
Serial Communication with the SMBus

Relevant Devices
This application note applies to the following devices:
C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F010, C8051F011, C8051F012,
C8051F020, C8051F021, C8051F022, and C8051F023.

CYGNAL Application Note
Introduction
C8051F0xx devices are equipped with an
SMBus serial I/O device that is compliant with
the System Management Bus Specification

version 1.1, as well as the I2C serial bus. The
SMBus is a bi-directional, 2-wire interface
capable of communication with multiple

devices. SMBus is a trademark of Intel; I2C is
a trademark of Philips Semiconductor.

This application note describes configuration
and operation of the SMBus. Example assem-
bly and C code is given: (1) Interfacing a sin-
gle EEPROM with 1-byte address space, in
assembly; (2) Interfacing multiple EEPROMs
with 2-byte address space, in C; and (3) Peer-
to-peer communication between two
C8051F0xx devices, in C.

SMBus Specification
This section presents a description of the
SMBus protocol. The SMBus discussion
begins in the next section--Using the SMBus.

SMBus Structure
An SMBus system is a 2-wire network, where
each device has a unique address and may be
addressed by any other device on the network.

All transfers are initiated by a master device; if
a device recognizes its own address and
responds, it becomes the slave device for that
transfer. It is important to note that assigning
one specified master device is not necessary.
Any device may assume the role of master or
slave for any particular transfer. In the case
that two devices attempt to initiate a transfer
simultaneously, an arbitration scheme forces
one device to give up the bus. This arbitration
scheme is non-destructive (one device wins
and no information is lost). Arbitration is dis-
cussed in depth in the arbitration section.

Two wires are used in SMBus communication:
SDA (serial data), and SCL (serial clock).
Each line is bi-directional, with direction
depending on what modes the devices are in.
The master always supplies SCL; either device
may transmit on SDA. Both lines should be
connected to a positive power supply through a
pull-up circuit. All devices on the SMBus line
should have an open-drain or open collector
output, so that the lines may remain high when
the bus is free. The line is pulled low if one or
more devices attempts to output a LOW signal.
All devices must output a HIGH for the line to
stay high. A typical SMBus configuration is
shown in Figure 1 on page 2.
CYGNAL Integrated Products, Inc. AN013-1.1 JUL02
4301 Westbank Drive Copyright © 2002 Cygnal Integrated Products, Inc.

Suite B-100 (All rights reserved)

Austin, TX 78746
www.cygnal.com

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
Handshaking
SMBus employs various line conditions as
handshaking between devices. Note that dur-
ing a data transfer, SDA is only allowed to
change levels while SCL is low. Changes on
SDA while SCL is high represent START and
STOP signals, as follows:

START: This initiates a transfer. It consists of
a falling edge on SDA while SCL is high.

STOP: This ends a transfer. It consists of a ris-
ing edge on SDA while SCL is high.

ACKNOWLEDGE: Also referred to as an
ACK, this is transmitted by a receiving device
as a confirmation. For example, after device_X
receives a byte, it transmits an ACK to confirm
the transfer. An ACK consists of a low level on
SDA sampled when SCL is high.

NOT_ACKNOWLEDGE: Also referred to as
a NACK, this is a high SDA while SCL is
high. When a receiving device fails to ACK,
the sending device sees a NACK. In typical
transfers, a received NACK indicates that the
addressed slave is not ready for transfer, or is
not present on the bus. A receiving master may
transmit a NACK to indicate the last byte of a
transfer. Both of these situations are discussed
further in the next section. Figure 2 illustrates
the handshaking signals.

Transfer Modes
Two types of transfers are possible: a WRITE
(transfer from master to slave) and a READ
(transfer from slave to master). During a trans-
fer, any device may assume one of four roles.
These four roles are explained below. Note that
‘slave address + R/W’ refers to an 8 bit trans-
fer (7 address, 1 R/W).

Figure 1. Typical SMBus Configuration

VDD = +5V/+3V

Device 1 Device 2 Device 3

SDA

SCL

SLA6
SDA

SLA5-0 R/W D7 D6-0

SCL

Slave Address + R/W Data ByteSTART ACK NACK STOP

Figure 2. SMBus Timing
2 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
1) Master Transmitter: In this mode, the device
transmits serial data on SDA and drives the
clock on SCL. The device initiates the transfer
with a START condition, sends the slave
address + W, and waits for an ACK from the
slave. After the ACK, the device transmits one
or more bytes of data, with each byte ACK’ed
by the slave. After the last byte, the device
transmits a STOP.

2) Master Receiver: In this role, the device
receives serial data on SDA while driving the
clock on SCL. The device initiates the transfer
with a START followed by the slave address +
R. After the slave ACK’s the address, the
device will output the clock on SCL, and
receive data on SDA. After the last byte, the
device will issue a NACK followed by a
STOP.

3) Slave Transmitter: In this role, a device out-
puts serial data on SDA and receives the clock
on SCL. The device receives a START fol-
lowed by its own slave address + R, then
ACK’s, and enters slave transmitter mode. The
device transmits serial data on SDA and
receives an ACK after each byte. After the last
byte, the master will issue a NACK followed
by a STOP.

4) Slave Receiver: In this role, a device
receives a START followed by its own slave
address + W from a master device. The device
sends an ACK and enters slave receiver mode.
The device now receives serial data on SDA
and the clock on SCL. The device ACK’s after
each byte is received, and exits slave mode
after the master issues a STOP. Figure 3 shows

Figure 3. Typical WRITE Transfer Scenarios

From Slave
to Master

NACK received after SLA + W PA(2)

(3) Repeat start issued after Acknowledge ASLA + RS

(4) NACK received after data PA

S = Start
SLA = Slave Address (7 bits)
W = Write (1 bit)
R = Read (1 bit)
Data = Serial data (8 bits)
A = Acknowledge
A = Not-Acknowledge
P = Stop

Successful WRITE S SLA + W A Data PA AData(1)

Any number of data
bytes and acknowledges

From Master
to Slave

Data
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 3

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
the typical WRITE scenarios. (1) shows a suc-
cessful transfer.

In (2), the master receives a NACK after send-
ing the slave address + W. This occurs when a
slave is ‘offline’, meaning it is not responding
to its own address. In this case, the master
should issue a STOP or repeated START. To
retry the transfer, the master follows the STOP
with a START and the slave address + W
again. The master will repeat the cycle until it
receives an ACK. This is referred to as
“acknowledge polling”.

In (3), the master issues a repeated START
after an ACK. This process allows the master
to initiate a new transfer without giving up the
bus (to switch from a WRITE to a READ, for
example). The repeated START is commonly
used in EEPROM memory access applica-
tions, where a memory READ must be directly
preceded by a WRITE of the desired memory

location. The repeated START is demonstrated
in all three code examples.

In (4), a NACK is received after a data byte. In
typical SMBus systems, this is how the receiv-
ing device indicates an error. The master sends
a STOP, and retries the transfer as in (2), or
gives up the transfer. Note that the use of
NACKs is not restricted to error situations; the
acknowledge level is a user-definable charac-
teristic, and may vary in different applications.

Figure 4 shows the typical READ scenarios.
(1) shows a successful READ operation. In
(2), the master receives a NACK after sending
the slave address + R. This situation is handled
in the same fashion as in (2) of the WRITE dis-
cussion. The master can use acknowledge poll-
ing to retry the transfer, or it can give up the
transfer. (3) Shows the master sending a
repeated START after sending a byte of data.
This is the same repeated START state as in
the WRITE discussion. A master may send a

Figure 4. Typical Read Scenarios

S = Start
SLA = Slave Address (7 bits)
W = Write (1 bit)
R = Read (1 bit)
Data = Serial data (8 bits)
A = Acknowledge
A = Not-Acknowledge
P = Stop

From Slave
to Master

Any number of data
bytes and acknowledges

From Master
to Slave

Data

NACK received after SLA + R PA(2)

(3) Repeat start issued after ACK ASLA + RS

Successful READ(1) S SLA + R A Data PA AData
4 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
repeated START after any data byte, and may
initiate a READ or a WRITE following the
repeated START. Generally a repeated START
is used to change direction (R/W) or to change
addresses (slave devices).

Note that the READ and WRITE diagrams
show only the typical scenarios. Bus errors,
time outs, and arbitration are also possible
occurrences. Timeouts are used to detect when
a transfer has stalled or when the bus is free.
Often a device may hold SCL low until it is
ready to continue a transfer. This process
allows a slower slave device to communicate
with a faster master, since stalling the bus
effectively reduces the SCL frequency. The
SMBus protocol specifies that all devices on
the SMBus must declare any SCL signal held
low for more than 25 ms a “timeout”. In this
case, all devices on the bus must reset commu-
nication. A high SCL timeout may also occur.
If both SDA and SCL remain high for more
than 50 µsec, the bus is designated as free.

Arbitration
If multiple masters are configured on the same
SMBus system, it is possible that two will
attempt to initiate a transfer at the same time.
If this happens, an arbitration scheme is
employed to force one device to give up the
bus.

What the scheme is: both masters continue to
transmit until one attempts a HIGH while the
other attempts a LOW. Due to the open-drain
bus, the device attempting a LOW will win the
bus. The HIGH device gives up the bus, and
the other device continues its transfer. Note
that the collision is non-destructive: one device
always wins.

How it works: Assume device_X and
device_Y contend for the bus. The winner,
device_X, is not affected at all by the arbitra-
tion. Since data is shifted into the SMBus data
register as it is shifted out, device_Y does not
miss any data. Figure 5 shows an example out-
put sequence between two devices during arbi-
tration. Note that Device_Y begins receiving
data after it gives up the bus.

Using the SMBus
The SMBus can operate in both master and
slave modes. The hardware provides timing
and shifting control for the serial transfers;
byte-wise control is user-defined. The SMBus
hardware performs the following application-
independent tasks:

Timing Control: In master mode, the hardware
generates the clock signal on SCL and syn-
chronizes the data on SDA. Hardware also rec-
ognizes timeouts and bus errors.

Figure 5. Arbitration Sequence

Device_Y

Device_X
01 1 1 0 1 1 0

01 1 1 1

01 1 1 0 1 1 0
Seen on the Bus

Device_Y
gives up
the bus
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 5

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
Serial Data Transfers: The hardware controls
all shifting of data to and from SDA, including
the acknowledge level. The acknowledge level
is user-defined, as explained in the register
definitions below.

Slave Address Recognition: The hardware rec-
ognizes a START from another device, and
reads the following slave address. If the slave
address matches the contents of the SMBus
Address Register (defined below), then the
hardware acknowledges the address. Note that
this features is only enabled if AA (Address
Acknowledge) is set.

Configuration and Control
SMBus operation is determined by the con-
tents of the following registers.

SMB0STA. The SMBus Status Register holds
an 8-bit status code for the current state of the
SMBus. The contents of SMB0STA are only
defined when the SI bit is set. There are 28
possible states, all of which have a unique
code (the codes are multiples of 8). SMB0STA
should never be written to. The 28 possible
states and their descriptions are given in
Table 1 on page 12.

SMB0CN. The SMBus control register is used
to enable the SMBus and navigate the possible
SMBus states. This register includes START
and STOP control, as well as interrupt,
acknowledge, and timeout control.

A transfer is initiated by setting the STA bit.
The SMBus hardware will wait until the bus is
free, then transmit a START. Note that STA is
not cleared by hardware. User software must
manually clear STA so that an unwanted
repeated START is not generated. User soft-
ware must also manually clear STO prior to
setting STA.

A transfer is ended by setting the STO bit. In
master mode, setting STO will cause a STOP
condition to be generated. If STA is set when
STO is set, a STOP followed by a START will
be transmitted. In slave mode, setting STO will
cause the hardware to act as if a STOP was
received, though no STOP condition is trans-
mitted.

