
AN010 - 16-Bit PWM Using an On-Chip Timer

Relevant Devices
This application note applies to the following devices:
C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F007, C8051F010, C8051F011,
C8051F012, C8051F015, C8051F016, C8051F017, C8051F220, C8051F221, C8051F226, C8051F230,
C8051F231, and C8051F236.
Note: the C8051F0xx devices have an on-chip PCA which may be more suitable for PWM generation. See
AN007 for more information.

CYGNAL Application Note
Introduction
This document describes how to implement a
16-bit pulse width modulator (PWM) digital-
to-analog converter (DAC). The PWM con-
sists of two parts:

1. A timer to produce a PWM waveform of a
given period and specified duty cycle.

2. A low-pass filter to convert the PWM
wave to an analog voltage level output.

A PWM coupled with a low-pass filter can be
used as a simple, low cost digital to analog
converter (DAC). This output can be used to
drive to a voltage controlled device, or used in
a feedback control system where an analog-to-
digital convertor (ADC) is used to sample a
controlled parameter. PWM’s are often used in
motor control applications.

Implementation software and hardware is dis-
cussed in this application note. An example of
a PWM using an on-chip timer and a low-pass
filter on the C8051F226-TB target board is
provided. The example also configures the tar-
get board to sample the PWM output using the
on-chip ADC. This DAC implementation may

be used to evaluate the C8051F220/1/6’s
ADC.

Key Points
• The C8051F2xx family SoC’s feature three

on-board 16-bit timers that can be used for
PWM generation. This example uses
Timer 0 to produce the PWM wave which
is output to a general-purpose port pin.

• The C8051F2xx family of SoC’s have an
8-bit ADC that is used in the provided
example to sample the output of the PWM
DAC.

• The C8051F226-TB target board features a
low-pass filter that can readily be used for
the PWM DAC and configured to be sam-
pled by the on-chip ADC without soldering
or adding extra wiring. Target board use is
assumed in the provided example.

Generating the PWM Input
Waveform
Pulse-Width Modulation (PWM) is a method
of encoding data by varying the width of a
pulse or changing the duty cycle of a periodic
waveform. Adjusting the duty cycle of this
CYGNAL Integrated Products, Inc. AN010-1.1 FEB01
4301 Westbank Drive Copyright © 2001 Cygnal Integrated Products, Inc.

Suite B-100 (All rights reserved)

Austin, TX 78746
www.cygnal.com

http://www.cygnal.com
http://www.cygnal.com

AN010 - 16-Bit PWM Using an On-Chip Timer
waveform, we control the voltage output from
the low-pass filter. This can be thought of as a
type of digital-to-analog convertor (DAC). In
this example, we use Timer 0 to time the tog-
gling of a general purpose port pin to create the
PWM waveform.

Configuring Timer 0
In order to create a PWM wave with a user
specified duty cycle, we use Timer 0 in 16-bit
counter/timer mode. To do so, we configure
the Timer Mode register (TMOD), and the
Clock Control register (CKCON), to set
Timer 0 to use the system clock (undivided) as
follows:

;Set TIMER0 in 16-bit counter
;mode
orl TMOD,#01h

;Set TIMER0 to use system clk/1
orl CKCON,#08h

Timer 0 is used to set the amount of time the
PWM wave will be high during one cycle.
When the timer overflows, the program vec-
tors to an interrupt service routine (ISR) to
take a port pin high or low to produce the
PWM wave. We enable the Timer 0 interrupts
by setting the ET0 bit to 1 as follows:

;Enable Timer 0 interrupts
setb ET0

Additionally, interrupts must be enabled glo-
bally:

;enable interrupts globally
setb EA

The last step in configuring Timer 0 is to start
the timer by setting the TR0 bit:

;start Timer0
setb TR0

A variable called pulse_width defines the duty
cycle of the PWM wave. This determines the
amount of time the waveform is high during
one period of the wave, and is loaded into
Timer 0. The duty cycle can be set with 16-bit
resolution. However, due to the number of
cycles it takes to execute the Timer 0 interrupt
service routine (to be discussed later), the
smallest pulse width that can be assigned is 19
clock cycles. Likewise, the interrupt service
routine takes 14 cycles to take the PWM wave
from high to low. Thus, the maximum value
that can be used is 65,522. The variable
pulse_width is defined as follows:

;define variable for user to
;set duty cycle of PWM wave
;input to the low-pass filter

pulse_width EQU 35000d

Note the example code sets pulse_width equal
to 35,000. As an example, 35,000 will create a
duty cycle of 53.4%. Duty cycle is calculated
as follows:

The duty cycle also describes the average time
that the waveform is high. This time will be
converted into a voltage in the low-pass filter.
The average output voltage for a given
pulse_width value is calculated as follows:

dutycycle%
pulsewidth

65 536,----------------------------- 100×=

Equation 1. Calculating Duty Cycle

Voutput VDD
pulsewidth

65 536,-----------------------------×=

Equation 2. Calculating Average
Output Voltage
2 AN010-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN010 - 16-Bit PWM Using an On-Chip Timer
Hardware Configuration
Port pin P2.7 will be used for the PWM wave-
form output to the PWM filter. We configure
P2.7 as ‘push-pull’ by setting the Port 2 Con-
figuration Register (PRT2CF):

;Set p2.7 as push-pull
orl PRT2CF, #80h

Additionally, if using Cygnal’s C8051F226-
TB target board, a shorting jumper must be
placed on the “PWMIN” jumper in order to
connect port pin P2.7 to the low-pass filter.

Waiting For Interrupts
The Timer 0 ISR (Timer 0 overflow interrupt
service routine) is used to generate the PWM
wave by toggling the port pin P2.7. After pro-
gramming the various peripherals, one may
use a simple jump to the current address
instruction in a loop to wait for interrupts,
which is most common. However, the ISR is
being used to generate a PWM waveform, and
there will be a small amount undesirable of
timing jitter caused by the small variation in
delay due to interrupt latency. This variation
occurs because the C8051 completes the cur-
rent instruction before branching to the inter-
rupt service vector. Thus, the time to branch to
the ISR will vary depending on where in the 2-
cycle jump instruction the MCU is when the
interrupt condition occurs. To avoid this, we
make use of the C8051 MCU IDLE Mode. The
MCU will automatically “wake up” from
IDLE Mode when an enabled interrupt occurs.
This removes variations in interrupt latency
because the core is always in the same state
when an interrupt occurs. Note that all periph-
erals (such as timers) continue to operate when
in IDLE Mode.

Setting the Idle Mode Select bit in the Power
Control Register (PCON) places the C8051 in
IDLE Mode. A jump statement is used to send

the program counter back to the instruction to
set the IDLE mode upon a return from an inter-
rupt:

;Wait for interrupts in IDLE
;mode
IDLE:

orl PCON,#01h
sjmp IDLE

Upon a return from an ISR (reti instruction),
the MCU will jump back to the sjmp instruc-
tion. Here, the program will loop back to set
the IDLE Mode bit and wait for the next inter-
rupt condition to occur.

Generating the PWM Wave in
Software with Timer 0 ISR
The PWM wave is produced by toggling a port
pin in an interrupt service routine (ISR). This
ISR is a state machine with two states. In one
state, the output pin is high (the high part of
the PWM waveform). In this state, Timer 0 is
loaded with the value pulse_width and the
MCU exits the ISR. Next, the port pin is taken
‘low’ by clearing the bit P2.7. In the low state,
the value -pulse_width is loaded. This sets the
low time of the PWM waveform. At the next
overflow, bit P2.7 is tested and then set to go to
the high part of the waveform for the next
period. In this way, the duty cycle can be var-
ied but the period of the PWM wave will be
the same.

