

SeaCOMTM

Serial Port Driver

User Manual

�SeaCOM

© 1994 Copyright, Sealevel Systems Incorporated. All rights reserved. Printed in the United States of America. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

Other trademarks and trade names are used to identify the entities claiming the marks and names of their products.

Q2/94

�

TABLE OF CONTENTS

I. Introduction

	A. Features

	B. System Requirements

		1. Hardware Requirements

		2. Software Requirements

	C. License Agreement / Warranty

	D. SeaCOM Contents

	E. Document Conventions

II. Asynchronous Communications Overview

	A. General

	B. Communications Standards

		1. RS-232

		2. RS-422

		3. RS-485

		4. RS-530

		5. MIL-188

		6. Current Loop

III. Configuration / Installation

	A. Configuration

	B. Cabling

	C. Installation

		1. SeaCOM Command Line Options

		2. Installing SeaCOM

		3. Multiple Installations

IV. Programmers Reference

	A. Low Level Assembler Function Calls

	B. High Level Language Interface

	C. Programming Notes and Operating Environments

		1. DOS

		2. Windows

V. Troubleshooting

	A. Common Problems and Solutions

	B. Available Diagnostics

	C. Technical Support

�I. INTRODUCTION

SeaCOM is a serial communications software driver that provides fully buffered interrupt driven input and output to multiple asynchronous serial communication (COM:) ports. SeaCOM provides the programmer with a robust and reliable means for servicing multiple serial ports while maintaining a straightforward and consistent software interface.

SeaCOM was designed to operate on an IBM PC / XT / AT or compatible computer. The driver is a BIOS extension and / or replacement that provides extended capabilities in the form of block I/O and user configurable flow control support in addition to emulating standard BIOS interrupt 14h calls.

A. FEATURES

SeaCOM currently supports the following specifications:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Bi-directional buffered I/O on all ports.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Supports XT (2-7) and AT (8-15) IRQs (Interrupt Request).

�SYMBOL 183 \f "Symbol" \s 10 \h�	Interrupt sharing between multiple ports and / or multiple boards.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Supports up to 32 ports per installation, multiple installations allow for a maximum of 288 ports.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Configurable flow control options allow hardware and / or software handshake support.

�SYMBOL 35 \f "Lucida Bright Math Symbol" \s 10 \h� XON / XOFF transmit and / or receive flow control.

�SYMBOL 35 \f "Lucida Bright Math Symbol" \s 10 \h� Hardware transmit / receive flow control supports DTR, DSR , CTS, and / or block RTS mode enable (RS-485).

�SYMBOL 183 \f "Symbol" \s 10 \h�	Block and character I/O supported.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Emulates interrupt 14H PC / AT BIOS calls (00H-03H) and PS/2 extended BIOS calls (04H and 05H) for compatibility with existing software.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Support for 16550 buffered UART.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Written in 100% optimized assembly language for maximum performance.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Supports data rates to 115.2 Kbps with standard COM: configuration.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Independently configurable input and output buffers up to 64 kilobytes in size.

�SYMBOL 183 \f "Symbol" \s 10 \h�	High Level Language Library Supports C, C++,and BASIC.

B. SYSTEM REQUIREMENTS

1. HARDWARE REQUIREMENTS

SeaCOM was designed to operate on an IBM PC / XT / AT or compatible computer. One or more standard serial (COM:) ports based on 8250, 16450, 16550, or compatible UART is required. Each port must be mapped to a unique I/O port address to avoid port address contention. IRQ sharing is acceptable if the serial port IRQ sharing hardware is compatible. IRQs may be shared between different ports and between different cards. SeaCOM requires approximately 3 kilobytes of free conventional memory plus enough memory to accommodate the transmit and receive buffers defined by the user in the configuration utility program that is provided on the distribution diskette. If SeaCOM is loaded more than once, an additional 3 kilobytes plus buffer space is required for each resident copy. SeaCOM may be used with memory managers and loaded into expanded memory.

�2. SOFTWARE REQUIREMENTS

SeaCOM requires MS-DOS or PC-DOS version 3.00 or higher. SeaCOM will function under Microsoft Windows version 3.x. For more information on using SeaCOM with Microsoft Windows refer to the Programmers Reference section of this manual.

C. LICENSE AGREEMENT / WARRANTY

The software provided with this package is licensed for single CPU use. The user may operate the software on any machine or machines in his or her possession, but no more than one machine at any given time. This license is in effect until terminated by the licensor or the user. The user may terminate the license only if the programs that are provided in this package, all copies, and modifications in any form are destroyed.

The licensor makes no implied or express warranty of any kind with regard to this software package or the documentation that is included. The licensor will not be liable for damages of any type resulting from the performance, use, or furnishing of any of the supplied software. Any liability of the licensor will be limited to a refund of the purchase price or product replacement.

D. SeaCOM CONTENTS

For a detailed list of the software and documentation provided with SeaCOM, please refer to the file README.TXT located on the distribution diskette. Any additions or corrections to this manual, and a general overview of the distribution disk can also be found in the README.TXT file.

E. DOCUMENT CONVENTIONS

This manual uses the following typographic conventions:

Example�Description��README.TXT�Filenames, CPU registers, and operating system commands are indicated with uppercase letters.

��filename�Words and phrases that you must provide are noted with italics.

��SeaCOM...�An item is followed by similar items if three dots (an ellipsis) follows that item.

��mov ax,bx�This font is used for program examples and program input / output.

��mov ax,bx

push ax

.�A portion of an example has been intentionally omitted if a column or row of three dots is present.��.���.

pop ax�

��SeaCOM [options]�Items in brackets are optional.��

�II. Asynchronous Communications Overview

A. General

Asynchronous communications is the standard means of serial data communication for PC / XT / AT, compatibles and PS/2 computers. Serial data communications implies that individual bits of a character are transmitted consecutively to a receiver that assembles the bits back into a character (see example below for diagram). Data rate, error checking, handshaking, and character framing (start and stop bits) are pre-defined and must correspond at both the transmitting and receiving ends. Serial asynchronous communications is typically implemented with a Recommended Standard (RS). The standard usually defines signal levels, maximum bandwidth, connector pin-out, supported handshaking signals, drive capabilities, and electrical characteristics of the serial lines. The following section briefly describes some of the more common communication standards. Voltage levels that are stated are typical and may vary due to line characteristics. All interfaces accept a range of acceptable electrical and physical parameters and may even operate in excess to the specified standard under certain line characteristics. The full specification for each standard is available from almost any dealer of engineering documents.

�Asynchronous Timing Diagram

B. Communications Standards

1. RS-232

Probably the most widely used communication standard is RS-232. This implementation has been defined and revised several times and is often referred to as RS-232C or EIA-232. The most common implementation of RS-232 is on a standard 25 pin D sub connector, although the IBM PC-AT computer defined the RS-232 port on a 9 pin D sub connector. Both implementations are in wide spread use. RS-232 is capable of operating at data rates up to 20 Kbps / 50 ft. The absolute maximum data rate may vary due to line conditions and cable lengths. RS-232 often operates at 38.4 Kilo bits per second a very short distances. The voltage levels defined by RS-232 range from -12 to +12 volts. RS-232 is a single ended interface. This means that a single electrical signal is compared to a common signal (ground) to determine binary logic states. A voltage of +12 volts (usually +8 to +10 volts) represents a binary 0 and -12 volts (-8 to 10 volts) denotes a binary 1.