The SI bit is set when any of the possible 28
SMBus states are entered (excluding the idle
state). This bit is not automatically cleared by
hardware. Note that SCL is held low while SI
is set. This means that the bus is stalled until
SI is cleared, synchronizing the master with
the slave.

The AA bit determines the type of acknowl-
edge returned during the acknowledge cycle. If
AA=1, an ACK will be sent; if AA=0, a
NACK will be sent. This means the device will
respond to its slave address only if AA is set.

SCL high and low timeout detection is enabled
by setting the FTE and TOE bits, respectively.

The SMBus is enabled by setting the SMBus
enable bit, ENSMB.

SMB0CR. The SMBus clock register is used
to control the SCL clock rate when the device
is in master mode. The 8 bits held in the
SMB0CR register determine the clock rate as
follows:

<1>

Where SMB0CR is a 2’s complement negative
number. So for a SCL frequency of 100 kHz
and a SYSCLK of 16 MHz, SMB0CL should
be loaded with -80, or 0xB0.

SMB0CR
SYSCLK
2 FSCL×----------------------–≅
6 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
SMB0CR also defines the limit for the bus free
time period (high SCL timeout). The bus free
time is defined by the following equation,
where SMB0CR is a 2’s complement negative
number. Note that TFree is about 5 bit periods.

<2>

SMB0ADR. The SMBus Address Register
holds the slave address that the device will
respond to in slave mode. Bits(7:1) hold the
slave address; bit0 is the General Call Enable.
If bit0 is set, the device will respond to the
general call address (0x00).

SMB0DAT. The SMBus Data Register is used
to hold data to be transmitted or data that has
just been received by the SMBus. Data read
from this register is only valid while SI = 1.
When SI is not set, the SMBus may be in the
process of shifting data in or out of
SMB0DAT. Note that when transmitting, data
shifted out of the most significant bit of
SMB0DAT is shifted back into the least signif-
icant bit, so that after a transmit the original
data is still contained in SMB0DAT.

Implementation Choices
User software controls the SMBus on a state-
by-state basis. Upon each state change, the SI
bit is set by hardware, and an interrupt gener-
ated if interrupts are enabled. The SMBus is
then halted until user software services the
state change and clears the SI bit. The SMBus
operation is most easily defined in a state
table; however, note that it is not necessary to
define all 28 states. For example, if the SMBus
is the only master in the system, the slave and
arbitration states may be left undefined. If the
SMBus will never operate as a master, the
master states may be left undefined. If states
are left undefined, a default response should be

programmed to account for unexpected or
error situations.

The SMBus state table lends itself to a case-
switch statement definition in C. However, for
simple or time-restricted systems, an assembly
state decoding can be more efficient. Note that
the status codes held in SMB0STA are multi-
ples of 8. If the SMBus states are programmed
in 8-byte segments, SMB0STA may be used as
a software index. In this case, a status code is
decoded in 3 assembly commands. However,
only 8 bytes of code space are available for
each state definition. For states that require
more than 8 bytes, the program must branch
out of the state table so that subsequent states
are not disturbed.

Examples
Three examples are provided: a single
EEPROM with 1-byte address space, in
assembly; multiple EEPROMs with 2-byte
address space, in C; and a peer-to-peer inter-
face between two devices, in C. Each example
uses interrupt-driven operation.

Single EEPROM
This is a simple interface between the SMBus
and a 256-byte EEPROM. The SMBus acts as
the master at all times. The transfer procedure
is similar to that of any 2-wire EEPROM inter-
face.

The Send operation is a 1-byte random
WRITE. The SMBus sends a START followed
by three bytes: the EEPROM’s device address
+ W (this address is found in the EEPROM
datasheet), the memory location to be written,
and then the data byte. The slave should ACK
after each byte. If the master receives an ACK
after each byte, it sends a STOP and the trans-
fer is over. If at any time the master receives a
NACK, it will retry the transfer using

TFree
10 SMB0CR×() 1+

SYSCLK
--–=
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 7

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
acknowledge polling. It is common for an
EEPROM to NACK if multiple read/write
operations are performed sequentially, since
most self-timed EEPROMs go offline to actu-
ally perform the memory write. Figure 6
shows SDA for the Single EEPROM send
operation.

The Receive operation is a 1-byte random
READ. The transfer begins, as in the WRITE
function, with the master sending a START
followed by the EEPROM device address + W
(a WRITE is used to set the EEPROM’s “cur-
rent address”). After the slave ACK’s, the mas-
ter sends the memory location to be read.
Upon receipt of an ACK, the master then
issues a repeated START followed by the slave
address + R. Now after the slave ACK’s, it will
send the data byte read from the location given
in the preceding “aborted” WRITE. The mas-
ter sends a NACK (since this data is the last
and only byte), followed by a STOP. The
repeated START is used in this case so that no
other transfers may begin between the WRITE
of the memory address and the READ of the
data byte. Figure 7 shows SDA for a Single
EEPROM Receive operation.

The software for this example was written in
assembly to demonstrate the advantage of
using SMB0STA as a software index. The
SMBus state table written in 8-byte memory
segments (8 bytes for each state). This is
accomplished through the use of an ‘org’ state-

ment for each state, offset from the beginning
of the table by the corresponding status code.
For example, if the state table is labeled
STATE_TABLE, and State_1 is 0x08, the code
segment for State_1 should begin with:

; State_1
org STATE_TABLE + 08h
; State_1 code

Now when SMB0STA holds 0x80, State_1
may be accessed with the following:

; Load current State
mov A, SMB0STA;

; Point DPTR to start of table
mov DPTR, #STATE_TABLE;

; Jump to indexed state
jmp @A+DPTR;

This process allows for very efficient state
decoding. However, it is important to note that
only 8 bytes of code space are available for
each state. If a state requires more than 8 bytes,
the program must jump to a segment outside of
the state table, so that the next state definition
is not disturbed.

To keep the states simple and understandable,
the SMBus is assumed to be the only master in
the system. The slave states are not defined,
and the arbitration states ignore any received
data. Also, the repeated START state may
assume the transfer is a READ. The code list-
ing begins on page 14.

S SLA W A A A P8-bit
Address

Data Byte

Figure 6. Single EERPOM Send
Sequence

Figure 7. Single EEPROM Receive Sequence

AS SLA W A 8-bit
Address

S SLA R A Data Byte N P
8 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
Multiple EEPROMs
Example 2 uses multiple EEPROMs with 2-
byte address space. The software is written in
C. The three EEPROMs used are 8k-bytes.
Note that three identical EEPROMs are used.
The EEPROMs have three address selection
pins, A0 - A2, that are used to set the slave
address for the devices. The four high bits of
the device address are set in EEPROM to
“0101”; the lower three bits of the slave
address are determined by the setting of the
address pins (VDD for 1, GND for 0). Figure 9
shows the device configuration.

The distinction with this example is that the
EEPROMs have a 2-byte address space. This
means that the READ and WRITE operations
must send an extra address byte for each trans-
fer (see Figure 8). When the Interrupt Service
Routine reaches the “Data Transmitted, ACK
Received” state, it must know which byte was
transmitted--the high address byte, the low
address byte, or the data byte. This information
is kept in the BYTE_NUMBER state variable.

The SMBus ISR is implemented as a case-
switch statement, with the SMBus status code

(SMB0STA) used as the switch variable. The
code listing for this example begins on
page 23.

S SLA W A A
High

Address Byte
ALow Address

Byte
S SLA R A Data Byte N P

Figure 8. Multiple EEPROM Receive Sequence

Figure 9. Multiple EEPROM Configuration

CHIP_A

A2 A1 A0

CHIP_C

A2 A0A1

CHIP_B

A2 A1
VDD

VDD

SDA SCL

A0

CF000

Addr = 001 Addr = 010

VDD

2.7k Addr = 0002.7k
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 9

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
Peer-to-Peer Interface
The final example features two C8051F0xx
devices configured to communicate as peers.
The peer-to-peer interface uses a set of op
codes to perform the set of tasks below. Either
device may initiate a transfer.

Write to slave DAC: The master device sends
a WRITE_DAC op code followed by a byte of
data. Upon receipt, the slave device writes the
data to its DAC0 port.

Write to buffer: The master device sends a
WRITE_BUF op code, followed by a byte of
data for the receiving device to store in a
buffer. The upper 4 bits of the WRITE_BUF
op code hold the buffer index. Figure 10 shows
a peer-to-peer WRITE sequence (same for
both DAC and buffer writes).

Read ADC: The master device sends a
READ_ADC op code followed by a repeated
START. The slave reads its ADC input, and
places the data in its SMB0DAT register. In
this case, the slave clears AA to go ‘offline’
during the ADC conversion. While the slave is
offline, the master receives a NACK after the
repeated START and slave address. The master
continues acknowledge polling until the slave
responds. This technique is useful if the slave’s
operation is time-consuming, since other
devices may use the bus while the slave is
offline. The slave sets AA=1 when it is ready,
and the transfer continues. The master requests
a READ after the slave acknowledges. See
Figure 11 for the transmission sequence.

Read buffer: The master sends a READ_BUF
op code followed by a repeated START. The
upper 4 bits of the op code hold the buffer
index. In this case the slave holds the SCL line
low while it decodes the op code. While SCL
is held low, the master cannot attempt to con-
tinue the transfer. Additionally, no other mas-
ters on the bus may attempt a transfer. This bus
stalling technique is useful when the slave’s
delay is short. The slave releases SCL when it
has finished decoding the op code and is ready
to transmit the data. The master issues the
repeated START and the slave address + R.
See Figure 11.

S SLA W A Write
Op Code

A PData ByteA

Bus stalled
here until slave
decodes the
Op Code

Figure 10. Peer-to-Peer Write Sequence

Figure 11. Peer-to-Peer Read Sequence

S SLA W A Read_Buf
Op Code

S SLA R A Data Byte N PA

Bus stalled
here until slave
decodes the
Op Code

AS SLA W A Read ADC
Op Code

Slave goes
'offline' here
until ADC

conversion is
complete.

S SLA R A Data Byte N P

Buffer Read

ADC Read
10 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
The SMBus operation in this example is
defined as a case-switch statement in the
SMBus ISR. All possible states are defined,
including the arbitration states. If arbitration
occurs, the losing device stores its current
transfer data (target slave address, op code, rel-
evant data) and responds to the received op
code. After the transfer is finished, the losing
device retries the transfer by reverting to the
saved transfer data.

An OP_CODE_HANDLER function runs in
polled mode to process received data. When
the device receives a valid op code, the
OP_CODE_HANDLER decodes it and reacts
appropriately.

To test the bus, comment out the
OP_CODE_HANDLER call in the code for
CHIP_A. This will allow CHIP_A to run the
provided test code. Note that the constant
MY_ADD must be unique to each device on
the bus.

The code listing for this example begins on
page 29.
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 11

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
Table 1. SMBus Status Codes and States

Mode Status
Code SMBus State Typical Action

M
T
/

M
R

0x08 START condition transmitted. Load SMB0DAT with Slave Address +
R/W

0x10 Repeated START condition transmitted. Load SMB0DAT with Slave Address +
R/W

M
as
te
r
Tr
an
sm

itt
er

0x18 Slave Address + W transmitted. ACK
received.

Load SMB0DAT with data to be transmit-
ted. Clear STA

0x20 Slave Address + W transmitted. NACK
received.

Acknowledge poll to retry. Set STO + STA

0x28 Data byte transmitted. ACK received.
1) Load SMB0DAT with next byte, OR
2) Set STO, OR
3) Clear STO, then set STA for repeated
START

0x30 Data byte transmitted. NACK received. 1) Retry transfer OR
2) Set STO

0x38 Arbitration Lost. Save current data

M
as
te
r
R
ec
ei
ve
r 0x40 Slave Address + R transmitted. ACK received. Clear STA. Wait for received data.

0x48 Slave Address + R transmitted. NACK
received.