The Timer 0 ISR is written as follows:

TIMER0_ISR:
;Test to see if low/high in
;waveform
jbc P2.7,LO
setb P2.7

; Set the low time of the
; PWM waveform
; Stop Timer 0 prior to load
clr TR0
© 2001 Cygnal Integrated Products, Inc. AN010-1.1 FEB01 3

http://www.cygnal.com
http://www.cygnal.com

AN010 - 16-Bit PWM Using an On-Chip Timer
mov TH0,#HIGH(-
pulse_width)

mov TL0,#LOW(-pulse_width)

; Restart Timer 0
setb TR0
;Go to the reti statement
jmp RETURN

;Set low time of PWM Wave
LO:
; Stop Timer 0
clr TR0
mov TH0,#HIGH(pulse_width)
mov TL0,#LOW(pulse_width)
; Restart Timer 0
setb TR0

;Return to MAIN and wait for
;interrupt
RETURN:reti

The Low-Pass Filter
The PWM wave generated with specified duty
cycle is input into a low-pass filter. This filter
will remove most of the high frequency com-
ponents of the PWM wave. In terms of the
time domain, the RC circuit will be charged to
a voltage level proportional to the percentage
of the period that the PWM wave input is posi-
tive (duty cycle). In short, the low-pass filter
converts the set high time of the PWM wave to
a voltage at the output of the system. Because
the system inputs a digital number and outputs
a desired voltage, the PWM and low-pass filter
may be considered a form of digital-to-analog
convertor (DAC).

In our example, we use a single-pole RC filter
installed on the C8051F226-TB target board
by placing a shorting jumper on the two pin

jumper labeled “PWMIN”. The filter used is
shown in Figure 1..

The filter in Figure 1 is a simple single pole
filter. Its transfer function is:

The RC filter must have a relatively low cutoff
frequency in order to remove enough high fre-
quency components of the wave to give a rela-
tively constant DC voltage level. However, if
the RC constant is too large, it will take too
long for the RC voltage to rise to a constant
level (i.e., long settling time.) This trade off
can be easily tested in a computer model or a
lab to choose good resistor/capacitor values.

This filter has only a single pole and so does
not filter out all of the high frequency compo-
nents of the rectangular PWM waveform. The
capacitor is undergoing alternating cycles of
charge and discharge, so the output will not be
a constant DC voltage. (See Figure 2 below.)
The output voltage will have some “ripple”
(Vripple in Figure 2) associated with the fil-
ter’s time constant τ=RC. In the frequency
domain, the voltage ripple can be thought of as
the relationship between the filter’s cutoff fre-

C
R

PWMWave input
PWM Output

Figure 1. Low-Pass Filter

Vout s()
Vin s()-------------------

ωc

s ωc+
---------------= ωc

1
RC
--------= 

 ,

Equation 3. RC Filter Transfer Function
4 AN010-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN010 - 16-Bit PWM Using an On-Chip Timer
quency (ω=1/RC) and the frequency of the
PWM wave.

When designing the low-pass filter, it may be
important to predict, or characterize the devia-
tion from the desired constant, DC voltage out-
put. We refer to this as voltage ripple
(Vripple). In order to characterize the Vripple,
we use the formulae that describes the voltage
of a capacitor in an RC circuit.

Figure 2 illustrates the input PWM wave and
the resulting low-pass filter output. The output
wave is exaggerated to show the alternating
charge and discharge of the capacitor in the RC
circuit. The ripple for a 50% duty cycle (worst
case ripple) for this filter is calculated by using
the following expression given R,C, and the
period of the PWM wave, T:

Equation 4 is derived using the formulae that
describe the voltage of a capacitor in an RC
circuit and by taking advantage of the symme-
try of the PWM waveform as a square wave
(i.e., 50% duty cycle). Note that the worst case

ripple is determined by both the frequency
(f=1/T), and the RC time constant (τ). This
makes sense, as the RC combination deter-
mines the cutoff frequency of the low-pass fil-
ter, and with respect to the PWM wave
frequency this will characterize how much of
the high frequency components will be filtered
from the rectangular PWM waveform.

The RC circuit on the target board uses a
220 kΩ resistor and a 0.47 µF capacitor. These
values were chosen to show a relatively con-
stant voltage level with 8-bit ADC sampling
and still have a reasonable settling time.

If the ideal output is a constant DC voltage,
then the ripple in the output voltage can be
considered as the error. To calculate this error
when designing the filter (or to evaluate using
a simple RC filter), we must know the fre-
quency of the PWM wave, and the time con-
stant (τ). Using the RC values on the target
board, τ=RC=0.1034 seconds. If the 16-bit
timer is running with system clock speed of
16 MHz, the PWM period in this example is:

In this example, the predicted Vripple is calcu-
lated to be 200 mV using Equation 4.