2. RS-422

RS-422, unlike RS-232, is a differential interface that defines voltage levels, and driver / receiver electrical specifications. On a differential interface, logic levels are defined by the difference in voltage between a pair of outputs or inputs. In contrast, a single ended interface, for example RS-232, defines the logic levels as the difference in voltage between a single signal and a common ground connection. Differential interfaces are typically more immune to noise or voltage spikes that may occur on the communication lines. Differential interfaces also have greater drive capabilities that allow for longer cable lengths. RS-422 is rated up to 10 Megabits per second and can have cabling 4000 feet long. RS-422 also defines driver and receiver electrical characteristics that will allow 1 driver and up to 32 receivers on the line at once. RS-422 signal levels range from 0 to +5 volts. RS-422 does not define a physical connector.

3. RS-485

This interface is very similar to RS-422 is several ways. RS-485 is a differential interface that allows cable lengths up to 4000 feet and data rates up to 10 Megabits per second. The signal levels for RS-485 are the same as those defined by RS-422. RS-485 has electrical characteristics that allow for 32 drivers and 32 receivers to be connected to one line. This interface is ideal for multi-drop or network environments. RS-485 tri-state driver (not dual-state) will allow the electrical presence of the driver to be removed from the line. The driver is in a tri-state or high impedance condition when this occurs. Only one driver may be active at a time and the other driver(s) must be tri-stated. The output modem control signal Request to Send (RTS) controls the state of the driver. Some communication software packages refer to RS-485 as RTS enable or RTS block mode transfer. RS-485 can be cabled in two ways, two wire and four wire mode. Two wire mode does not allow for full duplex communication. Two wire mode requires that data be transferred in only one direction at a time and the two transmit pins should be connected to the two receive pins (Tx+ to Rx+ and Tx- to Rx-). Four wire mode will allow full duplex data transfers. RS-485 does not define a connector pin-out or a set of modem control signals. RS-485 does not define a physical connector.

4. rs-530 and RS-449

RS-530 and RS-449 (a.k.a. EIA-530 and EIA-449) are similar to RS-422 and RS-485 in the fact that they are differential interfaces, but these two standards provide a specified pin-out that defines a full set of modem control signals that can be used for regulating flow control and line status. RS-449 is defined on a standard 37 pin D sub connector while RS-530 is backward compatible and is replacing RS-449. RS-530 is defined on a 25 pin D sub connector. These two interfaces define RS-422 as for their electrical specification.

5. MIL-188

This communications standard comes is two varieties, MIL-188/C and MIL-188/114. Both of these interfaces are military standards that are defined by the US Department of Defense. MIL-188/114 is a differential interface and MIL-188 / C is a unbalanced or single ended interface. Both MIL-188 interfaces are implemented on a RS-530 connector. MIL-188 / C and MIL-188 / 114 have signal levels from +6 volts to -6 volts and are ideal for long distances at high speeds.

6. Current Loop

This communication specification is based on the magnitude and direction of current, not voltage levels, over the communication lines. The logic of a Current Loop communications circuit is determined by the polarity of the current path (typically + or - 20mA). When referring to the specification, the current value is usually states (i.e. 20mA Current Loop). Current Loop is used for point to point communication and there are typically two current sources, one for transmit and one for receive. These two current sources may be located at either end of the communication line. To ensure a proper current path to ground, or loop, the cabling of two current loop communication ports will depend on the location of the current sources. Current Loop is normally good for data rates up to 19.2 Kbps. This limitation is due to the fact that the drivers and receivers are usually optically isolated circuits that inherently slower than non-isolated equivalent circuits.

III. Configuration / Installation

A. Configuration

Before installing SeaCOM, the SeaCOM Configuration Utility Program must be used to create a configuration file. The configuration file is used by SeaCOM to determine the number of ports, configuration options, and other miscellaneous settings. The SeaCOM Configuration Utility Program can be started from the DOS command line by typing SETUP.

The Configuration Utility Program is used to create a data file that holds setup and configuration parameters that the Driver uses during installation. The Configuration Utility Program will configure up to 32 ports. Although a mouse or other pointing device is recommended, it is possible to use the program without a mouse. To start the program type "SETUP" at the DOS prompt. Once the program has started, press the "Alt" key to activate the menu. The highlighted letters are short cut keys to the drop-down menus. For example, to access the load Window, press the "Alt" key to access the menu bar, then press the "F" key to access the file menu, then press "L" to show the load window. Once the menu has been selected, you may use the "Tab" button to move the cursor or focus from the controls or buttons on the menu.

If you have questions about the various settings offered in the program, please refer to the on-line help.

 B. Cabling AND FLOW CONTROL

The cabling configuration that is used with SeaCOM will depend on two factors: the handshaking options that are specified in the SeaCOM Configuration Utility Program and the recommended communication standard that is being implemented (i.e. RS-232, RS-422, etc.). The following diagrams show typical wiring configurations for commonly used recommended standards. If modem control signals are not used, they should be tied to a fixed logic level. When using a differential interface, like RS-422 or RS-485, each cable connection represented below requires two connections. For example, when cabling DTE to DTE, TD+ is connected to RD+ and TD- is connected to RD-.

�	�

	DTE-DTE, full hardware handshaking.	 DTE-DTE, no hardware handshaking.

�	�

	DTE to DCE, full hardware handshaking	DTE-DCE, no hardware handshaking.

Please note that RI and DCD are not used with SeaCOM, however, the device that you are communicating with may require these signals to be tied active. In some situations the above cabling examples may not apply. Please refer to the documentation provided with the device that you are connecting with to ensure proper cabling requirements are met. If you have any additional questions regarding cabling, feel free to contact technical support at the numbers listed at the end of this manual.

Several Flow Control options may be selected with the Configuration Utility Program (SETUP.EXE). To ensure that flow control is implemented correctly across your communication link, both the transmitting and receiving ends must have a compatible flow control configuration. Please note that all flow control options, including High Water and Low Water levels are configurable through the Configuration Utility Program.

Software Flow Control

If your application requires software flow control (XON/XOFF), no modem control signal connections will be needed in your cable. If XON/XOFF flow control is selected on receive, and the free space in the receive buffer is less than the High Water level, a XOFF character is transmitted. Once the number of characters in the receive buffer drops below the Low Water level, a XON character is transmitted. If XON/XOFF flow control is selected on the transmitter, all received characters are monitored. If a XOFF character is received, the driver will stop transmitting and the remaining characters to be transmitted will stay in the transmit buffer until an XON character is received. Once a XON character is received, the transmission of characters will resume.

Hardware Flow Control

If DTR flow control on receive is selected, the software driver will monitor the level of the receive buffer. If the free space in the receive buffer is less than the High Water level, the DTR signal will be put in a high (inactive) state. Once the characters in the receive buffers are removed by the application, and the number of characters in the receive buffer is less than the Low Water level, the DTR signal will return low (active).

If DSR flow control on transmit is selected, the transmitter will monitor the level of the DSR input pin. If the DSR input is active (low), any characters that are in the transmit buffer will be transmitted. If the DSR input pin is inactive (high), the transmitter will hold all characters in the transmit buffer until the DSR pin returns to the active state.

If CTS flow control on transmit is selected, the transmitter will monitor the level of the CTS input pin. If the CTS input is active (low), any characters that are in the transmit buffer will be transmitted. If the CTS input pin is inactive (high), the transmitter will hold all characters in the transmit buffer until the CTS pin returns to the active state.

RS-485 (Request To Send Active on Transmit)

Although selecting the RTS active on transmit option is a valid handshaking option, it is not typically used for flow control. When selected, this option will set the modem control output RTS (Request To Send) to an active state (low) if characters are being transmitted. Once the last character is sent, the RTS signal is set inactive (high). This option is normally used with serial interfaces that have RS-485 drivers and receivers. With RS-485 multiple transmitters can be tied to the same communication line, however only one transmitter can be active at a time. On RS-485 cards, the RTS signal is usually used to enable the transmitter. When this option is used with RS-485 cards, the transmitter is only enabled if characters are being transmitted. Please note that it is up to the application to manage driver contention when multiple nodes are connected together.