Acknowledge poll to retry. Set STO + STA

0x50 Data byte received. ACK transmitted. Read SMB0DAT. Wait for next byte. If
next byte is last byte, clear AA

0x58 Data byte received. NACK transmitted. Set STO
12 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
S
la
ve

R
ec
ei
ve
r

0x60 Own slave address + W received. ACK trans-
mitted.

Wait for data

0x68 Arbitration lost in sending SLA + R/W as mas-
ter. Own address + W received. ACK transmit-
ted.

Save current data for retry when bus is
free. Wait for data

0x70 General call address received. ACK transmit-
ted.

Wait for data

0x78 Arbitration lost in sending SLA + R/W as mas-
ter. General call address received. ACK trans-
mitted.

Save current data for retry when bus is
free.

0x80 Data byte received. ACK transmitted. Read SMB0DAT. Wait for next byte or
STOP

0x88 Data byte received. NACK transmitted. Set STO to reset SMBus

0x90 Data byte received after general call address.
ACK transmitted.

Read SMB0DAT. Wait for next byte or
STOP

0x98 Data byte received after general call address.
NACK transmitted.

Set STO to reset SMBus

0xA0 STOP or repeated START received. No action necessary

S
la
ve

Tr
an
sm

itt
er

0xA8 Own address + R received. ACK transmitted. Load SMB0DAT with data to transmit.

0xB0 Arbitration lost in transmitting SLA + R/W as
master. Own address + R received. ACK
transmitted.

Save current data for retry when bus is
free. Load SMB0DAT with data to trans-
mit.

0xB8 Data byte transmitted. ACK received. Load SMB0DAT with data to transmit.

0xC0 Data byte transmitted. NACK received. Wait for STOP

0xC8 Last data byte transmitted (AA=0). ACK
received.

Set STO to reset SMBus

S
la
ve 0xD0 SCL Clock High Timer per SMB0CR timed out Set STO to reset SMBus

A
ll 0x00 Bus Error (illegal START or STOP) Set STO to reset SMBus

0xF8 Idle State does not set SI

Table 1. SMBus Status Codes and States

Mode Status
Code SMBus State Typical Action
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 13

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
Software Examples for the
C8051F00x and
C8051F01x series
;---
;
; Copyright 2001 Cygnal Integrated Products, Inc.
;
; Program: SMBus_EX1.asm
; Created on: 2/21/01
; Created by: JS
;
; Example code to interface a single 256-byte EEPROM to a C8051F00x via the SMBus
; Code assumes a single EEPROM with slave address 1010000 is connected on
; the SDA and SCL lines, and no other masters are on the bus.
;
; The SEND routine performs a 1-byte write to the EEPROM. This consists of (1) START,
; (2) slave address + W, (3) memory location byte write, and (4) a data byte write.
;
; STEPS FOR WRITING TO EEPROM:
; 1) Load slave address into SLA_ADD
; 2) Load memory address into MEM_ADD
; 3) Load data byte into TRANSMIT_BYTE.
; 4) Call SEND
;
; The RECEIVE routine performs a 1-byte read from the EEPROM. This consists of (1)
; START, (2) slave address + W, (3) memory location byte write, (4) repeated START,
; (5) slave address + R, (6) data byte read.
;
; STEPS FOR RECEIVING DATA:
; 1) Load slave address into SLA_ADD
; 2) Load memory address into MEM_ADD
; 3) Call RECEIVE
; 4) Read RECEIVE_BYTE
;
; The SMBus state table is broken into 8-byte state segments, allowing the SMBus
; status code (SMB0STA) to be used as a state index. Note that this leaves only
; 8 bytes of code space per SMBus state definition. As a result, certain tasks
; have been altered to limit state definition lengths:
;
; 1) The SMB_MTDBACK state (Master transmitter, data byte sent, ACK received) is
; reduced to a bit-check and branch operation. The branch is outside of the state
; table, so that a larger code segment may be executed for this state.
;
; 2) Three data bytes are used for slave address storage: SLA_ADD, WRI_ADD, READ_ADD.
; Rather than using bit-wise operations in the SMBus states, each transfer routine
; pre-loads the address values. Since a RECEIVE includes both a WRITE and READ
; transfer, two address bytes are necessary - WRI_ADD and READ_ADD. SLA_ADD is used
; as a generic slave chip select before a function call.
;
; Note that SLA_ADD is equivalent to WRI_ADD, since WRI_ADD = SLA_ADD + W (W=0).
; The two are left separate to clarify the demonstration.
;
;---
14 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
;---
; EQUATES
;---

$include (c8051f000.inc) ; Include register definition file.

WRITE EQU 00h ; SMBus WRITE command
READ EQU 01h ; SMBus READ command

CHIP_A EQU 0A0h ; EEPROM slave address

; SMBus States
SMB_BUS_ERROR EQU 00h ; (all modes) BUS ERROR
SMB_START EQU 08h ; (MT & MR) START transmitted
SMB_RP_START EQU 10h ; (MT & MR) repeated START
SMB_MTADDACK EQU 18h ; (MT) Slave address + W transmitted;

; ACK received
SMB_MTADDNACK EQU 20h ; (MT) Slave address + W transmitted;

; NACK received
SMB_MTDBACK EQU 28h ; (MT) data byte transmitted; ACK rec’vd
SMB_MTDBNACK EQU 30h ; (MT) data byte transmitted; NACK rec’vd
SMB_MTARBLOST EQU 38h ; (MT) arbitration lost
SMB_MRADDACK EQU 40h ; (MR) Slave address + R transmitted;

; ACK received
SMB_MRADDNACK EQU 48h ; (MR) Slave address + R transmitted;

; NACK received
SMB_MRDBACK EQU 50h ; (MR) data byte rec’vd; ACK transmitted
SMB_MRDBNACK EQU 58h ; (MR) data byte rec’vd; NACK transmitted

;---
; VARIABLES
;---

DSEG

org 30h

TRANSMIT_BYTE: DS 1 ; Holds a byte to be transmitted by the SMBus
RECEIVE_BYTE: DS 1 ; Holds a byte just received by the SMBus
SLA_ADD: DS 1 ; Holds the slave address
WRI_ADD: DS 1 ; Holds the slave address + WRITE
READ_ADD: DS 1 ; Holds the slave address + READ
MEM_ADD: DS 1 ; EEPROM memory location to be accessed

; Variables used for testing.
TEST_COUNT: DS 1 ; Test counter variable
TEST_BYTE: DS 1 ; Test data
TEST_ADDR: DS 1 ; Test memory location

BSEG

org 00h

RW: DBIT 1 ; R/W command bit. 1=READ, 0=WRITE
SM_BUSY: DBIT 1 ; SMBus Busy flag (kept in software)
BYTE_SENT: DBIT 1 ; Used to indicate what byte was just sent:
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 15

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
; 1: EEPROM memory address sent
; 0: Data byte sent

;--
; RESET and INTERRUPT VECTORS
;--

CSEG

; Reset Vector
org 00h
ljmp Reset_ISR

; SMBus Interrupt Vector
org 03Bh
ljmp SMBus_ISR

;--
; MAIN PROGRAM
;--

MAIN:

acall SMBus_Init ; Initialize SMBus
setb EA ; Enable global interrupts

mov TEST_BYTE, #0ffh ;
mov TEST_ADDR, #00h ; Load initial test values
mov TEST_COUNT, #0feh ;

; TEST CODE--

TEST:

; Send TEST_BYTE to memory location TEST_ADDR
mov SLA_ADD, #CHIP_A ; Load slave address
mov TRANSMIT_BYTE, TEST_BYTE ; Load transmit data into TRANSMIT_BYTE
mov MEM_ADD, TEST_ADDR ; Load memory address into MEM_ADD
acall SEND ; Call send routine

; Read memory location TEST_ADDR into RECEIVE_BYTE
mov SLA_ADD, #CHIP_A ; Load slave address
mov MEM_ADD, TEST_ADDR ; Load memory address into MEM_ADD
acall RECEIVE ; Call receive routine

; Compare byte received to byte sent
mov A, RECEIVE_BYTE ; Load received byte into accumulator
cjne A, TEST_BYTE, END_TEST ; Compare sent byte to received byte

; Jump to END_TEST if not equal

; Change test variables
dec TEST_BYTE ; If sent=received, change test variables
inc TEST_ADDR ; and cycle through again.

; Cycle through again if TEST_COUNTER not zero
djnz TEST_COUNT, TEST ; Decrement counter, loop back to beginning
16 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
mov A, #99h ; Load accumulator with 99h if test successful.

END_TEST:

jmp $; Spin
;---
--
; SUBROUTINES
;---
--

;---
--
; SEND subroutine. Assumes that the slave address, memory location, and transmit
; data have all been loaded into their associated variables. This routine manages
; the SM_BUSY bit, sets RW=WRITE, loads the WRI_ADD, and initiates the transfer.
;
SEND:

push ACC ; Preserve accumulator
jb SM_BUSY, $; Wait for SMBus to be free
clr RW ; RW = 0 (WRITE)

mov A, SLA_ADD ; Store SLA_ADD + WRITE
orl A, #WRITE ; in WRI_ADD
mov WRI_ADD, A ;

setb SM_BUSY ; Occupy SMBus
setb STA ; Initiate Transfer
pop ACC ; Restore accumulator

ret

;---
--
; RECEIVE subroutine. Assumes that the slave address and memory location have been
; loaded into their associated variables. This routine manages the SM_BUSY bit, sets
; RW=READ, loads the READ_ADD and WRI_ADD, and initiates the transfer.
;
; Note that the RECEIVE transfer consists of a WRITE of the memory location to be
accessed,
; followed by a repeated START and a READ operation. Therefore, both WRI_ADD
; and READ_ADD are used by this routine.
RECEIVE:

push ACC ; Preserve accumulator
jb SM_BUSY, $; Wait for SMBus to be free
setb RW ; RW = 1 (READ)

mov A, SLA_ADD ; Store SLA_ADD + WRITE
orl A, #WRITE ; in WRITE_ADD
mov WRI_ADD, A ;

mov A, SLA_ADD ; Store SLA_ADD + READ
orl A, #READ ; in READ_ADD
mov READ_ADD, A ;
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 17

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
setb SM_BUSY ; Occupy SMBus
setb STA ; Initiate Transfer

jb SM_BUSY, $; Wait for receive to finish
pop ACC ; Restore accumulator

ret

;---
--
; SMBus_Init
; SMbus initialization routine
;

; - Configures and enables the SMBus.
; - Sets SMBus clock rate.
; - Enables SMBus interrupt.
; - Clears SM_Busy flag for first transfer.

SMBus_Init:

mov SMB0CN, #04h ; Configure SMBus to send ACKs on acknowledge cycle
mov SMB0CR, #0B0h ; SMBus clock rate = 100KHz, per SMB0CR equation:

; SMB0CR = -(SYSCLK)/(2*Fscl)

orl SMB0CN, #40h ; Enable SMBus

orl EIE1, #02h ; Enable SMBus interrupts
clr SM_BUSY

ret

;---
-
; INTERRUPT VECTORS
;---
-

;---
-
; Reset Interrupt Service Routine
;
; - Disables Watchdog Timer
; - Routes SDA and SCL to GPIO pins via the crossbar
; - Enables crossbar
; - Jumps to MAIN

Reset_ISR:

mov WDTCN, #0DEh ; Disable Watchdog Timer
mov WDTCN, #0ADh

orl OSCICN, #03h ; Set internal oscillator to highest setting
; (16 MHz)
18 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
mov XBR0, #01h ; Route SMBus to GPIO pins through crossbar
mov XBR2, #40h ; Enable crossbar and weak pull-ups

ljmp MAIN

;---
-
; SMBus ISR
;
; Implemented as a state table lookup, with the SMBus status register as the index.
; SMBus status codes are multiples of 8; thus the status code can be used to index
; program segments that are spaced by 8 bytes. Each ‘org’ command indicates
; a new state, offset from the beginning of the table by its status code value.
;
; Note that only 8 bytes are available to process each state. In the cases where
; more than 8 bytes are necessary, the code jumps to a program location outside
; of the state table. This is only necessary in the state ‘SMB_MTDBACK’.

