VRS51L2070

Preliminary Datasheet

RAMTRION

Rev 1.2

High-Performance Versa 8051 MCU

Feature Set

Overview

The VRS51L2070 is a high performance, 8051-based microcontroller
coupled with a fully integrated array of peripherals for addressing a
broad range of embedded design applications.

Based on a powerful 40-MIPS, single-cycle, 8051 microprocessor,
the VRS51L2070’s memory sub-system features 64KB of Flash
and 4352 bytes of SRAM.

Support peripherals include a hardware based arithmetic unit
capable of performing complex mathematical operations, JTAG
interface used for Flash programming and non-intrusive in-circuit
debugging/emulation, a precision internal oscillator (2% accuracy)
and a watchdog timer.

Communication and control of external devices is facilitated via an
assortment of digital peripherals such as an enhanced, fully
configurable SPI bus, an I2C interface, dual UARTs with dedicated
baud rate generators, 8 PWM controllers, 3 16-bit timers and 2 pulse
width counter modules.

The VRS51L2070 is powered by a 3.3 volt supply, can function
over the industrial temperature range, and is available in a
QFP-64 package (See VRS51L2170 datasheet for PLCC/QFP-44
packages - pin compatible with the industry standard 8051
microcontroller footprint/pin-out).

FIGURE 1: VRS51L2070 FUNCTIONAL DIAGRAM

VRS51L2070
Mult/Accu/Div 8051 Core JTAG
wi 32-Bit Barrel Single Cycle w/On-Chip @
Shifter 40MHz Emulation
Ports (7), Flash
1/0s (56) 64K Bytes SPI /\;>
External Data SRAM 2
Bus Controller 4352 Bytes hC @
UARTS,
Oy Bonre saudFte ()
Generators (2)
Crystal
= | ! Interrupt
-
T Oscillatg Controller
Inputs
Dynamic PWMs/
Clock Timers (8)
Control
Watch Dog Pulse Width
Timer Counters (2)
Power-On/ Timer Capture
B Reset Inputs (3) <:|

(0]

(0]

o

OO0OO0O0O0OO0OOOOOODOOOOOOO

8051 High Performance Single Cycle Processor
(Operation up to 40 MIPS)

64KB Flash Program Memory
(In-System/In-Application Programmable)

4352 Bytes of SRAM (4KB + 256)

(Ext. 4K Bytes can be used for program or data memory)
JTAG Interface for Flash Programming and Non-Intrusive
Debugging/In-Circuit Emulation

MULT/DIV/ACCU Unit including Barrel Shifter

56 General Purpose |/Os (64-pin version)

2 Serial UARTSs/2 Baud Rate Generators (16-bit)
Enhanced SPI Interface (fully configurable word size)
Fully Configurable I°C Interface (Master/Slave)

16 External Interrupt Pins/Interrupt On Port Pin Change
16-bit General Purpose Timer/Counters

3 Timer Capture Inputs

2 Pulse Width Counter Modules

8 PWM Controller Outputs with Individual Timers
PWNMs can be used as General Purpose Timers
Precision Internal Oscillator

Dynamic System Clock Frequency Adjustment

Power Saving Features

Power-On Reset/Brown-Out Detect

Watchdog Timer

Operating voltage: 3.1V to 3.6V

Operating Temperature -40°C to +85°C

FIGURE 2: VRS51L2070 QFP-64 PIN ouT DIAGRAMS

2-CS2-PC1.1-RXD1-T20UT*

Eegx
2 z 3
3RFUS,. &z
- = Ll NN
E6o-dn KR o= am
0 9 €N oc-amsOO00Q
2Q8Q99F <<LI$<LL<LS
SAgTesoordnTo a0
- - 00COCOOOSSOS
aoao0ooQo>000000000
aooo0ao00oganaao
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
SDO-P1.5 10 48[] P0.4-AD4
SCK-SCL*-PC1.3-P1.6 (|2 47] P0.5-AD5
SDI-SDA*-P1.7 [|s 461 P0.6-AD6
RESET []4 451 P0.7-AD7
RXDO0-PCO0.1-P3.0 (|5 44[1 P6.5-A5
TOOUT-P4.5 s 4[] P6.6-A6
PWMO0*-P5.0 (7 42[] P6.7-A7
PWM1*-P5.1 (|8 VRS51L2070 41[] PC1.2-TOEX-RXD1*
PWM2*-P5.2 [9 N 40] T1EX-TXD1*
PWM3*-P5.3 (|10 QFP 64 39[1 P4.3-TDI
VSS 11 38[] P4.2-TDO
TXDO-P3.1 12 37[] CMO-ALE
INTO-PC0.0-P3.2 (|13 361 P4.1-TMS
INT1-PC1.0-P3.3 []14 351 P2.7-A15-PWM7-TCK
TOIN-SCL-EXBRO0-PC0.3-P3.4 [|15 34[] P2.6-A14-PWM6-TOEX
T1IN-SDA-EXBR1-P3.5 [|16 33 P2.5-A13-PWM5-T1EX
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Ujguuiiuuguuuyguy
e~xaYnoNONnoO-N®Y
ooV TDdDTFaaNNNN
£4>4000840>000000
x o ok % x — N OO O —AN
£8 $btizd 33%2:%T
22228 =S5da3
[N - SS=
== s
EEFFs
K 0
)
a
o

Ramtron International Corporation
1850 Ramtron Drive Colorado Springs
Colorado, USA, 80921

http://www.ramtron.com

¢ MCU customer service: 1-800-943-4625, 1-514-871-2447 x 208
1-800-545-FRAM, 1-719-481-7000

page 1 of 99

VRS51L2070

RAMTRSN

Pin Descriptions for OFP-64

TABLE 1: VRS51L2070 PiN DESCRIPTIONS FOR QFP-64 PACKAGE

QZZ' ° Name 110 Function
4 P1.5 /10 Port 1.5
SDO (o) SPI Data output
P1.6 /0 Port 1.6
) SCK [} SPI Clock
SCL* 110 I12C Clock (Alternate Pin)
PC1.3 | Pulse Counter PC1 input 3
P17 [l{e} Port P1.7
3 SDI | SPI Data Input
SDA* [{e] I12C Data (Alternate Pin)
4 RESET [l{e} Reset
P3.0 /10 Port 3.0
5 RXDO | UARTO RX pin
PCO.1 | Pulse Counter PCO input 1
s P4.5 /0 Port4.5
TOOUT (o] Timer 0 output
7 P5.0 /0 Port 5.0
PWMO* (o) PWMO Output (Alternate Pin)
8 P5.1 [} Port 5.1
PWM1* (o) PWM1 Output (Alternate Pin)
0 P5.2 [lle} Port 5.2
PWM2* (o) PWM2 Output (Alternate Pin)
10 P5.3 [lle} Port 5.3
PWM3* o] PWMS3 Output (Alternate Pin)
1 VSS GND Device ground
12 P3.1 /10 Port 3.1
TXDO [e] UARTO TX pin
P3.2 /0 Port 3.2
13 INTO I Interrupt O input
PCO0.0 Pulse Counter PCO input 0
P3.3 [{e} Port 3.3
14 INT1 | Interrupt 1 input
PC1.0 Pulse Counter PC1 input 0
P3.4 /0 Port 3.4
SCL 110 I2C clock
15 TOIN I Timer 0 Input
PC0.3 | Pulse Counter PCO input 3
EXBRO I UARTO External Baud Rate Input
P3.5 [{e} Port 3.5
16 SDA [} I12C Data
T1IN | Timer 1 Input
EXBR1 I UART1 External Baud Rate input
P3.6 [l{e} Port 3.6
7 WR o :Eaﬁﬁli):t;vuemory access write signal
P3.7 e} Port 3.7
18 RD o E);\t,)Data memory access read signal (active
19 VDD VDD Positive supply
2 P5.4 Port 5.4
PWM4* (o) PWM4 Output (Alternate Pin)
21 P5.5 Port 5.5
PWM5* o PWMS5 Output (Alternate Pin)
2 P5.6 Port 5.6
PWMe6* [¢] PWM6 Output (Alternate Pin)
23 P5.7 Port 5.7
PWM7* [¢] PWM7 Output (Alternate Pin)

ng’ B Name o Function
" XTAL1 (o] Crystal Oscillator (Output)
P4.6 [l{e} Port 4.6
25 XTAL2 I Crystal Oscillator (Input)
P4.7 [l{e} Port 4.7
26 VSS GND Device ground
27 P4.0 [lle} Port 4.0
T10UT (o) Timer 1 Output
P2.0 /10 Port 2.0
28 PWMO [¢] PWMO Output
A8 o Ext. Address Bus A8
P2.1 110 Port 2.1
29 PWM1 [¢] PWM1 Output
A9 o Ext. Address Bus A9
P22 [l{e} Port 2.2
30 PWM2 [¢] PWM2 Output
A10 o Ext. Address Bus A10
P2.3 [lle} Port 2.3
31 PWM3 o PWMS3 Output
TXDO* o UARTO TX pin (Alternate Pin)
A11 o Ext. Address Bus A11
P2.4 /10 Port 2.4
PWM4 o PWM4 Output
32 RXDO* I UARTO RX pin (Alternate Pin)
PC0.2 I Pulse Counter PCO input 2
A12 o] Ext. Address Bus A12
P2.5 110 Port 2.5
5 PWM5 (o) PWMS5 output
T1EX I Timer 1 EX input
A13 o Ext. Address Bus A13
P2.6 [lle} Port 2.6
34 PWM6 (o) PWM6 output
TOEX | Timer 0 EX input
A14 [¢] Ext. Address Bus A114
P27 /10 Port 2.7
PWM7 (o] PWM?7 output
% TCK | JTAG TCK input
A15 o Ext. Address Bus A15
36 P4.1 [{e} Port 4.1
T™MS I JTAG TMS Input
37 CMO | JTAG Program mode
ALE o Ext Address Latch Enable
38 P4.2 [lle} Port 4.2
TDO o JTAG TDO Line
30 P4.3 /0 Port 4.3
TDI | JTAG TDl line
P TXD1* o] UART1 TX pin (Alternate Pin)
T1EX | Timer 1 EX input
RXD1* | UART1 RX pin (Alternate Pin)
41 TOEX | Timer 0 EX input
PC1.2 I Pulse Counter PC1 input 2
42 P6.7 [l{e} Port 6.7
A7 o Ext. Address 7 (Non-Multiplexed mode)
4 P6.6 [lle} Port 6.6
A8 o Ext. Address 6 (Non-Multiplexed mode)
4 P6.5 [lle} Port 6.5
A5 o Ext. Address 5 (Non-Multiplexed mode)

www.ramtron.com

page 2 of 99

VRS51L2070 RaAMTRIN

QFP - i
64 Name 1} Function
P0.7 110 Port 0.7 5
45 &
AD7 [} Ext. Address/Data Bus AD7 [
Sggiiz Sx
46 P0.6 [{e} Port 0.6 o ’>5 & NNy o 1
choRES oo
AD6 110 Ext. Address/Data Bus AD6 752530 Ehaw<8588
29899 _S¥5333¥ss
&7 P05 o Port 0.5 3agsoigo=dasondd
R e RN RN R NN o RN}
AD5 1/0 Ext. Address/Data Bus AD5 H E ﬁ E E H E E H E ﬁ E E ﬁ Eﬁ
48 P0.4 110 Port 0.4 SDO-P1.5 164 63 62 61 60 59 58 57 56 55 54 53 52 51 50 4943:| P0.4-AD4
AD4 110 Ext. Address/Data Bus AD4 SCK-SCL*PC1.3-P1.6 [12 o 4757 PO.5-AD5
P0.3 110 Port 0.3 SDI-SDA*-P1.7 3 46] P0.6-AD6
49 RESET [+ 451 P0.7-AD7
AD3 110 Ext. Address/Data Bus AD3 RXDO0-PC0.1-P3.0 5 441 P6.5-A5
50 P0.2 /0 Port 0.2 TOOUT-P4.5 (6 43% P6.6-A6
PWMO0*-P5.0 (|7 42 P6.7-A7
AD2 110 Ext. Address/Data Bus AD2 PWM1*-P5.1 [VRS51L2070 #1F7 PC1.2-TOEX-RXD1*
POA 0 Port 0.1 PWM2*-P5.2 [N 0[] TAEX-TXD1*
51 PWM3*-P5.3 10 QFP 64 39[] P4.3-TDI
AD1 110 Ext. Address/Data Bus AD1 VSS 1 38] P4.2-TDO
P0.0 110 Port 0.0 TXDO0-P3.1 12 37 CMO-ALE
52 INT0-PCO0.0-P3.2 13 36] P4.1-TMS
ADO e} Ext. Address/Data Bus ADO INT1-PC1.0-P3.3 14 351 P2.7-A15-PWM7-TCK
TOIN-SCL-EXBRO0-PC0.3-P3.4 15 3] P2.6-A14-PWM6-TOEX
53 pe4 o Port6.4 T1IN-SDA-EXBR1-P3.5 16 18 19 20 2122 D324 75 25 27 20 31 331 P2.5-A13-PWM5-T1EX
A4 o Ext. Address 4 (Non-Multiplexed mode) ﬂ LTI \j I ﬁ ﬁ I m
P6.3 110 Port 6.3 e~psoo~grgoo-Nny
54 " RS - N NN
A3 [e] Ext. Address 3 (Non-Multiplexed mode) o rdddld Eddded
T L ON -
P6.2 110 Port 6.2 s 33332z 3&iz:
55 s 295309
A2 o Ext. Address 2 (Non-Multiplexed mode) B o = z= § § I
P6.1 1/0 Port 6.1 oo §
S
56 A1 o Ext. Address 1 (Non-Multiplexed mode) g §
T2IN* | Timer 2 input (Alternate) e«
P6.0 [{e} Port 6.0
57 A0 o Ext. Address 0 (Non-Multiplexed mode)
T2EX* I Timer 2 EX Input (Alternate)
58 VDD Positive supply
5 P4.4 110 Port 4.4
T20UT (o) Timer 2 Output
P1.0 /10 Port 1.0
60 CSo [e] SPI Chip Select 0
T2IN | Timer 2 input
P1.1 110 Port 1.1
61 Ccs1 o SPI Chip Select 1
T2EX | Timer 2 EX input
P1.2 [{e} Port 1.2
Ccs2 o SPI Chip Select 2
62 RXD1 I UART1 RX line
PC1.1 I Pulse Counter PC1 input 1
T20UT (o) Timer 2 Output Pin (Alternate Pin)
P1.3 [lle} Port 1.3
63 Cs3 o SPI Chip Select 3
TXD1 o UART1 TX line
P1.4 /10 Port 1.4
64 Ss | SPI Slave Select input
T10UT* ¢} Timer 1 Output (Alternate pin)

www.ramtron.com page 3 of 99

VRS51L2070

RAIMTRISN

FIGURE 3: LARGER VIEW OF VRS51L2070 QFP-64 PACKAGE PINOUT

*,5
o
. K
E <3 X %
) 4 *
dReUS,. Iz
TEIREES NS
HFHbo-op FHH O~ N ®
NNLNN =RSEYEv R alalalal
RRRQRQE LLILLLLILILL
S Mot ANAOT-TANMTO~ANM
B e et R R R R R o e Re RN =)
oA 0Q0OQ>00000000O0
LI O L T
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
SDO-P1.5[]10 48|] P0.4-AD4
SCK-SCL*-PC1.3-P1.6 [_]2 47[__] P0.5-AD5
SDI-SDA*-P1.7 [3 46| P0.6-AD6
RESET [_|4 45] P0O.7-AD7
RXDO0-PCO0.1-P3.0 [_|5 441 P6.5-A5
TOOUT-P4.5[|6 43[] P6.6-A6
PWMO0*-P5.0 |7 42 | P6.7-A7
PWM1*-P5.1 [|8 VR851 L2070 41[_] PC1.2-TOEX-RXD1*
PWM2*-P5.2 [|9 _ 40|] T1IEX-TXD1*
PWM3*-P5.3 |10 QFP 64 39 | P4.3-TDI
VSS [|1 38 | P4.2-TDO
TXDO0-P3.1 (|12 37] CMO-ALE
INTO-PC0.0-P3.2 [|13 36 | P4.1-TMS
INT1-PC1.0-P3.3 |14 35| P2.7-A15-PWM7-TCK
TOIN-SCL-EXBRO0-PCO0.3-P3.4 [|15 34] P2.6-A14-PWMB6-TOEX
T1IN-SDA-EXBR1-P3.5 |16 33| P2.5-A13-PWM5-T1EX
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
O AQOYTOVONONONQOO T NOS
OOAOAOLBLOLLSTITDFTANNNNN
a0>00400008>000000
o 4HHbi5Y ExXxo=-d
= $22852< 33¥zsc
=22 2283ds%
nEEEs
o O
856
< 0
e

www.ramtron.com

page 4 of 99

VRS51L2070

RAMTRSN

Instruction Set

. . . . i ot Size Instr.
The following table describes the instruction set of the Mnemonic Description e | Cycles | Hex Code
VRS51L2070. The instructions are binary code-compatible [Boolean instruction [
and rf th f t . d t t d d CLR C Clear Carry bit 1 1 C3h
pertorm € same Tunctions as Industry stanaar CLR bit Clear bit > 2 Coh
8051s. SETB C Set Carry bitto 1 1 1 D3h
SETB bit Set bit to 1 2 4 D2h
TABLE 2: LEGEND FOR INSTRUCTION SET TABLE CPLC Complement Carry bit 1 1 B3h
n CPL bit Complement bit 2 4 B2h
Symbol Function ANL C,bit Logical AND between Carry and bit 2 4 82h
A Accgmulator ANL C #bit Logical AND between Carry and not bit 2 4 BOh
Rn Register RO-R7 ORL C,bit Logical ORL between Carry and bit 2 1 72h
D”e,C[Internal reg!ster adFjress ORL C.#bit Logical ORL between Carry and not bit 2 4 AOh
@Ri Internal register pointed to by RO or R1 (except MOVX) MOV C.bit Copy bit value into Carry > 2 Aoh
“?l TYVO'S C(,)mplemem offset byte MOV bit,C Copy Carry value into Bit 2 3 92h
bit D'r?Ct bit address Data Transfer Instructions
#data 8-b|t‘constant MOV A, Rn Move register to A 1 2 E8h-EFh
fidata 16 16-bit constant MOV A, direct Move direct byte o A 2 3 E5h
addr 16 16-bit destination address MOV A, @Ri Move data memory fo A 1 3 E6h-E7h
addr 11 11-bit destination address MOV A. #data Move immediate to A > > 7ah
i MOV Rn, A Move A to register 1 1 F8h-FFh
TABLE 3: VRSS1L 2070 INSTRUCTION SET MOV Rn, direct Move direct byte to register 2 3 ASh-AFh
. o) Instr MOV Rn, #data Move immediate to register 2 2 78h-7Fh
Mnemonic Description 2| Cycles | HexCode MOV direct, A Move A to direct byte 2 3 F5h
MOV direct, Rn Move register to direct byte 2 3 88h-8Fh
Arithmetic instructions [MOV direct, direct Move direct byte to direct byte 3 3 85h
ADD A, Rn Add register to A 1 2 28h-2Fh MOV direct, @Ri Move data memory to direct byte 2 3 86h-87h
ADD A, direct Add direct byte to A 2 3 25h MOV direct, #data Move immediate to direct byte 3 3 75h
ADD A, @Ri Add data memory to A 1 3 26h-27h MOV @Ri, A Move A to data memory 1 2 F6h-F7h
ADD A, #data Add immediate to A 2 2 24h MOV @RI, direct Move direct byte to data memory 2 3 A6h-A7h
ADDC A, Rn Add register to A with carry 1 2 38h-3Fh MOV @Ri, #data Move immediate to data memory 2 2 76h-77h
ADDC A, direct Add direct byte to A with carry 2 3 35h MOV DPTR, #data | Move immediate to data pointer 3 3 90h
ADDC A, @Ri Add data memory to A with carry 1 3 36h-37h MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3+1 93h
ADDC A, #data Add immediate to A with carry 2 2 34h MOVC A, @A+PC Move code byte relative PC to A 1 3+1 83h
SUBB A, Rn Subtract register from A with borrow 1 2 98h-9Fh MOVX) Move external data (A8) to A 1 3* E2h-E3h
SUBB A, direct Subtract direct byte from A with borrow 2 3 95h A{MPAGE, @Ri}
SUBB A, @Ri Subtract data mem from A with borrow 1 3 96h-97h mgxi A, @DPTR Move external data (A16) to A 1 2 EOh
SUBB A, #data Subtract immediate from A with borrow 2 2 94h . * .
NC A norement A . 5 oah {MPAGE, @Ri},A Move A to external data (A8) 1 2 F2h-F3h
INC Rn Increment register 1 2 08h-OFh MOVX @DPTR, A Move A to external data (A16) 1 1* FOh
INC direct Increment direct byte 2 3 05h PUSH direct Push direct byte onto stack 2 3 COh
INC @Ri Increment data memory 1 3 06h-07h POP direct Pop direct byte from stack 2 2 DOh
DEC A Decrement A 1 2 14h XCHA, Rn Exchange A and register 1 3 C8h-CFh
DEC Rn Decrement register 1 2 18h-1Eh XCH A, direct Exchange A and direct byte 2 4 C5h
DEC direct Decrement direct byte 2 3 15h XCH A, @Ri Exchange A and data memory 1 4 C6h-C7h
DEC @Ri Decrement data memory 1 3 16h-17h XCHDI A, @RI i Exchange A and data memory nibble 1 4 D6h-D7h
INC DPTR Increment data pointer 1 2 A3h Branching Instructions
MUL AB Multiply A by B 1 2 Adh ACALL addr 11 Absolute call to subroutine 2 4+1 11h-F1h
DIV AB Divide A by B 1 2 84h LCALL addr 16 Long call to subroutine 3 5+1 12h
DA A Decimal adjust A 1 4 Dah RET Return from subroutine 1 3+1 22h
Logical Instructions | RETI Return from interrupt 1 3+1 32h
ANL A, Rn AND register to A 1 2 58h-5Fh AJMP addr 11 Absolute jump unconditional 2 2+1 01h-E1h
ANL A, direct AND direct byte to A 2 3 55h LIJMP addr 16 Long jump unconditional 3 3+1 02h
ANL A, @Ri AND data memory to A 1 3 56h-57h SIMP rel Short jump (relative address) 2 3+1 80h
ANL A, #data AND immediate to A 2 2 54h JC rel Jump on carry = 1 2 3+1 40h
ANL direct, A AND A to direct byte 2 3 52h JINC rel Jump on carry = 0 2 3+1 50h
ANL direct, #data | AND immediate data to direct byte 3 3 53h JB bit, rel Jump on direct bit = 1 3 3/4+1 20h
ORL A, Rn OR register to A 1 2 48h-4Fh JNB bit, rel Jump on direct bit = 0 3 3/4+1 30h
ORL A, direct OR direct byte to A) 3 45 JBC bit, rel Jump on direct bit = 1 and clear 3 3/4+1 10h
ORL A, @Ri OR data memory to A 1 3 46h-47h JMP @A+DPTR Jump indirect relative DPTR 1 2+1 73h
ORL A, #data OR immediate to A 2 2 44h JZrel Jump on accumulator = 0 2 3+1 60h
ORL direct, A OR A to direct byte 2 3 42h JINZ rel Jump on accumulator 1= 0 2 3+1 70h
ORL direct, #data OR immediate data to direct byte 3 3 43h CJINE A, direct, rel Compare A, direct JNE relative 3 4/5+1 B5h
XRL A, Rn Exclusive-OR register to A 1 2 68h-6Fh CINE A, #d, rel Compare A, immediate JNE relative 3 3/4+1 B4h
XRL A, direct Exclusive-OR direct byte to A 2 3 65h CJINE Rn, #d, rel Compare reg, immediate JNE relative 3 3/4+1 B8h-BFh
XRL A, @Ri Exclusive-OR data memory to A 1 3 66h-67h CJINE @RI, #d, rel Compare ind, immediate JNE relative 3 4/5+1 B6h-B7h
XRL A, #data Exclusive-OR immediate to A 2 2 64h DJINZ Rn, rel Decrement register, JNZ relative 2 3/4+1 D8h-DFh
XRL direct, A Exclusive-OR A to direct byte 2 3 62h DJNZ direct, rel Decrement direct byte, JNZ relative 3 3/4+1 D5
XRL direct, #data | _Exclusive-OR immediate to direct byte 3 3 63h Miscellaneous Instruction
CLR A Clear A 1 1 E4h NOP No operation 1 1 00h
CPL A Compliment A 1 1 Fah NOP :; ;(égN4: 0 (Fr’eset Value): NOP 1 1 A5h
i amPtr) ==
SKVQP A 2\;\/2:;:)!'3;5 of A :1] 1 gg: MOV @RamPtr,A Accumlfgor value) is written 2 3 A5h
in SFR{1,@RamPtr[6:0]}
RLC A Rotate A left through carry 1 1 33h If MSB (@RamPtr) == 1
RRA Rotate A right 1 1 03h MOV A, @RamPtr | SFR{1,@RamPtr[6:0]} 3 4 A5h
RRC A Rotate A right through carry 1 1 13h is written in Accumulator

Rn. Any of the register RO to R7
@Ri Indirect addressing using Register RO or R1

#data:
#data16:

immediate Data provided with Instruction
Immediate data included with instruction
bit: address at the bit level

rel: relative address to Program counter from +127 to -128

Addr11: 11-bit address range
Addr16: 16-bit address range

Immediate Data supplied with instruction

www.ramtron.com

page 5 of 99

VRS51L2070

RAMTRSN

Special Function Registers (SFR)

Addresses 80h to FFh of the SFR address space can be accessed in direct addressing mode only. The following table
lists the VRS51L2070 special function registers. Due to the VRS51L2070’s high level of integration, the SFRs have

been mapped into two pages.

The following tables summarize the SFR assignment. Complete functional descriptions of each register will be
provided throughout the datasheet.

1.1 SFR Map Page 0

TABLE 4: SPECIAL FUNCTION REGISTERS (SFR) PAGE 0

Resg'i:sr\;er aR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset
PO 80h - - - - - - - - 1111 1111b
SP 81h - - - - - - - - 0000 0111b
DPLO 82h - - - - - - - - 0000 0000b
DPHO 83h - - - - - - - - 0000 0000b
DPL1 84h 0000 0000b
DPH1 85h 0000 0000b
DPS 86h DPSEL 0000 0000b
PCON 87h OSCSTOP INTMODEN DEVCFGEN SFRINDADR GF1 GFO PDOWN IDLE 0110 0000b
INTEN1 88h T1IEN U1IEN UOIEN PCHGIENO TOIEN SPIRXOVIEN SPITXEIEN - 0000 0000b
TOT1CFG 89h - T1GATE TOGATE T1CLKSRC T10UTEN T1MODES8 TOOUTEN TOMODES 0000 0000b
TLO 8Ah 0000 0000b
THO 8Bh 0000 0000b
T 8Ch 0000 0000b
TH1 8Dh 0000 0000b
TL2 8Eh 0000 0000b
TH2 8Fh 0000 0000b
P1 90h - - - - - - - - 1111 1111b
WDTCFG 91h WDTPERIOD3 WDTPERIOD2 WDTPERIOD1 WDTPERIODO WTIMERF ASTIMER WDTF WDTRESET 0000 0000b
RCAPOL 92h 0000 0000b
RCAPOH 93h 0000 0000b
RCAP1L 94h 0000 0000b
RCAP1H 95h 0000 0000b
RCAP2L 96h 0000 0000b
RCAP2H 97h 0000 0000b
P5 98h 1111 1111b
TOT1CLKCFG 9%h T1CLKCFG3 T1CLKCFG2 T1CLKCFG1 T1CLKCFGO TOCLKCFG3 TOCLKCFG2 TOCLKCFG1 TOCLKCFGO 0000 0000b
TOCON 9Ah TOOVF TOEXF TODOWNEN TOTOGOUT TOEXTEN TRO TOCOUNTEN TORLCAP 0000 0000b
T1CON 9Bh T10VF T1EXF T1DOWNEN T1TOGOUT T1EXTEN TR1 T1COUNTEN T1RLCAP 0000 0000b
T2CON 9Ch T20VF T2EXF T2DOWNEN T2TOGOUT T2EXTEN TR2 T2COUNTEN T2RLCAP 0000 0000b
T2CLKCFG 9Dh - - T2CLKSRC T20UTEN T2CLKCFG3 T2CLKCFG2 T2CLKCFG1 T2CLKCFGO 0000 0000b
PWCOCFG 9Eh PWCOIF PWCORST PWCOEND PWCOSTART | PWCOENDSRC1 | PWCOENDSRCO PWCOSTSRC1 PWCOSTSRCO 0000 0000b
PWC1CFG 9Fh PWC1IF PWC1RST PWC1END PWC1START | PWC1ENDSRC1 PWC1ENDSRCO PWC1STSRC1 PWC1STSRCO 0000 0000b
P2 AOh - - - - - - - - 1111 1111b
UARTOINT A1h COLEN RXOVEN RXAVAILEN TXEMPTYEN COLENF RXOVF RXAVENF TXEMPTYF 0000 0001b
UARTOCFG A2h BRADJ3 BRADJ2 BRADJ1 BRADJO BRCLKSRC BORXTX BO9EN STOP2EN 1110 0000b
UARTOBUF A3h 0000 0000b
UARTOBRL A4h 0000 0000b
UARTOBRH A5h 0000 0000b
UARTOEXT A6h UOTIMERF UOTIMEREN UORXSTATE MULTIPROC J1708PRI3 J1708PRI2 J1708PRI1 J1708PRIO 0010 0000b
Reserved A7h

www.ramtron.com

page 6 of 99

VRS51L2070

RAMTRSN

INTEN2 A8h PCHGIEN1 AUWDTIEN PWMT47IEN PWMTO3IEN PWCIEN I2CUARTCI 12CIEN T2IEN 0000 0000b
PWMCFG A%h - PWMWAIT PWMCLRALL | PWMLSBMSB | PWMMIDEND PWMCH2 PWMCH1 PWMCHO 0000 0000b
PWMEN AAh PWM7EN PWMGEN PWMSEN PWM4EN PWM3EN PWM2EN PWM1EN PWMOEN 0000 0000b
PWMLDPOL ABh PWM7LDPOL PWM6LDPOL PWMS5LDPOL PWM4LDPOL PWM3LDPOL PWM2LDPOL PWM1LDPOL PWMOLDPOL 0000 0000b
PWMDATA ACh 0000 0000b
PWMTMREN ADh PWM7TMREN PWMBTMREN PWM5TMREN PWM4TMREN PWM3TMREN PWM2TMREN PWM1TMREN PWMOTMREN 0000 0000b
PWMTMRF AEh PWM7TMRF PWM6TMRF PWMS5TMRF PWM4TMRF PWM3TMRF | PWM2TMRF PWM1TMRF PWMOTMRF 0000 0000b
PWMCLKCFG AFh U4PWMCLK3 U4PWMCLK2 U4PWMCLK1 U4PWMCLKO L4PWMCLK3 L4PWMDCLK2 L4PWMCLK1 L4PWMCLKO 0000 0000b
P3 BOh - - - - - - - - 1111 1011b
UART1INT B1h COLEN RXOVEN RXAVAILEN TXEMPTYEN COLENF RXOVF RXAVENF TXEMPTYF 0000 0001b
UART1CFG B2h BRADJ3 BRADJ2 BRADJ1 BRADJO BRCLKSRC BORXTX BY9EN STOP2EN 1110 0000b
UART1BUF B3h 0000 0000b
UART1BRL B4h 0000 0000b
UART1BRH B5h 0000 0000b
UART1EXT B6h U1TIMERF U1TIMEREN U1RXSTATE MULTIPROC J1708PRI3 J1708PRI2 J1708PRI1 J1708PRIO 0010 0000b
Not used B7h

IPINFLAG1 B8h P37IF P36IF P35IF P34IF P31IF P30IF INT1IF INTOIF 0000 0000b
PORTCHG BSh PMONFLAGH1 PCHGMSK1 PCHGSEL1 PCHGSELO PMONFLAGO PCHGMSKO PCHGSEL1 PCHGSELO 0000 0000b
P4 COh 1111 1111b
SPICTRL C1h SPICLK2 SPICLK1 SPICLKO SPICS1 SPICS0 SPICLKPH SPICLKPOL SPIMASTER 0000 0001b
SPICONFIG C2h SPIMANCS SPIUNDERC FSONCS3 SPILOADCS3 SPISLOW SPIRXOVEN SPIRXAVEN SPITXEEN 0000 0000b
SPISIZE C3h 0000 0111b
SPIRXTX0 C4h 0000 0000b
SPIRXTX1 C5h 0000 0000b
SPIRXTX2 Céh 0000 0000b
SPIRXTX3 C7h 0000 0000b
P6 C8h 1111 1111b
SPISTATUS Coh SPIREVERSE - SPIUNDERF SSPINVAL SPINOCS SPIRXOVF SPIRXAVF SPITXEMPF 0011 1001b
PSW DOh CcYy AC FO RS1 RSO ov - P 0000 0000b
I2CCONFIG D1h MASTRARB I2CRXOVEN I2CRXAVEN 12CTXEEN I2CMASTART 12CSCLLOW I2CRXSTOP 12CMODE 0000 0100b
12CTIMING D2h 0000 1100b
12CIDCFG D3h 12CID6 12CID5 12CID4 12CID3 12CID2 12CID1 12CIDO I2CADVCFG 0000 0000b
I2CSTATUS D4h 12CERROR I2CNOACK I2CSDASYNC I2CACKPH 12CIDLEF I2CRXOVF I2CRXAVF I2CTXEMPF 0010 1001b
I2CRXTX D5h 0000 0000b
IPININV1 D6h P37IINV P36IINV P35IINV P34IINV P33IINV P32IINV P31IINV P30IINV 0000 0000b
IPININV2 D7h PO7IINV POBIINV POSIINV PO4IINV PO3IINV PO2IINV PO1IINV POOIINV 0000 0000b
IPINFLAG2 D8h PO7IF POBIF PO5IF PO4IF PO3IF PO2IF PO1IF POOIF 0000 0000b
XMEMCTRL D9h EXTBUSCFG EXTBUSCS - - STRECH3 STRECH2 STRECH1 STRECHO 0000 0000b
Reserved DAh - - - - - - - - 0000 0000b
Reserved DBh - - - - - - - - 0000 0000b
Reserved DCh - - - - - - - - 0000 0000b
Reserved DDH - - - - - - - - 0000 0000b
Reserved DEh 2 - - - - - - - 0000 0000b
Reserved DFH - - - - - - - - 0000 0000b
ACC EOh - - - - - - - - 0000 0000b
DEVIOMAP E1h Reserved PWMALTMAP I2CALTMAP U1ALTMAP UOALTMAP T2ALTMAP T1ALTMAP TOALTMAP 0000 0000b
INTPRI1 E2h T1P37PRI U1P36PRI UOP35PRI PCOP34PRI TOP31PRI SRP30PRI STP33PRI INTOP32PRI 0000 0000b
INTPRI2 E3h PC1POOPRI AUPO6PRI PTHPO5PRI PTLPO4PRI PWCP23PRI 110PO2PRI 12CPO1PRI T2POOPRI 0000 0000b
INTSRC1 E4h INTSRC1.7 INTSRC1.6 INTSRC1.5 INTSRC1.4 INTSRC1.3 INTSRC1.2 INTSRC1.1 INTSRC1.0 0000 0000b
INTSRC2 ES5h INTSRC2.7 INTSRC2.6 INTSRC2.5 INTSRC2.4 INTSRC2.3 INTSRC2.2 INTSRC2.1 INTSRC2.0 0000 0000b
INTPINSENS1 E6h P37ISENS P36ISENS P35ISENS P34ISENS P33ISENS P32ISENS P31ISENS P30ISENS 0000 0000b

www.ramtron.com

page 7 of 99

VRS51L2070

RAMTRSN

INTPINSENS2 E7h PO7ISENS PO6ISENS PO5ISENS PO4ISENS PO3ISENS PO2ISENS PO1ISENS POOISENS 0000 0000b
GENINTEN E8h - - - - - - GENINTEN 0000 0000b
FPICONFIG E9h FPILOCK1 FPILOCKO FPIIDLE FPIRDY 0 FPISBIT FPITASK1 FPITASKO 0000 0100b
FPIADDRL EAh 0000 0000b
FPIADDRH EBh 0000 0000b
FPIDATAL ECh 0000 0000b
FPIDATAH EDh 0000 0000b
FPICLKSPD EEh FPICLKSPD3 FPICLKSPD2 FPICLKSPD1 FPICLKSPDO 0000 0000b
Reserved EFh - - - - - - - = 0000 0000b
B FOh 0000 0000b
MPAGE F1h 0000 0000b
DEVCLKCFG1 F2h SOFTRESET OSCSELECT CLKDIVEN FULLSPDINT CLKDIV3 CLKDIV2 CLKDIV1 CLKDIVO 0011 0000b
DEVCLKCGF2 F3h CYOSCEN INTOSCEN - - CYRANGE1 CYRANGEO 0 SYSTEMRDY 0100 1001b
PERIPHEN1 F4h SPICSEN SPIEN I2CEN U1EN UOEN T2EN T1EN TOEN 0000 0000b
PERIPHEN2 F5h PWC1EN PWCOEN AUEN XRAM2CODE IOPORTEN WDTEN PWMSFREN FPIEN 0000 1000b
DEVMEMCFG F6h EXTBUSEN - - - - - - SFRPAGE 0000 0000b
PORTINEN F7h Reserved (0) P6INPUTEN P5INPUTEN P4INPUTEN P3INPUTEN P2INPUTEN P1INPUTEN POINPUTEN 0111 1111b
USERFLAGS F8h 0000 0000b
POPINCFG F9h PO7IN10UTO PO6IN1OUTO POSIN10OUTO P04IN10OUTO PO3IN1OUTO P0O2IN10OUTO PO1IN1OUTO POOIN1OUTO 1111 1111b
P1PINCFG FAh P17IN10UTO P16IN1OUTO P15IN1OUTO P14IN1OUTO P13IN10OUTO P12IN10OUTO P11IN1OUTO P10IN1OUTO 1111 1111b
P2PINCFG FBh P27IN1OUTO P26IN1OUTO P25IN1OUTO P24IN1OUTO P23IN1OUTO P22IN10OUTO P21IN1OUTO P20IN1OUTO 1111 1111b
P3PINCFG FCh P37IN10OUTO P36IN1OUTO P35IN10UTO P34IN10UTO P33IN10OUTO P32IN10UTO P31IN1OUTO P30IN10OUTO 1111 1111b
P4PINCFG FDh P47IN1OUTO P46IN10OUTO P45IN1OUTO P44IN1OUTO P43IN1OUTO P42IN10UTO P41IN1OUTO P40IN1OUTO 1111 1111b
P5PINCFG FEh P57IN1OUTO P56IN1OUTO P55IN1OUTO P54IN1OUTO P53IN1OUTO P52IN1OUTO P51IN1OUTO P50IN1OUTO 1111 1111b
P6PINCFG FFh P67IN1OUTO P66IN1OUTO P65IN1OUTO P64IN1OUTO P63IN10OUTO P62IN1OUTO P61IN1OUTO P60IN1OUTO 1111 1111b

www.ramtron.com

page 8 of 99

VRS51L2070

RAMTRSN

1.2 SFR Map Page 1

TABLE 5: SPECIAL FUNCTION REGISTERS (SFR) PAGE 1

Rerger or Bit 7 Bit6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit0 foset
PO 80h ; ; ; ; ; ; ; ; 1111 11110
SP 81h } } } ; - } } } 0000 0111b
DPLO 82h } }) } ; ; } ! 0000 0000b
DPHO 83h ; ; ; ; ; ; ; ; 0000 0000b
DPLA 84h 0000 0000b
DPH1 85h 0000 0000b
DPS 86h DPSEL 0000 0000b
PCON 87h | OSCSTOP | INTMODEN | DEVCFGEN | SFRINDADR GF1 GFO PDOWN IDLE 0110 0000b
INTENT 88h THIEN U1IEN UOIEN PCHGIENO TOIEN SPIRXOVIEN | SPITXEIEN ; 0000 0000b
TOTICFG 8oh } T1GATE TOGATE TICLKSRC | TIOUTEN | TIMODES TOOUTEN TOMODES | 0000 0000b
TLO 8Ah 0000 0000b
THo 8Bh 0000 0000b
L1 8ch 0000 0000b
TH1 8Dh 0000 0000b
L2 8Eh 0000 0000b
TH2 8Fh 0000 0000b
P1 90n ; ; ; ; i ; ; ; 1111 11110
WDTCFG 91h WDTPERIOD3 WDTPERIOD2 WDTPERIOD1 WDTPERIODO WTIMERF ASTIMER WDTF WDTRESET 0000 0000b
RCAPOL 92h 0000 0000b
RCAPOH 93h 0000 0000b
RCAP1L 94h 0000 0000b
RCAP1H 95h 0000 0000b
RCAP2L 96h 0000 0000b
RCAP2H 97h 0000 0000b
P5 98h 1111 11110
TOTICLKCFG | 99h | TICLKCFG3 | TICLKCFG2 | TICLKCFG1 | TACLKCFGO | TOCLKCFG3 | TOCLKCFG2 | TOCLKCFG1 | TOCLKCFGO | 0000 0000b
TOCON 9Ah TOOVF TOEXF TODOWNEN | TOTOGOUT | TOEXTEN TRO TOCOUNTEN | TORLCAP | 0000 0000b
T1CON 9Bh T1OVF TAEXF TIDOWNEN | T1TOGOUT | TIEXTEN TR TICOUNTEN | TIRLCAP | 0000 0000b
T2CON 9ch T20VF T2EXF T2DOWNEN | T2TOGOUT | T2EXTEN TR2 T2COUNTEN | T2RLCAP | 0000 0000b
T2CLKCFG 9Dh)) T2CLKSRC | T20UTEN | T2CLKCFG3 | T2CLKCFG2 | T2CLKCFG1 | T2CLKCFGO | 0000 0000b
Reserved 9Eh ; g . - } } ; } 0000 0000b
Reserved 9Fh) 7 i } }))) 0000 0000b
P2 Aoh ; ; ; } } ; } ; 1111 11110
Reserved Ath - ; } ; ; } } } 0000 0000b
AUAO A2h* 0010 0000b
AUAT A3h* 0010 0000b
AUCO Adh* 0010 0000b
AUCT Ash* 0010 0000b
AUC2 A6h* 0010 0000b
AUC3 ATh* 0010 0000b
INTENZ A8h | PCHGIENT | AUWDTIEN | PWMT47EN | PWMTO3IEN PWCIEN 12CUARTCI 12CIEN T2IEN 0000 0000b
P3 BOh } } } ; - } } } 1111 1011b
AUBODIV B 0010 0000b
AUBO B2h* 0010 0000b
AUB1 B3h* 0010 0000b
AURESO Bdh* 0010 0000b
AURES1 B5h* 0010 0000b

www.ramtron.com

page 9 of 99

VRS51L2070

RAMTRSN

AURES2 B6h* 0010 0000b
AURES3 B7h* 0010 0000b
IPINFLAG1 B8h P37IF P36IF P35IF P34IF P31IF P30IF INT1IF INTOIF 0000 0000b
PORTCHG BYSh PMONFLAG1 PCHGMSK1 PCHGSEL1 PCHGSELO PMONFLAGO PCHGMSKO PCHGSEL1 PCHGSELO 0000 0000b
Reserved BAh - - - - - - - - 0001 0000b
Reserved BBh - - - - - - - - 0000 0000b
Reserved BCh - - - - - - - - 0000 0000b
Reserved BDh - - - - - - - - 0000 0000b
Reserved BEh - - - - - - - -

Reserved BFh - - - - - - - -

P4 COh 1111 1111b
AUSHIFTCFG C1h* SHIFTMODE ARITHSHIFT SHIFT5 SHIFT4 SHIFT3 SHIFT2 SHIFT1 SHIFTO 0010 0000b
AUCONFIG1 C2h* CAPPREV CAPMODE OVCAPEN READCAP ADDSRC1 ADDSRCO MULCMD1 MULCMDO 0000 0000b
AUCONFIG2 C3h* | AUREGCLR2 | AUREGCLR1 AUREGCLRO AUINTEN - DIVOUTRG AUOV16 AUOV32 0000 0000b
AUPREVO C4h* 0000 0000b
AUPREV1 C5h* 0000 0000b
AUPREV2 Céh* 0000 0000b
AUPREV3 C7h* 0000 0000b
P6 C8h 0000 0000b
Reserved Coh - - - - - - - - 0000 0000b
Reserved CAh - - - - - - - - 0000 0001b
Reserved CBh - - - - - - - - 0000 0000b
Reserved CCh - - - - - - - - 0000 0000b
Reserved CDh - - - - - - - - 0000 0000b
Reserved CEh - - - - - - - - 0000 0000b
Reserved CFh - - - - - - - -

PSW DOh CcY AC FO RS1 RSO ov - P 0000 0000b
Reserved D1h - - - - - - - -

Reserved D2h - - - - - - - -

Reserved D3h - - - - - - B B

Reserved D4h - - - < - - - -

Reserved D5h - - - - - - - -

INTPININV1 D6h P37I1INV P36IINV P351INV P341INV P33IINV P32IINV P311INV P30IINV 0000 0000b
INTPININV2 D7h PO7IINV PO6IINV PO5IINV PO4IINV PO3IINV PO2IINV PO1IINV POOIINV 0000 0000b
IPINFLAG2 D8h PO7IF PO6IF POS5IF PO4IF PO3IF PO2IF PO1IF POOIF 0000 0000b
XMEMCTRL D9h EXTBUSCFG EXTBUSCS - - STRECH3 STRECH2 STRECH1 STRECHO 0000 0000b
Reserved DAh - - - - - - - - 0000 0000b
Reserved DBh - - - - - - - - 0000 0000b
Reserved DCh - - - - - - - - 0000 0000b
Reserved DDH - - - - - - - - 0000 0000b
Reserved DEh - - - - - - - - 0000 0000b
Reserved DFh - - - - - - - - 0000 0000b
ACC EOh - - - - - - - - 0000 0000b
DEVIOMAP E1h Reserved PWMALTMAP I2CALTMAP U1ALTMAP UOALTMAP T2ALTMAP T1ALTMAP TOALTMAP 0000 0000b
INTPRI1 E2h T1P37PRI U1P36PRI UOP35PRI PCOP34PRI TOP31PRI SRP30PRI STP33PRI INTOP32PRI 0000 0000b
INTPRI2 E3h PC1POOPRI AUPO6PRI PTHPO5PRI PTLPO4PRI PWCP23PRI 110P0O2PRI 12CPO1PRI T2POOPRI 0000 0000b
INTSRC1 E4h INTSRC1.7 INTSRC1.6 INTSRC1.5 INTSRC1.4 INTSRC1.3 INTSRC1.2 INTSRC1.1 INTSRC1.0 0000 0000b
INTSRC2 E5h INTSRC2.7 INTSRC2.6 INTSRC2.5 INTSRC2.4 INTSRC2.3 INTSRC2.2 INTSRC2.1 INTSRC2.0 0000 0000b
INTPINSENS1 E6h P37ISENS P36ISENS P35ISENS P34ISENS P33ISENS P32ISENS P31ISENS P30ISENS 0000 0000b
INTPINSENS2 E7h PO7ISENS POBISENS PO5ISENS PO4ISENS PO3ISENS PO2ISENS PO1ISENS POOISENS 0000 0000b
GENINTEN E8h - - - - - - GENINTEN 0000 0000b

www.ramtron.com

page 10 of 99

VRS51L2070

RAMTRSN

FPICONFIG E9h FPILOCKA1 FPILOCKO FPIIDLE FPIRDY 0 FPI8BIT FPITASK1 FPITASKO 0000 0100b
FPIADDRL EAh 0000 0000b
FPIADDRH EBh 0000 0000b
FPIDATAL ECh 0000 0000b
FPIDATAH EDh 0000 0000b
FPICLKSPD EEh FPICLKSPD3 FPICLKSPD2 FPICLKSPD1 FPICLKSPDO 0000 0000b
Reserved EFh - - - - - - - - 0000 0000b
B FOh 0000 0000b
MPAGE F1h 0000 0000b
DEVCLKCFG1 F2h SOFTRESET OSCSELECT CLKDIVEN FULLSPDINT CLKDIV3 CLKDIV2 CLKDIV1 CLKDIVO 0011 0000b
DEVCLKCGF2 F3h CYOSCEN INTOSCEN - - CYRANGE1 CYRANGEO 0 SYSTEMRDY 0100 1001b
PERIPHEN1 F4h SPICSEN SPIEN 12CEN U1EN UOEN T2EN T1EN TOEN 0000 0000b
PERIPHEN2 F5h PWC1EN PWCOEN AUEN XRAM2CODE IOPORTEN WDTEN PWMSFREN FPIEN 0000 1000b
DEVMEMCFG F6h EXTBUSEN - - - - - - SFRPAGE 0000 0000b
PORTINEN F7h Reserved (0) P6INPUTEN PSINPUTEN P4INPUTEN P3INPUTEN P2INPUTEN P1INPUTEN POINPUTEN 0111 1111b
USERFLAGS F8h 0000 0000b
POPINCFG F9h PO7IN1OUTO PO6IN1OUTO PO5IN1OUTO P04IN1OUTO PO3IN1OUTO P02IN1OUTO PO1IN1OUTO POOIN1OUTO 1111 1111b
P1PINCFG FAh P17IN1OUTO P16IN1OUTO P15IN1OUTO P14IN1OUTO P13IN1OUTO P12IN1OUTO P11INTOUTO P10IN1OUTO 1111 1111b
P2PINCFG FBh P27IN1OUTO P26IN10OUTO P25IN10OUTO P24IN1OUTO P23IN1OUTO P22IN10UTO P21IN1OUTO P20IN1OUTO 1111 1111b
P3PINCFG FCh P37IN1OUTO P36IN1OUTO P35IN1OUTO P34IN1OUTO P33IN1OUTO P32IN10UTO P31IN1OUTO P30IN1OUTO 1111 1111b
P4PINCFG FDh P47IN1OUTO P46IN1OUTO P45IN1OUTO P44IN1OUTO P43IN1OUTO P42IN1OUTO P41IN1OUTO P40IN1OUTO 1111 1111b
P5SPINCFG FEh P57IN1OUTO P56IN10OUTO P55IN1OUTO P54IN1OUTO P53IN1OUTO P52IN1OUTO P51IN1OUTO P50IN1OUTO 1111 1111b
PBPINCFG FFh P67IN1OUTO P66IN1OUTO P65IN1OUTO P64IN1OUTO P63IN1OUTO P62IN1OUTO P61IN1OUTO P60IN1OUTO 1111 1111b

1.3 Bit Accessible Registers

As is the case in the standard 8051, all SFR registers in which the lower nibble of the address is x0 or x8 are bit-

addressable. The bit-addressable registers allow bit-oriented instructions to alter individual register bit values.