�

Initial States of RTS and DTR

The initial state of the modem control outputs DTR and RTS can also be set through the Configuration Utility Program. When using RTS enable mode (RS-485), the initial state of the RTS pin is normally off. If you are using DTR flow control on receive note that if the DTR is selected to be initially on the state of DTR will not change until a High Water or Low Water level has been reached in the receive buffer. Also note that if you use the Driver API function 0Ah (Get/Set Handshake Mode) the initial state of DTR and RTS will be set according to the values passed to the function call.

C. Installation

1. SeaCOM Command Line Options

SeaCOM has several command line options that may be used during installation to determine the current status of all loaded copies of SeaCOM. The command line options for SeaCOM are listed below. All command line options are optional. Any combination of command line options may be used.

SEACOM [/f:filename] [/h] [/i] [/u] [/v] [/?]

/f:filename�Where filename is the name of the configuration file created by the SeaCOM configuration utility. The default is SEACOM.CFG.

��/h�The /h switch disables the hardware detection during installation.

��/i�This option will show selected information concerning resident copies of SeaCOM. This option will inhibit SeaCOM from being installed.

��/u�The /u switch loads SeaCOM unconditionally. SeaCOM will load if another copy is already loaded into memory if this option is used.

��/v�This option displays verbose system information about resident copies of SeaCOM. Resident code size, captured interrupt vectors, Multiplex interrupt ID number and number of resident copies are among the information listed when this option is selected.

��/?�This option displays a list of all command line options without installing SeaCOM. Please use this option before installation to assure that any command line options that have been added are brought to your attention. This option overrides all other options.��

2. Installing SeaCOM

SeaCOM can be installed from the DOS command prompt, from the AUTOEXEC.BAT startup file, or the Windows startup file WINSTART.BAT. When installing SeaCOM in the AUTOEXEC.BAT or the WINSTART.BAT file make sure that the proper path is given if SeaCOM is not located in the root directory of the boot drive. The following is an example command line installation of SeaCOM.

C:>C:\SC\SEACOM /f:MYCONFIG.CFG /v

This example installs SeaCOM using the configuration file named MYCONFIG.CFG and displays verbose information. The file MYCONFIG.CFG is located in the C:\SC directory.

3. Multiple Installations

Multiple copies of SeaCOM may be installed providing the /u option is used on the command line. Care must be taken in configuring SeaCOM so that multiple copies do not share the same hardware (IRQ) or software (i.e. int 14h) interrupt. Port I/O addresses must be unique for each installed copy of SeaCOM. Each resident copy of SeaCOM requires approximately 3 kilobytes of free memory plus buffer memory, allocated in the SeaCOM configuration utility.

�IV. Programmers Reference

A. Low level assembler Function Calls

This section details the function calls supported by SeaCOM. All examples assume that software interrupt 14h was selected during the configuration and all baud rate selections that are listed assume that a standard 1.8432 MHz oscillator is used. For further documentation on the serial port register definitions, please refer to the 8250, 16450, or 16550 data book. For additional reference on SeaCOM function calls, refer to the Quick Reference Sheet included with this manual.

Port Initialization

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 00h		Programs the port with specified communication parameters. 					Standard data rates up to 9600 can be obtained. (compatible 					with int 14h BIOS call 00h.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 04h		Provides all the functionality of InitPortCOM while allowing 						access to baud rates.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 0Ah		Configures the selected port for various flow control options.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 0Bh		Allows the selected port to be configured to a non-standard baud 					rate (i.e. 3600 baud).

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 0Ch		Writes a specified value to any UART register.

Transmit and Receive

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 01h		Places a single character into the transmit buffer.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 02h		Gets a single character from the receive buffer.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 08h		Places a string or buffer of data into the transmit buffer.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 09h		Retrieves a block of data from the receive buffer.

Port Information

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 05h		Provides status of Modem Status and Port Status.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 03h		Same features as ReqPortStatCOM with additional read back 					capabilities.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 06h		Returns the value of any UART register.

Buffer Routines

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 06h 		Returns the logistics of the transmit or receive buffer.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 07h 		Purges the contents of the transmit or receive buffer.

System Information

	�SYMBOL 183 \f "Symbol" \s 10 \h�	Function 0Eh		Provides miscellaneous system information such as number of 					ports being serviced, resident memory requirements, and driver 					code segment.

�FUNCTION 00H - Initialize Serial Port

Called with:	DX = Port number

		AH = 00H, Selects function 00H

		AL = Initialization byte (see below)

Returns:	AH = Port Status

		AL = Modem Status

�Port Status�Modem Status��Bit�Significance (if set)�Significance (if set)��0�receive buffer status�delta CTS��1�overrun detected�delta DSR��2�parity error detected�trailing edge RI��3�framing error detected�delta DCD��4�break detected�CTS��5�transmit buffer status�DSR��6�not used in SeaCOM�RI��7�transmitter timed-out�DCD��

This function emulates the BIOS interrupt 14H function call 00H. This function will allow the selected port to be initialized with the selected stop bits, parity, and data rate. Use the template below for selecting the proper initialization byte. The DX register selects the port to initialize. Note that a 0 in DX corresponds to the first port and a 1 in DX selects the second port. The higher speed baud rates that are not supported by the BIOS interrupt 14h function 00H can be by using function 04H or function 0CH. The Port Status is actually the dynamically updated contest of the UART line status register located at base + 5. Modem Status reflects the contents of the UART modem status register located at base + 6.

Initialization Byte Bit Definitions	

Bits:�7 6 5�4 3�2�1 0��Function:�Baud Rate�Parity�Stop Bits�Word Length���000 = 110�X0 = None�0 = 1 Bit�10 = 7 Bits���001 = 150�01 = Odd�1 = 2 Bits�11 = 8 Bits���010 = 300�11 = Even���011 = 600���100 = 1200���101 = 2400���110 = 4800���111 = 9600��

Assembly Language Example:

	mov dx,0h	;select the first port, access low speed baud rates

	mov ah,0h	;select function 0, initialize port

	mov al,0E3h	;set init byte for 9600, n, 8, and 1

	int 14h	;invoke selected SeaCOM function

�FUNCTION 01H - Transmit a Single Character

Called with:	DX = Port number

		AH = 01H , Selects function 01H

		AL = Character to transmit

Returns:	If successful:

			AH Bits 0-6 = Port Status (see function 00H)

			AH Bit D7 = 0

			AL = Character (unchanged)

		If unsuccessful:

			AH Bit 7 = 1

			AL = Character (unchanged)

This function emulates the BIOS interrupt 14H function call 01H. The character in the AL register is placed in the transmit buffer. SeaCOM will send all characters in the transmit buffer out the serial port selected at interrupt time. This function will "time-out" if transmit buffer space does not become available within the specified time-out period that was selected in the SeaCOM configuration utility. This function is superior to the BIOS call because the circular transmit buffer allows several characters to be stored even if the port is busy.

Assembly Language Example:

	mov dx,0h	;select the first port

	mov ah,1h	;select function 1, transmit character

	mov al,'A'	;character to transmit

	int 14h	;invoke selected SeaCOM function

	.

	.

	.

