned are examined 
to see whether their values have changed. If a value has changed, execution 
is halted. Otherwise, execution is resumed. This type of watchpoint drastically 
reduces execution performance. In addition, it clearly cannot be used on write-
only areas of memory, such as some memory-mapped device registers.

5.2 Inspecting points

When you inspect the current breakpoints and watchpoints (using the watch 
or break commands without arguments within armsd, or by choosing 
Breakpoints or Watchpoints from the View menu within ADW/ADU), the 
output specifies whether they are hardware or software points.

Hardware versus software breakpoints

Hardware breakpoints are implemented using an EmbeddedICE macrocell 
point to spot an instruction fetch from the appropriate address. This works in 
all cases, even if the program being debugged modifies itself as it executes, 
or if the code is in ROM. However, it completely ties up one of the two available 
EmbeddedICE macrocell point units.

Software breakpoints are implemented using an EmbeddedICE macrocell 
point to spot an instruction fetch of a particular bit-pattern. This bit-pattern will 
have been previously stored at the appropriate location, and the real 
instruction stored in the host debugger memory. Therefore, self-modifying 
code, or code in ROM, cannot be debugged using this type of breakpoint. 
Application Note 31
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Watchpoints and Breakpoints
(EmbeddedICE will detect non writeable memory and not attempt to use 
software breakpoints for that region.) Any number of software breakpoints can 
be supported using a single EmbeddedICE macrocell point.

5.3 Watchpoints, breakpoints, and the program counter

Watchpoints are taken when the data being watchpointed has changed. When 
this happens, the program counter is updated to point to the instruction 
following the one that caused the watchpoint to be taken. The value of the 
watchpointed data is therefore the new value, not the old value.

Breakpoints are taken when the instruction being breakpointed reaches the 
execution stage of the pipeline, but before it is executed. So, when the 
breakpoint is taken, the program counter is not updated, and retains the 
address of the breakpointed instruction.

Note Inside the core of an ARM, the program counter typically points to two 
instructions beyond the currently executing instruction (historically, this is the 
address of the instruction currently being loaded into the fetch stage of the 
pipeline). However, the ARM debuggers simplify this by reporting a modified 
value for the program counter, so that when it is displayed within the 
debugger, its contents are the address of the instruction being (or about to be) 
executed.
Named Partner Confidential - Preliminary Draft
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6 Vector Breakpoints and Exceptions
When the debugger starts executing the target application, the EmbeddedICE 
interface puts into place any breakpoints specified by the debugger internal 
variable $vector_catch. (This means that when you start executing, user 
breakpoints and watchpoints may have to be downgraded from hardware 
ones to software ones without warning.) The $vector_catch variable is 
used to indicate whether or not execution should be trapped when various 
conditions arise. The default value is %RUsPDAifE, where capital letters 
indicate that the condition is to be intercepted.

This is useful if the application contains no specific handler for a particular 
exception.

On ARM9TDMI family devices, additional hardware in the core allows vector 
catching to take place without the need to set breakpoints. See the 
ARM9TDMI Technical Reference Manual for more details.

In normal usage, the SWI flag within $vector_catch remains lowercase, as 
finer control is provided by the debugger internal variables 
$semihosting_enabled and $semihosting_vector (see 7 
Semihosting for further details). Setting the s bit to $vector_catch will 
result in unpredictable behavior.

In the case of a system with no interrupt handler that has an active source of 
interrupts, set up the exception vectors to mask out all the interrupts by loading 
the instructions shown below.

Breakpoint Description

R Reset

U Undefined instruction

S SWI

P Prefetch abort

D Data abort

A Address exception

I IRQ

F FIQ

E Error (reserved for possible, future software fault detection)

 Table 6-1: Breakpoints
Application Note 31
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Vector Breakpoints and Exceptions
You can do this from the armsd prompt using the following commands. You do 
not need to type the text shown after the semicolon (;) because these are 
comments showing the instruction encoded in each hexadecimal value. 

