
8-bit
Micrcontroller

Application
Note

Rev. 1450A–10/99
AVR301: C Code for Interfacing AVR® to
AT17CXXX FPGA Configuration Memories

Features
• C Routines for Software I2C Interface
• Example Circuit for AVR Programming

FPGA Configuration Memories
• User Programmable Speed
• Supports AT17Cxxx and AT24Cxxx

Families of EEPROM

Introduction
This application note describes how to
In-System-Program (ISP) an Atmel
FPGA Configuration memory using an
Atmel AVR microcontroller and how to
bit bang I2C using port pins on an
AT90S8515 AVR microcontroller. The
AT17CXXX family of FPGA configuration

memories, ranging from 64K bits to 1M
bit, uses the I2C protocol for in-system
programming.

This application note assumes that the
user is familiar with the AT90S8515 and
AT17C010 datasheets and the applica-
t i on no te t i t l ed “P rogramming
Specification for Atmel’s Configuration
Memory EEPROMs AT17C65/128/256/
512/010”.

This application note is written specifi-
cally for the 1M-bit device. C routines to
read and write data are included. The
code can easily be recompiled for all
AVR controllers with 256 bytes SRAM or
more.

Figure 1. Circuit Diagram

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

(T0) PB0
(T1) PB1

(AIN0) PB2
(AIN1) PB3

(SS) PB4
(MOSI) PB5
(MISO) PB6
(SCK) PB7

RESET
(RXD) PD0
(TXD) PD1
(INT0) PD2
(INT1) PD3

PD4
(OC1A) PD5

(WR) PD6
(RD) PD7

XTAL2
XTAL1

GND

VCC
PA0 (AD0)
PA1 (AD1)
PA2 (AD2)
PA3 (AD3)
PA4 (AD4)
PA5 (AD5)
PA6 (AD6)
PA7 (AD7)
ICP
ALE
OC1B
PC7 (A15)
PC6 (A14)
PC5 (A13)
PC4 (A12)
PC3 (A11)
PC2 (A10)
PC1 (A9)
PC0 (A8)

4
5
6
7
8

18
17
16
15
14

CLK
WP1

RESET/OE
WP2

CE

NC
SER_EN
READY
CEO

3 2 1 20 19

9 10 11 12 13

N
C

G
N

D
N

C
N

C
N

C

N
C

D
A

T
A

N
C

V
C

C
N

C

VCC

4.7K 4.7K

AT17C010

AT90S8515
1

Theory of Operation
The I2C bus is a two-wire synchronous serial interface
consisting of one data (SDA) and one clock (SCL) line. By
using open drain/collector outputs, the I2C bus supports
any fabrication process (CMOS, bipolar and more). The I2C
bus is a multi-master bus where one or more devices,
capable of taking control of the bus, can be connected.
When there is only one master connected to the bus, the
resulting code is much simpler because handling of bus
contentions and inter master access (a master accessing
another master) is not necessary. Only master devices can
drive both the SCL and SDA lines while a slave device is
only allowed to issue data on the SDA line. This application
note implements a single master I2C-interface.

Software Description
The generic I2C routines listed below were compiled with
size optimization using IAR’s C Compiler Version 1.40.
These routines implement a single master I2C implementa-
tion. The AT90S8515 used to perform the master function
is driven by an external 7.3728 MHz crystal. The routine
BitDelay is executed in 15 clock cycles or a 2.03 µs period
and provides the quarter period bit timing necessary to
meet the 3.3V timing specifications found in the above
mentioned application note.

This code uses PORTB of the AT90S8515. On power-up,
PORTB is initialized to all inputs with the internal pull-ups
turned off, the external pull-ups pull the SDA and SCL lines
high and the PORTB output latch bits SCL and SDA are ini-
tialized to zero. Routines WriteSDA and WriteSCL toggle
their respective data direction bit depending on the value of
parameter “state”. When state is a ‘1’ the port pin is config-
ured as input (external pull-ups pull high). When state is a
‘0’ the port pin is configured as an output and the latch
drives the pin low. Table 1 lists the generic I2C routines and
the amount of code space used by each routine. WriteSDA
and WriteSCL are very simple routines that could be incor-
porated into their respective calling routines to further
reduce the code size.