�FUNCTION 2 - Receive a Single Character

Called with:	DX = Port number

		AH = 02H , Selects function 02H

Returns:	If character is available:

			AL = Character received

			AH = Line status register (base + 6) error bits if any

Bit�Significance (if set)��1�Overrun detected��2�Parity error detected��3�framing error detected��4�break detected��

		If no character is available:

			AH = Most significant bit set (D7)

This function emulates the BIOS interrupt 14H function call 02H. A single character will be returned from the receive buffer. This function returns bit D7 set if no characters are available in the circular receive buffer.

Assembly Language Example:

	mov dx,0h	;select the first port

	mov ah,2h	;select function 2, read character

	int 14h	;invoke selected SeaCOM function

	cmp ah,0h	;test for success

	jnz nochar	;jump if no character read

	push ax	;save character

	.

	.

	.

nochar: ...

�FUNCTION 03H - Request Port Status

Called with:	DX = Port number

		AH = 03H , Selects function 03H, Request Port Status

Returns:	AH = Port Status (see function 00H)

		AL = Modem Status (see function 00H)

This function emulates the BIOS interrupt 14H function call 03H. This function call will allow the programmer to get the status of the selected port without changing any other system parameters. The programmer should note function call 05H because it provides the same features as function 03H but provides the ability to set or reset assorted bits in the UART. The Port Status that is returned in the AH register is actually the contents of the UART Line Status Register that has been dynamically updated to maintain the status of all error flags since the last call to function 02H or 03H. Bits D0 and D5 reflect the status of the receive and transmit buffers rather than the actual UART condition.

Assembly Language Example:

	mov dx,0h	;select the first port

	mov ah,3h	;select function 3, get port status

	int 14h	;invoke selected SeaCOM function

	cmp ah,0h	;test for success

	.

	.

	.

�FUNCTION 04H - Extended Initialize Port

Called with:	DX = Port number

		AH = 04H , Selects function 04H, Extended Initialize Port

		AL = Break Flag			BH = Parity

			00H 	no break		00H	none

			01H	break			01H	odd

							02H	even

							03H	stick parity odd

		BL = Stop Bits				04H	stick parity even

			00H	1 stop bit

			01H	2 stop bits if word length is 6, 7, or 8 bits

			01H	1.5 stop bits if word length is 5 bits

		CH = Word Length	CL = Baud Rate

			00H	5 bits		00H	110

			01H	6 bits		01H	150

			02H	7 bits		02H	300

			03H	8 bits		03H	600

						04H	1200

						05H	2400

						06H	4800

						07H	9600

						08H	19.2K

						09H	38.4K

						0AH	56K

						0BH	115.2K

Returns:	AH = Port Status (see function 00H)

		AL = Modem Status (see function 00H)

This function emulates the PS/2 BIOS interrupt 14H function call 04H. This call is a superset of the PC / AT BIOS call 00H because it will allow the serial port to be initialized with a more complete set of options. SeaCOM will allow the serial port to be configured to a wider range of baud rates, up to 115.2 Kbps. The standard PS/2 BIOS int 14H call 04H only allows the port to be initialized up to 19.2 Kbps.

Assembly Language Example:

	mov dx,0h	;select the first port

	mov ah,04h	;select function 4, extended port init

	mov al,0h	;no break

	mov bh,0h	;no parity

	mov bl,0h	;1 stop bit

	mov ch,03h	;word length set to 7 bit per character

	mov cl,08h	;19.2k baud

	int 14h	;invoke selected SeaCOM function

�FUNCTION 05H - Extended Port Control

Called with:	DX = Port number

		AH = 05H , Selects function 05H, Extended Port Control

		AL = sub function

			00H	read modem control register

			01H	write modem control register

		BL = modem control register contents (if sub function 01H selected)

Bit(s)�Significance��0�data-terminal ready (DTR)��1�request to send (RTS)��2�Out1��3�Out2��4�Loop (for diagnostic purposes)��5-7�Reserved��

 Returns:	If sub function 00H selected:

			BL = modem control register (see above)

		If sub function 01H selected:

			AH = Port Status (see function 00H)

			AL = Modem Status (see function 00H)

This function emulates the PS/2 BIOS interrupt 14H function call 05H. This call allows extended control of the serial port because it will provide direct access to the modem control register. SeaCOM requires that the Out2 bit in the modem control register to be set. Care should be take to insure that this bit is not reset. If Out2 is set and an interrupt occurs on the port, the interrupt will never be serviced and may cause the port to be disabled. Also be aware that SeaCOM, depending on the handshake configuration selected, will set and reset the signals DTR and RTS at the appropriate times to provide the selected flow control support.

Assembly Language Example:

	mov dx,0h	;select the first port

	mov ah,05h	;select function 5, extended port ctrl

	mov al,01h	;sub function 01h, write MCR

	mov bl,08h	;all clear except Out2

	int 14h	;invoke selected SeaCOM function

	push ax	;save port status

	.

	.

	.

�FUNCTION 06H - Get Buffer Count

Called with:	DX = Port number

		AH = 06H , Selects function 06H, Get Buffer Count

		AL = sub function

			00H	get transmit buffer count

			01H	get receive buffer count

			02H	get transmit buffer free space

			03H	get receive buffer free space

 Returns:	AX = selected buffer count

This function will return the number of characters or the available space in bytes in the transmit and receive buffers. This is very useful if implemented with the block transfer functions (08H and 09H) because it will allow the programmer to determine the optimum size for the following block transfer.

Assembly Language Example:

	mov dx,0h	;select the first port

	mov ah,06h	;select function 6, get buffer count

	mov al,01h	;sub function 01h, get Rx buffer count

	int 14h	;invoke selected SeaCOM function

	push ax	;save buffer count

	.

FUNCTION 07H - Flush Buffer

Called with:	DX = Port number

		AH = 07H , Selects function 07H, Flush Buffer

		AL = sub function

			00H	reserved

			01H	flush transmit buffer

			02H	flush receive buffer

			03H	flush transmit and receive buffers

 Returns: Nothing

This function will allow the programmer to selectively purge the contents of the transmit and receive buffers. Sub function 03H will allow both the transmit and receive buffers to be flushed simultaneously. This function is useful if an error has been detected and a block needs to be transmitted / received again. Programmers should note that this function will remove all characters from the selected buffer(s) and any flushed data will be unrecoverable.

Assembly Language Example:

	mov dx,0h	;select the first port

	mov ah,07h	;select function 7, flush buffer

	mov al,03h	;sub function 03h, flush both Tx and Rx buffer

	int 14h	;invoke selected SeaCOM function

�FUNCTION 08H - Block Transmit

Called with:	DX = Port number

		AH = 08H , Selects function 08H, Block Transmit

		CX = number of bytes to transmit

		ES = segment of block to transmit

		BX = offset of block to transmit

 Returns:	AX = 1 if only partial transfer, otherwise 0

		CX = number of bytes transferred

This function will allow a block of characters to be placed in the transmit buffer. The characters will be sent out the serial port under the control of SeaCOM at interrupt time. This function may be used in conjunction with single character transmit calls (function 01H). Note that the CX register returns the actual number of bytes transferred. This return value should be checked after every transmission to ensure that all bytes were transmitted. If the AX register returns a 1 when the remainder of the block will need to be transmitted. It is also recommended that before each block transmit, function 06H sub function 02H should be called to obtain the number of bytes that are free in the transmit buffer.

Assembly Language Example:

message	db 'THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS BACK'

mess_len	dw $ - offset message	;length of block to transmit

	.

	.

	.

	mov dx,0h			;select the first port

	mov ax,seg message	;get segment of block

	mov es,ax			;load segment register

	mov bx,offset message	;get offset of block

	mov cx,mess_len		;number of bytes to transmit

	mov ah,08h			;select function 8, tx block

	int 14h			;invoke selected SeaCOM function

	.