SMBus_ISR:

push PSW ;
push ACC ;
push DPH ; Resource preservation
push DPL ;
push ACC ;

mov A, SMB0STA ; Load accumulator with current SMBus state.
; State corresponds to the address offset
; for each state execution

anl A, #7Fh ; Mask out upper bit, since any states that
; set this bit are not defined in this code.

mov DPTR, #SMB_STATE_TABLE ; Point DPTR to the beginning of the state table
jmp @A+DPTR ; Jump to the current state

; SMBus State Table--

SMB_STATE_TABLE:

; SMB_BUS_ERROR
; All Modes: Bus Error
; Reset hardware by setting STOP bit
org SMB_STATE_TABLE + SMB_BUS_ERROR

setb STO
jmp SMB_ISR_END ; Jump to exit ISR

; SMB_START
; Master Transmitter/Receiver: START transmitted.
; The R/W bit will always be a zero (W) in this state because
; for both write and read, the memory address must first be written.
org SMB_STATE_TABLE + SMB_START

mov SMB0DAT, WRI_ADD ; Load slave address + W
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 19

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
clr STA ; Manually clear START bit
jmp SMB_ISR_END ; Jump to exit ISR

; SMB_RP_START
; Master Transmitter/Receiver: Repeated START transmitted.
; This state should only occur during a read, after the memory
; address has been sent and acknowledged.
org SMB_STATE_TABLE + SMB_RP_START

mov SMB0DAT, READ_ADD ; Load slave address + R
clr STA ; Manually clear START bit
jmp SMB_ISR_END

; SMB_MTADDACK
; Master Transmitter: Slave address + WRITE transmitted.
; ACK received
org SMB_STATE_TABLE + SMB_MTADDACK

mov SMB0DAT, MEM_ADD ; Load memory address
setb BYTE_SENT ; BYTE_SENT=1: In the next ISR call,

; the memory address will have just been
; sent.

jmp SMB_ISR_END

; SMB_MTADDNACK
; Master Transmitter: Slave address + WRITE transmitted.
; NACK received. The slave is not responding. Try again with
; acknowledge polling. Send STOP + START.
org SMB_STATE_TABLE + SMB_MTADDNACK

setb STO
setb STA
jmp SMB_ISR_END

; SMB_MTDBACK
; Master Transmitter: Data byte transmitted. ACK received.
; This state is used in both read and write operations.
; Check BYTE_SENT; if 1, memory address has just been sent. Else,
; data has been sent.
org SMB_STATE_TABLE + SMB_MTDBACK

jbc BYTE_SENT, ADDRESS_SENT ; If BYTE_SENT=1, clear bit and
; jump to ADDRESS_SENT to process
; outside of state table.

jmp DATA_SENT ; If BYTE_SENT=0, data has just been sent,
; transfer is finished.
; jump to end transfer

; SMB_MTDBNACK
; Master Transmitter: Data byte transmitted. NACK received.
; Slave not responding. Send STOP followed by START to try again.
org SMB_STATE_TABLE + SMB_MTDBNACK

setb STO
setb STA
20 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
jmp SMB_ISR_END

; SMB_MTARBLOST
; Master Transmitter: Arbitration Lost.
; Should not occur. If so, restart transfer.
org SMB_STATE_TABLE + SMB_MTARBLOST

setb STO
setb STA
jmp SMB_ISR_END

; SMB_MRADDACK
; Master Receiver: Slave address + READ transmitted. ACK received.
; Set to transmit NACK after next transfer since it will be the
; last (only) byte.
org SMB_STATE_TABLE + SMB_MRADDACK

clr AA ; NACK sent on acknowledge cycle
jmp SMB_ISR_END

; SMB_MRADDNACK
; Master Receiver: Slave address + READ transmitted. NACK received.
; Slave not responding. Send repeated START to try again.
org SMB_STATE_TABLE + SMB_MRADDNACK

clr STO
setb STA
jmp SMB_ISR_END

; SMB_MRDBACK
; Master Receiver: Data byte received. ACK transmitted.
; Should not occur because AA is cleared in previous state.
; Send STOP if state does occur.
org SMB_STATE_TABLE + SMB_MRDBACK

setb STO
jmp SMB_ISR_END

; SMB_MRDBNACK
; Master Receiver: Data byte received. NACK transmitted.
; Read operation completed. Read data register and send STOP
org SMB_STATE_TABLE + SMB_MRDBNACK

mov RECEIVE_BYTE, SMB0DAT
setb STO
setb AA ; Set AA for next transfer
clr SM_BUSY
jmp SMB_ISR_END

; End of State Table--

;---
; Program segment to handle SMBus states that require more than 8 bytes of program
; space.

; Address byte has just been sent. Check RW. If R (1), jump to RW_READ.
; If W, load data to transmit into SMB0DAT.
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 21

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
ADDRESS_SENT:

jb RW, RW_READ
mov SMB0DAT, TRANSMIT_BYTE ; Load data
jmp SMB_ISR_END ; Jump to exit ISR

; Operation is a READ, and the address byte has just been sent. Send
; repeated START to initiate memory read.
RW_READ:

clr STO
setb STA ; Send repeated START
jmp SMB_ISR_END ; Jump to exit ISR

; Operation is a WRITE, and the data byte has just been sent. Transfer
; is finished. Send STOP, free the bus, and exit the ISR.
DATA_SENT:

setb STO ; Send STOP and exit ISR.
clr SM_BUSY ; Free SMBus
jmp SMB_ISR_END ; Jump to exit ISR

;---

; SMBus ISR exit.
; Restore registers, clear SI bit, and return from interrupt.
SMB_ISR_END:

clr SI
pop ACC
pop DPL
pop DPH
pop ACC
pop PSW

reti

END
22 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
//--
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// FILE NAME : SMB_Ex2.c
// TARGET DEVICE : C8051F000
// CREATED ON : 2/20/01
// CREATED BY : JS
//
//
// Example code for interfacing a C8051F0xx to three EEPROMs via the SMBus.
// Code assumes that three 16-bit address space EEPROMs are connected
// on the SCL and SDA lines, and configured so that their slave addresses
// are as follows:
// CHIP_A = 1010000
// CHIP_B = 1010001
// CHIP_C = 1010010
//
// Slave and arbitration states are not defined. Assume the CF000 is the only
// master in the system.
// Functions: SM_Send performs a 1-byte write to the specified EEPROM
// SM_Receive performs a 1-byte read of the specified EEPROM address (both include
// memory address references).
//
// Includes test code section.

//--
// Includes
//--
#include <c8051f000.h> // SFR declarations

//--
// Global CONSTANTS
//--

#define WRITE 0x00 // SMBus WRITE command
#define READ 0x01 // SMBus READ command

// Device addresses (7 bits, lsb is a don’t care)
#define CHIP_A 0xA0 // Device address for chip A
#define CHIP_B 0xA2 // Device address for chip B
#define CHIP_C 0xA4 // Device address for chip C

// SMBus states:
// MT = Master Transmitter
// MR = Master Receiver
#define SMB_BUS_ERROR 0x00 // (all modes) BUS ERROR
#define SMB_START 0x08 // (MT & MR) START transmitted
#define SMB_RP_START 0x10 // (MT & MR) repeated START
#define SMB_MTADDACK 0x18 // (MT) Slave address + W transmitted;

// ACK received
#define SMB_MTADDNACK 0x20 // (MT) Slave address + W transmitted;

// NACK received
#define SMB_MTDBACK 0x28 // (MT) data byte transmitted; ACK rec’vd
#define SMB_MTDBNACK 0x30 // (MT) data byte transmitted; NACK rec’vd
#define SMB_MTARBLOST 0x38 // (MT) arbitration lost
#define SMB_MRADDACK 0x40 // (MR) Slave address + R transmitted;
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 23

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// ACK received
#define SMB_MRADDNACK 0x48 // (MR) Slave address + R transmitted;

// NACK received
#define SMB_MRDBACK 0x50 // (MR) data byte rec’vd; ACK transmitted
#define SMB_MRDBNACK 0x58 // (MR) data byte rec’vd; NACK transmitted

//---
//Global VARIABLES
//---
char COMMAND; // Holds the slave address + R/W bit for

// use in the SMBus ISR.

char WORD; // Holds data to be transmitted by the SMBus
// OR data that has just been received.

char BYTE_NUMBER; // Used by ISR to check what data has just been
// sent - High address byte, Low byte, or data
// byte

unsigned char HIGH_ADD, LOW_ADD; // High & Low byte for EEPROM memory address

bit SM_BUSY; // This bit is set when a send or receive
// is started. It is cleared by the
// ISR when the operation is finished.

//--
// Function PROTOTYPES
//--

void SMBus_ISR (void);
void SM_Send (char chip_select, unsigned int byte_address, char out_byte);
char SM_Receive (char chip_select, unsigned int byte_address);

//--
// MAIN Routine
//--
//
// Main routine configures the crossbar and SMBus, and tests
// the SMBus interface between the three EEPROMs
void main (void)
{

unsigned char check; // Used for testing purposes

WDTCN = 0xde; // disable watchdog timer
WDTCN = 0xad;

OSCICN |= 0x03; // Set internal oscillator to highest setting
// (16 MHz)

XBR0 = 0x01; // Route SMBus to GPIO pins through crossbar
XBR2 = 0x40; // Enable crossbar and weak pull-ups

SMB0CN = 0x44; // Enable SMBus with ACKs on acknowledge
// cycle

SMB0CR = -80; // SMBus clock rate = 100kHz.
24 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
EIE1 |= 2; // SMBus interrupt enable
EA = 1; // Global interrupt enable

SM_BUSY = 0; // Free SMBus for first transfer.

// TEST CODE---
SM_Send(CHIP_A, 0x0088, 0x53); // Send 0x53(data) to address 0x88 on CHIP_A
SM_Send(CHIP_B, 0x0001, 0x66); // Send 0x66(data) to address 0x01 on CHIP_B
SM_Send(CHIP_C, 0x0010, 0x77);
SM_Send(CHIP_B, 0x0333, 0xF0);
SM_Send(CHIP_A, 0x0242, 0xF0);

check = SM_Receive(CHIP_A, 0x0088); // Read address 0x88 on CHIP_A
check = SM_Receive(CHIP_B, 0x0001); // Read address 0x01 on CHIP_B
check = SM_Receive(CHIP_C, 0x0010);
check = SM_Receive(CHIP_B, 0x0333);
check = SM_Receive(CHIP_A, 0x0242);

// END TEST CODE---

}

// SMBus byte write function---
// Writes a single byte at the specified memory location.
//
// out_byte = data byte to be written
// byte_address = memory location to be written into (2 bytes)
// chip_select = device address of EEPROM chip to be written to
void SM_Send (char chip_select, unsigned int byte_address, char out_byte)
{

while (SM_BUSY); // Wait for SMBus to be free.
SM_BUSY = 1; // Occupy SMBus (set to busy)
SMB0CN = 0x44; // SMBus enabled,

// ACK on acknowledge cycle

BYTE_NUMBER = 2; // 2 address bytes.
COMMAND = (chip_select | WRITE); // Chip select + WRITE

HIGH_ADD = ((byte_address >> 8) & 0x00FF);// Upper 8 address bits
LOW_ADD = (byte_address & 0x00FF); // Lower 8 address bits

WORD = out_byte; // Data to be writen

STO = 0;
STA = 1; // Start transfer

}

// SMBus random read function--
// Reads 1 byte from the specified memory location.
//
// byte_address = memory address of byte to read
// chip_select = device address of EEPROM to be read from
char SM_Receive (char chip_select, unsigned int byte_address)
{

© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 25

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
while (SM_BUSY); // Wait for bus to be free.
SM_BUSY = 1; // Occupy SMBus (set to busy)
SMB0CN = 0x44; // SMBus enabled, ACK on acknowledge cycle