PWM Waveform

LPF Output

Vripple

V
ol
ta
ge

Time

Figure 2. PWM Waveform and Filter Output

Vripple VDD 1
2e

T
2τ
-----–

1 e

T
2τ
-----–

+

-------------------–

 
 
 
 
 

τ, RC= =

Equation 4. Voltage Ripple In Filter
Circuit

T
216

sysclk

65 536,
16 6×10
------------------ 4ms≈= =
© 2001 Cygnal Integrated Products, Inc. AN010-1.1 FEB01 5

http://www.cygnal.com
http://www.cygnal.com

AN010 - 16-Bit PWM Using an On-Chip Timer
Sampling the PWMOutput
With the On-Chip ADC
The C8051F226-TB target board includes a
C8051F226 SoC that features an 8-bit analog-
to-digital convertor (ADC). In this example,
we wish to sample the output voltage with the
ADC. Alternatively, the output can also be
measured using a voltmeter at the test point
labeled “PWM” on the target board. To use the
ADC we must configure a port for ADC input
and program the ADC to sample at a desired
rate to measure the PWM output.

Configuring the ADC
The C8051F2xx family of devices can use any
general purpose port pin as an input for analog
signals. The AMX0SL register configures the
ADC’s multiplexer (AMUX) to select which
port pin will be the input to the ADC. The tar-
get board used in this example provides a cir-
cuit for easily placing the PWM output to port
pin P3.0, which is configured as the ADC
input as follows:

;enable AMUX and configure for
;P3.0 as an input port pin
mov AMX0SL,#38h

The ADC0CF configuration register sets the
SAR conversion clock based on the system
clock, and sets the programmable gain ampli-
fier (PGA) gain. The maximum frequency the
SAR clock should be set to is 2 MHz. The sys-
tem clock is operating at 16 MHz, thus, the
SAR conversion clock is set to 1/8 of the sys-
tem clock frequency (i.e., SAR conversion
clock = sysclk/8). We also program the PGA
for a gain of one as follows:

;set conv clk at one sys clk and
;PGA at gain = 1
mov ADC0CF, #60h

ADC0CN is the ADC control register. This
register is set to configure the ADC to start
conversions upon a Timer 2 overflow and set
the ADC to low power tracking mode (track-
ing starts with Timer 2 overflow):

; SAR clock = SYSCLK/8
; PGA gain = 1
;Timer 2 overflow
mov ADC0CN, #01001100b

Finally, we enable the ADC. This bit is located
in the ADC0CN register which is bit address-
able, and so we use setb:

;enable ADC
setb ADCEN

In this example, we use the VDD voltage sup-
ply as the ADC voltage reference. This is set in
the REF0CN register:

;set ADC to use VDD as Vref
mov REF0CN, #03h

Before we can use Timer 2 overflows to ini-
tiate ADC conversions, we must configure and
start Timer 2. We place a value called ADC-
sampl in Timer 2 to initialize its operation, and
place the same value into the Timer 2 Capture
registers, RCAP2H:RCAP2L, so that it will
overflow at the desired sampling frequency.
Timer 2 has an auto-reload feature making this
convenient. A sampling frequency that is inde-
pendent of PWM wave frequency is desirable
because the output of the filter will have a peri-
odic variation in the DC level because the filter
is not ideal (charging and discharging of our
capacitor causing Vripple.) Sampling at a dif-
ferent frequency will allow us to observe the
voltage ripple with the ADC. In this example,
we use a sampling frequency of 1.6 kHz.

Configuring Timer 2:
6 AN010-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN010 - 16-Bit PWM Using an On-Chip Timer
;initialize T2 for ADC sampling
;rate of 1.6 kHz with 16 MHz
;sysclk
mov TL2,#LOW(ADCsampl)
mov TH2,#HIGH(ADCsampl)

;Load autoreload values for
;sampling rate of ADC
mov RCAP2L,#HIGH(ADCsampl)
mov RCAP2H,#HIGH(ADCsampl)

;Set Timer 2 to use sysclk/1
orl CKCON, #20h

;start Timer 2
setb TR2

We must enable ADC end of conversion inter-
rupts so we can process ADC samples. To
enable ADC interrupts, we configure the
Extended Interrupt Enable 2 register (EIE2):

;enable ADC interrupts
orl EIE2,#00000010b

The ADC is now configured for sampling an
input from P3.0 using Timer 2 to set the sam-
pling frequency. All that is required now is to
configure the port pin for analog use described
in the following section, and connect it to the
low-pass filter output.