0x18 = 0xe1a00000; NOP

0x1C = 0xe14fd000; MRS r13, spsr

0x20 = 0xe38dd0c0; ORR r13, r13, 0xC0

0x24 = 0xe169f00d; MSR spsr, r13

0x28 = 0xe25ef004; SUBS pc, lr, #4

You can simplify the above by placing the commands in an armsd.ini 
startup file. All the commands are then executed when armsd is invoked. For 
information on setting up an armsd startup file, refer to the ARM Software 
Development Toolkit Reference Guide [ARM DUI 0041].

If you are using ADW or ADU, choose Memory from the View menu, and then 
modify the contents of the appropriate addresses. Alternatively, invoke a script 
from the command window

There may be slight problems with applications that rely on interrupts 
occurring in real time. When doing any operation by way of EmbeddedICE, 
other than go (for example hitting a breakpoint), interrupts may occur during 
the operation, as going into debug state takes time. If this causes major 
problems, the workaround is to turn off interrupts (either patch the start-up 
code, or manually set the CPSR). Then, when you require an interrupt, use 
the debugger to enter the correct mode, set pc equal to vector address, and 
restart execution. 

6.1 $vector_catch with ROM at 0x0

In systems where there is ROM at address 0x0, care needs to be taken with 
the setting of $vector_catch. See 8 Debugging Applications in ROM for 
more details.
Named Partner Confidential - Preliminary Draft
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7 Semihosting
Semihosting is a mechanism whereby the ARM target communicates I/O 
requests made in the application code, such as those provided in the standard 
ANSI C library (printf(), scanf(), etc.) up to the host computer running 
the debugger, rather than having a screen/keyboard/disk on the target system 
itself.

On target boards containing Angel, this is implemented using a set of defined 
SWIs. Therefore, Angel installs a SWI handler when the board is powered up, 
and, when the target executes a SWI instruction, Angel carries out the 
required communication with the host.

When using the EmbeddedICE interface, semihosting is handled differently. It 
is implemented by faking the SWI handler that Angel would have installed on 
the SWI vector. The EmbeddedICE interface installs a breakpoint on the SWI 
vector, and, when this breakpoint is hit, checks to see what the SWI number 
was. If the SWI is recognized, the EmbeddedICE interface emulates it and 
transparently restarts execution of the application. If the SWI is not recognized 
as a semihosting SWI, the EmbeddedICE interface halts the processor and 
reports an error.

This semihosting mechanism can be disabled or changed by making use of 
the following debugger internal variables:

$semihosting_enabled
By default, this variable is set to 1 to enable semihosting. 
Setting it to 0 disables semihosting. This can be useful, for 
example, when debugging applications running from ROM. 
Disabling semihosting in such situations frees up another 
watchpoint unit. The s bit in $vector_catch should not be 
enabled as an alternative to $semihosting enabled.

$semihosting_vector
This variable controls the location of the breakpoint set by the 
EmbeddedICE interface to detect a semihosted SWI. It is set 
to 8 by default. Note that the EmbeddedICE interface will 
return directly to the instruction following the SWI instruction 
in your code after handling the semihosted SWI, completely 
bypassing the contents of the $semihosting_vector 
address. (This is done by examining the contents of lr.) 

Note that if this variable is set to zero, this does not imply 
address 0. Address 8 is used instead. However, all 
exceptions and interrupts would be trapped and reported as 
an error condition, no matter what the value of 
$vector_catch.

In ADW/ADU, both of these variables can be accessed by selecting Debugger 
Internals from the View menu or through the command line window.

Note When using Multi-ICE, an additional way of implementing semihosting is 
available. This uses the debug communications channel so that the core is not 
stopped while semihosting takes place. This is enabled by setting 
$semihosting_enabled to 2. Refer to the Multi-ICE User Guide [ARM DUI 
0048] for more details.
Application Note 31
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7.1 Adding an application SWI handler when using EmbeddedICE

In addition to using semihosted SWIs, many applications will also need to 
install their own SWI handlers into the vector table. This must be done in such 
a way that the application SWI handler will successfully cooperate with the 
EmbeddedICE semihosting mechanism. To do this, the application SWI 
handler must be installed into the vector table. Then, the 
$semihosting_vector must be modified to point to a location at the end of 
the application handler that is only reached if your handler does not recognize 
the SWI (or recognizes it as a semihosting SWI).

