
Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved.

Application Note
The ARMulator

Document number: ARM DAI 0032E

Issued: August 2001

Copyright ARM Limited 2001

32

Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved.

Application Note 32
Title

Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved.

Release information

The following changes have been made to this Application Note.

Change history

Date Issue Change

Aug 1996 A First release

Aug 1996 B Changes to remove references to integration with hardware modeling environments.

Jan 1998 C Changes to incorporate new models introduced in SDT version 2.10 and 2.11

April 1999 D Changes to reflect SDT 2.50.

August 2001 E Changes to reflect ADS 1.1.

Proprietary notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM
Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE,
ARM7TDMI, ARM9TDMI, TDMI and STRONG are trademarks of ARM Limited.

All other products, or services, mentioned herein may be trademarks of their respective
owners

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to
errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for addtions and improvements are also welcome.

ARM web address

http://www.arm.com

Contents

Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved.

Table of Contents

1 Introduction ..4

2 The Structure of the ARMulator..5
2.1 The ARM processor core model ...6
2.2 The memory system..6
2.3 The coprocessor interface ..6
2.4 The operating system interface...7

3 Modeling Systems Using the ARMulator ...8
3.1 Modifying ARMulator ...8
3.2 Generating exceptions ..11
3.3 Event scheduling ...11

4 Example: Parallel Port Model ..14
4.1 Creating the peripheral model...14
4.2 Explanation..17
4.3 Writing ARM application code...18
4.4 Running the application...19

5 Example: Exception Generator Memory Model...20
5.1 Creating and modifying the files..20
5.2 Writing code to access the memory locations...20
5.3 Writing ARM application code...24
5.4 Running the application...25

6 Example: Coprocessor Model...27
6.1 Creating the files ...27
6.2 Editing files ..31
6.3 Writing application files ...31
6.4 Running the code ..33

7 Debugging ARMulator models in Visual C++ ..34
7.1 Creating a project..34
7.2 Adding files..34
7.3 Configure settings ...34
7.4 Compile the module ..35
7.5 Ensure .dsc and .ami configuration files have been properly configured..........35
7.6 Set breakpoints ...35
7.7 Launch debugger ..35

8 Calling a Peripheral Every Cycle ..36

9 Appendix A – Known changes required for ADS 1.2 ..40

Introduction

4 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

1 Introduction

The ARMulator is a family of programs which emulate the instruction sets of various ARM
processors and their supporting architectures.

The ARMulator:

• provides an environment for the development of ARM-targeted software on a
range of non-ARM-based host systems

• allows accurate benchmarking of ARM-targeted software (though its performance
is somewhat slow compared to real hardware)

• supports the simulation of prototype ARM-based systems, ahead of the availability
of real hardware, so that software and hardware development can proceed in
parallel.

The ARMulator is transparently connected to the ARM debuggers to provide a hardware-
independent ARM software development environment. Communication takes place via
the Remote Debug Interface (RDI).

For full details, refer to:

• Debug Target Guide (ARM DUI 0058C)

Note This Application Note is designed for ARM Developer Suite 1.1. For information
on extending the ARMulator for SDT or ADS 1.0 please see the previous revisions of
AppsNote 32.

This document will apply to ADS 1.2 but the documentation reference numbers are likely
to change. Please see Appendix A for known changes required for version 1.2.

The Structure of the ARMulator

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 5
ARM DAI 0032E

2 The Structure of the ARMulator

The ARMulator comprises several parts:

• A model of the ARM processor core and cache (if used)

• A base memory model (armflat) incorporating address decoding. This causes the
relevant peripheral model to be accessed when memory within its registered
range is addressed.

• Peripheral models that communicate with the base memory model and may be
enabled or disabled via configuration files.

• An operating system interface to provide an execution environment.

By modifying or rewriting the supplied models, you can model almost any ARM system
and use it to debug code. The following diagram illustrates this structure1.

Peripherals are registered by calling the functions ARMulif_ReadBusRange and
bus_registerPeripFunc during model initialisation. This is explained fully with an
example in section 4.2 Explanation (Parallel Port Model). Address settings may either
be hard-coded or loaded in from a configuration (.ami or .dsc) file prior to registration.
The user provides

• A base address at which the peripheral is located

• The number of bytes which are covered by the peripheral model.

It is possible to have gaps within this range which are not decoded by a peripheral.

In the diagram above, ARMULATE.SDI represents the main ARMulator component. Below
this resides a model of the core being emulated along with any cache if it has been
configured. At the lowest level is a flat memory model (with the full 32 bit, 4GB range
accessible2) and the peripheral decoder. The decoder and flat memory model are integral
to the ARMulator and cannot be modified. However, this is not the case in ADS 1.2.
Please see section Appendix A for details.

1 Note that this structure has changed in ADS 1.2. See Appendix A for details.
2 There is a known bug in ADS 1.1 whereby addresses lying between 2GB and 4GB may
not be read from a configuration file. This has been fixed in ADS 1.2.

ARMULATE.SDI

ARM7 & ARM9 core model

(+ Cache)

Armflat + Decoder

ARM10

(+ Cache)

Flat10 + Decoder

Peripheral

Models

Interrupt

Controller
Timer Others

The Structure of the ARMulator

6 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

2.1 The ARM processor core model
The ARM processor core model handles all communication with the debugger. This part
of the ARMulator is not customizable.

2.2 The memory system
The memory interface transfers data between the ARM model and the memory model or
memory management unit model.

The memory model is fully customizable. Sample implementations are provided with the
ARMulator. You can define features such as models of peripheral registers, memory
mapped I/O, trigger regions for external interrupts, DMA models and so on, by modifying
the memory model.

The default memory model is 4Gb of zero-wait state RAM. The default memory model is
used if you do not specify a mapfile in AXD, ADU, or ADW.

Mapfile (in mapfile.c) is a memory model which you can configure yourself. You can
specify the size, access width, access type and access speeds of individual memory
blocks in the memory system in a memory map file.

Please refer to the Debug Target Guide (ARM DUI 0058C) sections 2.6 and 2.7 for more
information.

You may add additional functions between the BEGIN_INIT … END_INIT macros in your
memory model to perform any startup time initialization of your memory system
extensions. Similarly, you may add additional functions between the BEGIN_EXIT and
END_EXIT macros to free up any dynamically allocated memory.

A structure providing access to the state of the memory system model is declared using
the BEGIN_STATE_DECL and END_STATE_DECL macros. You may add private data used by
your model between the two macros.

Please refer to the Debug Target Guide (ARM DUI 0058C) section 3.2.3 for more
information.

2.2.1 Simple memory modeling

For modeling memory systems with different RAM types and access speeds, the standard
ARMulator model supports memory map files. You can also use your own memory
models to support map files by using mapfile.c as a template.

The map file defines areas within, and access speeds to, the emulated memory accessed
by the emulated ARM. This is used to assist in calculating the performance of the ARM at
the given clock speed with the given memory map. It does not control how the emulated
memory relates to the host’s real memory.

The use of map files is explained in detail in the Debug Target Guide (ARM DUI 0058C),
section 4.13, “Map files”.

2.3 The coprocessor interface
The coprocessor model is called whenever the ARM executes a coprocessor instruction.
The model can be used to simulate attached ARM-style coprocessors (such as floating
point accelerators or custom DSPs).

The supplied coprocessor model (dcc.c) provides a model of a debug communications
coprocessor. This model is fully customizable and models of other coprocessors can be
added easily. The process for adding a coprocessor model is described in 3.1.3 Adding
a coprocessor model.

The Structure of the ARMulator

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 7
ARM DAI 0032E

2.4 The operating system interface
The operating system model is called whenever the ARM executes a SWI instruction, so
you can simulate the operating system (or debug monitor) in C without having to write any
ARM code.

The semihosting nature of the ANSI C library means that many of the C functions, such as
file I/O, are implemented on the host computer, via the host’s C library. These host
services are accessed using SWI calls to the debug monitor (see Chapter 5 in the Debug
Target Guide ARM DUI 0058C).

The operating system model directly implements some operating system calls (such as
open file, read the clock and so on) on the debugger host. These calls form the basis for
the library calls (for example, fopen() and time()) provided by the ANSI C library.