	.

	.

�FUNCTION 09H - Block Receive

Called with:	DX = Port number

		AH = 09H , Selects function 09H, Block Receive

		CX = number of bytes to receive

		ES = segment of destination block

		BX = offset of destination block

 Returns:	AX = remaining number of bytes to be received

		CX = total number of bytes received

SeaCOM will service each port if there is a character available and place the character in the receive buffer. This function will allow a block of characters to be read from the receive buffer. This function may be used in conjunction with single character receive calls (function 02H). Note that the CX register returns the actual number of bytes received. This return value should be checked after every transmission to ensure that all bytes were received. If the AX register returns a 1 or greater, the function will need to be called again to receive the desired number of bytes. It may be necessary to call function 06H sub function 01H before each block receive to obtain the number of bytes that are available in the receive buffer.

Assembly Language Example:

buffer	db buff_size dup (00h)

buff_size	equ 0ffh		;length of block receive buffer

	.

	.

	.

	mov dx,0h			;select the first port

	mov ax,seg buffer		;get segment of block read buffer

	mov es,ax			;load segment register

	mov bx,offset buffer	;get offset of block read buffer

	mov cx,buff_size		;number of bytes to receive

	mov ah,09h			;select function 9, Rx block

	int 14h			;invoke selected SeaCOM function

	cmp ax,0			;jump if more than requested number of

	jnz read_again		;characters is not available

	.

	.

	.

�FUNCTION 0AH - Get / Set Handshake Mode

Called with:	DX = Port number

		AH = 0AH , Selects function 0AH, Get / Set Handshake Mode

		AL = sub function

			00H set handshake initialization byte

			01H get handshake initialization byte

		If AL is 00H

			BL = handshake initialization byte (see below)

Handshake Initialization Byte:

Bit�Significance (if set)��0�XON / XOFF flow control on transmit��1�XON / XOFF flow control on receive��2�DSR (Data Set Ready) flow control on transmit��3�DTR (Data Terminal Ready) flow control on receive��4�CTS (Clear To Send) flow control on transmit��5�RTS (Request To Send) active on transmit (RS-485)��6�Initial state of DTR��7�Initial state of RTS��

 Returns:	If AL = 00H return nothing

		If AL = 01H, BL = current handshake initialization byte

SeaCOM will provide hardware and / or software handshaking flow control. The flow control configuration is set during the SeaCOM configuration utility but is can also be changed dynamically via function call 0AH. This will allow for maximum flexibility in flow control configurations and will also permit the flow control to be disabled if the serial port is disconnected from the device that is communicating with.

Assembly Language Example:

shake_setup db 20h		;DTR and RTS initially off and

	.				;RTS enable (RS-485 mode)

	.

	.

	mov dx,0h			;select the first port

	mov al,00h			;select set handshake mode, 00h

	mov bl,shake_setup	;handshake initialization byte

	mov ah,0ah			;select function 0Ah, get/set handshake

	int 14h			;invoke selected SeaCOM function

	.

	.

	.

�FUNCTION 0BH - Get / Set Non-Standard Baud Divisor

Called with:	DX = Port number

		AH = 0BH , Selects function 0BH, Get / Set Non-Standard Baud Divisor

		CX = baud rate divisor (0FFFFH - 01H), or zero to read current divisor

 Returns:	CX = current baud divisor

SeaCOM, through function calls 00H and 04H, can be initialized to any standard baud rate. If a nonstandard baud rate is desired, function 0BH can be used to set the data rate. This function can be used with the presence of a non-standard oscillator installed in the serial port to obtain almost any baud rate. MIDI (Musical Instrument Digital Interface) Applications can use a 2.0 MHz oscillator and a divisor of 4 to obtain 31.25 Kbps which is required by the MIDI specification. When using this function be sure to use function 00H or function 04H first to ensure that all other communication parameters are programmed to the UART. A divisor of 0 is an invalid baud divisor and will return the divisor that is currently written to the UART.

Assembly Language Example:

	mov dx,0h			;select the first port

	mov cx,10h			;set baud rate to 7200

	mov ah,0bh			;select function 0Bh, get/set divisor

	int 14h			;invoke selected SeaCOM function

	.

	.

FUNCTION 0CH - Write To Any Port Register

Called with:	DX = Port number

		AH = 0CH , Selects function 0CH, Write To Any Port Register

		AL = value to write

		BL = UART register to write (0-7, see quick reference sheet)

 Returns:	Nothing

This function call will allow the programmer to write any value to any UART register. In most cases this function would not be used because SeaCOM will enable and disable all necessary features and modem control signals within the UART. Care should be taken when using this function call. Improper use of this function may cause data to be corrupted. Please refer to the 16450 / 16550 UART data book for a more detailed description of the UART register set and bit definitions

Assembly Language Example:

	mov dx,0h			;select the first port

	mov al,0eh			;enable all interrupts except receive data

	mov bl,1			;point to base + 1, interrupt enable reg

	mov ah,0ch			;select function 0Ch, write to any port

	int 14h			;invoke selected SeaCOM function

	.

�FUNCTION 0DH - Read Any Port Register

Called with:	DX = Port number

		AH = 0DH , Selects function 0DH, Read Any Port Register

		BL = UART register (0-7 see quick reference sheet)

 Returns:	AL = value read from selected port register

This function is similar to function 0CH because it will allow access to any register within the UART. This function call will read the contents to the specified register and return the value to the application program. Reading the UART registers may allow the application program to determine the initialization values that were programmed to the UART.

Assembly Language Example:

	mov dx,0h			;select the first port

	mov bl,6			;point to modem status register

	mov ah,0dh			;select function 0Dh, read any port reg

	int 14h			;invoke selected SeaCOM function

	push ax			;save value in al

FUNCTION 0EH - Get System Information

Called with:	AH = 0EH , Selects function 0EH, Get System Information

 Returns:	AH = Multiplex Interrupt 2FH identification number

		AL = Number of ports being serviced

		BX = Resident code size in paragraphs

		ES = Segment of resident code

	

This function call returns selected system information of SeaCOM. The programmer should note that this function does not require that a port be selected in the DX register, instead the number of ports on the current installation of SeaCOM is returned in the AL register. When SeaCOM is installed the Multiplex Interrupt 2FH is hooked allowing the resident code to be easily located. Each application that hooks the interrupt chain has an unique identification number. This number is useful for accessing the different Interrupt 2FH services that SeaCOM supports. For a detailed description of the interrupt 2FH services supported by SeaCOM, please refer to the section Programming Notes and Operating Environments. Other important system variables are also returned from this function call including the resident code size in paragraphs of SeaCOM, including buffer space.

Assembly Language Example:

	sc_seg dw ?

	max_ports db ?

	code_size dw ?

	mux_ID db ?

	.

	mov ah,0eh			;select function 0eh, get system info

	int 14h			;invoke selected SeaCOM function

	mov sc_seg,es		;store segment of SeaCOM

	mov max_ports,al		;store number of active ports

	mov code_size,bx		;store resident code size

	mov mux_ID,ah		;store int 2fh ID

	.

	.

	.

�B. High Level Language Interface

This section details the High Level Language Interface. Although all examples a in the C language, example programs and syntax explanation for other languages are available on the distribution diskette. Differences in language usage will be noted under the Remarks section of each function. The following is a list of the routines supported by SeaCOM. The routines are organized by functionality.