There are two vital points to note when doing this:

1 It is essential that the actual position within the application handler to 
which the $semihosting_vector points is correct.

2 At the point the EmbeddedICE interface traps the SWI, your own SWI 
handler must have restored all registers to their original values at the 
moment your SWI handler was entered. Typically, this means that 
your SWI handler should store the register to a stack on entry, and 
restore them before falling through to the semihosting vector address. 
If this is not done, semihosting will be final.

For example, a particular SWI handler may detect if it has failed to handle an 
SWI and branch to an error handler (see Exception Handling in the ARM 
Software Development Toolkit User Guide [ARM DUI 0040] for further details 
of writing SWI handlers):

; r0 = 1 if SWI handled

CMP r0, #1 ; Test if SWI has been handled.

BNE NoSuchSWI ; Call unknown SWI handler.

LDMFD sp!, {r0} ; Unstack SPSR...

MSR spsr, r0 ; ...and restore it.

LDMFD sp!, {r0-r12,pc}^ ; Restore registers and return.

This code could be modified for use in conjunction with EmbeddedICE 
interface semihosting as follows:

; r0 = 1 if SWI handled

CMP r0, #1 ; Test if SWI has been handled.

LDMFD sp!, {r0} ; Unstack SPSR...

MSR spsr, r0 ; ...and restore it.

LDMFD sp!, {r0-r12,lr} ; Restore registers.

MOVEQS pc, lr ; Return if SWI handled.

Semi_SWI

MOVS pc,lr ; Fall through to EmbeddedICE 
; interface handler.

The $semihosting_vector variable should then be set up to point to the 
address of Semi_SWI. Note that the instruction at this address never gets 
executed because the EmbeddedICE interface returns directly to the 
application after processing the semihosted SWI. However, using a normal 
SWI return instruction ensures that the application does not crash if the 
semihosting breakpoint is not set up. The semihosting action requested is not 
carried out, and the handler simply returns.
Named Partner Confidential - Preliminary Draft
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Semihosting
There is one slight complication if the application is linked with the semihosted 
ARM C library, and therefore uses the C library’s startup code. If 
$semihosting_vector is set to the fall through part of the application SWI 
handler before the application starts execution, the semihosted SWIs that are 
called by the library startup (for example, the SWI to get heap and stack 
information) triggers an unknown watchpoint error. 

This happens because at this point, the SWI vector has not yet had the 
application handler installed into it, and may still contain the software 
breakpoint bit pattern. This triggers a breakpoint that the EmbeddedICE 
interface no longer knows about because the $semihosting_vector 
address has moved to a place that cannot currently be reached. To prevent 
this from happening, change the contents of $semihosting_vector just 
before the application installs its own handler, typically by setting a breakpoint 
in the main code.

Note If semihosting is not required at all by an application, this process can be 
simplified. All that is needed is to set $semihosting_enabled to 0.

Care is therefore required when moving an application that previously ran in 
conjunction with Angel onto an EmbeddedICE-based system. On Angel-
based systems, application SWI handlers are typically added by moving (and 
adjusting) the contents of the SWI vector (as installed by Angel) to another 
place, and installing the application SWI handler into the SWI vector. Such a 
method will not work correctly under the EmbeddedICE interface because 
there is no instruction to move out of the SWI vector. So, when the application 
handler fails to handle a particular SWI, it will jump to a storage location and 
try to execute a completely random instruction that will typically be undefined. 
Therefore, when moving an application onto an EmbeddedICE-based system, 
it is essential to convert to the correct way of installing the application and 
semihosted SWI handlers 
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8 Debugging Applications in ROM
This section examines some of the issues involved with debugging 
applications in ROM using an EmbeddedICE interface (or Multi-ICE).

8.1 Debugging from reset

The EmbeddedICE interface can be used to debug systems running in ROM. 
Typically, when a target board with an application stored in ROM is powered 
up, the application begins running. Therefore, when the debugger is started 
up on the host, the processor on the target is stopped. At this stage, the 
application could be at any point in its execution lifetime, depending on when 
the debugger was started.