This part of the ARMulator is also fully customizable. You can add extra SWIs to provide
more host system functionality to the user. SWIs that are not handled by this model take
the SWI trap and can be handled by ARM SWI handler code running on the ARMulator.

If you have an embedded system where SWIs are not used, you can remove the
operating system entirely.

Refer to the Debug Target Guide (ARM DUI 0058C) for a full description of the Application
Programming Interface (API) between the ARM debugger and the memory model,
coprocessor model and operating system.

Modeling Systems Using the ARMulator

8 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

3 Modeling Systems Using the ARMulator

You can make a model of almost any ARM system by modifying or rewriting the
ARMulator default models. Before you can use a new model, you need to rebuild it as
explained below.

3.1 Modifying ARMulator
Depending on your needs, there are a number of approaches that you can take to modify
the ARMulator memory system.

There are three main types of model which may be implemented:

• Memory or Peripheral model

• An entirely new memory model may be derived from armmap.c. This model
may therefore make use of memory timing specifications taken from a
supplied map file.

• A peripheral or other memory-mapped device can be assigned an address
range within the 4GB address space of the ARM core. Such devices are
loaded after the ARMulator core and requests within a peripherals range are
redirected to the appropriate module. It is possible to model a complete
memory system by mapping a model to the full address space.

• Coprocessor model

• Each coprocessor may be assigned to one of the 16 coprocessor numbers.
This enables the basic instruction set to be expanded, to perform floating
point operations for example.

• Operating System Interface model

• Input/output requests may be communicated from application code to a host
computer running a debugger. This is achieved by defining Software Interrupt
(SWI) handlers to respond from SWIs generated by your application.

Refer to the Debug Target Guide (ARM DUI 0058C), Chapter 3, Writing ARMulator
models, for details of how to build a model.

3.1.1 Editing a copy of existing files

The simplest arrangement is to make a working copy of the rebuild kit and take copies of
the files for the example model which most closely matches your intended design. For a
complete listing of the example modules refer to the Debug Target Guide (ARM DUI
0058C), 3.1.1 Supplied Models.

The model contained in nothing.c performs no useful operations but can be used to
disable unused ARMulator models in a configuration file. It is also a useful template for
building models from scratch. Refer to the Debug Target Guide (ARM DUI 0058C), 3.5
Configuring ARMulator to disable a model.

Modeling Systems Using the ARMulator

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 9
ARM DAI 0032E

3.1.2 Adding a memory or peripheral model

Unlike previous versions, the ARMulator supplied with ADS 1.1 does not need to be
recompiled whenever a new model is added. Each model is contained within a
standalone library and may be loaded by adding an entry to one or more configuration files
as explained below.

The procedure is as follows:

• Create new models.

• Copy an existing makefile directory for use with the new model.

• Create a .dsc file.

• Make changes to default.ami and peripherals.ami.

• Build the new model.

• Copy the resulting library into the correct directory.

The details are given on the following pages.

To add a new model to ARMulator

1 If you have not already done so, make a working copy of the rebuild kit. Make
your changes to the working copy, not the original files.

2 Place new sources for your memory or peripheral model in the source directory
(install_path\ARMulate\armulext).

3 Create a new copy of one of the directories named <MODEL_NAME>.b in the source
directory and rename it to reflect your model name (assumed to be MyModel).

4 Edit the Makefile inside the new directory’s IntelRel subdirectory, replacing all
occurrences of <MODEL_NAME> with your new model name, MyModel.

5 Change your current directory to
install_path\ARMulate\armulext\MyModel.b\intelrel

6 Depending on your system: For Windows, type: nmake For UNIX, type: make

7 On Windows, mymodel.dll appears in:
install_path\ARMulate\armulext\MyModel.b\intelrel. Move mymodel.dll
to: install_path\bin. This is where ARMulator expects to find models.

To run ARMulator with the new memory model

ARMulator determines which models to use by reading the .ami and .dsc configuration
files. Before a new model can be used by ARMulator, you must add a .dsc file for your
model, and references to it must be added to the configuration files default.ami and
peripherals.ami.

Create a file called MyModel.dsc and place it in install_path\bin. It must contain the
following:

Modeling Systems Using the ARMulator

10 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

;; ARMulator configuration file type 3
{ Peripherals

{ MyModel
META_SORDI_DLL=MyModel

}
{
No_MyModel=Nothing
}

}

Load the default.ami file into a text editor and find the following lines:
{Tracer=Default_Tracer
}

Add the reference to your model:
{Tracer=Default_Tracer
}

{MyModel=Default_MyModel
}

Save your edited default.ami file.

Load the peripherals.ami file into a text editor and find the Tracer section:

{ Default_Tracer=Tracer
;; Output options - can be plaintext to file, binary to file or to RDI
log
;; window. (Checked in the order RDILog, File, BinFile.)
.
.
.
;; Flags - disassemble instructions; start up with tracing enabled;
Disassemble=True
StartOn=False
}

Using this as an example, add a configuration section for your model. User-editable
settings are typically stored in an .ami file. ARMulator will load any .ami or .dsc files
located in the path given by the ARMCONF environment variable. Refer to the Debug Target
Guide (ARM DUI 0058C), 4.15.2 File format for details of how to construct configuration
files.

Save your edited peripherals.ami file.

Modeling Systems Using the ARMulator

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 11
ARM DAI 0032E

3.1.3 Adding a coprocessor model

You may add extra coprocessor models by using the same procedure as described in the
previous section. MyModel is replaced with the name of the coprocessor model.
Coprocessor models differ from the above in the callbacks which are supported and the
way in which they register themselves with the ARMulator. An example coprocessor
model is presented in section 6.

3.2 Generating exceptions
When modeling a target system for code development, it is often necessary to be able to
generate exceptions, such as IRQ, FIQ and data aborts. This section deals with the
immediate generation of exceptions. The next section describes a means of scheduling
the generation of events, such as exceptions, some number of cycles into the future.

3.2.1 IRQ

Provided that the CPSR I bit (bit 7) is 0, an IRQ may be generated by calling the function
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_IRQ, TRUE);

This function asserts the emulated interrupt line (sets it to logic 0). It must be de-asserted
after the processor has taken the IRQ exception.

The preferred method of clearing interrupt sources is for the interrupt handler to cause the
interrupt source to be cleared. (See section 4 Example: Parallel Port Model).

3.2.2 FIQ

Provided that the CPSR F bit (bit 6) is 0, an FIQ may be generated by calling the function
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_FIQ, TRUE);

This function asserts the emulated fast interrupt line (sets it to logic 0). It must be de-
asserted after the processor has taken the IRQ exception.

The preferred method of clearing interrupt sources is for the interrupt handler to cause the
interrupt source to be cleared. (See section 4 Example: Parallel Port Model).

3.2.3 Abort

To generate a data abort, the model must return PERIP_DABORT.

3.3 Event scheduling
When modeling peripherals, you may need the ARMulator to simulate the occurrence of
external events which occur at a specific time or at some number of cycles into the future.
ARMulator has the following routines to assist with the scheduling of such events:
ARMulif_Time
ARMulif_ScheduleNewTimedCallback
ARMulif_ScheduleTimedFunction
ARMulif_DescheduleTimedFunction

These are explained below. Note that as with all ARMulator functions, an
RDI_ModuleDesc parameter is passed, allowing multiple instances of the peripheral, each
with a different state.

3.3.1 ARMulif_Time
ARMTime ARMulif_Time(RDI_ModuleDesc *mdesc)

This returns the number of clock ticks executed since system reset. You may wish to use
this value for your own event scheduler.

Modeling Systems Using the ARMulator

12 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

3.3.2 ARMulif_ScheduleNewTimedCallback
void *ARMulif_ScheduleNewTimedCallback(
 RDI_ModuleDesc *mdesc, ARMul_TimedCallBackProc *func,
 void *handle, ARMTime when, ARMTime period);

This allows a function to be called a number of cycles in the future, where:

func is the function to be called

when is the cycle count at which the event should occur. This can be based upon the
current cycle obtained using ARMulif_Time.

period This parameter is reserved for future use and should always be zero.

3.3.3 ARMulif_ScheduleTimedFunction

void *ARMulif_ScheduleTimedFunction(RDI_ModuleDesc *mdesc,
ARMul_TimedCallback *tcb);

where:

mdesc is the handle for the core.

tcb is the handle for you to use if you want to deschedule the function.