Port Initialization

	�SYMBOL 183 \f "Symbol" \s 10 \h�	InitPortCOM		Programs the port with specified communication parameters. 					Standard data rates up to 9600 can be obtained. (compatible 					with int 14h BIOS call 00h.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	InitPortExCOM		Provides all the functionality of InitPortCOM while allowing 						access to baud rates.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	HandShakeConfigCOM	Configures the selected port for various flow control options.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	BaudRateConfigCOM	Allows the selected port to be configured to a non-standard baud 					rate (i.e. 3600 baud).

	�SYMBOL 183 \f "Symbol" \s 10 \h�	WritePortRegCOM	Writes a specified value to any UART register.

Transmit and Receive

	�SYMBOL 183 \f "Symbol" \s 10 \h�	PutCharCOM		Places a single character into the transmit buffer.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	GetCharCOM		Gets a single character from the receive buffer.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	PutBlockCOM		Places a string or buffer of data into the transmit buffer.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	GetBlockCOM		Retrieves a block of data from the receive buffer.

Port Information

	�SYMBOL 183 \f "Symbol" \s 10 \h�	ReqPortStatCOM	Provides status of Modem Status and Port Status.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	ReqPortStatExCOM	Same features as ReqPortStatCOM with additional read back 					capabilities.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	ReadPortRegCOM	Returns the value of any UART register.

Buffer Routines

	�SYMBOL 183 \f "Symbol" \s 10 \h�	GetBufferCountCOM	Returns the logistics of the transmit or receive buffer.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	FlushBufferCOM	Purges the contents of the transmit or receive buffer.

System Information

	�SYMBOL 183 \f "Symbol" \s 10 \h�	GetDrvInfoCOM	Provides miscellaneous system information such as number of 					ports being serviced, resident memory requirements, and driver 					code segment.

Miscellaneous Macros

	�SYMBOL 183 \f "Symbol" \s 10 \h�	HIBYTE(word)		This macro will return the high byte of a word size variable.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	LOBYTE(word)		This macro will return the low byte of a word size variable.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	HIWORD(long)		This macro will return the high word of a long size variable.

	�SYMBOL 183 \f "Symbol" \s 10 \h�	LOWORD(long)		This macro will return the low word of a long size variable.

Note: The provided macros are not supported under all high level language interfaces. Please refer to the include file associated with the high level language that you intend to use.

Object files (.OBJ) and Quick Basic Library (.QLB) are provided on the diskette for all memory models and software interrupts. Please refer to the text files on the diskette for information on filenames that correspond to a specific configurations. All high level language interface modules were written using MASM 6.0 or higher.

�InitPortCOM

Syntax		unsigned short InitPortCOM(unsigned short wPORT, unsigned char 				bINITBYTE);

Parameters	wPORT		Selects the port to initialize.

		bINITBYTE	Initialization byte.

		

Baud Rate�Parity�Stop Bits�Word Length��LBAUD_110�PARITY_NONE�LSTOP_BIT_1�WORD_LENGTH_7��LBAUD_150�PARITY_ODD�LSTOP_BIT_2�WORD_LENGTH_8��LBAUD_300�PARITY_EVEN����LBAUD_600�����LBAUD_1200�����LBAUD_2400�����LBAUD_4800�����LBAUD_9600�����

Return Value	The InitPortCOM function returns the value of the Port Status and Modem 			Status (see Assembly function 00h for details). High byte is Port Status, Low 			byte is Modem Status. Macros are provided in the include file (i.e. scom.h) to 			extract high byte and low byte values.

Port Status�Modem Status��RX_BUFFER_STAT�DELTA_CTS��OVERRUN_ERROR�DELTA_DSR��PARITY_ERROR�TRAIL_RI��FRAME_ERROR�DELTA_DCD��BREAK_DETECTED�CTS_STAT��TX_BUFFER_STAT�DSR_STAT��TX_TIME_OUT�RI_STAT�� �DCD_STAT��

Remarks	This function will initialize the selected port to the specified parameters. This 			function will call the assembly function 00h. Also see high level function 				InitPortExCOM.

Example	

		#include "scom.h"

		unsigned short Stat;

		.

		.

		.

		Stat = InitPortCOM(0,LBAUD_9600|

					PARITY_NONE|

					WORD_LENGTH_8|

					LSTOP_BIT_1);

		if(HIBYTE(Stat & RX_BUFFER_STAT))

			{	/*then read buffer */ }

		

Also See	InitPortCOMEx , Assembly function 00h and 04h.

�PutCharCOM

Syntax		unsigned short PutCharCOM(unsigned short wPORT, unsigned char 				bCHAR);

Parameters	wPORT		Selects the port.

		bCHAR		Character to place in transmit buffer.

Return Value	Low byte is bCHAR unchanged, high byte is zero if success or TX_FAILED

Remarks	This routine will place the specified character in the transmit buffer. If the 			transmit buffer is empty, the character will be sent directly to the port.

Example	#include "scom.h"

		unsigned short Stat;

		.

		.

		.

		Stat = PutCharCOM(0,0x55);

		if(HIBYTE(Stat & TX_FAILED))

			{ /* then Tx failed*/ }

Also See	PutBlockCOM, GetBufferCountCOM, Assembly Function 01h

GetCharCOM

Syntax		unsigned short GetCharCOM(unsigned short wPORT);

Parameters	wPORT		Selects the port.

Return Value	Low byte is the character received, High byte is Line Status.

Line Status���OVERRUN_ERROR�PARITY_ERROR��FRAMING_ERROR�BREAK_DETECTED��NO_CHAR���

Remarks	This routine will retrieve a single character from the receive buffer. If no 			character is available, NO_CHAR is active in the high byte of the result. Any 			errors that have occurred since the last buffer read will be also returned in the 			high byte. Macros are available to extract high and low byte values from a word 			size result. See the beginning of the High Level Language Interface Section for 			more details.

Example	#include "scom.h"

		unsigned short Stat;

		.

		.

		.

		Stat = GetCharCOM(0);

		if(HIBYTE(Stat & NO_CHAR))

			{ /* then no char available */ }

Also See	GetBlockCOM, GetBufferCountCOM, Assembly Function 02h

�ReqPortStatCOM

Syntax		unsigned short ReqPortStatCOM(unsigned short wPORT);

Parameters	wPORT		Selects the port.

Return Value	The high byte of the result is the Port Status and the low byte is the Modem 			Status. See InitPortCOM function for bit definitions. Also refer to the beginning 			of the High Level Language Interface section for details on macros that will 			extract the high and low byte of a word size result.

Remarks	See Assembly function 03h.

Example	#include "scom.h"

		unsigned short Stat;

		.

		.

		.	/* Get port status for port 1 */

		Stat = ReqPortStatCOM(0);

Also See	Assembly function 03h, Assembly function 04h, ReqPortStatExCOM.

�

InitPortExCOM

Syntax		unsigned short InitPortExCOM(unsigned short wPORT, unsigned char			 bBAUD, unsigned char bPARITY, unsigned char bLENGTH, unsigned char 			bSTOP);

Parameters	wPORT		Selects the port to initialize.

		bBAUD		Baud Rate

		bPARITY	Parity

		bLENGTH	Word Length

		bSTOP		Stop Bits

bSTOP:�bLENGTH:�bPARITY:��STOP_BIT_1�DATA_BITS_5�NO_PARITY��STOP_BIT_2�DATA_BITS_6�ODD_PARITY��STOP_BIT_1_5�DATA_BITS_7�EVEN_PARITY���DATA_BITS_8�STICK_ODD_PARITY����STICK_EVEN_PARITY��

bBAUD:������BAUD_110�BAUD_150�BAUD_300�BAUD_600�BAUD_1200��BAUD_2400�BAUD_4800�BAUD_9600�BAUD_19_2K�BAUD_38_4K��BAUD_56K�BAUD_115_2K�����

Return Value	The high byte of the result is the Port Status and the low byte is the Modem 			Status. See InitPortCOM function for bit definitions. Also refer to the beginning 			of the High Level Language Interface section for details on macros that will 			extract the high and low byte of a word size result.