Table 1 lists the number of clock cycles used while imple-
menting the function. Compiler options were set to
generate minimum code.

General Calling Sequence for the I²C Routines

Write:
SendStartBit(); /*start* /

SendByte(byte,msbfirst); /*send address MSB first*/

SendByte(byte,lsbfirst); /*send data byte to that*/

/*address LSB first*/

SendStop(): /*stop*/

Read:
SendStartBit(); /*start*/

SendByte(byte,msbfirst); /*send address MSB first*/

byte = GetByte(lastbyte);/*read byte from that*/

/*address last byte = 1

/*for the last byte*/

/*in a serial stream*/

SendStop(); /*stop*/

The routines SendStartBit, SendByte, and GetByte all
leave the SCL signal low on exit, allowing the next routine
to write data to SDA (I2C allows changes on SDA only
when SCL is low; otherwise the I2C device will interpret a
start or stop condition). SendByte returns a flag indicating a
successful write to the I2C slave, 0x01 signals that the
slave did not acknowledge the transfer and that something
is wrong on the I2C bus or with the slave. WritePage and
ProgramResetPolarity use this flag for data polling. Figure
1 shows I2C start and stop bit conditions.

Table 1. Size and Execution Time for I2C Routines

Routine Clocks Bytes

SendStartBit 138 22

SendByte 1050-1054 74

SendStopBit 110 16

BitDelay 15 10

SetSCLHigh 33 38

WriteSCL 12-13 12

WriteSDA 12-13 12

GetByte 1089-1090 66
AVR3012

AVR301
Figure 2. I2C Start and Stop Bits

The AT17C010 device is programmed/verified on a 128-
byte page boundary. During normal FPGA configuration
operations the read of the device starts at address 0 and
continues until the FPGA has completed its configuration.
The routines WritePage and ReadPage write and read
128-byte pages from the configuration memory and use the
generic I2C routines to perform this function. WritePage
and ReadPage are both called with the page address to
write/read to, and a pointer to a 128-byte page buffer. At
the end of a page write the data polling method is used to
determine the end of the internal page programming cycle.
ProgramResetPolarity and VerifyResetPolarity write and
read data from memory locations 0x20000 - 0x20003 in
effect setting and verifying the reset/oe polarity.

PORTB on the AT90S8515 is used to communicate with
the FPGA configuration memory. Bit assignments are as
follows:

/*PB0 = SDA*/

/*PB1 = SCL*/

/*PB2 = SER_EN - used to put AT17C010 in I2C mode*/

/*PB3 = CS*/

/*PB4 = RESET/OE*/

The routine Init.c initializes the AT90S8515 peripherals.
Routines Timer0.c and Timer1.c are general-purpose time
out routines. Main is used to call WritePage, ReadPage,
ProgramResetPolarity, and VerifyResetPolarity and serves
to illustrate proper calling conventions for those routines.

Modifications and Optimizations

Impact on Changing Crystal Frequency
If the user decides to change oscillator frequencies then
the following routines would have to be modified:
• BitDelay

• ProgramResetPolarity

• SetSCLHigh

• WritePage

BitDelay uses NOP’s to effect a quarter bus period delay.
Add or remove NOP’s to increase or decrease the delay.
In the routines ProgramResetPolarity and WritePage timer
1 is used to generate a time-out after 20 milliseconds, the
programming operation should have completed by then.
Timer 0 is used in SetSCLHigh to generate a time out after
35 microseconds. If the SCL line is not high by then, then
something is wrong on the bus.

References
The I2C Bus and How to use it, April 1995 Update - Philips
Semiconductors

Programming Specification for Atmel’s Configuration Mem-
ory EEPROMS - Atmel Corporation