3.3.4 ARMulif_DescheduleTimedFunction
unsigned ARMulif_DescheduleTimedFunction(RDI_ModuleDesc *mdesc,
 void *tcb);

where:

mdesc is the handle for the core.

tcb is the handle supplied by ARMulif_ScheduleTimedFunction when the event was
first set up.

NOTE: If you reset an interrupt line to 0 to cause an interrupt, then you must also set it to
1 again, otherwise interrupts will not stop. See 4 Example: Parallel Port Model.

You may use ARMulif_ScheduleNewTimedCallback or
ARMulif_ScheduleTimedFunction to call your own functions, provided that they match
the prototype given in simplelinks.h:
typedef void (ARMul_TimedCallBackProc)(void *handle);

For example, you may schedule an event for MyFunction in the same way as for DoAIRQ
or DoAFIQ. In the example below, the function MyFunction reschedules a call to itself in
500 cycles. It assumes that a state structure has previously been declared using the
BEGIN_STATE_DECL(MyModule) which declares a structure MyModuleState.

extern void MyFunction(void *handle)
{

ARMTime Now, delay, nextEventTime;

MyModuleState state = (MyModuleState)handle;
Hostif_ConsolePrint(state->hostif, "MyFunction\n");

Now = ARMulif_Time(&state->coredesc);

Modeling Systems Using the ARMulator

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 13
ARM DAI 0032E

delay = 500;
nextEventTime = Now + delay;

ARMulif_ScheduleNewTimedCallback(&state->coredesc, MyFunction,
state, nextEventTime, 0);
/* Call this function again in 500 cycles by re-scheduling the
event that calls it */

}

If more than one event is scheduled for a given time, the callbacks are stacked. When
the specified clock cycle occurs then the callbacks are executed in reverse order of being
called.

Example: Parallel Port Model

14 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

4 Example: Parallel Port Model

You can model the behavior of target hardware by making modifications to a copy of the
ARMulator source code provided from the rebuild area of the ARM Developer suite. This
section describes how to emulate an example of a parallel port peripheral that causes an
interrupt to occur and them places a character into a memory location from a text file (in
effect, a model of data being received into a parallel port memory location).

The ARM debuggers do have a mechanism for generating IRQ or FIQ interrupts via the
$irq and $fiq internal variables. A target can export these variables to provide a means
of asserting an interrupt request pin. See the Debuggers Guide (ARM DUI 066C), page 5-
67 for details.

You can also model external interrupts using one of the scheduling functions which calls
another function a number of clock ticks in the future. (See 3.5 Event Scheduling). This
example uses the ARMulif_ScheduleNewTimedCallback function to call another function
at 20,000 clock ticks in the future, which raises an IRQ exception. The function
ARMulif_ScheduleNewTimedCallback is activated when the application program
accesses a particular memory location.

The application program IRQ exception handler then reads in a character from another
predefined location and clears the IRQ condition from the parallel port.

In the example, the parallel port clears the IRQ when a byte is read in from the port
address. At this point, the new ARMulator model code clears the IRQ and schedules
another interrupt to occur using the ARMulif_ScheduleNewTimedCallback function as
before.

The application program installs an IRQ exception handler by setting the IRQ vector to be
a branch instruction to the application IRQ handler. This is described in the Debug Target
Guide (ARM DUI 0058C), 4.5 Exceptions.

4.1 Creating the peripheral model

1 Create a new, empty file called parallel.c and save it in the directory
install_directory\ARMulate\armulext.

2 Enter the following code in the file parallel.c (a full explanation follows):

/* Parallel.c - an example ARMulator peripheral model
 */

#include "minperip.h"
#include "armul_mem.h"
#include <stdio.h>

static int Parallel_Access(void *handle,
 struct ARMul_AccessRequest *req);

extern unsigned pport_set_irq(void* handle);

BEGIN_STATE_DECL(Parallel)
int pport_IRQ;
FILE *pportfile;

/* store details of peripheral registration */
ARMul_BusPeripAccessRegistration my_bpar;

END_STATE_DECL(Parallel)

Example: Parallel Port Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 15
ARM DAI 0032E

BEGIN_INIT(Parallel)
Hostif_PrettyPrint(state->hostif, config, ", Parallel");
{
/* Note that BEGIN_INIT macro defines ParallelState *state */

unsigned err;

/* initialise state member variables */
state->pport_IRQ=0;
state->pportfile=NULL;

 err = RDIError_NoError;

 /* Provide memory access callback */
 state->my_bpar.access_func = Parallel_Access;
 state->my_bpar.access_handle = state;
 state->my_bpar.capabilities = PeripAccessCapability_Minimum;

 err = ARMulif_ReadBusRange(&state->coredesc, state->hostif,
 ToolConf_FlatChild(config, (tag_t)"RANGE"),
 &state->my_bpar,
 0x123450,0x20,"");

 err = state->my_bpar.bus->bus_registerPeripFunc(BusRegAct_Insert,
 &state->my_bpar);
 if (err)
 return err;
}
END_INIT(Parallel)

BEGIN_EXIT(Parallel)
END_EXIT(Parallel)

/* Memory access function */
static int Parallel_Access(void *handle, struct ARMul_AccessRequest *req)
{
 ARMWord address = req->req_address[0];
 ARMWord *data = req->req_data;
 unsigned type = req->req_access_type;
 ParallelState *state=(ParallelState *)handle;
 ARMTime Now, delay, nextEventTime;

 assert(address >= state->my_bpar.range[0].lo && address <= state-
>my_bpar.range[0].hi);

 /* We have identified a parallel port access */
 if((address == 0x123450) && acc_READ(type)) {
 Hostif_ConsolePrint(state->hostif, "Trying to open pport.txt.\n");
 state->pportfile = fopen("pport.txt", "rb");
 if(state->pportfile == NULL) {
 Hostif_ConsolePrint(state->hostif, "Error: Could not open pport.txt\n"
);
 Hostif_ConsolePrint(state->hostif, "Error: Could not open pport.txt\n"
);
 } else {
 Hostif_ConsolePrint(state->hostif, "pport.txt successfully opened.\n");
 Hostif_ConsolePrint(state->hostif, "An interrupt has been scheduled.\n"
);

 Now = ARMulif_Time(&state->coredesc);
 delay = 20000;

Example: Parallel Port Model

16 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

 nextEventTime = Now + delay;

 ARMulif_ScheduleNewTimedCallback(
 &state->coredesc, pport_set_irq, state, nextEventTime, 0);
 }

 *data = 1234;
 return PERIP_OK;
 }

 if((address == 0x123460) && acc_READ(type)) {
 Hostif_ConsolePrint(state->hostif, "Read from 0x123460\n");
 if(state->pport_IRQ != 0) {

ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_IRQ, FALSE);
state->pport_IRQ = 0;

 }
 /* schedule another interrupt */
 Now = ARMulif_Time(&state->coredesc);

 delay = 6000;
 nextEventTime = Now + delay;

 ARMulif_ScheduleNewTimedCallback(

 &state->coredesc, pport_set_irq, state, nextEventTime, 0);

 if(state->pportfile)

*data = fgetc(state->pportfile);
 else

printf("pportfile is null\n");

return PERIP_OK;
}

return PERIP_NODECODE;
}

extern unsigned pport_set_irq(void* handle)
{
/* state is obtained directly from ParallelState */
ParallelState *state=(ParallelState *)handle;
Hostif_ConsolePrint(state->hostif, "An IRQ has occured\n");

/* Assert the IRQ */
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_IRQ, TRUE);
state->pport_IRQ = 1;
return 1;

}

/*--- <SORDI STUFF> ---*/

#define SORDI_DLL_NAME_STRING "Parallel"
#define SORDI_DLL_DESCRIPTION_STRING "Parallel port model"
#define SORDI_RDI_PROCVEC Parallel_AgentRDI
#include "perip_sordi.h"

#include "perip_rdi_agent.h"
 IMPLEMENT_AGENT_PROCS_NOEXE_NOMODULE(Parallel)
 IMPLEMENT_AGENT_PROCVEC_NOEXE(Parallel)

/*--- </> ---*/

Example: Parallel Port Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 17
ARM DAI 0032E

3 Copy one of the <MODEL_NAME>.b directories and rename it to parallel.b.

4 Edit the makefile inside the parallel.b subdirectory called intelrel and replace all
occurances of <MODEL_NAME> with ‘parallel’.