BYTE_NUMBER = 2; // 2 address bytes
COMMAND = (chip_select | READ); // Chip select + READ

HIGH_ADD = ((byte_address >> 8) & 0x00FF);// Upper 8 address bits
LOW_ADD = (byte_address & 0x00FF); // Lower 8 address bits

STO = 0;
STA = 1; // Start transfer
while (SM_BUSY); // Wait for transfer to finish
return WORD;

}

//--
// Interrupt Service Routine
//--

// SMBus interrupt service routine:

void SMBUS_ISR (void) interrupt 7
{

switch (SMB0STA){ // Status code for the SMBus (SMB0STA register)

// Master Transmitter/Receiver: START condition transmitted.
// The R/W bit of the COMMAND word sent after this state will
// always be a zero (W) because for both read and write,
// the memory address must be written first.
case SMB_START:

SMB0DAT = (COMMAND & 0xFE); // Load address of the slave to be accessed.
STA = 0; // Manually clear START bit
break;

// Master Transmitter/Receiver: Repeated START condition transmitted.
// This state should only occur during a read, after the memory address has been
// sent and acknowledged.
case SMB_RP_START:

SMB0DAT = COMMAND; // COMMAND should hold slave address + R.
STA = 0;
break;

// Master Transmitter: Slave address + WRITE transmitted. ACK received.
case SMB_MTADDACK:

SMB0DAT = HIGH_ADD; // Load high byte of memory address
// to be written.

break;

// Master Transmitter: Slave address + WRITE transmitted. NACK received.
// The slave is not responding. Send a STOP followed by a START to try again.
case SMB_MTADDNACK:

STO = 1;
STA = 1;
break;
26 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// Master Transmitter: Data byte transmitted. ACK received.
// This state is used in both READ and WRITE operations. Check BYTE_NUMBER
// for memory address status - if only HIGH_ADD has been sent, load LOW_ADD.
// If LOW_ADD has been sent, check COMMAND for R/W value to determine
// next state.
case SMB_MTDBACK:

switch (BYTE_NUMBER){
case 2: // If BYTE_NUMBER=2, only HIGH_ADD

SMB0DAT = LOW_ADD; // has been sent.
BYTE_NUMBER--; // Decrement for next time around.
break;

case 1: // If BYTE_NUMBER=1, LOW_ADD was just sent.
if (COMMAND & 0x01){ // If R/W=READ, sent repeated START.

STO = 0;
STA = 1;

} else {
SMB0DAT = WORD; // If R/W=WRITE, load byte to write.
BYTE_NUMBER--;

}
break;

default: // If BYTE_NUMBER=0, transfer is finished.
STO = 1;
SM_BUSY = 0; // Free SMBus

}
break;

// Master Transmitter: Data byte transmitted. NACK received.
// Slave not responding. Send STOP followed by START to try again.
case SMB_MTDBNACK:

STO = 1;
STA = 1;
break;

// Master Transmitter: Arbitration lost.
// Should not occur. If so, restart transfer.
case SMB_MTARBLOST:

STO = 1;
STA = 1;
break;

// Master Receiver: Slave address + READ transmitted. ACK received.
// Set to transmit NACK after next transfer since it will be the last (only)
// byte.
case SMB_MRADDACK:

AA = 0; // NACK sent on acknowledge cycle.
break;

// Master Receiver: Slave address + READ transmitted. NACK received.
// Slave not responding. Send repeated start to try again.
case SMB_MRADDNACK:

STO = 0;
STA = 1;
break;
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 27

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// Data byte received. ACK transmitted.
// State should not occur because AA is set to zero in previous state.
// Send STOP if state does occur.
case SMB_MRDBACK:

STO = 1;
SM_BUSY = 0;
break;

// Data byte received. NACK transmitted.
// Read operation has completed. Read data register and send STOP.
case SMB_MRDBNACK:

WORD = SMB0DAT;
STO = 1;
SM_BUSY = 0; // Free SMBus
break;

// All other status codes meaningless in this application. Reset communication.
default:

STO = 1; // Reset communication.
SM_BUSY = 0;
break;

}

SI=0; // clear interrupt flag
}

28 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
//--
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// FILE NAME : SMB_Ex3.c
// TARGET DEVICE : C8051F000
// CREATED ON : 2/20/01
// CREATED BY : JS
//
// Example code to demonstrate the use of the SMBus interface between two CF000 devices.
// The devices operate in a peer-to-peer configuration.
//
// Demonstration includes use of op codes for each device to command the other to:
//
// 1) Write a byte to DAC0
// 2) Write a byte to a data buffer
// 3) Perform an ADC conversion
// 4) Read a byte from a data buffer
//
// These op codes are can be tested easily if each chip has DAC0 routed to AIN0.
// With this configuration, a READ_ADC command can be used to test the output
// of a WRITE_DAC command.
//
// Code assumes that two CF0xx devices are connected via SCL and SDA, with
// slave addresses (held by register SMB0ADR)
// CHIP_A = 1111000
// CHIP_B = 1110000
//
// Test code is included. For testing purposes, the test code should be omitted
// in one device, and run in the other. This can be accomplished by commenting
// the OP_CODE_HANDLER() call before the test code in the device that will assume
// the master role.
//
// PLEASE NOTE that the constant MY_ADD must correspond with the
// current device - change it to CHIP_B when downloading code to CHIP_B.
//
//--

//--
// Includes
//--
#include <c8051f000.h> // SFR declarations
//--
// Global CONSTANTS
//--

#define WRITE 0x00 // WRITE direction bit
#define READ 0x01 // READ direction bit

// Device addresses
#define CHIP_A 0xF0
#define CHIP_B 0xE0
#define MY_ADD CHIP_A // Corresponds to the chip currently

// being programmed.

// Peer-to-Peer OP_CODEs
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 29

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
#define READ_ADC 0x01 // OP_CODE to read from slave ADC
#define WRITE_DAC 0x02 // OP_CODE to write to slave DAC
#define WRITE_BUF 0x03 // OP_CODE to write to slave buffer
#define READ_BUF 0x04 // OP_CODE to read from slave buffer

//SMBus states:
// MT = Master Transmitter
// MR = Master Receiver
// ST = Slave Transmitter
// SR = Slave Receiver

#define SMB_BUS_ERROR 0x00 // (all modes) BUS ERROR
#define SMB_START 0x08 // (MT & MR) START transmitted
#define SMB_RP_START 0x10 // (MT & MR) repeated START
#define SMB_MTADDACK 0x18 // (MT) Slave address + W transmitted;

// ACK received
#define SMB_MTADDNACK 0x20 // (MT) Slave address + W transmitted;

// NACK received
#define SMB_MTDBACK 0x28 // (MT) data byte transmitted; ACK rec’vd
#define SMB_MTDBNACK 0x30 // (MT) data byte transmitted; NACK rec’vd
#define SMB_MTARBLOST 0x38 // (MT) arbitration lost
#define SMB_MRADDACK 0x40 // (MR) Slave address + R transmitted;

// ACK received
#define SMB_MRADDNACK 0x48 // (MR) Slave address + R transmitted;

// NACK received
#define SMB_MRDBACK 0x50 // (MR) data byte rec’vd; ACK transmitted
#define SMB_MRDBNACK 0x58 // (MR) data byte rec’vd; NACK transmitted
#define SMB_SROADACK 0x60 // (SR) SMB’s own slave address + W rec’vd;

// ACK transmitted
#define SMB_SROARBLOST 0x68 // (SR) SMB’s own slave address + W rec’vd;

// arbitration lost
#define SMB_SRGADACK 0x70 // (SR) general call address rec’vd;

// ACK transmitted
#define SMB_SRGARBLOST 0x78 // (SR) arbitration lost when transmitting

// slave addr + R/W as master; general
// call address rec’vd; ACK transmitted

#define SMB_SRODBACK 0x80 // (SR) data byte received under own slave
// address; ACK returned

#define SMB_SRODBNACK 0x88 // (SR) data byte received under own slave
// address; NACK returned

#define SMB_SRGDBACK 0x90 // (SR) data byte received under general
// call address; ACK returned

#define SMB_SRGDBNACK 0x98 // (SR) data byte received under general
// call address; NACK returned

#define SMB_SRSTOP 0xa0 // (SR) STOP or repeated START received
// while addressed as a slave

#define SMB_STOADACK 0xa8 // (ST) SMB’s own slave address + R rec’vd;
// ACK transmitted

#define SMB_STOARBLOST 0xb0 // (ST) arbitration lost in transmitting
// slave address + R/W as master; own
// slave address rec’vd; ACK transmitted

#define SMB_STDBACK 0xb8 // (ST) data byte transmitted; ACK rec’ed
#define SMB_STDBNACK 0xc0 // (ST) data byte transmitted; NACK rec’ed
#define SMB_STDBLAST 0xc8 // (ST) last data byte transmitted (AA=0);

// ACK received
#define SMB_SCLHIGHTO 0xd0 // (ST & SR) SCL clock high timer per

// SMB0CR timed out (FTE=1)
30 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
#define SMB_IDLE 0xf8 // (all modes) Idle

//---
//Global VARIABLES
//---

char COMMAND; // Holds the slave address + R/W bit for
// use in the SMBus ISR.

char WORD; // Holds data to be transmitted by the SMBus
// OR data that has just been received.

char OP_CODE; // Holds an op code to be sent or one
// that has just been received.

char LOST_COMMAND, LOST_WORD, LOST_CODE; // Used to hold relevant data after a
// lost arbitration.

char DATA_BUF[16]; // Data buffer accessed by OP_CODE_HANDLER

bit LOST; // Arbitration lost flag, set when
// arbitration is lost while in master mode.
// Used to resume a failed transfer.

bit SM_BUSY; // This bit is set when a send or receive
// is started. It is cleared by the
// ISR when the operation is finished.

bit VALID_OP; // Flag used to determine if byte received
// as a slave is an OP_CODE or data.

bit DATA_READY; // Used by OP_CODE handler to flag when
// valid data has been received from the
// master

//--
// Function PROTOTYPES
//--

void SMBUS_ISR (void);
char SLA_READ(char chip_select, char out_op);
void SLA_SEND(char chip_select, char out_op, char out_data);
void OP_CODE_HANDLER(void);

//--
// MAIN Routine
//--

void MAIN (void)
{

char i, check_1, check_2; // Variables used for testing purposes only.

WDTCN = 0xde; // disable watchdog timer
WDTCN = 0xad;

XBR0 = 0x01; // Route SMBus to GPIO pins through crossbar
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 31

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
XBR2 = 0x40; // Enable crossbar and weak pull-ups

SMB0CN = 0x44; // Enable SMBus with acknowledge low (AA = 1)
SMB0CR = -80; // SMBus clock rate = 100 kHz
SMB0ADR = MY_ADD; // Set own slave address.

ADC0CN = 0x80; // Enable ADC, conversions to start with
// write to ADBUSY.

ADC0CN |= 0x01; // ADC data registers left-justified.

DAC0CN = 0x84; // enable DAC0, with left justified data
// registers.

REF0CN = 0x03; // reference voltage enabled.

EIE1 |= 2; // SMBus interrupt enable
EA = 1; // Global interrupt enable

SM_BUSY = 0; // Free bus for first transfer.
SI = 0; //

// OP_CODE_HANDLER(); // This line should be commented in only
// one of the two peer devices. It is
// for testing purposes only.
// In a normal setup, the OP_CODE_HANDLER
// would be running at all times in order
// to react to OP_CODES being sent to the
// device.

// TEST CODE--
// This code is used only to test the interface between the two devices. If
// the above OP_CODE_HANDLER line is commented out, this device assumes the master
// role. The other device should be running the OP_CODE_HANDLER at all times, to
// respond to the OP_CODEs below.