This means that the state of the system can be examined and execution can 
be restarted from the current place. In some cases, this may be sufficient to 
achieve what is required. However, in many cases, it is preferable to restart 
execution of the application as if from power-on. There are two ways of 
approaching this:

• by faking the reset
• by carrying out an actual reset of the target.

If you have set up a basic nTRST connection, as described in Basic nTRST 
connection in 12.3 Reset and JTAG signal connection, you may only fake 
the reset. If you have implemented additional use of nICERST as described in 
Separate control of nTRST and nRESET, you may choose either method.

When you debug code running from ROM, ensure that at least one watchpoint 
unit remains available to allow breakpoints to be set on code in ROM (as 
software breakpoints cannot be used). The chances of the debugger taking 
these units for its own use can be reduced by not using semihosting or vector 
catching. To do this, the following debugger internal variables should be set as 
soon as possible after starting up the debugger:

$semihosting_enabled = 0

$vector_catch = 0

Then, setup any ROM breakpoints before any non-ROM breakpoints or 
watchpoints are set. Otherwise, again, the watchpoint units may be fully 
occupied, causing the attempt to set the ROM breakpoint to fail:

Error: Too many breakpoints

Watchpoint units must then be freed (by deleting breakpoints / watchpoints) 
before the ROM breakpoints can be set.

Another complication with debugging a system in ROM is that the ROM image 
cannot contain any debug information. When debugging using the 
EmbeddedICE interface, symbol or source code information is available by 
loading the relevant information into the debugger from a file on the host. This 
is described in 8.2 Accessing debug information.
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Faking a reset

Typically, you can simulate a reset from within the debugger by setting:

PC to 0 address of the reset vector

CPSR to %IF_SVC32 to change into supervisor mode with 
interrupts disabled.

This simulates the state of the ARM at power on/reset, but it does not allow for 
a reset memory map or the initialization of any target-specific features (such 
as registers). It is therefore advisable to modify any such target-specific 
features to resemble their startup configuration before executing the 
application again, if this is possible. You can automate this procedure with the 
debugger’s scripting facility (the obey command or 
-script option).

Carrying out a real reset

Depending on the design of the reset circuitry, it may be possible to carry out 
a real reset of the board. However, care is required when doing this, because 
if the EmbeddedICE macrocell is also reset, the debugger becomes out of 
sync with the macrocell. Two forms of reset are required on the board:

• a full power-on reset that resets everything on the board
• a reset button that resets everything on the board except the 

EmbeddedICE macrocell.

See also 12 System Design Considerations.

Therefore, if a hardware breakpoint is set on the reset vector (or the address 
in ROM of the reset routine to which the reset vector branches), when the 
target is reset, the target will halt on reset as required. Note that the 
EmbeddedICE macrocell is not reset. This would cause the breakpoint to be 
lost.

Note It is advisable to delete all other software breakpoints/watchpoints before 
resetting, because although they may be deleted by the reset, the debugger 
will think they still exist. This can cause problems when you try to delete them 
after the reset.

Example: The ARM development board (PID7T)

The ARM development board also implements the required two levels of reset. 
In this case, the reset switch carries out the required initialization reset, 
thereby allowing debug from reset. All that is required in this case is to set the 
hardware breakpoint, and then press the Reset button.
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8.2 Accessing debug information 

In normal usage (with SDT 2.50 and later), armlink will produce an application 
image in ELF format. In order to program this into ROM/FLASH, this will need 
to be converted into a suitable binary format. This will usually be done using 
the fromelf tool.

The binary file can then be programmed into the ROM, and the debug 
information, from the ELF file, can be loaded into the debugger:

For armsd

Use one of the following:
armsd -symbols filename.axf

when invoking the debugger, or:
readsyms filename.axf

when armsd is running (where filename.axf is the ELF file produced by 
armlink).

For ADW/ADU

Choose Load symbols only from the File menu, and then select the ELF file 
corresponding to the image in the system ROM.

For more information, please see Writing Code for ROM in the ARM 
Software Development Toolkit User Guide [ARM DUI 0040].

8.3 Debugging systems with ROM at zero

When debugging ARM7-based systems with ROM at zero, rather than RAM, 
it is necessary to set $vector_catch to 0. This prevents the EmbeddedICE 
interface from trying to set software breakpoints on the vector table.