5 Change your current directory to
install_path\ARMulate\armulext\MyModel.b\intelrel

6 Depending on your system: For Windows, type: nmake For UNIX, type: make

7 On Windows, mymodel.dll appears in:
install_path\ARMulate\armulext\MyModel.b\intelrel. Move mymodel.dll to:
install_path\bin. This is where ARMulator expects to find models.

To complete this step, create a text file called pport.txt. It may contain whatever message
you wish, but it must contain a full stop (.) character to terminate the loop. This file must
also be placed in the above directory.

4.2 Explanation
The two function prototypes at the start of parallel.c define the following:
Parallel_Access

This method is the memory access callback that is executed whenever the ARMulator
default memory model detects a memory access at the registered addresses (see later).
pport_set_irq

The function is scheduled to occur after reading from one of the registered memory
addresses. Its purpose is to indicate to the debugger console that an IRQ has occurred
and to reset the IRQ.

Between the BEGIN_STATE_DECL(Parallel) and END_STATE_DECL(Parallel) macros,
two private data members are declared.

int pport_IRQ; Determines whether or not the IRQ has been set.

FILE *pportfile; A handle to a text file from which parallel port data is taken.

The macro defines a structure called ParallelState which includes the above attributes
in addition to several others.

An instance of this structure is created by the BEGIN_INIT(Parallel) macro and a
pointer ParallelState *state is assigned its address. This structure is passed to all
callback functions relating to the model.

Before END_INIT(Parallel) is called, the member variables of *state are initialized and
the peripheral is registered and assigned to an address range on the bus. This is
performed using ARMulif_ReadBusRange to fill a structure of type
ARMul_BusPeripAccessRegistration. During this call, the base address is read from
the configuration file peripherals.ami. The memory access function is assigned to the
access_func member and its capabilities are specified via the capabilities member.
The peripheral is registered using bus_registerPeripFunc (a function pointer set up by
ARMulif_ReadBusRange).

The memory access function is declared as:
static int Parallel_Access(void *handle, struct ARMul_AccessRequest *req)

It is called whenever a memory access falls within the range of the parallel port. handle
points to the state structure and req points to a structure that provides memory access
type, data and address. If the memory address is successfully read then
Parallel_Access must return PERIP_OK. Otherwise, the address was not a part of the
model and is not decoded so PERIP_NODECODE is returned.

A read from address 0x123450 opens the text file pport.txt and schedules an IRQ to
occur in 20,000 cycles. An arbitrary data value is returned.

Example: Parallel Port Model

18 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

A read from address 0x123460 schedules another interrupt and sets the data word to the
next character code from the text file.

The #define and #include directives at the end of the file are used to manage how the
module is loaded when the debugger starts.

4.3 Writing ARM application code
You must now write some sample ARM application code to process the characters
arriving at a parallel port.

The application starts with a volatile global variable definition. A volatile qualified type
indicates that something other than the application program can access or alter the value
stored in the variable. The IRQ handler simply reads a character from memory location
0x123460 and places this in the global variable.

The Install_Handler code installs a branch instruction in the IRQ exception vector to
branch to the IRQ handler.

The main function installs the IRQ handler then causes an access to memory location
0x123450 to initialize the interrupts. Immediately prior to reading this memory, a short
inline assembly routine is called to enable interrupts in the ARM core CPSR (current
program status register). This sets the IRQ disable flag in the CPSR to zero, in order to
enable IRQ interrupts.

The program then goes into a loop until the first interrupt occurs, at which point program
flow diverts to the IRQ handler. This updates the value of the global variable globvar. The
value placed into this variable is then displayed on the screen.

The main program exits when it reads in the full stop termination character.

Create a new text file called partest.c and put the following code in it:

#include <stdio.h>

__inline void enable_IRQ(void);

volatile int globvar;
void __irq myIRQhandler(void)
{
char *portlocn = (char *)0x123460;
globvar = *portlocn;

}

unsigned Install_Handler(unsigned routine, unsigned *vector)
{
unsigned vec, oldvec;
vec = ((routine - (unsigned)vector - 0x8) >> 2);
vec = 0xea000000 | vec;
oldvec = *vector;
*vector = vec;
return (oldvec);

}

int main(void)
{
unsigned *irqvec = (unsigned *)0x18;
int *loc = (int*)0x123450;

Install_Handler((unsigned)myIRQhandler, irqvec);

Example: Parallel Port Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 19
ARM DAI 0032E

/* ENABLE IRQs – These are disabled by default in AXD under ADS 1.1 */
enable_IRQ();

printf("Contents of location 0x123450 = %d\n", *loc);

do {
globvar = -1;

while(globvar == -1);

printf("Character read in from text file %c\n", globvar);
}
while(globvar != '.');
return 0;

}

__inline void enable_IRQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 BIC tmp, tmp, #0x80
 MSR CPSR_c, tmp
 }
}

Note: When you single-step through the code, program flow does not appear to enter the
IRQ handler code. To do this, you need to put a breakpoint on the IRQ function itself.

4.4 Running the application
The following steps must be performed before the application can be run.

Create a file called parallel.dsc and place it in install_path\bin. It must contain the
following:
;; ARMulator configuration file type 3
{ Peripherals

{ Parallel
META_SORDI_DLL=Parallel

}
{

No_Parallel=Nothing
}

}

Load the default.ami file into a text editor and add a reference to your model:
{Parallel=Default_Parallel
}

Load the peripherals.ami file into a text editor and add a configuration section for your
model.
{ Default_Parallel=Parallel
Range:Base=0x123450
}

Compile the file partest.c using the armcc compiler, as follows:
armcc –g –opartest.axf partest.c

This can be loaded into the debugger of your choice (armsd, ADW or AXD).

Example: Exception Generator Memory Model

20 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

5 Example: Exception Generator Memory Model

This example of a memory model provides the ability to generate interrupts immediately
and to schedule them for a later time.

5.1 Creating and modifying the files
Follow the procedure set out in section 4.1 (Adding a memory or peripheral model)
substituting “projectx” for “parallel”.

5.2 Writing code to access the memory locations
Since the peripheral model is being employed in this example as per the previous one, it is
possible to use the same program structure. The changes involved are:

• Remove the additional member variables pport_IRQ and pportfile from the
BEGIN_INIT … END_INIT block

• Change the memory access function name (and its prototype) to
ProjectX_Access

• Replace the code in the ProjectX_Access function.

There are four separate memory trigger locations:

0x200000 Writing 1 here causes an IRQ.

Writing 2 here causes an FIQ.

0x200004 Writing a value here schedules an IRQ in value cycles.

0x200008 Writing a value here schedules an FIQ in value cycles.

0x20000C Writing 1 here clears the IRQ.

Writing 2 here clears the FIQ.

The complete source listing for projectx.c is as follows:

/* ProjectX.c - Exception Generator Memory Model
 */

#include "minperip.h"
#include "armul_mem.h"

static int ProjectX_Access(void *handle,
 struct ARMul_AccessRequest *req);

static void clearIrq(void *handle);
static void clearFiq(void *handle);
static void setIrq(void *handle);
static void setFiq(void *handle);

#define ModelName (tag_t)"ProjectX"

Example: Exception Generator Memory Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 21
ARM DAI 0032E

#if !defined(NDEBUG)
if 1
else
define VERBOSE
endif
#endif

BEGIN_STATE_DECL(ProjectX)

/* store details of peripheral registration */
ARMul_BusPeripAccessRegistration my_bpar;

END_STATE_DECL(ProjectX)

BEGIN_INIT(ProjectX)
Hostif_PrettyPrint(state->hostif, config, ", ProjectX");
{
/* Note that BEGIN_INIT macro defines ProjectXState *state */

unsigned err;

 err = RDIError_NoError;

 /* Provide access-callback */
 state->my_bpar.access_func = ProjectX_Access;
 state->my_bpar.access_handle = state;
 state->my_bpar.capabilities = PeripAccessCapability_Minimum;

 err = ARMulif_ReadBusRange(&state->coredesc, state->hostif,
 ToolConf_FlatChild(config, (tag_t)"RANGE"),
 &state->my_bpar,
 0x200000,0x0D,"");

 err = state->my_bpar.bus->bus_registerPeripFunc(BusRegAct_Insert,
 &state->my_bpar);
 if (err)
 return err;
}
END_INIT(ProjectX)

BEGIN_EXIT(ProjectX)
END_EXIT(ProjectX)

/* MemAccess functions */
static int ProjectX_Access(void *handle,
 struct ARMul_AccessRequest *req)
{
 ARMWord address = req->req_address[0];
 ARMWord *data = req->req_data;
 unsigned type = req->req_access_type;
 ProjectXState *state=(ProjectXState *)handle;
 ARMTime Now, delay, nextEventTime;

 assert(address >= state->my_bpar.range[0].lo && address <= state-
>my_bpar.range[0].hi);

 if((address == 0x200000) && acc_WRITE(type)) {
 switch(*data) {
 case 1:
 Hostif_ConsolePrint(state->hostif, "IRQ requested\n");

Example: Exception Generator Memory Model

22 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

 ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_IRQ,
TRUE);
 break;

 case 2:
 Hostif_ConsolePrint(state->hostif, "FIQ requested\n");
 ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_FIQ,
TRUE);
 break;
 }

Hostif_ConsolePrint(state->hostif, "Write to 0x200000 - value = %08x\n", *data
);

return PERIP_OK;
}

/* IRQ scheduling */
if((address == 0x200004) && acc_WRITE(type)) {

delay = *data;
 Hostif_ConsolePrint(state->hostif, "IRQ scheduled in %d cycles\n", delay);

 Now = ARMulif_Time(&state->coredesc);

nextEventTime = Now + delay;

ARMulif_ScheduleNewTimedCallback(
 &state->coredesc, setIrq, state, nextEventTime, 0);

 /* DEBUG schedule event for the same time to see which happens
 ARMulif_ScheduleNewTimedCallback(
 &state->coredesc, dummyCallback, state, nextEventTime, 0);

 */

 Hostif_ConsolePrint(state->hostif, "Write to 0x200004 - value = %08x\n",
delay);

return PERIP_OK;
}

/* FIQ scheduling */
if((address == 0x200008) && acc_WRITE(type)) {

delay = *data;
 Hostif_ConsolePrint(state->hostif, "FIQ scheduled in %d cycles\n", delay);

 Now = ARMulif_Time(&state->coredesc);

nextEventTime = Now + delay;

ARMulif_ScheduleNewTimedCallback(
 &state->coredesc, setFiq, state, nextEventTime, 0);

 Hostif_ConsolePrint(state->hostif, "Write to 0x200008 - value = %08x\n",
delay);

return PERIP_OK;
}

/* Interrupt Clearing */
if((address == 0x20000C) && acc_WRITE(type)) {

 switch(*data) {
 case 1:
 Hostif_ConsolePrint(state->hostif, "IRQ cleared\n");
 clearIrq(state);
 break;

Example: Exception Generator Memory Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 23
ARM DAI 0032E

 case 2:
 Hostif_ConsolePrint(state->hostif, "FIQ cleared\n");
 clearFiq(state);
 break;
 }

Hostif_ConsolePrint(state->hostif, "Write to 0x20000C - value = %08x\n", *data
);

return 1;
}

/* did not decode the address */
return PERIP_NODECODE;

}

static void clearIrq(void *handle)
{
ProjectXState *state = (ProjectXState *) handle;
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_IRQ, FALSE);

}

static void clearFiq(void *handle)
{
ProjectXState *state = (ProjectXState *) handle;
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_FIQ, FALSE);

}

static void setIrq(void *handle)
{
ProjectXState *state = (ProjectXState *) handle;
/* DEBUG */
/* Hostif_ConsolePrint(state->hostif, "setIrq called. cycles: %d\n",

ARMulif_Time(&state->coredesc)); */
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_IRQ, TRUE);

}

static void setFiq(void *handle)
{
ProjectXState *state = (ProjectXState *) handle;
/* DEBUG */
/*Hostif_ConsolePrint(state->hostif, "setFiq called. cycles: %d\n",

ARMulif_Time(&state->coredesc)); */
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_FIQ, TRUE);

}

/*--- <SORDI STUFF> ---*/

#define SORDI_DLL_NAME_STRING "ProjectX"
#define SORDI_DLL_DESCRIPTION_STRING "Exception Generator model"
#define SORDI_RDI_PROCVEC ProjectX_AgentRDI
#include "perip_sordi.h"

#include "perip_rdi_agent.h"
 IMPLEMENT_AGENT_PROCS_NOEXE_NOMODULE(ProjectX)
 IMPLEMENT_AGENT_PROCVEC_NOEXE(ProjectX)

/*--- </> ---*/

Example: Exception Generator Memory Model

24 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

5.3 Writing ARM application code
You need some application code to exercise this memory model.

Create a new C file, called interrupts.c and copy the following text into it1:

#include <stdio.h>
#include <time.h>

#define IRQNOW *intAddress = 1
#define FIQNOW *intAddress = 2
#define CLEARIRQ *clearAddress = 1
#define CLEARFIQ *clearAddress = 2
#define IRQIN(cycles) *irqAddress = cycles
#define FIQIN(cycles) *fiqAddress = cycles

unsigned *intAddress = (unsigned*) 0x200000;
unsigned *irqAddress = (unsigned*) 0x200004;
unsigned *fiqAddress = (unsigned*) 0x200008;
unsigned *clearAddress = (unsigned*) 0x20000C;

/* function to enable IRQ and FIQ */
__inline void enable_IF(void);

extern int exit(int);

unsigned Install_Handler(unsigned routine, unsigned *vector)
{
unsigned vec, oldvec;

vec = ((routine - (unsigned)vector - 0x8) >> 2);
if(vec & 0xff000000) {

printf("Installation of exception handler failed\n");
exit(1);

}

vec = 0xea000000 | vec;
oldvec = *vector;
*vector = vec;
return (oldvec);

}

__irq void IRQHandler(void)
{
CLEARIRQ;

}

__irq void FIQHandler(void)
{
CLEARFIQ;

}

int main()
{
unsigned *irqvec = (unsigned*) 0x18;
unsigned *fiqvec = (unsigned*) 0x1c;

printf("Installing handlers\n");

1 The source code for all examples is available for download.

Example: Exception Generator Memory Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 25
ARM DAI 0032E

(void)Install_Handler((unsigned)IRQHandler, irqvec);
(void)Install_Handler((unsigned)FIQHandler, fiqvec);

enable_IF();

printf("Handlers installed\n");

printf("Cause an irq\n");
IRQNOW;

printf("Cause an FIQ\n");
FIQNOW;

printf("Cause an irq\n");
IRQNOW;

IRQIN(600);
printf("1\n2\n3\n4\n5\n6\n7\n8\n9\n");
FIQIN(1500);
printf("1\n2\n3\n4\n5\n6\n7\n8\n9\n");

IRQIN(1000);
FIQIN(1000);

printf("1\n2\n3\n4\n5\n6\n7\n8\n9\n");
}

__inline void enable_IF(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 BIC tmp, tmp, #0xC0
 MSR CPSR_c, tmp
 }
}

Now build an ARM executable image using armcc.

5.4 Running the application
Please refer to section 4.4, replacing “parallel” with “projectx” where appropriate. The
entry required for peripherals.ami is:

{ Default_ProjectX=ProjectX
;; as per AppNote 32
;; NOTE: Addresses over 2GB do not read in properly
Range:Base=0x200000
}

Running the code should give similar results to the following:

Installing handlers
Handlers installed
Cause an irq
IRQ requested
Write to 0x200000 - value = 00000001

Example: Exception Generator Memory Model

26 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

IRQ cleared
Write to 0x20000C - value = 00000001
Cause an FIQ
FIQ requested
Write to 0x200000 - value = 00000002
FIQ cleared
Write to 0x20000C - value = 00000002
Cause an irq
IRQ requested
Write to 0x200000 - value = 00000001
IRQ cleared
Write to 0x20000C - value = 00000001
IRQ scheduled in 600 cycles
Write to 0x200004 - value = 00000258
1
IRQ cleared
Write to 0x20000C - value = 00000001
2
3
4
5
6
7
8
9
FIQ scheduled in 1500 cycles
Write to 0x200008 - value = 000005dc
1
2
3
4
FIQ cleared
Write to 0x20000C - value = 00000002
5
6
7
8
9
IRQ scheduled in 1000 cycles
Write to 0x200004 - value = 000003e8
FIQ scheduled in 1000 cycles
Write to 0x200008 - value = 000003e8
1
2
FIQ cleared
Write to 0x20000C - value = 00000002
IRQ cleared
Write to 0x20000C - value = 00000001
3
4
5
6
7
8
9

Example: Coprocessor Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 27
ARM DAI 0032E

6 Example: Coprocessor Model

This example of a coprocessor model provides the ability to generate interrupts and to
schedule them for a later time. This is not a typical hardware application and simply
illustrates how to structure a coprocessor model.

6.1 Creating the files
Create a new file called mycopro.c and insert the following code into it:

/* mycopro.c - ARM apps note 32 */
#include "minperip.h"
#include "armul_mem.h"
#include "armul_copro.h"

#define BIT(n) ((ARMword)(instr>>(n))&1) /* bit n of instruction */
#define BITS(m,n) ((ARMword)(instr<<(31-(n))) >> ((31-(n))+(m))) /* bits m to n of
instr */
#define TOPBITS(n) (instr >> (n)) /* bits 31 to n of instr */

/*
 * What follows is a copy of the validation Suite Coprocessor.
 * It has the follwing functionality.
 * Sixteen registers.
 * co-processor can be used in an MCR and MRC to access
 * these registers.
 * LDC and STC to and from the registers.
 * Will busy wait for the number of cycles specified by a CP register.
 * CDP 1 issues a FIQ after a number of cycles (specified in a CP
 * register),
 * CDP 2 issues an IRQW in the same way, CDP 3 and 4 turn off the FIQ
 * and IRQ source, and CDP 5 stores a 32 bit time value in a CP
 * register (actually it's the total number of N, S, I, C and F
 * cyles)

*/

/* copro regs */

static ARMword ValReg[16];

/* new prototypes follow NCAccessFunc declaration */

static int LDC(void *handle, int type, ARMword instr, uint32 *data);
static int STC(void *handle, int type, ARMword instr, uint32 *data);
static int MRC(void *handle, int type, ARMword instr, uint32 *data);
static int MCR(void *handle, int type, ARMword instr, uint32 *data);
static int CDP(void *handle, int type, ARMword instr, uint32 *data);

static unsigned DoAFIQ(void *handle);
static unsigned DoAIRQ(void *handle);

/* initialisation **/

BEGIN_STATE_DECL(Mycopro)

/* store details of peripheral registration */
ARMul_CoprocessorV5 cpv5;

Example: Coprocessor Model

28 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

END_STATE_DECL(Mycopro)

BEGIN_INIT(Mycopro)
Hostif_PrettyPrint(state->hostif, config, ", Mycopro");
{
/* register the co-pro functions */
ARMul_CoprocessorV5 *cp = &state->cpv5;
cp->LDC=LDC;
cp->STC=STC;
cp->MRC=MRC;
cp->MCR=MCR;
cp->CDP=CDP;

/* prototype: unsigned ARMulif_InstallCoprocessorV5(RDI_ModuleDesc *mdesc, unsigned
number,
 struct ARMul_CoprocessorV5 *cpv5,
 void *data);
 */

 ARMulif_InstallCoprocessorV5(&state->coredesc, 4, cp, state);
}
END_INIT(Mycopro)

BEGIN_EXIT(Mycopro)
END_EXIT(Mycopro)

/* COPRO instructions ***/

/* copro LDC (ARM -> Copro instruction) */

static int LDC(void *handle, int type, ARMword instr, uint32 *data)
{
static unsigned words;
IGNORE(handle);

if(type != ARMul_CP_DATA) {
words = 0;
return(ARMul_CP_DONE);

}

if(BIT(22)) { /* long access so get two words */
ValReg[BITS(12,15)] = *data;
if(words++ == 4)

return(ARMul_CP_DONE);
else

return(ARMul_CP_INC);
} else { /* just get 1 word */

ValReg[BITS(12,15)] = *data;

return(ARMul_CP_DONE);
}

}

/* Copro. STC instruction i.e. copro -> ARM transfer */
static int STC(void *handle, int type, ARMword instr, uint32 *data)
{
static unsigned words;

IGNORE(handle);

if(type != ARMul_CP_DATA) {
words = 0;
return(ARMul_CP_DONE);

Example: Coprocessor Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 29
ARM DAI 0032E

}
if(BIT(22)) { /* two word access */

*data = ValReg[BITS(12,15)];
if(words++ == 4)

return (ARMul_CP_DONE);
else

return (ARMul_CP_INC);
}
else { /* get 1 word */

*data = ValReg[BITS(12,15)];
return (ARMul_CP_DONE);

}
}

/* copro MRC instruction. copro -> ARM transfer */
static int MRC(void *handle, int type, ARMword instr, uint32 *data)
{
IGNORE(handle);
IGNORE(type);
*data = ValReg[BITS(16,19)];
return(ARMul_CP_DONE);

}

/* copro MCR instruction. ARM to copro transfer. */
static int MCR(void *handle, int type, ARMword instr, uint32 *data)
{
MycoproState *state = (MycoproState *)handle;

IGNORE(handle);
IGNORE(type);
ValReg[BITS(16,19)] = *data;

return (ARMul_CP_DONE);
}

/* copro CDP instruction. ARM causes this to be executed on copro. */
static int CDP(void *handle, int type, ARMword instr, uint32 *data)
{
static ARMTime finish;
ARMword howlong;
MycoproState *state=(MycoproState *)handle;
ARMTime Now, nextEventTime;

howlong = ValReg[BITS(0,3)];

switch((int)BITS(20,23)) {
case 0: if(type == ARMul_CP_FIRST) {

/* 1st cycle of busy wait */
finish = ARMulif_Time(&state->coredesc) + howlong;
if(howlong == 0)

return ARMul_CP_DONE;
else

return ARMul_CP_BUSY;
}

return ARMul_CP_DONE;

case 1: if(howlong == 0)
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_FIQ,

FALSE);
else {

Now = ARMulif_Time(&state->coredesc);

Example: Coprocessor Model

30 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

nextEventTime = Now + howlong;

ARMulif_ScheduleNewTimedCallback(&state->coredesc, DoAFIQ, state,
nextEventTime, 0);

}
return ARMul_CP_DONE;

case 2: if(howlong == 0)
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_IRQ,

FALSE);
else {

Now = ARMulif_Time(&state->coredesc);
nextEventTime = Now + howlong;

ARMulif_ScheduleNewTimedCallback(&state->coredesc, DoAIRQ, state,

nextEventTime, 0);
}
return ARMul_CP_DONE;

case 3: ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_FIQ, FALSE);
return ARMul_CP_DONE;

case 4: ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_IRQ, FALSE);
return ARMul_CP_DONE;

case 5: ValReg[BITS(0,3)] = (unsigned long)ARMulif_Time(&state->coredesc);
return ARMul_CP_DONE;

}

return ARMul_CP_CANT;
}

/* cause an FIQ */
static unsigned DoAFIQ(void *handle)
{
MycoproState *state=(MycoproState *)handle;
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_FIQ, TRUE);
return 0;

}

/* cause an IRQ */
static unsigned DoAIRQ(void *handle)
{
MycoproState *state=(MycoproState *)handle;
ARMulif_SetSignal(&(state->coredesc), RDIPropID_ARMSignal_IRQ, TRUE);
return 0;

}

/*--- <SORDI STUFF> ---*/

#define SORDI_DLL_DESCRIPTION_STRING "Example Coprocessor model"
#define SORDI_RDI_PROCVEC Mycopro_AgentRDI
#include "perip_sordi.h"

#include "perip_rdi_agent.h"
 IMPLEMENT_AGENT_PROCS_NOEXE_NOMODULE(Mycopro)
 IMPLEMENT_AGENT_PROCVEC_NOEXE(Mycopro)