Configuring the Port For the
ADC
The ADC has been configured to input analog
from P3.0. We now must configure the port for
analog input use.

The port pins default to digital input mode
upon reset. We place port pin P3.0 in analog
input mode by configuring the Port 3 Digital/
Analog Port Mode register, P3MODE:

;Set p3.0 in analog input mode
orl P3MODE, #01h

Note that we must physically connect the
PWM output to the ADC input. One could sol-
der a wire or design a PCB to provide this con-
nection. The target board in this example
conveniently provides headers that allow easy
configuration using shorting jumpers to con-
nect the provided PWM low-pass filter to port
pin P3.0. No soldering or external wiring is
necessary for this demonstration.

To configure external circuitry to input the
PWM output to port pin P3.0 (set for ADC
input), place a shorting jumper onto header J6,
connecting “PWM” pin to “P3.0AIN”.
P3.0AIN is connected to the P3.0 port pin on
the device.

The ADC Interrupt Service
Routine
The ADC interrupt service routine’s only func-
tion in our example is to clear the ADC inter-
rupt flag, the ADCINT bit. This flag must be
cleared in software, and we do so as follows:

ADC_ISR:
clr ADCINT
reti ;return from interrupt

The ADC ISR is a convenient place to read the
sampled data from the ADC data registers and
process the data. This example leaves the data
in the word register (ADC0H) and will be
overwritten with each new sample. This data
may be observed by using Cygnal’s Integrated
Development Environment (IDE) tool to view
the special function register, ADC0H which
holds the ADC conversion results.

Interpreting the Results
The PWM outputs a voltage level correspond-
ing to the pulse_width variable which deter-
mines the PWM wave duty cycle. As
© 2001 Cygnal Integrated Products, Inc. AN010-1.1 FEB01 7

http://www.cygnal.com
http://www.cygnal.com

AN010 - 16-Bit PWM Using an On-Chip Timer
aforementioned, the voltage level output can
be calculated using Equation 2 on page 3.

VDD refers to the supply voltage of the
device. The number 65,536 is the highest num-
ber that can be represented in 16 bits (as our
PWM timer is a 16 bit counter/timer). Voutput
is the value one would measure at the output of
the PWM’s low-pass filter. Note that due to the
number of cycles is takes to execute the
Timer 0 ISR, the minimum number that can be
effectively used as the pulse_width is 19. Thus,
the lowest Voutput that can be generated is
0.028% of VDD. Any number used for
pulse_width less than 19 will yield the same
result as entering 19. Similarly, it takes 14
cycles for the Timer 0 ISR to process the fall-
ing edge of the PWM waveform. Thus, the
maximum effective pulse_width is 65,522
(65,536-14). Therefore, the resulting output
will be 99.98% of VDD. There are no other
limitations due to software inside of the
0.028%-99.98% range other than the quantiza-
tion imposed by 16-bit timer resolution. If, for
example, VDD=3.0V, then the voltage resolu-
tion will be 46 µV with code and the range of
the output voltage values is 0.87 mV to
2.9994 V.

In our example, we measure the PWM output
with the on-chip ADC. The result in the ADC
register (ADC0H) will be a number between 0
and 255 (8-bit ADC). This example uses VDD
as the reference for the ADC conversion. The
ADC output number can be interpreted as fol-
lows:

Note that Vresult may not match the ideal Vout-
put calculated as output from the PWM. This

is due to the aforementioned Vripple (see sec-
tion, “The Low-Pass Filter”).