SLA_SEND(CHIP_B, (0x40 | WRITE_BUF), 0x24); // Write to index 4
// in the data buffer

SLA_SEND(CHIP_B, (0x60 | WRITE_BUF), 0x25); // Write to index 6
SLA_SEND(CHIP_B, (0x80 | WRITE_BUF), 0x26); // Write to index 8
SLA_SEND(CHIP_B, (0x10 | WRITE_BUF), 0x27); // Write to index 1

check_1 = SLA_READ(CHIP_B, (0x40 | READ_BUF)); // Read index 4 from the buffer
check_1 = SLA_READ(CHIP_B, (0x60 | READ_BUF)); // Read index 6
check_1 = SLA_READ(CHIP_B, (0x80 | READ_BUF)); // Read index 8
check_1 = SLA_READ(CHIP_B, (0x10 | READ_BUF)); // Read index 1

// Loop to continuously increase the DAC output on CHIP_B, and read its
// ADC each round. DAC output on CHIP_B should ramp.

for (i=0;i<50;i++){
SLA_SEND(CHIP_B, WRITE_DAC, 2*i); // Write 2*i to DAC0 on CHIP_B
check_1 = SLA_READ(CHIP_B, READ_ADC); // Read AIN0 on CHIP_B
check_2 = 2*i;} // check_1 should be approximately

// the same as check_2.
// END TEST CODE--
32 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
}

//--
// Functions
//--

// Send to slave.
// The send function transmits two bytes to the slave device: an op code, and a data
// byte. There are two op code choices for sending data: WRITE_DAC and WRITE_BUF.
// If the op code is WRITE_BUF, then the upper 4 bits of the op code should contain
// the buffer index. For example, to write to index 2 of the data buffer, the
// op_code parameter should be (0x20 | WRITE_BUF).
//
// chip_select = address of slave device.
// out_op = OP_CODE to be sent.
// out_data = data byte to be sent.
void SLA_SEND(char chip_select, char out_op, char out_data){

while(SM_BUSY); // Wait while SMBus is busy.
SM_BUSY = 1; // SMBus busy flag set.
SMB0CN = 0x44; // SMBus enabled, ACK low.
COMMAND = (chip_select | WRITE); // COMMAND = 7 address bits + WRITE.
OP_CODE = out_op; // WORD = OP_CODE to be transmitted.
WORD = out_data; // DATA = data to be transmitted.
STO = 0;
STA = 1; // Start transfer.

}

// Read from slave.
// The read function transmits a 1-byte op code, then issues a repeated start
// to request a 1-byte read. The two op code choices are READ_ADC and READ_BUF.
// If the op code is READ_BUF, then the upper 4 bits of the op code should
// contain the buffer index. For example, to read index 5 of the data buffer,
// the op code should be (0x50 | READ_BUF).
//
// chip_select = address of slave device.
// out_op = OP_CODE to be sent.
char SLA_READ(char chip_select, char out_op){

while(SM_BUSY); // Wait while SMBus is busy.
SM_BUSY = 1; // Set busy flag.
SMB0CN = 0x44; // Enable SMBus, ACK low.
COMMAND = (chip_select | READ); // COMMAND = 7 address bits + READ
OP_CODE = out_op;
STO = 0;
STA = 1; // Start transfer.
while(SM_BUSY); // Wait for transfer to finish.
return WORD; // Return received word.

}

// OP_CODE handler.
// Decodes incoming op codes and performs tasks according to those op codes.
// A call to this function runs forever.
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 33

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
//
// The VALID_OP bit flags when a valid op code has been received. Upon receipt,
// the handler decodes the op code, performs the task, then clears
// VALID_OP to wait for another code.
void OP_CODE_HANDLER(void){

char index; // data buffer index
while (1){ // run forever

VALID_OP = 0; // Wait for a valid OP_CODE
while (!VALID_OP); //

// The lower 4 bits of the OP_CODE are used to determine the action, while the
// upper 4 bits are used to index the DATA_BUF array when the READ_BUF or
// WRITE_BUF OP_CODEs are received. Note that the SMBus is stalled until the
// OP_CODE is decoded.
switch (OP_CODE & 0x0F){ // Decode OP_CODE

// OP_CODE = READ_ADC - Perform an ADC conversion, and place data in
// output buffer.
// Read only ADC high byte.
case READ_ADC:

SI = 0; // Free the bus
AA = 0; // Take slave ‘offline’
ADCINT = 0; // Clear ADC interrupt flag.
ADBUSY = 1; // Start conversion.
while (!ADCINT); // Wait for conversion to finish.
WORD = ADC0H; // Put data in output buffer.
AA = 1; // Put slave back ‘online’
VALID_OP = 0; // Look for a new OP_CODE
break;

// OP_CODE = WRITE_DAC - Wait for a valid data byte, and write it to high
// byte of DAC0.
case WRITE_DAC:

SI = 0; // Free the bus
DATA_READY = 0; // Wait for valid data.
while (!DATA_READY); //
DAC0L = 0; // DAC low byte
DAC0H = WORD; // DAC high byte
VALID_OP = 0; // Look for new OP_CODE
SI = 0; // Free bus when finished.
break;

// OP_CODE = WRITE_BUF - Wait for valid data byte, then place data in
// DATA_BUF array. Index data according to upper 4 bits of OP_CODE.
case WRITE_BUF:

SI = 0; // Free the bus
index = (OP_CODE & 0xF0); // Use upper 4 bits as array index.
DATA_READY = 0; // Wait for valid data.
while (!DATA_READY); //
DATA_BUF[index] = WORD; // Store data in array.
VALID_OP = 0; // Look for new OP_CODE
SI = 0; // Free the bus when finished.
break;

// OP_CODE = READ_BUF - Read DATA_BUF array and place byte in output buffer.
// Array index determined by upper 4 bits of OP_CODE.
34 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
case READ_BUF:
index = (OP_CODE & 0xF0); // Use upper 4 bits as array index.
WORD = DATA_BUF[index]; // Place indexed data in output buffer.
VALID_OP = 0; // Look for new OP_CODE
SI = 0; // Free the bus when finished.
break;

}

if (LOST){ // If LOST is set, the device has recently
COMMAND = LOST_COMMAND; // lost an arbitration. Load saved values
WORD = LOST_WORD; // back into transfer variables, and retry
OP_CODE = LOST_CODE; // transfer.
LOST = 0;
STO = 0;
STA = 1;
}

}
}

//--
// SMBus Interrupt Service Routine
//--

void SMBUS_ISR (void) interrupt 7
{

switch (SMB0STA){ // Status code for the SMBus
// (SMB0STA register)

// Master Transmitter/Receiver: START condition transmitted.
// Load SMB0DAT with slave device address. Mask out R/W bit since all transfers
// start with an OP_CODE write.
case SMB_START:

SMB0DAT = (COMMAND & 0xFE); // Load address of the slave to be accessed.
// Mask out R/W bit because first transfer
// will always be a write of the OP_CODE.

STA = 0; // Manually clear STA bit
SI = 0; // Clear interrupt flag
break;

// Master Transmitter/Receiver: Repeated START condition transmitted.
// This state only occurs during a READ, after the OP_CODE has been sent. Load
// device address + READ into SMB0DAT.
case SMB_RP_START:

SMB0DAT = COMMAND;
STA = 0; // Manually clear START bit.
SI = 0;
break;

// Master Transmitter: Slave address + WRITE transmitted. ACK received.
// Load OP_CODE into SMB0DAT.
case SMB_MTADDACK:

SMB0DAT = OP_CODE;
SI = 0; // Clear interrupt flag
break;
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 35

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// Master Transmitter: Slave address + WRITE transmitted. NACK received.
// The slave is not responding. Use ACK polling to retry.
case SMB_MTADDNACK:

STO = 1;
STA = 1;
SI = 0; // Clear interrupt flag
break;

// Master Transmitter: Data byte transmitted. ACK received.
// Check OP_CODE - If it is a READ code, send repeated START to begin
// read. If it is a WRITE code, load WORD into SMB0DAT for transfer.
// If it is not a valid code, then either 1) data has been transmitted
// and the transfer is finished, or 2) there is an error. In either case,
// send STOP and end transfer.
case SMB_MTDBACK:

switch (OP_CODE & 0x0F){ // Check only lower 4 bits.

// OP_CODE is a READ. Send repeated START.
case READ_BUF:
case READ_ADC:

OP_CODE = 0; // Current OP_CODE no longer useful
STO = 0;
STA = 1;
break;

// OP_CODE is a WRITE. Load output data into SMB0DAT.
case WRITE_BUF:
case WRITE_DAC:

SMB0DAT = WORD;
OP_CODE = 0; // Clear OP_CODE so transfer ends the next
break; // time this state occurs

// (after data is sent).

default: // No valid OP_CODE. End transfer.
STO = 1;
SM_BUSY = 0;
break;

}
SI = 0;
break;

// Master Transmitter: Data byte transmitter. NACK received.
// Use ACK polling to retry transfer.
case SMB_MTDBNACK:

STO = 1;
STA = 1;
SI = 0; // Clear interrupt flag
break;

// Master Transmitter: Arbitration lost.
case SMB_MTARBLOST:

LOST_COMMAND = COMMAND; //
LOST_WORD = WORD; // Store variables for use when bus is free.
LOST_CODE = OP_CODE; //

LOST = 1; // Set flag to retry transfer
// when bus is free.
36 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
SI = 0; // Clear interrupt flag
break;

// Master Receiver: Slave address + READ transmitted. ACK received.
// Set to transmit NACK after next transfer since it will be the
// last (only) byte.
case SMB_MRADDACK:

AA = 0; // NACK sent during acknowledge cycle.
SI = 0;
break;

// Master Receiver: Slave address + READ transmitted. NACK received.
// Slave not responding. Send repeated START to try again.
case SMB_MRADDNACK:

STO = 0;
STA = 1;
SI = 0;
break;

// Master Receiver: Data byte received. ACK transmitted.
// State should not occur because AA is cleared in previous state.
// Send STOP if state does occur.
case SMB_MRDBACK:

STO = 1;
SM_BUSY = 0;
SI = 0;
break;

// Master Receiver: Data byte received. NACK transmitted.
// Read operation has completed. Read data register and send STOP.
case SMB_MRDBNACK:

WORD = SMB0DAT;
STO = 1;
SM_BUSY = 0;
AA = 1; // Set AA for next transfer
SI = 0;
break;

// Slave Receiver: Arbitration lost, general call address received.
// Set LOST flag to retry transfer when bus is free. Fall through.
case SMB_SRGARBLOST:

// Slave Receiver: Arbitration lost, own slave address + WRITE received.
// Set LOST flag to retry transfer when bus is free.
// Set STO bit to get out of master mode.
case SMB_SROARBLOST:

LOST_COMMAND = COMMAND; //
LOST_WORD = WORD; // Store variables for use when bus is free.
LOST_CODE = OP_CODE; //
LOST = 1; // Retry transfer when bus is free.
SI = 0;
break;

// Slave Receiver: Slave address + WRITE received. ACK transmitted.
// Fall through.
case SMB_SROADACK:
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 37

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// Slave Receiver: General call address received. ACK transmitted.
case SMB_SRGADACK:

SI = 0;
break;

// Slave Receiver: Data byte received after addressed by general
// call address + WRITE.
// ACK transmitted. Fall through.
case SMB_SRGDBACK:

// Slave Receiver: Data byte received after addressed by own
// slave address + WRITE.
// ACK transmitted.
// Take action depending on OP_CODE or data received.
case SMB_SRODBACK:

if (!VALID_OP){ // if VALID_OP=0, this byte is an OP_CODE.
OP_CODE = SMB0DAT; // Store OP_CODE
VALID_OP = 1; // Next byte is not an OP_CODE

} else {
DATA_READY = 1; // Valid data has been received. Process

// in OP_CODE handler.
WORD = SMB0DAT;
SI = 0;

}
break;

// Slave Receiver: Data byte received while addressed as slave.
// NACK transmitted. Should not occur since AA will not be cleared
// as slave. Fall through to next state.
case SMB_SRODBNACK:

// Slave Receiver: Data byte received while addressed by general call.
// NACK transmitted.
// Should not occur since AA will not be cleared as slave.
case SMB_SRGDBNACK:

AA = 1;
SI = 0;
break;

// Slave Receiver: STOP or repeated START received while addressed as slave.
case SMB_SRSTOP:

SI = 0;
break;

// Slave Transmitter: Own slave address + READ received. ACK transmitted.
// Load SMB0DAT with data to be output.
case SMB_STOADACK:

SMB0DAT = WORD;
SI = 0;
break;

// Slave Transmitter: Arbitration lost as master. Own address + READ received.
// ACK transmitted.
case SMB_STOARBLOST:

LOST_COMMAND = COMMAND; //
LOST_WORD = WORD; // Store variables for use when bus
LOST_CODE = OP_CODE; // is free.
38 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
LOST = 1; // Retry when bus is free.