Note When debugging ARM9 family systems using Multi-ICE, this is not as 
important because they contain special vector catch hardware.
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9 Accessing the EmbeddedICE Macrocell Directly
No new debugger commands have been added to allow you to manipulate 
EmbeddedICE macrocell registers. Instead, you can use the commands that 
display and set coprocessor registers, with coprocessor number 0 specified. 
Coprocessor 0 is defined so that it is never implemented, and therefore cannot 
clash with user-developed or ARM-developed coprocessors.

For example, the armsd command cregisters 0 displays the contents of a 
number of registers that are, in fact, EmbeddedICE macrocell registers:

ARMSD: cregisters 0

c0 =       0x05

c1 =       0x09

c4 =       0x00

c5 = 0x00000000

c8 = 0x516ce8da

c9 = 0xbfdf0ea6

c10 = 0xbff6fd7d

c11 = 0xfbaffbff

c12 =     0x0000

c13 =       0xff

c16 = 0x00000008

c17 = 0x00000003

c18 = 0x7dfeeffb

c19 = 0xffffffff

c20 =     0x0100

c21 =       0xf6

To access the coprocessor 0 registers using ADW, choose Registers from the 
View menu, and then display the Coprocessor dialog box. Enter 0 for the 
coprocessor number and check the Raw (unformatted) display option.

The correspondence between coprocessor 0 registers displayed and 
EmbeddedICE macrocell registers is as follows: the register address 
field in the EmbeddedICE macrocell scan chain is the register number. For 
more information about the EmbeddedICE macrocell, refer to one of the ARM 
data sheets on an ARM core with debug capabilities (for example, ARM7DI or 
ARM7TDMI).

You may read EmbeddedICE macrocell registers freely in this manner, but 
writing them requires more care. This is because EmbeddedICE also makes 
use of EmbeddedICE macrocell registers to set up breakpoints and 
watchpoints. When you write to an EmbeddedICE macrocell register (for 
example, using the armsd command cwrite 0 20 0x44), EmbeddedICE 
checks to see if the breakpoint (of which that register is a part) is in use. If it 
is, EmbeddedICE attempts to free it (by degrading hardware breakpoints to 
software breakpoints), and then sets a lock on the breakpoint so that 
EmbeddedICE makes no further attempt to use it.
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It is possible to see which breakpoints have been locked in this way by 
displaying the value of $icebreaker_lockedpoints. This debugger 
internal variable can also be set to unlock breakpoints. In the ARM7DI and 
ARM7TDI, the breakpoints are numbered 1 and 2, and bits 1 and 2 in 
$icebreaker_lockedpoints indicate their status.

If a breakpoint or watchpoint that has been set up in this way gets taken, 
EmbeddedICE will not know why execution has stopped (because it was not 
due to one of the break/watch points it is aware of), and will therefore halt 
debuggee execution with the report Unknown watchpoint.

Note that a debugger hardware watchpoint should not be used in combination 
with a user-programmed EmbeddedICE watchpoint unit, because 
EmbeddedICE will not halt execution due to the user-programmed point. In 
practice, this is unlikely to cause any problems because the EmbeddedICE 
macrocell has only two watchpoints, and you can also program the second 
watchpoint directly.

Take care when writing EmbeddedICE macrocell registers 0 and 1, the control 
and status registers. EmbeddedICE uses these to perform many of its 
operations. If they are written at all, they should always be returned to their 
original values afterwards.

Note also that debugger requests to read or write EmbeddedICE macrocell 
registers do not necessarily cause the registers to be read or written 
immediately. This is because, in the interests of efficiency, the EmbeddedICE 
software caches the contents of the EmbeddedICE macrocell registers, only 
updating changed registers before execution of the debuggee is resumed.
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10 Timer Accuracy
When using the EmbeddedICE interface, or Multi-ICE, the standard ANSI 
clock() function can be inaccurate.

There are two reasons for this:

• The implementation of the Angel SWI SWI_CLOCK (called by the 
standard ANSI clock()routine) in the EmbeddedICE agent 
software, and in Multi-ICE, has a resolution of one second rather than 
one centisecond, despite the fact that the value of CLK_TCK (that 
gives the number of clock ticks per second) is 100.