Vresult VDD
ADC0H

256
--------------------×=
8 AN010-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN010 - 16-Bit PWM Using an On-Chip Timer
Software
;Copyright 2001 Cygnal Integrated Products, Inc.
;Implementing an 16-bit PWM on SA_TB4PCB-002 target board and sampling to test
; the 8-bit analog-to-digital convertor (ADC). The following program will
; configure on-chip peripherals and use a low-pass filter on the target board.
;
;FILE: PWM_200.asm
;DEVICE: C8051F2xx
;TOOL: Cygnal IDE, 8051 assembler (Metalink)
;AUTHOR: LS
;---
$MOD8F200
;---
;
;Reset Vector
;

org 00h
jmp MAIN

;
;---
;
;ISR Vectors

org 0Bh
jmp TIMER0_ISR

org 7Bh
jmp ADC_ISR

;---
;CONSTANTS
pulse_width EQU 35000d ; Value to load into TIMER0 which

; adjusts
; pulse width (duty cycle)
; in PWM and thus sets the
; DC bias level output from the
; low-pass
; filter. Set from 19-65522d.
; 32768 = VDD/2

ADCsampl EQU 55536d ; Load into TIMER2 for ADC sampling rate

;-Start of MAIN code--

org 0B3h

MAIN:
mov OSCICN,#07h ; Configure internal OSC for 15MHz
mov WDTCN,#0DEh
mov WDTCN,#0ADh
mov P3MODE,#0FEh ; Configure P3.0 for analog input
orl PRT2CF,#80h ; Configure P2.7 as push-pull input to

; low-pass filter
© 2001 Cygnal Integrated Products, Inc. AN010-1.1 FEB01 9

http://www.cygnal.com
http://www.cygnal.com

AN010 - 16-Bit PWM Using an On-Chip Timer
orl CKCON,#28h ; Set TIMER0 and TIMER2 to use SYSCLK/1
mov TMOD,#01h ; Set TIMER0 in 16-bit counter mode
mov RCAP2L,#LOW(ADCsampl) ; Load autoreload values for sampling

; rate of ADC
mov RCAP2H,#HIGH(ADCsampl) ; using TIMER2 overflow for ADC

; conversion start
mov TL2,#LOW(ADCsampl) ; initialize T2 for ADC sampling

; rate=1.6KHz
mov TH2,#HIGH(ADCsampl)
mov AMX0SL,#38h ; Set AMUX for P3.0 input/Enable AMUX
mov ADC0CF,#60h ; SAR clock = SYSCLK/8, and GAIN = 1
mov ADC0CN,#00001100b ; Set the ADC to start a conversion on

; Timer2 overflow
orl REF0CN,#03h ; Set to the internal reference
orl EIE2,#00000010b ; Enable ADC end of conv. interrupts
setb ET0 ; Enable timer0 interrupts
setb EA ; Global interrupt enable
setb TR0 ; Start TIMER0
setb TR2 ; Start TIMER2
setb ADCEN ; Enable the ADC

IDLE:
orl PCON,#01h ; BWCLD
sjmp IDLE

;------TIMER0 ISR--
TIMER0_ISR:

jbc P2.7,LO ; Test to see if low/high in waveform
setb P2.7 ; Transition low to high
clr TR0 ; Stop Timer 0 during reload
mov TL0,#LOW(-pulse_width) ; Set length of pulse for DC bias level
mov TH0,#HIGH(-pulse_width) ;
setb TR0 ; Restart Timer 0
jmp RETURN

LO: clr TR0 ; Stop Timer 0 for reload
mov TL0,#LOW(pulse_width) ; Set low time of duty cycle
mov TH0,#HIGH(pulse_width)
setb TR0 ; Restart Timer 0

RETURN:reti

;------ADC ISR---
ADC_ISR:

clr ADCINT ; flag must be cleared in software
reti

;---

;End of program
;All your base are belong to us.
END
10 AN010-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

	Introduction
	Key Points
	Generating the PWM Input Waveform
	Configuring Timer�0
	Hardware Configuration
	Waiting For Interrupts
	Generating the PWM Wave in Software with Timer�0 ISR

	The Low-Pass Filter
	Figure 1. Low-Pass Filter
	Figure 2. PWM Waveform and Filter Output

	Sampling the PWM Output With the On-Chip ADC
	Configuring the ADC
	Configuring the Port For the ADC
	The ADC Interrupt Service Routine

	Interpreting the Results
	Software