SI = 0;
break;

// Slave Transmitter: Data byte transmitted. ACK received. Fall through.
case SMB_STDBACK:

// Slave Transmitter: Data byte transmitted. NACK received. Fall through.
case SMB_STDBNACK:

// Slave Transmitter: Last data byte transmitted. ACK received.
// No action necessary.
case SMB_STDBLAST:

SI = 0;
break;

// All other status codes invalid. Reset communication.
default:

STO = 1;
SM_BUSY = 0;
break;

}

}

© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 39

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
Software Example for the
C8051F02x series
//--
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// FILE NAME : SMB_Ex3.c
// TARGET DEVICE : C8051F020
// CREATED ON : 6/5/02
// CREATED BY : JS / FB
//
// Example code to demonstrate the use of the SMBus interface between two CF000 devices.
// The devices operate in a peer-to-peer configuration.
//
// Demonstration includes use of op codes for each device to command the other to:
//
// 1) Write a byte to DAC0
// 2) Write a byte to a data buffer
// 3) Perform an ADC conversion
// 4) Read a byte from a data buffer
//
// These op codes are can be tested easily if each chip has DAC0 routed to AIN0.
// With this configuration, a READ_ADC command can be used to test the output
// of a WRITE_DAC command.
//
// Code assumes that two CF0xx devices are connected via SCL and SDA, with
// slave addresses (held by register SMB0ADR)
// CHIP_A = 1111000
// CHIP_B = 1110000
//
// Test code is included. For testing purposes, the test code should be omitted
// in one device, and run in the other. This can be accomplished by commenting
// the OP_CODE_HANDLER() call before the test code in the device that will assume
// the master role.
//
// PLEASE NOTE that the constant MY_ADD must correspond with the
// current device - change it to CHIP_B when downloading code to CHIP_B.
//
//--

//---
// Includes
//---
#include <c8051f020.h> // SFR declarations

//---
// 16-bit SFR Definitions for ‘F02x
//---
sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
40 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 RCAP4 = 0xe4; // Timer4 capture/reload
sfr16 T4 = 0xf4; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data

//--
// Global CONSTANTS
//--

#define WRITE 0x00 // WRITE direction bit
#define READ 0x01 // READ direction bit

// Device addresses
#define CHIP_A 0xF0
#define CHIP_B 0xE0
#define MY_ADD CHIP_A // Corresponds to the chip currently

// being programmed.

// Peer-to-Peer OP_CODEs
#define READ_ADC 0x01 // OP_CODE to read from slave ADC
#define WRITE_DAC 0x02 // OP_CODE to write to slave DAC
#define WRITE_BUF 0x03 // OP_CODE to write to slave buffer
#define READ_BUF 0x04 // OP_CODE to read from slave buffer

//SMBus states:
// MT = Master Transmitter
// MR = Master Receiver
// ST = Slave Transmitter
// SR = Slave Receiver

#define SMB_BUS_ERROR 0x00 // (all modes) BUS ERROR
#define SMB_START 0x08 // (MT & MR) START transmitted
#define SMB_RP_START 0x10 // (MT & MR) repeated START
#define SMB_MTADDACK 0x18 // (MT) Slave address + W transmitted;

// ACK received
#define SMB_MTADDNACK 0x20 // (MT) Slave address + W transmitted;

// NACK received
#define SMB_MTDBACK 0x28 // (MT) data byte transmitted; ACK rec’vd
#define SMB_MTDBNACK 0x30 // (MT) data byte transmitted; NACK rec’vd
#define SMB_MTARBLOST 0x38 // (MT) arbitration lost
#define SMB_MRADDACK 0x40 // (MR) Slave address + R transmitted;

// ACK received
#define SMB_MRADDNACK 0x48 // (MR) Slave address + R transmitted;

// NACK received
#define SMB_MRDBACK 0x50 // (MR) data byte rec’vd; ACK transmitted
#define SMB_MRDBNACK 0x58 // (MR) data byte rec’vd; NACK transmitted
#define SMB_SROADACK 0x60 // (SR) SMB’s own slave address + W rec’vd;

// ACK transmitted
#define SMB_SROARBLOST 0x68 // (SR) SMB’s own slave address + W rec’vd;

// arbitration lost
#define SMB_SRGADACK 0x70 // (SR) general call address rec’vd;

// ACK transmitted
#define SMB_SRGARBLOST 0x78 // (SR) arbitration lost when transmitting

// slave addr + R/W as master; general
// call address rec’vd; ACK transmitted
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 41

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
#define SMB_SRODBACK 0x80 // (SR) data byte received under own slave
// address; ACK returned

#define SMB_SRODBNACK 0x88 // (SR) data byte received under own slave
// address; NACK returned

#define SMB_SRGDBACK 0x90 // (SR) data byte received under general
// call address; ACK returned

#define SMB_SRGDBNACK 0x98 // (SR) data byte received under general
// call address; NACK returned

#define SMB_SRSTOP 0xa0 // (SR) STOP or repeated START received
// while addressed as a slave

#define SMB_STOADACK 0xa8 // (ST) SMB’s own slave address + R rec’vd;
// ACK transmitted

#define SMB_STOARBLOST 0xb0 // (ST) arbitration lost in transmitting
// slave address + R/W as master; own
// slave address rec’vd; ACK transmitted

#define SMB_STDBACK 0xb8 // (ST) data byte transmitted; ACK rec’ed
#define SMB_STDBNACK 0xc0 // (ST) data byte transmitted; NACK rec’ed
#define SMB_STDBLAST 0xc8 // (ST) last data byte transmitted (AA=0);

// ACK received
#define SMB_SCLHIGHTO 0xd0 // (ST & SR) SCL clock high timer per

// SMB0CR timed out (FTE=1)
#define SMB_IDLE 0xf8 // (all modes) Idle

//---
//Global VARIABLES
//---

char COMMAND; // Holds the slave address + R/W bit for
// use in the SMBus ISR.

char WORD; // Holds data to be transmitted by the SMBus
// OR data that has just been received.

char OP_CODE; // Holds an op code to be sent or one
// that has just been received.

char LOST_COMMAND, LOST_WORD, LOST_CODE; // Used to hold relevant data after a
// lost arbitration.

char DATA_BUF[16]; // Data buffer accessed by OP_CODE_HANDLER

bit LOST; // Arbitration lost flag, set when
// arbitration is lost while in master mode.
// Used to resume a failed transfer.

bit SM_BUSY; // This bit is set when a send or receive
// is started. It is cleared by the
// ISR when the operation is finished.

bit VALID_OP; // Flag used to determine if byte received
// as a slave is an OP_CODE or data.

bit DATA_READY; // Used by OP_CODE handler to flag when
// valid data has been received from the
// master
42 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
//--
// Function PROTOTYPES
//--

void SYSCLK_Init (void);

void SMBUS_ISR (void);
char SLA_READ(char chip_select, char out_op);
void SLA_SEND(char chip_select, char out_op, char out_data);
void OP_CODE_HANDLER(void);

//--
// MAIN Routine
//--

void MAIN (void)
{

char i, check_1, check_2; // Variables used for testing purposes only.

WDTCN = 0xde; // disable watchdog timer
WDTCN = 0xad;

SYSCLK_Init(); // turn on the external oscillator

XBR0 = 0x01; // Route SMBus to GPIO pins through crossbar
XBR2 = 0x40; // Enable crossbar and weak pull-ups

SMB0CN = 0x44; // Enable SMBus with acknowledge low (AA = 1)
SMB0CR = -80; // SMBus clock rate = 100 kHz
SMB0ADR = MY_ADD; // Set own slave address.

ADC0CN = 0x80; // Enable ADC, conversions to start with
// write to AD0BUSY.

ADC0CN |= 0x01; // ADC data registers left-justified.

DAC0CN = 0x84; // enable DAC0, with left justified data
// registers.

REF0CN = 0x03; // reference voltage enabled.

EIE1 |= 2; // SMBus interrupt enable
EA = 1; // Global interrupt enable

SM_BUSY = 0; // Free bus for first transfer.
SI = 0; //

// OP_CODE_HANDLER(); // This line should be commented in only
// one of the two peer devices. It is
// for testing purposes only.
// In a normal setup, the OP_CODE_HANDLER
// would be running at all times in order
// to react to OP_CODES being sent to the
// device.

// TEST CODE--
// This code is used only to test the interface between the two devices. If
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 43

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// the above OP_CODE_HANDLER line is commented out, this device assumes the master
// role. The other device should be running the OP_CODE_HANDLER at all times, to
// respond to the OP_CODEs below.

SLA_SEND(CHIP_B, (0x40 | WRITE_BUF), 0x24); // Write to index 4
// in the data buffer

SLA_SEND(CHIP_B, (0x60 | WRITE_BUF), 0x25); // Write to index 6
SLA_SEND(CHIP_B, (0x80 | WRITE_BUF), 0x26); // Write to index 8
SLA_SEND(CHIP_B, (0x10 | WRITE_BUF), 0x27); // Write to index 1

check_1 = SLA_READ(CHIP_B, (0x40 | READ_BUF)); // Read index 4 from the buffer
check_1 = SLA_READ(CHIP_B, (0x60 | READ_BUF)); // Read index 6
check_1 = SLA_READ(CHIP_B, (0x80 | READ_BUF)); // Read index 8
check_1 = SLA_READ(CHIP_B, (0x10 | READ_BUF)); // Read index 1

// Loop to continuously increase the DAC output on CHIP_B, and read its
// ADC each round. DAC output on CHIP_B should ramp.

for (i=0;i<50;i++){
SLA_SEND(CHIP_B, WRITE_DAC, 2*i); // Write 2*i to DAC0 on CHIP_B
check_1 = SLA_READ(CHIP_B, READ_ADC); // Read AIN0 on CHIP_B
check_2 = 2*i; // check_1 should be approximately

} // the same as check_2.

// END TEST CODE--

}

//--
// Initialization Routines
//--

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.
//
void SYSCLK_Init (void)
{

int i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms)

while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle

OSCICN = 0x88; // select external oscillator as SYSCLK
// source and enable missing clock
// detector

}

//--
44 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// Functions
//--

// Send to slave.
// The send function transmits two bytes to the slave device: an op code, and a data
// byte. There are two op code choices for sending data: WRITE_DAC and WRITE_BUF.
// If the op code is WRITE_BUF, then the upper 4 bits of the op code should contain
// the buffer index. For example, to write to index 2 of the data buffer, the
// op_code parameter should be (0x20 | WRITE_BUF).
//
// chip_select = address of slave device.
// out_op = OP_CODE to be sent.
// out_data = data byte to be sent.
void SLA_SEND(char chip_select, char out_op, char out_data){

while(SM_BUSY); // Wait while SMBus is busy.
SM_BUSY = 1; // SMBus busy flag set.
SMB0CN = 0x44; // SMBus enabled, ACK low.
COMMAND = (chip_select | WRITE); // COMMAND = 7 address bits + WRITE.
OP_CODE = out_op; // WORD = OP_CODE to be transmitted.
WORD = out_data; // DATA = data to be transmitted.
STO = 0;
STA = 1; // Start transfer.

}

// Read from slave.
// The read function transmits a 1-byte op code, then issues a repeated start
// to request a 1-byte read. The two op code choices are READ_ADC and READ_BUF.
// If the op code is READ_BUF, then the upper 4 bits of the op code should
// contain the buffer index. For example, to read index 5 of the data buffer,
// the op code should be (0x50 | READ_BUF).
//
// chip_select = address of slave device.
// out_op = OP_CODE to be sent.
char SLA_READ(char chip_select, char out_op){

while(SM_BUSY); // Wait while SMBus is busy.
SM_BUSY = 1; // Set busy flag.
SMB0CN = 0x44; // Enable SMBus, ACK low.
COMMAND = (chip_select | READ); // COMMAND = 7 address bits + READ
OP_CODE = out_op;
STO = 0;
STA = 1; // Start transfer.
while(SM_BUSY); // Wait for transfer to finish.
return WORD; // Return received word.

}

// OP_CODE handler.
// Decodes incoming op codes and performs tasks according to those op codes.
// A call to this function runs forever.
//
// The VALID_OP bit flags when a valid op code has been received. Upon receipt,
// the handler decodes the op code, performs the task, then clears
// VALID_OP to wait for another code.
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 45

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
void OP_CODE_HANDLER(void){

char index; // data buffer index
while (1){ // run forever

VALID_OP = 0; // Wait for a valid OP_CODE
while (!VALID_OP); //

// The lower 4 bits of the OP_CODE are used to determine the action, while the
// upper 4 bits are used to index the DATA_BUF array when the READ_BUF or
// WRITE_BUF OP_CODEs are received. Note that the SMBus is stalled until the
// OP_CODE is decoded.
switch (OP_CODE & 0x0F){ // Decode OP_CODE

// OP_CODE = READ_ADC - Perform an ADC conversion, and place data in
// output buffer.
// Read only ADC high byte.
case READ_ADC:

SI = 0; // Free the bus
AA = 0; // Take slave ‘offline’
AD0INT = 0; // Clear ADC interrupt flag.
AD0BUSY = 1; // Start conversion.
while (!AD0INT); // Wait for conversion to finish.
WORD = ADC0H; // Put data in output buffer.
AA = 1; // Put slave back ‘online’
VALID_OP = 0; // Look for a new OP_CODE
break;

// OP_CODE = WRITE_DAC - Wait for a valid data byte, and write it to high
// byte of DAC0.
case WRITE_DAC:

SI = 0; // Free the bus
DATA_READY = 0; // Wait for valid data.
while (!DATA_READY); //
DAC0L = 0; // DAC low byte
DAC0H = WORD; // DAC high byte
VALID_OP = 0; // Look for new OP_CODE
SI = 0; // Free bus when finished.
break;

// OP_CODE = WRITE_BUF - Wait for valid data byte, then place data in
// DATA_BUF array. Index data according to upper 4 bits of OP_CODE.
case WRITE_BUF:

SI = 0; // Free the bus
index = (OP_CODE & 0xF0); // Use upper 4 bits as array index.
DATA_READY = 0; // Wait for valid data.
while (!DATA_READY); //
DATA_BUF[index] = WORD; // Store data in array.
VALID_OP = 0; // Look for new OP_CODE
SI = 0; // Free the bus when finished.
break;

// OP_CODE = READ_BUF - Read DATA_BUF array and place byte in output buffer.
// Array index determined by upper 4 bits of OP_CODE.
case READ_BUF:

index = (OP_CODE & 0xF0); // Use upper 4 bits as array index.
WORD = DATA_BUF[index]; // Place indexed data in output buffer.
VALID_OP = 0; // Look for new OP_CODE
46 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
SI = 0; // Free the bus when finished.
break;

}

if (LOST){ // If LOST is set, the device has recently
COMMAND = LOST_COMMAND; // lost an arbitration. Load saved values
WORD = LOST_WORD; // back into transfer variables, and retry
OP_CODE = LOST_CODE; // transfer.
LOST = 0;
STO = 0;
STA = 1;
}

}
}

//--
// SMBus Interrupt Service Routine
//--

void SMBUS_ISR (void) interrupt 7
{

switch (SMB0STA){ // Status code for the SMBus
// (SMB0STA register)

// Master Transmitter/Receiver: START condition transmitted.
// Load SMB0DAT with slave device address. Mask out R/W bit since all transfers
// start with an OP_CODE write.
case SMB_START:

SMB0DAT = (COMMAND & 0xFE); // Load address of the slave to be accessed.
// Mask out R/W bit because first transfer
// will always be a write of the OP_CODE.

STA = 0; // Manually clear STA bit
SI = 0; // Clear interrupt flag
break;

// Master Transmitter/Receiver: Repeated START condition transmitted.
// This state only occurs during a READ, after the OP_CODE has been sent. Load
// device address + READ into SMB0DAT.
case SMB_RP_START:

SMB0DAT = COMMAND;
STA = 0; // Manually clear START bit.
SI = 0;
break;

// Master Transmitter: Slave address + WRITE transmitted. ACK received.
// Load OP_CODE into SMB0DAT.
case SMB_MTADDACK:

SMB0DAT = OP_CODE;
SI = 0; // Clear interrupt flag
break;

// Master Transmitter: Slave address + WRITE transmitted. NACK received.
// The slave is not responding. Use ACK polling to retry.
case SMB_MTADDNACK:

STO = 1;
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 47

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
STA = 1;
SI = 0; // Clear interrupt flag
break;

// Master Transmitter: Data byte transmitted. ACK received.
// Check OP_CODE - If it is a READ code, send repeated START to begin
// read. If it is a WRITE code, load WORD into SMB0DAT for transfer.
// If it is not a valid code, then either 1) data has been transmitted
// and the transfer is finished, or 2) there is an error. In either case,
// send STOP and end transfer.
case SMB_MTDBACK:

switch (OP_CODE & 0x0F){ // Check only lower 4 bits.

// OP_CODE is a READ. Send repeated START.
case READ_BUF:
case READ_ADC:

OP_CODE = 0; // Current OP_CODE no longer useful
STO = 0;
STA = 1;
break;

// OP_CODE is a WRITE. Load output data into SMB0DAT.
case WRITE_BUF:
case WRITE_DAC:

SMB0DAT = WORD;
OP_CODE = 0; // Clear OP_CODE so transfer ends the next
break; // time this state occurs

// (after data is sent).

default: // No valid OP_CODE. End transfer.
STO = 1;
SM_BUSY = 0;
break;

}
SI = 0;
break;

// Master Transmitter: Data byte transmitter. NACK received.
// Use ACK polling to retry transfer.
case SMB_MTDBNACK:

STO = 1;
STA = 1;
SI = 0; // Clear interrupt flag
break;

// Master Transmitter: Arbitration lost.
case SMB_MTARBLOST:

LOST_COMMAND = COMMAND; //
LOST_WORD = WORD; // Store variables for use when bus is free.
LOST_CODE = OP_CODE; //

LOST = 1; // Set flag to retry transfer
// when bus is free.

SI = 0; // Clear interrupt flag
break;

// Master Receiver: Slave address + READ transmitted. ACK received.
48 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// Set to transmit NACK after next transfer since it will be the
// last (only) byte.
case SMB_MRADDACK:

AA = 0; // NACK sent during acknowledge cycle.
SI = 0;
break;

// Master Receiver: Slave address + READ transmitted. NACK received.
// Slave not responding. Send repeated START to try again.
case SMB_MRADDNACK:

STO = 0;
STA = 1;
SI = 0;
break;

// Master Receiver: Data byte received. ACK transmitted.
// State should not occur because AA is cleared in previous state.
// Send STOP if state does occur.
case SMB_MRDBACK:

STO = 1;
SM_BUSY = 0;
SI = 0;
break;

// Master Receiver: Data byte received. NACK transmitted.
// Read operation has completed. Read data register and send STOP.
case SMB_MRDBNACK:

WORD = SMB0DAT;
STO = 1;
SM_BUSY = 0;
AA = 1; // Set AA for next transfer
SI = 0;
break;

// Slave Receiver: Arbitration lost, general call address received.
// Set LOST flag to retry transfer when bus is free. Fall through.
case SMB_SRGARBLOST:

// Slave Receiver: Arbitration lost, own slave address + WRITE received.
// Set LOST flag to retry transfer when bus is free.
// Set STO bit to get out of master mode.
case SMB_SROARBLOST:

LOST_COMMAND = COMMAND; //
LOST_WORD = WORD; // Store variables for use when bus is free.
LOST_CODE = OP_CODE; //
LOST = 1; // Retry transfer when bus is free.
SI = 0;
break;

// Slave Receiver: Slave address + WRITE received. ACK transmitted.
// Fall through.
case SMB_SROADACK:

// Slave Receiver: General call address received. ACK transmitted.
case SMB_SRGADACK:

SI = 0;
break;
© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 49

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// Slave Receiver: Data byte received after addressed by general
// call address + WRITE.
// ACK transmitted. Fall through.
case SMB_SRGDBACK:

// Slave Receiver: Data byte received after addressed by own
// slave address + WRITE.
// ACK transmitted.
// Take action depending on OP_CODE or data received.
case SMB_SRODBACK:

if (!VALID_OP){ // if VALID_OP=0, this byte is an OP_CODE.
OP_CODE = SMB0DAT; // Store OP_CODE
VALID_OP = 1; // Next byte is not an OP_CODE

} else {
DATA_READY = 1; // Valid data has been received. Process

// in OP_CODE handler.
WORD = SMB0DAT;
SI = 0;

}
break;

// Slave Receiver: Data byte received while addressed as slave.
// NACK transmitted. Should not occur since AA will not be cleared
// as slave. Fall through to next state.
case SMB_SRODBNACK:

// Slave Receiver: Data byte received while addressed by general call.
// NACK transmitted.
// Should not occur since AA will not be cleared as slave.
case SMB_SRGDBNACK:

AA = 1;
SI = 0;
break;

// Slave Receiver: STOP or repeated START received while addressed as slave.
case SMB_SRSTOP:

SI = 0;
break;

// Slave Transmitter: Own slave address + READ received. ACK transmitted.
// Load SMB0DAT with data to be output.
case SMB_STOADACK:

SMB0DAT = WORD;
SI = 0;
break;

// Slave Transmitter: Arbitration lost as master. Own address + READ received.
// ACK transmitted.
case SMB_STOARBLOST:

LOST_COMMAND = COMMAND; //
LOST_WORD = WORD; // Store variables for use when bus
LOST_CODE = OP_CODE; // is free.
LOST = 1; // Retry when bus is free.

SI = 0;
break;
50 AN013-1.1 JUL02 © 2002 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

Serial Communication with the SMBus
// Slave Transmitter: Data byte transmitted. ACK received. Fall through.
case SMB_STDBACK:

// Slave Transmitter: Data byte transmitted. NACK received. Fall through.
case SMB_STDBNACK:

// Slave Transmitter: Last data byte transmitted. ACK received.
// No action necessary.
case SMB_STDBLAST:

SI = 0;
break;

// All other status codes invalid. Reset communication.
default:

STO = 1;
SM_BUSY = 0;
break;

}

}

© 2002 Cygnal Integrated Products, Inc. AN013-1.1 JUL02 51

http://www.cygnal.com
http://www.cygnal.com

	Introduction
	SMBus Specification
	SMBus Structure
	Handshaking
	Transfer Modes
	Arbitration

	Using the SMBus
	Configuration and Control
	Implementation Choices

	Examples
	Single EEPROM
	Multiple EEPROMs
	Peer-to-Peer Interface

	Software Examples for the C8051F00x and C8051F01x series
	Software Example for the C8051F02x series