• Currently, neither the EmbeddedICE agent nor Multi-ICE produces 
the timing figure itself, but instead, sends a request back to the host 
for it. This means that the figure returned is larger than it actually 
should be, because it includes the time it takes for the EmbeddedICE 
interface to send a request to the host and get the time back.

Combined, these two issues render inaccurate any benchmarks (such as 
Dhrystone) run on EmbeddedICE-based systems. Extreme care is therefore 
needed in such cases. This can also help to run benchmarks over a very large 
number of iterations to minimize the overall affect of the inaccuracies. If the 
application is modified to use a clock routine that takes its values from a timer 
routine running on the board itself, more reliable figures can be generated. 
The example suite provided with the ARM development board (PID7T) 
contains a conversion of Dhrystone, so that the timer figures are produced 
from the onboard timer interrupts. This can also be downloaded from the ARM 
website.
Application Note 31
ARM DAI 0031C

21

Open Access



Target Board Memory Layout
11 Target Board Memory Layout 
The debugger variable $top_of_memory is read by the EmbeddedICE 
interface to give the top of the read-write memory, and the value of this is 
returned by the Angel heap_info SWI that is used by the C library for 
initialization. 

The default value for $top_of_memory is 512KB, which is correct for the 
ARM development board (PID7T) without expansion RAM. If you have 
expanded RAM, or are using a different board with more or less RAM, set 
$top_of_memory to the correct value before you run the application.

The mechanism places the application heap above the application program, 
and places the application stack at the top of memory. It also requires that 
memory is contiguous from the end of the application to the top of memory.

If this is not the case, it is possible to define the following symbols in the 
application to override this mechanism, and set up the application heap and 
stack precisely:

__heap_base,__heap_limit,__stack_base,__stack_limit.

For example, in ARM Assembler:
EXPORT __heap_base

__heap_base DCD my_heapbase_value

11.1 Privileged modes and stack pointers

It should be noted that the EmbeddedICE interface itself does not set up any 
stack pointers. Therefore, if you have linked with the full semihosted ANCI C 
library, you will have a stack pointer for the current mode setup (as described 
in 11 Target Board Memory Layout). However, you will not have stack 
pointers set up for the other modes. This contrasts when an application is run 
under ARMulator or Angel where the stacks are set up for you.

You must therefore ensure that your application start up code sets up the stack 
pointers for any other modes that may be entered, for instance, as a result of 
exceptions taking place.

If you are not linking with the full semihosted ANSI C library, not even the 
current mode stack pointer will be set up.

For more details, see Writing Code for ROM in the ARM Software 
Development Toolkit Version 2.50 User Guide [ARM DUI 0040D].
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12 System Design Considerations
This section examines some of the issues involved with designing systems 
which are to be debugged using an EmbeddedICE interface.

12.1 Memory Access Requirements

Background Information

The EmbeddedICE macrocell inside the target device contains two watchpoint 
units, each of which is capable of being programmed as either a breakpoint or 
watchpoint. This section describes how breakpoints are set in memory.

If you set a breakpoint in ROM, this will take up one of the breakpoint units in 
the EmbeddedICE macrocell. The address in ROM of the instruction to be 
breakpointed is programmed into the address value register of the macrocell 
by the EmbeddedICE interface. This macrocell unit will then halt instruction 
execution when the instruction at that address is fetched from ROM and 
reaches the execute stage of the instruction pipeline.

The process for instructions in RAM is more complex, but more powerful. 
Rather than use up one macrocell breakpoint unit for each address you want 
to set breakpoints on in RAM (as is the case for breakpoints in ROM), the 
instruction in RAM is overwritten by an unused bit pattern by the 
EmbeddedICE interface, and the overwritten value is stored away in the host 
debug platform for later replacing the unused pattern when the breakpoint is 
reached or deleted. Any number of breakpoints can be set in RAM using the 
one breakpoint unit because the same pattern is searched for all the time.

This makes the EmbeddedICE approach to debugging very powerful, and 
does not use up any target resources because the debugger memory is used 
as temporary storage of the overwritten instructions.

