
Copyright © 2002 ARM Limited. All rights reserved.

Application Note
Embedded Software Development with ADS v1.2

Document number: ARM DAI 0107A

Issued: October 2002

Copyright ARM Limited 2002

107

ii Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

Application Note 107
Embedded Software Development with ADS v1.2

Copyright © 2002 ARM Limited. All rights reserved.

Release information

The following changes have been made to this Application Note.

Change history

Date Issue Change

October 2002 A First release

Proprietary notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, ARM7TDMI, ARM9TDMI, TDMI
and STRONG are trademarks of ARM Limited.

All other products, or services, mentioned herein may be trademarks of their respective owners.

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM web address

http://www.arm.com

Table of Contents

Application Note 107 Copyright © 2001 ARM Limited. All rights reserved. 1
ARM DAI 0107A

Table of Contents

1 Introduction ..2
1.1 What is covered in this application note?..2
1.2 Example code ...2

2 A Default Build..3
2.1 The ADS 1.2 C Library ..3
2.2 Default Memory Map...4
2.3 Linker Placement Rules ..5
2.4 Application Startup ..5
2.5 Example Code – Build 1..6

3 Tailoring the C Library to your Target Hardware ..7
3.1 Retargeting the C Library ..7
3.2 Avoiding C Library Semihosting ..7
3.3 Example – Build 2 ...8

4 Tailoring the Image Memory Map to your Target Hardware9
4.1 Scatterloading ...9
4.2 Placing the Stack and Heap..11
4.3 Example Code – Build 3..13

5 Reset and Initialization ..15
5.1 Initialization Sequence ..15
5.2 The Vector Table ..15
5.3 Memory Setup...16
5.4 Stack Pointer Initialization ...18
5.5 Hardware Initialization - $Sub$$main() ..19
5.6 Execution Mode Considerations ...19
5.7 Example Code – Build 4..20

6 Further Memory Map Considerations ..21
6.1 Locating hardware addresses in the scatter file..21
6.2 Locating the Stack and Heap in the Scatter File ...21
6.3 Example Code – Build 5..23
6.4 Example Code – Build 6..23

7 References..24

Introduction

2 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

1 Introduction
Most embedded applications are initially developed in a prototype environment with
resources that differ from those available in the final product. As such, it is important to
consider the processes that enable your application to run on your target hardware.

The aim of this application note is to examine the processes involved in moving an
embedded application from one that relies on the facilities of the development/debugging
environment to a system that runs standalone on target hardware. In particular, this
document illustrates some of the features of the ARM Developer Suite (ADS) v1.2, and
suggests how they might be effectively used in this regard.

1.1 What is covered in this application note?
With ADS, several issues must be considered to move from an “out-of-the-box” build to a
standalone embedded application:

• C library use of hardware

• Some C library functionality executes by using debug environment resources. If used,
this functionality must be re-implemented to make use of target hardware.

• ADS has no inherent knowledge of the memory map of any given target. The image
memory map must be tailored to the memory layout of the target hardware.

• An embedded application must perform some initialization before the main application
can be run. A complete initialization sequence requires user-implemented code as
well as ADS C library initialization routines.

This application note addresses each of the above issues. Also, some further
considerations regarding the image memory map are highlighted.

1.2 Example code
To illustrate the topics covered in this application note, associated example projects are
provided.

The Dhrystone benchmarking program provides the code base for the example projects.
Dhrystone was chosen because it provides a simple, but non-trivial, main application that
illustrates the topics described in this application note.

Included in the example are several directories, each containing a distinct build of
Dhrystone. Each build provides an example of the techniques discussed in each
successive chapter of the document. Specific information regarding each build can be
found in the sections labeled Example Code in this document.

The example projects are tailored to run on the ARM Integrator development platform.
However, the principles illustrated by the examples are applicable to any target hardware.

Note The focus of this application note is not the Dhrystone program itself, but the steps that
must be taken to enable it on a fully standalone system. For further discussion of
Dhrystone as a benchmarking tool, see Application Note 93 – Benchmarking with
ARMulator.

A Default Build

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 3
ARM DAI 0107A

2 A Default Build
When beginning to develop software for an embedded application, a user of ADS might
not have technical specifications of their target hardware. Details of target peripheral
devices, the memory map, or perhaps even the processor itself might be unknown or
undecided.

To enable software development before such details are known or considered, the ADS
tools have a default behavior that enables the user to start building and debugging
application code immediately. It is useful to recognize this default behavior, in order to
appreciate the steps necessary to move from a default build to a fully standalone
application.

2.1 The ADS 1.2 C Library

2.1.1 Semihosting
In the ADS C Library, support for some ANSI C functionality is provided by the host
debugging environment. The mechanism by which this is provided is termed semihosting.

Semihosting is implemented by a set of defined software interrupt (SWI) operations.
When a semihosting SWI is executed, the debug agent identifies it and briefly suspends
program execution. The semihosting operation is then serviced by the debug agent
before code execution is resumed. Therefore, the task performed by the host itself is
transparent to the program.

hello world

....
; Set up parameters to SWI
....
; SWI to write to
; debugger console
MOV r0, #5
SWI 0x123456
; Continue program
; execution

Application Code
Code execution is halted while
the debug target services the

semihosting operation

Code execution resumes when
the string has finished printing

Figure 2-1 Example Semihosting operation

Figure 2-1 shows an example of semihosting operation, which prints a string to the
debugger console.