AT17C512/LV512/010/LV010 FPGA Configuration Memory
Datasheet - Atmel Corporation

AT90S8515 Datasheet - Atmel Corporation

Table 2. Code Size and Execution Time for Page
Read/Write

Routines Cycles Bytes

WritePage 287872 146

ReadPage 145901 126

ProgramResetPolarity 156104 106

VerifyResetPolarity 157269 98

START Condition

SCL

SDA

STOP Condition

SCL

SDA
3

Main.c
/* main

use the STK200 starter kit and external prototype board to program

an Atmel AT17C010 device. LEDs on PORTC are used as visual status indicators

4.7k ohm pull-up resistors are used on SDA and SCL */

#include "i2c.h"

volatile unsigned char t0_timed_out;

volatile unsigned char t1_timed_out;

tiny unsigned char wrbuf[128];

unsigned char rdbuf[128];

extern void WritePage(unsigned int address, unsigned char *bufptr);

extern void ReadPage(unsigned int address, unsigned char *bufptr);

void ProgramResetPolarity(unsigned char state);

unsigned char VerifyResetPolarity(void);

extern void Init(void);

void C_task main(void)

{

unsigned int address = 0;

unsigned char i;

 Init();

 _SEI(); /* enable interrupts */

 /* init test buffer */

 for (i = 0; i < 128; i++)

 wrbuf[i] = i;

 while (1)

{

PORTC = 0x00; /* LEDs off */

 for (address = 0; address < MAX_PAGES; address++)

{

 WritePage(address,&wrbuf[0]);

 PORTC = address; /* LEDs on */

 ReadPage(address,&rdbuf[0]);

 /* verify programmed page */

 for (i = 0; i < 128; i++)

{

 if (wrbuf[i] != rdbuf[i])

{

 PORTC = 0xff; /* LEDs on */

 }

 }
AVR3014

AVR301

 ProgramResetPolarity(0);

 if (VerifyResetPolarity())

{

 PORTC = 0xaa;

 }

 ProgramResetPolarity(0xff);

 if (!VerifyResetPolarity())

{

 PORTC = 0x55;

 }

 /* clear verify buf */

 for (i = 0; i < 128; i++)

 rdbuf[i] = 0;

 }

} /* while (1) */

} /* main */

Bitdelay.c
/* BitDelay.c

for a 3.3v device min clock pulse width low and high is 4 us

generate 2us delay for bit timing using NOP’s

7.3728MHz crystal */

#include "i2c.h"

void BitDelay(void)

{

char delay;

delay = 0x03;

do

{

 while(--delay)

;

_NOP();

return;

}

Getbyte.c
/* GetByte.c

reads a byte from the I2C slave, lastbyte is used to tell slave that the read is over */

#include "i2c.h"

extern void WriteSCL(unsigned char state);

extern void WriteSDA(unsigned char state);

extern void BitDelay(void);

extern unsigned char SetSCLHigh(void);
5

unsigned char GetByte(unsigned char lastbyte)

{

/* lastbyte == 1 for last byte */

unsigned char i, bit;

unsigned char result = 0;

 DDRB &= 0xfe; /* SDA to input */

 for (i = 0;i < 8;i++)

{

/* each bit at a time, LSB first */

 SetSCLHigh();

 BitDelay();

 bit = (PINB & 0x01);

 result = (bit << (i)) | result;

 WriteSCL(0);

 BitDelay();

 }

 /* send ACK */

 WriteSDA(lastbyte); /* no ack on last byte ... lastbyte = 1 for the last byte */

 BitDelay();

 SetSCLHigh();

 BitDelay();

 WriteSCL(0);

 BitDelay();

 WriteSDA(1);

 BitDelay();

 return(result);

}

Init.C
/* init.c */

#include "i2c.h"

void Init(void)

{

/* P0 = SDA - bidirectional */

 /* P1 = SCL - output */

 /* P2 = SER_EN - output */

 /* P3 = CS - output */

 /* P4 = RESET/OE - output */

 /* P7, P6, P5, P4, P3, P2, P1, P0 */

 /* O O O O O O O O */
AVR3016

AVR301
 /* 1 1 1 1 1 1 1 1 */

 DDRB = 0xfc;

 PORTB = 0xfc;

 /* Port c used to light leds on prototype board */

 DDRC = 0xff;

 PORTD |= 0xff;

 PORTC = 0x00; /* 0 turns leds off ... really should be the other way around */

 /* use pushbutton switches on atstk200 kit to start events */

 DDRD = 0x00;

 TCCR1A = 0x00; /* timer/counter 1 PWM disable */

 TCCR1B = 0x00; /* timer/counter 1 clock disable */

 TCNT1H = 0x00;

 TCNT1L = 0x00; /* clear counter */

TCNT0 = 0x00;

 TCCR0 = 0x00; /* stop the clock */

 TIMSK |= 0x82; /* enable timer counter 0 & 1 interrupt on overflow */

}

ProgramResetPoliarity.c
/* ProgramResetPolarity.c

Locations 0x20000 through 0x20003 are used to store the reset/ouput enable polarity.