When an ARM instruction is breakpointed in memory, the pattern used is 
0xdeeedeee, an unused bit pattern in the ARM instruction set. If you want to 
set breakpoints on Thumb instructions (16-bit instructions), the pattern used 
is 0xdeee, an unused bit pattern in the Thumb instruction set. 

Design Requirement

As virtually any ARM system is capable of word memory accesses, the setting 
of ARM instruction breakpoints causes no problem. However, the 16-bit read/
write operation required for Thumb instructions in RAM is actually performed 
using two-byte accesses, rather than a single half-word access. Therefore, 
your memory system has to be capable of both word and byte accesses, even 
if byte-wide memory is not available in your system.

Note This is advisable for other reasons too. Byte access is an integral part of the 
ARM architecture, and the ARM tools will always assume that such accesses 
are possible, for example, for manipulation of packed structures, accessing 
character strings, and for debugger access to memory.

Note Multi-ICE release version 1.3 (and later) will use halfword instructions to set 
Thumb software breakpoints, although allowing byte access is still strongly 
recommended.
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12.2 Connecting to an ARM target board

This section describes the physical connection between the EmbeddedICE 
interface and an ARM target Board. 

Note If using Multi-ICE, refer to the Multi-ICE User Guide [ARM DUI 0048] for 
connector details.

EmbeddedICE interface connector pinout

The interface connector on the target board (shown below) is a 14-way box 
header as shown in Figure 12-1: EmbeddedICE interface connector PL1 
(viewed from above).
This plug is connected to the EmbeddedICE interface module using a short 
14-way IDC cable with IDC sockets at each end.

 Figure 12-1: EmbeddedICE interface connector PL1 (viewed from
above)

SPU nTRST TDI TMS TCK TDO SPU

VSS VSS VSS VSS VSS nICERST VSS

1 3 5 7 9 11 13

2 4 6 8 10 12 14
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Table 12-1: EmbeddedICE interface connector PL1 summarizes the 
functions of the connector pins.

The functions of these signals are mainly self-evident, but there are a few 
which have special functions.

TDI, TDO, TMS, TCK and nTRST are the standard 5-wire JTAG interface 
signals.

nICERST is an unsupported function in the EmbeddedICE interface, which is 
intended to allow the target system to be reset from the debugger. Designers 
should include this signal, if possible, in any reset circuitry because other 
protocol convertors (for instance, Multi-ICE) can make use of this facility.

SPU is used by EmbeddedICE to monitor the target systems positive supply 
to ensure that the JTAG lines are driven and received by target-compatible 
logic.

Pin Name Function

1 SPU System powered up, pin connected to Vdd through a 33 
ohm resistor

3 nTRST Test reset, active low

5 TDI Test data in

7 TMS Test mode select

9 TCK Test clock

11 TDO Test data out

12 nICERST Target System Reset (sometimes referred to nSYSRST 
or nRSTOUT)

13 SPU System powered up, pin connected to Vdd through a 33 
ohm resistor

2, 4, 6, 8, 
10, 14

VSS System ground reference (All VSS pins should be con-
nected to minimize noise pickup)

 Table 12-1: EmbeddedICE interface connector PL1
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EmbeddedICE interface driver/receiver circuitry

The actual driving/receiving circuitry inside the EmbeddedICE interface is 
detailed below to allow selection of suitable interface cells.

• Outputs from the EmbeddedICE interface
The JTAG outputs (TDI, TMS, TCK and nTRST) are driven from
74HC14 Schmitt Trigger Inverter devices by way of 47-ohm serial
resistors. The 74HC14 device is powered from a supply derived from
the SPU signal from the target system to ensure that the drivers are
voltage-compatible with the target system.

 Figure 12-2: EmbeddedICE interface output circuitry

• Inputs to the EmbeddedICE interface
The JTAG input (TDO) is terminated by a 47-ohm serial resistor,
followed by a 10-kohm parallel, pull down resistor. This terminated
input is fed into another 74HC14 device, again powered from the SPU
signal to ensure voltage-level compatibility.

 Figure 12-3: EmbeddedICE interface input circuitry
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12.3 Reset and JTAG signal connection

When you design a target system, it is important to consider the connection of 
the JTAG and reset signals. The different approaches that may be used are 
described here.

nRESET is used to reset the processor core and put it into a known state, 
while nTRST is used to reset the TAP controller and the EmbeddedICE 
macrocell, including the registers in the breakpoint/watchpoint units. Both 
these resets must be applied before the device will function correctly.

The system must be designed so that it operates correctly, whether or not the 
EmbeddedICE interface is connected. It must also allow the EmbeddedICE 
interface to reset the JTAG TAP and, in some cases, the system itself.

The following sections describe two different approaches to the generation of 
the nTRST signal. The first approach is the simplest and provides a basic 
reset scheme, whereas the second approach is more sophisticated and allows 
a greater level of control by the debugger.

Basic nTRST connection

As the system must function correctly when the EmbeddedICE interface is not 
connected, the following must occur before the system can operate:

• nRESET must be held LOW for a number of clock cycles, before 
going HIGH and allowing the processor out of reset (see the relevant 
processor data sheet for details)

• nTRST must be held LOW to ensure the TAP is reset, and this can be 
done in either of the following ways:
- by tying nTRST permanently LOW
- by holding nTRST LOW, before going HIGH.

However, if nTRST is permanently tied LOW, debugging by way of the JTAG 
port cannot occur, so nTRST must be pulsed LOW. The simplest way to 
provide this is for nTRST to be connected directly to nRESET.

 Figure 12-4: Basic nTRST connection
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The EmbeddedICE interface is still able to reset the TAP because it is possible 
to reset the TAP using only a combination of the TCK and TMS signals.

The disadvantage of this approach is that it is not possible to set a breakpoint 
on the processor exiting from reset. This is because the TAP is always held in 
reset when the processor is in reset, and the breakpoint registers cannot be 
programmed while the TAP is in this state.

Separate control of nTRST and nRESET

In some situations, it is desirable to be able set a breakpoint on the reset 
vector, so that the target system is stopped when the processor is exiting from 
reset.

However, to do this, the breakpoint registers must be programmed prior to the 
processor exiting from reset, and therefore, it is necessary to have separate 
control of the nTRST and the nRESET signals.

Figure 12-5: nTRST and nRESET connection shows a suggested 
connection method. The reset control logic, which may be a simple PLD, is 
used to drive the resets, such that nTRST is pulsed LOW at initial power-up 
only, and nRESET is pulsed LOW both at power-up and whenever any other 
form of reset is asserted.

 Figure 12-5: nTRST and nRESET connection

This allows the user to set a reset breakpoint by setting a breakpoint on 
address 0, and then pressing the Reset button. If the basic scheme has been 
used, as described in Basic nTRST connection, pressing the Reset button 
also resets the breakpoint registers.

The EmbeddedICE connector also includes an nICERST signal that is 
asserted by the EmbeddedICE unit when it wishes to reset the target system, 
as shown in Figure 12-6: nTRST, nRESET and nICERST connection.
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 Figure 12-6: nTRST, nRESET and nICERST connection

Note • In some EmbeddedICE documentation, the nICERST signal is called 
nSYSRST.

• The ability to reset the target system from the debugger is not 
possible when using an EmbeddedICE interface. However, it is 
possible in a suitably designed target system when using Multi-ICE. 
See the Multi-ICE User Guide [ARM DUI 0048] for details.

12.4 Other points to note

When the debugger starts up, it tries to stop the ARM core by programming 
the EmbeddedICE macrocell (through scan chain 2) to assert DBGRQ. There 
are a number of possible reasons why this might not succeed, and the 
debugger may report Target Processor not stopped, or behave 
erratically during a debug session.

1 DBGEN must be tied high for the core to be able to enter the debug 
state.

2 The debugger must be configured to use the correct processor. By 
default, the EmbeddedICE interface will assume an ARM7TDI (as 
opposed to an ARM7DI).

3 The clock to the core (MCLK) must be running (without infinite wait 
states).

4 The ARM must be a granted bus master.
5 MCLK must be greater than 100KHz when using an EmbeddedICE 

interface.
6 The core and macrocell must have been correctly reset (as previously 

detailed).
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