Note For more information on semihosting, see the ADS Debug Target Guide Section 5.

2.1.2 C Library Structure
Conceptually, the C library can be divided into functions that are part of the ANSI C
Language specification, and functions that provide support to this ANSI C level. This is
illustrated in Figure 2-2.

A Default Build

4 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

ANSI C

input/
output

error
handling

stack &
heap
setup

other

Semihosting Support

Functions called by
your application

eg: fputc()

Device driver level.
Use semihosting SWI’s

eg: _sys_write()

Implemented by
debugging

environment

C Library

Debug
Agent

Figure 2-2 C Library Structure

Support for some ANSI C functionality is provided by the host debugging environment via
a device driver level of support functions.

For example, the ADS C library implements the ANSI C printf()family of functions by
writing to the debugger console window. This functionality is provided by calling
__sys_write(), a support function that executes a semihosting SWI which results in a
string being written to the console.

2.2 Default Memory Map
In an image where the memory map has not been described by the user, ADS places
code and data according to a default memory map.

ZI

STACK

HEAP

RO

RW

From
Semihosting

SWI

Decided at
Link Time

0x8000

Figure 2-3 Default memory map

The default memory map (shown in Figure 2-3) is as follows:

• The image will be linked to load and run at address 0x8000. All RO (Read Only)
sections are placed first, followed by RW (Read-Write) sections then ZI (Zero-
Initialized) sections.

A Default Build

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 5
ARM DAI 0107A

• The heap follows directly on from the top of the ZI section, so the exact location is
decided at link time.

• The stack base location is provided by a semihosting operation during application
startup. The value returned by this semihosting operation depends on the debug
environment:

• ARMulator returns the value set in the configuration file peripherals.ami. The
default is 0x08000000.

• Multi-ICE returns the value of the debugger internal variable $top_of_memory.
The default is 0x00080000.

2.3 Linker Placement Rules
The linker observes a set of rules, shown in Figure 2-4, to decide where code and data is
located.

RO

RW

ZI

CODE

DATA

RO

A

B

CODE

section A
from file1.o

section A
from file2.o

A

Figure 2-4 Linker placement rules

The image is organized first of all by attribute - RO precedes RW precedes ZI. Within
each attribute code precedes data.

From there, the linker places input sections alphabetically by name. Input section names
correspond with assembler area directives.

Within input sections, code and data from individual objects are placed in the order the
object files are specified on the linker command line.

The user is not advised to rely on these rules if precise placement of code and data is
required. Full control of placement of code and data is available via the scatterloading
mechanism (discussed in Section 4.1).

Note See section 3.2 of the ADS Linker and Utilities Guide for more information on placement
rules.

2.4 Application Startup
In most embedded systems, an initialization sequence executes to setup the system
before executing the main task.

The default ADS initialization sequence is shown in Figure 2-5.

A Default Build

6 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

C Library User Code

__main
� copy code and data
� zero uninitialized data

__rt_entry
� set up application stack

and heap
� initialize library functions
� call top-level

constructors (C++)

� Exit from application

main()
� causes the linker to pull

in library initialization
code

Image Entry
Point

Figure 2-5 Default ADS Initialization sequence

At a high level, the initialization sequence can be divided into two functional blocks.
__main is responsible for setting the run-time image memory map, whereas
__rt_entry is responsible for initializing the C library.

__main carries out code and data copying, and zeroing of ZI data. This step is only
significant when the run-time location of code and data differs from that at load time (see
section 4.1).

__main branches to __rt_entry (run-time entry). This sets up the application stack
and heap initializes library functions and static data, and calls any constructors of globally
declared objects (C++ only). __rt_entry then branches to main(), the entry to the
user’s application. When the main application has finished executing, __rt_entry
hands control back to the debugger.

The function label main() has a special significance in ADS. The presence of a main()
function forces the linker to link in the initialization code in __main and __rt_entry.
Without a function labeled main() the initialization sequence is not linked in, and as a
result, some standard C library functionality is not supported.

2.5 Example Code – Build 1
Build 1 is a default build of the Dhrystone Benchmark. As such, it adheres to the default
ADS behavior described in this section.

To run this build on an Integrator, you must:

• ROM/RAM remapping must have been performed. This can easily be achieved by
running the Boot Monitor (Switches 1 & 4 on).

• Set $top_of_memory to 0x40000, or fit a DIMM memory module. If this is not done,
the stack (which defaults to 0x80000) may not be in valid memory.

Tailoring the C Library to your Target Hardware

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 7
ARM DAI 0107A

3 Tailoring the C Library to your Target Hardware
By default the C library makes use of semihosting to provide device driver level
functionality. A real embedded system makes use of target peripherals.

3.1 Retargeting the C Library
You can provide your own implementation of C Library functions that make use of target
hardware, which are automatically linked in to your image in favor of the C library
implementations. This process, known as retargeting the C library, is shown in Figure 3-1.

Semihosting
Support

ANSI C

input/
output

input/
output

ANSI C

C
Library

User
Code

Debug
Agent

Target
Hardware

Retarget

Figure 3-1 Retargeting the C library

For example, you might have a peripheral I/O device such as a UART, in which case you
want to override the library implementation of fputc(), which writes to the debugger
console, with one that outputs to the UART. Since this implementation of fputc() is
linked in to the final image, the entire printf() family of functions print out to the UART.

An example implementation of fputc() is shown below.

extern void sendchar(char *ch);

int fputc(int ch, FILE *f)
{ /* e.g. write a character to an UART */

char tempch = ch;
sendchar(&tempch);
return ch;

}

This example simply redirects the input character parameter of fputc() to a serial output
function sendchar(), which is assumed to be implemented in a separate source file. In
this way, fputc() acts as an abstraction layer between target dependent output and the
C library standard output functions.

3.2 Avoiding C Library Semihosting
In a standalone application, you cannot support semihosting SWI operations. Therefore
you must be certain that no C library semihosting functions are being linked into your
application.

To ensure that no functions which use semihosting SWIs are linked in from the C library,
you must import the symbol __use_no_semihosting_swi. This can be done in any C
or assembler source file in your project.

• In a C module, use the #pragma directive.

#pragma import(__use_no_semihosting_swi)

Tailoring the C Library to your Target Hardware

8 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

• In an assemble module, use the IMPORT directive.

IMPORT __use_no_semihosting_swi

If there are still SWI-using functions being linked in, the linker reports the following error:

Error: Symbol __semihosting_swi_guard multiply defined

To identify which SWI-using functions are still being linked in, link with the -verbose
switch. In the resulting output, C library SWI-using functions are tagged with
__I_use_semihosting_swi.

Loading member sys_exit.o from c_a__un.l.
definition: _sys_exit
reference : __I_use_semihosting_swi

You must provide your own implementations of these functions.

It is important to note that the linker does not report any semihosting SWI-using functions
in the user’s own application code. An error only occurs if a semihosting SWI-using
function is linked in from the C library.

Note ADS 1.2 Compiler and Libraries Guide, Table 4-2 gives a full list of SWI-using C library
functions.

3.3 Example – Build 2
Build 2 of the example uses the Integrator platform’s hardware for clocking and string I/O.

The following changes were made to Build 1 of the example project:

• C Library Retargeting

A retargeted layer of ANSI C functions has been added. These include standard
input/output functionality, clock functionality, as well as some additional error signaling
and program exit.

• Target Dependent Device Driver

A device driver layer that interacts directly with target hardware peripherals has been
added.

To run this build on an Integrator:

• ROM/RAM remapping must have been performed. This can easily be achieved by
running the Boot Monitor (Switches 1 & 4 on).

• Set $top_of_memory to 0x40000, or fit a DIMM memory module. If this is not done,
the stack (which defaults to 0x80000) may not be in valid memory.

Note The symbol __use_no_semihosting_swi is not imported into this project. This is
because a semihosting-SWI is executed during C library initialization to set up the
application stack and heap location. Retargeting stack and heap setup is covered in detail
in section 4.2.

Note To see the output, a terminal or terminal emulator (such as Hyperterminal) must be
connected to serial port A. The serial port settings should be set to 38400 baud, no parity,
1 stop bit and no flow control. The terminal should be configured to append line feeds to
incoming line ends, and echo typed characters locally.

Tailoring the Image Memory Map to your Target Hardware

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 9
ARM DAI 0107A

4 Tailoring the Image Memory Map to your Target Hardware

4.1 Scatterloading
In a real embedded system, you almost certainly do not want to adhere to the default
memory map provided by ADS. Your target hardware usually has several memory
devices located at different address ranges. To make the best use of these devices, you
will want to have separate views of memory at load and run-time.

Scatterloading enables the user to describe the load-time and run-time location of code
and data in memory in a textual description file known as a scatter file. The scatter file is
passed to the linker on the command line using the –scatter switch. For example:

armlink –scatter scat.scf file1.o file2.o

The scatter file describes to the linker the desired location of code and data at both load-
time and run-time, in terms of addressed memory regions. Scatterloading regions fall into
two categories:

• Load Regions which contain application code & data at reset/load time.

• Execution Regions which contain code and data while the application is executing.
One or more execution regions are created from each load region during application
startup.

All code and data in the image falls into exactly one load region, and one execution region.

During startup, C library initialization code in __main carries out the copying and zeroing of
code and data necessary to move from the image load view to the execute view.

4.1.1 Scatter File Syntax
Scatter file syntax reflects the functionality provided by scatterloading itself.

MY_REGION 0x0000 0x2000
{

contents of region
}

name of region start address

optional
length

parameter

Figure 4-1 Scatter file syntax

A region is defined by a header tag that contains, as a minimum, a name for the region
and a start address. Optionally, a maximum length and various attributes can be added.
Open and closed curly braces delimit the contents of a region.

The contents of the region depend on the type of region.

• Load regions must contain at least one execution region. In practice, there are
usually several execution regions per load region.

• Execution regions must contain at least one code or data section. These are usually
source or library object files. The wildcard (*) syntax can be used to group all sections
of a given attribute not specified elsewhere in the scatter file.

Tailoring the Image Memory Map to your Target Hardware

10 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

Note For a more detailed description of scatter file syntax, see Chapter 5 of the ADS Linker and
Utilities Guide.

4.1.2 Simple Scatterloading Example
Figure 4-2 illustrates a simple example of scatterloading.

Execute View

RAM

0x10000

0x18000

0x4000

0x0000

ROM

RO

RAM

0x10000

0x18000

0x4000

0x0000

ROM

Load View

RO

RW

RW

ZI

Copy

Fill with
zeros

Figure 4-2 Simnple scatterloading example

This example has one load region containing all code and data, starting at address zero.
From this load region we create two execution regions. One contains all RO code and
data, which executes at the same address at which it is loaded. We also have an
execution region at address 0x10000, which contains all of our RW and ZI data.

Below is the scatter description file that describes the above memory map.

LOAD_ROM 0x0000 0x4000
{

EXE_ROM 0x0000 0x4000 ; Root region
{

* (+RO) ; All code and constant data
}

RAM 0x10000 0x8000
{

* (+RW, +ZI) ; All non-constant data
}

}

4.1.3 Placing Objects in a Scatter File
In most images, you will want to control the placement of specific code and data sections,
rather than grouping all attributes together as in the previous example. This can be done
by specifying individual objects directly in the scatter file, rather than relying only on the
wildcard syntax.

Note The ordering of objects within a scatter file execution region does not affect their ordering
in the output image. The linker placement rules described in Section 2.3 apply to each
execution region.

To override the standard linker placement rules, we can use the +FIRST and +LAST
scatterloading directives. A typical example is placing the vector table at the beginning of
an execution region:

LOAD_ROM 0x0000 0x4000
{

EXEC_ROM 0x0000 0x4000
{

vectors.o (Vect, +FIRST)
* (+RO)

Tailoring the Image Memory Map to your Target Hardware

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 11
ARM DAI 0107A

}
; more exec regions…

}

In this scatter file, we ensure that the area Vect in vectors.o is placed at address 0x0000.

4.1.4 Root Regions
A root region is an execution region whose load address is equal to its execution address.
Each scatter file must have at least one root region.

One restriction placed on scatterloading is that the code and data responsible for creating
execution regions (ie: copying and zeroing code and data) cannot itself be copied to
another location. As a result, the following sections must be included in a root region:

• __main.o - contains the code that copies code/data

• Region$$Table and ZISection$$Table - sections which contain the addresses
of the code/data to be copied.

Because the above sections are attributed as read-only, they are grouped by the *
(+RO) wildcard syntax. As a result, if * (+RO) is specified in a non-root region, the
above must be explicitly declared in a root region.

An example is shown below:

LOAD_ROM 0x0000 0x4000
{

EXE_ROM 0x0000 0x4000 ; root region
{

__main.o (+RO) ; copying code
* (Region$$Table) ; RO/RW addresses to copy
* (ZISection$$Table) ; ZI addresses to zero

}

RAM 0x10000 0x8000
{

* (+RO) ; all other RO sections
* (+RW, +ZI) ; all RW and ZI sections

}
}

Failing to include __main.o, Region$$Table, and ZISection$$Table in a root
region results in the linker generating an error message.

4.2 Placing the Stack and Heap
Scatterloading provides a method for specifying the placement of code and statically
allocated data in your image. We now look at how to place the application stack and
heap.

4.2.1 Retargeting __user_initial_stackheap()
The application stack and heap are setup during C library initialization. We are able to
tailor stack and heap placement by retargeting the routine responsible for stack and heap
setup. In the ADS C library, this routine is __user_initial_stackheap().

The diagram below shows the C library initialization process with a retargeted
__user_initial_stackheap().

Tailoring the Image Memory Map to your Target Hardware

12 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

C Library User Code

__main
� copy code and data
� zero uninitialized data

__rt_entry
� initialize library functions
� call top-level

constructors (C++)

� Exit from application

main()
� cause linker to pull in library

initialization code

Image Entry
Point

__user_initial_stackheap()
� set up application stack and

heap

Figure 4-3 Retargeting __user_initial_stackheap()

__user_initial_stackheap can be coded in C or ARM assembler. It must return the
following parameters:

• heap base in r0

• stack base in r1

• heap limit in r2 (if required)

• stack limit in r3 (if required)

You must re-implement __user_initial_stackheap if you are scatterloading your
image. Otherwise, the linker will generate the following error:

Error: L6218E: Undefined symbol Image$$ZI$$Limit (referred from
sys_stackheap.o)

Note In ADS v1.1, no error message is generated. Instead, the heap base is located (often
inappropriately) at address 0x0000.

4.2.2 Run-time Memory Models
ADS provides two possible run-time memory models. In the default model, the application
stack and heap grow towards each other in the same region of memory. This is called the
one-region model. In this case, the heap is checked against the value of the stack pointer
when new heap space is allocated (that is, when malloc()is called).

On the other hand, your system design might require the stack and heap to be placed in
separate regions of memory. For instance you might have a small block of fast RAM in
which you want to reserve for stack use only. To inform ADS that you wish to use a two-
region model, you must import the symbol use_two_region_memory. The heap is then
checked against a dedicated heap limit, which is set up by
__user_initial_stackheap.

In both run-time memory models, the stack grows unchecked by default. You can
optionally enable software stack checking in your image by compiling all modules with the
compiler switch -apcs /swst. If you are using a two-region model, you must also
specify a stack limit in your implementation of __user_initial_stackheap.

Note Enabling software stack checking introduces a substantial code size and performance
overhead, since the value of the stack pointer must be checked against the stack limit with
each function call.

Tailoring the Image Memory Map to your Target Hardware

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 13
ARM DAI 0107A

4.2.3 Example Implementations

One-region model

STACK

HEAP

EXPORT __user_initial_stackheap

__user_initial_stackheap
LDR r0, =0x20000 ;HB
LDR r1, =0x40000 ;SB
; r2 not used (HL)
; r3 not used (SL)
MOV PC, LR

0x40000

0x20000

Figure 4-4 One Region Model

The above example of __user_initial_stackheap implements a simple one-region
model, where the stack grows down from address 0x40000, and the heap grows up from
0x20000. The routine simply loads the appropriate values into the registers r0 and r1, and
then returns. r2 and r3 remain unchanged, because a heap limit and stack limit are not
used in a one-region model.

Two-region model

STACK

HEAP

0x40000

0x20000

0x28000000

0x28080000IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap

__user_initial_stackheap
LDR r0, =0x28000000 ;HB
LDR r1, =0x40000 ;SB
LDR r2, =0x28080000 ; HL
LDR r3, =0x20000 ;SL
MOV PC, LR

Figure 4-5 Two Region Model

The above example implements a two-region model. The stack grows down from
0x40000 towards a limit of 0x20000. To make use of this stack limit, all modules using
this implementation must be compiled for software stack checking. The heap grows up
from 0x28000000 to 0x28080000.

Note __use_two_region_memory is imported using the assembler IMPORT directive.

Note Both examples above are suitable for the Integrator system.

4.3 Example Code – Build 3
Build 3 of the example implements scatterloading, and contains a retargeted
__user_initial_stackheap.

The following modifications were made to build 2 of the example project:

• Scatterloading

A simple scatter description file is passed to the linker.

• Retargeted __user_initial_stackheap

Tailoring the Image Memory Map to your Target Hardware

14 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

You have the option of selecting either a one-region or a two-region implementation.
The default build is one-region. The two-region implementation can be selected by
defining two_region at the build step.

• Avoiding C library Semihosting

To run this build on an Integrator, ROM/RAM remapping must have been performed. This
can easily be achieved by running the Boot Monitor (Switches 1 & 4 on).

The symbol __use_no_semihosting_swi is imported into this build, because there are
no longer any C library semihosting functions present in the image.

Note In order to avoid using semihosting for clock(), this is retargeted to read the Real Time
Clock (RTC) on the Integrator AP. This has a resolution of one second, so the results
from Dhrystone will not be precise. This mechanism is improved in Build 4.

Note It is important to disable all ‘Vector Catch’ and semihosting if you are using an ARM7 core
based target. Otherwise the debugger will interpret the execution of instruction between
address 0x0 and 0x1C as exceptions, and report this in a dialogue box. This can be set
via the ‘Options -> Configure Processor’ menu.

Reset and Initialization

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 15
ARM DAI 0107A

5 Reset and Initialization
Until now, we have assumed that execution begins at __main, the entry point to the C
library initialization routine. In fact, any real embedded application performs some system-
level initialization at startup. This section discusses this in more detail.

5.1 Initialization Sequence
Figure 5-1 shows a possible initialization sequence for an ARM-based embedded system.

C Library User Code

__main
� copy code and data
� zero uninitialized data

__rt_entry
� initialize library functions
� call top-level

constructors (C++)

� Exit from application
main()
� tells linker to link in library

initialization code

Image Entry
Point

__user_initial_stackheap()
� set up stack & heap

reset handler
� initialize stack pointers
� configure MMU/MPU
� setup cache/enable TCM

$Sub$$main()
� enable caches & interrupts

Figure 5-1 Initialization sequence

To Figure 5-1 we have added a reset handler, which executes immediately at system
startup. We also have a block of code labeled $Sub$$main(), which executes
immediately before entering the main application.

The reset handler is a short module coded in assembler that is executed on system reset.
As a minimum, your reset handler initializes stack pointers for the modes that your
application is running in. For cores with local memory systems, (that is, cache and/or
tightly coupled memory), some configuration must be done at this stage in the initialization
process. After executing, the reset handler typically branches to __main to begin the C
library initialization sequence.

There are some components of system initialization, for example the enabling of
interrupts, which are generally performed after the C library initialization code has finished
executing. The block of code labeled $Sub$$main() performs such tasks immediately
before the main application begins executing.

Section 5.2 describes the various components of the initialization sequence in more detail.

5.2 The Vector Table
All ARM systems have a vector table. The vector table does not form part of the
initialization sequence as such, but it must be present for any exception to be serviced.

AREA Vectors, CODE, READONLY

IMPORT Reset_Handler
; import other exception handlers

; …

Reset and Initialization

16 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

ENTRY

B Reset_Handler
B Undefined_Handler
B SWI_Handler
B Prefetch_Handler
B Data_Handler
NOP ; Reserved vector
B IRQ_Handler

; FIQ_Handler will follow directly

END

The above code imports the various exception handlers, presumably coded in other
modules. The table itself is simply a list of branch instructions to the various exception
handlers.

The FIQ handler is placed at address 0x1C directly. In this way, we avoid having to
execute a branch to the FIQ handler, so optimizing FIQ response time.