0xff = active high reset and active low output enable.

0x00 = active low reset and active high output enable.

So the memory location values determine the reset polarity.

After programming the data polling method is used to determine the end of

the internal programming cycle.

Timer/Counter1 is used to ensure the polling code exits its while loop. */

#include "i2c.h"

extern volatile unsigned char t1_timed_out;

extern unsigned char SendByte(unsigned char byte, unsigned char order);

extern void SendStartBit(void);

extern void SendStopBit(void);

void ProgramResetPolarity(unsigned char state)

{

unsigned char i;

unsigned char test_ack = 0xff;

 PORTB &= 0xf7; /* bring CS low */

 PORTB &= 0xef; /* bring RESET/OE low */

 PORTB &= 0xfb; /* bring SER_EN low */

 SendStartBit();
7

 SendByte(AT17C010 + WRITE,MSB_FIRST); /* send device address byte */

 SendByte(0x00,MSB_FIRST); /* 1st address byte */

 SendByte(0x00,MSB_FIRST); /* 2nd address byte */

 SendByte(0x02,MSB_FIRST); /* 3rd address byte ... most significant byte */

 for (i = 0; i < 4; i++)

 SendByte(state,LSB_FIRST);

 SendStopBit();

 t1_timed_out = FALSE; /* set in timer counter 0 overflow interrupt routine */

 /* 20 milli-second timeout */

 /* 7.3728MHz / 1024 = 7200 Hz */

 /* 7200 Hz = 138.8 us */

 /* 20 ms / 138.8 us = 144.09 */

 /* 65536 - 144 = 65392 = ff70 */

 /* interrupt on ffff to 0000 transition */

 TCNT1H = 0xff;

 TCNT1L = 0x70; /* load counter */

 TCCR1B = 0x05; /* timer/counter 1 clock / 1024 */

 /* continue sending start bit and device address until we get an ack back */

 /* data poll to program complete ... time out for error */

 while (test_ack && !t1_timed_out)

{

 SendStartBit();

 test_ack = SendByte(AT17C010 + WRITE,MSB_FIRST); /* send device address byte */

 }

 SendStopBit();

 PORTB |= 0x04; /* bring SER_EN high */

 PORTB |= 0x10; /* bring RESET/OE high */

 PORTB |= 0x08; /* bring CS high */

}

ReadPage.c
/* ReadPage.c

Read 128 bytes at address into bufptr

Starts reading at address 0 within the page

Please refer to the application note titled:

"Programming Specification for Atmel's Configuration Memory E²PROMS AT17C65/128/256/512/010"

found at www.atmel.com for detailed device address decoding and page address formatting */

#include "i2c.h"

extern void BitDelay(void);

extern unsigned char SendByte(unsigned char byte, unsigned char order);

extern unsigned char GetByte(unsigned char lastbyte);

extern void SendStartBit(void);
AVR3018

AVR301
extern void SendStopBit(void);

void ReadPage(unsigned int address, unsigned char *bufptr)

{

unsigned char i;

unsigned char addr1;

unsigned char addr2;

unsigned char addr3;

 PORTB &= 0xf7; /* bring CS low */

 PORTB &= 0xef; /* bring RESET/OE low */

 PORTB &= 0xfb; /* bring SER_EN low */

 BitDelay();

 addr1 = (unsigned char)(address >> 9);

 addr2 = (unsigned char)(address >> 1);

 addr3 = (unsigned char)(address << 7);

 SendStartBit();

 SendByte(AT17C010 + WRITE,MSB_FIRST); /* send device address byte */

 SendByte(addr1,MSB_FIRST); /* 1st address byte */

 SendByte(addr2,MSB_FIRST); /* 2nd address byte */

 SendByte(addr3,MSB_FIRST); /* 3rd address byte */

 SendStartBit();

 SendByte(AT17C010 + READ,MSB_FIRST); /* send device address byte with read bit */

 for (i = 0; i < 127; i++)

 bufptr[i] = GetByte(0);

 bufptr[127] = GetByte(1); /* 1 signals last byte of read sequence */

 SendStopBit();

 PORTB |= 0x04; /* bring SER_EN high */

 PORTB |= 0x10; /* bring RESET/OE high */

 PORTB |= 0x08; /* bring CS high */

}

SendByte.c
/* SendByte.c

send a byte of address or data to the I2C slave

parameter order used to select between sending LSB or MSB first

returns a 1 if the slave didn’t ack and a 0 if the slave did */

#include "i2c.h"

extern void WriteSCL(unsigned char state);

extern void WriteSDA(unsigned char state);
9

extern void BitDelay(void);

extern unsigned char SetSCLHigh(void);

unsigned char SendByte(unsigned char byte, unsigned char order)

{

unsigned char i;

unsigned char error;

 for (i = 0; i < 8; i++)

{

 if (order)

{

 WriteSDA(byte & 0x80); /* if > 0 SDA will be a 1 */

 byte = byte << 1; /* send each bit, MSB first for address */

 }

 else

{

 WriteSDA(byte & 0x01); /* if > 0 SDA will be a 1 */

 byte = byte >> 1; /* send each bit, LSB first for data */

 }

 BitDelay();

 SetSCLHigh();

 BitDelay();

 WriteSCL(0);

 BitDelay();

 }

 /* now for an ack */

 /* master generates clock pulse for ACK */

 WriteSDA(1); /* release SDA ... listen for ACK */

 BitDelay();

 SetSCLHigh(); /* ACK should be stable ... data not allowed to change when SCL is high */

 /* SDA at 0 ?*/

 error = (PINB & 0x01); /* ack didn’t happen if bit 0 = 1 */

 WriteSCL(0);

 BitDelay();

 return(error);

}

AVR30110

AVR301
SenStartBit.c
/* SendStartBit.c

generates an I2C start bit

start bit is a 1 to 0 transition on SDA while SCL is high

 /

SCL ___/

 \

SDA _____

*/

#include "i2c.h"

extern void WriteSCL(unsigned char state);

extern void WriteSDA(unsigned char state);

extern void BitDelay(void);

extern unsigned char SetSCLHigh(void);

void SendStartBit(void)

{

WriteSDA(1);

 BitDelay();

 SetSCLHigh();

 BitDelay();

 WriteSDA(0);

 BitDelay();

 WriteSCL(0);

 BitDelay();

}

SendStopBit.c
/* SendStopBit.c

generates an I2C stop bit

assumes SCL is low

stop bit is a 0 to 1 transition on SDA while SCL is high

 /

SCL ___/

 /

SDA _________/

*/

#include "i2c.h"
11

extern void WriteSCL(unsigned char state);

extern void WriteSDA(unsigned char state);

extern void BitDelay(void);

extern unsigned char SetSCLHigh(void);

void SendStopBit(void)

{

WriteSDA(0);

 BitDelay();

 SetSCLHigh();

 BitDelay();

 WriteSDA(1);

 BitDelay();

}

SetSCLHigh.c
/* SetSCLHigh.c

Det SCL high, and wait for it to go high.

Returns the value of t0_timed_out. If 0xff then we timed out before SCL went high and

should be used to indicate an error to the caller

Crystal frequency is 7.3728 MHz */

#include "i2c.h"

extern volatile unsigned char t0_timed_out;

extern void WriteSCL(unsigned char state);

unsigned char SetSCLHigh(void)

{

WriteSCL(1); /* release SCL*/

 /* set up timer counter 0 for timeout */

 t0_timed_out = FALSE; /* will be set after approximately 34 us */

 TCNT0 = 0; /* clear counter */

 TCCR0 = 1; /* ck/1 .. enable counting */

 /* wait till SCL goes to a 1 */

 while (!(PINB & 0x02) && !t0_timed_out)

;

 TCCR0 = 0; /* stop the counter clock */

 return(t0_timed_out);

}

AVR30112

AVR301
Timer0.c
/* timer0 */

#include "i2c.h"

extern volatile unsigned char t0_timed_out;

interrupt [TIMER0_OVF0_vect] void TIMER0_OVF0_interrupt(void)

{

t0_timed_out = TRUE;

}

Timer1.c
/* timer 1 timer */

#include "i2c.h"

extern volatile unsigned char t1_timed_out;

interrupt [TIMER1_OVF1_vect] void TIMER1_OVF1_interrupt(void)

{

t1_timed_out = TRUE;

}

VerifyResetPolarity.c
/* VerifyResetPolarity.c

4 bytes are read from locations 0x20000 through 0x20003

The bytes are verified to be of all the same value. If they are then the value is returned.

return value = 0xff = active high reset and active low output enable.

return value = 0x00 = active low reset and active high output enable.

If they aren’t then 0xaa is returned to signal an error condition. */

#include "i2c.h"

extern void BitDelay(void);

extern unsigned char SendByte(unsigned char byte, unsigned char order);

extern unsigned char GetByte(unsigned char lastbyte);

extern void SendStartBit(void);

extern void SendStopBit(void);

unsigned char VerifyResetPolarity(void)

{

unsigned char loc_1;

unsigned char loc_2;

unsigned char loc_3;

unsigned char loc_4;

unsigned char value;

 PORTB &= 0xf7; /* bring CS low */

 PORTB &= 0xef; /* bring RESET/OE low */

 PORTB &= 0xfb; /* bring SER_EN low */
13

 BitDelay(); /* for good measure */

 SendStartBit();

 SendByte(AT17C010 + WRITE,MSB_FIRST); /* send device address byte */

 SendByte(0x00,MSB_FIRST); /* 1st address byte ... most significant byte first */

 SendByte(0x00,MSB_FIRST); /* 2nd address byte ... most significant byte first */

 SendByte(0x02,MSB_FIRST); /* 3rd address byte ... most significant byte first */

 SendStartBit();

 SendByte(AT17C010 + READ,MSB_FIRST); /* send device address byte with read */

 loc_1 = GetByte(0);

 loc_2 = GetByte(0);

 loc_3 = GetByte(0);

 loc_4 = GetByte(1);

 SendStopBit();

 PORTB |= 0x04; /* bring SER_EN high */

 PORTB |= 0x10; /* bring RESET/OE high */

 PORTB |= 0x08; /* bring CS high */

 if ((loc_1 == loc_2) && (loc_2 == loc_3) && (loc_3 == loc_4))

 value = loc_1; /* valid reset/oe polarity */

 else

 value = 0xaa; /* error */

 return(value);

}

WritePage.c
/* WritePage.c

Writes 128 bytes at address from bufptr

Starts writing at address 0 within the page

Please refer to the application note titled:

"Programming Specification for Atmel's Configuration Memory E²PROMS AT17C65/128/256/512/010"

found at www.atmel.com for detailed device address decoding and page address formatting

After programming the data polling method is used to determine the end of

the internal programming cycle.

Timer/Counter1 is used to ensure the polling code exits its while loop. */

#include "i2c.h"

extern volatile unsigned char t1_timed_out;

extern unsigned char SendByte(unsigned char byte, unsigned char order);

extern void SendStartBit(void);

extern void SendStopBit(void);

extern void BitDelay(void);

void WritePage(unsigned int address, unsigned char *bufptr)
AVR30114

AVR301
{

unsigned char i;

unsigned char addr1;

unsigned char addr2;

unsigned char addr3;

unsigned char test_ack = 0xff;

 PORTB &= 0xf7; /* bring CS low */

 PORTB &= 0xef; /* bring RESET/OE low */

 PORTB &= 0xfb; /* bring SER_EN low */

 BitDelay();

 addr1 = (unsigned char)(address >> 9);

 addr2 = (unsigned char)(address >> 1);

 addr3 = (unsigned char)(address << 7);

 SendStartBit();

 SendByte(AT17C010 + WRITE,MSB_FIRST); /* send device address byte with write bit */

 SendByte(addr1,MSB_FIRST); /* 1st address byte */

 SendByte(addr2,MSB_FIRST); /* 2nd address byte */

 SendByte(addr3,MSB_FIRST); /* 3rd address byte */

 for (i = 0; i < 128; i++)

 SendByte(bufptr[i],LSB_FIRST);

 SendStopBit();

 t1_timed_out = FALSE; /* set in timer counter 0 overflow interrupt routine */

 /* 20 milli-second timeout */

 /* 7.3728MHz / 1024 = 7200 Hz */

 /* 7200 Hz = 138.8 us */

 /* 20 ms / 138.8 us = 144.09 */

 /* 65536 - 144 = 65392 = ff70 */

 /* interrupt on ffff to 0000 transition */

 TCNT1H = 0xff;

 TCNT1L = 0x70; /* load counter */

 TCCR1B = 0x05; /* timer/counter 1 clock / 1024 */

 /* continue sending start bit and device address until we get an ack back */

 /* data poll to program complete ... time out for error */

 while (test_ack && !t1_timed_out)

{

 SendStartBit();

 test_ack = SendByte(AT17C010 + WRITE,MSB_FIRST); /* send device address byte */

 }

 TCCR1B = 0x00; /* disable timer/counter 1 clock */

 SendStopBit();

 PORTB |= 0x04; /* bring SER_EN high */
15

 PORTB |= 0x10; /* bring RESET/OE high */

 PORTB |= 0x08; /* bring CS high */

}

WriteSCL.c
/* WriteSCL.c */

#include "i2c.h"

void WriteSCL(unsigned char state)

{

if (state)

 DDRB &= 0xfd; /* input ... pullup will pull high or slave will drive low */

 else

 DDRB |= 0x02; /* output ... port latch will drive low */

}

WriteSDA.c
/* WriteSDA.c */

#include "i2c.h"

void WriteSDA(unsigned char state)

{

if (state)

 DDRB &= 0xfe; /* input ... pullup will pull high or slave will drive low */

 else

 DDRB |= 0x01; /* output ... port latch will drive low */

}

i2c.h
/* i2c.h */

#include "io8515.h"

#include "ina90.h"

#pragma language=extended

#define MSB_FIRST 0xff

#define LSB_FIRST 0x00

#define READ 0x01

#define WRITE 0x00

#define AT17C010 0xa6

#define TRUE 0xff

#define FALSE 0x00

#define MAX_PAGES 1024

#define PAGE_SIZE 128

8515int.xlc

-! XLINK command file for AT90S8515. 512 bytes data address

 space and 8 Kbytes program address space. -!
AVR30116

AVR301
 -! Define CPU type (AVR) -!

-ca90

 -! Define reset and interrupt vector segment, requires 28(dec) locations -!

-Z(CODE)INTVEC=0-1B

 -! Define segments in flash memory -!

-Z(CODE)RCODE,CDATA0,CDATA1,CCSTR,SWITCH,FLASH,CODE=1C-1FFF

 -! Define segments in RAM -!

 -! The registers are in addresses 0-1F and memory mapped I/O in addresses 20-5F, built-in SRAM in

addresses 60-25F. Data stack(CSTACK) size is 60 bytes(hex), return stack(RSTACK) size is 20 bytes(hex)-!

-Z(DATA)IDATA0,UDATA0,RSTACK+20,IDATA1,UDATA1,ECSTR,CSTACK+60=60-25F

 -! Select reduced "printf" support to reduce library size.

 See the configuration section of the IAR C-compiler Users Guide concerning use of printf/sprintf. -!

-e_small_write=_formatted_write

-e_small_write_P=_formatted_write_P

 -! Disable floating-point support in "scanf" to reduce library size.

 See the configuration section of the IAR C-compiler Users Guide concerning use of scanf/sscanf -!

-e_medium_read=_formatted_read

-e_medium_read_P=_formatted_read_P

 -! Suppress one warning which is not relevant for this processor -!

-w29

 -! Load the ’C’ library -!

cl1s

17

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

1450A–10/99/xM

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

	Features
	Introduction
	Theory of Operation
	Software Description
	General Calling Sequence for the I·C Routines
	Write:
	Read:

	Modifications and Optimizations
	Impact on Changing Crystal Frequency
	References
	Main.c
	Bitdelay.c
	Getbyte.c
	Init.C
	ProgramResetPoliarity.c
	ReadPage.c
	SendByte.c
	SenStartBit.c
	SendStopBit.c
	SetSCLHigh.c
	Timer0.c
	Timer1.c
	VerifyResetPolarity.c
	WritePage.c
	WriteSCL.c
	WriteSDA.c
	i2c.h
	8515int.xlc