TABLE 6:BIT ADDRESSABLE SFR REGISTERS

Rerger or Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Poset

PO 80h - - - - - - - - 1111 1111b
INTEN1 88h T1IEN U1IEN UOIEN PCHGIENO TOIEN SPIRXOVIEN SPITXEIEN - 0000 0000b
P1 90h - - - - - - - - 1111 1111b
P5 98h 1111 1111b
P2 AOh - - - - - - - - 1111 1111b
INTEN2 A8h PCHGIEN1 AUWDTIEN PWMT47IEN PWMTO3IEN PWCIEN I2CUARTCI 12CIEN T2IEN 0000 0000b
P3 BOh - - - - - - - - 1111 1011b
IPINFLAG1 B8h P37IF P36IF P35IF P34IF P31IF P30IF INT1IF INTOIF 0000 0000b
P6 C8h 1111 1111b
PSW DOh CcY AC FO RS1 RSO ov - P 0000 0000b
IPINFLAG2 D8h PO7IF PO6IF POSIF PO4IF PO3IF PO2IF PO1IF POOIF 0000 0000b
ACC EOh - - - - - - - - 0000 0000b
GENINTEN E8h - - - - - - GENINTEN 0000 0000b
B FOh 0000 0000b
USERFLAGS F8h 0000 0000b

www.ramtron.com

page 11 of 99

VRS51L2070

RAIMTRISN

1 VRS51L2070 Architecture

1.1 Data Pointers

The VRS51L2070 includes two 16-bit data pointers
which are described in the following tables. The active
data pointer is controlled via DPS register is located at
SFR address 86h (see below).

TABLE 7: DATA POINTER O HIGH - DPHO SFR 83H

TABLE 12: THE PSW SFR REGISTER - PSW SFR DOH

7‘654‘3‘2‘1‘0

R/W, Reset = 0x00

DPTRO[15:8]

TABLE 8: DATA POINTER O LOW - DPLO SFR 82H

7‘6 5‘4‘3‘2‘1‘0

R/W, Reset = 0x00
DPTRO[7:0]

TABLE 9: DATA POINTER 1 HIGH - DPH1 SFR 85H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 CcY Carry Bit Flag. Indicates that the last

addition/subtraction resulted in a carry or
borrow. The CY bit is cleared by other arithmetic
instructions, the JBC and CLR C instructions.
Auxiliary Carry Bit Flag. Indicates that the last
addition/subtraction resulted in a carry or borrow
from the higher nibble. The AC bit is cleared by
other arithmetic instructions and by the JBC
instruction.

User General Purpose Flag

Register Select Address for RO — R7

00 RO to R7 From 00h to 07h

01 RO to R7 From 08h to OFh

10 RO to R7 From 10h to 17h

11 RO to R7 From 17h to 1Fh

Overflow Flag

Indicates that the last addition/subtraction
resulted in a carry/borrow/overflow. The OV bit
is cleared by other arithmetic instructions and
the JBC instruction.

5 FO
4:3 RS1:RS0

-

F1 User General Purpose Flag

7‘654‘3‘2‘1‘0

R/W, Reset = 0x00

DPTR1[15:8]

TaBLE 10: DATA POINTER 1 LOW - DPL1 SFR 84H

-
o

7‘6 5‘4‘3 2‘

R/W, Reset = 0x00
DPTR1[7:0]
TABLE 11: DATA POINTER SELECT REGISTER - DPS SFR 86H

7 6 5 4 3 2 1 0

R R R R R R R R/W

0 0 0 0 0 0 0 0
Bit Mnemonic Description
71 unused
0 DPSEL DPS value

0: Selects DPTRO
1: Selects DPTR 1

1.2 PSW Register

The PSW register is a bit addressable register that
contains the status flags (CY, AC, OV, P), user flag
(FO) and register bank select bits (RS1, RS0) of the
8051 processor

0 P Parity Flag

1.3 Accumulator, B and User Flags
Register
The VRS51L2070 accumulator is located at address

EOh on SFR pages 0 and 1. The accumulator is the
source and destination for many 8051 instructions.

TABLE 13: THE ACCUMULATOR - ACC oR A SFR EOH

7 | 6] 51 41 3] 2 1T 171 o
R/W, Reset = 0x00
ACCI[7:0]

The B register is mainly used for MUL and DIV
instructions, holding the MSB of the MUL instruction
and the remainder of the DIV instruction. It can also be
used as a general purpose register that is bit-
addressabile. It is accessible via both SFR pages 0 and
1 at address FOh.

TABLE 14: B REGISTER - SFR FOH

7 1| 6] 5] 41 3] 2 [171 o
R/W, Reset = 0x00
B[7:0]

1.4 User Flag Register

The user flag register is a bit-addressable register
used for condition testing or as a general purpose
storage register.

TaBLE 15: USERFLAGS REGISTER - USERFLAGS SFR F8H

7 | 6] 51 41 3] 2 1T 11 o
USERFLAGS, RESET = 0x00
USERFLAGS[7:0]

www.ramtron.com

page 12 of 99

VRS51L2070

RAIMTRISN

2 VRS51L2070 Program Memory

The VRS51L2070 includes 64KB of on-chip Flash
memory that can be used as program memory or as
nonvolatile data storage.

2.1 Programming the VRS51L2070

The VRS51L2070 on-board Flash memory is
programmed through its JTAG interface or via the FPI
interface. The VRS51L2070 cannot be programmed in
parallel mode (section 21 of this datasheet explains
the FPI interface operation).

3 Data Memory

The VRS51L2070 has a total of 4352 bytes of on-chip
SRAM memory: 256 bytes are configured as the
standard internal memory structure of an 8051, while
the remaining 4096 bytes can be accessed using
external memory addressing (MOVX instructions).

FIGURE 4: VRS51L2070 DATA AND PROGRAM MEMORY STRUCTURE
FFFFh FFFFh

External Data
BUS Access
(Upper 32KB)
©EmENCFGT=1)

8000h 8000h
Program
Memory

64KB Flash
(No External

Program memory
OFFFh access) OFFFh

4096 bytes of
FFh FFh| SRAM

Upper 128 bytes SRAM T p—— 80h

(indirect addressing only) ‘ SFR Page 0 pewievcrao [FFh using MOVX
80h 80h

7Fh

Lower 128 bytes SRAM
00h 0000h 0000h

The VRS51L2070 also provides external data bus
memory access, enabling direct interfacing of the
VRS51L2070 to external devices such as SRAM, data
converters, etc. Bit 7 of the DEVMEMCFG register,
when set, will activate external data bus access.

3.1 Internal Scratch Pad SRAM (256
Bytes)

As is the case with standard 8051s, the VRS51L2070
includes 256 bytes of internal scratch pad SRAM: the
lower 128 bytes are accessible by using either direct or
indirect addressing; the upper 128 bytes are
accessible by using indirect addressing only. Using
direct addressing for the upper 128 bytes of scratch
pad SRAM will access the SFR register area.

3.2 SFR Register Structure

The VRS51L2070 peripheral registers are accessible
through two SFR register pages mapped into address
range 80h to FFh in the 256 bytes of memory, which
can be addressed directly or indirectly.

Most peripherals are accessible via both SFR pages.
The following peripherals are only accessible via SFR
Page 0:

o [I2C Interface
o SPIl Interface
o PWC Interface

The enhanced arithmetic unit is only mapped into SFR
Page 1. The active SFR page is selected by using the
device memory configuration register.

TABLE 16: DEVICE MEMORY CONFIGURATION REGISTER - DEVMEMCFG SFR F6H

7 6 5 4 3 2 1 0
R/W R/W R/W RW R/W R/W RW R/W

0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 EXTBUSEN When set this bit activates the External data bus

access through Port 0, port 2, P3.6 and P3.7

6:2 Not used
0 SFRPAGE When set, SFR Page 1 is selected.

3.3 Accessing SFR Page 1

Accessing registers located on SFR Page 1 requires
writing a 01h to the DEVMEMCFG register, as shown
below:

MOV DEVMEMCFG,#01H ;SELECT SFR PAGE 1

Writing 00h into the DEVMEMCFG register enables
access to SFR Page 0.

MOV DEVMEMCFG,#00H ;SELECT SFR PAGE 0

3.4 Indirect Addressing of the SFR

It is possible to access the SFR register in indirect
addressing mode. Unique to the VRS51L2070, this
feature enables efficient SFR content data transfers.

When the SFRINDADR bit 4 of the PCON register is
set to 1, the A5h (NOP) instruction functions as an
indirect SFR access.

Indirect SFR addressing uses the accumulator as well
as the four bank Rn registers of SRAM memory area
00h to 1Fh to indirectly transfer the data to and from
the SFR memory space.

3.4.1 Indirect SFR Register Write

For an indirect SFR write operation, perform the
following steps after the SFRINDADR bit of the PCON
register is set to 1:

o0 Write the data value into the accumulator.

0 Hold the SFR address where the write
operation is performed in the internal SRAM
memory from address 00h to 1Fh.

The same SRAM memory area [00f to 1Fh] holds four
sets of 8x Rn registers that are used for indirect

www.ramtron.com

page 13 of 99

VRS51L2070

RAIMTRISN

addressing. Only one set of Rn registers is active at
any given time and is defined by the value of the bits
RS1 and RSO of the PSW register.

For an indirect SFR write operation, bit 7 of the SFR
address written into Rn must be cleared. For example,
to write to the SPITXO register located at address C4h,
44h should be written into the Rn register.

Example using the Bank 1, RO register:

MOV RO,#44 ;Targetis SFR C4h (with Bit 7 stripped)

Example using the Bank 1, R3 register:

MOV R3,#44 ;Target is SFR C4h (with Bit 7 stripped)

The next step involves calling the SFR indirect
addressing function. This is a two-step process
composed of the A5h instruction itself followed by the
physical address of the Rn register, where the SFR
address is stored.

If the RO register of Bank 1 has been used, the next
instructions should be:

db. OxA5
db. 0x00

If the R3 register of Bank 0 has been used, the next
instructions should be:

db. OxA5
db. 0x03

This would also work for the Rn registers located in
Bank 4. For example, if the RO register of Bank 4
contains the target SFR address, the instruction should
be:

db. 0xA5
db. 0x18

Once the A5h instruction is executed, the processor
will take the value stored in the accumulator and put it
into the SFR address identified by the Rn register
address.

;// Perform Indirect Write of Value OXAA
3/l into USERFLAGS SFR address (0xF8) using indirect SFR WRITE
ORL 0x87, #0x10; ;SET A5 for indirect SFR addressing
MOV 0xF8,#00 ;Clear USERFLAGS
MOV A, #0xAA ;Acc = AAh
MOV RO, #0x78 ;RO (bank1) = address USERFLAGS (F8h)
;with Bit 7 cleared
.db 0xA5 ;Perform the indirect SFR write
.db 0x00 ;After the second .db instruction,
;P2 contain the value OxAA

ANL 0x87, #OxEF; ;Set A5 for NOP operation

3.4.2 Indirect SFR Read

The indirect SFR address read functions similarly to
the indirect SFR write, with the main differences being
that the SFR target address stored in the Rn register is
the actual SFR address (bit 7 = 1) with the
accumulator containing the current SFR data.

;/I Perform Indirect Read of Value in USERFLAGS SFR Address (0xF8)
;/l into ACC using indirect SFR READ function

ORL 0x87, #0x10; ;SET A5 for indirect SFR addressing

MOV A #0x00 ;Acc = 00h

MOV RO, #0xF8 ;RO (bank1) = address P2 with Bit 7 cleared

.db OxA5 ;Perform the indirect SFR Write

.db 0x00 ;After the second .db instruction,

;Acc contain the value OXAA

ANL 0x87, #OxEF; ;Set A5 for NOP operation

3.5 Stack Pointer

The stack pointer is a register located at address 81h
of the SFR register area whose value corresponds to
the address of the last item that was put on the
processor stack. Each time new data is put on the
processor stack, the value of the stack pointer is
incremented.

TABLE 17: STACK POINTER - SP SFR 81H

7 | 6] 5] 41 3] 2 [171 o
R/W, Reset = 0x07
SP[7:0]

By default, the stack pointer value is 07h. The stack
can be set anywhere in the internal SRAM from
address 00h to FFh.

Each time a function call is performed or an interrupt is
serviced, the 16-bit return address (2 bytes) is stored
on the stack. Data can be manually placed on the
stack by using the PUSH and POP functions.

3.6 External Data Memory Access

The VRS51L2070 provides external memory bus
access on the upper 32KB block of the 64KB external
memory [8000h to FFFFh]. External memory bus
access requires that the EXTBUSEN bit of the
DEVMEMCEFG register be set to 1.

The external memory address range 0000h to 3FFFh
provides access to a block of 4KB of SRAM memory
on the device.

www.ramtron.com

page 14 of 99

VRS51L2070

RAIMTRISN

TaBLE 18: XMEM CoNTROL REGISTER - XMEMCTRL SFR D9H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 EXTBUSCFG External Memory Bus Configuration

0 = LSB of Address/Data are Multiplexed
1 = LSB of Address/Data are not Multiplexed

6 EXTBUSCS Ext Memory CS Function
0 = Full Address Bit Dedicated to Addressing
1 =A12: A15 Becomes CS Lines

5 - Not used
4 - Not Used
3:0 Stretch[3:0] Number of Stretch Cycles from 0 to 15

From a device connected to the VRS51L2070’s
external memory bus, the address range is seen as
0000 to 7FFFh, as P2.7/A15 is driven low.

3.7 Integrated 4KB SRAM Block

The VRS51L2070 includes a 4KB block of SRAM that
is mapped from address 0000h to OFFFh on the
external memory bus. This SRAM can be used for
general purpose data memory or program memory.

3.7.1 Accessing the 4KB SRAM Block

Access to the block of 4KB SRAM requires the use of
MOVX instructions.

3.7.2 Running Programs from the External
4KB SRAM Block

Here, the VRS51L2070 processor can execute code
directly from the external 4KB of SRAM. Running the
program from the SRAM memory can significantly
save power, especially at lower operating frequencies.
This is because SRAM power consumption is directly
proportional to the access frequency, while power
consumption of the Flash memory is less dependant of
the VRS51L2070 operating frequency

To execute code from the 4KB SRAM block:

1. Copy the code from the Flash to the SRAM
and apply the appropriate address shifting, if
required

2. Before switching to an XRAM operation, the
program must execute from a Flash address
higher than OFFFh

3. Set the XRAM2CODE bit (bit 4) of the
PERIPHENZ register

4. Jump to the code copied into XRAM

The following program example copies code from the
Flash memory to the XRAM memory and switches the
program execution to the XRAM

;—-------VRS51L2070 - Running program into XRAM ---------------
;- DESCRIPTION: This program gives an examples on how
- to switch code execution from Flash to XRAM

include VRS51L2070_RIDE.inc

jmmmmmmene Variable definition --------------

CPTR EQU 030h
org 00000H
LIMP INIT

R MAIN PROGRAM BEGINS ~--w-eemmmmmmemmmemememeeee

iNIT: MOV PERIPHEN2,#08H ;ENABLE 10
MOV P1PINCFG,#00H ;CONFIGURE P1 AS OUTPUT

MOV PERIPHEN1,#00000000B;
MOV PERIPHEN2,#00001000B
;BIT4 - XRAM2CODE =0

;--COPY CODE FROM FLASH INTO XRAM MEMORY
CLR DPS
MOV DPTR,#01000H ;SET DPTRO (POINT TO CODE)
MOV DPS#01H ;SWITCH TO DPTR1
MOV DPTR,#0000H ;SET DPTR1 (POINT TO XRAM)

COPYLOOFP:
MOV DPS,#00 ;POINT TO DPTRO (FLASH)
CLR A
MOVC A @A+DPTR ;
INC DPTR ;INC DPTRO (FLASH)

MOV DPS#01H
MOVX @DPTRA
INC DPTR

:SWITCH TO DPTR1 (XRAM)
:WRITE VALUE INTO XRAM
JINC dptr1 (XRAM)

MOV ADPH1
CJUNE A #03,COPYLOOP
LJMP OUTSIDEXRAM

;CHECK IF DPTR1 (XRAM) REACH ADDRESS 0300H

;JUMP TO FLASH LOCATION OUTSIDE XRAM AREA

;- SECTION OF CODE OUTSIDE THE XRAM

ORG 2000H
OUTSIDEXRAM:
MOVPERIPHEN2,#18H ;ACTIVATE XRAM2CODE BIT AND IOPORTS
;ANY JUMP TO THE 0000H - OFFFH AREA SHOULD
EXECUTE FROM XRAM

LJMP 0100H 3JUMP TO THE P1 TOGGLE LOOP COPIED INTO XRAM

MOV P1,#00 ;FORCE P1 = 0X00H IF STUCK INTO THE FLASH

LOOP: LJMP LOOP ;INFINITE LOOP

;— Code to be moved into XRAM from address 0000h to 02FFH
; ASSUMED CODE CONTAINED FROM 1000H TO 12FFH...
; WILL BE COPIED FROM 0000H TO 02FFH INTO XRAM

" XRAM_Port_Toggle:

org 1100h

TOGGLE:
MOV P1,#00H
LCALL 0200H
MOV P1,#0FFH
LCALL 0200H
LJMP 0100H

;SET PORT 1 = 00H
;CALL DELAY FUNCTION
;SET PORT 1 = FFH
;CALL DELAY FUNCTION

org 1200h

;- DELAY1MSTO : 1MS DELAY USING TIMERO

DELAY1MS: MOV CPTR #1

MOV A PERIPHEN1
ORL A,#00000001B
MOV PERIPHEN1A

;LOAD PERIPHEN1 REG
;ENABLE TIMER 0

www.ramtron.com

page 15 of 99

VRS51L2070

RAIMTRISN

DELAY1MSLP:
MOV THO,#063H
MOV TLO,#0COH

; 6TIMERO RELOAD VALUE FOR 1MS AT 40MHZ

MOV TOT1CLKCFG#00H ;NO PRESCALER FOR TIMER 0 CLOCK
MOV TOCON,#00000100B ;START TIMER 0, COUNT UP

DWAITOVTO:
MOV A, TOCON
ANL A #080H
Jz DWAITOVTO

;READ TIMER 0 CONTROL, WAIT FOR OVERFLOW
;ISOLATE TIMER OVERFLOW FLAG
;LOOP AS LONG AS TIMER 0 DONT OVERFLOW

MOV TOCON,#00H ;STOP TIMER 0
DINZ CPTR,DELAY1MSLP ;

MOV A PERIPHEN1
ANL A#11111110B
MOV PERIPHEN1,A
RET

;LOAD PERIPHEN1 REG
;DISABLE TIMER 0

3.8 External Data Bus Access

The VRS51L2070 provides 32KB of data memory
access, which is mapped from address 8000h to
FFFFh. Bit 7 of the DEVMEMCEFG register, when set,
activates the external data memory bus access. In this
mode, Port 0 and Port 2 are dedicated to external
device addressing.

3.8.1 Multiplexed External Data Memory
Access

Multiplexed external data memory access mode on the
VRS51L2070 is similar to that on standard 8051s:
address bits A0 to A7 and data bits DO to D7 are time-
multiplexed on Port 0, while Port 2 controls address
bits A8 to A15.

In multiplexed addressing mode, external glue logic is
required to multiplex lower addresses and data.
Typically, a 74x373 or 74x573 can be used for this
purpose. The ALE-CMO pin serves to latch the
address.

FIGURE 5: MULTIPLEXED EXTERNAL DATA MEMORY ACCESS

MULTIPLEXED WRITE

P2 A[14:8] / /

PO A[7:0)/D[7:0] Al7:0] bi7:0] |
. Q) /

4 N —

MULTIPLEXED READ

P2 A[14:8]

PO A[7:0)D[7:0] AI7:0] [oATAy
S E—

RD

The multiplexed addressing mode is the default
configuration when external memory access is
performed.

3.8.2 Non-Multiplexed External Data Memory
Access

The VRS51L2070 external address and data memory
bus can operate in non-multiplexed mode. This mode
is activated by setting the EXTBUSCFG bit of the
XMEMCTRL register to 1.

In this case:

o D7:D0 will be mapped into Port 0
0 AT7:A0 will be mapped into Port 6
o0 A15:A8 will be mapped into Port 2

FIGURE 6: NON-MULTIPLEXED EXTERNAL DATA MEMORY ACCESS

jﬁﬁﬁ

NON-MULTIPLEXED WRITE

CLK \ \

P2:P6 A[14:0] / /
PO D[7:0] / /
WR /
e | T

NON-MULTIPLEXED READ

CLK \ \

i

PO D[7:0] X X % X X :DATA

3.8.3 Page Addressing of the External SRAM
using the MPAGE Register

The MPAGE register provides access to the entire
external memory using indirect addressing through
registers RO and R1. When using the MOVX @RI
instructions, the MPAGE register provides the upper
byte of the address pointed to.

TABLE 19: MEMORY PAGE REGISTER - MPAGE SFR F1H

7 | 6] 51 41 3] 2 1T 11 o

R/W, Reset = 0x00

MPAGE([7:0] = Upper Address Byte

www.ramtron.com

page 16 of 99

VRS51L2070

RAIMTRISN

3.9 External Bus CS Control Lines

In some applications, the external memory access is
only required to perform high speed data transfers
between the microcontroller and a parallel access data
converter. In this case, only a few register addresses
would have to be accessed. The VRS51L2070
provides a feature that greatly simplifies the interface
to parallel access peripherals such as data converters
or high-speed communication devices.

When both the EXTBUSCS bit of the XMEMCTRL
register and the EXTBUSGEN bit of the DEVMEMCFG
register are set to 1, the VRS51L2070’s external
memory bus behaves as follows:

e Address lines A15 to A12 operate as CS (chip
select) outputs. They are mapped on P2.7-
P2.4

e Address lines A11-A8 contain the rest of
address

e Address lines AO-A7 are mapped into P6
(inaccessible in the 44-pin version of the
VRS51L2070)

e Port 0 handles the data bus (D7:D0) when the
EXTBUSCFG bit is set to 1 (non-multiplexed
address/data)

e RD and RW lines on P3.7 and P3.6 are active

e AlLEissetto0

The value of bits 13 and 12 of the target address will
define the active chip select line output to P2.7-P2.4.
Address bits 15 and 14 are not taken into account.
A11:A0 carries the rest of the address bits.

This is represented at the register level as follows:

A15 | A14 | A13 A12 A0

X X CS1 | CSO

As such, when the CS bus control mode is activated,
the upper 32KB of the external data memory bus is
seen as two overlapping blocks of 16KB.

TABLE 20: EXTERNAL MEMORY BUS CS CONTROL MODE

4 Chip Configuration

4.1 VRS51L2070 Clock Configuration

The VRS51L2070 clock system is highly configurable.
The VRS51L2070 includes an internal 40MHz
oscillator, eliminating the need for an external oscillator
or crystal. However, an external standard parallel AT
or BT cut crystal can be used (frequency range of
1MHz to 40MHz).

Two SFR registers control the configuration of the
clock source and the division ratio applied to the
system clock source. The DEVCLKCFG1 register
selects either the internal oscillator or the external
crystal oscillator as the system clock source. When the
OSCSELECT bit is cleared, the VRS51L2070 system
clock derives its power from the external crystal
oscillator (please see the next section).

TaBLE 21:Device CLock CONFIGURATION REGISTER 1 - DEVCLKCFG1 SFR F2H

7 6 5 4 3 2 1 0
R/W RW RW RW RW RW R/W RW
0 1 1 0 0 0 0 0

Bit Mnemonic Description
7 SOFTRESET Soft reset control bit
6 OSCSELECT Oscillator Select

0 = External oscillator is selected
1 = Internal oscillator is selected

5 CLKDIVEN Internal oscillator output clock divisor enable bit
0 = Disable Clock Divisor

1 = Enable Clock Division

4 FULLSPDINT Full Speed Interrupt Mode

0 =Processor will run with selected clock
division during interrupts

1 = Processor will run at full speed during
interrupts

Address range I/O Pin Active as CS

0000h- 7FFFh None

(4KB SRAM from 0000h to OFFFh)

3:0 CLKDIV[3:0] CLKDIV Value/Clock Division
0=n1
1=1/2
2=/4
3=/8
4=/16
5=/32

6 =/64
7=/128

8 = /256
9=/512
A=/1024
B =/2048
C =/4096
D =/8192
E =/16384
F= /32768

8000h-8FFFh P2.4-A12
9000h-9FFFh P2.5-A13
AQ000h-AFFFh P2.6-A14
BO0Oh-BFFFh P2.7-A15

C000h-CFFFh P2.4-A12 (overlap)

DO000h-DFFFh P2.5-A13 (overlap)

EOQOh-EFFFh P2.6-A14 (overlap)

FOOOh-FFFFh P2.7-A15 (overlap)

www.ramtron.com

page 17 of 99

VRS51L2070

RAIMTRISN

Soft Reset Operation

A software reset can be performed on the
VRS51L2070. This is executed via two consecutive
instruction: The first instruction is to clear the
SOFTRESET bit and the second is to set
SOFTRESET bit to 1:

Examples of soft Reset in ASM:

ANL DEVCLKCFG#7Fh
ORL DEVCLKCFG,#80h

InC:

DEVCLKCFG &= 0x7F
DEVCLKCFG |= 0x80

The DEVCLKCFG2 register activates the on-chip
oscillator and the crystal oscillator. Both oscillators can
be activated independently, however, as previously
mentioned, only one can be used as the VRS51L2070
system clock source.

TaBLE 22:DEvICE CLOCK CONFIGURATION REGISTER 2 - DEVCLKCFG2 SFR F3H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R
0 1 0 0 1 0 0 0
Bit Mnemonic Description
7 CYOSCEN Crystal Oscillator Enable

0 = Crystal oscillator is disabled (default)
1 = Crystal oscillator is enabled

6 INTOSCEN Internal Oscillator Enable
0 = Internal oscillator is disabled

1 = Internal oscillator is enabled (default)

3:2 CYRANGE[1:0] Crystal Oscillator Range
00 = 25MHz — 40MHz
01 = 4MHz to 25MHz
10 = 32kHz to 100KHz
11 = 32kHz to 100KHz

-

Reserved

0 SYSTEMRDY | System Ready Indicator
When this bit is set to 1, it indicates that the
VRS51L2070 is no longer driving the reset line

The SYSTEMRDY bit of the DEVCLKCFG2 register
indicates the state of the RESET driving circuit.

A 0 indicates that the RESET line of the VRS51L2070
is driving the rest of the system. The SYSTEMRDY bit
will be set to 1 by the reset control circuit when the
RESET line no longer drives the circuit.

The crystal oscillator is activated by setting the
CYOSCEN bit of the DEVCLKCFG2 register to 1 and
selecting the CYRANGE value according to the
frequency of the crystal used. The CYRANGE
parameter controls the drive of the crystal oscillator
circuit.

The internal oscillator is activated by setting the
INTOSEN bit to 1.

Before switching from one oscillator source to another,
it is important to make sure that both oscillators are

active and stable at the moment the transition is made.
The minimum period required for the crystal oscillator
to stabilize depends on the type of crystal and the
frequency used. In general, it is recommended to wait
at least 1ms for the crystal oscillator to stabilize before
switching to it.

The stabilization time of the internal oscillator is much
shorter than that of the crystal oscillator. Whenever the
internal oscillator is reactivated, wait 1ms before
switching the system clock back to the internal
oscillator.

4.1.1 Switching from the Internal to the
External Oscillator

The following steps represent the recommended
procedure for switching from the internal oscillator to
the crystal oscillator:

e Activate the crystal oscillator and configure the
frequency range, while leaving the internal
oscillator active (INTOSCEN = 1)

e Wait at least 1ms for stabilization time

e Clear the OSCSELECT bit to turn off the
internal oscillator

Below is a code example of the above sequence:

;* Switching from Internal
; to External Oscillatr

MOV DEVCLKCFG2,#11001001B ;ENABLE EXTERNAL CRYSTAL OSC

MOV A#1 ;WAIT 1MS FOR CRYSTAL TO STABILISE

ACALL DELAY1MSTO

MOV DEVCLKCFG1,#00100000B ;SET EXTERNAL CRYSTAL OSCILLATOR

It is important to allow the crystal oscillator to stabilize
before using it as the system clock. An instable
oscillator may result in an operating frequency error or
device volatility .

4.1.2 Switching from the External Oscillator
Back to the Internal Oscillator

It is possible to switch system clock source to the
internal oscillator while the device is running from the
external oscillator. Note that before switching the
internal oscillator, it must be active.

The following the sequence below is recommended in
order to switch from the crystal oscillator back to the
internal oscillator:

o0 Keep the external oscillator enabled
(CYOSCEN = 1), activate the internal oscillator
by setting the INTOSCEN bit of the
DEVCLKCFG2 register to 1

o Wait at least 100 us for stabilization time

0 Set the OSCSELECT bit of the DEVCLKCFG1
register to 1

www.ramtron.com

page 18 of 99

VRS51L2070

RAIMTRISN

Below is a code example of the above sequence:

;* Switching from External
; to Internal Oscillator *

MOV DEVCLKCFG2#11001001B ;REACTIVATE THE INTERNAL OSCILLATOR

ACALL DELAY100US ;WAIT 100us FOR Self Oscillator to Stabilize

MOV DEVCLKCFG1,#01000000B ;SET EXTERNAL CRYSTAL OSCILLATOR
4.1.3 System Clock Prescaler

Between the internal and the external oscillator
modules and the main system clock tree, the
VRS51L2070 includes a clock prescaler module
enabling a dynamic division adjustment of the system
clock frequency from FOSC /1 to FOSC/32768. This
feature can be useful for saving power in battery-
operated applications, in which the device clock speed
can be adjusted to suit the processing power
requirements.

After a reset, the VRS51L2070 will boot up from the
internal oscillator and the selected operating speed will
be set to 20MHz i.e.. CLKDIVEN is set to 1 and the
CLKDIV value is 1 (CLK = Fosc/2). Clearing the
CLKDIVEN bit will deactivate the main clock prescaler.

4.1.4 Interrupt Processing Speed
Configuration

The VRS51L2070 includes a feature that allows
interrupts to be processed at full speed, while the main
program executes at a lower speed, as defined by the
FULLSPDINT value when the CLKDIVEN bit is set to
1.This mode of operation can be useful for applications
where high processing power is required for short
periods of time. Significant power saving can be
achieved by dynamically adjusting the system clock
frequency according to the processing power required.

4.2 Switching from Internal to External
Oscillator Example Program

/. //

/IVRS51L2070_Int_to_ext_to_Int_osc_switching_test2-SDCC.c
/.

/| DESCRIPTION:

" Test switching from internal osc to the external oscillator
" then back to the internal oscillator...forever

" 1) The program start from the internal oscillator with
I duty = 50 / 50 for 100 cycles

1 2) Then it switch to external oscillator with a

" duty of 50/20for 100 cycles

/A 3) It then switch to internal oscillator

I 4) then it execute 100 cycles with a

1 duty of 20/50 for 100 cycles

" 5) Return to step 2

//. //

#include <VRS51L2070_SDCC.h>
/I --- function prototypes

void delay(unsigned int);

I #
11 MAIN FUNCTION I
//- #

void main (void)

int cptr ;
PERIPHEN1 = 0x01;
PERIPHEN2 = 0x08;
P2PINCFG = 0x00;

/[Enable Timer 0
//Enable IOPORT
/[Config port 2 as output (for Tests)

for(cptr =0; cptr < 100; cptr++) //toggle P2 100 times

P2 = OxFF;
delay(50);
P2 = 0x00;
delay(50);
e
dof
/I-- Enable the external oscillator

DEVCLKCFG2 = 0xCO0; //Enable the external oscillator,
//Keep external osc active
/[Crystal range = 1 to 20MHz

delay(10); //Stabilization Time
DEVCLKCFG1 = 0x20; /ISelect External oscillator
delay(1); //Stabilization Time
DEVCLKCFG2 = 0x83; //Keep the external oscillator,

/IDisable internal osc active
for(cptr =0; cptr < 100; cptr++) //toggle P2 100 times
{

P2 = OxFF;
delay(50);

P2 = 0x00;
delay(20);

h

/I-- Return to the internal oscillator

DEVCLKCFG2 = 0xCO; /IKeep the external oscillator enabled
//Activate the internal osc
/[Crystal range = 1 to 20MHz

www.ramtron.com

page 19 of 99

VRS51L2070

RAIMTRISN

delay(100); // Stabilization Time (way too much)
DEVCLKCFG1 = 0x60; /ISelect Internal oscillator
delay(1); /I Stabilization Time

DEVCLKCFG2 = 0x40; /IDisable the external oscillator,
/IKeep internal osc active

for(cptr =0; cptr < 100; cptr++) //toggle P2 100 times
{
P2 = OxFF;
delay(20);

P2 = 0x00;
delay(50);
K

Ywhile(1);

Y/ End of main
/].

J/A— INDIVIDUALS FUNCTIONS <-eememeemeeef]

15
/- DELAY1MSTO : 1MS DELAY USING TIMERO
/I; CALIBRATED FOR 40MHZ

1
void delay(unsigned int dlais){
idata unsigned char x=0;
idata unsigned int dlaisloop;

x = PERIPHENT1; //ILOAD PERIPHEN1 REG
X |= 0x01; /IENABLE TIMER 0
PERIPHEN1 = x;

dlaisloop = dlais;

4.3 Processor Mode Control Register

The VRS51L2070 provides two power saving modes:
Idle and power-down, which are controlled by the
PDOWN and IDLE bits of the PCON register at
address 87h.

TABLE 23:POWER CONTRO L REGISTER - PCON SFR 87H

while (dlaisloop > 0)

{
THO = 0x63; /ITIMERO RELOAD VALUE FOR 1MS AT 40MHZ
TLO = 0xCO;
TOT1CLKCFG = 0x00; /INO PRESCALER FOR TIMER 0 CLOCK
TOCON = 0x04; /ISTART TIMER 0, COUNT UP
do{
x=TOCON;
x=x & 0x80;
Jwhile(x==0);
TOCON = 0x00; //Stop Timer 0

dlaisloop = dlaisloop-1;
Ylend of while dlais...

x = PERIPHEN1; //ILOAD PERIPHEN1 REG
x = x & OXFE; /IDISABLEBLE TIMER 0
PERIPHEN1 = x;

Y/End of function delais

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 1 1 0 0 0 0 0

Bit Mnemonic Description

7 OSCSTOP Oscillator Stop Control
When this bit is set to 1, the VRS51L2070
oscillator stops. A reset pulse or a power-on
reset is required to restart the device

6 INTMODEN Interrupt Module Enable
0 = Interrupt module is disabled
1 = Interrupt module is enabled (default)

5 DEVCFGEN Device Configuration Module Enable
0 = Device configuration module is disabled
1 = Device configuration module is enabled

4 SFRINDADR SFR Indirect Addressing Enable
0 = NOP instruction A5h behaves normally
1 = NOP instruction A5h acts as a SFR indirect
addressing instruction

3 GF1 General Purpose Flag

2 GFO General Purpose Flag

1 PDOWN Power-Down Mode Enable
When this bit is set to 1, the processor goes into
power-down mode. A reset is required to exit
power-down mode

0 IDLE Idle Mode Enable
When this bit is set to 1, the processor goes into
power-idle mode. A reset or an interrupt is
required to exit idle mode

4.3.1 Oscillator Stop Mode

The oscillator stop mode goes one step further than
the PDOWN mode. When the OSCSTOP bit is set, all
the oscillators are stopped, achieving maximum power
saving, while maintaining the I/Os in their current state.
Note that in this mode, the watchdog timer will stop
functioning.

In order to stop the oscillator of the VRS51L2070, clear
the OSCSTOP bit of the PCON register and then
immediately set it to 1, as shown below:

PCON &= Ox7F
PCON |= 0x80

4.3.2 SFR Indirect Addressing Capability

The SFR registers on the VRS51L2070 can be
accessed via indirect addressing. This is accomplished
by setting the SFRINDADR bit of the PCON register.

When SFRINDADR is set, the Ab5h instruction
functions as an SFR indirect addressing instruction
(the default at reset is the NOP instruction).

www.ramtron.com

page 20 of 99

VRS51L2070

RAIMTRISN

4.3.3 PDOWN and IDLE Power Saving Mode

In idle mode, the processor clock is stopped, however
the peripherals remain active. The contents of the
SRAM, the state of the 1/0Os and the SFR registers are
maintained, as are the timer, external interrupt and
UART operations. Idle mode is useful for applications
in which stopping the processor to save power is
required. The processor will be activated when an
external event, triggering an interrupt, occurs.

In power-down mode, the VRS51L2070 oscillator is
stopped. While the clock to all the peripherals is
deactivated, the contents of the SRAM and the SFR
registers is maintained. The only way to exit power-
down mode is via a hardware reset.

In power-down and idle modes the watchdog timer
continues to function.

VRS51L 2070 Peripheral Enable

4.4 Peripherals Enable Register

The VRS51L2070 peripherals can be individually
activated. The PERIPHEN1 and PERIPHEN?2 registers
are used for this purpose.

With the exception of the /O ports, all the
VRS51L2070 peripherals and communication
interfaces are in the disable state upon reset. When a
given peripheral is inactive, read and write operations
to its SFR registers will have no effect. To activate a
given peripheral, the corresponding enable bit in the
PERIPHENX registers must be set to 1.

The PERIPHENT1 register controls the activation of the:

e SPl Interface
e |2C Interface
¢ Two UARTs
e Timers
TABLE 24: PERIPHERAL ENABLE REGISTER 1 - PERIPHEN1 SFR F4H
7 6 5 4 3 2 1 0
RW RW RW RW RW RW R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 SPICSEN Enable SPI CS Line
0 = SPI CS lines are disabled (accessible as
1/0)
1 = SPI CS lines are enabled and reserved by
SPl interface
6 SPIEN SPI Interface Enable
0 = SPI interface is disabled
1 = SPl interface is enabled
5 12CEN I2C Interface Enable
0 = I?C interface is disabled
1 = I?C interface is enabled
4 U1EN UART1 Interface Enable
0 = UART1 interface is disabled
1 = UART1 interface is enabled
3 UOEN UARTO Interface Enable
0 = UARTO interface is disabled
1 = UARTO interface is enabled
2 T2EN Timer2 Enable
0 = Timer 2 interface is disabled
1 = Timer 2 Interface is enabled
1 T1EN Timer1 Enable
0 = Timer 1 interface is disabled
1 = Timer 1 interface is enabled
0 TOEN Timer0 Enable

0 = Timer 0O interface is disabled
1 = Timer 0 interface is enabled

When the SPI interface is enabled, the SPI CSO line is
reserved for the SPI interface, independent of the state
of the SPICSEN bit.

UART1 has priority over the SPICSEN bit of the
PERIPHEN1 register. As such, even if the SPI CS1,
CS2 and CS3 lines are activated by setting the
SPICSEN bit to 1, when UART1 is used, it will override
CS2 and CS3.

www.ramtron.com

page 21 of 99

VRS51L2070

RAIMTRISN

Additionally, when activated, the SPI interface, has
priority over the Timer 2 input, even if Timer 2 is
enabled.

The PERIPHENZ register controls the activation of the:

Pulse Width Counter Modules
Arithmetic Unit

I/0 Ports

Watchdog Timer

FPI Interface

It also activates the XRAM into code mode, in which
the processor starts executing code from the 4KB
block of externally mapped SRAM memory.

TABLE 25: PERIPHERA2 ENABLE REGISTER 2 - PERIPHEN2 SFR F5H

7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 1 0 0 0

Bit Mnemonic Description

7 PWC1EN Pulse Width Counter 1 Enable
0 =PWC1 is off
1=PWC1ison

6 PWCOEN Pulse Width Counter 0 Enable
0 = PWCO is off

1=PWCO0 s on

5 AUEN Arithmetic Unit Enable
0 = Arithmetic unit is off

1 = Arithmetic unit is on

4 XRAM2CODE | When set to 1, the 4KB block of SRAM is
mapped into the program code area from 0000h
to 3FFFh.

XRAM-based variable are not permitted when
the processor is running from the XRAM.

The XRAM2CODE bit must be set and cleared
only when the program counter is outside the
abovementioned address range.

3 IOPORTEN 1/0 Port Enable
0 = 1/0 Ports are deactivated

1 =1/0 Ports are activated

2 WDTEN Watchdog Timer Module Enable
0=WDT is OFF

1=WDT is ON

1 PWRSFREN Pulse Width Modulators SFR Enable
0 = SFR associated with PWMs are deactivated
1 = SFR associated with PWMs are activated

0 FPIEN FPI Interface Enable
0 = FPI interface is disabled

1 = FPI interface is enabled

4.5 Peripheral /O Mapping and Priority

The pin locations of the following peripherals can be
remapped to alternate pin positions:

o0 Timer 2 Output
12C

UARTO
UART1

PWMs

This feature has been included to provide access to all
peripherals. The following table lists the peripherals
whose /O positions are configurable:

O 0O0O0

TABLE 26: PERIPHERAL ALTERNATE PIN CONFIGURATION

Peripheral | Default | Alternate
Pin Pin
T20UT P1.2 P4.4
T2EX P1.1 P6.0
T2IN P1.0 P6.1
SCL P3.4 P1.6
SDA P3.5 P1.7
RXDO P3.0 P2.4
TXDO P3.1 P2.3
RXD1 P1.2 Pin 41
TXD1 P1.3 Pin 40
PWMI[7:0] | P2[7:0] | P5[7:0]

www.ramtron.com

page 22 of 99

VRS51L2070

RAIMTRISN

5 Input/Output Ports

The VRS51L2070 includes 56 1/O pins grouped into
seven ports.

All the VRS51L2070 1/Os are 5V-tolerant, except for
P4.6 and P4.7, which can endure a maximum input
voltage of VDD+0.5V.

5.1 Structure of the I/O Ports

All I/O ports on the VRS51L2070 have the same
structure. Their main difference resides in the drive
capability of the 1/O ports, as shown in the following
diagram:

FIGURE 7: GENERAL STRUCTURE OF THE VRS51L2070 I/Os

When 1/0 is
J7—{ configured as
Inputit will be
pulled up at
—L{ 2.5V instead of
3.3V

INPUT T

OEN

T~ Provide 5V

Toltrance

OuTPUT —L{

When the 1/O ports are configured as inputs, the pin is
pulled high to a voltage of about 2.50V, instead of the
device voltage, which is 3.3V. An external pull-up
resistor can be added to pull the 1/0O pin up to 3.3 volts
or to 5 volts.

5.2 Direction Configuration Registers for
the 1/O Ports

Each I/O port on the VRS51L2070 has dedicated SFR
registers for read/write operations and for /O pin
direction. The pin direction configuration registers allow
the user to configure the direction of each individual
I/O pin. Writing a 1 to these register bit positions
configures the corresponding I/O port as an input. To
configure an /O pin as an output, the corresponding bit
in the pin direction configuration register must be
cleared.

Because the pin direction configuration registers are
not located at addresses that are multiples of xOh or
x8h, they are not bit-addressable. When a peripheral is
activated, it takes control of the 1/O pins and the I/O pin
direction is configured automatically.

The user can monitor the activity of any peripheral
module input pin current state by configuring the

corresponding I/O pin as an input and reading the port
pin value.

TABLE 27:PORT 0 PIN DIRECTION CONFIGURATION REGISTER - POPINCFG -SFR F9H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W RW R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 PO7IN1OUTO When:
1 =1/0 pin acts as a input (reset value)
0 =1/0O pin acts as a output
6 PO6IN1OUTO Same as bit 7
5 PO5IN1OUTO Same as bit 7
4 P04IN1OUTO Same as bit 7
3 PO3IN1OUTO Same as bit 7
2 PO2IN1OUTO Same as bit 7
1 P0O1IN1OUTO Same as bit 7
0 POOIN1OUTO Same as bit 7
When the external data memory bus access is
activated, Port O functions as D7:D0 and/or address
A7:A0.
TABLE 28:PORT 1 PIN DIRECTION CONFIGURATION REGISTER - P1PINCFG -SFR FAH
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W RW R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 P17IN1OUTO 1 =1/0O pin act as a input (reset value)
0 = 1/O pin act as a output
6 P16IN1OUTO Same as bit 7
5 P15IN1OUTO Same as bit 7
4 P14IN1OUTO Same as bit 7
3 P13IN1OUTO Same as bit 7
2 P12IN1OUTO Same as bit 7
1 P11IN1OUTO Same as bit 7
0 P10IN1OUTO Same as bit 7
TABLE 29:PORT 2 PIN DIRECTION CONFIGURATION REGISTER - P2PINCFG -SFR FBH
7 6 5 4 3 2 1 0]
R/W R/W RW RW RW RW R/W RW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 P27IN1OUTO When:
1 =1/0 pin acts as a input (reset value)
0 = 1/0 pin act as a output
6 P26IN1OUTO Same as bit 7
5 P25IN10OUT0 Same as bit 7
4 P24IN1OUTO Same as bit 7
3 P23IN1OUTO Same as bit 7
2 P22IN1OUTO Same as bit 7
1 P21IN1OUTO Same as bit 7
0 P20IN1OUTO Same as bit 7

When the external data memory bus is activated,
except when in external bus CS mode, Port 2 functions
as address bus bits A15:A8.

www.ramtron.com

page 23 of 99

VRS51L2070

RAIMTRISN

TaBLE 30:PORT 3 PIN DIRECTION CONFIGURATION REGISTER - P3PINCFG -SFR FcH

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 P37IN10OUTO When:

1 =1/0 pin act as a input (reset value)
0 =1/0 pin act as a output

P36IN10OUTO Same as bit 7

P35IN10OUTO Same as bit 7

P34IN1OUTO Same as bit 7

P33IN10OUTO Same as bit 7

P32IN10UT0 Same as bit 7

P31IN1OUTO Same as bit 7

O|=|N|(w(~|u|O

P30INTOUTO | Same as bit 7

When the external data memory bus is activated, P3.6
and P3.7 function as WR and RD.

TABLE 31:PORT 4 PIN DIRECTION CONFIGURATION REGISTER - P4PINCFG -SFR FDH

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 P47IN1OUTO When:

1 =1/0 pin acts as a input (reset value)
0 =1/0 pin acts as a output

6 P46IN10OUTO Same as bit 7

5 P45IN1OUTO Same as bit 7

4 P44IN10UTO Same as bit 7

3 P43IN10OUTO Same as bit 7

2 P42IN10OUTO Same as bit 7

1 P41IN10OUTO Same as bit 7

0 P40IN10OUTO Same as bit 7

TABLE 32:PORT 5 PIN DIRECTION CONFIGURATION REGISTER - PS5PINCFG -SFR FEH
7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW

1 1 1 1 1 1 1 1

Bit Mnemonic Description

7 P57IN1OUTO When:

1 =1/0 pin acts as a input (reset value)
0 = I/O pin acts as a output

6 P56IN10OUTO Same as bit 7

5 P55IN10OUTO Same as bit 7

4 P54IN10OUTO Same as bit 7

3 P53IN1OUTO Same as bit 7

2 P52IN10OUTO Same as bit 7

1 P51IN1OUTO Same as bit 7

0 P50IN10OUTO Same as bit 7

TABLE 33:PORT 6 PIN DIRECTION CONFIGURATION REGISTER - PGPINCFG -SFR FFH
7 6 5 4 3 2 1 0
RW RW R/W RW RW RW R/W RW

1 1 1 1 1 1 1 1

Bit Mnemonic Description

7 P67IN1OUTO When:

1 =1/0 pin acts as a input (reset value)
0 =1/0 pin acts as a output

PG6IN1OUTO | Same as bit 7

P65IN1OUTO Same as bit 7

P64IN10OUTO Same as bit 7

P63IN1OUTO | Same as bit 7

P62IN1OUTO Same as bit 7

P61IN1OUTO | Same as bit 7

O|=(N(w|h|o|o

P60IN1OUTO | Same as bit 7

5.3 1/0O Ports Input Enable Register

Upon reset, all the VRS51L2070 1/Os are configured
as inputs and the input control logic of all ports is
activated. A given /O port's input logic can be
deactivated by clearing the corresponding bit in the
PORTINEN register.

TABLE 34:PORTS INPUT ENABLE REGISTER - PORTINEN SFR F7H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
1 1 1 1 1 1 1 1

Bit Mnemonic Description
7 Reserved (0) Keep this bit at 0
6 P6INPUTEN Port 6 Input Enable Register

0 = Port 6 input logic is deactivated
1 = Port 6 input logic is activated

5 P5SINPUTEN Port 5 Input Enable Register
0 = Port 5 input logic is deactivated
1 = Port 5 input logic is activated

4 P4INPUTEN Port 4 Input Enable Register
0 = Port 4 input logic is deactivated
1 = Port 4 input logic is activated

3 P3INPUTEN Port 3 Input Enable Register
0 = Port 3 input logic is deactivated
1 = Port 3 input logic is activated

2 P2INPUTEN Port 2 Input Enable Register
0 = Port 2 input logic is deactivated
1 = Port 2 input logic is activated

1 P1INPUTEN Port 1 Input Enable Register
0 = Port 1 input logic is deactivated
1 = Port 1 input logic is activated

0 POINPUTEN Port 0 Input Enable Register
0 = Port 0 input logic is deactivated
1 = Port 0 input logic is activated

5.4 1/O Ports SFR Registers

As is the case for standard 8051 devices, the 1/O ports
on the VRS51L2070 are mapped into SFR registers
that are bit-addressable. At reset, the 1/O ports are
activated and configured as inputs.

The VRS51L2070 I/O output drivers, unlike the original
standard 8051 1/O output drivers, are of the push-pull
type. The VRS51L2070 I/Os have the same output
drive capability whether they are driving a logic high or
a logic low, versus the standard 8051s, which feature
an active low driver with a pull-up resistor.

From a software point of view, the difference is that
whenever the configuration of a given 1/O has to be
changed, the corresponding bit in the port direction
configuration register must be set accordingly.

www.ramtron.com

page 24 of 99

VRS51L

2070

RAIMTRISN

The following tables describe the SFR registers
associated with the VRS51L2070 1/O ports.
TABLE 35:PORT O REGISTER - PO SFR 80H
7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 PO[7 :0] Port 0
TABLE 36:PORT 1 REGISTER - P1 SFR 90H
7 6 5 4 3 2 1 0
RW R/W R/W R/W R/W R/W RW R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P1[7 :0] Port 1
TABLE 37:PORT 2 REGISTER - P2 SFR AOH
7 6 5 4 3 2 1 0
RW RW R/W R/W R/W R/W RW R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P2[7 :0] Port 2
TaBLE 38:PORT 3 REGISTER - PO SFR BOH
7 6 5 4 3 2 1 0
RW RW R/W R/W R/W R/W RW R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P3[7 :0] Port 3
TaBLE 39:PORT 4 REGISTER - P4 SFR COH
7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P47 :0] Port 4
TABLE 40:PORT 5 REGISTER - P5 SFR 98H (VRS51L.2070-64PIN ONLY)
7 6 5 4 3 2 1 0
RW RW RW RW RW RW R/W RW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P5[7 :0] Port 5
TABLE 41:PORT 6 REGISTER - P6 SFR C8H (VRS51L2070-64PIN ONLY)
7 6 5 4 3 2 1 0
RW RW RW R/W RW R/W RW RW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P6[7 :0] Port 5

5.5 1/O Port Drive Capability

The current drive capability of the VRS51L2070 1I/O
ports is not the same for all ports. Most can drive 2mA
and others can drive more in either current source or
current sink and can be used for direct LED drive. The
following table summarizes the VRS51L2070 1/O port
drive capabilities:

TABLE 42:1/0 PORTS DRIVING CAPABILITY

I/0O Port Max Current on
Individual Pin
Port 0[7:0] 2mA
Port 1[7:5] 4mA
Port 1[4:0] 2mA
Port 2[7:0] 8mA
Port 3[7:6] 2mA
Port 3[5:4] 4mA
Port 3[3:0] 2mA
Port 4[7:0] 2mA
Port 5[7:0] 16mA
Port 6[7:0] 2mA

It is not recommended to exceed the sink current
specified in the table above. Doing so will likely cause
the low-level output voltage to exceed device
specifications and affect device reliability.

For the current revision of the VRS51L2070, the total
DC load on the I/O ports should not exceed 100mA.

5.6 Port Software Specifics

Some instructions allow the user to read the logic state
of the output pin, while others allow the user to read
the contents of the associated port register. These
instructions are called read-modify-write instructions. A
list of these instructions may be found in the following
table.

Upon executing these instructions, the content of the
port register (at least 1 bit) is modified. The other read
instructions take the present state of the input into
account. For example, instruction ANL P3,#01h
obtains the value in the P3 register; performs the
desired logic operation with the constant 01h and
recopies the result into the P3 register.

In order to monitor the present state of the inputs of an
I/0O port bit, first, read the port, and second, perform an
AND or an OR operation, as required by the program:

MOV A, P3; State of the inputs in the accumulator
ANL A, #01; AND operation between P3 and 01h

www.ramtron.com

page 25 of 99

VRS51L2070

RAIMTRISN

When the port is used as an output, the register
contains information on the state of the output pins.
Measuring the state of an output directly on the pin is
inaccurate because the voltage level depends mostly
on the type of charge that is applied to it. The functions
below perform the operation on the value of the port
register rather than the actual port pin itself.

TABLE 43: LIST OF INSTRUCTIONS THAT READ AND MODIFY THE PORT USING REGISTER
VALUES

Instruction | Function

ANL Logical AND ex: ANL PO, A

ORL Logical OR ex: ORL P2, #01110000B

XRL Exclusive OR ex: XRL P1, A

JBC Jump if the bit of the port is set to 0

CPL Complement 1 bit of the port

INC Increment the port register by 1

DEC Decrement the port register by 1

DJNZ Decrement by 1 and jump if the result is not
equalto 0

MOV P.,.C Copy the held bit C to the port

CLR* P.x Set the port bit to 0

SETB P.x Set the port bit to 1

*Note: Even though the CPU does not read in this
case, it is considered a read-modify-write instruction. In
MOV dir, dir has an extra cycle when doing an SFR
read during a debugger interrupt. The debugger
memory is synchronous and is mapped into the SFR
bus and, therefore, requires an extra read cycle.

Instruction A5, which is considered an NOP in a
standard 8051, has been redefined to perform write
and read SFR indirect addressing. Therefore, during a
debugger interrupt, the A5 indirect read SFR
addressing requires an extra cycle.

5.7 Port Operation Timing

5.7.1 Writing to a Port (Output)
5.7.2 Reading a Port (Input)

5.8 1/0O Port Example Programs

5.8.1 /O Ports Toggle Example

This program shows the activation and configuration of
ports PO to P4 as outputs. The program continuously
toggles their values.

;" VRS51L2070 I/O Ports Toggle Example *

START:MOV PERIPHEN2,#08H ;ENABLE IO

MOV POPINCFG,#00H ;CONFIGURE PO AS OUTPUT
MOV P1PINCFG,#00H ;CONFIGURE P1 AS OUTPUT
MOV P2PINCFG,#00H ;CONFIGURE P2 AS OUTPUT
MOV P3PINCFG,#00H ,CONFIGURE P3 AS OUTPUT
MOV P4PINCFG#00H ;CONFIGURE P4 AS OUTPUT

MOV PERIPHEN2,#00001000B ;BIT7 - PWC1EN
;BIT6 - PWCOEN
;BIT5 - AUEN
;BIT4 - XRAM2CODE
;BIT3 - IOPORTEN
;BIT2 - WDTEN
;BIT1 - PWMSFREN
;BITO - FPIEN

//'1/0 Output Toggle Loop
LOOP:

MOV P0,#00H
MOV P1,#00H

;FORCE PO = 00H
;FORCE P1 = 00H

MOV P2#00H ;FORCE P2 = 00H
MOV P3,#00H ;FORCE P3 = 00H
MOV P4,#00H ;FORCE P4 = 00H
MOV A #100 ;Wait 100ms using Timer O

ACALL DELAY1MSTO ;See Timer section

MOV PO,#0FFH ;FORCE PO = FFH

MOV P1#0FFH ;FORCE P1 = FFH
MOV P2,#0FFH ;FORCE P2 = FFH
MOV P3,#OFFH ;FORCE P3 = FFH
MOV P4 #OFFH ;FORC E P4 = FFH

MOV A #100 ;Wait 100ms using Timer0

ACALL DELAY1MSTO ;See Timer Section

LJMP LOOP

The DELAY 1MS function is described in the timers
section.

www.ramtron.com

page 26 of 99

VRS51L2070

RAIMTRISN

5.8.2 I/O Port Read Example

;* VRS51L2070 I/O Ports Read and Write Example *

PORTREAD EQUO021H ;GENREAL VARIABLE
START:MOV PERIPHEN2,#08H ;ENABLE IO

MOV POPINCFG,#00H ;CONFIGURE PO AS iNTPUT
MOV P1PINCFG,#00H ;CONFIGURE P2 AS OUTPUT

; Note that the port Input logic is activated by default

MOV PERIPHEN2,#00001000B ;BIT7 - PWC1EN
;BIT6 - PWCOEN
;BITS - AUEN
;BIT4 - XRAM2CODE
;BIT3 - IOPORTEN
;BIT2 - WDTEN
;BIT1 - PWMSFREN
;BITO - FPIEN

;*** Read Port 0 and copy the value to P2
LOOP:

MOV PORTREAD, PO ;Read Prt 0 and store the value in a Variable
MOV P2, PORTREAD ;Write the Variable content to P2

AJMP LOOP

In this example, the Port PO value is stored in a
variable before writing it to P2, but the user can also
directly transfer PO to P2 in one operation:

LOOP:
MOV P2,PO ;would do the same operation more efficiently
AJMP LOOP

5.9 Port Pin Change Monitoring

The VRS51L2070 includes an /O port pin change
monitoring subsystem. This module is used to monitor
the activity on the selected 1/O ports.

When enabled, if a pin state changes on the selected
I/O port, the PMONFLAG will be set to 1 by the
system. It must be cleared manually by the software.

The port pin change monitoring feature is very useful
for monitoring events that can occur on a given group
of 1/0s without having to constantly read the 1/O state.
Since it is connected to the VRS51L2070 interrupt
subsystem, the port pin change monitoring system
frees the processor resources for other tasks.

TABLE 44:PORT CHANGE MONITORING REGISTER - PORTCHG SFR B9H

7 6 8 4 3 2 1 0
RW RW RW RW RW R/W R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 PMONFLAG1 Port Change Monitoring Flag1
When set, monitored port state has changed
6 PCHGMSK1 Port Change Mask Register 1

0 = Port monitoring is deactivated
1 = Port monitoring is activated

5:4 PCHGSEL1[1:0] | Port Change Monitoring Register Select 1
00 = P4 Change is monitored

01 = P5 Change is monitored

10 = P6 Change is monitored

11 = P4[3:0] Change is monitored

3 PMONFLAGO | Port Change Monitoring Flag 0
When set, monitored port state has changed
1 PCHGMSKO Port Change Mask Register 0

0 = Port monitoring is deactivated
1 = Port monitoring is activated

1:0 PCHGSELO[1:0] | Port Change Monitoring Register Select 0
00 = PO Change is monitored
01 = P1 Change is monitored
10 = P2 Change is monitored

11 = P3 Change is monitored

The port pin change monitoring flags, PMONFLAGX,
are active at all times, even if the port change masks
are not activated. The PCHGMSKXx bits serve to
connect the port change module to the VRS51L2070
interrupt system. The port change monitoring flags
must be cleared manually.

www.ramtron.com

page 27 of 99

VRS51L2070

RAIMTRISN

5.10 Port Pin Change Interrupt Example
Programs

5.10.1 Numeric Keypad Interface

1]. //
1/ VRS51L.2070_KeypadPO_LCDP1.c //
//.

/I DESCRIPTION: Character LCD and Numeric Keypad Interface Example Program.
I

" This program initialize and sends LCD strings and numeric values

" to a character based LCD display.

I The program also demonstrate the use of the Port Change interrupt

" Feature of the VRS51L2070 to simplify the interface with a numeric Keypad
/i on Port 0.

! The numeric keypad is a standard phone keypad which to connected to Port 0
" as shown below:

" Column 3 - P0.7

/i Column 2 - P0.6

I Column 1 - P0.5

1 Row 4 -P0.3

" Row 3 -P0.2

/i Row 2 -P0.1

I Row 1 -P0.0

1

" No external pull-up / pull down resistors are required, thank to the

" presence of internal pull-up on the VRS51L2070 I/O ports.

I

I The interface to the LCD done through the VRS51L2070 Port 1.

" The LCD is initialized to operate in 4 bit data Bus Mode

/i

I LCD interface structure:

1

" P10 = LCDRS

/i P11 = LCDRW

l P12 = LCDE

I P13 = (notused)

/i P1[7:4] = LCD Data (4 bit mode)

/i

I Notes about standard Character LCD display interface to the VRS51L2070
I -Most LCD displays operates on a 4.5V to 5.5V Supply.

" They won't work with the 3.3V supply the VRS51L2070 operate from

" -On the digital side make sure the LCD module logic High level lower limit
I is below 3V.

Vi -The VRS51L2070 I/Os are 5V tolerant, so there is no need to add interface
" circuit between the LCD module's I/0 and the VRS51L2070 I/O

I

1

/i

//. //
/| TARGET: VRS51L2070

/]. n
"

/I Rev 1.0

/I Date: June 2005
/].

#include <VRS51L2070_SDCC.h>

/I--LCD /O definition
#define LCDPORT P1
#define LCDPORTDIR P1PINCFG

/I--Keypad I/O definition
#define KEYPADPORT PO
#define KEYPADPORTDIR POPINCFG

/I---Keypad Function prototypes
char KeyDecode();
void KeyDisplay(char);

//---LCD Function prototypes
void lcdbusy(void);

void initlcd(void);

void LCDSlow(void);

void int2lcd(unsigned int);

//ILCD Busy check

/ILCD |Initialisation function

/ISlow Down communication with LCD display
/linteger to LCD display function

void lcdstring(char code *); 1/String to LCD display function

void sendlcdchar(char); //Char to LCD Display function

void sendlcdcmd(unsigned char); //Send LCD Command Function

//---Generic Functions prototype
void V2KDelay1ms(unsigned int); //Standard Delay function

/I LCD bit variables
bit at 0x92 LCD_E; /ILCD E Line

bit at 0x90 LCD_RS; /ILCD RS
bit at 0x91 LCD_RW; /ILCD RW

/I Global variables definitions
idata unsigned char cptr = 0x00;

/I LCD Strings and constants definitions
code char msg1[]= "VRS51L2070 \0";
code char msg2[]= "Waiting for Key.\0";
code char msgkey[]= "Last key: \0";

code char LCD_L1C1 = 0x80;
code char LCD_L2C1 = 0xCO;

//Command LCD set CGRAM addr to Line1,column 1
/ICommand LCD set CGRAM addr to Line2,column 1

code char LCD_L2C10 = 0xC9; //Command LCD set CGRAM addr to Line2,column 10
code char LCD_CLEAR = 0x01; //ICommand LCD Clear and return cursor home

1/ /]

I MAIN FUNCTION

void main (void) {

PERIPHEN1 = 0x01;
LCDPORTDIR = 0x00;

/[Enable Timer 0
//Config LCD port as output

/I--Configure Keypad Port and port Change monitor

KEYPADPORTDIR = 0x0F; //KeypadPort bit 3:0 -> configured as Input (Lines)
/IKeypadPort bit 7:5->Configured as output (Columns)
/[Clear the Columns driver outputs

//Put a 100 milliseconds delay

KEYPADPORT = Ox0F;
V2KDelay1ms(100);
PORTCHG = 0x04; /IDisable Port Change monitoring Module 1
//[Enable Port Change monitoring Module 0
/[Clear the Port Change monitoring Flag
//Port 0 Change is monitored

/- Activate port change interrupt
INTSRC1 &= OxEF; /IForce Interrupt vector 4 to be routed to Port Change
/Imodule 0

//[Enable the PORT CHANGE 0 Module Interrupt
//Activate the Global Interrupts

INTEN1 |= 0x10;
GENINTEN = 0x01;

/l--Initialize the LCD
initlcd(); /nitialise the LCD Module
sendlcdemd(LCD_L1C1); /IPlace LCD cursor on Line 1, Column 1

cptr=0;
while(msg1[cptr] !="0")
sendlcdchar(msg1[cptr++]);

//Display "VRS51L2070" on first line of LCD display

sendlcdecmd(LCD_L2C1); //Place LCD cursor on Line 2, Column 1

cptr=0;

while(msg2[cptr] !="0")
sendlcdchar(msg2[cptr++]);

V2KDelay1ms(1000);

/IDisplay "Waiting for Key.\0" on 2 line of LCD display
/IPut a 1 seconds delay

/I--Loop Waiting for Keys to be pressed
while(1); Hnfinite Loop

¥/ End of main

void PortChangeOInt(void) interrupt 4
{

unsigned char keypressed = 0x00; /Ivar holding ASCII value of the last key
/lpressed (could be global)

/Ivariable to read the actual I/O port
//IRow position of the pressed key
/IColumn position of the pressed key

unsigned char keylines = 0x00;
unsigned char keyrow = 0x00;
unsigned char keycol = 0x00;

I rows and columns association table
const char code keyrowmapl] =

{0xOF,0x0OF ,0x0F ,0x0F ,0x0F ,0x0F ,0x0F ,0x03,0x0F ,0xOF ,0x0F ,0x02,0x0F ,0x01,0x00,0x0F};
const char code keycolmap[]={0x0F,0x0F,0x0F,0x02,0x0F,0x01,0x00,0x0F};

/I Ascii code associated with pressed key
const char code keyascii[4][3] = {

(77879}
(003,
GENINTEN = 0x00; //Disable the Global Interrupts

/I--Retrieve the line number

KEYPADPORT = 0x00; //Send 0 on each column

www.ramtron.com

page 28 of 99

VRS51L2070

RAIMTRISN

V2KDelay1ms(10);
keylines = KEYPADPORT;
keylines &=0x0F;

//Put a 10 millisecond delay
//IRead Keypad Port
Ilisolate lower nibble

if(keylines != 0xOF)
{

/l-retrieve the line value
keyrow = keyrowmapl[keylines];

/I--Retrieve Column number
KEYPADPORTDIR = 0xFO; /lcolumns are input / rows are output
KEYPADPORT = 0x00; //Send 0 on each row

V2KDelay1ms(10); /IPut a 10 millisecond delay
keylines = KEYPADPORT; //IRead Keypad Port
B = keylines;

keylines &=0xEO;

keylines = (keylines >> 5);
/l-retrieve the line value
keycol = keycolmapl[keylines];

/solate upper 3 bit (columns)
/IPosition columns to lower portion

if((keyrow != OxOF)&& (keycol = OxFF))

/I--Get the ascii value of the key

keypressed = keyasciilkeyrow][keycol];

sendlcdcmd(LCD_L2C1); /Place LCD cursor on Line 2, Column 1
cptr=0;

while(msgkeyl[cptr] !="0") /IDisplay "Last key: \0"
sendlcdchar(msgkey[cptr++]) //on second line of LCD display

/IDisplay the key value on the LCD display

sendlcdcmd(LCD_L2C10); /IPlace LCD cursor on Line 2, Column 10
sendlcdchar(keypressed);

Y/end of if key row / col

/l--wait for the key to be released
dof

B= KEYPADPORT;

B &= 0xEO;

Ywhile(B != OxEQ);

/I--Set KEYPADPORT as before
KEYPADPORTDIR = 0x0F; /IColumns are input / rows are output
KEYPADPORT = 0x0F; /IClear the Columns driver outputs

V2KDelay1ms(10);
Ylend of if keylines != OxFF

/I Put a 10 millisecond delay

PORTCHG = 0x04; /IDisable Port Change monitoring Module 1
//Enable Port Change monitoring Module 0
/IClear the Port Change monitoring Flag
/IPort 0 Change is monitored

GENINTEN = 0x01; //Activate the Global Interrupts

}/End of Port Change Interrupt

//. //

n INDIVIDUALS FUNCTIONS
//-

(See demonstration programs...)

6 VRS51L2070 Timers

The VRS51L2070 includes three 16-bit timers: Timer
0, Timer 1 and Timer 2. The VRS51L2070 timers
include more functionality and features than standard
8051 timers:

o Timers 0, 1 can operate as one 16-bit timer or
two 8-bit timers

o Timers can count up/count down

o Each timer includes a configurable divisor

o Timers can be chained together to form 24-,
32- or 48-bit timer/counters

o Each timer features an output that can
generate a pulse or toggle when the timer
overflows

o Each timer provides counter input

o Eachtimer provides a gating pin

VRS51L2070 timers include a number of parameters
that can be adjusted independently, enabling countless
configurations to suit a diversity of timing/counting
applications. The structure of the timer configuration
registers has been simplified compared to standard
8051 timer control registers.

The architecture of the registers controlling the
VRS51L2070’s three timers is the same for Timer 0
and Timer 1 and almost the same for Timer 2.

6.1 Timer O, Timer 1 Configuration

Timer 0 and Timer 1 operation is controlled by three
registers. The configuration of timers 0/1 is essentially
the same.

6.1.1 TOT1CFG Register Overview

The TOT1CFG register controls the gating features of
both Timer 1 and Timer 0. The TXGATE bit controls the
clock gating of the timers. When this bit is set to 1, the
timer will only count when the INTXx pin is high.

www.ramtron.com

page 29 of 99

VRS51L2070

RAIMTRISN

TABLE 45: TIMER O/ TIMERL CONFIGURATION REGISTER - TOT1ICFG SFR 89H

7 6 5 4 3 2 1 0
R R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 - Not used
6 T1GATE Timer 1 Gating Enable
0 = Timer 1 gating feature is disabled
1 = Timer 1 count only when INT1 pin is high
5 TOGATE Timer 0 Gating Enable
0 = Timer 0 gating feature is disabled
1 = Timer 0 count only when INTO pin is high
4 T1CLKSRC Timer 1 Clock Source
0 = Timer 1 takes its clock from system clock
1 = Timer 1 takes its clock from Timer 0 output
3 T10OUTEN Timer 1 Output Enable
0 = Timer 1 output is deactivated
1 = Timer 1 output is connected to a pin
2 T1MODES8 Timer 1 8-bit Operating Mode Enable
0 = Timer 1 operates as a 16-bit timer
1 = Timer 1 operates as two 8-bit timers
1 TOOUTEN Timer 0 Output Enable
0 = Timer 0 output is deactivated
1 = Timer 0 output is connected to a pin
0 TOMODES8 Timer 1 8-bit Operating Mode Enable
0 = Timer 1 operates as a 16-bit timer
1 = Timer 1 operates as two 8-bit timers

The T1CLKSRC bit defines which clock source will
feed Timer 1 when it is configured to operate in timer
mode. The Timer 1 clock source is defined as follows:

o T1CLKSRC =0 System Clock
0 T1CLKSRC =1 Timer 0 Output (overflow)

When configured in timer mode, Timer 0O can only
derive its clock source from the system clock with the
proper prescaler value.

Both timers 1 and 0 can operate as two general
purpose 8-bit timers. This mode is activated by setting
the corresponding TxMODES8 bit of the TOT1CFG
register to 1.

TABLE 46: TIMERO / TIMER 1 CLOCK CONFIG. REGISTER - TOTICLKCFG SFR 99H

7 6 5 4 3 2 1 0
RW RW RW RW R/W RW R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
74 T1CLKCFG[3:0] | Timer 1 Clock Prescaler Configuration

see table below

3:.0 TOCLKCFGI[3:0 Timer 0 Clock Prescaler Configuration
see table below

TABLE 47:TIMERO / TIMER 1 CLOCK DIVISION RATIO

TO/1CLKCFG Timer Clock TO/1CLKCFG Timer Clock
(4 bit binary) Div. Ratio Div. Ratio
0000 1 1000 256
0001 2 1001 512
0010 4 1010 1024
0011 8 1011 2048
0100 16 1100 4096
0101 32 1101 8192
0110 64 1110 16384
0111 128 1111 16384

6.1.2 The TOCON and T1CON Registers

The TOCON and T1CON SFR registers control the
following:

o0 Timer operation mode (timer or counter)

0 Advanced gating features of Timer 0 and
Timer 1

Timer overflow flag

Counting direction (up/down)

Timer reload and capture

o Timer output mode (Pulse/Toggle)

[elNeolNe]

These registers are fully orthogonal, which means that
for a given timer operating mode, the registers function
in the same manner.

TABLE 48: TIMER O CONFIGURATION REGISTER - TOCON SFR 9AH

7 6 5 4 3 2 1 0
RW RW RW RW RIW RW RIW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 TOOVF Timer 0 Overflow Flag

Set to 1 when timer overflow from FFFFh to
0000h. Must be cleared by software.

Writing 1 into this bit will trigger a timer interrupt,
if enabled

6 TOEXF Timer 0 External Flag Gating Flag
Set to 1 when timer reload of capture is caused
by an high to low transition on the TOEX pin, if

TOEXEN is set to 1

5 TODOWNEN Timer 0 Count Down Enable
0 = Timer O count up
1 = Timer 0 counts down

4 TOTOGOUT Timer 0 Output Toggle Enable

0 = Timer 0 output outputs a pulse when it
overflow from FFFFh to 0000h

1 = Timer 0 output toggle when it overflow from
FFFFh to 0000h

3 TOEXTEN Timer 0 External Gating Enable
0 = TOEX pin is not active
1 = Enable Timer 0 capture or reload upon a
high to low transition on the TOEX pin
2 TRO Timer 0 Run

0 = Timer 0O is stopped
1 =Timer O is running

1 TOCOUNTEN Timer 0 Counter Enable

0 = Timer 0 acts as a timer

1 = Timer 0 acts as a counter that is
incremented (decremented) by a high to low
transition on TOIN pin

0 TORLCAP Timer 0 Capture Enable

0 = Auto reload value is loaded in Timer 0, if a
high to low transition occurs on TOEX; if
TOEXTEN is set to 1

1 = Timer 0 current value is captured when a
high to low transition occurs on the TOEX
pin, if TOEXTEN is set to 1

www.ramtron.com

page 30 of 99

VRS51L2070

RAIMTRISN

TABLE 49: TIMER 1 CONFIGURATION REGISTER - TLCON SFR 9BH

7

6 5

4 3 2 1 0

R/W

R/W R/W

R/W R/W R/W R/W R/W

0

0 0

0 0 0 0 0

Bit

Mnemonic

Description

T10VF

Timer 1 Overflow Flag

Get set to 1 when timer overflow from FFFFh to
0000h. Must be cleared by software.

Writing 1 into this bit will trigger a timer interrupt,
if enabled

T1EXF

Timer 1 External Flag Gating Flag

Get set to 1 when timer reload of capture is
caused by an high to low transition on the T1EX
pin, if TTEXEN is set to 1

T1DOWNEN

Timer 1 Count Down Enable
0 = timer 1 count up
1 = Timer 1 counts down

T1TOGOUT

Timer 1 Output Toggle Enable

0 = Timer 1 output outputs a pulse when it
overflow from FFFFh to 0000h

1 = Timer 1 output toggle when it overflow from
FFFFh to 0000h

T1EXTEN

Timer 1 External Gating Enable

0 = T1EX pin is not active

1 = Enable Timer 1 capture or reload upon a
high to low transition on the T1EX pin

The TxRLCAP bit defines the function of the timer
capture/reload register upon a high to low transition on
the TxEX timer trigger input pin.

0 TxRLCAP = 0 : Auto reload value is loaded in
Timer x

o0 TxRLCAP = 1 : Timer x current value will be
captured

The functions associated with the TxRLCAP bit are
only activated when the corresponding TXEXTEN bit is
setto 1.

6.2 Timer 0 and Timer 1 Current Value
Register

Two SFR registers provide access to the current 16-bit
value of Timer 0 and Timer 1.

TABLE 50:TIMER O Low - TLO SFR 8AH

TR1

Timer1 Run
0 = Timer 1 is stopped
1 = Timer 1 is running

7 6) 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bit Mnemonic Description

T1COUNTEN

Timer 1 Counter Enable

0 = Timer 1 acts as a timer

1 =Timer 1 acts as a counter that is
incremented (decremented) by a high to low
transition on T1IN pin

7:0 TLO[7:0]

TABLE 51: TIMER O HIGH - THO SFR 8BH

0 T1RLCAP Timer 1 Capture Enable

0 = Auto reload value is loaded in Timer 1, if a
high to low transition occurs on T1EX; if
T1EXTEN is set to 1

1 = Timer 1 current value is captured when a
high to low transition occurs on the T1EX

pin, if TIEXTEN is set to 1.

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 THO[7:0]

TABLE52:TIMER 1 Low - TL1 SFR 8CH

The TxOVF bit of the TxCON register indicates that the
timer count has rolled over from FFFFh to 0000h. If the
corresponding timer interrupt has been enabled, the
TxOVF will raise the interrupt.

The TxEXF flags are set to 1 when a high to low
transition occurs on the corresponding TXEX pin,
provided that the TXEXEN pin is set to 1.

Timer 0 and Timer 1 can count up or down. By default,
the timers count up. However setting the TXDOWNEN
bit to 1 will make the timer count down .

The TXCOUNTEN bit allows the timer to be configured
as an external event counter. By default, the timers
derive their source from the system clock or a
prescaled source. Setting the TXCOUNTEN bit to 1,
will configure the corresponding timer to derive its
source from the timer input pin (TxIN). A high to low
transition on the timer input pin will make the timer
count one step up or one step down, depending on the
value of the corresponding TXDOWNEN bit.

7 6 5 4 3 2 1 0
RIW RIW RIW RW RW RIW RW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 TLA[7:0]

TABLE 53: TIMER 1 HIGH - THO SFR 8DH

7 6 5 4 3 2 1 0
RIW RIW RW RW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 THO[7:0]

www.ramtron.com

page 31 of 99

VRS51L2070

RAIMTRISN

6.2.1 Timer 0 Reload and Capture Registers

Both Timer O and Timer 1 have an auxiliary 16-bit
reload/capture register, which is accessible through
two SFR registers as follows:

TaBLE 54: TIMER O RELOAD AND CAPTURE Low - RCAPOL SFR 92H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAPOL[7:0]

TaBLE 55: TIMER O RELOAD AND CAPTURE HIGH - RCAPOH SFR 93H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 RCAPOH[7:0]

TABLE 56: TIMER 1 RELOAD AND CAPTURE Low — RCAP1L SFR 94H

FIGURE 8: TIMER 0, TIMER 1 OUTPUT MODES

Timer 0/1
OverFlow

TxOUTEN =1
TXTOGOUT =1

TxOUTEN =1
TXTOGOUT =0]]]]

6.3 Timer 0/1 Alternate Mapping

Bits 0 and 1 of the DEVIOMAP register (SFR E1h)
control the mapping of the Timer O and Timer 1
peripherals as shown in the following tables.

TaABLE 58: TIMER O PIN MAPPING

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAPIL[7:0]

TABLE 57:TIMER 1 RELOAD AND CAPTURE HIGH — RCAP1H SFR 95H

7 6 5 4 3 2 1 0
RIW RIW RW RIW RW RW RIW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAP1TH[7:0]

6.2.2 Timer 0/1 Output

Timer 0 and Timer 1 outputs can be routed to an
external pin. This feature is activated by setting the
TxOUTEN bit of the TxCLKCFG register to 1. By
default, the timer outputs, when enabled, will generate
a pulse upon timer overflow. The duration of the pulse
equals 1/ SYS CLK.

Setting the TXTOGOUT bit of the TxCON register to 1
will configure the timer x output to toggle upon a timer
overflow instead of generating a pulse.

DEVIOMAP.O TOIN TOEX TOOUT
Bit Value mapping mapping mapping
0 P3.4 P2.6 P4.5
(Reset)
1 - Pin 41 -
TABLE 59: TIMER 1 PIN MAPPING
DEVIOMAP.1 T1IN T1EX T10UT
Bit Value mapping mapping mapping
0 P3.5 P2.5 P4.0
(Reset)
1 - Pin 40 P1.4

www.ramtron.com

page 32 of 99

VRS51L2070

RAIMTRISN

6.4 Timer O, Timer 1 Functional Diagram

The following diagram represents the main features of timers 0 and 1

FIGURE 9: TIMER O, TIMER 1 FUNCTIONAL DIAGRAM

TxMODES8

DOWN / UP

I Reload

--TOUTEN

RCAPxH

TxOVF
interrupt

TxCLKSRC -, TXxDOWNEN
X
Div Ratio: l
Sys Clk /1 :
Sys %‘l’lz"/n:%% " TXCOUNTEN [oown it]«
0 7
| o (\(LLITTTTT]
TxIN pin ‘ A
\J
TRx RCAPxL
0 7
TxGATE4‘>W LITTITTT]
INTxpin
TxRLCAP —l/
Rerlﬂa
TxEX pin Captur
TXEXEN

www.ramtron.com

page 33 of 99

VRS51L2070

RAIMTRISN

6.5 Timer O, Timerl Examples Programs
6.5.1 Timer 0 1ms Delay Function

;* DELAY1MSTO : 1MS DELAY USING TIMERO
;*; *CALIBRATED FOR 40MHZ

DELAY1MSTO: MOV CPTRA ;GET NUMBER OF CYCLES
MOV APERIPHEN1 ;LOAD PERIPHEN1 REG
ORL A#00000001B ;ENABLE TIMER O
MOV PERIPHEN1,A

DELAY1MSLP: MOV THO,#063H ;TO RELOAD VALUE FOR 1MS AT 40MHZ
MOV TLO,#0COH
;MOV THO,#0A9H ;TO RELOAD VALUE FOR 1MS AT 22.11MHZ
;MOV TLO,#058H
MOV TOT1CLKCFG,#00H ;NO PRESCALER FOR T0 CLOCK
MOV TOCON,#00000100B ;START TO, COUNT UP
DWAITOVT0: MOV A TOCON ;READ TO CONTROL, WAIT FOR
;OVERFLOW
ANL A #080H ;ISOLATE TIMER OVERFLOW FLAG

Jz DWAITOVTO ;LOOP AS LONG AS T0 DON'T OVERFLOW

MOV TOCON,#00H ;STOP TIMER 0
DJNZ CPTR,DELAY1MSLP ;OutLoop

MOV A PERIPHEN1 ;LOAD PERIPHEN1 REG
ANL A#11111110B ;DISABLEBLE TIMER 0
MOV PERIPHEN1,A

RET

6.5.2 Timer O, Timer 1 and Timer 2 Output
Toggle Example

;— TIMER 0, TIMER 1 AND TMER 2, OUTPUT TOGGLE EXAMPLE *

include <VRS51L2070.inc>

;-- Enable Timer 0, Timer 1 and Timer 2

INIT: MOV PERIPHEN1,#00000111B ;BIT7 - SPICS EN
;BIT6 - SPIEN
;BIT5 - 12CEN
;BIT4 - U1EN
;BIT3 - UGEN
;BIT2 - T2EN
;BIT1-T1EN
;BITO - TOEN

MOV PERIPHEN2,#00001000B ;BIT7 - PWC1EN
;BIT6 - PWCOEN
;BIT5 - AUEN
;BIT4 - XRAM2CODE
;BIT3 - IOPORTEN
;BIT2 - WDTEN
;BIT1 - PWMSFREN
;BITO - FPIEN

;- SET THE SYSTEM CLOCK PRESCALER TO MAX SPEED
MOV DEVCLKCFG1,#60H ;SET DEVICE PRESCALER SPEED
;** CONFIGURE AND START TIMER 0, TIMER 1 & TIMER 2
MOV TOT1CFG,#00001010B ;CONNECT TIMERO OUTPUT TO P4.5 and
;TIMER1 OUTPUT TO P4.0, TIMER SOURCE
;FROM SYS CLK

MOV T2CLKCFG,#00010110B ;T2 SSOURCE = SYS CLK, T20UT
;ENABLED ON P1.2, PRESCALER = SYS

;CLK/64
MOV TOCON,#14H ;START TIMERO, TOGGLE OUTPUT
MOV T1CON#14H ;START TIMER1, TOGGLE OUTPUT
MOV T2CON,#14H ;START TIMER2, TOGGLE OUTPUT
LOOP: AJMP LOOP ;INFINITE LOOP

6.5.3 Timer 0, Timer 1 and Timer 2 Output

Toggle and Timer Chaining Example

;- TIMER 0, TIMER 1 AND TMER 2, OUTPUT TOGGLE + TIMER CHAINING EXAMPLE *

Include <VRS51L2070.inc>

INIT: MOV

MoV

PERIPHEN1,#00000111B ;BIT7 - SPICS EN
;BIT6 - SPIEN
;BIT5 - I2CEN
;BIT4 - U1EN
;BIT3 - UOEN
;BIT2 - T2EN
;BIT1-T1EN
;BITO - TOEN

PERIPHEN2,#00001000B ;BIT7 - PWC1EN
;BIT6 - PWCOEN
;BITS - AUEN
;BIT4 - XRAM2CODE
;BIT3 - IOPORTEN
;BIT2 - WDTEN
;BIT1 - PWMSFREN
;BITO - FPIEN

;- SET THE SYSTEM CLOCK PRESCALER TO MAX SPEED

MoV

DEVCLKCFG1,#60H ;SET DEVICE PRESCALER SPEED

;** CONFIGURE AND START TIMER 0, TIMER 1 & TIMER 2

Mov
MOV

MoV

MOV
MOV

LOOP: AJMP

TOCON #14H ;START TIMERO, TOGGLE OUTPUT

T1CON,#14H ;START TIMER1, TIMER1 TOGGLE
;OUTPUT

T2CON #14H ;START TIMER2, TIMER2 TOGGLE
;OUTPUT

TOT1CFG,#00001000B ;CONNECT TIMER1 OUTPUT TO P4.0

T2CLKCFG,#00110000B ;TIMER 2 USES TIMER1 OUTPUT AS
;CLOCK SOURCE, T2 OUT ON P1.2,
;CLOCK PRESCALER =1

LOOP ;INFINITE LOOP

www.ramtron.com

page 34 of 99

VRS51L2070

RAIMTRISN

6.6 Timer 2

The architecture of Timer 2 is very similar to that of
timers 0 and 1, the main difference being that Timer 2
cannot operate as two 8-bit timers.

6.6.1 Timer 2 Configuration Registers
The T2CON register controls:

o0 Timer operation mode (timer or counter)
Timer 2 advanced gating features
Timer 2 overflow flag

Timer 2 counting direction (up/down)
Timer 2 reload and capture

Timer 2 output mode (pulse/toggle)

OO0OO0OO0Oo

The T2CON register has the same structure as the
TOCON and T1CON registers.

TaBLE 60: TIMER 2 CONFIGURATION REGISTER - T2CON SFR 9CH

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 T20VF Timer 2 Overflow Flag

Set to 1 when timer overflows from FFFFh to
0000h. Must be cleared by software.

Writing 1 into this bit will trigger a timer interrupt,
if enabled

6 T2EXF Timer 2 External Flag Gating Flag
Set to 1 when timer reload of capture is caused
by an high to low transition on the T2EX pin, if

T2EXEN is set to 1

5 T2DOWNEN Timer 2 Count Down Enable
0 = Timer 2 count up
1 = Timer 2 counts down

4 T2TOGOUT Timer 2 Output Toggle Enable

0 = Timer 2 output outputs a pulse when it
overflows from FFFFh to 0000h

1 = Timer 2 output toggles when it overflows

from FFFFh to 0000h

3 T2EXTEN Timer 2 External Gating Enable
0 = T2EX pin is not active
1 = Enable Timer 1 capture or reload upon a
high to low transition on the T2EX pin
2 TR2 Timer2 Run

0 = Timer 2 is stopped
1 = Timer 2 is running

1 T2COUNTEN Timer 2 Counter Enable

0 = Timer 2 acts as a timer

1 = Timer 2 acts as a counter that is
incremented (decremented) by a high to low
transition on T2IN pin

0 T2RLCAP Timer 2 Capture Enable

0 = Auto reload value is loaded in Timer 2 if a
high to low transition occurs on T2EX; if
T2EXTEN is set to 1

1 = Timer 2 current value is captured when a

high to low transition occurs on the T2EX

pin, if T2EXTEN is set to 1

The T20VF bit of the T2CON register indicates
whether the timer count has rolled over from FFFFh to
0000h. If the corresponding timer interrupt has been
activated, the T20VF will raise the Timer 2 interrupt..

The T2EXF flags are set to 1 when a high to low
transition occurs on the T2EX pin, provided that the
T2EXE pin is set to 1.

As is the case for timers 0 and 1, Timer 2 can be
configured to count up or down. By default, Timer 2
counts up. However setting the T2DOWNEN bit to 1
will configure Timer 2 to count down. When the timer
counts downwards, the overflow flag will be set when
the timer counts from 0000h to FFFFh.

The T2COUNTEN bit- enables the configuration of
Timer 2 as a external event counter. By default, Timer
2 derives its source from the system clock or a
prescaled system clock. Setting the T2COUNTEN bit
to 1 will configure Timer 2 to derive its source from the
T2IN input pin. A high to low transition on the T2IN pin
will initiate a timer count one step up or down,
depending on the value of the corresponding
T2DOWNEN bit.

The T2RLCAP bit controls the function of the timer
capture/reload register when a high to low transition
occurs on the T2EX timer trigger input pin.

0 T2RLCAP = 0 : Auto reload value is loaded in
Timer 2

o0 T2RLCAP =1 : Timer 2 current value will be
captured in the RCAP2L and RCAP2H
registers

The functions associated with the T2RLCAP bit are
only activated when the T2EXTEN bit is set to 1.

TABLE61:TIMER 2 Low - TL2 SFR 8EH

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RIW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 TL2[7:0]

TABLE 62: TIMER 2 HIGH — TH2 SFR 8FH

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bit Mnemonic Description

7:0 TH2[7:0]

www.ramtron.com

page 35 of 99

VRS51L2070

RAIMTRISN

6.6.2 Timer 2 Reload and Capture Registers

TABLE 63: TIMER 2 RELOAD AND CAPTURE Low — RCAP2L SFR 96H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAP2L[7:0]

TABLE 64: TIMER 2 RELOAD AND CAPTURE HIGH — RCAP2H SFR 97H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAP2H[7:0]

6.6.3 The Timer 2 Clock Configuration
Register

The T2CLKCFG register is used to configure the clock
source for Timer 2. The source can be either a
prescaled value of the system clock or the output of
Timer 1.

The Timer 2 clock source is also controlled by the
T2CLKSRC bit. When this bit is set to 1, Timer 2
derives its source from the Timer 1 overflow. If
T2CLKSRC is set to 0, Timer 2 will derive its source
from a prescaled value of the system clock. The
division factor applied to the system clock is defined by
T2CLKCFG[3:0]

TaBLE 65:TIMER2 CLOCK CONFIGURATION REGISTER - T2CLKCFG SFR 9DH

6.6.4 Timer 2 Output

As is the case for timers 0 and 1, Timer 2’s output can
be routed to an external pin. This feature is activated
by setting the T20UTEN bit of the T2CLKCFG register
to 1. By default, the Timer 2 output, when enabled, will
generate a pulse upon Timer 2 overflow. The duration
of the pulse is (1/ SYS CLK).

Setting the T2TOGOUT bit of the T2CON register to 1
will configure Timer 2’s output to toggle upon a Timer 2
overflow instead of outputting a pulse.

FIGURE 10: TIMER 2 OUTPUT MODES

Timer2
OverFlow

/\

T20UTEN =1
T2TOGOUT =1

T20UTEN =1
T2TOGOUT =0

6.7 Timer 2 Alternate Mapping

Bit 2 of the DEVIOMARP register (SFR E1h) controls the
mapping of the Timer 2 interface as shown in the
following table:

TABLE 67: TIMER 2 PIN MAPPING

DEVIOMAP.2 | T2IN T2EX T20UT

Bit Value mapping mapping mapping
0 (Reset) P1.0 P1.1 P1.2
1 P6.1 P6.0 P4.4

7 6 5 4 3 2 1 0
RW RW R/W R/W R/W R/W RW R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 -
6 -
5 T2CLKSRC Timer 2 Clock Source
0 = Timer 2 take its clock from system clock
1 = Timer 2 takes its clock from Timer 1 output
4 T20UTEN Timer 2 Output Enable

0 = Timer 2 output is deactivated
1 = Timer 2 output is connected to a pin

3:0 T2CLKCFG[3:0] | Timer 2 Clock Prescaler Configuration
See Table below

The following table outlines the Timer 2 prescaler
values according to the value of the T2CLKCFG[3:0]
bits.

TABLE 66: TIMER 2 CLOCK DIVISION RATIO

T2CLKCFG Timer Clock T2CLKCFG Timer Clock
(4 bit binary) Div. Ratio Div. Ratio
0000 1 1000 256
0001 2 1001 512
0010 4 1010 1024
0011 8 1011 2048
0100 16 1100 4096
0101 32 1101 8192
0110 64 1110 16384
0111 128 1111 16384

Alternate mapping allows Timer 2’s output to be
mapped into P4.4 instead of P1.2. This can be useful
for applications where both UARTO and UART1 are
required.

www.ramtron.com

page 36 of 99

VRS51L2070

RAIMTRISN

6.8 Timer 2 Functional Diagram

The following diagram describes the main features of Timer 2.

FIGURE 11: TIMER 2 FUNCTIONAL DIAGRAM

T2CLKSRC

SYSCLK

T2CLKCFG
Div Ratio:
Sys Clk /1

Downto
Sys Clk / 16384

T2COUNTEN

T2IN pin

TR2

INTx pin

T2EX pin

T2EXEN

T2GATE 4‘>%

T2RLCAP
l/ Reload 1

T2DOWNEN

CLK

DOWN / UP_ TLx

DOWN / UP

RCAP2L

I™ Reloaa

---T20UTEN

RCAP2H

T20VF
interrupt

www.ramtron.com

page 37 of 99

VRS51L2070

RAMTRSN

6.9 Timer Chaining Capability

The three VRS51L2070 timers can be chained
together to form a 24-, 32- or 48-bit timer that can be
used for very long delay timing. Longer delays can be
achieved by using the system clock prescalers.

The following provides an example of time delays that
can be achieved by timer chaining:

TABLE 68: TIME DELAYS VS. TIMER SIZE FOR 40MHz SysTem CLocK

Timer Size Time out period

16 bit 1.638 milliseconds

24 bit 419 milliseconds

32 bit 107 sec-seconds

48 bit 7.037x10E6 seconds
(1954.6 hours)

The following diagram provides a schematic
representation of timer chaining.

FIGURE 12: TIMER CHAINING

SYS CLK

D Timer 204

Timer Ou | Timer 1o«

1CLKSR CLKSR
c c

Note that timer chaining does not affect other timer
features such as:

o0 Timer capture
o Timer auto-reload
o Timer output

It is also possible to couple the timer chaining
capability with the pulse width counter (see next
section), to count long duration events.

7 Pulse Width Counters (PWCQC)

The VRS51L2070 provides two independent pulse
width counter modules associated with timers 0 and 1.
The pulse width counter modules provide advanced
timer control, allowing the user to define which event
will trigger the timer to start and stop. Contrary to
standard timer capture module units, the PWC unit can
be used to measure the duration of an event.

The following two diagrams provide a schematic view
of the PWC modules’ structure and functionality.

FIGURE 13: PWCO MODULE STRUCTURE

seik Timer 0
Div Ratio:
Sys Clk /1

Downto
Sys Clk / 16384

FIGURE 14: PWC1 MODULE STRUCTURE

Timer 1
Sys Clk /1

Downto
Sys Clk / 16384

sssssssss

The PWC modules interact with timers 0 and 1.
Combining the PWC module configuration with the
timer configuration provides added flexibility to the
operating modes.

www.ramtron.com

page 38 of 99

VRS51L2070

RAMTRSN

Two SFR

registers (PWCOCFG and PWC1CFG
located at addresses 9Eh and 9Fh, respectively) are

dedicated to PWC configuration.

TABLE 69:PuLseE WIDTH COUNTER O CONFIG. REGISTER - PWCOCFG SFR 9EH

7

6 5

4 3 2 1 0

R/W

R/W RW

RW RW RW R/W RW

0

0 0

0 0 0 0 0

Bit

Mnemonic

Description

PWCOIF

Pulse Width Counter Module 0 Interrupt Flag
0 = No PWCO interrupt occurred
1 = PWCQO interrupt occurred

PWCORST

Read:

Pulse Width Counter Operation Status
0 = PWCO is waiting for start condition
1= PWCQO is currently counting

Write:

Pulse Width Counter Reset

0 = No action

1 = Reset PWCO operation and PWCOIF
PWCO will wait for a start condition

PWCOENDPOL

PWCO End Event Polarity
0 = PWCO end event is a rising edge
1 =PWCO end event is a falling edge

PWCOSTPOL

PWCO Start Event Polarity
0 = PWCO start event is a rising edge
1 = PWCO start event is a falling edge

3:2

PWCOENDSRC
[1:0]

PWCO End Source
00 =P3.2
01="P3.0
10 =P24
11 =P34

1:0

PWCOSTSRC
[1:0]

PWCO Start Source
00 = P3.2
01=P3.0
10=P24
11 =P34

TaBLE 70:PuLse WIDTH COUNTER 1 CONFIG. REGISTER - PWC1CFG SFR 9FH

7

6 5

4 3 2 1 0

RW

RW RW

RW RW RW R/W RW

0

0 0

0 0 0 0 0

Bit

Mnemonic

Description

PWC1IF

Pulse Width Counter Module 0 Interrupt Flag
0 = No PWCT1 interrupt occurred
1 = PWCH1 interrupt occurred

PWC1RST

Read:

Pulse Width Counter Operation Status
0 = PWCH1 is waiting for start condition
1= PWCH1 is currently counting

The configuration of the PWC module involves the
following steps:

o0 Activate PWC module

Activate timer and configure it in gating mode
Configure PWC start and stop source
Configure PWC start and stop event

Initialize timer to 0x0002

Activate PWC interrupt if required

7.1.1 PWC Module and Timer Initialization

OO0OO0OO0OO0

The PWCO0/1 modules operate in conjunction with
timers 0/1. The timer must be activated and configured
in gating mode immediately after the PWC modules
have been enabled. To obtain a precise measurement
of the event duration, the timer registers [THx,TLx]
must be initialized to 00, 02h.

Once a stop event occurs, the event duration in terms
of system cycles is stored in the timer registers. Once
the timer has been read, the software must clear it for

the next event.
/I PWCO Timer initialization
ptr = (char idata *) &result_dump_start_address_pwc0;
PERIPHEN2 |= 0x40; //[Enable pwc0 (enabled first to gate timer
IIbefore timer enable !!)
//[Enable Timer 0

//Set Timer 0 in gate mode
/Initialize Timer

PERIPHEN1 |= 0x01;
TOT1CFG = 0x02;
TLO = 0x02;

THO = 0x00;

PWCOCFG |= 0x15; /IConfigure PWCO module to start on a Falling edge and

/IEnd on a Rising edge on pin P3.0 for both events
The timer start source can differ from the timer stop
source and the start event can differ from the end
event. The PWC start and end sources are defined by
the PWCxSTSRC bits of the PWCxCFG register as
shown in the following tables:

TABLE 71:PuLse WIDTH COUNTER O START / STOP SOUCE CONFIGURATION

Write:

Pulse Width Counter Reset

0 = No action

1 = Reset PWC1 operation and PWCOIF
PWCO will wait for a start condition

PWC1ENDPOL

PWC1 END Event Polarity
0 = PWC1 end event is a rising edge
1=PWC1 end event is a falling edge

PWCOSTSRC | PWCO Start | PWCOENDSRC | PWCO End

Source Source

00 P3.2 — INTO 00 P3.2 — INTO

01 P3.0 — RXDO 01 P3.0 — RXDO
default default

10 P2.4 — RXDO 10 P2.4 — RXDO
alternate alternate

11 P3.4 — TOIN 11 P3.4 — TOIN

TABLE 72:PuLSE WIDTH COUNTER 1 START / STOP SOUCE CONFIGURATION

PWC1STPOL

PWC1 Start Event Polarity
0 = PWC1 start event is a rising edge
1= PWC1 start event is a falling edge

3:2

PWC1ENDSRC
[1:0]

PWC1 End Source
00="P3.3
01=P1.2

10 = RXD1
11=P1.6

1:0

PWC1STSRC
[1:0]

PWC1 Start Source
00 =P3.3
01=P1.2

10 = RXD1
11=P16

PWC1STSRC | PWC1 Start | PWC1ENDSRC | PWC1 End

Source Source

00 P3.3 —INT1 00 P3.3 — INT1

01 P1.2 — RXD1 01 P1.2 — RXD1
default default

10 RXD1 10 RXD1
alternate alternate

11 P1.6 11 P1.6

www.ramtron.com

page 39 of 99

VRS51L2070

RAMTRSN

Start and stop events must be triggered by either a
rising edge or a falling edge of the selected start and
stop source.

The PWC start source polarity is defined by the
PWCXSTPOL and the stop source polarity is defined
by the PWxCENDPOL. When these bits are cleared,
the PWC module will be triggered by a rising edge (low
to high). Setting these bits to 1 configures the PWC to
be triggered by a falling edge (high to low).

7.1.2 PWC Module Reset and Interrupt Flags

The PWCxRST bit, when set to 1 will force a reset of
the PWC module and clear the PWCKxIF flag if it is set.
The PWC module will then wait for the start condition.
The PWCxRST flag provides the current state of the
PWC module as follows:

TABLE 73: DEFINITION OF PWCXRST BIT WHEN READ

PWCXRST reads as Then...
0 PWC module is waiting for a start
condition
1 PWC module is currently counting

The PWCKXIF bit will be set to 1 when a stop condition
is encountered by the PWC module. The PWCxIF
must be cleared by the program. One interrupt vector
(Int 11) is allocated for the two PWC modules and its
vector address is 005Bh.

Note:

0 The PWCxIF flag remains active even if the
corresponding PWC interrupt is disabled.

o The PWOCxIF flags are not automatically
cleared when exiting the interrupt service
routine. They must be cleared manually by the
software.

7.2 PWC Example Program

The following example program demonstrates how to
configure and use the PWC1 module in Pooling Mode.

/]. /!
/I V2K_PWC1p1lin_T2out_SDCC.c /I
/. //

"

/| DESCRIPTION:

For this demonstration program Timer 2 is configured to

/I continuously run in Output Toggle Mode on its alternate output (P1.2) and
/I is used to generate the stimuli required for the PWC1 module input.

" The port 0 is used to monitor the activity of the PWC1 module.

"

/I TARGET: VRS51L2xxx/VRS51L3xxx

"
#include <VRS51L2070_SDCC.h>

void main (void) {

//[Enable Timer 0 and Timer 2

/l--Initialize PWCA1
PERIPHEN2 |= 0x088;
PERIPHEN1 |= 0x02;

//[Enable the PWC1 module & |Oport
//[Enable Timer 1

POPINCFG = 0x00; //P0 = Output
TOT1CFG |= 0x40; //Set Timer 1 in Gating mode
TH1 = 0x00; /Nnitialize Timer 1 to 0x02
TL1 = 0x02;

/I TICON |= 0x04; /IRun Timer 1
/IConfigure Timer 2 as a Timer with output toggle
PERIPHEN1 |= 0x04; / Timer 2
TH2 = 0xAO0; /IConfig Timer 2 initial value
TL2 = 0x00;
RCAP2H = 0xA0; /IConfig Timer 2 Reload value

RCAP2L = 0x00;
/IConfigure Timer Clock source & output Enable
T2CLKCFG = 0x10; /IT2 Clk source = System Clock
//T2 Output Enable
/[Prescaler = Fosc/ 1
/IConfigure Timer 2 Alternate output
DEVIOMAP |= 0x04;

/IConfig T2 output toggle and Start Timer

T2CON = 0x14; /[Timer 2 output toggle
/[Timer 2 Run
/[Timer mode from Sys Clk

/IConfigure PWC1 to Start T1 on a rising edge & Stop T1 on a falling edge
/l(will measure T2 period)
PWC1CFG = 0x65; //Bit 6 = 1: Reset PWC (bit 6 = 1)

/Bit 5 = 1: Start on Rising Edge

/IBit 4 = 0 Stop on rising edge

//Bit 3:2 =01 PWC1 START / STOP input = P1.2- T2out*

/nfinite loop of PWC1 module monitoring by pooling

/[The PO is used to monitor the activity of the PWC1 module

/When the PWC1 Start condition is met, the program set PO to 0x00
/land return it to OxFF when the Stop condition occurs

PO = OxFF; //Set PO to OxFF (PWC not running)

do{

/IPWC1CFG |= 0x40; /IForce the PWC1 module to wait for a START condition

while(!(PWC1CFG&0x40)); /lwait PWC to start

PO = 0x00; /Iclear PO

while(!(PWC1CFG&0x80)); /lwait PWC stop condition to occurs ie interrupt found
PO = OxFF; /Ireturn PO to FF to indicate PWC stopped
PWC1CFG &= O0x7F;

TL1 = 0x02; /Nnitialize Timer 1 to 0x02

TH1 = 0x00;

Ywhile(1);

Y/ End of main

www.ramtron.com

page 40 of 99

VRS51L2070

RAMTRSN

8 UART Serial Ports

The serial ports on the VRS51L2070 operate in full
duplex mode. However, the communication speed will
be the same for transmission and reception.
Communication speed is derived from an internal 16-
bit baud rate generator dedicated to each of the
UARTS.

8.1 UARTO RX/ TX Data Buffer

The serial port features double buffering on the
receiving side. The SFR register, UARTOBUF,
provides access to the transmit and receive registers
of the serial port.

When a read operation is performed on the
UARTOBUF register, it will access the receive register
double buffer. When a write operation is performed on
the UARTOBUF, the transmit register will be loaded
with the value to be transmitted.

TABLE 74:UARTO DATA RX/ TX REGISTER UARTOBUF SFR A3H

TaBLE 76:UARTO BAuD RATE REGISTER Low —UARTOBRL SFR A4H

7 6 5 4 3 2 1 0
RW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 UARTOBRL[7:0] | UARTO LSB of Baud Rate Generator

TaBLE 77:UARTO BAuD RATE REGISTER HiGH—UARTOBRH SFR A5H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 UARTOBRHI[7:0] | UARTO MSB of Baud Rate Generator
TaBLE 78:UARTO EXTENSIONS CONFIGURATION - UARTOEXT SFR A6H
7 6 5 4 3 2 1 0
RW RW R/W R/W RW R/W RW R/W
0 0 1 0 0 0 0 0
Bit Mnemonic Description
UOTIMERF UARTO Timer Flag

UOTIMEREN UARTO Timer Enable

UORXSTATE UARTO RX Line State

AlO|O(N

MULTIPROC When set, RX_available only raise if the ninth
received bit is '1"

3 J1708PRI[3:0] | When a transmit is requested, it starts after the
« priority » bit to ‘1" has been probed on the RX
line

7 6 5 4 3 2 1 0
R/W R/W RW RW RW RW R/W RW
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 UARTOBUF[7:0] | Read: UARTO Receive Buffer
Write: UARTO Transmit Buffer

8.2 UARTO Configuration Registers

The configuration of the UARTO is controlled by the
UARTOCFG, the UARTOBRH and UARTOBLH
registers and the UARTOEXT registers.

TABLE 75:UARTO CONFIGURATION REGISTER - UARTOCFG SFR A2H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
1 1 1 0 0 0 0 0

Bit Mnemonic Description

74 BRADJ[3:0] UARTO Baud Rate Fine Adjustment

* see formula below

3 BRCLKSRC Baud Rate Clock Source

0 = Baud rate generator uses oscillator

1 = Baud rate generator uses external clock
source

2 BORXTX Read: Last received 9" bit
Write: 9" bit to transmit
1 BO9EN 9™ Bit Mode Enable
0 = Data transfer are in 8-bit format
1 = Data transfer are in 9-bit format
0 STOP2EN Enable Two Stop Bit Mode

0 = One stop bit
1 = Two stop bit

A standard UART has ‘0000’ priority

8.3 UARTO Interrupt Configuration
Register

The activation of the UARTO interrupt is a two-stage
process that involves enabling the interrupts at the
UARTO module level and then activating the UARTO
interrupt at the system level through the INTEN1
register. The upper nibble of the UARTOINT register
contains the UARTO interrupt activation bits and the
lower nibble contains the UARTO interrupt flags in the
same order.

Two interrupt vectors are associated with UARTO. The
first interrupt vector is at address 002Bh and handles
all UARTO interrupt conditions, except for the UARTO
data collision interrupt (vector address 0053h), which
is shared with the UART1 data collision and the I1°)C
master lost arbitration interrupts.

The interrupt flags allow the interrupt service routine to
define which condition triggered the interrupt, and to
react accordingly. Note that the interrupt flags do not
require the interrupt to be enabled in order to be
operational. They can be monitored by the software at
any time.

www.ramtron.com

page 41 of 99

VRS51L2070

RAMTRSN

TABLE 79: UARTO INTERRUPT REGISTER - UARTOINT SFR A1H

7

6 5

4 3 2 1 0

RW

RW RW

RW R, W RW R/W R

0

0 0

0 0 0 0

-

Bit

Mnemonic

Description

COLEN

UARTO Collision Interrupt Enable
0 = Collision interrupt is deactivated
1 = Collision interrupt is enabled

RXOVEN

UARTO RX Overrun Interrupt Enable
0 = RX Overrun interrupt is deactivated
1 = RX Overrun interrupt is enabled

RXAVAILEN

UARTO RX Available Interrupt Enable
0 = RX Available interrupt is deactivated
1 = RX Available interrupt is enabled

8.4 UART1 RX/TX Data Buffer

The SFR register (UART1BUF) provides access to the
transmit and receive registers of the serial port. When
a read operation is performed on the UART1BUF
register, it will access the receive register. When a
write operation is performed on the UART1SBUF, the
transmit register will be loaded with the value to be
transmitted.

TaBLE 80:UART1 DATA RX/ TX ReGISTER UART1BUF SFR B3H

TXEMPTYEN

UARTO TX Empty Interrupt Enable
0 = TX Empty interrupt is deactivated
1 = TX Empty interrupt is enabled

COLENF

(Read) Collision Interrupt Flag
When this flag is set by the UARTO module, it
indicates that a collision occurred

7 6 5 4 3 2 1 0
RW RW R/W RW RW RW RW RW
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 UART1BUF[7:0] | Read: UART1 Receive Buffer
Write: UART1 Transmit Buffer

(Write)

0 = Collision detection is disabled and the
collision COLENF is reset

1 = A bus collision stops the transmission and
raises the COLENF flag

RXOVF

UARTO RX Overrun Flag

When set to 1 by the UARTO interface, it
indicates that a data collision occurred in the
UARTOBUF register

RXAVENF

UARTO RX Available Flag

When set to 1 by the UARTO interface, it
indicates that data has been received in the
UARTOBUF register

Writing 1 into this bit position will activate
reception on UARTO

8.5 UART1 Configuration registers

The configuration of the UART1 is controlled by the
UART1CFG, UART1BRH and UART1BLH registers
and the UART1EXT registers.

TaBLE 81:UARTL CONFIGURATION REGISTER - UART1CFG SFR B2H

TXEMPTYF

UARTO TX Empty Flag

When set to 1, it indicates that the transmit
portion of the UARTOBUF is ready to receive
another byte

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
1 1 1 0 0 0 0 0

Bit Mnemonic Description

74 BRADJ[3:0] UART1 Baud Rate Fine Adjustment

* see formula below

3 BRCLKSRC Baud Rate Clock Source
0 = Baud rate generator uses oscillator
1 = Baud rate generator uses external clock

source

Read: Last received 9" bit
Write: 9" bit to transmit

2 BORXTX

9™ Bit Mode Enable
0 = Data transfer are in 8-bit format
1 = Data Transfer are in 9-bit format

1 BY9EN

0 STOP2EN Enable Two Stop Bit Mode
0 = One stop bit

1 = Two stop bit

TaBLE 82:UART1 BAuD RATE REGISTER Low —UART1BRL SFR B4+

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 UART1BRL[7:0] UART1 LSB of Baud Rate Generator

TaBLE 83:UART1 Baub RATE REGISTER HiGH— UART1BRH SFR B5H

7 6 5 4 3 2 1 0
R/W R/W RW RW RW RW R/W RW
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 UART1BRH[7:0] | UART1 MSB of Baud Rate Generator

www.ramtron.com

page 42 of 99

VRS51L2070

RAMTRSN

TABLE 84:UART1 EXTENSIONS CONFIGURATION - UART1EXT SFR B6H

8.7 UARTO, UART1 Baud Rate Formula

The UARTO baud rate is programmed using the
following formula:

Baud Rate = Fclk
32x (UARTxBR[15:0] + BRADJ[3:0]/16 + 1)

7 6 5 4 3 2 1 0
RW RW R/W RW RW R/W R/W R/W
0 0 1 0 0 0 0 0

Bit Mnemonic Description

7 U1TIMERF UART1 Timer Flag

6 U1TIMEREN UART1 Timer Enable

5 U1RXSTATE UART1 RX Line State

4 MULTIPROC When set, RX_available, only raise if the ninth
received bitis '1"

3:0 J1708PRI[3:0] | When a transmit is requested, it starts after the
« priority » bit to ‘1" has been probed on the RX
line
A standard UART has ‘0000’ priority

8.6 UARTL1 Interrupt Configuration
Register

The activation of UART1’s interrupt is a two stage
process that involves enabling the interrupts at the
UART1 module level and then activating the UART1
interrupt at the system level through the INTEN1
register.

TABLE 85: UARTL INTERRUPT REGISTER - UARTLINT SFR B1H

The BRADJ[3:0] bits are used for fine adjustment of
the baud rate.

The following steps demonstrate using the
UARTxBR[15:0] and BRADJ[3:0] registers to set the
appropriate baud rate.

Step 1: Defining the Optimal UARTxBR[15:0] Value

Use the following formula to set the UARTxBR[15:0]
register to the integer component of UARTxBRideal:

UARTXxBRigeal = Fclk -1
32x (Baud Rate)

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R, W R/W R/W R
0 0 0 0 0 0 0 1
Bit Mnemonic Description
7 COLEN UART1 Collision Interrupt Enable

0 = Collision interrupt is deactivated
1 = Collision interrupt is enabled

6 RXOVEN UART1 RX Overrun Interrupt Enable
0 = RX Overrun interrupt is deactivated

1 = RX Overrun interrupt is enabled

5 RXAVAILEN UART1 RX Available Interrupt Enable
0 = RX Available interrupt is deactivated
1 = RX Available interrupt is enabled

Note that the baud rate will likely contain a fractional
component.

Valid UARTxBR[15:0] values range from 0x0000 to
OxFFFF.

Step 2: Defining the Optimal BRADJ[3:0] Value
Use the following formula to set the BRADJ[3:0]:

4 TXEMPTYEN UART1 TX Empty Interrupt Enable
0 = TX Empty interrupt is deactivated
1 = TX Empty interrupt is enabled

BRADJ[3:0] = INT[(UARTxBRideal — UARTXBR[15:0]) * 16]

3 COLENF (Read) Collision Interrupt Flag
When this flag is set by the UART1 module, it

indicates that a collision has occurred

(Write)

0 = Collision detection is disabled and the
collision COLENF is reset

1 = A bus collision stops the transmission and
raises the COLENF flag

2 RXOVF UART1 RX Overrun Flag
When set to 1 by the UART1 interface, it
indicates that a data collision has occurred in

the UARTOBUF register

The BRADJ[3:0] register can only contain an integer
value between 0x00 and OxOF.

Step 3: Calculating the Error

The actual baud rate vs. the ideal baud rate can be
calculated using the following formula:

1 RXAVENF UART1 RX Available Flag

When set to 1 by the UART1 interface, it
indicates that data has been received in the
UART1BUF register

Writing 1 into this bit position will activate

reception on UART1

Error %
=100x [(Fclk /32*(UARTxBR[15:0 +BRADJ[3:0]/16 +1))-Baud Rate]
Baud Rate

0 TXEMPTYF UART1 TX Empty Flag
When set to 1, it indicates that the transmit
portion of the UART1BUF is ready to receive

another byte

In order to achieve reliable communication, the error
should be below 2 percent.

The following table provides configuration examples
for typical baud rates when the internal 40MHz
oscillator is used:

www.ramtron.com

page 43 of 99

VRS51L2070

RAMTRSN

TABLE 86: UARTS BAUD RATE CONFIGURATION EXAMPLES (SYS CLK =40MHZz)

8.9 UARTL, Alternate Mapping

gggld U’?;{;’S?R B[Rs_AO?J Biﬁ”;‘;te 'E(r(,;o‘;r Upon reset, UART1’'s RXD1 and TXD1 signal are
230400bps 0004h o7h 022 mapped into pins P1.2 and P1.3, respectively. It is
115200bps 0009h OEh -0.22 possible to map UART1’s RXD1 and TXD1 signals into
57600bps 0014h 0Bh 0.06 pins 41 and 40 of the VRS51L2070.
38400bps 001Fh 09h -0.03) .
31250bps 0027h 00h 0 Bit 4 of the DEVIOMAP register (SFR E1h) controls
28800bps 002Ah 06h 0.06 the mapping of the UART1 interface as shown in the
9600bps 0081h 03h 0.01
4800bps 0103h 07h -0.01 TasLE 88: UART1 RXD1/TXD1 PIN MAPPING
2400bps 0207h 0Dh 0 DEVIOMAP.3 Bit Value RXD1 TXDO
1200bps 0410h 0Bh 0 mapping mapping
300bps 1045h 0Bh 0 0 (Reset) P1.2 P1.3
1 Pin 41 Pin 40

8.8 UARTO, Alternate Mapping

Upon reset, UARTO’'s RXDO and TXDO signals are
mapped into pins P3.0 and P3.1, respectively. It is
possible to re-map the RXDO and TXDO signals into
pins P2.4 and P2.3.

Bit 3 of the DEVIOMAP register (SFR E1h) controls
the mapping of the UARTO interface, as shown in the
following table:

TABLE 87: UARTO RXDO / TXDO PIN MAPPING

DEVIOMAP.3 Bit Value RXDO TXDO
Mapping mapping

0 (Reset) P3.0 P3.1

1 P2.4 P23

When alternate mapping for UARTO is used, the
UARTO will have priority over the PWM3 and PWM4
outputs.

www.ramtron.com

page 44 of 99

VRS51L2070

RAMTRSN

8.10 UARTO and UART1 Example

Programs

Configuration of UARTO is essentially the same as

UART1

8.10.1 UARTO String Transmit

1

/I VRS2k-UARTO_String_out_SDCC.c //
//- //

"

/I This program initialize the UARTO at 115200 (with SOSC = 39.2MHz)

// and then send a string on UARTO TXDO
//-

#include <VRS51L2070_SDCC.h>

/I --- Function prototypes

void txmitO(unsigned char charact);

void uartOconfig(void);

1

/]

/I MAIN FUNCTION
//-

n
/

char msg[] = "VRS51L2070 by Ramtron Inc. \0";

void main (void)

{
int cptr = 0x00; //General purpose counter
char value = 0x00; //General purpose variable

PERIPHEN1 = 0x08;
PERIPHEN2 = 0x08;

P2PINCFG = OxFE;

/[Enable UARTO (SFR = F5h)
/[Enable I/0 Ports (SFR = F5h)

/IConfigure Port 2.0 as Output

/l- SYSTEM CLOCK PRESCALER

DEVCLKCFG1 = 0x60;

uartOconfig();

/ISET DEVICE PRESCALER SPEED

//Configure Uart0

/I-- Send Message 1 on UARTO

do{

cptr = 0x00; /1 Init cptr to pint to message beginning

do{

txmit0(msg[cptr++]);
Iwhile(msg[cptr]!= "0');

txmit0(13); //Send Carriage Return
txmit0(10); //Send Line Feed

Iwhile(1);

Ylend of Main

[[=========-------- Individual Functions ------====---mmemmemn

//.

/I UARTO CONFIG with SOREL

I

/I Configure the UARTO to operate in RS232 mode at 115200bps
/I with self oscillator at 39.2MHz

void uartOconfig()

/l-initialize UARTO at 115200bps @ 39.2MHz

UARTOCFG = 0x90;

/INo Fine adjustment on baud rate

/|Use internal clock
/19 bit not used
/lonly one stop bit

UARTOEXT = 0x00;

UARTOBRL = 0x09;
UARTOBRH = 0x00;

/INot using UARTO Extensions

//Reload for 115200
I

Y/lend of uartOconfig() function

//-

/I TXMITO
n

/I Transmit one byte on the UARTO

//- //
void txmitO(unsigned char charact){

char patof;

SOBUF = charact; /ISend Character

do{ /lwait for TX Empty Flag to be set
patof = UARTOINT;
patof = patof & 0x01;
}while (patof == 0x00);

UARTOINT &= OxFE;
Y/lend of txmitO() function

8.10.2 UART Echo and External Interrupt

Configuration

/].

/I VRS2k-UARTO_Echo_INTO_INT1_Interrupt_SDCC.c I
1.

n

/I This program initialize the UARTO at 115200 (with SOSC = 40MHz)
/1 It then transmit "Instruction message" on TXDO

/I and enter in infinite loop waiting for an interrupt

/I As soon as a character is received it is transmitted back on TXDO
/i

/.

#include <VRS51L2070_SDCC.h>

//----Global variables ------ 1l

int cptr = 0x00; /lgeneral purpose counter
/I --- function prototypes

void txmit0(unsigned char charact);

void uartOconfig(void);

//--Definton of Messages to transmit on UARTO

char msg[] = "UARTO Echo + INT Test: Waiting for char on RXDO or ext INTO or ext

INT1..\0";
char msgint0[] = "EXT INTO received";

1/. //
/l----- Interrupt INTO ------//
Il I

void INTOInterrupt(void) interrupt 0

{
/I-- Send "EXT INTO Received" on UARTO
cptr = 0x00; //Init cptr to pint to message beginning
INTEN1 =0x00; //Disable UARTO Interrupt
dof
B = msgintO[cptr++];
txmit0(B);
Ywhile(msgintO[cptr]!= "\0');

txmit0(13); //Send Carriage Return
txmit0(10); //Send Line Feed

INTEN1 = 0x21; //[Enable UARTO Interrupt + INTO

Ylend of INTO interrupt

/]. //
11 1

/I--- UARTO Interrupt --------//

1/. //

void UARTOInterrupt(void) interrupt 5
{

char genvar;

/ICheck if interrupt was caused by RX AVAIL
genvar = UARTOINT;

genvar &= 0x02; 1

if(genvar != 0x00)

{
genvar = SOBUF;
txmitO(genvar); //Send back the received character

www.ramtron.com

page 45 of 99

VRS51L2070

RAMTRSN

/ICheck if interrupt was caused by RX OVERRUN
genvar = UARTOINT;
genvar &= 0x04; 1!
if(genvar != 0x00)

{
genvar = SOBUF; /IRead SOBUF to clear RX OV condition...

//his is mandatory because otherwise the RX OV condition

//Stay active
Ilinterrupt activated
/I UARTOINT = 0x32; //Enable RX AV int + TX EMPTY Int + Enable Reception

txmit0(" '); //Send " OV!" on serial port
txmit0('0'"); "
txmito('V'); "
txmit0('!"); I

}
Ylend of uart0 interrupt

//. //

" MAIN FUNCTION //
/I //

void main (void){
char value = 0x00; /lgeneral purpose variable

PERIPHEN1 = 0x08;

PERIPHEN2 = 0x08;

/[Enable UARTO
//[Enable 10 Ports

P2PINCFG = OxFE; //Configure Port 2.0 as Output

/I-- SYSTEM CLOCK PRESCALER
DEVCLKCFG1 = 0x60; //SET DEVICE PRESCALER SPEED

uartOconfig(); //Configure Uart0

/- Send "Hello" on UARTO
cptr = 0x00; /Nnit cptr to pint to message beginning

do{
txmit0(msg[cptr++]);
Ywhile(msg[cptr]!="0");

txmit0(13); //Send Carriage Return
txmit0(10); //Send Line Feed

/I--Wait for Character on UARTO interrupt
/I Once a character is received, grab it and send it back

UARTOINT = 0x62;
//IReception

INTSRC1 = 0x01;
INTPINSENS1 = 0x01;
INTPININV1 = 0x00;
INTEN1 = 0x21;

//INTO vector source = INTO pin

//Set INTO sensitive on edge(1) or Level(0)

//Set INTO Pin sensitivity on Low Level/Inversion
//[Enable INTO (bit0) and UARTO (bit5) Interrupt

INTCONFIG = 0x01;
while(1);
Ylend of Main

//[Enable Global interrupt

J|-===----------—-- Individual Functions ------------=--——---

//- //
/I UARTO CONFIG with SOREL

/I Configure the UARTO to operate in RS232 mode at 115200bps
/' with self oscillator at 39.2MHz

/i

/I
void uartOconfig()

/l-initialize UARTO at 115200bps @ 39.2MHz
UARTOCFG = 0x90; /INo Fine adjustment on baud rate

//Use internal clock

//9th bit not used

/lonly one stop bit

//[Enable RX AV + RXO V int + Enable Reception

UARTOEXT = 0x00; /INot using UARTO Extensions

UARTOBRL = 0x09; /IReload for 115200 ??? (was 0x0a)

UARTOBRH = 0x00; "

UARTOINT = 0x62;

Ylend of uartOwsOrelcfg() function

/[Test: For RXOV int test Enable RX OV int + Enable

1/.
/I TXMITO

I

/I Transmit one byte on the UARTO

//- //
void txmitO(unsigned char charact){

char variable;

SOBUF = charact; /ISend Character

do{ /Iwait for TX Empty Flag to be set
variable = UARTOINT;
variable = variable & 0x01;
}while (variable == 0x00); / UARTOINT &= OxFE;

Y/end of txmit0() function

www.ramtron.com

page 46 of 99

VRS51L2070

RAMTRSN

9 SPI Interface

The VRS51L2070’s SPI interface peripheral is based
on the Versa Mix 8051 SPI interface peripheral, but
with additional features.

Key features include:

e Supports four standard SPI modes (clock
phase/polarity)

Operates in master and slave modes
Automatic control of up to four chip select lines
Configurable transaction size (1 to 32 bits)
Transaction size of >32 bits is possible
Double Rx and TX data buffers

Configurable MSB or LSB first transaction
Generation frame select/load signals

FIGURE 15: SPI INTERFACE OVERVIEW

VRS51L.2070 SPI Serial Data IN
INTERFACE sDl e—————
SPI SFRs
Serial Data OUT
S0 ———»
Serial Clock INOUT
SCK f+—— >
___ | Chip Select Output
CS0 |———» ToSlave Device #1
J— Chip Select Output
C81 | ————————* ToSlave Device #2
___ | ChipSelect Output
CS2 |—————— ToSlave Device #3
Processor i
= hi lect Output
o5 | i Seled WUt 1) Siave Device #4
SPI IRQs
§5 | SaveSelectiput o Master Device

Before the SPI can be accessed it must first be
enabled by setting the SPIEN bit of the PERIPHEN1
register to 1.

9.1 SPI Control Registers

The SPICTRL register controls the operating modes of
the SPI interface in master mode.

TABLE 89:SPI CoNTROL REGISTER - SPICTRL SFR C1H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 1

Bit Mnemonic Description
7 SPICLKJ[2:0] SPI Communication Speed (Master Mode)

000 = Sys Clk /2 (/8 if SPISLOW = 1)

001 =Sys Clk/4 (/16 if SPISLOW = 1)
010 = Sys Clk /8 (/32 if SPISLOW = 1)
011 = Sys Clk / 16 (/ 64 if SPISLOW = 1)
100 = Sys Clk / 32 (/ 128 if SPISLOW = 1)
101 = Sys Clk / 64 (/256 if SPISLOW = 1)
110 = Sys Clk / 128 (/512 if SPISLOW = 1)
111 = Sys Clk / 256 (/1024 if SPISLOW = 1)

4 SPICS[1:0] SPI Active Chip Select Line (Master Mode)
00 = CSO0 is active
01 = CS1 is active
10 = CS2 is active

11 = CS3 is active

2 SPICLKPH SPI Clock Phase

0 = SDO output on rising edge and SDI
sampling on falling edge

1= SDO output on falling edge and SDI sampling
on rising edge

1 SPICLKPOL SPI Clock Polarity
0 = SCK stays at 0 when SPI is inactive
1 = SCK stays at 1 when SPl is inactive

0 SPIMASTER SPI Master Mode Enable
0 = SPI operates in slave mode
1 = SPI operate in master mode (default)

When the SPIMASTER bit is set to 1, the SPI interface
operates in master mode. This is the default operating
mode of the VRS51L.2070 SPI interface after reset.

9.2 Setting Up Clock Phase and Polarity

The clock phase and polarity is controlled by the
SPICLKPH and SPICLKPOL bits, respectively. The
following diagrams show the communication timing
associated with the clock phase and polarity.

SPI Mode 0:

FIGURE 16: SPIMoDE 0

SPI MODE 0: SPICKPOL =0,SPICKPH =1 (Normal Mode Shown)

CSx

“Arrows indicate the edge where the data acquisition occurs

www.ramtron.com

page 47 of 99

VRS51L2070

RAMTRSN

SPI Mode 1:

FIGURE 17: SPI MoDE 1

SPI MODE 1: SPICKPOL =0,SPICKPH =0 (Normal Mode Shown)

CSx

*Arrows indicate the edge where the data acquisition occurs

SPI Mode 2:

FiGure 18: SPI MoDE 2

SPI MODE 2: SPICKPOL =1,SPICKPH =1 (Normal Mode Shown)

CSy

so fitit ottt it

*Arrows indicate the edge where the data acquisition ocours

SPI Mode 3:

Ficure 19: SPI MoDE 3

SPI MODE 3: SPICKPOL =1,SPICKPH =0 (Normal Mode Shown)

CSx

SCK /

so i tititit : 4 1 <

“Arrows indicate the edge where the data acquisition occurs

9.3 Defining active chip select line

As previously mentioned, only one chip select line is
activated when communicating with an external SPI
slave device. The SPICS bits of the SPICTRL register
are used to select which CS line will be activated
during the transfer .

Note that with the exception of the CSO line, the
SPICSEN bit of the PERIPHEN1 register must be set
to 1 in order for the SPI be able to control the SPI CS
lines.

9.4 Setting the SPI Communication
Speed (Master Mode)

In master mode, the SPI interface communication
speed is adjustable from “system clock /2" down to
“system clock / 1024”. Slower communication speeds
can be useful for interfacing with slower devices or to
adjust the communication speed to specific bus
conditions.

The SPICLK SFR register and the SPISLOW bit of the
of the SPICONFIG SFR register control the SPI
communication speed.

The SPI communication speed in master mode can be
calculated using the following formula:

SPI speed = S}fs Clk
[2 0]+ 4 PISLOW]

X

Where:

o Sys Clk = Processor operating clock
0 SPISLOW = can be either 0 or 1
0 SPICLK[2:0]=from0to7

The following tables provide example setting for SPI
communication speeds with various system clock and
SPICLK][2:0] and SPISLOW bit settings.

TABLE 90: SPI COMMUNICATION SPEED EXAMPLE (SPISLOW =0)

SPICLK | Com Speed | Com Speed | Com Speed
@ 40MHz @ 22.18MHz @ 4MHz

000 20 MHz 11.05 MHz 2 MHz
001 10 MHz 5.53 MHz 1 MHz
010 5 MHz 2.76 MHz 500 kHz
011 2.5 MHz 1.38 MHz 250 kHz
100 1.25 MHz 691.2 kHz 125 kHz
101 625 kHz 345.6 kHz 62.5 kHz
110 312.5 kHz 172.8 kHz 31.3kHz
111 156.3 kHz 86.4 kHz 15.6 kHz
TABLE 91: SPI COMMUNICATION SPEED EXAMPLE (SPISLOW =1)

SPICLK | Com Speed | Com Speed | Com Speed

@ 40MHz @ 22.18MHz | @ 4MHz

000 5 MHz 2.76 MHz 500 kHz
001 2.50 MHz 1.38 MHz 250 kHz
010 1.25 MHz 691.2 kHz 125 kHz
011 625 kHz 345.6 kHz 62.5 kHz
100 312.5 kHz 172.8 kHz 31.3 kHz
101 156.3 kHz 86.4 kHz 15.6 kHz
110 78.1 kHz 43.2 kHz 7.8 kHz
111 39.1 kHz 21.6 kHz 3.9 kHz

www.ramtron.com

page 48 of 99

VRS51L2070

RAMTRSN

9.5 SPI Configuration and
Status Registers

The SPI configuration and status registers allow the
activation and the monitoring of the SPI interface
interrupts. They also provide access to the advanced
features of the SPI interface such as:

0 Frame select/load generation on CS3

0 Activating manual control of the chip select

lines

0 Bit reversed mode (Bitwise Endian Control)

o Interrupt activation and monitoring

0 Monitoring the state of the SS pin

TABLE 92:SPI CONFIGURATION REGISTER - SPICONFIG - C2H

The SPISTATUS register’s role is mainly for monitoring
purposes.

TABLE 93:SPI STATUS REGISTER - SPISTATUS SFR C9H

7 6 5 4 3 2 1 0
RW R R R R R R R
0 0 0 1 1 0 0 1
Bit Mnemonic Description
7 SPI Reverse Mode

SPIREVERSE 0 = SPI operates in normal mode (MSB First)
1 = SPI operates in reverse mode (LSB First)

Not used

5 SPIUNDERF SPI TX Underrun Flag

0 = No underrun condition noticed

1 = Indicates that the SPI transmit buffer has
not been fed in time. This condition is likely to
occur when the Transaction size is > 32 bits
This bit is cleared by setting to 1, the
SPICLRTXF bit of the SPICTRL bit of the
SPICONFIG register

4 SSPINVAL Slave Select Pin Value
0 =SS pin is low

1 =SS pin is high

7 6 5 4 3 2 1 0
RIW W RW RW RW RW RIW RW
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 SPIMANCS SPI Manual CS Mode Enable

0 = SPI Chip select control is fully automatic

1 = SPI Chip select will be brought low by the
SPI interface, and will stay low until 0 is written
into SPIMANCS bit

3 SPINOCS SPI No Chip Select
0 = At least on chip select line is active
1 = Indicates that all the chip select lines are

inactive (high)

6 SPIUNDERC SPI Clear TX Underrun Flag (SPIUNDERF)
Writing a 1 into this bit will clear the SPIUNDER
bit of the SPISTATUS register

This bit always reads 0

2 SPIRXOVF SPI RX Overrun InterruptFlag
0 = No SPI RX Overrun condition detected

1 = SPI Data collision occurred

5 FSONCS3 Frame Select Pulse on CS3

0 = CS3 acts in standard ways

1 = The SPI interface will send an active low
frame select pulse on CS3

Frame select has priority on SPILOAD function

1 SPIRXAVF SPI RX Available Interrupt Flag
0 = SPI receive buffer is empty

1 = Data is present in the SPI RX buffer

4 SPILOADCS3 | Load Pulse on CS3

0 = CS3 acts in standard way or as frame select
pulse, if FSONCS3 is set to 1

1 = The SPI interface sends an active low load
pulse on the CS3 pin, if FSONCS3 is cleared

0 SPITXEMPF SPI TX Empty Interrupt Flag

0 = SPI transmit buffer is full

1 = SPI transmit buffer is ready to receive new
data

3 SPISLOW SPI Slow Speed mode
0 = SPI transaction occurs at normal speed

1 = SPI transaction is 4x slower

2 SPIRXOVEN SPI RX Overrun Interrupt Enable
0 = SPI RX overrun interrupt is deactivated
1 = SPI RX overrun interrupt is enabled

1 SPIRXAVEN SPI RX Available Interrupt Enable
0 = SPI RX available interrupt is deactivated
1 = SPI RX available interrupt is enabled

0 SPITXEEN SPI TX Empty Interrupt Enable
0 = SPI TX empty interrupt is deactivated

1 = SPI TX empty interrupt is enabled

9.6 SPI Transaction Directions

The SPI interface can perform transactions in the
standard SPI format (MSB first) as well as in the
reverse format (LSB first). In applications where data
must be transmitted (or received) in LSB first format,
the user would normally need to perform bit reversal
manually at the processor level and then send the data
through the SPI interface. The SPI interface can
automatically handle the bit reversal operations,
unloading the processor for other tasks.

When the SPIREVERSE bit of the SPISTATUS register
is set to 0, the SPI transactions will take place in MSB
first format.

www.ramtron.com

page 49 of 99

VRS51L2070

RAMTRSN

The following examples show the timing related to
these transaction directions:

FIGURE 20: SPI MSB FIRST TRANSACTION

MSB First SPI Transaction (Mode 0 Shown)
CSy

sk [y LIS

PEOEDL o XX~ X K>

When the SPIREVERSE is set to 1, the SPI
transactions are done in LSB first format, as shown in
the next figure.

FIGURE 21: SPILSB FIRST TRANSACTION

LSB First SPI Transaction (Mode 0 Shown)
CSy

sek [LT LI LIL

PROSDL oo XX~ X Ky

9.7 Manual Chip Select Control

When the SPIMANCS bit of the SPICONFIG register is
set to 1, the active chip select line will stay at a logic
low after the SPI master mode transaction is
completed, as shown in the following figure.

FIGURE 22: SPI MANUAL CHIP SELECT

Manual CSx Mode (spi Mode 0 shown)
Note: CSx Stays Low.
C& o

22— XX X O X OKE——

sDI ittt Lttt

*Arrows indicate the edge where the data acquisition ocours

The chip select will remain at logic 0 until the
SPIMANCS bit is cleared by the software.

9.8 SPI Interrupts

The SPI can trigger three interrupt sources that are
handled by two interrupt vectors, as shown in the
following table:

TABLE 94: SPI INTERRUPT SOURCES

Interrupt Interrupt Interrupt
Number Vector

SPI TX Empty Int_1 000Bh

SPI RX Available

SPI RX Overrun Int_g b

The TX empty interrupt is set when the SPI transmit
buffer is ready to receive more data. A double buffer is
used in the SPI transmitter. Once transmission begins
(after a write to the SPIRXTXO register), the data is
transferred to the final transmission buffer. This frees
up the SPIRXTX SFR register, raises the SPITXEMPF
flag of the status register and triggers an SPI TX empty
interrupt if enabled. The SPI TX empty interrupt is
enabled by setting the SPITXEEN bit of the
SPICONFIG register to 1.

The priority of the SPI TX empty interrupt is set high in
order to avoid buffer overrun in 32-bit SPI transfers.

The SPI RX available interrupt is activated when
receive data has been transferred from the SPI RX
buffer to the SPIRXTX register. The SPIRXTX register
must be read by the processor before the next SPI bus
data sequence is completed. The SPI RX available
interrupt is enabled by setting the SPIRXAVEN bit of
the SPICONFIG register to 1. The SPIRXAVF flag of
the SPISTATUS register, when set to 1, indicates that
data can be read. The SPIRXAVF flag is automatically
reset when the SPIRXTXO register is read.

The SPI RX overrun interrupt indicates that an overrun
condition has taken place. The SPlI RX overrun
interrupt is enabled by setting the SPIRXOVEN bit of
the SPICONFIG register to 1. The SPIRXOVF flag of
the SPISTATUS register, when set to 1, indicates that
a data collision has occurred.

All the SPI interface interrupt flags are active even if
the associated interrupt is not activated and they can
be monitored by the user program at any time.

Please consult the Interrupt Section for more details on
the SPI interface interrupts and their interaction with
other peripherals

www.ramtron.com

page 50 of 99

VRS51L2070

RAMTRSN

9.9 Alternate CS3 functions

For external SPI devices which require the use of a
load or a frame select signal, the VRS51L2070 can be
configured to either generate an active low frame
select or active high load signal when operating in
master mode.

9.9.1 Frame Select signal on CS3

When the FONCS3 bit of the SPICONFIG register is
set to 1, the SPI interface will generate an active low
frame select pulse on the CS3 pin (see the following
timing diagram).

FIGURE 23: SPI FRAME SELECT PULSE TIMING

FRAME SELECT Pulse (sPi Mode 0 shown)

Cs3 U/rame Select Pulse widih = 1/ Sys Clk
>

C&

I 2 ED &SP SV O CO
SDl I R | Prir it

*Arrows indicate the edge where the data acquisition occurs

9.9.2 Load Signal on CS3

When the SPILOADCS3 bit of the SPICONFIG register
is set to 1 and the FSONCS3 bit is cleared, an active
low load signal will be generated on the CS3 line of the
SPI interface.

FIGURE 24: SPILOAD PULSE TIMING

LOAD Pulse (spi Mode 0 shown)

cs3 Load Pulse width = 1 /Sys Clk U
S~ <

C&

SDI . \By TTT

*Arrows indicate the edge where the data acquisition occurs

Note that the frame select alternate function has
priority over the load function. This means that if the
FSONCS3 bit is set, the alternate function selected
will be the frame select, independent of the value of
the SPILOAD bit.

9.10 SPI Activity Monitoring

The ability to monitor the state of communication of the
SPI interface can be useful in highly modular
applications in which the SPI interface is handled by
interrupts. The SPISTATUS register contains two flags
that can be used to monitor the CS and SS signals of
the SPI interface.

The SPINOCS bit of the SPISTATUS register returns
the logical AND of all the SPI CS lines of the
VRS51L2070. If all the CS lines are inactive (logic
high), the SPI interface sets the SPINOCS to 1. The
SPINOCS bit is used to verify that the SPI interface is
idle before reconfiguring it or starting a new
transaction.

The SPINOCS bit of the SPISTATUS register is valid
four system clock cycles after the SPI transmission
begins. This delay is independent of the SPI
transaction speed.

As such, after a write operation to the SPIRXTXO0
register, which will trigger a SPI transaction in master
mode, a NOP instruction (1 cycle) must be added
before the MOV Rn, SPISTATUS instruction (3
cycles).

The SSPINVAL bit of the SPISTATUS register returns
the logic level on the SS pin.

9.11 SPI TX Underrun Flag

The SPI interface provides an underrun condition flag
that can be used to flag whether the software has
failed to update transmission buffer in time for the next
transfer. This is especially useful when the SPI
interface is used to transmit packets greater than 32
bits in length.

If an underrun condition occurs, the SPIUNDERF bit of
the SPI status register will be set to 1. This bit can be
cleared by writing a 1 to the SPIUNDERC bit of the
SPICONFIG register.

Note that SPI underrun monitoring is not linked to any
of the SPI interrupts, therefore, this flag can only be v
manually by software

9.12 SPI Transaction Size

The standard SPl protocol is based on 8-bit
transactions. However, many devices on the market,
specifically A/D and D/A converters, require
transactions greater than 8 bits. To communicate with
these types of devices using a standard SPI interface,
the user has no choice but to send multiple 8-bit
streams or to manipulate the I/Os via software to
emulate the timing control signals.

www.ramtron.com

page 51 of 99

VRS51L2070

RAMTRSN

The VRS51L2070 SPI interface supports 8-bit
transactions and can also be configured to support
transactions that measure 1 to 32 bits in both transmit
and receive directions. The value written into the
SPISIZE register controls the transaction size. Upon
reset, the SPI interface is configured for 8-bit
transactions.

TABLE 95:SPI TRANSACTION SizE — SPISIZE SFR C3H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 1 1 1

Bit Mnemonic Description

7:0 SPISIZE[7:0] SPI transaction Size
If <32 : Transaction Size = SPISIZE + 1
If >= 32: Transaction Size = (SPISIZE *8) - 216
Default Transaction Size = 8 bits

Four formulas control the SPI transaction size:

For Transactions Size <= 32 bits

Transaction Size = SPISIZE[7:0] +1

Or

SPISIZE[7:0] = Transaction Size - 1

For Transactions Size > 32 bits

Transaction Size = [(SPISIZE[7:0] * 8) —216]

Or it can be expressed by:

SPISIZE[7:0] = [Transaction Size + 216]
8

The following table provides examples:

TABLE 96: TRANSACTION SIZE VS. SPISIZE[7:0]

SPISIZE[7:0] Transaction Size
0x07 8-bit
0x0B 12-bit
0x0D 14-bit
0x10 17-bit
0x17 24-bit
0x1F 32-bit
0x20 40-bit
0x21 48-bit
0x23 64-bit

The transaction size must also be configured when the
operating the SPI interface in slave mode.

9.13 SPI RX/TX Data Registers

Four SFR registers provide access to the SPI
interface’s receive and transmit data buffer. Performing
a write operation to the SPI RX/TX buffer transfers the
data to the transmit portion of the SPI interface, while a
read operation reads the contents of the receive data
buffer. The SPI 32-bit receive and transmit data buffers
are double buffered to minimize the risk of data
collision and to achieve optimal performance.

The SPI RXTXO register contains bits 7:0 of the SPI
interface RX/TX register.

TABLE 97: SPIRXTX0 REGISTER CONTENT FOR NORMAL AND REVERSED TRANSACTIONS

Operation SPI Mode SPIRXTXx Data is...

Read MSB First Right Justified
LSB First Left Justified

Write MSB First Left Justified
LSB First Right Justified

When the SPI is configured in master mode, writing to
the SPIRXTXO will trigger a data transmission. For this
reason, when the transaction size is larger than 8 bits,
the SPIRXTXO register must be written last.

TaBLE 98:SPI RX / TX0 DATA REGISTER — SPIRXTX0 SFR C4H

7 6 5 4 3 2 1 0
RW RW RIW RIW RIW RIW RW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 SPIRXTX0[7:0] | Read: SPI RXData[7:0]

Right justified in normal mode, left justified in bit
reversed mode

Reading this register, clears the SPIAVF and
SPIRXOVF flags

Write: SPI TXData[7:0]

Left justified in normal mode, right justified in bit
reversed mode

In master mode, writing to SPIRXTXO triggers
the transmission

www.ramtron.com

page 52 of 99

VRS51L2070 RaAMTRIN

TABLE 99:SPI RX/TX1 DATA REGISTER — SPIRXTX1 SFR C5H 9 14 SPI Data. Input /Output
7 6 5 4 3 2 1 0)
R()W R()W RQ’V RQ’V RQ’V RQ’V RQ’V RQ’V The VRS51L2070 SPI interface has the ability to

perform data transactions in MSB first mode or LSB
first. The SPIREVERSE bit of the SPISTATUS register

Bit Mnemonic Description - ! >
7:0 SPIRXTX1[7:0] | Read: SPIRXData[15:8] controls whether the data will be transmitted MBS first
Right justified in normal mode, left justified in bit or LSB first. Upon device reset, the SPIREVERSE bit
reverse mode . . ', .
Write: SPI TXData[15:8] equals 0 and data is transmitted in MSB first format.
Left justified in normal mode, right justified in bit X i
reverse mode The SPIREVERSE bit state will also affect the data
TABLE 100 SPI RX / TX2 DATA REGISTER — SPIRXTX2 SFR C6H transmission and the da_ta reception buffer structure as
7 5 5 7 3 5 1 0 shown in the following diagrams.
RQN RQN RQN RQN RQN RQN RQN RQN FIGURE 25: SPI TRANSACTION STANDARD MODE (SPIREVERSE =0 : MSB FIRsT)

Outgoing Transaction

SPI Transmission (standard Mode)

Bit Mnemonic Description LS8 e
SDO
7.0 SPIRXTX2[7:0] | Read: SPI RXData[23:16] L, T Tl [[T HTT]
Right justified in normal mode, left justified in bit [srrxnxa] [seroxxe] [spirxxt] [spirxxo |
reverse mode ‘ PR 3
Write: SPI TXData[23:16]
Left justified in normal mode, right justified in bit !
reverse mode SPI Reception (standard Mode) Incoming Transaction
7 0o 7 0o 7 o 7 0 MSB Ls8
TABLE 101:SPI RX/ TX3 DATA REGISTER — SPIRXTX3 SFR C7H ‘ SPIRXTX3 ‘H SPIRXTX2 }4—{ SPIRXTX1 }4—{ SPIRXTX0 }4— -— I:]:D—-—D:]:‘
7 6 5 4 3 2 1 0
RW RW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0 FIGURE 26: SPI TRANSACTION BIT REVERSE MODE (SPIREVERSE = 1: LSB FIRsST)
Bit Mnemonic Description SPI Transmission (Bit Reversed Mode Outgoing Transaction
7:0 SPIRXTX3[7:0] | Read: SPI RXData[31:24] . going .
i i ifi i i ifi i i 7 0 7 0 7 0 7 0 MSB LS8
rRel\?::sjgsr;Iged(é n normal mOde’ |eftju5tlfled n blt ‘ SPIRXTX3).—»‘ SPIRXTX2 }—»‘ SPIRXTX1 }—»‘ SPIRXTX0 }—» —- []:D——[]:D
Write: SPI TXData[31:24] Incoming Transaction
Left justified in normal mode, right justified in bit SPI1 Reception (it Reversed Mode! S8 visB
reverse mode
; . |~ LT
7 0 7 0 7 0 7 0
‘ SPIRXTX3 ‘ ‘ SPIRXTX2 ‘ ‘ SPIRXTX1 ‘ ‘ SPIRXTX0 ‘
i Y J

The next tables gives examples of SPI transmission
and reception in different modes if the SPI SDO pin is
connected to the SDI pin.

SPISIZE = 0xOF (16 bit) / SPIREVERSE= 0 (MSB First

SPITX[3:0] SPIRX [3:0]
[xx [xx [D3n [42h | [xx [xx [42h [D3h |
[xx [xx [54h [Ash | [xx [xx [Aeh [54h |

SPISIZE = OxOF (32 bit) / SPIREVERSE= 0 (MSB First

SPITX[3:0] SPIRX[3:0]
[45h [A3h [B2h [DF | [DFh [B2h [A3h [45h |
[C3h [8Ah [49n [24h | [24h [49n [8Ah [C3h |

SPISIZE = OxOF (32 bit) / SPIREVERSE= 1 (LSB First

SPITX [3:0] SPIRX [3:0]
[45h [A3h [B2h [DF | [DFh [B2h [A3h [45h |
[C3h [8Ah [49h [24h | [24h [49n [8Ah [C3h |

www.ramtron.com page 53 of 99

VRS51L2070

RAMTRSN

9.14.1 Performing Variable-Bit Data
Transmission

For a variable-bit data transmission in master mode
(when the data is not transmitted in multiples of 8 bits),
the most significant bit of the data to be transmitted
must first be placed at position 7 of the SPIRXTXO,
with the remaining bits positioned as shown in the SPI
transaction figures on the previous page.

For example if SPISIZE = 0xOB and SPIREVERSE =
0, the data transaction will measure 12 bits, MSB first.
For the transmission to occur in the correct order, the
lower 4 data bits must first be placed into bit positions
7:4 of the SPIRXTX1 register, with bits 11:8 written
into bit position 7:0 of the SPIRXTXO register. This will
trigger the transmission.

The following is a sequence of steps to transmit 12 bits
of data contained in an integer variable called
txmitdata.

1. Clear the SPIRXTX3 and SPIRXTX2 registers
(optional)

2. Put the lower quartet of the 12-bit data (bits
3:0) into the upper quartet of the SPIRXTX1
register

3. Write bit 7:0 of the 12-bit data into the
SPIRXTXO register

4. This will trigger a data transmission

In C, this is expressed as follows:

()
SPIRXTX3 = 0x00;
SPIRXTX2 = 0x00;
SPIRXTX1 = (txmitdata << 4)&0xFO; /\Write the lower quartet of data
/linto the upper quartet of SPIRXTX1 register

readflag = SPIRXTX0 //-Dummy Read the SPI RX buffer to clear the RXAV Flag

/l(Facultative if SPINOCS is monitored)

SPIRXTXO0 = dacdata >> 4; //Writing to SPIRXTXO will trigger the transmission

For example to output 0x3A2 through the SPI interface
configured in master mode and MSB first format, write
0x20 into the SPIRXTX1 SFR register and followed by
0xAZ2 into the SPIRXTXO register.

The reception of non multiple of 8 data when the SPI
interface is configured to MSB first transaction is very
straight forward as the data enters into the receiving
buffer through the bit 0 of the SPIRXTXO register and
propagates towards the bit 7 of SPIRXTX3 register.

9.15 SPI Example Programs

9.15.1 UART to SPI Data Transmission
Example

I I

/I SPI Transmit example.c 1"
/. //

n
/I This program sends characters received on the UART to the SPI Interface
"

I I

#include <VRS51L2070_SDCC.h>

/I----Global variables -----— 1l

int cptr = 0x00; /lgeneral purpose counter
/I --- function prototypes

void txmitO(unsigned char charact);
void uartOconfig(void);

/- //

1" Main Function "
//. 1/

void main (void){

char value = 0x00;
PERIPHEN1 = 0xCO;

/lgeneral purpose variable
/[Enable SPI Interface

INTCONFIG = 0x02; //[Erase Bypass global int, before configuring the INTO pin
event
/[This fix inadvertent INTO interrupt that occurs when
//INTO cause is set to Rising edge

INTSRC1 = 0x01; //INTO vector source = INTO pin

INTPINSENS1 = 0x01; //Set INTO sensitive on edge(1) or Level(0)

INTPININV1 = 0x00; //Set INTO Pin sensitivity on Normal Level(0) / Inverted (1)
INTEN1 = 0x01; //[Enable INTO (bit0) Interrupt

INTCONFIG = 0x01; //[Enable Global interrupt
while(1);

Y/end of Main

/]. I/

Jl-=====mmemmmemeemeeeeeeem—— Interrupt Functions ----------------——-—-eeeeeeee-f/
//- //
//. //
1 Interrupt INTO 1
n Send character received on the SPI Interface "

I Il

void INTOInterrupt(void) interrupt 0

{
/I Send "EXT INTO Received" on UARTO
cptr = 0x00; /1 Init cptr to pint to message beginning
INTEN1 = 0x00; /Disable Interrupts
SPICTRL = OxE1; /ISPI CLK = div by 256
/ISPI CSO0 Active
/ISPl Mode 0
/ISP1 Master

SPISIZE = 0x07;
SPICONFIG = 0x10;
SPIRXTX0 = SOBUF;

/ISPI SIZE = 8bit
/ILOAD on CS3
//Send Data Byte on SPI Interface

INTEN1 = 0x01;
Ylend of INTO interrupt

//[Enable Interrupt INTO

www.ramtron.com

page 54 of 99

VRS51L2070

RAMTRSN

9.16 SPI Interface to 12-Bit ADC and DAC

The following example program shows the initialisation

and use of the SPI module of the VRS51L2070 as an
interface to serial ADC and DAC.

//.

}/ VRS51L2070_Generic_SPI_based_ADC_DAC_Interf1.c
//-

// DESCRIPTION:

" This Program demonstrates the configuration and use of the SPI interface
" for interface to typical serial 12 bit A/D and D/A Converters.

I The program read the A/D and output the read value out on a D/A converter
I To perform the conversion the ADC requires 16 clock cycles and

1 the DAC requires 12 clock cycles.

1/

#include <VRS51L2070_SDCC.h>

/l---Functions prototypes

void ReadGEN_12BIT_ADC(void); /IGEN_12BIT_ADC Read
void WriteGEN_12BIT_DAC(unsigned int); /IGEN_12_BIT_DAC Write
void V2KDelay1ms(unsigned int); //Standard Delay function

/I Global variables definitions

idata unsigned char cptr = 0x00;
unsigned int at 0x0060 adcdata= 0x00;

I MAIN FUNCTION

void main (void) {

dof
ReadGEN_12BIT_ADC(); //IRead the A/D Converter
WriteGEN_12BIT_DAC(adcdata); /hwrite into the D/A Converter
Jwhile(1);

Y/ End of main

//. /]

/I NAME: ReadGEN_12BIT_ADC

1/- //
/| DESCRIPTION:

i Read the GEN_12BIT_ADC A/D

1 ADC is connected to SPI interface using CSO

A Max clk speed is 3.2MHz, Fosc = 40MHz assumed

/]. //
void ReadGEN_12BIT_ADC()

{
int cptr = 0x00;
char readflag = 0x00;

/ISPI Configuration Section
/l(Can be moved to Main function if only one device is connected to the SPI Interface)

/IMake sure the SPI Interface is activated
PERIPHEN1 |= 0xCO;

/I--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS &= 0x08));

SPICTRL = 0x65; /ISPICLK = /16 (2.5MHz)
//CS0 Active
/ISPl Mode 1 Phase =1, POL =0
/ISP Master Mode

SPICONFIG = 0x40; /ISPI Chip select is automatic
/IClear SPIUNDEFC Flag
/ISPILOAD = 0 -> Manual CS3 behaviour
//No SPI Interrupt used

SPISTATUS = 0x00; /ISPI transactions are in MSB First Format
SPISIZE = Ox0E; /ISPI Transaction Size are 15 bit
/I-Dummy Read the SPI RX buffer to clear the RXAV Flag

readflag = SPIRXTXO0;
/I-Perform the SPI read

SPIRXTXO0 = 0x00; //Writing to the SPIRXTXO0 will trigger the SP!I
/[Transaction

while(!(SPISTATUS &= 0x02)); /IWait for the SPI RX AV Flag being set

*

/I - It is possible to monitor the SPINOCS Flag instead of the SPIRXAV Flag
/[The code piece below shows how to do it. However in that case,
/INo that the reading of the SPISTATUS register must be done at

I/Nleast 4 System clock cycles after the Write operation to the SPIRXTXO register

/I-Wait for SPINOCS Flag have time to be updated
_asm

NOP;
_endasm;

while(/(SPISTATUS &= 0x08)); //Wait activity stops on the SPI interface
*

//IRead SPI data

adcdata= (SPIRXTX1 << 8);

adcdata+= SPIRXTXO0;

adcdata&= 0xOFFF; Ilisolate the 12 Isb of the read value
Y/end of ReadGEN_12BIT_ADC

/]. //

/I NAME: WriteGEN_12BIT_DAC

//- //
// DESCRIPTION:

1 Write 12bit Data into the GEN_12BIT_DAC device

1 ADC is connected to SPI interface using CS1

1 Max clk speed is 12.5MHz, Fosc = 40MHz assumed
I We will set the SPI prescaler to sysclk / 8

/]. //

void WriteGEN_12BIT_DAC(unsigned int dacdata)

{

char subdata = 0x00;

char readflag = 0x00;

PERIPHEN1 |= 0xCO; /IMake sure the SPI Interface is activated

/I--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(I(SPISTATUS &= 0x08));

/ISPI Configuration Section
//Can be moved to Main function if only one device is connected to the SPI Interface

SPICTRL = 0x4D; /ISPICLK = /8 (MHz)
/ICS1 Active
/ISPl Mode 1 Phase =1, POL =0
//SP1 Master Mode

SPICONFIG = 0x40; /ISPI Chip select is automatic
/IClear SPIUNDEFC Flag
/ISPILOAD = 0 -> Manual CS3 behaviour
/INo SPI Interrupt used

SPISTATUS = 0x00; /ISPI transactions are in MSB First Format
SPISIZE = 0x0B; /ISP Transaction Size are 12 bit

/I-Format the 12 bit data so data bit 11 is positioned on bit 7 of SPIRXTX0
/I and data bit O is positioned on bit 4 of SPIRXTX1 and Perform the SPI write operation

dacdata &= OxOFFF; /IMake sure dacdata is <= OFFFh (12 bit)

SPIRXTX3 = 0x00;
SPIRXTX2 = 0x00;
SPIRXTX1 = (dacdata << 4)&0xF0;

/I-Dummy Read the SPI RX buffer to clear the RXAV Flag
/I (Facultative if SPINOCS is monitored)
readflag = SPIRXTXO0;

SPIRXTXO0 = dacdata >> 4; /IWriting to SPIRXTXO0 will trigger the transmission

/I--Wait the SPI transaction completes
/I This section can be omitted if a check of activity on the SPI Interface
/I is made before each access to it in master mode

/IWait for the SPI RX AV Flag being set
while(!(SPISTATUS &= 0x02));

/I -- It is possible to monitor the SPINOCS Flag instead of the SPIRXAV Flag
/[The code piece below shows how to do it. However in that case,
/INo that the reading of the SPISTATUS register must be done at
/Nleast 4 System clock cycles after the Write operation to the SPIRXTXO register

I

/I-Wait for SPINOCS Flag have time to be updated

_asm

NOP;

_endasm;

/I--Wait activity stops on the SPI interface (monitor SPINOCS Flag)

while(I(SPISTATUS &= 0x08));

*

Y/lend of WriteGEN_12BIT_DAC

www.ramtron.com

page 55 of 99

VRS51L2070

RAMTRSN

10 I12C Interface

The VRS51L2070 includes an I?C interface that can
operate in master and slave mode. In master mode,
the communication speed on the I?C is programmable,
optimizing communication between I?°C-based devices.
Long or heavily loaded I?C bus applications are likely
to require slower communication speeds.

10.1 12C Bus Pull-Up Resistors

By definition, the I*C requires that the user include
external pull-up resistors on the SCL and SDA lines.
The pull-up voltage can be either 3.3 or 5 volts. Note
that the VRS51L2070 1/Os are 5V—tolerant making it
possible to interface 5V, I?C-based devices with the
VRS51L2070.

The proper value for the pull-up resistor and the proper
communication speed depend on bus characteristics
such as length and capacitive load.

Note that the pull-up resistor value should not be
below 1.25K ohms if running the I?C bus at 5V; and
750 ohms if operating at 3.3V. This is required in order
to limit the current to 4mA (maximum current of the 1/0
port connected to the IC interface).

10.2 12C Phases

The I2C protocol includes five phases:

1. IDLE (SCL=1,SDA=1)
2. Device ID

3. Device ID Acknowledge
4. Data

5.

Data Acknowledge

The VRS51L2070 I*C interface has provisions to
monitor activity on the I?°C bus, particularly the data
acknowledge phase of a I?C transaction. There is also
a mechanism that enables the detection of
communication errors.

10.3 I2C Control and Status Registers

Four SFR registers are dedicated to the I1°C interface.
The I2C configuration register I2CCONFIG enables:

e Selection of master or slave operation

e Forcing a start condition after an acknowledge
phase

e Manual control of the SCL line

e Activation of the master arbitration monitoring
mechanism

e Interrupt activation

TaBLE 102:12C CONFIGURATION REGISTER - [I2CCONFIG SFR D1H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W RW RW R/W RW
0 0 0 0 0 1 0 0
Bit Mnemonic Description
7 MASTRARB Master Lost Arbitration and Mechanism and
Interrupt

0 = Deactivated
1 = Master lost arbitration monitoring and
interrupt is enabled

6 I12CRXOVEN I2C RX Overrun Interrupt Enable
0 = I2C RX Overrun interrupt is deactivated
1 = I>C RX Overrun interrupt is enabled

5 12CRXAVEN I12C RX Available Interrupt Enable
0 = I2C RX Available interrupt is deactivated
1 = I>°C RX Available interrupt is enabled

4 12CTXEEN 12C TX Empty Interrupt Enable
0 = I)C TX empty interrupt is deactivated

1 = I2)C TX empty interrupt is enabled

3 I2CMASTART I2C Master Create Start

0 = No start condition is created after data
acknowledge phase

1 = Master will create a start condition after the
next data acknowledge phase

This bit will be cleared when the I1>C is idle

2 12CSCLLOW Keep the I)C SCL Low

Setting this bit to 1 will force the SCL line low.
This bit is read by the I?C interface when it
enters in the data I>C.

This bit must not be set during the acknowledge
phase.

1 I12CRXSTOP I12C Reception Stop

0 = The I*C received will acknowledge after
receiving a byte

1 = The I?C receiver will not acknowledge after
the next data byte is received

0 12CMODE 12C Mode Enable
0 = I?C interface operates in slave mode

1 = I2C Interface operates in master mode

The I2CMODE bit of the I2CCONFIG register, when
set to 1, will configure the I?C interface as a master.

In master mode, the VRS51L2070 I>C interface
controls the I2C bus and initiates transmission and
reception transactions. In master mode, the I*C
interface also controls the communication speed.

Clearing the I2CMODE bit of the I2CCONFIG register
will configure the I°C interface as a slave. Slave mode
can be useful for applications in which the
VRS51L2070 operates as a peripheral in a host-
controlled system.

www.ramtron.com

page 56 of 99

VRS51L2070

RAMTRSN

When in master mode, the I?C interface can be forced
to generate a start condition after the next data
acknowledge phase. This is done by setting the
[2CMASTART bit to 1.

When the MASTRARB bit is set to 1, communications
of the I?C will be monitored and an interrupt will be
generated if arbitration with slave devices on the bus is
lost. The interrupt flag associated with this process is
the I2CERROR bit of the I2CSTATUS register.

If the I2CRXSTOP bit is set to 1, the I?C interface will
not acknowledge after reception of the next byte, but
will generate a stop condition instead. This will, in
effect, end the transaction with the master device.

When the I2C interface is configured as a master and
the 12CSCLLOW bit of the I2CCONFIG register is set
to 1, the SCL line will be driven low during the next
data acknowledge phase. This feature enables the
user to add the equivalent of wait states to the transfer
in order to support “slow” devices connected to the I1°C
bus.

The I?C interface includes support for four interrupt
conditions via two interrupt vectors.

RX Data Available
RX Overrun

TX Empty

Master lost arbitration

The following table summarizes the possible interrupt
sources at the I12C interface level.

TABLE 103: I2C INTERRUPT SOURCES

10.4 I2C Timing Control Register

The I2CTIMING register controls the communication
speed when the I?C interface is configured in master
mode. When in slave mode, it defines the values of the
setup and hold times.

TABLE 104:12C TIMING REGISTER - [2CTIMING SFR D2H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 1 1 0 0
Bit Mnemonic Description
7:0 12CTIMING[7:0] I2C master/slave timing configuration register
See Below

The following formulas demonstrate the impact of the
I2CTIMING value on the communication speed and
setup/hold times.

In master mode:

SCL period = [2CCLK
32*(1I2CTIMING[7:0] + 1)

The following table provides examples of the
I2CTIMING values and the corresponding
communication speed:

TABLE 105: I2C COMMUNICATION SPEED Vs. I2CTIMING REGISTER VALUE (Fosc = 40MHz)

I2C Interrupt [2CCONFIG bit | Interrupt
(Set to 1 to activate) Vector

12CTIMING I2C Com Speed
00h 1.25 MHz
02h 416.77 kHz
0Ch (Reset) 96.15 kHz
7Ch 10kHz
FFh 4.88kHz

In slave mode:

Set-up/Hold Time = 12CCLKperiod * 2CTIMING[7:0]

RX Data [2CRXAVEN 4Bh
Available (Int 9)
RX Overrun [2CRXOVEN 0x4B
(Int 9)
TX Empty [2CTXEEN 0x4B
(Int 9)
Master Lost MASTRARB 0x53
Arbitration (Int10)

In this case, the precision is: 2 x I2CCLKperiod

TABLE 106: 12C SETUP AND HOLD TIME Vs. I2CTIMING REGISTER VALUE (Fosc = 40MHz)

To activate the [2C interface interrupts, the
corresponding enable bit of the I2CCONFIG register
must be set to 1. This will allow the I>C interrupt to
propagate to the VRS51L2070’s interrupt controller. In
order for the I*)C interrupt to be recognized by the
processor, the corresponding bit of the INTEN2 and
INTSRC2 registers must be configured accordingly.
See the VRS51L2070 interrupt section for more
details.

I2CTIMING Setup/Hold
Time

00h OuS

0Ch 0.3uS

FFh 6.38 uS

www.ramtron.com

page 57 of 99

VRS51L2070

RAMTRSN

10.5 12C Slave Device ID and Advanced
Configuration

When operating in slave mode, the device ID on the
I?C interface is configurable. The seven upper bits of
the 12CIDCFG register contain the user-selected
device ID. Bit 0 of the I2CIDCFG register has two
distinct roles.

The 12CAVCFG provides advanced control on I?C
interface operations.

TaBLE 107:12C Device ID CONFIGURATION - 12CIDCFG SFR D3H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 12CID[6:0] Slave I2C device ID as selected by user

0 I2CADVCFG Read: Indicates that the I2C slave has received
ID that is different from the 12CID.

This flag is cleared when the received ID
corresponds with the 12CID

Writing:

Slave Mode: 1= The I2CRXAV flag is raised
when the I2C slave receives a device ID

Master Mode: 1 = Enables monitoring of the
SCL line in wait state mode in case of mismatch
of the SCL line vs. the expected value

When the I?C interface operates in master mode and
the 12CADVCEG is cleared, the I2C interface module
will continuously monitor the SCL line. If the slave
device drives the SCL line into an incorrect state, the
I2C interface will enter wait state mode until the slave
device releases the SCL line. This mode can be
useful for a I?°C communication debug.

When the I2CADVCFG bit is set, no monitoring of the
SCL line will be executed by the I2C module and the
transaction will proceed independently of the level of
the SCL line.

When the VRS51L2070 I2C interface module is
configured as a slave, reading the I2CADVCFG bit as
1 indicates that the ID received does not match the
current device ID. This bit will be cleared when the
correct device ID is received.

In slave mode, writing a 1 into the I2CADVCFG bit of
the 12CIDCFG register will make the I2CRXAVF flag of
the I2CSTATUS register remain at 0, after the device
ID is received. If the I2CADVCFG bit is cleared, the
I2CRXAVF flag will be set either when a correct device
ID, or when valid data, are received.

10.6 I2C Status Register

Monitoring of the I?C interface can be done via the
I2CSTATUS register located at SFR address D4h. The
I2CSTATUS register is read only and values written
into that location have no effect.

The 12CERROR flag indicates that an error condition
occurred on the I2C interface. In master mode, the
I2CERROR flag will be set by the VRS51L2070 I>C
interface, if it loses bus arbitration.

In slave mode, if an unexpected stop is received, the
I2CERROR flag will be set. The I2CERROR flag will
be automatically reset by the I°C interface the next
time it exits an idle state.

If the I2CNOACK flag is set to 1, it signifies that the
slave device did not acknowledge the last data byte it
received.

The I?C interface also monitors the synchronization of
the SDA line. When synchronization is lost, the
I2CSDASYNC bit of the I2CSTATUS register will be
set by the I2C interface.

The I2CSDASYNC bit of the I12CSTATUS register
returns the value of the SDA line the moment a read
operation is performed on the I2CSTATUS register.

The 12CACKPH bit when set, indicates that the I°C
interface is currently in the data acknowledge phase.

Reading of the I2CSDASYNC and I2CCKPH bits can
be used to determine whether the slave device has
acknowledged. If both bits are set to 1 at a given time,
the slave device did not acknowledge.

www.ramtron.com

page 58 of 99

VRS51L2070

RAMTRSN

TABLE 108: I12C STATUS REGISTER - [2CSTATUS SFR D4H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 1 0 1 0 0 1
Bit Mnemonic Description
7 Slave Mode Error Flag:
0 = No Error

1 = Indicates that the I1C interface received an
unexpected stop

This flag is reset the next time the I2C interface
I2CERROR exits from an idle state (see below)

10.7 I2C Transmit/Receive register

The I2C interface transmit and receive buffers are
accessed via the [I2CRXTX SFR register, which is
accessible at SFR address D5h.

TABLE 109:12C DATA RX/TX REGISTER I2CRXTX - SFR D5H

Master Mode

0 = No Arbitration Error

1 = I2C interface has lost arbitration

This flag is reset the next time the I2C interface
exits from an idle state (see below)

6 I2CNOACK 12C Acknowledge Error Flag

0 = Acknowledge was received normally

1 = No acknowledge was received during the
last acknowledge phase

This flag is reset the next time the 1°C interface

exit from the idle state (see below)

7 6 5 4 3 2 1 0
RW RW R/W R/W R/W R/W RW R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 12CRXTX[7:0] Read: I2C Receive Buffer

Reading the I2CRXTX register will clear the
I2CRXAV and I2CRXOV flags

Write: I)C Transmit Buffer

Writing into the I2CRXTX register will trigger the

transmission

5 12CSDASYNC 12C SDA Sync Status Flag
0 = SDA Pin in not in sync
1 = SDA pin is in sync

4 12CACKPH When set, this flag indicates that the I)C
interface is in ‘Data Acknowledge Phase.’
5 phases of I12C protocol:

1. Idle

2. Device ID

3. Device ID Acknowledge

4. Data

5 Data Acknowledge

3 12CIDLEF I2C is idle

0 = I2C interface is communicating

1 = I2C interface is inactive (idle phase) and the
SCL and SDA lines are high

10.8 I2C Interface alternate pins

Upon reset, the I2C interface signal SCL and SDA are
mapped into pins P3.4 and P3.5, respectively.
However it is also possible to map these signal into the
P1.6 and P1.7 pins.

Bit 5 of the DEVIOMAP register (SFR E1h) is used to
configure the mapping of the I1°C interface at the I/O
level, as shown in the following table:

TABLE 110: I2C MODULE MAPPING

2 I2CRXOVF I1>C RX Overrun Interrupt Flag
0 = No I>C RX overrun condition detected

1 = I>C data collision occurred

1 I2CRXAVF 12C RX Available interrupt Flag
0 = I2C receive buffer is empty

1 = Data is present in the I?°C RX buffer

DEVIOMAP.5 Bit Value SCL SDA
Mapping Mapping

0 (Reset) P3.4 P3.5

1 P1.6 P1.7

0 I2CTXEMPF 12C TX Empty interrupt Flag

0 =I12C transmit buffer is full

1 =12C transmit buffer is ready to receive new
data

When set, the 12CIDLEF indicates that the I1?C bus is
idle and that a transaction can be initiated. Before
initiating an 1°C data transfer, it is recommended to
check the state of the I2CIDLEF bit. This bit indicates
whether or not a data transfer is currently in progress.

When new data is received in the I1°C receive buffer,
the I2CRXAVF interrupt flag will be set. Data must be
retrieved from the I2CRXTX buffer before the reception
of the next data byte is complete.

The I2CRXOVF flag when set, indicates an overrun
condition in the I1?)C interface receive buffer and the
data is potentially corrupted.

The [2CTXEMPF interrupt flag is set by the I°C
interface when the transmit data buffer is ready to
receive another data byte.

www.ramtron.com

page 59 of 99

VRS51L2070

RAMTRSN

10.9 I12C Interface Example Programs

The following programs provide example code for I1°C
control of EEPROM devices

//. /]

/I VRS2k-I°C _EEPROM.c //
/]. //

I
/I This example program demonstrate the use of the I2C
/I interface to perform basic read and write operations on a

/I Standard EEPROM device.
// //

#include <VRS51L2070_SDCC.h>
sfrat 0xD1 CALSOSC; /ISelf Oscillator calibration

/l----Global variables ------//
int cptr = 0x00; /lgeneral purpose counter

/I --- Function prototypes

char EERandomRead(char,int);

char EERandomWrite(char, char, int);
void WaitTXEMP(void);

void WaitRXAV(void);

void Waitl2CIDLE(void);

void wait();

//. //

[/ —_ 7\ |NY S'U] \Toq i o] Jmmm— I
// //

void main (void){

PERIPHEN1 = 0x20; //[Enable 12C Interface

INTCONFIG = 0x02; /[Erase Bypass global int, before configuring the INTO pin event
/[This fix inadvertent INTO interrupt that occurs when
//INTO cause is set to Rising edge

INTSRC1 = 0x01; //INTO vector source = INTO pin

INTPINSENS1 = 0x01; //Set INTO sensitive on edge(1) or Level(0)

INTPININV1 = 0x00; //Set INTO Pin sensitivity on Normal Level(0) / Inverted (1)
INTEN1 = 0x01; //[Enable INTO (bit0) Interrupt

INTCONFIG = 0x01; //[Enable Global interrupt

while(1);
Ylend of Main

//. /]

[f==mmmmmmmmmmmemeememmeo- Interrupt Functions --------------=--==mmn-=| 1l
I Z
/- Interrupt INTO ----//

void INTOInterrupt(void) interrupt O
{
char x;

/I-- Send I>C stuff

cptr = 0x00; /I Init cptr to pint to message beginning

INTEN1 = 0x00; /IDisable Interrupts

x = EERandomWrite(0xA0, 0x36, 0x0206); //Perform Write operation
Delay1ms(100);

x = EERandomRead(0xA0, 0x0206); /IPerform Read operation
INTEN1 = 0x01; //[Enable Interrupt INTO

}/end of INTO interrupt

//. /]

J[z==mmmmmmmmmmmmmeaaenmae Individual Functions ---------------------//
/]. //

1/- |
/l---- Function EERandomRead(char eeidw,int address) ----- 1l
1]. 1/

char EERandomRead(char eeidw,int address){

12CTIMING = 0x20; /I'12C Clock Speed = about 100kHz
I2CCONFIG = 0x01; /I1’C is Master

I2CRXTX = eeidw; //Write 12C device ID + W
WaitTXEMP();

I2CRXTX = address >>8; //Write I°C ADRSH

WaitTXEMP();

I2CRXTX = address; /Write I)C ADRSL

/I--Wait for I12C IDLE (This will generate a STOP)
Waitl2CIDLE();

/I--Start a Preset ADRS read (This will generate a START)

I2CRXTX = eeidw+1; /\Write I’C device ID + R
WaitTXEMP();
I2CCONFIG |= 0x02; /IForce I)C to Not Acknowledge after
/Ireceiving the next data byte
WaitRXAV(); //Wait for RX Available bit, This will trigger I2C Reception
return I2CRXTX; /IReturn Data Byte

Y/End of EERandomRead

=== Function EERandomWrite(char eeid,char data, int address) ---------- 1l
/, //
char EERandomWrite(char eeidw, char eedata, int address){

12CTIMING = 0x20; /I 2C Clock Speed = about 100kHz

12CCONFIG = 0x01; /I1’C is Master

I2CRXTX = eeidw; /\Write I?)C device ID + W

WaitTXEMP();

I2CRXTX = address >> 8; //Write I°C device ID + W

WaitTXEMP();

I2CRXTX = address; //Write 12C device ID + W

WaitTXEMP();

I2CRXTX = eedata; /\Write I?C device data

WaitTXEMP();

return I2CRXTX; /IReturn Data Byte

Y/End of EERandomWrite

//- //
[f=mmmemem Function WaitTXEMP() ----------//
n

void WaitTXEMP()

wait();
do{

USERFLAGS = I2CSTATUS;
USERFLAGS &= 0x01; Ilisolate the I°C TX EMPTY flag

Jwhile(USERFLAGS == 0x00); //Wait for I2°C TX EMPTY
Y/lend of Void WaitTXEMP()

e Function WaitRXAV/() ------------, 1l
//

void WaitRXAV/()

wait();
dof

USERFLAGS = I2CSTATUS;
USERFLAGS &= 0x02; /lisolate the I2CRXAV flag

Ywhile(USERFLAGS == 0x00); //Wait for I°C RX AVAILABLE

Y/lend of Void WaitRXAV()

[f==mmmmem Function Waitl2CIDLE() --------- 1l

void Waitl2CIDLE()

wait();

dof

USERFLAGS = I2CSTATUS;

USERFLAGS &= 0x08; llisolate the I2C idle flag

Jwhile(USERFLAGS == 0x00);

}Ylend of Void Waitl2CIDLE()

//. //
N-mmmmr Function Wait() ----------//
//

void wait(){
char i=0;
while (i<25) {i++;};
}

www.ramtron.com

page 60 of 99

VRS51L2070

RAMTRSN

11 Pulse Width Modulators (PWMSs)

The VRS51L2070 includes eight independent PWM
channels, each based on a 16-bit timer.

All of the PWM modules can be configured to operate
as a regular PWM with adjustable resolution, or as a
general purpose 16-bit timer. The PWMEN register is
used to enable the different PWM modules.

TaBLE 111: PWM ENABLE REGISTER - PWMEN SFR AAH

11.1 PWM MID and END registers

Each PWM module includes two 16-bit registers:

o PWM MID value register
o PWM END value register

The PWM MID register is a 16-bit register that
configures the point at which the PWM output will

change it’s polarity.

7

6 5

4 3 2 1

R/W

R/W R/W

R/W R/W R/W R/W

0

0 0

0 0 0 0

Bit

Mnemonic

Description

PWM7EN

PWM7 Channel Enable
0 = PWM channel 7 is deactivated
1 = PWM channel 7 is activated

PWMGEN

PWM6 Channel Enable
0 = PWM channel 6 is deactivated
1 = PWM channel 6 is activated

PWMSEN

PWMS5 Channel Enable
0 = PWM channel 5 is deactivated
1 = PWM channel § is activated

PWM4EN

PWM4 Channel Enable
0 = PWM channel 4 is deactivated
1 = PWM channel 4 is activated

PWM3EN

PWM3 Channel Enable
0 = PWM channel 3 is deactivated
1 = PWM channel 3 is activated

PWM2EN

PWM2 Channel Enable
0 = PWM channel 2 is deactivated
1 = PWM channel 2 is activated

PWM1EN

PWM1 Channel Enable
0 = PWM channel 1 is deactivated
1 =PWM channel 1 is activated

PWMOEN

PWMO Channel Enable
0 = PWM channel 0 is deactivated
1 = PWM channel 0 is activated

The PWM END register is a 16-bit register that defines
the maximum PWM internal timer count value, after
which it rolls over to 0000h. See the following timing
diagram.

FGURE 28: PWM POLARITY SETTING

~f—Cycle 1———p» | ~4—— Cycle 2——p |

I
b

Start PWMMID PWM END M Timer rol
0000h Value value

B W e
I

This configuration allows the user to adjust the
resolution of the PWM up to 16 bits. Access to the
PWM internal registers and the PWM configuration is
handled by the PWMCFG register located at address
A9h.

PWMLDPOL =0

PWMLDPOL =1

The following figure provides an overview of the PWM
modules.

FIGURE 27: PWM MODULES OVERVIEW

PWMLDPOL = 1

— s
_FDR‘ GLIIIIIIIIIIIITT
SysClk /1 g

3
Downto
Sys Clk / 16384

PWMTMRF:

> PWM END.

PWMx MID <PWMMID

PWMx Pin

>PWM MID
PWMx END

i

PWMLDPOLX

| —
| To others
l——— PWM

| Modules

[—

www.ramtron.com

page 61 of 99

VRS51L2070

RAMTRSN

TABLE 112:PWM CONFIGURATION REGISTER - PWMCFG SFR A9H

TABLE 114:PWM POLARITY AND CONFIG LOAD STATUS — PWMLDPOL ABH

7 6 5 4 3 2 1 0
RW RW R/W RW RW R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 N
6 PWMWAIT PWM Waits Before Loading New Configuration
0 = New PWM configuration is loaded at the
end of PWM cycle
1 = The update of the PWM configuration only
occurs when the end of the PWM is reached
and the bit is set to 0
5 PWMCLRALL | PWM Clears All Channels

0 = No Action

1 = Simultaneously clears all the flags and all
the PWM channel timers

This bit is automatically cleared by hardware

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 PWMLDPOL7 | Read:

0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

Write

In PWM Mode

0 = PWM 7 cycle starts with a low level
1 =PWM 7 cycle starts with a high level
In Timer Mode

0 = No action

1 = PWM timer 7 value is cleared to 0

4 PWMLSBMSB PWM LSB/MSB Select
0 = Selected PWM LSB SFR is addressed
1 = Selected PWM MSB SFR is addressed

3 PWMMIDEND PWM MID/END Register
0 = Selected PWM MID SFR is addressed
1 = Selected PWM END SFR is addressed

2:0 PWMCHI[2:0] PWM Channel Select
000 = PWMO on P2.0 (P5.0)
001 = PWM1 on P2.1 (P5.1)
010 = PWM2 on P2.2 (P5.2)
011 = PWM3 on P2.3 (P5.3)
100 = PWM4 on P2.4 (P5.4)
101 = PWMS5 on P2.5 (P5.5)
110 = PWM6 on P2.6 (P5.6)
111 = PWM7 on P2.7 (P5.7)

6 PWMLDPOL6 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

Write

In PWM Mode

0 = PWM 6 cycle starts with a low level
1 = PWM 6 cycle starts with a high level
In Timer Mode

0 = No action

1 = PWM timer 6 value is cleared to 0

The PWM channels are configured one at the time.
This topology has been adopted in order to minimize
the number of SFR registers required to access the
PWM modules.

In applications where multiple PWM channels need to
be configured simultaneously, the user can set the
PWMWAIT bit of the PWMCFG register, configure
each one of the PWM channels, and then clear the
PWMWAIT bit. The PWM configurations will then be
updated at the end of the next PWM cycle, after the
PWMWAIT bit has been cleared.

TABLE 113:PWM DATA REGISTER SFR ACH

5 PWMLDPOL5 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

Write

In PWM Mode

0 = PWM 5 cycle starts with a low level
1 = PWM 5 cycle starts with a high level
In Timer Mode

0 = No action

1 = PWM timer 5 value is cleared to 0

4 PWMLDPOL4 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

Write

In PWM Mode

0 = PWM 4 cycle starts with a low level
1 = PWM 4 cycle starts with a high level

In Timer Mode
0 = No action
1 = PWM timer 4 value is cleared to 0

3 PWMLDPOL3 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

Write

In PWM Mode

0 = PWM 3 cycle starts with a low level
1 = PWM 3 cycle starts with a high level
In Timer Mode

0 = No action

1 = PWM timer 3 value is cleared to 0

7 6 5 4 3 2 1 0
RW RW RIW RIW RW RW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 PWMDATA[7:0] PWM Data Register

The PWM data register serves to configure the
selected channel MSB/LSB value of either the MID or
END point, as specified in the PWMCFG register.

The PWMIDx defines the actual timer value and the
PWMEND defines the maximum timer count value
before it rolls over.

The PWMLDPOL register controls the output polarity
of each one of the PWM modules or clears the timer’s
value when the PWM modules operate as general
purpose timers.

2 PWMLDPOL2 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

Write

In PWM Mode

0 = PWM 2 cycle starts with a low level
1 = PWM 2 cycle starts with a high level

In Timer Mode
0 = No action
1 = PWM timer 2 value is cleared to 0

1 PWMLDPOL1 | Read:
0 = Last configuration has been loaded in PWM

1 = Last configuration has not been loaded

www.ramtron.com

page 62 of 99

VRS51L2070

RAMTRSN

Write

In PWM Mode

0 = PWM 1 cycle starts with a low level
1 =PWM 1 cycle starts with a high level
In Timer Mode

0 = No action

1= PWM timer 1 value is cleared to 0

0 PWMLDPOLO | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

11.3 PWM Alternate Mapping

Bit 6 of the DEVIOMAP register (SFR E1h) controls the
mapping of the PWM module outputs, as shown in the
following table:

TABLE 117: PWM MODULES OUTPUT MAPPING

Write

In PWM Mode

0 = PWM 0 cycle starts with a low level
1= PWM 0 cycle starts with a high level

In Timer Mode
0 = No action
1 = PWM timer 0 value is cleared to 0

DEVIOMAP.6 PWM 7-0
Bit Value

0 (Reset) P2.7 - P2.0
1 P5.7 — P5.0

11.2 PWM Module Clock Configuration
Register

One system clock prescaler is associated with PWM
modules 0 to 3, while another is associated with PWM
modules 4 to 7. The PWM clock prescalers enables
the PWM output frequency to be adjusted to match
specific application needs, if required. The PWM clock
prescalers are configured via the PWMCLKCFG
register. The four upper bits of this register control the
clock for PMM modules 4 to 7, and the four lower bits
control the clock source for PWM modules 0 to 3.

The PWM module clock configuration register controls
the prescale value applied to the PWM modules’ input
clock, when the PWM modules are configured to
operate as either PWMs or general purpose timers.

TABLE 115: PWM cLock PRESCALER CONFIGURATION REGISTER - PWMCLKCFG AFH

7 6 5 4 3 2 1 0
RIW R/W R/W R/W R/W R/W R/W R/W.
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:4 U4PWMCLK3(3:0] PWM Timer 7, 6, 5,:4 Clock Prescaler
* see table below
3:0 L4PWMCLK3[3:0] PWM Timer 3, 2, 1,:0 Clock Prescaler
* see table below

The following table shows the system clock division
factor applied to the PWM modules for a given
PWMCLKCFG nibble.

TABLE 116: PWM PRESCALER VALUES

U4/LAPWMCLK | Clock U4/LAPWMCLK | Clock

Value (4 bit) Prescaler Value (4 bit) Prescaler
0000 Sys Clk / 1 1000 Sys Clk / 256
0001 Sys Clk /2 1001 Sys Clk / 512
0010 Sys Clk / 4 1010 Sys Clk / 1024
0011 Sys Clk/ 8 1011 Sys Clk / 2048
0100 Sys Clk / 16 1100 Sys Clk / 4096
0101 Sys Clk / 32 1101 Sys Clk / 8192
0110 Sys Clk / 64 1110 Sys Clk/ 16384
0111 Sys Clk / 128 1111 Sys Clk/ 16384

Note that the PWM5 and PWM6 outputs have priority
over the TOEX and T1EX inputs.

www.ramtron.com

page 63 of 99

VRS51L2070

RAMTRSN

11.4 PWM Examples Program
11.4.1 PWM Basic Configuration

The following example program shows the basic
configuration of PWM modules #0, 1,2, 4 & 5

//. //

/I VRS51L2070-PWM_basic_SDCC.c //
Nt
n

/I DESCRIPTION: VRS51L2070 PWMs Basic initialization Demonstration Program.

Configure PWMO as 8 bit resolution (25% duty)

A Configure PWM1 as 12 bit resolution (50% duty)

A Configure PWM2 as 16 bit resolution (75% duty)

1 Configure PWM4 as 8 bit resolution and prescaler = 4 (25% duty)

" Configure PWM5 as 16 bit resolution and prescaler = 4 (75% duty)

1/- |
/I Rev 1.0

/I Date: June 2005
//

#include <VRS51L2070_SDCC.h>
/I - function prototypes
void delay(unsigned int);

void main (void) {
PERIPHEN2 = 0x02; /[Enable PWM SFR

/ICLEAR All PWM Channels
PWMCFG = 0x20;

/I Configure the PWM prescaler
PWMCLKCFG = 0x20; /I Apply a clock prescaler (div / 4) on PWM 7:4
/I Configure PWM Polarity
PWMPOL = 0x00; /ISet all PWM in normal polarity

//PWM output = 0 until

/IPWMMID Value is reached

1l
/IConfigure PWMO END value = Ox00FF (8bit)

PWMCFG = 0x58; /IPoint to PWMO END MSB
PWMDATA = 0x00; //Set Max Count MSB = OxFF
PWMCFG = 0x48; //Point to PWMO0 END LSB
PWMDATA = OxFF; /ISet PWM MID MSB = 0x00 (8bit)

/IConfigure PWMO MID value (Duty = 25%)

PWMCFG = 0x50; /IPoint to PWMO0 MID MSB
PWMDATA = 0x00; //Set PWM MID MSB = 0x00
PWMCFG = 0x40; /IPoint to PWMO MID LSB
PWMDATA = 0xBF; /ISet PWM MID LSB = 0xBF

/- -1/
/IConfigure PWM1 END value = OxOFFF (12bit)

PWMCFG = 0x59; //Point to PWM1 END MSB
PWMDATA = 0x0F; //Set Max Count MSB = 0x0F
PWMCFG = 0x49; /IPoint to PWM1 END LSB
PWMDATA = 0xFF; //Set Max Count = OxFF
/IConfigure PWM1 MID value (Duty = 50%)

PWMCFG = 0x51; //Point to PWMO MID MSB
PWMDATA = 0x08; //Set PWM MID MSB = 0x08
PWMCFG = 0x41; /[Point to PWMO MID LSB
PWMDATA = 0x00; //Set PWM MID LSB = 0x00
Mmoo

/IConfigure PWM2 END value = OxFFFF (16bit)

PWMCFG = 0x5A; //Point to PWM2 END MSB
PWMDATA = OxFF; //Set Max Count MSB = OxFF
PWMCFG = 0x4A; /IPoint to PWM2 END LSB
PWMDATA = OxFF; //Set Max Count = OxFF
/IConfigure PWM2 MID value (duty = 75%)

PWMCFG = 0x52; /IPoint to PWM2 MID MSB
PWMDATA = 0x40; /ISet PWM MID MSB = 0x04
PWMCFG = 0x42; //Point to PWM2 MID LSB
PWMDATA = 0x00; //Set PWM MID LSB = 0x00

1l
/IConfigure PWM4 END value = 0x00FF (8 bit) (Clock Prescaler = 4)
PWMCFG = 0x5C; //Point to PWM4 END MSB

PWMDATA = 0x00; //Set Max Count MSB = OxFF
PWMCFG = 0x4C; /[Point to PWM4 END LSB
PWMDATA = OxFF; //Set Max Count LSB = OxFF
/IConfigure PWM4 MID value (duty = 25%)

PWMCFG = 0x54; /[Point to PWM4 MID MSB
PWMDATA = 0x00; //Set PWM MID MSB = 0x00
PWMCFG = 0x44; /[Point to PWM4 MID LSB
PWMDATA = 0xBF; //Set PWM MID LSB = OxBF

/IConfigure PWM5 END value = OxFFFF (16bit) (Clock Prescaler = 4)

PWMCFG = 0x5D; /[Point to PWM5 END MSB
PWMDATA = OxFF; //Set Max Count MSB = OxFF
PWMCFG = 0x4D; /IPoint to PWM5 END LSB
PWMDATA = OxFF; //Set Max Count = OxFF
/IConfigure PWM5 MID value (duty = 75%)
PWMCFG = 0x55; /[Point to PWM5 MID MSB
PWMDATA = 0x40; //Set PWM MID MSB = 0x04
PWMCFG = 0x45; /[Point to PWM5 MID LSB
PWMDATA = 0x00; /ISet PWM MID LSB = 0x00
/[Enable PWMO, PWM1, PWM2, PWM4 & PWM5 Modules
PWMEN = 0x37;
PWMCFG &= 0x1F; /[Clear the PWMWAIT bit to initiate
/lthe PWMs operation
while(1);

Y/ End of main

11.4.2 PWM Configuration and Control
Functions

I i
1/ VRS51L2070-PWM_CFG_function_SDCC.c n

/1 //

/I DESCRIPTION: PWM configuration and control Functions
I

1/ /]

#include <VRS51L2070_SDCC.h>

/I --- functions prototypes

void PWMConfig(char channel,int endval,int midval);
void PWMdata8bit(char,char);

void PWMdata16bit(char,int);

void delay(unsigned int);

void delay(unsigned int);

void main (void) {
int cptr = 0x00;

/I PERIPHEN2 = 0x02; /[Enable PWM SFR

/ICLEAR All PWM Channels
PWMCFG = 0x20;

/I Configure the PWM prescaler

PWMCLKCFG = 0x00; /I Apply a clock prescaler (div / 1) on all PWM

/I Configure PWM Polarity
PWMLDPOL = 0x00; //Set all PWM in normal polarity
/IPWM output = 0 until

/I--Configure PWM5 as 8bit resolution, END = 0xFF, PWM MID = 0x000
PWMConfig(0x05, 0xOFF,0x000);

/I--Configure PWMO as 8bit resolution, END = 0xFFF, PWM MID = 0x0000
PWMConfig(0x02, 0xFFF,0x000);

/IContinuously vary the PWM2 and PWMS5 values
dof
for(cptr = OxFFO; cptr > 0x00; cptr--)
{
PWMdata16bit(0x02,cptr);
PWMdata8bit(0x05,cptr>>4);
delay(1);

Ywhile(1);

www.ramtron.com

page 64 of 99

VRS51L2070

Y/ End of main

//.

I memmeen Individual Functions ~ --------nnmmmmmmmemeeeee

1/-

/]. //
1l -- PWMConfig "
Vi /)
/I Description: configure PWM channel "

1]. n
void PWMConfig(char channel,int endval,int midval)

char pwmch;
char pwmready = 0x00;
channel &= 0x07; /IMake sure PWM ch number <=7
/IWait Last configuration to be loaded
dof

pwmready = PWMLDPOL;

}while(pwmready != 0x00);

/[Define PWM Enable section

PERIPHENZ |= 0x02; //[Enable PWM SFR
/I--Define the value to put into the PWMEN register
switch(channel)

{

case 0x00 : pwmch = 0x01;
break;

case 0x01 : pwmch = 0x02;
break;

case 0x02 : pwmch = 0x04;
break;

case 0x03 : pwmch = 0x08;
break;

case 0x04 : pwmch = 0x10;
break;

case 0x05 : pwmch = 0x20;
break;

case 0x06 : pwmch = 0x40;
break;

case 0x07 : pwmch = 0x80;
break;

Y/end of switch

PWMEN |= pwmch; //Enable the Selected channel

/IConfigure PWM END point
PWMCFG = (channel + 0x58); //Set PWM configuration register to point to

/lthe MSB of End value and set the PWMWAIT bit
/Ito prevent the PWM configuration to be loaded
I/before the configure sequence is completed
PWMDATA = endval >> 8;
PWMCFG &= OxEF; //Set PWM configuration register to point to
/lthe LSB of End value

PWMDATA = endval;
/IConfigure PWM MID point
PWMCFG = (channel + 0x50); /ISet PWM configuration register to point to

/lthe MSB of MID value and set the PWMWAIT bit
/lto prevent the PWM configuration to be loaded
I/before the configure sequence is completed
PWMDATA = midval >> 8;
PWMCFG &= OxEF; //Set PWM configuration register to point to
/lthe LSB of End value

PWMDATA = midval;

PWMCFG &= 0x3F; //Allows PWM update upon end of next PWM cycle

}Ylend of PWMData16bit()

/-

/I -- PWMdata8bit
n

/I Description: Allow PWM channel data update "
I

(8bit data I

/-

void PWMdata8bit(char channel,char pwmdata)

{
channel &= 0x07;

/IMake sure PWM ch number <=7

/I--check that te last configuration has been loaded

PWMCFG = (channel + 0x40);

PWMDATA = pwmdata;
PWMCFG &= 0x3F;

Y/end of PWMData8bit()

/-

//\Write new value in PWM Config

Ilprevent PWM configuration to be loaded
IIbefore the configure sequence is completed
//Write new Data into the PWM registers

/IAllows PWM update upon end of next PWM cycle

/I -- PWMdata16bit
1

/I Description: Allow PWM channel data update I
I

(16bit data)I

/-

void PWMdata16bit(char channel,int pwmdata)

{

channel &= 0x07;

PWMCFG = (channel + 0x50);

PWMDATA = pwmdata >>8;

PWMCFG &= OxEF;

/IMake sure PWM ch number <=7
//Set PWM configuration register to point to
/lthe MSB of Data value and set the PWMWAIT bit
/land set the PWMWAIT bit to prevent the
/IPWM configuration to be loaded
IIbefore the configure sequence is completed

//Set PWM configuration register to point to

/lthe LSB of Data value

PWMDATA = pwmdata;
PWMCFG &= 0x3F;

Y/lend of PWMData16bit()

/IAllows PWM update upon end of next PWM cycle

11;
/;- DELAY1MSTO : 1MS DELAY USING TIMERO A

1
II; CALIBRATED FOR 40MHZ

I
I

/]

vbid delay(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

x = PERIPHEN1;
X |= 0x01;
PERIPHEN1 = x;

dlaisloop = dlais;
while (dlaisloop > 0)

{
THO = 0x63;
TLO = 0xCO;

TOT1CLKCFG = 0x00;
TOCON = 0x04;

do{
x=TOCON;
x=x & 0x80;
Iwhile(x==0);

TOCON = 0x00;

dlaisloop = dlaisloop-1;

}lend of while dlais...

x = PERIPHEN1;

x = x & OxFE;

PERIPHEN1 = x;
Y/End of function delais

/ILOAD PERIPHEN1 REG
/IENABLE TIMER 0

/ITIMERO RELOAD VALUE FOR 1MS AT 40MHZ

//INO PRESCALER FOR TIMER 0 CLOCK

/ISTART TIMER 0, COUNT UP

//Stop Timer 0

/ILOAD PERIPHEN1 REG
/IDISABLEBLE TIMER 0

www.ramtron.com

page 65 of 99

VRS51L2070

RAMTRSN

11.5 Using PWM Modules as Timers

By appropriately configuring the PWMTMREN SFR,
the PWM modules can also operate as general
purpose 16-bit timers. The following table describes
the PWMTMREN register:

TABLE 118: PWM TIMER MODE ENABLE REGISTER - PWMTMREN SFR ADH

7 6 5 4 3 2 1 0
RW RW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
PWM 7 Module Operating Mode
7 PWM7TMREN 0 = PWM 7 module is configured as PWM

1 =PWM 7 module is configured as timer

PWM 6 Module Operating Mode
6 PWM6TMREN 0 = PWM 6 module is configured as PWM
1 = PWM 6 module is configured as timer

PWM 5 Module Operating Mode
5 PWM5TMREN 0 = PWM 5 module is configured as PWM
1 =PWM 5 module is configured as timer

PWM 4 Module Operating Mode
4 PWM4TMREN 0 = PWM 4 module is configured as PWM
1 = PWM 4 module is configured as timer

PWM 3 Module Operating Mode
3 PWM3TMREN 0 = PWM 3 module is configured as PWM
1 =PWM 3 module is configured as timer

PWM 2 Module Operating Mode
2 PWM2TMREN 0 = PWM 2 module is configured as PWM
1 = PWM 2 module is configured as timer

PWM 1 Module Operating Mode
1 PWM1TMREN 0 = PWM 1 module is configured as PWM
1 = PWM 1 module is configured as timer

PWM 0 Module Operating Mode
0 PWMOTMREN 0 = PWM 0 module is configured as PWM

1 =PWM 0 module is configured as timer

When operating in timer mode, the PWM module timer
will count from 0000h up to the maximum PWM timer
value defined by the PWM MID sub registers, which
are accessible through the PWMCEG register.

TABLE 119: SUMMARY OF PWM MID SUB REGISTERS ACCESS

PWMCEFG bit PWMCEFG bit
PWMLSBMSB PWMMIDEND
PWM timer MSB 0 1
max count value
PWM timer MSB 1 1
max count value

Once the PWM MID value is reached, the PWM timer
overflow is set and the PWM timer rolls over to 0000h.

The PWM timer flags are raised when the timer
reaches the maximum value set by PWMMIDH and
PWMMIDL, and then it is reset and starts again.

TaBLE 120: PWM TIMER FLAGS REGISTER - PWMTMRF SFR AEH

7 6 5 4 3 2 1 0
RIW RIW RW RW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bit Mnemonic Description
PWM 7 Module Timer Flag
0 = No Overflow

1= PWM Timer 7 Overflow

7 PWM7TMRF

PWM 6 Module Timer Flag
0 = No overflow
1 = PWM Timer 6 Overflow

6 PWM6TMRF

PWM 5 Module Timer Flag
0 = No Overflow
1 = PWM Timer 5 Overflow
PWM 4 Module Timer Flag
0 = No Overflow
1 = PWM Timer 4 Overflow

5 PWMS5TMRF

4 PWM4TMRF

PWM 3 Module Timer Flag
0 = No Overflow
1 = PWM Timer 3 Overflow

3 PWM3TMRF

PWM 2 Module Timer Flag
0 = No Overflow
1 = PWM Timer 2 Overflow
PWM 1 Module Timer Flag
0 = No Overflow
1 = PWM Timer 1 Overflow

2 PWM2TMRF

1 PWM1TMRF

PWM 0 Module Timer Flag
0 = No Overflow
1 = PWM Timer 0 Overflow

0 PWMOTMRF

FIGURE 29: PWM As TIMERS OVERVIEW

Div Ratio:
SysClk /1
N Sys Clk / 16384

Div Ratio:
SysClk /1
Sys Clk / 16384 PUMZEN

www.ramtron.com

page 66 of 99

VRS51L2070 RaAMTRIN

H H H #include <VRS51L2070_SDCC.h>
11.6 Configuring the PWM Timers void main (void){
int cptr = 0x00;
Configuring the PWM modules to operate in PWM char flagread;
timer mode requires the following steps: PERIPHEN2 |= 0x02; //Enable PWM SFR
1. Activate the PWMSFR register #iConfigure Port! as output
2. Configure the PWM clock prescaler (if P1PINCFG = 0x00;
required) /iClear All PWM Channels
3. Setthe PWMLDPOL register to 00h I/ PWMGCFG = 0x20:
4. Configure the PWM timer maximum count # Gonfigure the PWM prescaler o a clodk e () o PWM 3.0
. . = 0x03; pply a clock prescaler (div / 8) on :
value by setting the PWM MID sub-registers
] : H H /I Configure PWM Polarity
5. Configure the PWM timer interrupts (if PWMLDPOL = 0x00; //Set all PWM in normal polarity
required) /IPWM output = 0 until
6. Configure the PWM modules as timers //--Configure PWMO as Timer (will be monitored by pooling)
7. Enable the PWM mOdUleS /I PWM Timer 0 counts from 0000 to 01FOh
PWMCFG = 0x10; /[Point to MSB MID
Follow the code example below to perform these seven PWMDATA = 0x01;
steps : PWMCFG = 0x00; //Point to LSB MID
) PWMDATA = 0xFO0;
PERIPHEN2 |= 0x02; /[Enable PWM SFR /I--Activate the PWM modules and configure the PWM modules as timers
) PWMEN |= 0x01;
/I--Configure the PWM prescaler PWMTMREN |= 0x01; //[Enable PWM 0 as Timer
PWMCLKCFG = 0x03; //Apply a clock prescaler (div / 8) on PWM 3:0
. . /[--Configure PWMS5 as Timer (will be monitored by interrupt)
/I--Configure PWM Polarity /I PWM Timer 5 counts from 0000 to FOOOh
PWMLDPOL = 0x00; //Set all PWM in normal polarity PWMCFG = 0x15; //Point to MSB MID
//PWM output = 0 until PWMDATA = 0xFO; I
/I--Configure PWMS5 as timer PWMCFG = 0x05; /IPoint to LSB MID
/I PWM Timer 5 counts from 0000 to FOOOh PWMDATA = 0x00;
PWMCFG = 0x15; /IPoint to MSB MID
PWMDATA = 0xFO0; /ISet PWM as Timer Max MSB /I--Configure and enable PWM as timer interrupt to monitor PWMS5 only
) INTSRC2 &= 0xDF; /IPWMT:4 Timer module interrupt
PWMCFG = 0x05; /[Point to LSB MID INTPINSENS1 = OxDF; I/ sensitive on high level(0)
PWMDATA = 0x00; //1Set PWM as Timer Max LSB INTPININV1 = OxDF; //Set INTO Pin sensitivity on normal level(0)
INTEN2 |= 0x20; //Enable PWM?7:4 timer module interrupt
/I--Configure and Enable PWM as timer Interrupt to monitor PWM5 only
INTSRC2 &= OxDF; /IPWM?7:4 Timer module interrupt /I--Activate the PWM modules and configure the PWM modules as timers
INTPINSENS1 = 0xDF; I sensitive on high level(0) PWMEN [= 0x20; /[Enable PWM 5
INTPININV1 = OxDF; //Set INTO Pin sensitivity on normal level(0) PWMTMREN |= 0x20; //Enable PWM 5 as Timer
INTEN2 |= 0x20; //[Enable PWM7:4 Timer module interrupt
GENINTEN = 0x03; /[Enable global interrupt
/I--Activate the PWM module and cofigure the PWM modules 5 as timer while(1){
PWMEN |= 0x20; //[Enable PWM 5
PWMTMREN |= 0x20; /[Enable PWM 5 as Timer /W ait for PWMO as timer overflow Flag PWMO timer flag pooled
do
GENINTEN = 0x03; //[Enable Global interrupt {

flagread = PWMTMREF;
flagread &=0x01;
}while(flagread == 0);

11.7 PWMs as Timers Example Programs

PWMTMRF &= OxFE; /IClear the PWMO Timer Flag
. - P1=P120x01; /[Toggle P1.0
11.7.1 Configuring PWMO and PWM5 as Ylend of while(1)
Timers Y/ End of main
The following example program demonstrates how to I "
initialize PWMO and PWM5 as general purpose timers, fi-— Interrupt INT13 - PWM7:4 as Timer /
and how to monitor the PWM timer’s overflow flags by void INT13Interrupt(void) interrupt 13
pooling or via an interrupt. {
char flagread;
//- //
/I VRS51L2070-PWM_as_Timer1_SDCC.c.c B n INTEN2 = 0x00; /IDisable PWM7:4 Timer module interrupt
/I
) flagread = PWMTMREF; /IRead PWM Timer OV Flags
// DESCRIPTION: PWM as Timer Example Program flagread &= 0x20; /ICheck if PWM Timer 5 OV Flag is active
" Enable and configure PWM Timer 0 if(flagread != 0x00)
" Apply a clock prescaler on PWM Timer 0 (div/8) P1 = P140x20; /lToggle P1.5
" Enable and configure PWM Timer 5
4 Monitor PWM Timer 0 OV Flag by pooling PWMTMRF &= 0xDF; /IClear the PWM Timer 5 OV Flag
I When PWM Timer 0 Overflow, toggle P1.0 pin
I Monitor PWM Timer 5 OV Flag by interrupt INTEN2 |= 0x20; /[Enable PWM7:4 Timer module interrupt
A When PWM Timer 5 Overflow interrupt occurs toggle P1.5 pin
I 4 Ylend of INTO interrupt

www.ramtron.com page 67 of 99

VRS51L2070

RAMTRSN

12 Enhanced Arithmetic Unit 12.2 Arithmetic Unit Control Registers

The VRS51L2070 includes a hardware-based, With the exception of the barrel shifter, the arithmetic
enhanced arithmetic unit, which enables fast arithmetic unit’s operation is controlled by two SFR registers:
operations. This_ arithmetic unit i§ similar Fo the o AUCONFIG1

MULT/ACCU unit on the Versa Mix 8051, with the o AUCONFIG2

added ability to support 16-bit division.

The following tables describe these control registers:

12.1 VRS51L2070 Arithmetic Unit Features

TABLE 121: ARITHMETIC CONFIG REGISTER 1 — AUCONFIG1 SFR C2H

The main features of the arithmetic unit are: 7 6 5 4 3 2 1 0
RW RW R/W R/W R/W R/W RW R/W
o0 Hardware calculation engine 0 0 0 0 4 0 g 0
o0 Calculation result is ready as soon as the input o o : -
. | nemonic escription
registers are loaded 7 CAPPREV Read: Always Read as 0

0 Signed mathematical calculations
0 Unsigned MATH operations are possible if the
MUL engine operands are limited to 15 bits in

Capture Previous Result Enable

0 = Previous result capture is disabled

1 = Capture the previous result if CAPMODE bit
is set to 1

length 6 CAPMODE
0 Auto/Manual reload of AU result register
0 Easy implementation of complex mathematical

0 = The capture of previous result is automatic
each time a write operation is done to the AUO
1 = The capture of the previous result is manual
and occurs when the CAPPREYV bit is set to 1

operations 5 OVCAPEN
0 16-bit and 32-bit overflow flag
0 32-bit overflow can set an interrupt

Capture Result on 32-Bit Overflow
0 = No result capture is performed
1 = The AU result is captured and stored when
a 32-bit overflow condition occurs

o Arithmetic unit operand registers can be 4 READCAP

cleared individually or simultaneously

Read Stored Result
0 = AURES contains current operation result
1 = AURES contains previous result

o Overflow flags can be configured to stay active % ADDSRCI[1:0]
until manually cleared

o0 Can store and use results from previous
operations

The arithmetic unit can be configured to perform the
following operations:

FIGURE 30: VRS51L2070 ARITHMETIC UNIT OPERATIONS

AU Adder Input n

32-bit Addition Source
B Input
00 =0 (No Add)
01 =C (std 32-bit reg)
10 = AUPREV
11 = AUC (std 32-bit reg)
A Input
00=Multiplication
01=Multiplication
10=Multiplication
11= Concatenation of {A, B} + C for 32-bit
addition

AU Multiplication Command

00 = AUA x AUB
01 = AUA x AUA
10 = AUA x AUPREV (16 LSB)
11 = AUA x AUB

Notes

In Divider Mode

MULTA_IN = MULT_IN = 0x0000

In Multiplier Mode

DIVA_IN = 0x0000 and DIVB_IN = 0x0001

ADD32 + —»‘ (AUA, AUB) + AUC = AURES ‘
ADD32
170 MULCMD[1:0]
Divie —ﬁ (AUA/ AUB) = AURES ‘
(AUA x AUB) + AUC = AURES
> (AUA x AUB) + 0 = AURES
MULTL6 + (AUA x AUB) + AUPREV = AURES
ADD32
T (AUAxAUA) + AUC = AURES
\ 4 (AUA x AUA) + 0 = AURES
(AUA x AUA) + AUPREV = AURES
(AUA x AUPREV(16lsb) + AUC - AURES
(AUA x AUPREV(16lsb) + 0 = AURES

(AUA x AUPREV(16Isb) + AUPREV = AURES

Where AUA (multiplier), AUB (multiplicand), AUC
(accumulator), AURES (result) and AUPREYV (previous
result) are 16, 16, 32, 32 and 32-bits wide,
respectively.

www.ramtron.com

page 68 of 99

VRS51L2070

RAMTRSN

TABLE 122:

ARITHMETIC CONFIG REGISTER 2 - AUCONFIG2 SFR C3H

7

6 5

4 3 2 1

w

W W

RW R R R

o| ;o

0

0 0

0 0 0 0

Bit

Mnemonic

Description

75

AUREGCLR
[2:0]

Read: Always read as 0

Arithmetic Unit Operand Registers Clear
000 = No clear

001 = Clear AUA

010 = Clear AUB

011 = Clear AUC

100 = Clear AUPREV

101 = Clear all AU module registers and
overflow flags

110 = Clear overflow flags only

12.4 AUA and AUB Multiplication
(Addition) Input Registers

The AUA and AUB registers serve as 16-bit input
operands when performing multiplication.

When the arithmetic unit is configured to perform 32-bit
addition, the AUA and the AUB registers are
concatenated. In this case, the AUA register contains
the upper 16 bits of the 32-bit operand and the AUB
contains the lower 16 bits.

TABLE 123: ARITHMETIC UNIT A REGISTER BIT [7:0] - AUAO SFR A2H

AUINTEN

Arithmetic Unit Interrupt Enable

0 = Arithmetic unit interrupt is disabled
=-Arithmetic unit interrupt is enabled in divider

mode

Not used, Read as 0

N |

DIVOUTRG

AU division is out of range flag
This flag is set if AUB = 0x0000 or (AUA =
0x8000 and AUB = OxFFFF)

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bit Mnemonic Description

7:0 AUA[7:0] LSB of the A Operand Register

AUOV16

Arithmetic Unit 16-Bit Overflow Flag

0 = No 16 bit overflow condition detected

1 = a 16-bit overflow occurred

Will occur if there is a carry on from bit 15 to bit
1,6 but also from bit 31 to bit 32

TABLE 124: ARITHMETIC UNIT A REGISTER BIT [15:8]- AUAL SFR A3H

AUOV32

Arithmetic Unit 32-Bit Overflow Flag
0 = No 16 bit overflow condition detected
1 = Operation result is larger than 32 bits

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUA[15:8] MSB of the A Operand Register

12.3 Arithmetic Unit Data Registers

TABLE 125:ARITHMETIC UNIT B REGISTER BIT [7:0] - AUBO SFR B2H

The arithmetic unit data registers include operand and
result registers that serve to store the numbers being
manipulated in mathematical operations. Some of
these registers are uniquely for addition (such as
AUC), while others can be used for all operations. The
use of the arithmetic unit operation registers is
described in the following sections.

and Addition Operations

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUB[7:0] LSB of the B Operand Register for Multiplication

TABLE 126:ARITHMETIC UNIT DivisioN MoODE REGISTER — AUBODIV SFR B1H
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUBODIV[7:0] | Writing to this byte instead of AUBO will set the
arithmetic unit to divisor mode
TABLE 127: ARITHMETIC UNIT B REGISTER BIT [15:8] - AUB1 SFR B3H
7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUB[15:8] MSB of the B Operand Register

www.ramtron.com

page 69 of 99

VRS51L2070

RAMTRSN

12.5 AUC Input Register

The AUC register is a 32-bit register used to perform
32-bit addition. The AUPREV register can be
substituted with the AUC register or by 0 in the 32-bit
addition.

TABLE 128: ARITHMETIC UNIT C REGISTER BIT [7:0] - AUCO SFR A4H

TABLE 132: ARITHMETIC UNIT RESULT REGISTER BIT [7:0] - AURESO SFR B4H

7 6 5 4 3 2 1 0
RIW RIW RW RIW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUCI[7:0] Bit [7:0]of the C Operand Register

TABLE 129: ARITHMETIC UNIT C REGISTER BIT [15:8] - AUC1 SFR A5H

7 6 5 4 3 2 1 0
RIW RIW RW RW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUCI[15:8] Bit [15:8] of the C Operand Register

TABLE 130:ARITHMETIC UNIT C REGISTER BIT [23:16] - AUC2 SFR A6H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RIW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUC[23:16] Bit [23:16] of the C Operand Register

TABLE 131:ARITHMETIC UNIT C REGISTER BIT [31:24] — AUC3 SFR A7H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUC[31:24] Bit [31:24] of the C Operand Register

12.6 The Arithmetic Unit AURES Register

The AURES register, which is 32 bits wide, is read-only
and contains the result of the last arithmetic unit
operation. The AURES register is located at the output
of the barrel shifter.

When the arithmetic unit is configured to perform
multiplication and/or addition, the AURES operates as
a 32-bit register that contains the result of the previous
operation(s).

However when the arithmetic unit has performed a 16-
bit division, the upper 16 bits of the AURES register
contain the quotient of the operation, while the lower
16 bits contain the remainder of the division operation.

The barrel shifter is deactivated when the arithmetic
unit is performing 16-bit division.

Four SFR registers located in SFR Page 1 provide
access to the arithmetic unit AURES register.

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AURESJ[7:0] Bit [7:0]of the RESULT Register
TABLE 133: ARITHMETIC UNIT RESULT REGISTER BIT [15:8] - AURES1 SFR 5H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AURESJ[15:8] Bit [15:8] of the RESULT Register
TaBLE 134: ARITHMETIC UNIT RESULT REGISTER BIT [23:16] - AURES2 SFR B6H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AURES[23:16] Bit [23:16] of the RESULT Register
TaBLE 135: ARITHMETIC UNIT RESULT REGISTER BIT [31:24] - AURES3 SFRB7H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AURES[31:24] Bit [31:24] of the RESULT Register

www.ramtron.com

page 70 of 99

VRS51L2070

RAMTRSN

12.7 AUPREV Register

The AUPREV register can automatically or manually
save the contents of the AURES register and re-inject
it into the calculation. This feature is especially useful
in applications where the result of a given operation
serves as one of the operands for the next one.

As previously mentioned, there are two ways to load
the AUPREV register. This is controlled by the
CAPMODE bit value as follows:

CAPMODE = 0:
Auto AUPREYV load, by writing into the AUAO register.
Selected when CAPPREV = 0.

CAPMODE = 1:
Manual load of AUPREV when the CAPPREYV bit is set
to 1.

Auto loading of the AUPREV register is useful in FIR
filter calculations. For example, it is possible to save a
total of eight MOV operations per tap calculation.

TABLE 136: ARITHMETIC UNIT PREVIOUS RESULT BIT [7:0] - AUPREVO SFR C4H

12.8 Multiplication and Accumulate
Operations
The multiplication and accumulate operations of the

arithmetic unit are defined by the MULCMD[1:0] and
ADDSRCI1:0] bits of the AUCONFIG1 register.

TABLE 140: MULTIPLICATION OPERATIONS VS. MULCMD BIT oF THE AUCONFIG1

MULCMDI[1:0]

Multiplication Operation

00 AUA x AUB
01 AUA x AUA
10 AUA x AUPREV (16LSB)
11 AUA x AUA

TABLE 141: ADDITION OPERATIONS vS. ADDS

RC BIT oF THE AUCONFIG1

ADDSRC[1:0]

Addition operation

00 No addition

01 AUC

10 AUPREV[31:0]

11 32-bit addition of

[AUA,AUB] + AUC

The following figure provides a block diagram
representation of the arithmetic unit operation for
multiplication and addition.

FIGURE 31: ARITHMETIC UNIT MULTIPLICATION AND ADDITION OVERVIEW

Adder1
s

[Auat] Auro [aust | Aﬁ;o

Multiplicand 1
Ms Lst

Multiplicand 2
s LsB

[[Auat | AU:O | x|

Barrel Shifter

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUPREV[7:0] Bit [7:0]of the Previous Result Register
TABLE 137:ARITHMETIC UNIT PREVIOUS RESULT BIT [15:8] - AUPREV1 SFR C5H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUPREV[15:8] Bit [15:8] of the Previous Result Register
TABLE 138: ARITHMETIC UNIT PREVIOUS RESULT BIT [23:16] — AUPREV2 SFR C6H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUPREV[23:16] | Bit [23:16] of the Previous Result Register
TABLE 139: ARITHMETIC UNIT PREVIOUS RESULT BIT [31:24] — AUPREV3 SFR C7H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUPREV[31:24] | Bit [31:24] of the Previous Result Register

-—p

AUSHIFTCFG

AURES(3:0)
ms LSB

[T 1T

ADDSRC{1:0}

The following table provides examples of the
AUCONFIG and AUSHIFTCFG register values and the
corresponding math operations performed by the
arithmetic unit. It also provides the value that would be
present in the AURES register if the arithmetic unit
input registers were initialized to the following values:

AUA = 3322h

AUB =4411h

AUC =11111111h
AUPREYV = 12345678h

www.ramtron.com

page 71 of 99

VRS51L2070

RAMTRSN

TABLE 142: CONFIGURATION OF THE ARITHMETIC UNIT, OPERATION AND OUTPUT RESULT

AUCONFIG1 | AUCONFIG1 | Operation AURES
00h 01h AUA x AU! 0A369084h
00h 00h AUA x AUB 0D986D42h
00h 03h AUA x AUB 0D986D42h
00h 02h AUA x AUPREV15:0 114563F0h
00h 0Ch, (AUAAUB) + AUC] | 44335522h
0Dh,0Eh,0Fh | 32 bit addition
00h 04h (AUA x AUB)+ AUC | 1EA97E53h
01h 04h ((AUA x AUB)+ | 3D52FCA6h
AUC) x 2 (shift 2
left)
3Fh 04h ((AUA x AUB)+ | F54BF29h
AUC) /2
(shift 2 right)

Multiplication and accumulate operations take place
within one system clock cycle.

12.9 Division Operation (AUA /
AUB1:AUBODIV)

The VRS51L2070 arithmetic unit can be configured to
perform 16-bit division operations: the division of AUA
by AUB1,AUBODIV. The quotient of this operation is
stored in the AURES3, AURES2 registers, with the
remainder stored in the AURES1, AURESO registers
The following figure represents a 16-bit division.

FIGURE 32: ARITHMETIC UNIT DIVISION OVERVIEW

Division operat tion is
y writing LSB

riggd
Dividend Divisor / o
MSB LSB MSB LSB
AUAT] AUAO ‘ ‘ AUA1 IAUBODIV‘
Quotient Remainder
MSB LSB MSB LSB
[AURESs | AUREs2 | [AURES! [AURESO |

Writing the LSB of the divisor into the AUBODIV
register will trigger a division operation. Once the
division starts, the value written in the AUBODIV
register will be automatically transferred into the AUBO
register.

This operation is neither affected by the barrel shifter
nor the multiplication/addition operation, defined by the
AUCONFIG register.

The division operation takes five system clock cycles
to be complete.

12.10 Barrel Shifter

The arithmetic unit includes a 32-bit barrel shifter at the
output of the 32-bit addition unit. The barrel shifter is
used to perform right/left shift operations on the
arithmetic unit output. The shift operation takes only
one cycle.

The barrel shifter can be used to scale the output result
of the arithmetic unit.

The shifting range is adjustable from 0 to 16 in both
directions. The “shifted” value can be routed to:

o AURES
o AUPREV
o AUOV32

Moreover, the shift left operation can be configured as
an arithmetic or logical shift, in which the sign bit is
discarded.

TABLE 143: ARITHMETIC UNIT SHIFT REGISTER CONFIG - AUSHIFTCFG SFR C1H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 SHIFTMODE AU Barrel SHIFTER Shift Mode

0 = Shift value is unsigned
1 = Shift value is signed
AU Arithmetic Shift Enable
0 = Left shift is considered as logical shift
(sign bit is lost)
1 = Left shift is arithmetic shift where sign bit
is kept
The value of SHIFT[5:0] equals the amplitude of
the shift performed on the arithmetic unit result
register AURES
Positive value represent shift to the left
Negative value represent shift to the right

6 ARITHSHIFT

5:0 SHIFT[5:0]

The barrel shifter section operates independently of
the multiply and accumulate sections on the arithmetic
unit. As such, if the AUSHIFTCFG register bits 5:0 are
set to a value other than 0, the value of AUPREV, if
derived from the AURES register either automatically
or manually, will be affected by the barrel shifter.

When the arithmetic unit is configured to perform
multiplication and addition operations, the barrel shifter
is active and the shift operation performed depends on
the current value of the AUSHIFTCFG register. When
the arithmetic unit is configured to perform 16-bit
division, the barrel shifter is deactivated.

www.ramtron.com

page 72 of 99

VRS51L2070 RaAMTRIN

12.11 VRS51L2070 Arithmetic Unit Block Diagram

The following block diagram provides a hardware description of the registers and the other components that comprise
the arithmetic unit on the VRS51L2070.

FIGURE 33: ARITHMETIC UNIT FUNCTIONAL DIAGRAM

Multiplication / Addition

SFR registers

4 L

AUA1 (MSB)

[SHIFTMODE
SFR registers

AURES3 (MSB)

AURES
(SFR regs)

AURES
AB m Ty) s

] (Signed)

] - ’ >
|

|

[
[AUAO (LSB)
[
[

RDSTORED)| AURE82

AUB1 MSB AUC MANLOOP

) e) Cumuooe) AURES1

—»
AUBO (LSB
(LSB) AURESO (LSB)
AUBODIV (LSB) e

*For Division Operations Onl (16 LSB)

AUPREV |4 p| Stored
Result
Previous

AUPREV3 (MSB)

NN N Y

AUPREV2
[AUC3 (MSB)]
AUPREV1
[AUC2] 16 bit Division
AUPREVO (LSB)
[AUC1] |
AR A Quotient AESER) Arithmetic Unit Control SFR
[AUCO (LSB)] oy

AUB
AUB (Signed) | _Remainder AURES(1:0)
- ety

[AUCONFIG1]

AUCONFIG2

[AUSHIFTCFG }

www.ramtron.com page 73 of 99

VRS51L2070

RAMTRSN

12.12 Arithmetic Unit Example Programs

12.12.1 Basic Arithmetic Operations Using the
Arithmetic Unit

The following example program demonstrates the
required arithmetic unit configuration to perform
mathematical operations

/I /
/I VRS51L2070_MULTACCU1_SDCC.c //
//-

/

/I DESCRIPTION: VRS51L2070 Arithmetic Unit Demonstration Program
l

/I /
#include <VRS51L2070_SDCC.h>

//. /

I MAIN FUNCTION

1]. /

void main (void) {
PERIPHEN2 = 0x20;

/IEnable Arithmetic Unit

DEVMEMCFG = 0x01; /ISELECT SFR PAGE 1

/IConfigure Arithmetic Unit to perform math operations
/[Place Value in AUA

AUA1 = 0x33;
AUAO = 0x22;

/[Place Value in AUB
AUB1 = 0x44;
AUBO = 0x11;

/[Place Value in AUC

AUC3 = 0x11;
AUC2 = 0x11;
AUC1 = 0x11;
AUCO = 0x11;

/[Place Value in AUPREV
AUPREV3 = 0x12;
AUPREV2 = 0x34;
AUPREV1 = 0x56;
AUPREVO = 0x78;

//--Some operation examples--

/I To perform: [(AUAXAUA)+0]
AUCONFIG1 =0x01; //Set operation (AUA x AUA) + 0

//AURES = 0A369084h

1/l To perform: [(AUAXAUB)+0]

AUCONFIG1 = 0x00; //Set operation (AUA x AUB) + 0
/IAURES = 0D986D42h

I/l or

AUCONFIG1 =0x03; //Set operation (AUA x AUB) + 0
/IAURES = 0D986D42h

/ To perform: [(AUA x AUPREV[15:0]))+0]
AUCONFIG1 =0x02; //Set operation (AUAXAUPREV)+0
/IAURES = 114563F0h

/l To perform: [(AUA,AUB) + AUC] 32 bit addition
AUCONFIG1 =0x0C; //Set operation (AUA,AUB)+ AUC
/IAURES = 44335522h

llor...

AUCONFIG1 =0x0D; /ISet operation (AUA,AUB)+ AUC
/IAURES = 44335522h

llor...

AUCONFIG1 = 0x0E; /ISet operation (AUA,AUB)+ AUC
/IAURES = 44335522h

llor...

AUCONFIG1 = 0xO0F; //Set operation (AUA,AUB)+ AUC
/IAURES = 44335522h

/I To perform: [(AUA x AUB)+ AUC] No shift
AUCONFIG1 = 0x04; /ISet operation (AUA x AUB)+ AUC
AUSHIFTCFG = 0x00; /INo Shift

/IAURES = 1EA97E53h

/I To perform: [(AUA x AUB)+ AUC] x 2 (Shift one LEFT)

AUCONFIG1 = 0x04; /ISet operation (AUA x AUB)+ AUC

AUSHIFTCFG = 0x01; //Set barrel shifter to perform one SHIFT LEFT (logical)
/INo need to preset the AUSHIFTCFG register for every
/loperations

/IAURES = 3D52FCA6h

/I To perform: [(AUA x AUB)+ AUC]/ 2 (Shift one Right)

AUCONFIG1 = 0x04; /ISet operation (AUA x AUB)+ AUC

AUSHIFTCFG = 0x3F; /ISet barrel shifter to perform one SHIFT right
/INo need to preset the AUSHIFTCFG register for every
/loperations

/IAURES = F54BF29h

DEVMEMCFG = 0x00; /ISELECT SFR PAGE 0

while(1);
Y/ End of main

12.12.2 FIR Filter Function

The following example program shows the
implementation 20700f a FIR filter computation function
for one iteration; a data shifting operation; and the
definition of the FIR filter coefficient table. The FIR
computation algorithm is simple to implement, but
requires a lot of processing power. For each new data
point, multiplication with the associated coefficients and
addition operations must be performed N times
(N=number of filter taps).

Since it is hardware-based, the VRS51L2070
arithmetic unit is very efficient in performing operations
such as FIR filter computation. In the example below,
the COMPUTEFIR loop is the “heart” of the FIR
computation. Note that because of the arithmetic unit's
features, very few instructions are needed to perform
mathematical operations and the calculation results are
ready at the next instruction. This provides a dramatic
performance improvement when compared to having to
perform all math operations manually, using general
processor instructions.

//. //
/I VRS51L2070_AU_FIR_asm_c_-SDCC.c //
//.

/I DESCRIPTION: FIR filter demonstration program - mixed ASM and C coding to optimize
1 the FIR loop speed.
I

1 This program demonstrates the configuration and use of the SPI interface

1 for interface to serial 12-bit A/D and D/A converters.

1 The program reads the A/D and outputs the read value on a D/A converter

"

1 At 40MHzm the 16-tap FIR loop + data shifting of the VRS51L2070 provide the
1 following performances:

"

1 FIR computation using AU module (asm) = 10.4 uSeconds

1 Data shifting (asm) = 17.2 useconds

1 FIR Computation + Datashift = 27.6 uSeconds (1/T =36.2 KHz)

1

/I Rev 1.0

/I Date: August 2005
//-

#include <VRS51L2070_SDCC.h>

/I--FIR Filter Coefficient Tables
/I;FSAMPLE 480HZ, N=16, LOW PASS 0.1HZ -78DB @ 60HZ

const int flashfircoef[] =
{0x023D,0x049D,0x086A,0x0D2D,0x1263,0x1752,0x1B30,0x1D51,
0x1D51,0x1B30,0x1752,0x1263,0x0D2D,0x086A,0x049D,0x023D};

www.ramtron.com

page 74 of 99

VRS51L2070

RAMTRSN

/I-- Global variables definition
int at 0x30 fircoef[16];

int at 0x50 datastack[16];
unsiged int at 0x75 dacdata;

//---- Functions Declaration ----//
/I-- FIR Filter computation function
void FIRCompute(void);

void CopyFIRCoef(void);

/I-Gen_ADC
void ReadGen_ADC(void); "

/l- Gen_DAC
void WriteGen_DAC(unsigned int);

char *coef = &fircoef;

char *ydata = &datastack;

char fircptr = 0x00;

PERIPHEN2 |= 0x20;
P2 = OxFF;

*ydata = adcdata & OxOFF;

ydata +=1;

/[Enable the Arithmetic Unit
//Set P2 = 0xFF to monitor duration for FIR Loop
/IStore the LSB of adc read data

*ydata = (adcdata >> 8)&0x00FF; //Store the MSB of adc read data

DEVMEMCFG = 0x01;
AUCONFIG1 = 0x08;

/ISwitch to SFR Page 1

/ICAPREV =0 : Previous Res capture is automatic
/ICAPMODE = 1 : Capture of previous Result
/loccurs when AUAQ is written into

/IOVCAPEN = 0 : Capture on OV32 disabled
/IREADCAP =0 : AURES contains current result

/I---Generic functions prototype
void V2KDelay1ms(unsigned int); //Standard delay function

/I Global variables definitions
idata unsigned char cptr = 0x00;

unsigned int adcdata = 0x00;

//.

//

/—
1].

MAIN FUNCTION ----ememeememeeef]
1/

void main (void) {

PERIPHEN2 |= 0x02;
P2PINCFG = 0xFO;
PWMCLKCFG = 0x10;

//[Enable PWM SFR
//P2[3:0] is output
//PWM Timer 7 Prescaler = Sys Clock / 2

//--Configure PWM7 as timer (will be monitored by interrupt)

/I PWM Timer 7 counts from 0000 to A2C2h

PWMCFG = 0x17,
PWMDATA = 0xA2

PWMCFG = 0x07;
PWMDATA = 0xC2;

/IPoint to MSB MID

/[Point to LSB MID

//--Configure and enable PWM as timer Interrupt to monitor PWM5 only

INTSRC2 &= 0xDF;
INTPINSENS1 = OxDF;
INTPININV1 = OxDF;
INTEN2 |= 0x20;

/- Copy FIR filter coefficients to
CopyFIRCoef();

/IPWM?7:4 Timer module Interrupt

1/ sensitive on high level(0)

//Set INTO Pin sensitivity on normal level(0)
//[Enable PWM7:4 Timer module interrupt

IRAM

//--Activate the PWM modules and configure the PWM modules as timers

PWMEN |= 0x80;
PWMTMREN |= 0x80;
GENINTEN = 0x01;
while(1);

Y/ End of main

/l[Enable PWM 7
//[Enable PWM 7 as Timer
//[Enable global interrupt

/]

Interrupt Function----- —=——---eemmeeeeeeeeef/

/]

/I NAME:
/I

INT13Interrupt PWMTMR7:4 as Timer

void INT13Interrupt(void) interrupt 13

//.

char flagread;
INTEN2 = 0x00;

flagread = PWMTMREF;
flagread &= 0x80;
if(flagread != 0x00)

{

P2 = P2/0x01;
ReadGen_ADC();
FIRCompute();

}
PWMTMRF &= 0x7F;
INTEN2 |= 0x20;
}/end of PWM as timer interrupt

//Disable PWM7:4 Timer module interrupt
/lread PWM Timer OV Flags
/lcheck if PWM Timer 7 OV Flag is Active

/[Toggle P2.0 (test)
/IRead the A/D Converter
//Perform the FIR filter computation and write into DAC

/[Clear the PWM Timer 7 OV Flag
//[Enable PWM7:4 Timer module interrupt

/]

J[====mmmmmmmmeemennmnn- Indlividual Functions ------------meememmemmennns//

//.

/]

//.

/I NAME:
/.

FIRCompute

void FIRCompute()
{

/-

//IADDSRC =10 : Add SCR = AUC
/IMULCMD = 00 : Mul cmd = AUA x AUB

AUCONFIG2 = 0xA0; /[Clear the Arithmetic Unit registers

_asm
MOV RO,#0x30; /ICopy Start address of FIR Coefficient Table into RO
MOV R1,#0x50; /|Copy Start address of FIR Data Table into R1
_endasm;

/I'Yn Computation mostly in assembler -- Faster...
for(fircptr = 0; fircptr < 16; fircptr++)
{

_asm

MOV 0xA2,@RO0;
INC RO;

MOV 0xA3,@RO0;
INC RO;

MOV 0xB2,@R1;
INC R1;

MOV 0xB3,@R1;
INC R1;
_endasm;

Y/lend of For cptr

/lcopy LSB of pointed coefficient to AUAO
/lcopy MSB of pointed coefficient to AUA1
/lcopy LSB of pointed coefficient to AUBO

llcopy MSB of pointed coefficient to AUB1

/I-- Performing the data stack shifting allows to save 8.8uS @ 40MHz
_asm

MOV RO,#0x6F;

MOV R1,#0x71;

_endasm;

for(fircptr = 16; fircptr > O; fircptr--)
{

_asm
mov A,@RO;

mov @R1,A;

dec RO;

dec R1;

mov A,@RO;

mov @R1,A;

dec RO;

dec R1;

_endasm;

Y/lend of shift for loop

/I-Scale down the AURES output by 16 using the barrel shifter
/I the coefficient had been scaled up by a factor of 65536
AUSHIFTCFG = 0x30;
_asm

NOP;

_endasm;

P2 = 0x00; //Set P2 = 0x00 to signal the end of the FIR Loop
dacdata = (AURES1 << 8) + AURESO;

/IReset the Barrel shifter

AUSHIFTCFG = 0x00;

/I Note:

/I Inthis case, 6 System clock cycles could be saved

/I by reading AURES3 and AURES?2 directly
DEVMEMCEFG = 0x00; /ISwitch to SFR Page 0
WriteGen_DAC(dacdata); //\Write data to SPI DAC
Y/End of FIRCompute

/I NAME:
/.

CopyFIRCoef

/I DESCRIPTION: Copy the FIR Filter Coefficient into

I
I

/].

SRAM variable which is faster access
than Flash

void CopyFIRCoef(void)

{
char cptr = 0x00;

www.ramtron.com

page 75 of 99

VRS51L2070

RAMTRSN

for(cptr = 0x00; cptr < 16; cptr++)
fircoef[cptr]= flashfircoef[cptr];
}/End of CopyFIRCoef

//.

/I NAME: ReadGen_ADC
1].

/I DESCRIPTION: Read the Gen_ADC A/D

/I ADC is connected to SPI interface using CS0

/I Max clk speed is 3.2MHz, Fosc = 40MHz assumed
1].

void ReadGen_ADC()

{
int cptr = 0x00;
char readflag = 0x00;

//SPI Configuration Section

/(Can be moved to Main function if only one device is connected to the SPI interface)

PERIPHEN1 |= 0xCO; //Make sure the SPI interface is activated
/I--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS &= 0x08));

SPICTRL = 0x65; /ISPICLK = /16 (2.5MHz)
//CS0 Active
/ISPI Mode 1 Phase =1, POL=0
/ISP Master Mode
SPICONFIG = 0x40; //SPI Chip select is automatic
/IClear SPIUNDEFC flag
/ISPILOAD = 0 -> Manual CS3 behaviour
/INo SPI interrupt used
SPISTATUS = 0x00; /ISPI transactions are in MSB first format
SPISIZE = 0x0E; //SPI transaction size are 15-bit

//-Dummy Read the SPI RX buffer to clear the RXAV flag
readflag = SPIRXTXO0;

/I-Perform the SPI read
SPIRXTXO0 = 0x00; //Writing to the SPIRXTXO will trigger the SPI
/[Transaction

//Wait for the SPI RX AV Flag being set

while(!(SPISTATUS &= 0x02));

I

/I -- 1t is possible to monitor the SPINOCS flag instead of the SPIRXAV flag
/[The code piece below shows how to do it. However in that case,

/INo that the reading of the SPISTATUS register must be done at

/least 4 system clock cycles after the write operation to the SPIRXTXO register

/I-Wait for SPINOCS Flag have time to be updated
_asm

NOP;

_endasm;

/I--Wait activity stops on the SPI interface
while(!(SPISTATUS &= 0x08));
*/

/IRead SPI data

adcdata= (SPIRXTX1 << 8);
adcdata+= SPIRXTXO0;
adcdata&= OxOFFF;

Ylend of ReadGen_ADC

Ilisolate the 12 Isb of the read value

1/-
/I NAME: WriteGen_DAC
1].

// DESCRIPTION: Write 12bit Data into the Gen_DAC device
ADC is connected to SPI interface using CS1
A Max clk speed is 12.5MHz, Fosc = 40MHz assumed
I We will set the SPI prescaler to sysclk / 8
"
void WriteGen_DAC(unsigned int dacdata)
{

char subdata = 0x00;
char readflag = 0x00;
PERIPHEN1 |= 0xCO; //Make sure the SPI interface is activated

//--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS &= 0x08));

/ISPI Configuration Section
//Can be moved to main function if only one device is connected to the SPI interface

SPICTRL = 0x4D; /ISPICLK = /8 (MHz)
/ICS1 Active
/ISPl Mode 1 Phase =1, POL =0
/ISP1 Master Mode

SPICONFIG = 0x40; /ISPI Chip select is automatic
/IClear SPIUNDEFC Flag
/ISPILOAD = 0 -> Manual CS3 behaviour
/INo SPI interrupt used

SPISTATUS = 0x00; /ISPI transactions are in MSB first format
SPISIZE = 0x0B; /ISP transaction size are 12 bit

/I-Format the 12 bit data so data bit 11 is positioned on bit 7 of SPIRXTX0

/I and data bit 0 is positioned on bit 4 of SPIRXTX1 and perform the SPI write operation

dacdata &= OxOFFF; /IMake sure dacdata is <= OFFFh (12 bit)
SPIRXTX3 = 0x00;

SPIRXTX2 = 0x00;

SPIRXTX1 = (dacdata << 4)& 0xFO;

/I-Dummy read the SPI RX buffer to clear the RXAV Flag (facultative if SPINOCS is
monitored)
readflag = SPIRXTXO;

SPIRXTXO0 = (dacdata >> 4); //Writing to SPIRXTXO0 will trigger the transmission

/I--Wait the SPI transaction completes
/I This section can be omitted if a check of activity on the SPI interface
/I is made before each access to it in master mode

/IWait for the SPI RX AV flag being set

while(/(SPISTATUS &= 0x02));

/I -- It is possible to monitor the SPINOCS flag instead of the SPIRXAV flag
/[The code piece below shows how to do it. However in that case,

/INo that the reading of the SPISTATUS register must be done at

Illeast 4 system clock cycles after the write operation to the SPIRXTXO register
I

/I-Wait for SPINOCS flag have time to be updated
_asm
NOP;
_endasm;
/I--Wait activity stops on the SPI interface (monitor SPINOCS Flag)
while(I(SPISTATUS &= 0x08));
*

}Y/end of WriteGen_DAC

/]. /]

/I NAME: V2KDelay1ms
//-

/I DESCRIPTION: VRS2070 specific 1 millisecond delay function

Using Timer 0 and calibrated for 40MHz oscillator
//-

void V2KDelay1ms(unsigned int dlais){

idata unsigned char x=0;

idata unsigned int dlaisloop;
PERIPHEN1 |= 0x01; /ILOAD PERIPHEN1 REG

dlaisloop = dlais;

while (dlaisloop > 0)

{
THO = 0x63; /ITIMERO RELOAD VALUE FOR 1MS AT 40MHZ
TLO = 0xCO;
TOT1CLKCFG = 0x00; /INO PRESCALER FOR TIMER 0 CLOCK
TOCON = 0x04; /ISTART TIMER 0, COUNT UP

dof

x=TOCON;

x= X & 0x80;

Ywhile(x==0);

TOCON = 0x00; //Stop Timer 0
dlaisloop = dlaisloop-1;
Y/end of while dlais...

PERIPHEN1 &= OxFE; /IDisable Timer 0
Y/End of function V2KDelay1ms

www.ramtron.com

page 76 of 99

VRS51L2070

RAMTRSN

13 Watchdoqg Timer

The VRS51L2070 includes a watchdog timer which
resets the processor in case of a program malfunction.
The watchdog timer is composed of a 14-bit prescaler,
which derives its source from the active system clock.
An overflow of the watchdog timer resets the
VRS51L2070. The WDTCFG SFR register controls the
watchdog timer operations.

TABLE 144: THE WATCHDOG TIMER REGISTER - WDTCFG 91H

The watchdog timer timeout period is calculated as
follows:

WDT Period* = 16384*(0x4000 — WDT Period)
Fosc

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
74 WDTPERIOD | Watchdog Timer Period Configuration
*see table below
3 WTIMEROVF WDT as Timer Overflow Flag

0 = WDT as timer as not expired
1 =WDT as timer has overflow

2 ASTIMER Watchdog as Timer
0 =WDT mode
1 = WDT operate as a regular timer (no reset)

Writing to this bit will clear the timer

1 WDTOVF Read:
0 = Watchdog is counting
1 = Watchdog timer period has expired

Write:
0 = No action
1 = Clear the watchdog timer flag

0 WDTRESET Read: No Action

Watchdog Timer Reset

To reset the watchdog timer, two consecutive
writes to the WDTRESET bit must be made:
First clear the WDTRESET bit and second, set it
to 1

13.1 WDT Timeout Period

The watchdog timer timeout period is controlled by
adjusting bit 7:4 of the WDTCFG register. The
following table provides the approximate timeout vs.
the selected WDTPERIOD.

TABLE 145: THE WATCHDOG TIMER REGISTER TIMEOUT PERIOD

WDTPERIOD Actual WDT Approx
Value (4 bit) Period** Timeout**
(40MHz)

0000 Ox3FFF* 409 — 600us
0001 0x3FFE 819-1000 us
0010 0x3FFD 1.23 -1.36 ms
0011 0x3FFB 2.05-22ms
0100 0x3FF4 4.92 ms
0101 0x3FE8 9.83 ms
0110 0x3FCF 20.07 ms
0111 0x3F86 49.97 ms
1000 0x3F49 74.96 ms
1001 0x3F0C 99.94 ms
1010 0x3E9E 249.86 ms
1011 0x3B3B 500.12 ms
1100 0x38D9 749.98 ms
1101 0x3677 999.83 ms
1110 0x2364 2.99s
1111 0x0000 6.71s

*Not available in timer mode

*For a given configuration, the timeout period of the
watchdog timer may vary by about 200us. This delay is
caused by internal timing of the watchdog timer
module.

13.2 Resetting the Watchdog Timer

To reset the watchdog timer, two consecutive write
operations to the WDTCFG register must be
performed. During the first write operation, the
WDTRESET bit must be cleared. During the second
write operation, the WDTRESET should be set to 1.

This sequence is also required to set a new value for
WDTPERIOD. For example, if the watchdog period is
set to 100ms, the following sequence of operations will
reset the watchdog timer:

MOV WDTCFG #92h
MOV WDTCFG#93h

13.3 Using the Watchdog as a Timer

The VRS51L2070 watchdog timer can also be used as
a timer. In this case, the timeout period is defined by
the watchdog timer period value. Due to the presence
of the 14-bit prescaler, long timeout periods can be
achieved.

Configuring the watchdog timer operation as a general
purpose timer is achieved by:

o Setting the ASTIMER bit of the WDTCFG
register to 1

0 Selecting the timer maximum time value of
WDTPeriod

o0 Performing a watchdog timer reset sequence
to clear the timer and apply the timer
configuration

The WTIMERFLAG bit of the WDTCFG register is
used to monitor the timer overflow. When configured in
timer mode, the watchdog timer does not reset the
VRS51L2070 and cannot trigger an interrupt.

www.ramtron.com

page 77 of 99

VRS51L2070

RAMTRSN

13.4 Watchdog Timer Example Programs

Initialization and Reset of the Watchdog Timer

/I Il
/' VRS51L2070-WDT_Demo_SDCC.c //

1/ /]

// DESCRIPTION: VRS51L2070 Watchdog Timer Demonstration Program

A *This Program Set P1 as output

" *P1 is set to OxFF for 100ms

1 *Initialize the watchdog timer with a timeout period of 20ms

" *Clear P1

" *Start a delay function

I *If the Delay parameter of the delay function is larger than the

1 Timeout period of the watchdog timer, the WDT will reset the VRS51L2070
A which will bring back P1 to high level

/- /]
#include <VRS51L2070_SDCC.h>

/I - function prototypes

void delay(unsigned int);

I v

" MAIN FUNCTION "

//. //

void main (void) {

PERIPHEN1 = 0x01;
PERIPHEN2 = 0x08;

//[Enable Timer 0
//[Enable IOPORT

P1PINCFG = 0x00; /IConfig port 1 as output

/I-- Enable the Watchdog Timer

PERIPHEN2 |= 0x04;

P1 = OxFF; //Set P1 to output OXFF
delay(100); //Keep P1 high for 100ms

/I-- Configure the watchdog timer

WDTCFG = 0x62;
WDTCFG = 0x63;

/IConfigure and Reset the Watchdog Timer

/IBit 7:4 = WDTPERIOD : Define the timeout period (20ms)
/IBit3 =WTIMEROVF : WDT as timer overflow flag
/Bit2 =ASTIMER :WDT mode (0=WDT, 1=Timer)
//Bit1 =WDTOVF :WDT overflow (Timeout) Flag
//Bit0 =WDTRESET : WDT reset. To reset WDT
//this bit must be cleared, then set

P1 = 0x00; /[Clear P1
dof
delay(10); /If delay > 20ms then the WDT will reset the VRS51L2070

/land P1 will return to high
WDTCFG = 0x62; //IReset the watchdog timer
WDTCFG = 0x63;
Iwhile(1); /lLoop Forever
¥/ End of main

11; I/
/I;- DELAY1MSTO : 1MS DELAY USING TIMERO

11

/I; CALIBRATED FOR 40MHZ

//' //
void delay(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

x = PERIPHEN1; /ILOAD PERIPHEN1 REG
x |= 0x01; //[ENABLE TIMER 0
PERIPHENT1 = x;

dlaisloop = dlais;
while (dlaisloop > 0)

{
THO = 0x63; /ITIMERO RELOAD VALUE FOR 1MS AT 40MHZ
TLO = 0xCO;

TOT1CLKCFG = 0x00; /INO PRESCALER FOR TIMER 0 CLOCK

TOCON = 0x04; /ISTART TIMER 0, COUNT UP
do{
x=TOCON;
x=x & 0x80;
while(x==0);
TOCON = 0x00; //Stop Timer 0

dlaisloop = dlaisloop-1;
Ylend of while dlais...

x = PERIPHEN1; //ILOAD PERIPHEN1 REG
x = x & OXFE; /IDISABLEBLE TIMER 0
PERIPHEN1 = x;

Y/End of function delais

14 VRS51L2070 Interrupts

The VRS51L2070 has a comprehensive set of 49
interrupt sources and uses 16 interrupt vectors to
handle them. The interrupts are categorized in two
distinct groups:

e Module interrupt
e Pin change interrupts

The module interrupts include interrupts that are
generated by VRS51L2070 peripherals such as the
UARTSs, SPI, I?)C , PWC and port change monitoring
modules.

As their name implies, the pin change interrupts are
interrupts that are generated by predefined conditions
at the physical pin level: . The pin change interrupts
can be caused by a level or an edge (rising or falling)
on a given pin. Standard 8051 INTO and INT1
interrupts are considered pin change interrupts. The
VRS51L2070 includes INTO and INT1, as well as 14
other pin interrupts distributed on ports 0 and 3.

The interrupt sources share 16 interrupt vectors from
00h to 7Bh. Each interrupt vector can be configured to
respond to either a pin change interrupt or a module
interrupt. The two following diagrams provide an
overview of the VRS51L2070 modules/pin interrupt
structure, the associated SFR registers and the
interaction among the interrupt management SFRs.

FIGURE 34: INTERRUPT SOURCES DETAILED VIEW

Module

To Interrupt

Controller
INTENx.y bit

Pin

www.ramtron.com

page 78 of 99

VRS51L2070 RaAMTRIN

FIGURE 35: INTERRUPT SOURCES OVERVIEW

Interrupt
Source config
Not Used —°
P3.2 - INTO pin—1
SPI TX Empty —{0
P3.3- INT1 pin-{1
SPI RX AV/OV—o
P3.0 pin -1
Timer 0 —o
P3.1 pin 1
---------------------------- Interrupt
Vect
PortChg0 —o ecer
— Interrupt Natural
P3.4 pin -1 Number Priority
............................ v v
UARTO —o P Int0 | 0003h| 1
P Int1 [000Bh 2
P Int2 [0013h 3
| Int3 | 001Bh 4
| Int4 |0023h| 5
| Int5 |002Bh 6
Timer 1 —o P Int6 | 0033h| 7
) P Int7 | 003Bh| 8
PoTen b »ints [0043n| 9
Timer 2 —o | Int9 |004Bh| 10
. | Int 10| 0053h 1
Fooen 0 »[Int11]005Bh| 12
12C —o | Int12|0063h| 13
. | Int13|006Bh| 14
poren 0 » Int14] 0073h| 15
UART Collision— 0 | Int 15| 007Bh| 16
P0.2 pin -1
PWC Modules —0
P0.3 pin -1
PWM3:0 Timer—0 Details of Module / Pin controller
P0.4 pin 1 Module ﬁ_/
PWM?7:4 Timer—o Pin y
P0.5 pin -1
T, [NTsRexy bit|—
WDT Timer/ _|
Arithmetic Unit]
P0.6 pin -1
Port Chg 1 —0
PO0.7 pin -1

www.ramtron.com page 79 of 99

VRS51L2070

RAMTRSN

The interaction between the interrupt management configuration registers is summarized in the following table. The
paragraphs below describe each one of these registers in detail.

TABLE 146:VRS51L 2070 INTERRUPT CONFIGURATION SUMMARY

Int #

Priority

Interrupt
Vector

Interrupt
Enable

Interrupt
Priority

Interrupt
Source

Connected
Modules

Connected
Pin

Pin
Inversion

Pin
Sensitivity

Pin Interrupt
Flag

INT

0003h

INTEN1.0

INTPRI1.0

INTSRC1.0

None

P3.2-INTO

IPINTINV1.0

IPINSENS1.0

IPINFLAG1.0

Int 1

000Bh

INTEN1.1

INTPRI1.1

INTSRC1.1

SPI TX Empty

P3.3-INT1

IPINTINV1.1

IPINSENS1.1

IPINFLAG1.1

Int 2

0013h

INTEN1.2

INTPRI1.2

INTSRC1.2

SPI RX Available
SPI RX Overrun

P3.0

IPINTINV1.2

IPINSENS1.2

IPINFLAG1.2

Int3

001Bh

INTEN1.3

INTPRI1.3

INTSRC1.3

Timer O

P3.1

IPINTINV1.3

IPINSENS1.3

IPINFLAG1.3

Int 4

0023h

INTEN1.4

INTPRI1.4

INTSRC1.4

Port Change 0

P3.4

IPINTINV1.4

IPINSENS1.4

IPINFLAG1.4

Int5

002Bh

INTEN1.5

INTPRI1.5

INTSRC1.5

UARTO Tx Empty
UARTO RX
Available

UARTO RX
Overrun

UARTO Timer OV

P3.5

IPINTINV1.5

IPINSENS1.5

IPINFLAG1.5

Int 6

0033h

INTEN1.6

INTPRI1.6

INTSRC1.6

UART1 Tx Empty
UART1 RX
Available

UART1 RX
Overrun

UART1 Timer OV

P3.6

IPINTINV1.6

IPINSENS1.6

IPINFLAG1.6

Int7

003Bh

INTEN1.7

INTPRI1.7

INTSRC1.7

Timer 1

P3.7

IPINTINV1.7

IPINSENS1.7

IPINFLAG1.7

Int 8

0043h

INTEN2.0

INTPRI2.0

INTSRC2.0

Timer 2

P0.0

IPINTINV2.0

IPINSENS2.0

IPINFLAG2.0

Int9

004Bh

INTEN2.1

INTPRI2.1

INTSRC2.1

12C Tx Empty
12C RX Available
12)C RX Overrun

P0.1

IPINTINV2.1

IPINSENS2.1

IPINFLAG2.1

Int
10

1"

0053h

INTEN2.2

INTPRI2.2

INTSRC2.2

UARTO Collision
UART1 Collision

12C Master Lost
Arbitration

P0.2

IPINTINV2.2

IPINSENS2.2

IPINFLAG2.2

Int
11

12

005Bh

INTEN2.3

INTPRI2.3

INTSRC2.3

PWC 0 End
Condition
PWC 0 End
Condition

P0.3

IPINTINV2.3

IPINSENS2.3

IPINFLAG2.3

Int
12

13

0063h

INTEN2.4

INTPRI2.4

INTSRC2.4

PWM3 as Timer
ov
PWM2 as Timer
ov
PWM1 as Timer
ov
PWMO as Timer
ov

P0.4

IPINTINV2.4

IPINSENS2.4

IPINFLAG2.4

Int
13

14

006Bh

INTEN2.5

INTPRI2.5

INTSRC2.5

PWM7as Timer
ov
PWM6as Timer
ov
PWMb5as Timer
ov
PWM4as Timer
ov

P0.5

IPINTINV2.5

IPINSENS2.5

IPINFLAG2.5

Int

15

0073h

INTEN2.6

INTPRI2.6

INTSRC2.6

Watchdog as
Timer OV

Arithmetic Unit OV

P0.6

IPINTINV2.6

IPINSENS2.6

IPINFLAG2.6

Int
15

16

007Bh

INTEN2.7

INTPRI2.7

INTSRC2.7

Port Change 1

P0.7

IPINTINV2.7

IPINSENS2.7

IPINFLAG2.7

www.ramtron.com

page 80 of 99

VRS51L2070

RAMTRSN

14.1 Interrupt Enable Registers

The interrupt enable and the general interrupt enable
registers establish the link between the peripheral
module/pin interrupt signals and the processor
interrupt system.

The GENINTEN register controls activation of the
global interrupt. On the VRS51L2070, only the least
significant bit of the GENINTEN is used. The
GENINTEN register is similar to the standard 8051 EA
bit. When the GENINTEN bit is set to 1, all the enabled
interrupts emanating from the modules/pins will reach
the interrupt controller.

TaBLE 147:GENINTEN SFR REGISTER - NAME SFR E8H

When a given interrupt bit is set to 1, the
corresponding interrupt path is activated.

TABLE 148: INT ENABLE 1 REGISTER - INTEN1 (MODULES /PIN/INT VECTOR) SFR 88H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W RW R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 T1IEN Timer 1 Interrupt Enable
P3.7 pin P3.7 pin if interrupt source is set to pin
Int7 Interrupt vector 7 at address 003Bh
6 U1IEN UART1 Interrupt Enable

o UART1 Tx Empty

o UART1 Rx Available

o UART1 Rx Overrun

o UART1 Baud Rate Generator as
Timer Overflow

7 6 5 4 3 2 1 0
0
Bit Mnemonic Description
7:2 Unused
1 CLRPININT It is recommended to set this bit to 1 before

enabling a pin interrupt to avoid receiving an
interrupt right after GENINTEN bit is set

0 GENINTEN General Interrupt Enable
0 = All enabled interrupts are masked
(deactivated)

1 = All enabled interrupt can raise an interrupt

P3.6 pin P3.6 pin if interrupt source is set to pin
Int 6 Interrupt vector 6 at address 0033h
5 UOIEN UARTO Interrupt Enable

o UARTO Tx Empty

o UARTO Rx Available

o UARTO Rx Overrun

o UARTO Baud Rate Generator as
Timer Overflow

P3.5 pin P3.5 pin if interrupt source set to pin
Int5 Interrupt vector 5 at address 0002Bh

4 PCHGIENO Port Change Interrupt Module 0 Enable
P3.4 pin P3.4 pin if interrupt source is set to pin
Int 4 Interrupt vector 4 at address 0023h

3 TOIEN Timer 2 Interrupt Enable
P3.3 pin P3.3 pin if interrupt source is set to pin
Int3 Interrupt vector 3 at address 001Bh

2 SPIRXOVIEN | SPI Interrupt Enable

SPI Rx Available
SPI Rx Overrun

P3.0 P3.0 pin if interrupt source is set to pin
Int 2 Interrupt vector 2 at address 0013h

1 SPITXEIEN SPI Tx Empty Interrupt Enable
P3.3 pin P3.3 pin if interrupt source is set to pin
Int 1 Interrupt vector 0 at address 000Bh

0 No Module Unused
P3.2 pin P3.2 pin if interrupt source is set to pin
Int0 Interrupt vector 0 at address 0003h

www.ramtron.com

page 81 of 99

VRS51L2070

RAMTRSN

14.2 Interrupt Source

Each one of the 16 interrupt vectors on the
VRS51L2070 can be configured to function as either a
peripheral module or a pin change interrupt. The
selection of the interrupt source is handled by the
INTSRC1 and the INTSRC2 registers.

By default, the interrupt source is set to peripheral
module. However, setting the INTSRC bit to 1 will
“associate” the corresponding interrupt vector to the
corresponding pin interrupt.

When a given interrupt vector is associated with a
module, the corresponding bit of the IPINSENSx must
be set to 0, so it is level sensitive (reset value).

TABLE 150:INTERRUPT SOURCE 1 REGISTER - INTSRC1 SFR E4H

7 6 5 4 3 2 1 0
R/W R/W RW RW RW R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 INTSRC1.7 Interrupt 7 Source
0 =Timer 1
1=P3.7
6 INTSRC1.6 Interrupt 6 Source
0 = UART1
1=P3.6
5 INTSRC1.5 Interrupt 5 Source
0 = UARTO
1=P3.5
4 INTSRC1.4 Interrupt 4 Source
0 = Port Change 0
1=P34
3 INTSRC1.3 Interrupt 3 Source
0 =Timer 0
1=P3.1
2 INTSRC1.2 Interrupt 2 Source
0 = SPI RXAV, SPI RXOV
1=P3.0
1 INTSRC1.1 Interrupt 1 Source
0 = SPI Tx EMPTY
1=P3.3
0 INTSRC1.0 Interrupt 0 Source
0=-
1=P3.2

TABLE 149: INT ENABLE 2 REGISTER INTEN2 (MoDULES /PIN/INT VECTOR) SFR A8H
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W RW R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 PCHGIEN1 Port Change Interrupt Module 1 Enable
PO0.7 pin P0.7 pin if interrupt source is set to pin
Int 15 Interrupt vector 8 at address 007Bh
6 AUWDTIEN Watchdog Timer and Arithmetic Unit Interrupt
Enable
o Watchdog as Timer Overflow
o Arithmetic Unit 32-bit Overflow
P0.6 pin P0.6 pin if interrupt source is set to pin
Int14 Interrupt vector 8 at address 0073h
5 PWMT74IEN PWM as Timer 7 to 4 Overflow Interrupt Enable
o PWM as Timer Module 7 Overflow
o PWM as Timer Module 6 Overflow
o PWM as Timer Module 5 Overflow
o PWM as Timer Module 4 Overflow
PO0.5 pin P0.5 pin if interrupt source set to pin
Int 13 Interrupt vector 8 at address 006Bh
4 PWMT30IEN PWM as Timer 3 to 0 Overflow Interrupt Enable
o PWM as Timer Module 3 Overflow
o PWM as Timer Module 2 Overflow
o PWM as Timer Module 1 Overflow
o PWM as Timer Module 0 Overflow
P0.4 pin P0.4 pin if interrupt source is set to pin
Int 12 Interrupt vector 8 at address 0063h
3 PWCIEN Pulse Width Counter Interrupt Enable
o PWCO0 END condition occurred
o) PWC1 END condition occurred
P0.3 pin P0.3 pin if interrupt source set to pin
Int 11 Interrupt vector 11 at address 005Bh
2 12CUCOLIEN I1>)C and UARTSs Interrupts Enable
o I12)C Master Lost Arbitration
o UARTO Collision Interrupt
o UART1 Collision Interrupt
P0.2 pin P0.2 pin if interrupt source is set to pin
Int 10 Interrupt vector 10 at address 0053h
1 12CIEN I12C Interrupts Enable
o TX Empty
o RX Available
o RX Overrun
PO0.1 pin P0.1 pin if interrupt source set to pin
Int9 Interrupt vector 9 at address 004Bh
0 T2IEN Timer 2 Interrupt Enable (INTSCR
P0.0 pin P0.0 pin if interrupt source is set to pin
Int 8 Interrupt vector 8 at address 0043h

www.ramtron.com

page 82 of 99

VRS51L2070

RAMTRSN

TABLE 151:INTERRUPT SOURCE 2 REGISTER - INTSRC2 SFR E5H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 INTSRC2.7 Interrupt 15 Source
0 = Port Change 0
1=P0.7
6 INTSRC2.6 Interrupt 14
0 = WDT Timer OV, AU OV
1=P0.6
5 INTSRC2.5 Interrupt 13 Source
0 = PWM7:4 Timer
1=P0.5
4 INTSRC2.4 Interrupt 12 Source
0 = PWM3:0 Timer OV
1=P04
3 INTSRC2.3 Interrupt 11 Source
0 =PWCO, PWC1
1=P0.3
2 INTSRC2.2 Interrupt 10 Source
0 = UARTSs Coll, I>C Lost Arbitration
1=P0.2
1 INTSRC2.1 Interrupt 9 Source
0=1C
1=P0.1
0 INTSRC2.0 Interrupt 8 Source
0 = Timer 2
1=P0.0

14.3 Interrupt Priority

The INTPRIx registers enable the user to modify the
interrupt priority of either the module or the pin
interrupts. When the INTPRIx is set to 0, the natural
priority of module/pin interrupts prevails. Setting the
INTPRIx register bit to 1 will set the corresponding
module/pin priority to high.

If more than two module/pin interrupts are
simultaneously set to high priority, the natural priority
order will apply: Priority will be give to the module/pin
interrupts with high priority, over normal priority.

TABLE 152:INTERRUPT PRIORITY 1 REGISTER - INTPRI1 SFR E2H

7

6 5 4 3 2

RW

RW RW RW RW RW

0

0 0 0 0 0

Bit

Mnemonic Description

T1P37PRI
0 = Normal Priority
1 = High Priority

Interrupt 7 Priority Level (Timer 1/ P3.7)

U1P36PRI
0 = Normal Priority
1 = High Priority

Interrupt 6 Priority Level (UART1 / P3.6)

UOP35PRI
0 = Normal Priority
1 = High Priority

Interrupt 5 Priority Level (UARTO / P3.5)

PCOP34PRI
0 = Normal Priority
1 = High Priority

Interrupt 4 Priority Level (Port Chg 0/ P3.4)

TOP31PRI
0 = Normal Priority
1 = High Priority

Interrupt 3 Priority Level (Timer 0/ P3.1)

SRP30PRI
0 = Normal Priority
1 = High Priority

Interrupt 2 Priority Level (SPI RX/ P3.0)

STP33PRI
0 = Normal Priority
1 = High Priority

Interrupt 1 Priority Level (SPI TX / P3.3)

INTOP32PRI
0 = Normal Priority
1 = High Priority

Interrupt O Priority Level (INTO / P3.2)

TaBLE 153

{INTERRUPT PRIORITY 2 REGISTER - INTPRI2 SFR E3H

6 5 4 3 2

R/W R/W R/W R/W R/W

0 0 0 0 0

Mnemonic Description

PC1PO7PRI
0 = Normal Priority
1 = High Priority

Interrupt 15 Priority Level (Port Chg 1/ P0.0)

AIPO6PRI
0 = Normal Priority
1 = High Priority

Interrupt 14 Priority Level (WDT, AU / P0.6)

PWHPO5PRI
0 = Normal Priority
1 = High Priority

Interrupt 13 Priority Level (PWM7:4 timer / P0.5)

PWLPO4PRI
0 = Normal Priority
1 = High Priority

Interrupt 12 Priority Level (PWM3:0 timer / P0.4)

PWCPO2PRI
0 = Normal Priority
1 = High Priority

Interrupt 11 Priority Level (PWCO0, PWC1 / P0.3)

INT10PO1PRI Interrupt 10 Priority Level

0 = Normal Priority
1 = High Priority

(UARTS Coll, I)C Lost Arbitration / P0.2)

12CPO1PRI
0 = Normal Priority
1 = High Priority

Interrupt 9 Priority Level (1>°C / P0.1)

T2POOPRI
0 = Normal Priority

1 = High Priority

Interrupt 8 Priority Level (Timer 2 / P0.0)

www.ramtron.com

page 83 of 99

VRS51L2070

RAMTRSN

14.4 Pin Inversion Setting

TABLE 154: IMPACT OF PIN INVERSION SETTING ON PIN INTERRUPT SENSITIVITY

Pin Inversion

Interrupt Condition

0

Normal Interrupt Polarity Sensitivity

1

Inverted Interrupt Polarity Sensitivity

TABLE 155:INTERRUPT PIN INVERSION 1 REGISTER - IPININV1 SFR D6H

14.5 Pin Interrupt Sensitivity Setting

The pin interrupt can be configured as level sensitive
or edge triggered. The pin interrupt sensitivity is set via
the IPINSENSx and IPININVXx registers. The following
table summarizes the pin interrupt trigger condition
settings for IPINSENx and IPININVx.

TABLE 157:IMPACT OF PIN SENSITIVITY AND PIN INVERSION SETTING ON PIN INTERRUPT

Pin Sensitivity Pin Inversion Interrupt Condition

0 0 High level on pin

Low level on pin

0 1
1 0 Rising edge on pin
1 1 Falling edge on pin

7 6 5 4 3 2 1
R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0
Bit Mnemonic Description
7 P371INV Interrupt 7 Pin Polarity
0=P3.7
1 =P3.7 Inverted
6 P36IINV Interrupt 6 Pin Polarity
0=P3.6
1 =P3.6 Inverted
5 P35IINV Interrupt 5 Pin Polarity
0=P3.5
1= P3.5 Inverted
4 P341INV Interrupt 4 Pin Polarity
0=P34
1=P3.4 Inverted
3 P311INV Interrupt 3 Pin Polarity
0=P3.1
1 =P3.1 Inverted
2 P30IINV Interrupt 2 Pin Polarity
0=P3.0
1 =P3.0 Inverted
1 P33IINV Interrupt 1 Pin Polarity
0=P3.3
1 =P3.3 Inverted
0 P32IINV Interrupt O Pin Polarity

0=P3.2
1 =P3.2 Inverted

TABLE 156: INTERRUPT PIN INVERSION 2 REGISTER - IPININV1 SFR D7H

7 6 5 4 3 2 1
RW RW RW RW R/W RW R/W
0 0 0 0 0 0 0
Bit Mnemonic Description
7 PO7IINV Interrupt 15 Pin Polarity
0=P0.7
1=P0.7 Inverted
6 POGIINV Interrupt 14 Pin Polarity
0=P0.6
1 = P0.6 Inverted
5 PO5IINV Interrupt 13 Pin Polarity
0=P0.5
1 = P0.5 Inverted
4 PO41INV Interrupt 12 Pin Polarity
0=P0.4
1 =P0.4 Inverted
3 PO3IINV Interrupt 11 Pin Polarity
0=P0.3
1 =P0.3 Inverted
2 PO2IINV Interrupt 10 Pin Polarity
0=P0.2
1=P0.2 Inverted
1 PO1IINV Interrupt 9 Pin Polarity
0=P0.1
1=PO0.1 Inverted
0 POOIINV Interrupt 8 Pin Polarity

0=P0.0
1 =P0.0 Inverted

The following tables provide the bit definitions for the
IPINSENS1 and IPINSENS2 registers. It is assumed
that the corresponding IPININVXx bit is set to 0. If the
corresponding IPININVx bit is set to 1, the
corresponding interrupt event will be inverted.

TABLE 158:INTERRUPT PIN SENSITIVITY 1 REGISTER - IPINSENS1 SFR E6H

7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W RW R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

7 P37ISENS Interrupt 7 Pin Sensitivity (IPININV1.7 = 0)
0 = P3.7 High Level

1 = P3.7 Rising Edge

6 P36ISENS Interrupt 6 Pin Sensitivity (IPININV1.6 = 0)
0 = P3.6 High Level

1 = P3.6 Rising Edge

5 P35ISENS Interrupt 5 Pin Sensitivity (IPININV1.5 = 0)
0 = P3.5 High Level

1 = P3.5 Rising Edge

4 P34ISENS Interrupt 4 Pin Sensitivity (IPININV1.4 = 0)
0 = P3.4 High Level

1 = P3.4 Rising Edge

3 P31ISENS Interrupt 3 Pin Sensitivity (IPININV1.3 = 0)
0 = P3.1 High Level

1 = P3.1 Rising Edge

2 P30ISENS Interrupt 2 Pin Sensitivity (IPININV1.2 = 0)
0 = P3.0 High Level

1 = P3.0 Rising Edge

1 P33ISENS Interrupt 1 Pin Sensitivity (IPININV1.1 = 0)
0 = P3.3 High Level

1 = P3.3 Rising Edge

0 P32ISENS Interrupt 0 Pin Sensitivity (IPININV1.0 = 0)
0 = P3.2 High Level

1 = P3.2 Rising Edge

www.ramtron.com

page 84 of 99

VRS51L2070

RAMTRSN

TABLE 159:INTERRUPT PIN SENSITIVITY 2 REGISTER - IPINSENS2 SFR E7H

7 6 5 4 3 2 1 0

RW RW RW RW RW RW RW RW

0 0 0 0 0 0 0 0

Bit Mnemonic Description

7 PO7ISENS Interrupt 7 Pin Sensitivity (IPININV2.7 = 0)
0 = P0.7 High Level

1 =P0.7 Rising Edge

6 PO6ISENS Interrupt 6 Pin Sensitivity (IPININV2.6 = 0)
0 = P0.6 High Level

1 = P0.6 Rising Edge

5 PO5ISENS Interrupt 5 Pin Sensitivity (IPININV2.5 = 0)
0 = P0.5 High Level

1 = P0.5 Rising Edge

TABLE 160:INTERRUPT PIN FLAG 1 REGISTER - IPINFLAG1 SFR B8H

4 PO4ISENS Interrupt 4 Pin Sensitivity (IPININV2.4 = 0)
0 = P0.4 High Level

1 =P0.4 Rising Edge

3 PO3ISENS Interrupt 3 Pin Sensitivity (IPININV2.3 = 0)
0 =P0.3 High Level

1 =P0.3 Rising Edge

2 P02ISENS Interrupt 2 pin Sensitivity (IPININV2.2 = 0)
0 = P0.2 High Level

1 =P0.2 Rising Edge

1 PO1ISENS Interrupt 1 Pin Sensitivity (IPININV2.1 = 0)
0 = P0.1 High Level

1 =P0.1 Rising Edge

0 POOISENS Interrupt 0 Pin Sensitivity (IPININV2.0 = 0)
0 =P0.0 High Level

1 =P0.0 Rising Edge

14.6 Interrupt Pin Flags

For each pin interrupt there is an interrupt flag that can
be monitored. When the selected interrupt event is
detected on a given pin, the corresponding pin
interrupt flag is set to 1 by the system.

The interrupt pin flags are automatically cleared when
the RETI (return from interrupt) instruction is executed.
They can also be cleared by the software at any time.

The pin interrupt flags can be monitored via the
software, even if the corresponding pin interrupt is not
activated. If all the corresponding interrupts are routed
to modules and all the interrupts are disabled, the
IPINFLAGX registers can be used as general purpose
scratchpad registers. However this is not
recommended.

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 P37IF Interrupt 7 Pin Flag
Set to 1if P3.7 pin Interrupt occurs
6 P36IF Interrupt 6 Pin Flag
Set to 1if P3.6 pin Interrupt occurs
5 P35IF Interrupt 5 Pin Flag
Set to 1if P3.5 pin Interrupt occurs
4 P34IF Interrupt 4 Pin Flag
Set to 1 if P3.4 pin Interrupt occurs
3 P31IF Interrupt 3 Pin Flag
Set to 1if P3.1 pin Interrupt occurs
2 P30IF Interrupt 2 Pin Flag
Set to 1if P3.0 pin Interrupt occurs
1 P33IF Interrupt 1 Pin Flag
Set to 1if P3.3 pin Interrupt occurs
0 P32IF Interrupt O Pin Flag
Set to 1if P3.2 pin Interrupt occurs
TABLE 161:INTERRUPT PIN FLAG 2 REGISTER - IPINFLAG2 SFR D8H
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 PO7IF Interrupt 15 Pin Flag
Set to 1if P0.7 pin Interrupt occurs
6 PO6IF Interrupt 14 Pin Flag
Set to 1if P0.6 pin Interrupt occurs
5 PO5IF Interrupt 13 Pin Flag
Set to 1if P0.5 pin Interrupt occurs
4 PO4IF Interrupt 12 Pin Flag
Set to 1if P0.4 pin Interrupt occurs
3 PO3IF Interrupt 11 Pin Flag
Set to 1if P0.3 pin Interrupt occurs
2 PO2IF Interrupt 10 Pin Flag
Set to 1 if P0.2 pin Interrupt occurs
1 PO1IF Interrupt 9 Pin Flag
Set to 1if P0.1 pin Interrupt occurs
0 POOIF Interrupt 8 Pin Flag

Set to 1if P0.0 pin Interrupt occurs

www.ramtron.com

page 85 of 99

VRS51L2070

RAMTRSN

15 VRS511L.2070 JTAG Interface

The VRS51L2070 includes a JTAG interface that
enables programming of the on-board Flash as well as
code debugging. In order to free up as many I/Os as
possible, the JTAG interface pins are shared with
regular I/O pins that can be used as general 1/0Os when
the JTAG interface is not being used.

The JTAG interface is mapped into the following pins:

TABLE 162: JTAG INTERFACE PIN MAPPING

circuit debugging. For more information on the
VRS51L2070 debugger’s features and use, please
consult the Versa Ware JTAG user guide.

16 Flash Programming
Interface (FPI)

The FPI module allows the processor to perform in-
application management of the Flash memory content.
The following operations are supported by the FPI
module :

e Mass Erase
e Page Erase
e Byte Write

Six SFR registers are associated with the FPI module
operation, as shown in the table below:

TABLE 163: FLASH PROGRAMMING INTERFACE REGISTERS

JTAG Function Corresponding Pin
Pin

TDI JTAG Data Input P4.3

TDO JTAG Data Output P4.2

CMO Chip Mode 0 ALE

TMS Test Mode Select P4.1

TCK JTAG Clock P2.7

Activation of the JTAG interface is controlled by the
CMO/ALE pin. The CMO/ALE pin includes an internal
pull-up resistor. When the CMO pin is held at a logic
low and a reset is performed, the JTAG interface is
activated.

15.1 Impact of JTAG interface activation

When the JTAG interface is connected, it has the
following impact on the VRS51L2070 operation:

e The PWM 7 output is deactivated. The PWM7
module can still be active.

e The P27, P43, P42, P41 1/O pins are
deactivated.

e The ALE pin is reserved for the JTAG
interface. To efficiently debug code accessing
the external SRAM memory, place a 1k Ohms
resistor in the path of CMO to the JTAG
interface module.

15.2 VRS51L2070 Debugger

The VRS51L2070 includes advanced debugging
features that enable real-time, in-circuit debugging and
emulation via the JTAG interface. When the
VRS51L2070 debugger is activated, the upper 1024
bytes of the Flash memory are not available for user
program.

The VRS51L2070 debugger is intended to be used in
conjunction with the Versa Ware JTAG software,
developed by Ramtron. This software provides an
easy-to-use interface for device programming and in-

SFR Name Function Reset Value
Configures the
E9h FPICONFIG FPI operations 34h
Address for
operation
EAh FPIADDRL (lower byte) 00h
Address for
operation
EBh FPIADDRH (upper byte) 00h
ECh FPIDATAL Data to write 00h
Upper byte of
EDh FPIDATAH data to write 00h
Clock speed
during FPI
EEh FPICLKSPD operations 00h

The FPI module is activated by setting bit 0 of the
PERIPHEN2 register. There are two ways to perform
read and write operations to the Flash using the FPI
module: the standard 8-bit mode, which writes 1 byte
at a time and an extended 16-bit mode, which writes 2
bytes at a time (1 word), effectively doubling the writing
speed. In addition, whenever a write or read is
performed, the address is incremented automatically
by the FPI module, saving processor cycles.

www.ramtron.com

page 86 of 99

VRS51L2070

RAMTRSN

16.1 FPI Configuration Register

Flash operations are activated via the FPI
configuration register. The following table describes
the FPI configuration register:

TABLE 164: FPI CONFIGURATION REGISTER - FPICONFIG SFR E9H

7 6 5 4 3 2 1 0
R R R R R/W R/W R/W R/W
0 0 1 1 0 1 0 0
Bit Mnemonic Description
7:6 FPILOCK[1:0] | These bits indicate the stage of the unlock
operation:

00 : IAP protection on (no unlock steps done)
01 : IAP first unlock step done: FPI_DATA LO
received OxAA

10 : IAP protection off: second step done
FPI_DATA_LO received 0x55)

11 : Disables write/erase operations until the
next system reset. This occurs if a wrong
sequence is used.

5 FPIIDLE Always = 1 Indicates that the FPI is idle

4 FPIRDY Indicates that the FPI is idle in all modes except
"write byte" mode, in which the double buffer is
ready for a new value

3 RESERVED Keep this bit at 0

2 FPI8BIT FPI operating mode

0 = FPI operates in 16-bit mode
1 = FPI operates in 8-bit mode

0 FPITASK[1:0] | FPITASK Operation

00: Read Mode

01: Mass Erase

10: Page Erase

11: Write Byte (Writing to FPIDATAL start
Byte Write operation)

Note that actions are only started if fpiready is
high, otherwise the action is cancelled

16.2 FPI Flash Address and Data
Registers
The FPIADDRH and FPIADDRL registers are used to

specify the address at which the IAP function will be
performed.

TaBLE 165: FPI ADDRESS HiGH FPIADDRH SFR EBH

7 | 6 1] 51 4 1 3] 2 | 171 o

R/W, Reset = 0x00

FPIADDR[15:8]

The FPIADDRH register contains the MSB of the
destination address. For page erase operations, it
contains the page number where page erase
operations are performed.

TABLE 166:FPI ADDRESS Low -FPIADDRL SFR EAH

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0
RIW
FPIADDR[7:0]

The FPIADDRL register contains the LSB of the
destination address where the operation is performed.
For page erase it must contain the value 0x00.

The FPIDATAH and FPIDATAL SFR registers contain
the data byte required to perform the FPI function.

TaBLE 167: FPI DATA HiGH - FPIDATAH SFR EDH

7 | 6 | 5] 4] 3] 2 [1 1 o

R/W, Reset = 0x00

FPIDATA[15:8]

When Read: MSB of last word read[15:8] from Flash
When Write: Byte[15:8] to write in Flash

TaBLE 168:FPI DATA Low - FPIDATAL SFR EcH

7 | 6] 5] 417 3] 2 [T 171 o

R/W, Reset = 0x00

FPIDATA[7:0]

Read: Last read byte[7:0] from Flash

Writing to this byte in 'FPI write mode' triggers the FPI
state machine to start the write action.

16.3 FPI Clock Speed Control Register

The FPI clock speed control register sets the FPI
module to an optimal speed based on the speed of the
system clock.

TABLE 169:FPI CLock SPEeD CONTROL REGISTER - FPICLKSPD SFR EEH

7 6 5 4 3 2 1 0
R R R R RW RW R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:4 Unused
3:0 FPICLKSPD Specifies speed of the system clock entering the
[3:0] FPI module

Frequency range:

0000 : 20MHz to 40 MHz

0001 : 10MHz to 20 MHz

0010 : 5MHz to 10 MHz

0011 : 2.5MHz to 5 MHz

0100 : 1.25MHz to 2.5 MHz
0101 : 625kHz to 1.25 MHz
0110 : 312.5kHz to 625 kHz
0111 : 156.25kHz to 312.5 kHz
1000 : 78.12kHz to 156.25 kHz
1001 : 39.06kHz to 78.125 kHz
1010 : 19.53kHz to 39.0625 kHz
Others : 9.76kHz to 19.53125 kHz

Use the settings found in the following table when
using the FPI at a speed other than the nominal speed
of the internal oscillator.

www.ramtron.com

page 87 of 99

VRS51L2070

RAMTRSN

TABLE 170: SETTING THE FPICLKSPD REGISTER

Value — Range -

Minimum Maximum

0 (default) | 20.000 MHz 40.000 MHz
1 10.000 MHz 20.000 MHz

2 5.000 MHz 10.000 MHz

3 2.500 MHz 5.000 MHz

4 1.250 MHz 2.500 MHz

5 625.000 KHz 1.250 MHz
6 312.500 KHz | 625.000 KHz
7 156.250 KHz | 312.500 KHz
8 78.125 KHz 156.250 KHz

9 39.063 KHz 78.125 KHz
10 19.531 KHz 39.063 KHz
Other 9.766 KHz 19.531 KHz

The FPICLKSPD register must be set to the
corresponding system clock speed for proper operation
of the FPI module. For example, a 20.0 MHz clock
requires FPICLKSPD to be set to 1, while a 20.1 MHz
clock requires FPICLKSPD to be set to 0. If
FPICLKSPD is set incorrectly, the Flash write operation
may not process correctly, causing data corruption.

16.4 Using the FPI Interface
16.4.1 Write protection

The VRS51L2070 provides a safety mechanism to
prevent accidental writing or erasing of the Flash. The
following sequence must be written to the FPIDATAL
register to unlock the VRS51L2070 each time a write is
performed.

FPIDATAL < AAh
FPIDATAL < 55h

Not performing the above sequence will lock the FPI
module until a reset of the VRS51L2070 is performed.

Bit 7 and 6 of the FPICONFIG provide the status of the
FPI write protection circuitry.

16.4.2 FPIIDLE

This bit indicates whether the previous action is
complete and the FPI is idle. The FPIIDLE bit must be
checked before performing any FPl operation, to
ensure that the module is ready.

16.4.3 FPIRDY

When writing a stream of bytes or words, this bit
indicates whether the FPI is ready for the next write.

Note that AAh then 55h must first be written in order to
unlock the FPI module.

16.4.4 FPISBIT

The FPI8BIT bit of the FPICONFIG register defines
whether the FPI module read and write operations will
be performed in 8 or 16-bit format. When the FPISBIT
bit is set to 1, the FPI module will operate in 8-bit
mode. The 16-bit address of the Flash memory, where
the FPI operation will be performed, is defined by the
value of the FPIADDRH and FPIADDRL registers.

When the FPI module is used to write data into the
Flash memory, the FPIDATAL register holds the value
of the data to be written. When the FPI module is used
to read the Flash, the read value is returned via the
FPIDATAL register.

When the FPI8BIT bit is cleared, the FPI module will
operate in 16-bit mode. In this case, the address range
is defined by a 15-bit address [0000 — 7FFF] and must
be written into the FPIADDRH and FPIADDRL
registers.

When a 16-bit FPI write operation is performed, the
16-bit data must be stored in the FPIDATAH and
FPIDATAL registers. When a Flash memory read
operation is performed, the 16-bit data will be returned
to the FPIDATAH and FPIDATAL registers.

16.5 Performing a Read

There are three ways to read directly from the
VRS51L2070 Flash memory:

1. Use the MOVC instruction
2. Use the FPI in 8-bit mode
3. Use the FPI in 16-bit mode

It may be preferable to use the FPI over the MOVC
instruction, because some compilers will optimize code
that repeatedly checks the Flash. To perform a read,
perform the following steps:

0 Make sure the FPI module is enabled

o Set FPIADDRH and FPIADDRL to the
appropriate address (see section 1.1.4)

o Write 00000X00 to the FPICONFIG register,
where X = 1 if reading 8 bits, and X = 0 if
reading 16 bits

0 Loop until FPI_IDLE is raised

o Get the results from FPIDATAH and
FPIDATAL if in 16-bit mode, or from
FPIDATAL if in 8-bit mode

www.ramtron.com

page 88 of 99

VRS51L2070

RAMTRSN

16.5.1 FPI Flash Read in 8-Bit Mode Example

The following code sequence follows the above
algorithm to read address ABCDh in 8-bit mode:

ORL PERHIPHEN2, #1 ; Enable FPI
MOV FPIADDRH, #0ABh ; Move in upper address
MOV FPIADDRL, #0CDh ; Move in lower address

MOV FPICONFIG, #004h ; Trigger the read in 8-bit mode

Wait:
MOV A, FPICONFIG ; Get the FPI status
JNB ACC.7, Wait ; Jump if not ready

; The read is now done. The result in FPIDATAL

16.5.2 FPI Flash Read in 16-Bit Mode Example

The following code sequence will read 16 bits from
address ABCD:

#include <VRS51L2070.h>
unsigned char ucupper;
unsigned char uclower;

void readFPI(int address)
{
unsigned char result;

PERIPHEN2 |= 1; /* Enable FPI */

FPIADDRH = (unsigned char) (address >> 8); /* Upper address */

FPIADDRL = (unsigned char) address; /* Lower address — automatically truncates */
FPICONFIG = 0; /* Trigger the read */

do

result = FPICONFIG & 0x20; /* Check for the FPI_IDLE bit */

while(!result)
ucupper = FPIDATAH;
uclower = FPIDATAL;

}
void main()

/*** SOME CODE***/
readFPI(0x55e6); /* This is address ABCD converted to 16 bit addressing */

/*** SOME CODE***/
while(1);
}

16.6 Erasing Flash
16.6.1 Page Erase

When storing nonvolatile data, it is necessary to erase
the Flash before writing to it. Programming is done by
byte or word boundary, while erase is done by page
boundary. A page is a contiguous block of 512
addresses. Page numbers can be calculated from the
following formula:

Page = address / 512 |

Page 0 contains all the addresses from 0000h to
01FFh, page 1 contains all the addresses from 0200h
to 03FFh and so on. There are 128 pages of Flash on
the VRS51L2070 (64KB Flash).

To erase a page, follow these steps:

1. Ensure that the FPI module is enabled
2. Write AAh to the FPIDATAL register

3. Write 55h to the FPIDATAL register

4. Write 0 to the FPIADDRL register

5. Write the page number to the FPIADDRH
register

6. Write 2 to the FPICONFIG register

7. Wait for FPI_IDLE to go high

16.6.2 FPI Page Erase Example

This code sequence will erase page 64:

ORL PERHIPHEN2, #1 ; Enable FPI

MOV FPIDATAL, #0AAh ; UNLOCK 1

MOV FPIDATAL, #055h ; UNLOCK 2

MOV FPIADDRL, #0 ; Move in 0

MOV FPIADDRH, #64 ; Move in page number
MOV FPICONFIG, #2 ; Trigger the page erase

Wait:
MOV A, FPICONFIG ; Get the FPI status
JNB ACC.7, Wait ; Jump if not ready

; The page is now erased

16.6.3 Mass Erase

It is possible to completely erase the Flash memory
from within a program. To do so, the following steps
must be performed:

1. Make sure that the FPI module is enabled
2. Write AAh to the FPIDATAL register

3. Write 55h to the FPIDATAL register

4. Write 1 to the FPICONFIG register

5. If still possible, wait for FPI_IDLE to go to 1

The Flash is now completely erased.

Warning: At this point, the Flash should be totally
erased. If running from external memory, make sure it
is copied back to its locations in Flash with write
commands. Step 5 can only be performed if executing
code from external SRAM.

16.7 Writing to the Flash
There are two methods to write to the Flash:

0 8-bit double buffered
o 16-bit double buffered

Depending on the complexity and the amount of Flash
to be written, one mode may be more efficient than the
other: 8-bit mode is more suited to programming a few
bytes of data, while 16-bit mode is more suited to
memory dumping.

Writing the Flash in 8-bit mode
1. Make sure the FPI module is enabled
2. Write 7 to the FPICONFIG register

3. Set FPIADDRH and FPIADDRL to the
appropriate addresses

www.ramtron.com

page 89 of 99

VRS51L2070

RAMTRSN

Write AAh to the FPIDATAL register
Write 55h to the FPIDATAL register

Write data to the FPIDATAL register (this
triggers the operation)

7. If complete, wait for FPI_IDLE to go high. If
there are more bytes to be written at a different
address, return to step 3. If the next address is
contiguous, go to step 4 instead.

Note that the address the data is written to will be
automatically incremented for the next byte. As such,
the address only needs to be written once per data
stream (assuming that a contiguous block is written),
as shown in the following example.

16.7.1 FPI Flash Write in 8-Bit Mode Example

"

/I* FPI Flash Write 8bit Mode Example *
"

#include <VRS51L2070.h>

Ihis function uses the FPI module to write a null terminated string to flash
void copy_to_Flash(int address, char *str)

unsigned char ready; /* Is the FPI idle? */

PERIPHEN2 |=1; /* Enable FPI*/

/* Upper address */
FPIADRH = (unsigned char) (address >> 8);
/* Lower address - automatically truncates */
FPIADRL = (unsigned char) address;
FPICONFIG =7; /* Trigger the write

in 8 bit mode */

while(*str) /* while not null */

{

FPIDATAL = Oxaa; /* 1st step unlock */
FPIDATAL = 0x55; /* 2nd step unlock */
FPIDATAL = (unsigned char)(*str);

/* Wait for the buffer to be ready */
/* The operation is not finished, check for FPI_READY */
do

{
ready = FPICONFIG & 0x10;
twhile(!ready);

str++;

}

/* Null character encountered, write an
additional 0 to memory */

FPIDATAL = Oxaa; /* 1st step unlock */
FPIDATAL = 0x55; /* 2nd step unlock */
FPIDATAL =0; /* End in null - this avoids

having to pass the string
length */

/* The operation is finished, check for FPI_IDLE instead of FPI_READY */
do

ready = FPICONFIG & 0x20;
twhile(!ready);

return;

void main(void)

*** CODE ***/
copy_to_Flash(0x3000, "Ramtron Inc");
copy_to_Flash(0x4000, "Microsystems connecting two worlds");

/*** CODE ***/

while(1);
}

16.7.2 Writing to the Flash in 16-Bit Mode
Follow the steps below to write in 16-bit mode:

1. Make sure the FPI module is enabled

2. Write 3 to the FPICONFIG register

3. Set FPIADDRH and FPIADDRL to the
appropriate addresses (remember to convert to
16-bit addressing)

4. Write AAh to the FPIDATAL register

5. Write 55h to the FPIDATAL register

6. Write data to the FPIDATAL register (this
triggers the operation)

7. If complete, wait for FPI_IDLE to go high. If
there are more bytes to be written at a different
address, return to step 3. If the next address is
contiguous, go to step IV instead

Note that the address the data is written to will be
automatically incremented for the next byte As such,
the address only needs to be set once per data stream
(assuming a contiguous region is written), as shown in
the following example.

16.7.3 FPI Flash Write in 16-Bit Mode Example

This routine copies 512 bytes (1 page) of external
SRAM to the Flash memory at address EOOOh +
XRAM. The RO and R1 registers contain the starting
address of the page to copy.

"
/I* FPI Flash Write 16-bit Mode Example *
I

WRITE_PAGE:

PUSH DPHO ;PUSH THE DATA POINTER
PUSH DPLO

PUSH ACC ;PUSH THE VAR. TO BE USED
PUSH B

MOV ACC, R2

PUSH ACC

MOV DPHO, R1 ;LOAD THE DATA POINTER
MOV DPLO, RO
MOV R2, #255 ;LOOP COUNTER (511 BYTES)

ORL PERHIPHEN2, #1 ;ENABLE FPI MODULE
MOV FPICONFIG, #3 ;ENABLE WRITING IN 16 BIT ;MODE

; SET THE ADDRESS MUST BE 16 BITS (ADDRESS / 2)

CLRC ;CLEAR THE CARRY FLAG

MOV A, R1

RRC A ;CHECK IF THERE WILL BE A CARRY
CLRA ;DOES NOT AFFECT CARRY BIT
RRCA ;SETS A TO 80h IF R1 WAS ODD, OR

;KEEPSIT O

www.ramtron.com

page 90 of 99

VRS51L2070

RAMTRSN

MOV FPIADRL, A ;SET LOWER ADDRESS
MOV A, R1
RRA ;DIVIDE ADDRESS BY 2
ADD A, #7 ;ADDS E000H TO THE ADDRESS

:(E000 / 2 = 7000)
MOV FPIADRH, A ; SET UPPER ADDRESS
WRITE_PAGE_LOOP:

MOV FPIDATAL, #0AAh ;UNLOCK STEP 1
MOV FPIDATAL, #055h ;UNLOCK STEP 2

MOVX A, @DPTR

MOV B, A

INC DPTR ;NEXT BYTE

MOVX A, @DPTR

INC DPTR :NEXT BYTE

MOV FPIDATAH, A ;SET THE UPPER VALUE

MOV FPIDATAL, B ;SET THE LOWER VALUE
;AND START THE WRITE

WRITE_PAGE_LOOP_WAIT:
MOV A, FPICONFIG :CHECK TO SEE IF THE
:BUFFER IS READY
:JUMP IF FPI_READY IS NOT HIGH
JNB ACC .4 WRITE_PAGE_LOOP_WAIT

DJINZ R2 JWRITE_PAGE_LOOP
;NOW WRITE THE LAST WORD (BYTE 511 AND 512)

MOV FPIDATAL, #0AAh ;UNLOCK STEP 1
MOV FPIDATAL, #055h ;UNLOCK STEP 2

MOVX A, @DPTR

MOV B, A
INC DPTR ;NEXT BYTE
MOVX A, @DPTR
INC DPTR ;NEXT BYTE
;(not necessary)
MOV FPIDATAH, A ;SET THE UPPER VALUE
MOV FPIDATAL, B ;SET THE LOWER VALUE
;AND START THE WRITE
WRITE_PAGE_LAST_WAIT:
MOV A, FPICONFIG ;CHECK TO SEE IF THE

;BUFFER IS READY
JUMP IF FPI_IDLE IS NOT HIGH (LAST WORD)
JNB ACC.5 , WRITE_PAGE_LOOP_WAIT

;RESTORE VARIABLES USED
POP B
POP ACC
MOV R3, ACC
POP ACC
POP DPLO
POP DPHO
RET ;RETURN TO CALLER

16.8 Tips on Using the FPI Interface

The following tips can be used to get the most out of
the IAP features on the VRS51L2070.

Shorter programming time can be achieved if
the FPI Flash write routines are run from the
4KB external memory SRAM, as the circuitry
that reads instructions from the Flash does not
interfere with the FPI module.

The Flash must be erased before
reprogramming, and the same value should
not be written more than once to the same
Flash address, unless an erase cycle is
performed in between writes.

To maximize the endurance of the
VRS51L2070 Flash memory, FPI Flash page
erase operations should be done sparingly.
The FPI mass erase function will erase the
entire VRS51L2070 Flash memory, including
code already programmed.

IAP can be performed even if the Flash
protection is enabled. It is the responsibility of
the programmer not to reveal the Flash
information of a secured device via the IAP.
When write operations are performed at the
boundaries of two contiguous blocks of
memory, the address will automatically
increment to the next byte/word after a write
cycle. This can save processor cycles.

The FPI read can be used to perform Flash
memory reads, however using the MOVC
instruction is more efficient.

Make sure that the location being written to
does not interfere with the program running in
the Flash.

www.ramtron.com

page 91 of 99

VRS51L2070

RAMTRSN

17 Crystal Consideration

By default, the VRS51L2070 derives its clock from its
internal oscillator. It is also possible to use external
crystal for the VRS51L2070 clock source. The crystal
connected to the VRS51L2070 oscillator input should
be parallel cut type, operating in fundamental mode.

The addition of 15 to 20pF load -capacitors is
recommended. See the following figure for a
connection diagram.

Note: Oscillator circuits may differ with different
crystals or ceramic resonators in higher oscillation
frequency. Crystals or ceramic resonator
characteristics may also vary from one manufacturer to
another.

The wuser should review the technical literature
associated with specific crystal or ceramic resonator s
or contact the manufacturer to select the appropriate
values for the external components.

FIGURE 36: VRS51L2070 EXTERNAL CRYSTAL OSCILLATOR CONFIGURATION

XTAL mm

XTALA1

VRS51L2070

XTAL2

www.ramtron.com

page 92 of 99

VRS51L2070

RAMTRSN

18 Operating Conditions

18.1 Absolute Maximum Ratings

Parameter Min. Max. Unit Notes
Supply voltage input (VDD — VSS) 3.1 3.6 V Engineering samples
I/O input voltage all except P4.6 & P4.7 -0.5V 5.5V \ Preliminary
I/O input voltage P4.6 & P4.7 only VDD-0.5 VDD+0.5 |V Preliminary
Maximum 1/O current (sink/source) -
QFP64 package 90 100mA | Preliminary
18.2 Nominal operating conditions
TABLE 171: OPERATING CONDITIONS
Symbol Description Min. Typ. Max. Unit Remarks
TA Operating temperature -40 25 +85 °C
TS Storage temperature -55 25 155 °C
VCC5 Supply voltage 3.1 3.3 3.6 V
Fextosc 40 Ext. Oscillator Frequency 1.0 - 40 MHz For 3.3V application
18.3 DC Characteristics
VCC = 3.3V, Temp = 25°C, No load on I/Os
TABLE 172: DC CHARACTERISTICS
Symbol | Parameter Valid Min. Typ Max. Unit Test Conditions
VILA1 Input Low Voltage Port 0,1,2,3,4,5,6 -0.35 0.80 \ VCC=3.3V
VIL2 Input Low Voltage RESET, XTAL1 -0.35 0.80 V VCC=3.3V
VIH1 Input High Voltage Port 0,1,2,3,4,5,6 2.0 5.5 V VCC=3.3V
VI H2 Input High Voltage RES, XTAL1 2.0 5.5 \Y VCC=3.3V
Port IOL = Rated I/0O max
VOLA1 Output Low Voltage 0,123,456 ALE 0.2 \Y current
. Port Vce —
VOH2 Output High Voltage 0.12.3.4.56ALE 0.3V \% Max Rated I/O Current
ILI Input Leakage Port 0,1,2,3,4 40 UA
Current
RREs | ResetEquivalent RES TBD Kohm
Pull-up Resistance
Cc™10 Pin Capacitance 10 pF Freq=1 MHz, Ta=25C
. . Active mode, 40MHz
177mA 27 mA (Int. Oscillator)
. Active mode, 10MHz
. - 0 75 MA | (int. Oscillator)
IcC Current VDD 5.5 maA | Active mode 4 MHz
(Ext. Crystal)
. . Idle mode, oscillator
3.6 " mA running 40MHz
1.1 mA OSC stop mode
*Preliminary

www.ramtron.com

page 93 of 99

VRS51L2070

RAMTRSN

18.4 VRS51L2070 Timings Parameters

TABLE 173: AC CHARACTERISTICS

Variable Fosc

Symbol Parameter Min. Typ Max. Unit
ALE Pulse Width nS
Address Valid to ALE Low nS
Address Hold after ALE Low nS
ALE Low to Valid Instruction In nS
ALE Low to #PSEN low nS
#PSEN Pulse Width nS
#PSEN Low to Valid Instruction In nS
Instruction Hold after #PSEN nS
Instruction Float after #PSEN nS
Address to Valid Instruction In nS
#PSEN Low to Address Float nS
#RD Pulse Width nS
#WR Pulse Width nS
#RD Low to Valid Data In nS
Data Hold after #RD nS
Data Float after #RD nS
ALE Low to Valid Data In nS
Address to Valid Data In nS
ALE low to #WR High or #RD Low nS
Address Valid to #WR or #RD Low nS
Data Valid to #WR High nS
Data Valid to #WR Transition nS
Data Hold after #/WVR nS
#RD Low to Address Float nS
#W R or #RD High to ALE High nS
Clock Fall Time nS
Clock Low Time nS
Clock Rise Time nS
Clock High Time nS
Clock Period nS

www.ramtron.com

page 94 of 99

VRS51L2070 RaAMTRIN

18.5 Data Memory Read Cycle Timing — Multiplexed Mode

The following diagram shows the timing of a multiplexed external data memory read cycle.

FIGURE 37: DATA MEMORY READ CYCLE TIMING

MULTIPLEXED READ

o | [L7 L1 [|

P2A[14:8] / /
P 0 A[7:0/D[7:0] A7:0] DAT
S I
RD

18.6 Data Memory Write cycle Timing — Multiplexed mode
The following diagram shows the timing of a multiplexed external data memory write cycle.

FIGURE 38: DATA MEMORY WRITE CYCLE TIMING

MULTIPLEXED WRITE

ax | W/ QLT | [] L]

P2A[14:8] / /

P 0A[7:0)/D[7:0] A7:0] D[7:0] /
QY. o 2N /
WR

www.ramtron.com page 95 of 99

VRS51L2070 RaAMTRIN

18.7 Data Memory Read cycle timing — Non-Multiplexed Mode

The following diagram shows the timing of a non-multiplexed external data memory read cycle.

FIGURE 39: DATA MEMORY READ CYCLE TIMING

NON- MULTIPLEXED READ

P2:P 6 A[14:0] / /

POD[7:0] DATA

RD ‘

www.ramtron.com page 96 of 99

VRS51L2070

RAMTRSN

18.8 Timing Requirement of the External Clock

The following diagram shows the timing of an external clock driving the VRS51L2070 input.

FIGURE 40: TIMING REQUIREMENT OF EXTERNAL CLoCK (VSS= 0.0V IS ASSUMED)

CLKPER

Vdd - 0.5V = mmmmmmmmm
0.5V
CLKLOW >‘ CLKHIGH
CLKFT CLKRT
TABLE 174: EXTERNAL CLOCK TIMING REQUIREMENTS
Variable Fosc
Symbol Parameter Min. Typ Max. Unit
CLKPER | Ext. clock period 25 nS
CLKLOW | Ext. clock low duration nS
CLKHIGH | Ext. clock high duration nS
CLKFT Ext. clock fall time nS
CLKRT Ext. clock rise time nS

www.ramtron.com

page 97 of 99

VRS51L2070

RAMTRSN

19 VRS51L 2070 Package

19.1 VRS51L2070 QFP-64 Package

FIGURE 41: VRS51L2070 QFP-64 PACKAGE DRAWINGS

OO O

49

56

" QFP-64

E1
O000000000000000m0

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

. VRS51L2070

32
31
30
29
28

JooouuiooouUogy

TABLE 175: DIMENSIONS OF QPF-64 PACKAGE

Symbol | Description QFP-64
D1 Body size 14

E1 Body size 14

A1 Stand-off 0.1

A2 Body thickness | 1.4

L1 Lead Length 1

b Lead width 0.35

c L/C thickness 0.127

e Lead pitch 0.8

A‘bF

www.ramtron.com

page 98 of 99

VRS51L2070

RAIMTRISN

20 Ordering Information

20.1 Device Number Structure

VRS51 L 2070 -40

- X

Green

Blank = No Green
G = Green (lead-free)

Blank

Temperature Range
= Industrial (-40°C to+85°C)

Package Options

R = 64-pin Quad Flat Pack (QFP-64)

Operating Frequency

40: 40MHz oscillator frequency

Product Number

2070 — 64-pin package

20.2 VRS51L2070 Ordering Options

TABLE 176: VRS51L2070 PART NUMBERING

Operating Voltage

L=3.1V - 3.6Volts

Device Number Flash SRAM Package Voltage Temperature Frequency
Size Size Option
VRS51L2070-40-QG 64KB 4352 QFP-64 3.1V to 3.6V | -40°C to +85°C 40MHz

Errata:

Engineering samples of the VRS51L.2070 have an operating voltage of 3.1 to 3.6V instead of 3.0 to 3.6V
Readback of the content in the THx/TLx and RCAPxH/RCAPXL timer registers will return to 0x00 unless the
corresponding timer is running or, for the timers 0 and 1, the timer gating bit is set.

Disclaimers

Right to make change - Ramtron reserves the right to make changes to its products - including circuitry, software and services - without

notice at any time. Customers should obtain the most current and relevant information before placing orders.

Use in applications - Ramtron assumes no responsibility or liability for the use of any of its products, and conveys no license or title
under any patent, copyright or mask work right to these products and makes no representations or warranties that these products are
free from patent, copyright or mask work right infringement unless otherwise specified. Customers are responsible for product design and
applications using Ramtron parts. Ramtron assumes no liability for applications assistance or customer product design.

Life support — Ramtron products are not designed for use in life support systems or devices. Ramtron customers using or selling
Ramtron’s products for use in such applications do so at their own risk and agree to fully indemnify Ramtron for any damages resulting

from such applications.

I2C is a trademark of Koninklijke Philips Electronics NV.

www.ramtron.com

page 99 of 99