Note The vector table is marked with the label ENTRY. This effectively tells ADS that this code
is a possible entry point, and so it cannot be removed from the image at link time. You
must select one of the possible image entry points as the true entry point to your
application using the –entry linker option. See the ADS Linker and Utilities Guide section
3.1.4 for more information.

5.3 Memory Setup

5.3.1 ROM/RAM Remapping
Note We assume in this section that the ARM core begins fetching instructions at 0x0000,

which is the norm for ARM core based systems. Some ARM cores can be configured to
begin fetching instructions from 0xFFFF0000.

One important consideration to make is what sort of memory your system has at 0x0000,
the address of the first instruction executed.

Clearly, you require a valid instruction at 0x0000 at startup, so you have to have non-
volatile memory located at 0x0000 at the moment of reset.

A simple way to achieve this is to have ROM located at 0x0000. However, there are some
drawbacks to this configuration. Access speeds to ROM are generally slower than to
RAM, and your system might suffer if there is too great a performance penalty when
branching to exception handlers. Also, locating the vector table in ROM does not enable
you to modify it at run time.

0x10000

0x18000

0x4000

0x0000

Reset Handler

0x4000

0x0000Vectors

Reset Handler

Reset Handler Reset Handler

Reset Handler
0x10000

0x18000

Branch
to real
ROM

Remove
alias

ROM

RAM
Aliased

ROM

ROM

Figure 5-2 ROM/RAM Remap

Reset and Initialization

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 17
ARM DAI 0107A

Another possible solution is shown above. ROM is located at address 0x10000, but this
memory is aliased to zero by the memory controller at reset. Following reset, code in the
reset handler branches to the real address of ROM. The memory controller then removes
the aliased ROM, so that RAM is shown at address 0x0000. In __main, the vector table
is copied into RAM at 0x0000, so that exceptions can be serviced.

; --- Integrator CM control reg
CM_ctl_reg EQU 0x1000000C ; Address of CM Control
Register
Remap_bit EQU 0x04 ; Bit 2 is remap bit of CM_ctl

ENTRY

; On reset, an alias of ROM is at 0x0, so jump to 'real' ROM.
LDR pc, =Instruct_2

Instruct_2
; Remap by setting Remap bit of the CM_ctl register

LDR r1, =CM_ctl_reg
LDR r0, [r1]
ORR r0, r0, #Remap_bit
STR r0, [r1]

; RAM is now at 0x0.
; The exception vectors must be copied from ROM to RAM (in __main)

; Reset_Handler follows on from here

The above code shows how you might implement ROM/RAM remapping in an ARM
assembler module. The constants shown here are specific to the Integrator platform, but
the same method is applicable to any platform that implements ROM/RAM remapping in a
similar way.

The first instruction is a jump from aliased ROM to real ROM. This can be done because
the label instruct_2 is located at the real ROM address.

After this step, the alias of ROM is removed by flipping the remap bit of the Integrator
Core Module control register.

The above code is normally executed immediately after system reset. Remapping must
be completed before C library initialization code can be executed.

Note In systems with memory management units (MMUs), remapping can be implemented
through MMU configuration at system startup.

5.3.2 Local Memory Setup Considerations
Many ARM processor cores have on-chip memory systems, such as caches, tightly
coupled memories (TCMs), memory management units (MMUs) and memory protection
units (MPUs). Such devices are normally setup and enabled during system startup. As
such the initialization sequence of cores with local memory systems requires special
consideration.

As we have seen, C library initialization code in __main is responsible for setting up the
execution time memory map of the image. Therefore, the processor core’s run-time
memory view must be set up before branching to __main. Essentially, this means that
any MMU or MPU must be set up and enabled in the reset handler.

TCMs must also be enabled before branching to __main (normally before MMU/MPU
setup), because you generally want to scatterload code and data into TCMs. As a side
issue, you must be careful that you do not have to access memory that is masked by the
TCMs when they are enabled.

Reset and Initialization

18 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

One final issue to note is that you run the risk of cache coherency issues if caches are
enabled before branching to __main. Code in __main copies code regions from their
load address to their execution address – essentially treating instructions as data. As a
result, some instructions can be cached in the data cache, in which case they are not
visible to the instruction path.

You can avoid such coherency issues easily if you simply enable caches after the C library
initialization sequence finishes executing.

5.3.3 Scatterloading and Memory Setup
In a system where the reset-time memory view of the core is altered, either through
ROM/RAM remapping or MMU configuration, the scatterloading description file must
describe the image memory map after remapping has taken place.

For example the scatter file for the example in Section 5.3.1, resembles the
following:LOAD_ROM 0x10000 0x8000
{

EXE_ROM 0x10000 0x8000
{

reset_handler.o (+RO, +FIRST)
…

}

RAM 0x0000 0x4000
{

vectors.o (+RO, +FIRST)
…

}
}

The load region LOAD_ROM is placed at 0x10000, because this indicated the load
address of code and data after remapping has occurred.

5.4 Stack Pointer Initialization
As a minimum, your reset handler must assign initial values to the stack pointers of any
execution modes that your application will make use of

; --- Amount of memory (in bytes) allocated for stacks
Len_FIQ_Stack EQU 256
Len_IRQ_Stack EQU 256
…

Offset_FIQ_Stack EQU 0
Offset_IRQ_Stack EQU Offset_FIQ_Stack + Len_FIQ_Stack
…

Reset_Handler

; stack_base could be defined above, or located in a scatter file
LDR r0, stack_base ;

; Enter each mode in turn and set up the stack pointer
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit
SUB sp, r0, #Offset_FIQ_Stack

MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
SUB sp, r0, #Offset_IRQ_Stack
…

; Set up stack limit if needed
LDR r10, stack_limit

Reset and Initialization

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 19
ARM DAI 0107A

In the above example, the stacks are located at stack_base. This symbol can be a hard
coded address, or it can be defined in a separate assembler source file and located by a
scatter file. Details of how this is done are given in section 6.2.

The example allocates 256 bytes of stack for FIQ and IRQ mode, and you can do the
same for any other execution mode. To set up the stack pointers, simply enter each
mode (interrupts disabled) and assign the appropriate value to the stack pointer. If we are
to make use of software stack checking, you to have set up a stack limit here as well.

Stack pointer and/or stack limit values set up in the reset handler are automatically
passed as parameters to __user_initial_stackheap by C library initialization code.
These values therefore must not be modified by __user_initial_stackheap.

The following implementation of __user_initial_stackheap can be used with the
stack pointer setup routine above.

IMPORT heap_base
EXPORT __user_initial_stackheap

__user_initial_stackheap

; heap base could be hard coded, or placed by scatter file
LDR r0,=heap_base
; r1 contains SB value
MOV pc,lr

5.5 Hardware Initialization - $Sub$$main()
In general, it is beneficial to separate all system initialization code from the main
application. However, some components of system initialization, for example enabling of
caches and interrupts, must occur after executing C library initialization code.

We can make use of the $Sub and $Super function wrapper symbols to effectively insert a
routine that is executed immediately before entering the main application. Essentially, this
mechanism enables us to extend functions without altering the source code itself.

extern void $Super$$main(void);

void $Sub$$main(void)
{

cache_enable(); // enables caches
int_enable(); // enables interrupts
$Super$$main(); // calls original main()

}

Above is an example of how $Sub and $Super can be used in this way. The linker
replaces the function call to main() with a call to $Sub$$main(). From there we can
call a routine that enables caches, and another to enable interrupts.

The code branches to the real main() by calling $Super$$main().

Note More information on $Sub and $Super can be found in the ADS 1.2 Linker and Utilities
Guide.

5.6 Execution Mode Considerations
It is important to consider what mode the main application will run in. Your choice affects
how you implement system initialization.

A lot of the functionality that you are likely to implement at startup (both in the reset
handler and $Sub$$main) can only be done while executing in privileged modes. For
example, cache/MMU/MPU/TCM manipulation, and enabling interrupts.

Reset and Initialization

20 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

If you wish to run your application in a privileged mode (for example, Supervisor), this is
not an issue. Simply be sure to change to the appropriate mode before exiting your reset
handler.

If you wish to run your application in User mode, you can only change to User mode after
completing the necessary tasks in a privileged mode. The most likely place to do this is in
Sub$$main().

An important issue to note is that __user_initial_stackheap must set up the
application mode stack. Because of this, you must exit your reset handler in system
mode (which uses the User mode registers). __user_initial_stackheap then
executes in system mode, and so the application stack and heap are still set up when
User mode is entered.

5.7 Example Code – Build 4
Build 4 of the example can be run standalone on the Integrator platform.

The following modifications were made to build 3 of the example project:

• Vector Table

A vector table was added to the project, and placed by the scatter file.

• Reset Handler

The reset handler is added in init.s. Two separate modules, responsible for TCM and
MMU setup respectively, are included in the ARM926EJ-S build. These are excluded
from the ARM7TDMI build, which will run on Integrator systems with any core.
ROM/RAM remapping occurs immediately after reset.

• $Sub$$main()

For the ARM926EJ-S build, Caches are enabled in $Sub$$main() before entering the
main application.

• Embedded Scatter File

An embedded scatter file is used, which reflects the post-remapping view of memory.

The batch files for both of these builds produce a binary file suitable for downloading into
the Integrator AP application Flash at address 0x24000000. This can be achieved via the
‘File -> Flash Download menu’. A separate application note is available which describes
this process.

A precise timer is implemented using a timer on the AP motherboard. This generates an
IRQ, and a handler is installed which increments a counter every 1/100 second.

Further Memory Map Considerations

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 21
ARM DAI 0107A

6 Further Memory Map Considerations

6.1 Locating hardware addresses in the scatter file
So far, we have described the placement of code and data in a scatter file, but the location
of target hardware peripherals and the stack and heap limits are assumed to be hard
coded in source or header files. It would be beneficial to locate all information pertaining
to the target’s memory map in our scatter file so removing all references to absolute
addresses from our source code.

6.1.1 Locating Target Peripherals in the Scatter File
Conventionally, addresses of peripheral registers are hard-coded in project source or
header files. One can also declare structures that map on to peripheral registers, and
place these structures in the scatter file.

For example, a target could have a timer peripheral with two memory mapped 32-bit
registers. Below is a C structure that maps on to these registers.

struct {
volatile unsigned ctrl; /* timer control */
volatile unsigned tmr; /* timer value */

} timer_regs;

To place this structure at a specific address in the memory map, create a new execution
region to hold the structure.

LOAD_FLASH 0x24000000 0x04000000
{
; …
TIMER 0x40000000 UNINIT
{

timer_regs.o (+ZI)
}
; …

}

The above scatter file locates the timer_regs structure at 0x40000000.

It is important that the contents of these registers are not initialized to zero during
application startup, because this is likely to alter the state of your system. Marking an
execution region with the UNINIT attribute prevents ZI data in that region from being zero-
initialized.

6.2 Locating the Stack and Heap in the Scatter File
In many cases, it is preferable to specify the location of the stack and heap in the scatter
file. This has two main advantages:

• All information about the memory map is kept in one file.

• Changes to the stack and heap will only require re-linking, not recompiling.

This section describes two methods for implementing this.

6.2.1 Placing symbols explicitly
With ADS v1.2, this is the simplest of the two methods

Section 5.4 refers to the symbols stack_base and heap_base as reference symbols that
can be placed in a scatter file. To do this, create symbols labeled stack_base and

Further Memory Map Considerations

22 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

heap_base in an assembler module (the same can be done for the stack and heap limits
in a two-region memory model).

AREA stacks, DATA, NOINIT
EXPORT stack_base

stack_base SPACE 1

AREA heap, DATA, NOINIT
EXPORT heap_base

heap_base SPACE 1

END

These symbols can be located each in their own execution region in the scatter file.

LOAD_FLASH 0x24000000 0x04000000
{
; …
HEAP 0x20000 UNINIT
{

stackheap.o (heap)
}

STACKS 0x40000 UNINIT
{

stackheap.o (stacks)
}
; …

}

The above scatter description file places the heap base at 0x20000 and the stack base at
0x40000. The stack and heap base locations can now be easily altered by editing the
addresses of the respective execution regions.

6.2.2 Utilizing linker generated symbols
With ADS v1.2, this method requires that the stack and heap size are specified in an
object file. To some extent this negates the advantages described in section 6.2.
However this is the easiest method to migrate to the recommended method for future
ARM tools, where additional features will avoid this requirement.

First, define areas of an appropriate size for the stack and heap in an assembler source
file, for example, stackheap.s. The space directive can be used to reserve a zeroed block
of memory. Setting the ‘NOINIT’ area attribute prevents this zeroing (during development,
you might choose to zero-initialize the stack so that the maximum stack usage can be
seen). Note that labels are not required in this source file.

AREA stack, DATA, NOINIT
SPACE 0x3000 ; Reserve stack space

AREA heap, DATA, NOINIT
SPACE 0x3000 ; Reserve heap space

END

These sections can then be placed in their own execution region in the scatter file.

Further Memory Map Considerations

Application Note 107 Copyright © 2002 ARM Limited. All rights reserved. 23
ARM DAI 0107A

LOAD_FLASH 0X24000000 0x04000000
{

:
STACK 0x1000 UNINIT ; length = 0x3000
{

stackheap.o (stack) ; stack = 0x4000 to 0x1000
}

HEAP 0x15000 UNINIT ; length = 0x3000
{

stackheap.o (heap) ; heap = 0x15000 to 0x18000
}

}

The linker generates symbols that point to the base and limit of each execution region,
which can be imported into the retargeting code to be used by __user_initial_stackheap.
This code can be made more readable by using the DCD directive to give these values
more meaningful names:

IMPORT ||Image$$STACK$$ZI$$Base||
IMPORT ||Image$$STACK$$ZI$$Limit||
IMPORT ||Image$$HEAP$$ZI$$Base||
IMPORT ||Image$$HEAP$$ZI$$Limit||

stack_base DCD ||Image$$STACK$$ZI$$Limit||
stack_limit DCD ||Image$$STACK$$ZI$$Base||

heap_base DCD ||Image$$HEAP$$ZI$$Base||
heap_limit DCD ||Image$$HEAP$$ZI$$Limit||

The above files are suitable to place the heap base at 0x15000 and the stack base at
0x40000. The stack and heap base locations can now be easily altered by editing the
addresses of the respective execution regions.

6.3 Example Code – Build 5
Build 5 of the example is equivalent to Build 4, but with all target memory map information
located in the scatter file as described in section 6.2.1:

• Scatter File Symbols

Symbols to locate the stack, heap, and peripherals are declared in assembler
modules.

• Updated Scatter File

The embedded scatter file from build 4 is updated to locate the stack, heap, data
TCM, and peripherals.

6.4 Example Code – Build 6
Build 6 of the example is equivalent to Build 5, but with all target memory map information
located using linker generated symbols relating to the scatter file as described in section
6.2.2.

References

24 Copyright © 2002 ARM Limited. All rights reserved. Application Note 107
ARM DAI 0107A

7 References
For additional information see:

• Example code in <ads_install>\Examples\embedded directory

• ADS 1.2 Developer Guide

Chapter 6 – Writing Code for ROM

• ADS 1.2 Compilers and Libraries Guide

Chapter 4 – The C and C++ Libraries

• ADS 1.2 Debug Target Guide

Chapter 5 – Semihosting

• ADS 1.2 Linker and Utilities Guide

Chapter 5 – Using Scatterloading Description Files.