Remarks	This function is compatible with Assembly function 04h and should be used to 			program the port for higher standard data rates (i.e. 115.2K). Please refer to 			Assembly function 04h for more details.

Example	#include "scom.h"

		unsigned short Stat;

		.

		.

		.	/* 9600,n,8,1 */

		Stat = InitPortExCOM(0,BAUD_9600, 								NO_PARITY,DATA_BITS_8,STOP_BIT_1);

Also See	Assembly function 04h.

�ReqPortStatExCOM

Syntax		unsigned short ReqPortStatExCOM(unsigned short wPORT, unsigned 			short wVALUE);

Parameters	wPORT		Selects the port.

		wVALUE	Selects mode and / or contents of Modem Control Register.

			Valid Parameters:

			READ_MCR	WRITE_MCR

Return Value	If READ_MCR is selected, the low byte of the result is the Modem Control 			register. If WRITE_MCR is used, the high byte of the result is the Port Status 			and the low byte is the Modem Status. Please refer to the beginning of this 			section for macros that will extract high and low bytes from word size results.

Remarks	If WRITE_MCR is used for wVALUE, the following should be "ORed" with 			wVALUE to set the associated bit in the Modem Control Register.

DTR�RTS��OUT1�OUT2��LOOP_BIT���

Example	#include "scom.h"

		unsigned short Stat;

		.

		.

		.	/* Set DTR if RTS set*/

		Stat = ReqPortStatExCOM(0,READ_MCR);

		if (LOBYTE(Stat) & RTS)

		Stat = ReqPortStatExCOM(0,WRITE_MCR|DTR|RTS);

Also See	ReqPortStatCOM, Assembly function 05h.

�GetBufferCountCOM

Syntax		unsigned short GetBufferCountCOM(unsigned short wPORT, unsigned 			char bVALUE);

Parameters	wPORT		Selects the port.

		bVALUE	Selects the buffer.

			Valid parameters:

			TX_BUFF_COUNT	RX_BUFF_COUNT

			TX_BUFF_FREE	RX_BUFF_FREE

Return Value	Selected buffer count.

Remarks	This function will return the number of bytes used or the number of bytes free in 			the transmit or receive buffer.

Example	#include "scom.h"

		unsigned short Count;

		.

		.

		.		/* get # char in Tx buffer */

		Count = GetBufferCountCOM(0,TX_BUFF_COUNT);

Also See	Assembly function 06h.

�FlushBufferCOM

Syntax		void FlushBufferCOM(unsigned short wPORT, unsigned char bVALUE);

Parameters	wPORT		Selects the port.

		bVALUE	Selects the buffer to flush.

			Valid parameters:

			TX_FLUSH	RX_FLUSH

Return Value	Nothing

Remarks	TX_FLUSH or RX_FLUSH may be used for bVALUE. To flush both buffers, the 			two values may be "ORed" together. See Assembly function 07h for additional 			details.

Example	#include "scom.h"

		.

		.

		.	/* flush both buffers */

		FlushBufferCOM(0,TX_FLUSH|RX_FLUSH);

Also See	Assembly function 07h.

PutBlockCOM

Syntax		unsigned long PutBlockCOM(unsigned short wPORT, unsigned char __far 			*lpWRITE, unsigned short wLEN);

Parameters	wPORT		Selects the port.

		lpWRITE	Long pointer to Application buffer / string.

		wLEN		Length of buffer / string.

Return Value	The low word of result is PARTIAL_TX if there was insufficient room in the 			transmit buffer. The high word of the result equals the number of bytes 				transferred to the driver buffer.

Remarks	The runtime string function strlen may be used to determine the string length. 			The function strlen does not include the terminating null associated with C 			strings. See Assembly function 08h for a detailed description of this routine..

Example	#include <string.h>	/* for strlen() */

		#include "scom.h"

		unsigned char __far *lpWritePtr;

		unsigned char WriteBuffer[12]="Test Message";

		unsigned long LStat;

		.

		.

		.

		lpWritePtr = WriteBuffer;

		LStat = PutBlockCOM(0,lpWritePtr,strlen(WriteBuffer));

		if((LOWORD(LStat)) & PARTIAL_TX)

			{ /* then only part of string transferred.*/ }

Also See	Assembly function 08h.

�GetBlockCOM

Syntax		unsigned long GetBlockCOM(unsigned short wPORT, unsigned char __far 			*lpREAD, unsigned short wLEN);

Parameters	wPORT		Selects the port.

		lpREAD		Long pointer to Application buffer / string.

		wLEN		Length of buffer / string.

Return Value	High Word of return value is the total number of bytes received. Low Word of 			the return value is remaining bytes to be received. Macros are available to 			extract high and low word values from a long size result. See the beginning of 			the High Level Language Interface Section for more details.

Remarks	This function will terminate the string with a null character. If the wLEN 				parameter is equal to 45, then the 46th byte will be zero. See Assembly function 			09h for a detailed description of this routine..

Example	#include "scom.h"

		unsigned char __far *lpReadPtr;

		unsigned char ReadBuffer[RX_LENGTH];

		unsigned long LStat;

		.

		.

		.

		lpReadPtr = ReadBuffer;

		LStat = GetBlockCOM(0,lpReadPtr,RX_LENGTH);

		if(HIWORD(LStat) != RX_LENGTH)

			{ /* then only part of string received.*/ }

Also See	Assembly function 09h.

�HandShakeConfigCOM

Syntax		unsigned char HandShakeConfigCOM(unsigned short wPORT, unsigned 			short wVALUE);

Parameters	wPORT		Selects the port.

		wVALUE	Handshake configuration byte.

Valid Parameters:���SET_HAND_SHAKE�GET_HAND_SHAKE��SW_TX�SW_RX��DSR_TX�DTR_RX��CTS_TX�RTS_TX��RS_485�RTS_ON��DTR_ON���

Return Value	If GET_HAND_SHAKE is used, the function will return the current hand shake 			configuration byte.

Remarks	SET_HAND_SHAKE or GET_HAND_SHAKE must be used in this function. If 			SET_HAND_SHAKE is used, the other parameters must be "ORed" to form a 			word size parameter. If GET_HAND_SHAKE is used, no change is made to the 			handshake configuration information.

Example	#include "scom.h"

		unsigned char Shake;

		.

		.

		.	/Set RS_485 mode if not already set */

		Shake = HandShakeConfigCOM(0,GET_HAND_SHAKE);

		if(!(Shake & RS_485))

			HandShakeConfigCOM(0,SET_HAND_SHAKE|RS_485);

Also See	Assembly function 0Ah.

BaudRateConfigCOM

Syntax		unsigned short BaudRateConfigCOM(unsigned short wPORT, unsigned 			short wVALUE);

Parameters	wPORT		Selects the port.

		wVALUE	New baud rate divisor, GET_DIVISOR if reading current divisor.

Return Value	Current baud rate divisor.

Remarks	To read the current baud divisor, use GET_DIVISOR for wVALUE.

Example	#include "scom.h"

		unsigned short Baud;

		.

		.

		.	/* Set Baud Rate to 7200 */

		Baud = BaudRateConfigCOM(0,0x10);

Also See	Assembly function 0Bh.

WritePortRegCOM

Syntax		void WritePortRegCOM(unsigned short wPORT, unsigned char bREG, 			unsigned char bVALUE);

Parameters	wPORT		Selects the port.

		bREG		Selects the UART register to write.