/*--- </> ---*/

Example: Coprocessor Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 31
ARM DAI 0032E

6.2 Editing files
Follow the procedure set out in section 4.1 (Adding a memory or peripheral model)
substituting “mycopro” for “parallel”. Then refer to section 4.4, replacing “parallel” with
“mycopro” where appropriate. The entry required for peripherals.ami is:

{ Default_Mycopro=Mycopro
}

6.3 Writing application files
You need some application code to exercise this peripheral model.

Create a new assembler file, called copro.s, and copy the following text into it:

AREA Block, CODE, READONLY

EXPORT DoCP4MCR0
EXPORT DoCP4MRC0
EXPORT DoCP4CDP1
EXPORT DoCP4CDP2
EXPORT DoCP4CDP3
EXPORT DoCP4CDP4
EXPORT DoCP4CDP5

DoCP4MCR0 MCR p4, 0, R0, c0, c0, 0
MOV pc, lr

DoCP4MRC0 MRC p4, 0, R0, c0, c0, 0
MOV pc, lr

DoCP4CDP1 CDP p4, 1, c0, c0, c0
MOV pc, lr

DoCP4CDP2 CDP p4, 2, c0, c0, c0
MOV pc, lr

DoCP4CDP3 CDP p4, 3, c0, c0, c0
MOV pc, lr

DoCP4CDP4 CDP p4, 4, c0, c0, c0
MOV pc, lr

DoCP4CDP5 CDP p4, 5, c1, c1, c1
MRC p4, 0, a1, c1, c1, 0
MOV pc, lr

END

Create another new C file, called coprotest.c, and copy the following text into it:

#include <stdio.h>
#include <stdlib.h>

Example: Coprocessor Model

32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

/* exported functions in copro.s */
extern void DoCP4MCR0(unsigned);
extern unsigned DoCP4MRC0(void);
extern void DoCP4CDP0(void);
extern void DoCP4CDP1(void);
extern void DoCP4CDP2(void);
extern void DoCP4CDP3(void);
extern void DoCP4CDP4(void);
extern unsigned int DoCP4CDP5(void);

/* function to enable IRQ and FIQ */
__inline void enable_IF(void);

/* exception handler install */

unsigned Install_Handler(unsigned routine, unsigned *vector)
{
unsigned vec, oldvec;

vec = ((routine - (unsigned)vector - 0x8) >> 2);
if(vec & 0xff000000) {

printf("Installation of exception handler failed\n");
exit(1);

}

vec = 0xea000000 | vec;
oldvec = *vector;
*vector = vec;
return (oldvec);

}

__irq void IRQHandler(void)
{
printf("IRQ entered\n");
DoCP4CDP4();

}

__irq void FIQHandler(void)
{
printf("FIQ entered - clear source\n");
DoCP4MCR0(0); /* put 0 in CP4 c0 */
DoCP4CDP1(); /* Use CDP 1 with time = 0 to clear irq source */

}

int main()
{
unsigned *irqvec = (unsigned*)0x18;
unsigned *fiqvec = (unsigned*)0x1c;
unsigned value=0;
unsigned int timerValue=0;

printf("Installing handlers\n");

Install_Handler((unsigned)IRQHandler, irqvec);
Install_Handler((unsigned)FIQHandler, fiqvec);

enable_IF();

printf("Handlers installed\n");

printf("Use MRC/MCR \n");
DoCP4MCR0(0xFFFFFFFF); /* put 0xFFFFFFFF in CP4 reg 0 */

value = DoCP4MRC0(); /* get above value from CP4 reg 0 */
printf("Value = %08x\n", value);

Example: Coprocessor Model

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 33
ARM DAI 0032E

DoCP4MCR0(0xaaaaaaaa); /* put 0xaaaaaaaa in CP4 reg 0 */
value = DoCP4MRC0();
printf("Value = %08x\n", value);

printf("CDP 1 - cause a FIQ\n");
DoCP4MCR0(500);
DoCP4CDP1();
printf("Expecting a fiq. \nCDP1 done\n\n\n");

printf("CDP 2 - cause an IRQ\n");
DoCP4MCR0(500);
DoCP4CDP2();
printf("Expecting an irq. \nCDP2 done\n");

printf("\n\nRead timer\n");

timerValue = DoCP4CDP5();
printf("Value = %08x\n", timerValue);
timerValue = DoCP4CDP5();
printf("Value = %08x\n", timerValue);

}

__inline void enable_IF(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 BIC tmp, tmp, #0xC0
 MSR CPSR_c, tmp
 }
}

Build the two files copro.s and coprotest.c using the following commands:
armasm –g copro.s –o copro.o
armcc –g –c coprotest.c –o coprotest.o
armlink copro.o coprotest.o –o coprocess.axf

6.4 Running the code

Running the code should give similar results to the following:

Installing handlers
Handlers installed
Use MRC/MCR
Value = ffffffff
Value = aaaaaaaa
CDP 1 - cause a FIQ
ExpFIQ entered - clear source
ecting a fiq.
CDP1 done

CDP 2 - cause an IRQ
ExpIRQ entered
ecting an irq.
CDP2 done

Read timer
Value = 00008ab6
Value = 00009504

Debugging ARMulator models in Visual C++

34 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

7 Debugging ARMulator models in Visual C++

The debugging facilities of Visual C++ may be employed for faultfinding in ARMulator
models. The execution of customized dynamic-link libraries can be examined at all
stages from initialization through to memory/peripheral or coprocessor register callbacks.

The following instructions outline the procedure necessary to debug an ARMulator model
in Visual C++. These instructions apply to Visual C++ versions 5 and 6. The required
stages involved in model debugging are:

1 Create a Visual C++ dynamic-link library project

2 Add files to the project

3 Configure compiler settings, library and header file locations.

4 Compile the module

5 Ensure .dsc and .ami configuration files have been properly configured. (See
AppNote 32 for more information)

6 Set breakpoints

7 Launch a debugger via Visual C++.

7.1 Creating a project
It is assumed that you have a directory structure organized as per the examples in the
AppNote. This means that a subdirectory exists containing your model and a
corresponding makefile, named MyModel.b.

• Launch Visual C++.

• Choose File->New… from the menu bar.

• Choose Win32 Dynamic-link library as the project type and enter your module
name in the ‘Project Name’ box. Specify location as the folder MyModel.b.

• When prompted for the kind of DLL to create, choose “An empty DLL project”.

• Hit OK when prompted

7.2 Adding files
Add the following files to the project.

• Your model source code (mymodel.c)

• The files sordi.def and version.rc from the armulext subdirectory.

7.3 Configure settings
• Open the settings dialog by choosing the menu Project->Settings… or pressing

ALT+F7.

• The drop-down list at the top-left should display Win32 Debug by default. If not,
select this option.

• On the Debug tab, choose category “General” from the drop-down list and select
a file for the “Executable for debug session”. Choose install_dir\Bin\axd.exe or
another debugger of your choice. install_dir refers to the directory in which you
installed ADS 1.1.

• On the C/C++ tab, choose “General” from the drop-down menu and change /MTd
in the “Project Options” box to /MD. Next, choose “Preprocessor” from the drop-

Debugging ARMulator models in Visual C++

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 35
ARM DAI 0032E

down menu and specify the following in “Additional include directories”:
..\..\rdi,..\..\clx,..\..\armulif

• On the Link tab, choose “General” and replace the contents of the Object/library
modules box with: ..\..\clx\clx.b\intelrel\clx.lib
..\..\armulif\armulif.b\intelrel\armulif.lib. In the ‘output file name’ box, enter
install_path\bin\mymodel.dll.

7.4 Compile the module
• Choose menu option Build->Build mymodel.dll or press F7.

7.5 Ensure .dsc and .ami configuration files have been properly configured
Follow the procedure set out in section 3.1.2 to ensure that the correct entries have been
made in default.ami and peripherals.ami. Your model’s .dsc file should reside in the
install_dir\bin directory.

7.6 Set breakpoints
Open your model’s source code file and set breakpoints on lines where you wish to
examine access to the module.

7.7 Launch debugger
Pressing F5 will launch the debugger you chose in step 3. By loading an image into the
debugger and executing it, any model functions accessed which contain breakpoints will
halt execution and the VC++ debugger may be used to examine model state.

Calling a Peripheral Every Cycle

36 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

8 Calling a Peripheral Every Cycle

An increasingly common technique when designing a peripheral is to perform some
operations on every single memory cycle. This is not the recommended method of
designing a model due to inherent inefficiencies. It is often simpler and less processor
intensive to use the scheduling functions (see 3.3 Event Scheduling) to achieve the
same result. For an example of this, study the timer peripheral (timer.c) provided with
ADS.

The following example peripheral illustrates how to obtain a callback every memory cycle
under ADS 1.1. A simpler mechanism will be available under ADS 1.2.

Using the same procedures as described for the previous example models, enter the
following C source then build the peripheral model. This model is based upon Tracer.c
which is provided with ADS.

Cycles.c:

/* everycycle.c - function TraceX called every cycle
 */

#include "minperip.h"
#include "armul_mem.h"
#include "armul_callbackid.h"

#if !defined(NDEBUG)
if 1
else
define VERBOSE
endif
#endif

BEGIN_STATE_DECL(cycles)
ARMul_MemInterface child, *mem_ref, bus_mem;

END_STATE_DECL(cycles)

static int TraceBusMemAccess(void *handle,
 ARMword address,
 ARMword *data,
 ARMul_acc access_type);

static int TraceX(cyclesState *ts, ARMword addr, uint32 *data, int rv,
 unsigned acc);

static unsigned TraceMemInfo(void *handle, unsigned type, ARMword *pID,
 uint64 *data);
static ARMTime TraceReadClock(void *handle);
static const ARMul_Cycles *TraceReadCycles(void *handle);
static uint32 TraceGetCycleLength(void *handle);
static int RDI_info(void *handle,unsigned type,ARMword *arg1,ARMword *arg2);

BEGIN_INIT(cycles)
Hostif_PrettyPrint(state->hostif, config, ", everycycle");
{
/* Now register the access function */
ARMul_MemInterface *mif;

 uint32 ID[2];
 ID[0] = ARMulBusID_Core;
 ID[1] = 0;
 mif = ARMulif_QueryMemInterface(&state->coredesc, &ID[0]);

Calling a Peripheral Every Cycle

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 37
ARM DAI 0032E

 assert(mif);

 if(mif) {
 state->bus_mem.handle = state;
 state->bus_mem.x.basic.access = TraceBusMemAccess;

 state->bus_mem.mem_info=TraceMemInfo;
 state->bus_mem.read_clock=TraceReadClock;
 state->bus_mem.read_cycles=TraceReadCycles;
 state->bus_mem.get_cycle_length = TraceGetCycleLength;

 /* </> */

 switch(mif->memtype)
 {
 case ARMul_MemType_Basic:
 case ARMul_MemType_16Bit:
 case ARMul_MemType_Thumb:
 case ARMul_MemType_BasicCached:
 case ARMul_MemType_16BitCached:
 case ARMul_MemType_ThumbCached:
 case ARMul_MemType_ARMissAHB:
 break;

 case ARMul_MemType_StrongARM:
 /* (state->bus_mem.x.strongarm.core_exception = TraceCoreException;
 state->bus_mem.x.strongarm.data_cache_busy = TraceDataCacheBusy; */

 state->bus_mem.x.strongarm.core_exception = NULL;
 state->bus_mem.x.strongarm.data_cache_busy = NULL;
 break;
 case ARMul_MemType_ARM8:
/* state->bus_mem.x.arm8.core_exception = TraceCoreException;
 state->bus_mem.x.arm8.access2 = TraceBusMemAccess2;
*/
 state->bus_mem.x.arm8.core_exception = NULL;
 state->bus_mem.x.arm8.access2 = NULL;
 break;

 case ARMul_MemType_ARMissCache:
 case ARMul_MemType_ARM9:
 case ARMul_MemType_ByteLanes:
 default:
 break;
 }
 }

 ARMulif_InstallUnkRDIInfoHandler(&state->coredesc,
 RDI_info,state);

 ARMul_InsertMemInterface(mif,
 &state->child,
 &state->mem_ref,
 &state->bus_mem);
}
END_INIT(cycles)

BEGIN_EXIT(cycles)
END_EXIT(cycles)

Calling a Peripheral Every Cycle

38 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

static int TraceBusMemAccess(void *handle,
 ARMword address,
 ARMword *data,
 ARMul_acc access_type)
{
 cyclesState *ts = (cyclesState *)handle;
 int err =
 ts->child.x.basic.access(ts->child.handle,address,data,access_type);

 TraceX(ts, address, data, err, access_type);
 return err;
}

static int TraceX(cyclesState *ts, ARMword addr, uint32 *data, int rv,
 unsigned acc)
{
/* DEBUG catch ALL accesses
 if ((addr<ts->range_lo || (addr>=ts->range_hi && ts->range_hi!=0)))
 {
 }
*/

/* display diagnostic message */

static ARMTime prevtime = 0;
static ARMTime currtime = 0;

currtime = ARMulif_Time(&ts->coredesc);

if(currtime != prevtime) {
/* INSERT YOUR HANDLER HERE */
prevtime = currtime;
Hostif_ConsolePrint(ts->hostif,"Cycle: %u ", currtime);
Hostif_ConsolePrint(ts->hostif,"Access address: %u\n", addr);

}

 return rv;
}

/* -- */

static int RDI_info(void *handle,unsigned type,ARMword *arg1,ARMword *arg2)
{
return RDIError_UnimplementedMessage;

}

static unsigned TraceMemInfo(void *handle, unsigned type, ARMword *pID,
 uint64 *data)
{
 cyclesState *mem = (cyclesState *)handle;
 if (mem->child.mem_info)
 {
 return mem->child.mem_info(mem->child.handle,type,pID,data);
 }
 else
 {
 return RDIError_UnimplementedMessage;
 }
}

/* Aims to return a value in microseconds */
static ARMTime TraceReadClock(void *handle)

Calling a Peripheral Every Cycle

Application Note 32 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. 39
ARM DAI 0032E

{
 cyclesState *mem = (cyclesState *)handle;
 if (mem->child.read_clock)
 {
 return mem->child.read_clock(mem->child.handle);
 }
 else
 {
 return 0L;
 }
}

static const ARMul_Cycles *TraceReadCycles(void *handle)
{
 cyclesState *mem = (cyclesState *)handle;
 if (mem->child.read_cycles)
 {
 return mem->child.read_cycles(mem->child.handle);
 }
 else
 {
 return NULL;
 }
}

static uint32 TraceGetCycleLength(void *handle)
{
 cyclesState *mem = (cyclesState *)handle;
 if (mem->child.get_cycle_length)
 return mem->child.get_cycle_length(mem->child.handle);
 /* Todo: Otherwise guess from CCFG and CPUSPEED */
 return 0;
}

/*--- <SORDI STUFF> ---*/

#define SORDI_DLL_NAME_STRING "cycles"
#define SORDI_DLL_DESCRIPTION_STRING "cycles (test only)"
#define SORDI_RDI_PROCVEC cycles_AgentRDI
#include "perip_sordi.h"

#include "perip_rdi_agent.h"
 IMPLEMENT_AGENT_PROCS_NOEXE_NOMODULE(cycles)
 IMPLEMENT_AGENT_PROCVEC_NOEXE(cycles)

/*--- </> ---*/

/* EOF cycles.c */

Your code to be called every cycle should be placed at the comment:
/* INSERT YOUR HANDLER HERE */

Whenever the cycle count is incremented whilst you are running a program in the
debugger, the cycle number and memory address accessed is output to the console
window.

Appendix A – Known changes required for ADS 1.2

40 Copyright © 1996, 1998, 1999, 2001 ARM Limited. All rights reserved. Application Note 32
ARM DAI 0032E

9 Appendix A – Known changes required for ADS 1.2
• When creating a .dsc peripheral configuration file, ADS 1.2 uses

MODEL_DLL_FILENAME instead of META_SORDI_DLL to specify the library file to
use. See section 3.1.2 for more details.

• The structure of the ARMulator has been altered slightly to allow the flat memory
model and decoder to be modified. This also exposes part of the ARMulator API
(Application Programming Interface) to allow simple insertion of peripheral
callbacks which occur every cycle. The flat memory model will be available in the
file flatmem.c.