Valid Write Registers:��DATA_REG�IER_REG��FIFO_REG�LCR_REG��MCR_REG�SCRATCH_REG��DLAB_LS_REG�DLAB_MS_REG��

		bVALUE	Value written to the selected register

Return Value	Nothing

Remarks	See Assembly function 0Ch.

Example	#include "scom.h"

		.

		.

		.	/*Write to Scratch Reg*/

		 WritePortRegCOM(0,SCRATCH_REG,UARTReg);

Also See	Assembly function 0Ch.

ReadPortRegCOM

Syntax		unsigned char ReadPortRegCOM(unsigned short wPORT, unsigned char 			bREG);

Parameters	wPORT		Selects the port.

		bREG		Selects the UART register to read.

Return Value	Contents of the selected UART register.

Remarks	See Assembly function 0Dh.

Example	#include "scom.h"

		unsigned char UARTReg;

		.

		.

		.	/*Read Scratch Reg*/

		UARTReg = ReadPortRegCOM(0,SCRATCH_REG);

Also See	Assembly function 0Dh.

�GetDrvInfoCOM

Syntax		void GetDrvInfoCOM(SYS_INFO_COM __far *lpSYS_INFO_COM);

Parameters	lpSYS_INFO_COM	Long pointer to SYS_INFO_COM structure.

Return Value	Nothing

Remarks	This routine fills a structure of type SYS_INFO_COM. The structure must reside 			in the calling program. This struct will allow you access to the Driver Code 			segment, Multiplex Interrupt ID, and Maximum Ports being serviced. The 			structure has the following definition:

		#pragma pack(1)/* Align on Byte boundary */

		typedef struct tSYS_INFO_COM

			{unsigned short DriverSeg;	/* Segment of Driver*/

			 unsigned short CodeSize;	/* Size in Paragraphs*/

			 unsigned char Mux2F_ID;	/* short 2Fh ID*/

			 unsigned char MaxPorts;	/* Max Ports Serviced*/

			 unsigned short Extra1;	/* Reserved*/

			 unsigned short Extra2;	/* Reserved*/

			} SYS_INFO_COM, __far *fpSYS_INFO_STRUCT;

			#pragma pack()			/* default packing */

		Note: This type definition is located in the include file (i.e. scom.h).

		This function is not supported under BASIC.

Example	

		#inlcude "scom.h"

		SYS_INFO_COM __far *lpSYS_INFO_COM;

		SYS_INFO_COM COMInfo;

		.

		.

		.

		lpSYS_INFO_COM = &COMInfo;

		GetDrvInfoCOM(lpSYS_INFO_COM);

Also See	Assembly function 0Eh.�C. Programming notes and operating environments

During the installation process, SeaCOM hooks the Multiplex Interrupt (2FH) allowing access to various features that would not normally be available. When an application attaches itself to the Multiplex Interrupt, an Identification Number is assigned to that application. This ID number is used when another application calls the Multiplex Interrupt. The Multiplex Interrupt is called when the application software issues a software interrupt 2FH (int 2fh). The ID number is passed to the Multiplex Interrupt handler in the AH register. Multiplex Interrupt ID numbers 0C0H through 0FFH are reserved for user application software. SeaCOM claims the first available Multiplex Interrupt ID. If another copy of SeaCOM is loaded, the next available ID number is assigned to that copy of the driver. For example, if SeaCOM is loaded and no other user applications have hooked the Multiplex Interrupt, SeaCOM claims the ID 0C0H. If SeaCOM is loaded again (with the /u command line switch), this copy of SeaCOM will claim the ID 0C1H, providing that no other user applications have been loaded since SeaCOM was installed initially. SeaCOM primarily uses the Multiplex Interrupt to help locate previously installed copies of SeaCOM. The Multiplex Interrupt can be used for various other purposes including communicating between a Windows DOS Box and a Windows Application. For more information on this topic, please contact Technical Support.

1. DOS

The native operating environment for SeaCOM is MS-DOS or PC-DOS version 3.00 or higher. All memory references that are used assume the real mode operation of the 80x86 processor although SeaCOM will operate in the V86 (i.e. DOS Box) mode of a 80386 processor or better. For most applications that use SeaCOM to manage the serial ports, a simple polling approach will suffice. This is the recommended method of programming. An alternative to the polling method is to use the PC timer to activate selected port inquiries. This approach requires more technical expertise than the polling method and may cause interrupt latency problems due to the fact that the PC timer has a higher interrupt priority than the IRQs that are available to the user

2. Windows

SeaCOM will operate under Microsoft Windows 3.x. SeaCOM may be used in both a DOS Box or incorporated in the source code of a Windows Application. Due to the multitasking nature of Windows, certain restrictions and limitations apply when using SeaCOM in a DOS Box or Windows Application. For a detailed description of programming notes and suggestions that apply to using SeaCOM with Windows 3.x, please refer to the file README.TXT located on the distribution disk.

This serial port driver will operate under Windows 3.1, however there is a severe degradation in performance. If you wish to use this driver with Windows 3.1 it is recommended that you use the 16550 buffered UART. For additional information on using this Serial Driver with Windows, please contact technical support.

�V. Troubleshooting

This section is provided to aid the programmer if a problem arises during the installation or operation of SeaCOM. Please review the following section along with your port configurations if you feel there is a problem with SeaCOM or the serial ports being serviced.

A. Common Problems and Solutions

Problem: SeaCOM installs with no error messages but one or more ports will not transmit or receive.

Solution: This symptom may be caused by configuring SeaCOM for an interrupt request (IRQ) that is not assigned to that port. If the configuration matches the hardware setting, check the other peripherals in the computer to ensure that the port is not sharing an IRQ with another device that does not have a compatible interrupt sharing circuit or does not support sharing IRQs.

Problem: Installing SeaCOM or running the diagnostics locks the computer, forcing you to reboot.

Solution: Review the port I/O address and IRQ settings and compare them to the values assigned to each port in the configuration utility program. This behavior usually denotes a hardware address / IRQ conflict or the absence of a port at an expected I/O location. If a conflict exist, re-configure the hardware and run the configuration utility program again, then reinstall SeaCOM.

Problem: Software handshaking is enabled and the device that you are communicating with or the port that SeaCOM is controlling will not transmit.

Solution: The receiving port is waiting for an XON (DC1) character. Transmit an XON from the node that is waiting for a transmission. Note that XON is 11 HEX.

Problem: SeaCOM will communicate properly for a period of time, but starts to drop transmitted characters and will not receive any characters.

Solution: Another software application has replaced the interrupt vector that SeaCOM is using or masked the 8259 programmable interrupt controller (PIC) preventing SeaCOM from interrupting the CPU. There are two possible solutions to this problem. First, reboot the computer, installing SeaCOM after the offending software application has been executed. If that will not solve the problem or it is not convenient to change the execution order of the software, re-configure the disabled port with the configuration utility program and assign the port a different IRQ. Once this has been done, install SeaCOM again.

Problem: SeaCOM will not transmit or characters are intermittently dropped.

Solution: Check for unused Modem Control input signals. Connect all unused Modem Control signals to a true / active state (refer to the section on cabling in this manual).

�B. Available Diagnostics

An up to date list and description of all diagnostics that are provided with SeaCOM is located in the ASCII text file named README.TXT located on the distribution disk.

C. Technical Support

If a problem occurs with SeaCOM and you are not able to determine the proper solution, feel free to contact our technical support department. Please have the distribution disk and any related documentation readily available if you are seeking technical support over the phone. Technical support is available at the correspondence on your user manual or on the label of your software disk.

�PAGE �39�

