
microSPARC™-IIep
User’s Manual
June 1999

Sun Microsystems, Inc.
Microelectronics
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
800 /681-8845
http://www.sun.com/microelectronics

microSPARC™-IIep User’s

Manual

Part No.: 802-7100-02
June 1999

Copyright © 1999 Sun Microsystems, Inc. All Rights reserved.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT ANY EXPRESS REPRESENTATIONS OR WARRANTIES. IN
ADDITION, SUN MICROSYSTEMS, INC. DISCLAIMS ALL IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

This document contains proprietary information of Sun Microsystems, Inc. or under license from third parties. No part of this document may be reproduced in any form
or by any means or transferred to any third party without the prior written consent of Sun Microsystems, Inc.

Sun, Sun Microsystems and the Sun Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The information contained in this document is not designed or intended for use in on-line control of aircraft, air traffic, aircraft navigation or aircraft communications; or
in the design, construction, operation or maintenance of any nuclear facility. Sun disclaims any express or implied warranty of fitness for such uses.

Contents

Preface xxv

1. microSPARC-IIep Overview 1

1.1 Introduction 1

1.2 microSPARC-IIep Memory Map 4

1.3 microSPARC-IIep Endian Support 4

1.3.1 Processor-internal Endian Support 4

1.3.2 Processor External PIO Endian Support 6

1.3.3 DMA 7

1.3.4 Settings for Endian Conversion 7

1.3.4.1 Big-endian Environment 7

1.3.4.2 Little-endian Environment 8

1.4 Block Diagram 8

2. CPU Performance 13

2.1 Benchmark Configurations and Results 13

2.1.1 Benchmark Test Configuration 14

2.1.2 SPECint92 Test Results 14

2.1.3 SPECfp92 Test Results 15

2.1.4 Dhrystone Test Results 15

2.2 Compiler Optimization Guidelines 16
i

2.2.1 Branches 16

2.2.2 Guidelines for Branch Folding 17

2.2.3 Multicycle Instructions 18

2.2.4 Pipeline Interlocks 19

2.2.5 Other Guidelines 19

2.2.6 Floating-Point Instructions 19

2.2.6.1 FP Interlocks 19

2.2.6.2 Functional Units 20

2.2.6.3 FP Queue Details 20

2.2.7 Loads and Stores 22

2.2.8 General Techniques 23

2.3 Using the Two Page-Hit Registers 23

3. Integer Unit 25

3.1 Overview 25

3.2 Instruction Pipeline 27

3.3 Memory Operations 28

3.3.1 Loads 28

3.3.2 Stores 29

3.3.3 Atomic Operations 30

3.4 ALU/Shift Operations 31

3.5 Integer Multiply 31

3.6 Integer Divide 32

3.7 Control-Transfer Instructions 33

3.7.1 Branches 33

3.7.2 JMPL 34

3.7.3 RETT 34

3.7.4 CALL 34

3.8 Instruction Cache Interface 35

3.9 Data Cache Interface 35
ii microSPARC-IIep User’s Manual • June 1999

3.10 Interlocks 36

3.10.1 Load Interlock 36

3.10.2 Floating Point Interlocks 36

3.10.3 Miscellaneous Interlocks 36

3.11 Traps and Interrupts 37

3.11.1 Traps 37

3.11.2 Interrupts 38

3.11.3 Reset Trap 38

3.11.4 Error Mode 39

3.12 Floating-Point Interface 39

3.13 Compliance With SPARC Version 8 40

4. Floating-Point Unit 43

4.1 Overview 43

4.2 FPU Internal Information 49

4.3 Deviations from SPARC version 8 51

4.4 Implementation Specific Features 52

4.4.1 fp_execute State 53

4.4.2 fp_exception_pending State 53

4.4.3 fp_exception State 54

4.4.4 STDFQ Instruction 54

4.5 Software Considerations 54

4.6 FP Performance Factors 55

5. Memory Management Unit 59

5.1 Overview 59

5.2 MMU Programming Interface 62

5.3 Translation Lookaside Buffer 62

5.3.1 TLB Replacement 62

5.3.2 TLB Entry 64

5.3.3 Page Table Entry 65
Contents iii

5.3.4 Page Table Pointer 67

5.4 Address Space Decodes 69

5.5 CPU TLB Lookup 69

5.6 CPU TLB Flush and Probe Operations 70

5.6.1 CPU TLB Flush 71

5.6.2 CPU TLB Probe 71

5.7 Processor MMU Registers 72

5.7.1 Processor Control Register 73

5.7.2 Context Table Pointer Register 76

5.7.3 Context Register 76

5.7.4 Synchronous Fault Status Register 77

5.7.5 Synchronous Fault Address Register 81

5.7.6 TLB Replacement Control Register 81

5.8 MISC MMU Registers 83

5.8.1 Asynchronous (Memory) Fault Status Register 84

5.8.2 Asynchronous (Memory) Fault Address Register 85

5.8.3 Memory Fault Status Register 85

5.8.4 Memory Fault Address Register 86

5.8.5 MID Register 87

5.8.6 Trigger A Enables Register 88

5.8.7 Trigger B Enables Register 90

5.8.8 Assertion Control Register 91

5.8.9 MMU Breakpoint Register 93

5.8.10 Performance Counter A 95

5.8.11 Performance Counter B 95

5.8.12 Virtual Address Mask Register 95

5.8.13 Virtual Address Compare Register 96

5.8.14 Local Bus (PCIC Interface) Queue Level Register 97

5.8.15 Local Bus (PCIC Interface) Queue Status Register 97

5.9 Physical Address Register 98
iv microSPARC-IIep User’s Manual • June 1999

5.10 TLB Table Walk 98

5.11 Arbitration 100

5.11.1 TLB Arbitration 100

5.12 Translation Modes 101

5.12.1 Page Hit Registers 101

5.13 Errors and Exceptions 102

5.14 Diagnostic Features 102

5.14.1 Diagnostic Access of TLB 102

5.14.2 MMU Breakpoint Debug Logic 104

5.14.3 Additional Features 106

6. Data Cache 107

6.1 Overview 107

6.2 Data Cache Data Array 108

6.3 Data Cache Tags 109

6.4 Write Buffers 110

6.5 Data Cache Fill 111

6.6 ASI/STore Bus Interface 111

6.7 Cache Fill Bus Interface 112

6.8 IU/FPU Data Bus Interface 112

6.9 Endian Conversion 112

6.10 Data Cache Flushing 112

6.11 Data Cache Protection Checks 113

6.12 Cacheability of Memory Accesses 114

6.13 Data Cache Streaming 114

6.14 PTE Reference Bit Clearing 115

6.15 Powerdown 115

6.16 Diagnostic Strategy 116

6.17 Parity Errors 116

7. Instruction Cache 117
Contents v

7.1 Overview 117

7.2 Instruction Cache Data Array 119

7.3 Instruction Cache Tags 119

7.4 Instruction Hit/Miss 120

7.5 IASI Bus Interface 121

7.6 ICache fill Bus Interface 121

7.7 IU Instruction Bus Interface 121

7.8 Instruction Cache Flushing 122

7.9 Cacheability of Memory Accesses 123

7.10 Diagnostic Strategy 123

8. Memory Interface 125

8.1 Overview 125

8.2 Memory Organization 126

8.2.1 Access to Unused or Unpopulated Memory Regions 127

8.2.2 Dual-RAS Mode 127

8.2.3 Address Mapping For System DRAM 128

8.3 Memory Control Block (MCB) 129

8.3.1 Arbitration State Machine (ASM) 131

8.3.2 Arbitration for Memory Access and ASM Priority Scheme 132

8.3.3 Address Decode & Evaluate Logic (ADEL) 133

8.4 Data Alignment and Parity Check/Generate Logic (DPC) 133

8.4.1 RAM Refresh Control (RFR) 136

8.5 Clock Speeds 137

8.6 Summary of Cycles 138

8.7 Memory Configurations 139

8.8 Local Bus (IAFX bus to PCIC) interface 143

9. PCI Controller 145

9.1 Overview 145

9.1.1 Features 145
vi microSPARC-IIep User’s Manual • June 1999

9.2 Data Translation (Endian Modes) 148

9.2.1 Overview 148

9.3 Memory Map and Address Translation 150

9.3.1 IAFX to PCI Memory Map 151

9.3.2 PCI to IAFX Memory Map 153

9.4 PCI Bus Interface 155

9.4.1 Basic PCI Bus Operations/Restrictions 155

9.4.2 PCI Host/Satellite Mode 156

9.5 PCIC Control 158

9.5.1 Configuration Register Accessing 160

9.5.2 PCI Configuration Register Definitions 161

9.5.2.1 PCI Device Identification 161

9.5.2.2 PCI Device Control 162

9.5.2.3 PCI Device Status 162

9.5.3 PCI Miscellaneous Functions 163

9.5.4 Processor (IAFX) to PCI Translation Registers (PIO) 165

9.5.4.1 PCI Memory Cycle Translation Register Set 0 165

9.5.4.2 PCI Memory Cycle Translation Register Set 1 166

9.5.4.3 PCI I/O Cycle Translation Register Set 167

9.5.5 PCI to DRAM (IAFX) Translation Registers and Operation 168

9.5.5.1 PCI Base Address/Size Registers 169

9.5.6 PCIC IOTLB Operation (DVMA) 171

9.5.7 PCIC IOTLB Write Registers 172

9.5.7.1 PCI IOTLB RAM Input Register 173

9.5.7.2 PCI IOTLB CAM Input Register 173

9.5.7.3 PCI IOTLB Control Register 175

9.5.8 PCIC IOTLB Read Registers 175

9.5.8.1 PCI IOTLB RAM Output Register 176

9.5.8.2 PCI IOTLB CAM Output Register 176

9.5.8.3 PCIC DVMA Error Address Register 177

9.5.9 PCIC PIO Error Command and Address Registers 177
Contents vii

9.5.9.1 PCIC PIO Error Command Register 177

9.6 PCI Arbitration and Control 178

9.6.1 PCIC Arbitration Assignment Select Register 178

9.6.2 PCI Arbitration Algorithm 180

9.6.3 PCIC PIO (IAFX Slave) Control Register 181

9.6.4 PCIC DVMA (IAFX Master) Control Register 182

9.6.5 PCIC Arbitration Control Register 182

9.7 PCIC Interrupts 184

9.7.1 PCIC Interrupt Assignment Select Registers 185

9.7.2 PCIC System Interrupt Pending Register 187

9.7.3 PCIC Clear System Interrupt Pending Register 189

9.7.4 PCIC System Interrupt Target Mask Register 189

9.7.5 PCIC Processor Interrupt Pending Register 191

9.7.6 PCIC Software Interrupts 192

9.7.7 PCIC Hardware Interrupt Outputs 193

9.8 Counter-Timers 194

9.8.1 Counter-Timers Address Map and Function 195

9.8.2 Processor Counter Limit Register or User Timer MSW 196

9.8.3 Processor Counter Register or User Timer LSW 197

9.8.4 Processor Counter Limit Pseudo Register 198

9.8.5 System Counter Limit Register 198

9.8.6 System Counter Register 199

9.8.7 System Counter Limit Pseudo Register 199

9.8.8 User Timer Start/Stop Register 199

9.8.9 Processor Counter or User Timer Configuration Register 200

9.8.10 Counter Interrupt Priority Assignment Register 200

9.9 System Status and System Control 201

9.9.1 System Status and System Control (Reset) Register 201

9.10 PCI Interface Signal Description 203

9.11 PCI Protocol Fundamentals 207
viii microSPARC-IIep User’s Manual • June 1999

9.11.1 PCI Addressing 207

9.12 IAFX Bus Interface 207

9.12.1 IAFX Bus Overview 207

9.12.2 IAFX Target Interface 208

9.12.3 DVMA (IAFX Master) Interface 208

9.12.3.1 DVMA (IAFX Master) Operations 209

10. Flash Memory Interface 213

10.1 Flash Memory Programming Interface 213

10.2 Flash Memory Speed 214

11. Mode, Timing, and Test Controls 215

11.1 Overview 215

11.2 Reset Logic 215

11.2.1 General Reset and Watchdog Reset 215

11.2.2 Reset Controller State Machine 218

11.3 Phase-Locked Loop 218

11.4 Power Management 220

11.5 Clock Control Logic 221

11.5.1 Stopping Clocks 222

11.5.2 Starting Clocks 222

11.5.3 Single-Step 222

11.5.4 Counting Clocks 223

11.5.5 Issuing N Clocks 224

11.5.6 Stop Clocks on Internal Event 225

11.5.7 Stop Clocks N Cycles after Internal Event 225

11.5.8 Stop Clocks after N Internal Events 226

11.5.9 Clock Control Register (CCR) Bits 227

11.6 JTAG Architecture 228

11.6.1 Board Level Architecture 228

11.6.2 Test Access Port (TAP) 228
Contents ix

11.6.3 JTAG Instructions 230

11.6.4 JTAG Interface to MISC 231

11.6.4.1 Clock Controller Interface 231

11.6.4.2 Boundary Control Interface 231

11.6.4.3 RESET Mechanism 232

11.6.5 JTAG Operation 232

11.6.6 CLK_RST TAP Instruction 236

11.7 Boot Options 238

12. Error Handling 241

A. ASI Map 243

B. Physical Memory Address Map 251

C. microSPARC-IIep AFX (Local) Bus 253

C.1 Introduction 253

C.1.1 System Memory Interface 254

C.1.2 Local Bus Controller 254

C.1.3 Local Bus Slave 254

C.1.4 Local Bus Interface 255

C.2 Basic Local Bus Cycle 255

C.2.1 Address Cycles 256

C.2.2 Data Cycles 256

C.2.2.1 Write 257

C.2.2.2 Read 257

C.2.3 Local Bus Timeout 257

C.2.4 Local Bus Latency 257

C.3 Local Memory Map 258

C.4 Local Bus Interconnect 258

C.5 Local Bus Signals 260

C.5.1 CLK 260
x microSPARC-IIep User’s Manual • June 1999

C.5.2 AEN 260

C.5.3 LO_ADDR 260

C.5.4 WRITE_L 261

C.5.5 AB[14:0] 261

C.5.6 Byte Mask (BM) Bits 262

C.5.7 Multiplexed Addresses 263

C.5.8 P_REPLY[1:0] 264

C.5.9 S_REPLY[1:0] 264

C.5.10 DB[63:0] 265

C.5.11 RESET_L 266

C.6 Local Bus Timing Diagrams 267

C.6.1 Write Cycle 267

C.6.2 Read Cycle 269

C.7 Back-To-Back Write and Read Cycles 270

D. Memory Timing Parameters 273

D.1 Tabulated Parameter Values 273
Contents xi

xii microSPARC-IIep User’s Manual • June 1999

Figures

FIGURE 1-1 Big-endian vs. Little-endian Example (Processor Double Word Store) 5

FIGURE 1-2 Required Shadow Instruction at Processor Endian Mode Switch 5

FIGURE 1-3 Big Endian vs. Little-endian Example (PCI Master Double Word Transfer) 6

FIGURE 1-4 Required Readback Instruction at PCI Master Endian Mode Switch 7

FIGURE 1-5 Typical microSPARC-IIep System Block Diagram 8

FIGURE 1-6 microSPARC-IIep Block Diagram 9

FIGURE 1-7 microSPARC-IIep Pipeline Diagram 11

FIGURE 3-1 IU Block Diagram 26

FIGURE 4-1 FPU Block Diagram 45

FIGURE 4-2 Meiko FPP Block Diagram 46

FIGURE 4-3 microSPARC-IIep Multiplier Mantissa Block Diagram 47

FIGURE 4-4 microSPARC-IIep Multiplier Exponent Block Diagram 48

FIGURE 4-5 FPU Internal Control Flow Diagram 49

FIGURE 4-6 FPU Instruction Pipeline Diagram 50

FIGURE 4-7 FPC/Meiko FPP Interface Waveforms 50

FIGURE 4-8 FPC/Multiplier FPP Interface Waveforms 51

FIGURE 4-9 Untrapped FP Result in Same Format as Operands 52

FIGURE 4-10 Untrapped FP Result in Different Format 52

FIGURE 4-11 FPU Operation Modes 53
xiii

FIGURE 4-12 FP Add Peak Performance 57

FIGURE 4-13 FP Mul Peak Performance (No Dependencies) 57

FIGURE 4-14 FP Mul Peak Performance (Dependency) 58

FIGURE 4-15 FP Mul-Add Peak Performance (No Dependencies) 58

FIGURE 4-16 FP Mul-Add Peak Performance (Dependency) 58

FIGURE 5-1 MMU Address and Data Path Block Diagram 61

FIGURE 5-2 Possible TLB Replacement 63

FIGURE 5-3 TLB Entry 64

FIGURE 5-4 Page Table Entry in Page Table 65

FIGURE 5-5 Page Table Entry in TLB 66

FIGURE 5-6 Page Table Pointer in Page Table 67

FIGURE 5-7 Page Table Pointer in TLB 68

FIGURE 5-8 CPU TLB Flush or Probe Address Format 70

FIGURE 5-9 Processor Control Register 73

FIGURE 5-10 Context Table Pointer Register 76

FIGURE 5-11 Context Register 76

FIGURE 5-12 Synchronous Fault Status Register 77

FIGURE 5-13 Synchronous Fault Address Register 81

FIGURE 5-14 TLB Replacement Control Register 81

FIGURE 5-15 AFSR Register 84

FIGURE 5-16 AFAR Register 85

FIGURE 5-17 Memory Fault Status Register 85

FIGURE 5-18 Memory Fault Address Register 86

FIGURE 5-19 MID Register 87

FIGURE 5-20 Trigger A Enables Register 88

FIGURE 5-21 Trigger B Enables Register 90

FIGURE 5-22 Assertion Control Register 92

FIGURE 5-23 MMU Breakpoint Register 93
xiv microSPARC-IIep User’s Manual • June 1999

FIGURE 5-24 Performance Counter A 95

FIGURE 5-25 Performance Counter B 95

FIGURE 5-26 Virtual Address Mask Register 95

FIGURE 5-27 Virtual Address Compare Register 97

FIGURE 5-28 Local Bus Queue Level Register 97

FIGURE 5-29 Local Bus Queue Status Register 97

FIGURE 5-30 Physical Address Register 98

FIGURE 5-31 CPU Address Translation Using Table Walk 99

FIGURE 5-32 CPU Diagnostic TLB Upper Tag Access Format 102

FIGURE 5-33 CPU Diagnostic TLB Lower Tag Access Format 103

FIGURE 6-1 Data Cache Block Diagram 108

FIGURE 6-2 Data Cache Tag Entry 109

FIGURE 7-1 Instruction Cache Block Diagram 118

FIGURE 7-2 Instruction Cache Tag Entry 119

FIGURE 8-1 Memory Control Block diagram 130

FIGURE 8-2 DPC Datapath and Parity Control Block Diagram 135

FIGURE 8-3 RAM Refresh Control block diagram. 136

FIGURE 8-4 Dual-RAS Mode: Fast-Page Mode, 16-MB SIMMs (SIMM32_SEL=0) 140

FIGURE 8-5 Single-RAS Mode: Fast-Page Mode, 32 MB SIMMs (SIMM32_SEL=1) 141

FIGURE 8-6 Single-RAS Mode: EDO, 32 MB DIMMs (SIMM32_SEL=1) 142

FIGURE 9-1 Host and Satellite microSPARC-IIep Modes 147

FIGURE 9-2 PCIC Byte Twisting 149

FIGURE 9-3 IAFX to PCI Addressing 152

FIGURE 9-4 PCI to microSPARC-IIep DRAM mapping 154

FIGURE 9-5 IOTLB Block Diagram with Control Registers 172

FIGURE 9-6 Three Level Arbitration Algorithm 180

FIGURE 9-7 PCIC Interrupt Controller Block Diagram 186

FIGURE 9-8 Counter-Timer Block Diagram 195
Figures xv

FIGURE 11-1 Reset State Machine 217

FIGURE 11-2 Phase-Locked Loop Block Diagram 219

FIGURE 11-3 Divide-by-3 Example 223

FIGURE 11-4 Device ID Register Contents 229

FIGURE 11-5 JTAG Logic Block Diagram 235

FIGURE 11-6 JTAG Data & Instruction Registers 236

FIGURE 11-7 JTAG Clk Reset Operation 238

FIGURE A-1 TLB Flush or Probe Address Format 245

FIGURE A-2 Instruction Cache Tag Entry 247

FIGURE A-3 Data Cache Tag Entry 247

FIGURE C-1 Local Bus Block Diagram 254

FIGURE C-2 Address Cycles 256

FIGURE C-3 Local Bus Signals 259

FIGURE C-4 Multiplexed Addresses 264

FIGURE C-5 S_REPLY[1:0] Signal 265

FIGURE C-6 Data Bus Byte Ordering 266

FIGURE C-7 Fast Write Timing 268

FIGURE C-8 Slow Write Timing 269

FIGURE C-9 Read Cycle Timing 270

FIGURE C-10 Back-To-Back Write and Read Timing 271
xvi microSPARC-IIep User’s Manual • June 1999

Tables

TABLE 1-1 Feature Comparison of the microSPARC-II CPU and the microSPARC-IIep CPU 2

TABLE 1-2 Big-endian Example 7

TABLE 1-3 Little-endian Example 8

TABLE 2-1 microSPARC-II CPU Performance Summary 13

TABLE 2-2 Benchmark Test Configuration 14

TABLE 2-3 Test Results for SPECint92 14

TABLE 2-4 Test Results for SPECfp92 15

TABLE 2-5 Cycles for a Branch 16

TABLE 2-6 Instructions Taking Multiple Cycles 18

TABLE 3-1 Cycles per Instruction 27

TABLE 4-1 Floating-Point State Register (FSR) Summary 55

TABLE 4-2 FPU Instruction Cycle Counts 56

TABLE 5-1 Virtual Tag Match Criteria 64

TABLE 5-2 Page Table Access Permission 66

TABLE 5-3 Page Table Entry Types 66

TABLE 5-4 Page Table Entry Level in TLB 67

TABLE 5-5 Size of Page Tables 68

TABLE 5-6 Page Table Entry Types 68

TABLE 5-7 Page Table Entry Types 68
xvii

TABLE 5-8 Virtual Tag Match Criteria 69

TABLE 5-9 Virtual Tag Match Criteria 70

TABLE 5-10 TLB Entry Flushing 71

TABLE 5-11 Return Value for MMU Probes 72

TABLE 5-12 Address Map for MMU Registers 73

TABLE 5-13 Parity Control Definition 74

TABLE 5-14 Memory Refresher Control Definition 75

TABLE 5-15 Store Allocate Setting 75

TABLE 5-16 SFSR Level Field 78

TABLE 5-17 SFSR Access Type Field 78

TABLE 5-18 SFSR Fault Type Field 79

TABLE 5-19 Setting of SFSR Fault Type Code 79

TABLE 5-20 Priority of Fault Types on Single Access 80

TABLE 5-21 Overwrite Operations 80

TABLE 5-22 Boot Mode Select (BM_SEL) 82

TABLE 5-23 PCI Speed Select 82

TABLE 5-24 MISC MMU, and Perf Counter Control Space 83

TABLE 5-25 Memory Request Type 86

TABLE 5-26 Memory Speed Select 88

TABLE 5-27 MMU Breakpoint Register VAS Field decode 93

TABLE 5-28 MMU Breakpoint Register VAM Field decode 93

TABLE 5-29 MMU Breakpoint Register TWS Field decode 94

TABLE 5-30 MMU Breakpoint Register MT Field decode 94

TABLE 5-31 Mask ID 96

TABLE 5-32 TLB Reference Priority 100

TABLE 5-33 Translation Modes 101

TABLE 5-34 TLB Entry Address Mapping 104

TABLE 5-35 Virtual Address Match Condition 105
xviii microSPARC-IIep User’s Manual • June 1999

TABLE 5-36 Memory Request Type 106

TABLE 6-1 Data Cache Fill Ordering 111

TABLE 6-2 Flush Criteria for ASI 0x10-0x14 113

TABLE 7-1 Instruction Cache Fill Ordering 120

TABLE 7-2 Flush Criteria for ASI 0x10–0x14 122

TABLE 8-1 Memory Bank Population 126

TABLE 8-2 Physical Address Decode for System Memory 128

TABLE 8-3 Memory operations performed by MCB 131

TABLE 8-4 Parity Control Definition 133

TABLE 8-5 Refresh Rate Control bits. 136

TABLE 8-6 Processor Core Clock Speeds Available 137

TABLE 8-7 Number of Cycles for Different Interfaces 138

TABLE 9-1 microSPARC-IIep Memory Map 150

TABLE 9-2 PCIC Fixed Memory Map 151

TABLE 9-3 PCIC PIO Address Decode Priority 153

TABLE 9-4 Basic PCI Bus Operations and Restrictions 155

TABLE 9-5 PCIC Slave Accepted Commands 157

TABLE 9-6 PCIC Master Generated Commands 157

TABLE 9-7 Configuration/Control Register Addresses 158

TABLE 9-8 PCI Vendor ID Register:4 bytes @ offset = 00 161

TABLE 9-9 PCI Revision Register: 1 byte @ offset = 08 161

TABLE 9-10 PCI Class Code Register: 3 bytes @ offset = 09 161

TABLE 9-11 PCI Header Type Register: 1 byte @ offset = 0E 162

TABLE 9-12 PCI Command Register: 2 bytes @ offset = 04 162

TABLE 9-13 PCI Status Register: 2 bytes @ offset = 06 163

TABLE 9-14 PCI Cache Line Size Register: 1 byte @ offset = 0C 163

TABLE 9-15 PCI Latency Timer Register: 1 byte @ offset = 0D 164

TABLE 9-16 PCI BIST Register: 1 byte @ offset = 0F 164
Tables xix

TABLE 9-17 PCI Counters: 4 bytes @ offset = 40 164

TABLE 9-18 PCI Discard Counters: 2 bytes @ offset = 68 164

TABLE 9-19 System Memory Base Address Register 0 (SMBAR0) (1 byte @ offset = A0) 165

TABLE 9-20 System Memory Size Register 0 (MSIZE0) (1 byte @ offset = A1) 166

TABLE 9-21 PCI Memory Base Address Register 0 (PMBAR0) (1 byte @ offset = A2) 166

TABLE 9-22 System Memory Base Address Register 1 (SMBAR1) (1 byte @ offset = A4) 167

TABLE 9-23 System Memory Size Register 1 (MSIZE1) (1 byte @ offset = A5) 167

TABLE 9-24 PCI Memory Base Address Register 1 (PMBAR1) (1 byte @ offset = A6) 167

TABLE 9-25 System I/O Base Address Register (SIBAR) (1 byte @ offset = A8) 168

TABLE 9-26 System I/O Size Register (ISIZE) (1 byte @ offset = A9) 168

TABLE 9-27 PCI I/O Base Address Register (PIBAR) (1 byte @ offset = AA) 168

TABLE 9-28 PCI Base Address Registers (PCIBASE0: 4 bytes @ offsets = 10,14,18,1C,20,24) 169

TABLE 9-29 PCI Memory Size Register (PCISIZE0) (4 bytes @ offset = 44,48,4C,50,54,58) 170

TABLE 9-30 PCI IOTLB RAM Input Register (PCIRIR) (4 bytes @ offset = 90) 173

TABLE 9-31 PCI IOTLB CAM InputReg.(PCICIR): 4 bytes @ offset = 94 174

TABLE 9-32 PCI IOTLB Control Register (PCICR) (1 byte @ offset = 84) 175

TABLE 9-33 PCI IOTLB RAM Output Register (PCIROR) (4 bytes @ offset = 98) 176

TABLE 9-34 PCI IOTLB CAM Output Register (PCICOR) (4 bytes @ offset = 9C) 176

TABLE 9-35 PCIC DVMA Error Address Register: 4 bytes @offset = CC 177

TABLE 9-36 PCIC PIO Error Cmd Register: 1 byte @offset = C7 177

TABLE 9-37 PCIC PIO Error Address Register: 4byte @offset = c8 178

TABLE 9-38 PCIC Arbitration Assignment Select Register (2 bytes @ offset = 8A) 179

TABLE 9-39 PCIC (IAFX Slave) PIO Control Register (1 byte @ offset = 60) 181

TABLE 9-40 PCIC DVMA (IAFX Master) Control Register (1 byte @ offset = 62) 182

TABLE 9-41 PCIC Arbitration/Interrupt Control Register (1 byte @ offset = 63) 183

TABLE 9-42 PCIC Interrupt Assignment Select Register (2 bytes @ offset = 88) 185

TABLE 9-43 PCIC Interrupt Assignment Select Register (2 bytes @ offset = 8C) 185

TABLE 9-44 PCIC System Interrupt Pending Register (4 bytes @ offset = 70) 187
xx microSPARC-IIep User’s Manual • June 1999

TABLE 9-45 PCIC Clear System Interrupt Pending Register (1 byte @ offset = 83) 189

TABLE 9-46 PCIC System Interrupt Target Mask Register (4 bytes @ offset = 74) 190

TABLE 9-47 PCIC System Interrupt Target Mask Clear Register (4 bytes @ offset = 78) 190

TABLE 9-48 PCIC System Interrupt Target Mask Set Register (4 bytes @ offset = 7C) 190

TABLE 9-49 PCIC Default (Reset) Interrupt Assignments 191

TABLE 9-50 PCIC Processor Interrupt Pending Register (4 bytes @ offset = 64) 192

TABLE 9-51 PCIC Software Interrupt Clear Register (2 bytes @ offset = 6A) 192

TABLE 9-52 PCIC Software Interrupt Set Register (2 bytes @ offset = 6E) 193

TABLE 9-53 PCIC Software Interrupt Output Register (1 byte @ offset = 8E) 193

TABLE 9-54 PCIC Counter-Timers Address Map 196

TABLE 9-55 Processor Counter Limit or User Timer MSW (Word only @ offset = AC) 196

TABLE 9-56 User Timer Read/Write Sequence Required 197

TABLE 9-57 Processor Counter or User Timer LSW (Word Only @ offset = B0) 197

TABLE 9-58 Processor Counter Limit Pseudo Register (Word Only @ offset = B4) 198

TABLE 9-59 System Counter Limit Register (Word Only @ offset = B8) 198

TABLE 9-60 System Counter Register (Word Only @ offset = BC) 199

TABLE 9-61 System Counter Limit or User Timer MSW (Word Only @ offset = C0) 199

TABLE 9-62 User Timer Start/Stop Register (1 byte @ offset = C4) 199

TABLE 9-63 Processor Counter/User Timer Configuration Register (1 byte @ offset = C5) 200

TABLE 9-64 Counter Interrupt Priority Assignment Register (1 byte @ offset = C6) 201

TABLE 9-65 System Status and System Control Register: 1 byte @ offset = D0 202

TABLE 9-66 PCI Signal Listing 204

TABLE 9-67 PCI Bus Commands 206

TABLE 9-68 DVMA (IAFX Master) Signal Definition 209

TABLE 11-1 Internal Clock Divide Control 222

TABLE 11-2 JTAG Instructions 230

TABLE 11-3 Tap State Encodings 232

TABLE 11-4 Instruction Scan Sequence 233
Tables xxi

TABLE 11-5 Data Scan Sequence 234

TABLE 11-6 Data Scan sequence 235

TABLE 11-7 Boot Mode Select (BM_SEL) 238

TABLE 12-1 Error Summary 241

TABLE A-1 ASI’s Supported by microSPARC-IIep 244

TABLE A-2 CPU TLB Entry Flushing 245

TABLE A-3 Address Map for MMU Registers 246

TABLE A-4 Flush Criteria for ASI 0x10–0x14 248

TABLE B-1 Physical Address Space 251

TABLE C-1 Local Bus Interface Signals 255

TABLE C-2 Local Bus Signal Summary 259

TABLE C-3 LO_ADDR Signal States 261

TABLE C-4 Address Bus Multiplexing 262

TABLE C-5 Byte Mask (BM) Bits 262

TABLE C-6 P_REPLY[1:0] Signals 264

TABLE C-7 S_REPLY[1:0] Signals 264
xxii microSPARC-IIep User’s Manual • June 1999

Da

Ju

Ap
Document Revision History

te Document Revision Description of Change

ne 1999 -02 revised to describe CPU part number 802-7327-03

ril 1997 -01 initial draft; described CPU part number 802-7327-01
xxiii

xxiv microSPARC-IIep User’s Manual • June 1999

Preface

The microSPARCTM-IIep is an extension of the SPARCTM processor family targeted

for low-cost applications. The microSPARC-IIep RISC processor allows systems

designers to take advantage of a highly integrated SPARC “system-on-a-chip” and

achieve industry-leading performance.

The microSPARC-IIep integrates a 32-bit SPARC processor with floating-point unit,

memory management unit, separate instruction and data caches, PCI bus controller,

DRAM and flash memory controller, and clock generator using phase-locked loop on

to a single device. Implemented with state-of-the-art CMOS technology, the

microSPARC-IIep provides an ideal low-cost, high-performance, and low-power-

consumption solution.

Like all SPARC processors, microSPARC-IIep processors are supported by the

industry’s largest installed base of native RISC development environments,

applications, and support tools. SPARC is the leading microprocessor technology

supporting the information superhighway infrastructure in terms of hardware and

software. These tools and technology make SPARC ideal for your embedded and

networked computing applications.

Refer to the contents of the device ID register (see Figure 11-4 on page 229) for the

version of the microSPARC-IIep covered by this manual.
xxv

xxvi microSPARC-IIep User’s Manual • June 1999

CHAPTER 1

microSPARC-IIep Overview

1.1 Introduction
The microSPARC-IIep CPU is a highly integrated, low-cost implementation of the

SPARC version 8 RISC architecture with a PCI interface. Its implementation evolved

from Sun’s microSPARC architecture.

■ High performance is achieved by the high level of integration, including on-chip

instruction and data caches, built-in DRAM controller, and PCI local bus

controller.

■ A full-custom implementation allows for a target frequency of 100-133MHz

providing sustained performance.

■ The design is highly testable with support of full JTAG scan.

■ The microSPARC-IIep chip supports up to 256 megabytes of DRAM and 4

external PCI slots.

■ The ability to operate as either a PCI host master or intelligent PCI slave interface.

Intelligent PCI slave mode implies that an external arbiter is used and that the

microSPARC-IIep CPU is not the source of the PCI clocks or the PCI reset.

Intelligent PCI slave mode is entered whenever the pll_byp_l pin is high and the

ext_clk2 pin is high. If either of these pins are low, then the microSPARC-IIep

CPU is in PCI host master mode. PCI configuration read/write commands are

supported only in intelligent PCI slave mode.

Table 1-1 summarizes the key differences between the microSPARC-IIep CPU and the

microSPARC-II CPU.
1

Table 1-1 Feature Comparison of the microSPARC-II CPU and the microSPARC-IIep CPU

Feature microSPARC-II CPU microSPARC-IIep CPU

Overall

• 32-bit SPARC Architecture version 8

• Supports big-endian byte ordering • Supports little- and big-endian byte

ordering

Frequency • 110 MHz • 100 MHz - 133 MHz

Integer Unit • 136-word register file with 8 windows and 8 global registers

• 5-stage pipeline

• Supports branch folding

• 4-deep instruction queue supporting instruction prefetching

• Support instruction and data cache streaming

• Supports big-endian byte ordering • Supports little- and big-endian byte

ordering

Floating-Point Unit • Supports all single- and double-precision floating-point SPARC version 8

instructions

• Traps all quad-precision floating-point instructions

• Datapath contains Meiko floating-point engine, fast multiply unit

• Supports simultaneous execution of fast multiplications and other floating-point

operations such as floating-point add

• 3-entry floating-point deferred trap queue

• 32 floating-point registers of 32 bits wide

Memory Management

Unit

• SPARC version 8 Reference MMU

• Translates 32-bit virtual address to 31-bit physical address

• Supports 8 different 256 MB address spaces

• Supports 256 contexts

• 64-entry fully-associative TLB with

pseudo random replacement

algorithm

• 32-entry fully-associative TLB with

pseudo random replacement

algorithm

• Unified memory TLB and IOTLB • Separate memory TLB and IOTLB

• Supports hardware table-walks

Data Cache • 8K-Byte, direct-mapped, virtually-indexed, virtually-tagged, write-through with

write-allocate

• 512 lines of 16 bytes

• 4-deep write buffer of 64 bits wide

Instruction Cache • 16K-Byte, direct-mapped, virtually-indexed, virtually-tagged

• 512 lines of 32 bytes

Graphics Bus Interface • High-speed local bus • Not supported

Memory Interface • Programmable DRAM controller

• Supports up to 25 MB of system memory

• 64-bit data and 2-bit parity

• 8 RAS lines

• 4 CAS lines

• Supports 2 pages at a time

• Supports 5V/3V standard/slow refresh, self-refresh

• Supports fast-page mode DRAM only • Supports FPM or EDO DRAM that

meets fast-page mode timing
2 microSPARC-IIep User’s Manual • June 1999

Local Bus Controller SBus • PCI revision 2.1

• 32-bit, 33 MHz

• Supports (in host mode) up to 4

external bus masters or slaves

• Supports (in host mode) bus

arbitration between host and 4

external masters

• Supports host and satellite modes

• Address translation from 32-bit local

bus address to main memory space

assisted by dedicated 16-entry IO TLB

• Supports little- and big-endian byte

ordering with automatic endian

conversion

• Supports direct transactions between

external master and slave devices.

DMA sustained write bandwidth is 70

Mb/s and sustained read bandwidth

is 45 Mb/s

• Supports PIO between the

microSPARC-IIep CPU and PCI

devices. Peak PIO write bandwidth is

70 Mb/s PIO read bandwidth is 25

Mb/s

• Interrupt controller with

programmable priority assignments

and programmable output pins

• PCI clock input generates the

processor clock (x3 or x4)

• Two 32-bit or one 32-bit and one

64-bit timers

Flash Memory Interface • Not supported • Supports 8-bit or 32-bit interface

• Pin-selectable boot choice from 8 or

32-bit flash memory or from one of

two PCI memory spaces

• Industry-standard device interface

(28FxxxXX) and support for industry

standard programming algorithm

Boundary Scan JTAG • Implements CLK_RST instruction to

reset the clk_cntl block to a known

state

TAP Controller

Packaging • 321-pin, pin grid array • 272-pin, plastic ball grid array

Performance • 72 SPECint92

• 59 SPECfp92

• 208K Dhrystone

Voltage • Core operating voltage of 3.3V with

preserved 5 V I/O compatibility

Table 1-1 Feature Comparison of the microSPARC-II CPU and the microSPARC-IIep CPU (Continued)

Feature microSPARC-II CPU microSPARC-IIep CPU
Chapter 1 microSPARC-IIep Overview 3

1.2 microSPARC-IIep Memory Map
The microSPARC-IIep physical memory address mapping is shown in Appendix B,

Physical Memory Address Map.

1.3 microSPARC-IIep Endian Support
The microSPARC-II CPU works only with big-endian data but it includes endian

conversion logic that allows it to handle either big or little-endian data. The endian

conversion logic byte-swaps external little-endian data to convert it to internal big-

endian data and correspondingly converts internal big-endian data to external little-

endian data when appropriate. The endian conversion logic is enabled by bits 15 and

16 of the processor state register (PSR) and bit 2 of the PCI controller PIO control

register.

1.3.1 Processor-internal Endian Support

The microSPARC-IIep CPU supports little-endian system memory data for both

supervisory and user modes. PSR bits 16 and 15 enable little-endian conversion

during supervisor and user modes, respectively:

■ PSR [16]: When set, the default byte ordering for supervisor data references is

little endian. When clear, the default byte ordering for supervisor data references

is big endian.

■ PSR[15]: When set, the default byte ordering for user data references is little

endian. When clear, the default byte ordering for user data references is big

endian.

For the following examples see Figure 1-1.

■ Processor operating in little-endian mode: If the contents of a double word

register (r2,r3) = 0001.0203.0405.0607 and a double word store to memory location

0 is issued, the double word at memory location 0 contains 0706.0504.0302.0100

after the transfer.

■ Processor operating in big-endian mode: If the same double word register is

transferred to memory location 0 while operating in big-endian mode, the double

word at memory location 0 contains 0001.0203.0405.0607 after the transfer.
4 microSPARC-IIep User’s Manual • June 1999

Figure 1-1 Big-endian vs. Little-endian Example (Processor Double Word Store)

All loads and stores, including ones using address space identifiers (ASI), are

handled in the mode designated by the PSR endian control bit.

Note – Be sure to check the PSR endian control bits while performing maintenance

operations in little-endian mode. Failure to do so may result in erroneous failure

indications because the data may appear to be scrambled.

Switching of endian modes does not take effect until after completion of the

instruction immediately following the PSR endian control bits update. When

switching between endian modes, the instruction following the PSR modification

will operate in the previous endian mode.

Note – When switching modes, the software must include a NOP, non-memory, or

ASI shadow instruction following an update to the PSR (see Figure 1-2).

Figure 1-2 Required Shadow Instruction at Processor Endian Mode Switch

Caching of data is allowed while operating in little-endian mode, but there is no

hardware mechanism in the data cache to determine if a particular datum is stored

in big or little-endian format. The endian mode of the cached data is determined by

the context identity value of the process. By tracking the context identity, the user

can determine the endian mode of the cached data.

00010203 04050607(r2,r3) 00010203 04050607

00010203 04050607 07060504 03020100(mem0,mem1)

Big-endian Mode Little-endian Mode

. . .
instr
LOAD PSR /* change endian mode */
NOP/non-memory/ASI instruction /* required */

instr
instr

Previous Endian Mode

New Endian Mode

. . .
Chapter 1 microSPARC-IIep Overview 5

Note – Certain hardware operations of the microSPARC-IIep processor assume the

byte ordering of the data references to be big endian only. For example, independent

of the PSR settings, the data references for table walks are treated as big-endian data.

There is no performance penalty while operating in little-endian mode.

1.3.2 Processor External PIO Endian Support

The endian conversion logic across the processor-to-PCI interface is controlled by bit

2 of the PCI controller PIO control register (PA=0x300C.0060). On reset, the endian

conversion logic is enabled. Therefore, data on the PCI bus is little-endian.

For the following example see Figure 1-3.

■ If the processor is operating in big-endian mode, has contents 0001.0203.0405.0607

in the double word register (r2,r3), and bit 2 is set to 0, then a PIO initiated PCI

memory write places the data 0302.0100 and 0706.0504 on the PCI bus in

consecutive transactions.

■ With bit 2 set to 1, no byte twisting is done. If the processor is operating in big-

endian mode with bit 2 set and has contents 0001.0203.0405.0607 in the double

word register (R2,R3), then a PIO initiated PCI memory write places the data

0001.0203 and 0405.0607 on the PCI bus in consecutive transactions.

Figure 1-3 Big Endian vs. Little-endian Example (PCI Master Double Word Transfer)

This bit can be changed on the fly. The preferred method is to set the bit to the

desired value, then read it back. This guarantees that other PIO transactions are

locked out while the PIO endian control is in transition (see Figure 1-4).

00010203 04050607(r2,r3) 00010203 04050607

00010203 04050607 03020100 07060504(PCI Bus)

Big-endian Mode Little-endian Mode
6 microSPARC-IIep User’s Manual • June 1999

Figure 1-4 Required Readback Instruction at PCI Master Endian Mode Switch

1.3.3 DMA

The iafx_master / PCI slave (DMA PATH) contains no control bit. Data is always

transferred between PCI memory and system memory in sequential byte order (PCI

memory byte 0 is mapped to system memory byte 0, byte 1 is mapped to byte 1 and

so on).

1.3.4 Settings for Endian Conversion

The following two sections describe the recommended register settings for the

microSPARC-IIep CPU to operate in big and little-endian environments.

1.3.4.1 Big-endian Environment

PSR[16] and PSR[15] are both cleared to 0. PCI controller PIO control register [2] is

set to 1. See Table 1-3 for an example.

Table 1-2 Big-endian Example

Location Data

microSPARC-IIep register r2 r3
00010203 04050607

System memory addr 0 7
data 00010203 04050607

PCI local bus AD 31 0
CBE 3 0
data 00010203

AD 31 0
CBE 3 0
data 04050607

. . .
instr
LOAD PCIC CONFIG /* change endian mode */
READ PCIC CONFIG instruction /* required */

instr
instr

Previous Endian Mode

New Endian Mode

. . .
Chapter 1 microSPARC-IIep Overview 7

1.3.4.2 Little-endian Environment

PSR[16] and PSR[15] are set to 1 depending on whether data access is in supervisor

or user mode. PCI controller PIO control register [2] is set to 0. See Table 1-3 for an

example.

1.4 Block Diagram
Figure 1-5 shows a typical microSPARC-IIep system block diagram.

Figure 1-5 Typical microSPARC-IIep System Block Diagram

Table 1-3 Little-endian Example

Location Data

microSPARC-IIep register r2 r3
00010203 04050607

System memory addr 7 0
data 00010203 04050607

PCI local bus AD 31 0
CBE 3 0
data 03020100

AD 31 0
CBE 3 0
data 07060504

Up to 4
PCI Bus
loads

32 MB DRAM SIMM Module
32 MB DRAM SIMM Module

32 MB DRAM SIMM Module
32 MB DRAM SIMM Module

Up to
256 MB
DRAM
SIMMs

Local Bus

Flash
Memory PCI BusmicroSPARC-IIep CPU
8 microSPARC-IIep User’s Manual • June 1999

Figure 1-6 shows the microSPARC-IIep:

■ Integer unit (IU)

■ Floating-point unit (FPU)

■ Instruction and data caches

■ Memory management unit (MMU) with 32-entry translation lookaside buffer

(TLB)

■ DRAM controller

■ PCI controller

■ PCI bus interface

■ IOMMU with 16-entry IOTLB

■ Flash memory interface

■ Interrupt controller

■ Two timers

■ Internal and boundary scan JTAG interface

■ Power management

■ Clock generation—using incoming PCI clock

Figure 1-6 microSPARC-IIep Block Diagram

Integer Unit

inst [31:0]

dpc [31:2]

fp_dout [63:0]
Floating Point Unit

PLL Clock
Generator

Instruction Cache

16K

64

in
st

r

Data Cache

8K

64-Bit Cache Fill Bus

Memory Interface PCI Controller

Write Buffer
4 Entry

Phy_addr [27:0]

Misc_bus [31:0]

Memory
Management Unit

32 Entry TLB

iu_dout [63:0]

i_va [31:0]

d_va [31:0]

32-Bit PCI BusMemory Data Bus <63:0>
Memory Address [11:0]

Flash Memory

Addr

Interface

16-entry IOTLB
Chapter 1 microSPARC-IIep Overview 9

Operation requires an on-chip clock generator with a phase locked loop. The

microSPARC-IIep processor operates at a multiple of the 33 MHz PCI bus input

frequency, The clock generator multiplies the PCI input clock by six (200 MHz) or by

eight (266 MHz) before dividing by two to generate the processor reference clock

(100 MHz or 133 MHz).

Memory interfacing is done using four major buses:

The MEMIF block interfaces with the DRAM via a “b_memdata<63:0>” bus. The bus

is divided into b_memdata_in<63:0> and b_memdata_out<63:0> inside the chip for

input and output, respectively.

Cache_fill bus: a 64-bit unidirectional bus from b_memdata_in bus to the I-cache and

D-cache. This bus is used for cache fill writes, bypass streaming and noncached

load/fetches from DRAM.

Misc_bus (Miscellaneous bus): a 32-bit bidirectional bus, used for ASI load and store

transfers; and write buffer for MEMIF transfers.

IAFX bus: an internal version of the AFX bus, enhanced to allow an external master

to request the use of the bus and initiate memory transfers.

Figure 1-7 shows the microSPARC-IIep pipeline.
10 microSPARC-IIep User’s Manual • June 1999

Figure 1-7 microSPARC-IIep Pipeline Diagram

 8 windows

 bypass/signext mux

tag32
entry
cam

wr buf x4

dpar
ipar

alu/sh

DRAM

datava

Herbulator &

I$ 16Ktag

datava

prefetch
queue x4

R

E

W

DIR

EIR

WIR

RIR
3 cycle
access

Cache_fill<63:0>

IU regfile

Cache_fill

PCIC

Misc_bus 32

 32 bit PCI

D$ 8k

MEMIF

MEMIF

I/D VA<31:0>

Cache_fill bus<63:0>

Physical Address<27:0>

dva

64b aligner
par

fpu regfile
32*32

bypass mux
alignment

Meiko
fpp fp

multiplier

phy
add
sram

va mux

R

fpq

E E

3 entry

fp_dout_e

64iu_dout 64

32

iva

64

b_memdata 64

b_
m

em
da

ta

64

ld_fpu_w 64ld_iu 32

branch folding
logic Pcepc

sb_ioa

m
m

_p
a

30
fsr

PCQ

TLB

32 IOTLB
Chapter 1 microSPARC-IIep Overview 11

12 microSPARC-IIep User’s Manual • June 1999

CHAPTER 2

CPU Performance

2.1 Benchmark Configurations and Results
Table 2-1 through Table 2-6 give results for the standard microSPARC II CPU.

Differences that apply to the microSPARC-IIep CPU are explained following these

tables.

The results of these benchmark tests at 100 MHz on microSPARC-II machines are

presented in Table 2-1.

With a 32-entry TLB—compared with a 64-entry TLB for the microSPARC-II— the

microSPARC-IIep CPU’s performance is typically lower by 4.5% for SPECint92 and

by 0.9% for SPECfp92 compared with these microSPARC-II results.

Note – Performance of programs that overflow the available TLB entries is lower

than listed.

Table 2-1 microSPARC-II CPU Performance Summary

Benchmark 100 MHz

SPECint92 72.29

SPECfp92 59.28

Dhrystone 208.33K

MIPS 118.57

MFLOPS 8.89
13

2.1.1 Benchmark Test Configuration

The benchmark test setup is listed in Table 2-2.

2.1.2 SPECint92 Test Results

The SPECint92 test results are presented in Table 2-3. SPECint92 computed by best

runs is 72.29 and SPECrate_int92 is 1864.

Table 2-2 Benchmark Test Configuration

Item Configuration

Hardware

Model Number SPARCstation 5-100

CPU 100 MHz microSPARC II

FPU Integrated

Number of CPUs 1

Primary Cache 16 KB instruction + 8 KB data on chip

Other Cache None

Memory 64 MB

Disk Subsystem 1 GB single-ended SCSI

Software

Compilers Apogee 3.051

Other Software Kuck & Associates KAP

File System UFS

System State Single User

Table 2-3 Test Results for SPECint92

Benchmark Copies Elapsed Time Best Runs

008.espresso 1 35.70 70.28

022.li 1 87.00 75.82

023.eqntott 1 7.80 154.93

026.compress 1 70.80 41.22

072.sc 1 36.80 135.22

085.gcc 1 117.90 51.12
14 microSPARC-IIep User’s Manual • June 1999

2.1.3 SPECfp92 Test Results

The SPECfp92 test results are presented in Table 2-4. SPECfp92 computed by best

runs is 59.28.

2.1.4 Dhrystone Test Results

This machine benchmarks at 208,333 Dhrystone/second.

The performance projections for the microSPARC-IIep CPU are extrapolated from

the actual performance figures for the microSPARC-II. This extrapolation is possible

because the microSPARC-IIep CPU is based on the design of the microSPARC-II

core. There are, however, minor differences in the I/O subsystems and the

translation lookaside buffers (TLB) of the microSPARC-II CPU and the microSPARC-

IIep CPU (that is, the microSPARC-II CPU has a 64-entry TLB with 16 entries

dedicated for IOTLB use, while the microSPARC-IIep CPU has a 32-entry TLB). As a

result, adjustments have to be made to the microSPARC-II data to account for these

differences.

Table 2-4 Test Results for SPECfp92

Benchmark Copies Elapsed Time Best Runs

013.spice2g6 1 542.90 44.21

015.doduc 1 37.10 50.13

034.mdljdp2 1 97.70 72.57

039.wave5 1 99.50 37.19

047.tomcatv 1 44.80 59.15

048.ora 1 79.30 93.57

052.alvinn 1 68.20 112.76

056.ear 1 285.00 89.47

077.mdljsp2 1 81.40 41.15

078.swm256 1 311.90 40.72

089.su2cor 1 207.40 62.20

090.hydro2d 1 298.00 45.97

093.nasa7 1 245.80 68.35

094.fpppp 1 152.20 60.45
Chapter 2 CPU Performance 15

2.2 Compiler Optimization Guidelines
This section explains some of the code scheduling issues that affect the performance

of the microSPARC-IIep processor.

2.2.1 Branches

Integer branches are either folded with their delay slot instructions or allowed to

enter the integer pipeline.

Branch folding is supported by a four-deep instruction queue. The queue is filled

each cycle by a double word fetch. For a branch to be folded, the branch, delay slot,

and delay slot+1 instructions must be in the queue or be streaming to the integer

unit (IU) from the instruction cache. In addition, the instruction preceding the

branch cannot be a multi-cycle instruction or a control transfer instruction (CTI), and

there cannot be a WRspec (write to a special register) in the pipe.

All branches are predicted taken. The target instruction is fetched in the D-stage of

the delay slot instruction (or branch-delay slot pair).

bicc 1f

delay

delay+1

...

1: target

...

Table 2-5 summarizes the cycles taken for a branch.

If the branch can be folded, the branch and delay slot are executed at cycle x. If the

branch is taken, the target executes at cycle x+1. If the branch is not taken, the target

must be killed and delay+1 is executed at cycle x+2. Thus, folded taken branches

take zero cycles, while folded untaken branches take one cycle.

Table 2-5 Cycles for a Branch

Branch Taken Not Taken

Folded 0 1

Not Folded 1 1 or 2
16 microSPARC-IIep User’s Manual • June 1999

If the branch cannot be folded, it enters into the pipeline at cycle x, and the delay

slot instruction enters at cycle x+1. If the branch were taken, the target executes at

cycle x+2. If the branch were not taken, but the delay instruction+1 is in the

instruction queue, it executes at cycle x+3; otherwise it must be fetched and executes

at cycle x+4.

2.2.2 Guidelines for Branch Folding
■ Try to make as many BICC instructions taken as possible since the microSPARC-

IIep CPU always predicts taken and fetches the target. If the branch is untaken, it

costs a cycle if it were folded, and may cost an additional cycle if it were not

folded.

■ Avoid BICC to BICC control transfers. The target BICC cannot be folded since

delay+1 will not be in the instruction queue.

bicc 1f

delay

...

1: bicc2f

...

■ Try to have CTI target instructions be double-word aligned (for example, label 1 is

a double-word address). This allows the odd word to enter the queue

immediately. If the odd word happens to be a BICC, it can be folded. If the target

is an odd word, the following BICC does not enter the queue and is not be folded.

bicc1f

delay

...

1: target

bicc2f

...

■ Do not put save/restore in the delay slot of an annulling BICC. If the save/restore

is annulled, The microSPARC-IIep CPU must take a cycle to fix the current

window pointer (CWP).

bicc,a 1f

save

■ Do not follow multicycle instructions with a BICC.

Does not Fold Can Fold

-------------- ---------------

std std

bicc add

delay bicc
Chapter 2 CPU Performance 17

delay

■ Do not follow WRspec with a BICC. Folding is disallowed when there is a

WRspec anywhere in the pipeline's D, E, or W stages. WRspec refers to any of the

special registers (PSR, WIM, TBR, Y).

Does not Fold Can Fold

-------------- ---------------

mov .., %psr mov .., %psr

nop nop

bicc nop

nop

nop

bicc

Note – Only integer branches are folded; FP branches are not. Calls are not folded

owing to a register file limitation.

2.2.3 Multicycle Instructions

Most instructions in the microSPARC-IIep CPU take a single cycle to execute. The

instructions listed in Table 2-6 take multiple cycles.

Table 2-6 Instructions Taking Multiple Cycles

Instruction Cycles

JMP, RETT 2

LDA, STA 2

LDD, LDDA, STD, STDA 2

LDSTB, LDSTBA 2

SWAP, SWAPA 2

STA FLUSH 3

IFLUSH 3

IMUL 19

IDIV 39
18 microSPARC-IIep User’s Manual • June 1999

2.2.4 Pipeline Interlocks

The microSPARC-IIep CPU has several pipeline interlocks that may be avoided with

improved code scheduling. The following operations result in interlocks.

■ An integer load immediately followed by an instruction that uses the load

destination as a source operand.

■ A CALL followed by an instruction that uses r[15] of the register file as a source

operand.

■ A RD to a special register followed by a dependent operation.

■ A folded SAVE/RESTORE that was annulled—it takes a cycle to fix the CWP.

■ An unfolded CTI branch which is not taken and the delay slot + 1 instruction is

not in the instruction queue.

2.2.5 Other Guidelines

Usage of the IMUL instruction, rather than a kernel routine, is preferred because of

its higher performance. However, because it is highly dependent on the operand

types, the performance of the IDIV instruction is not always better than that of a

kernel routine.

2.2.6 Floating-Point Instructions

Scheduling of floating-point (FP) instructions can have a large impact on FP

performance. The most important thing to consider when scheduling FP code is

making efficient use of the floating-point queue. The FP unit has a three-entry

floating-point queue and two independent functional units (multiplier and

everything else).

The microSPARC-IIep CPU does not interlock for FP loads—including double-word

loads—followed by dependent FP operations. Since operands for floating-point

operations are read in W-stage, the result from the previous floating-point load can

be bypassed to the floating-point units.

Refer to Section 4.6, FP Performance Factors for more information about floating-point

performance.

2.2.6.1 FP Interlocks

■ FP queue full - if an FPOP is in E-stage and the FP queue is full, the pipe must be

held until the first instruction in the queue completes.

■ FP store waiting for data from FPOP in queue - held in E-stage.
Chapter 2 CPU Performance 19

■ FP load writing register used by FPOP in queue - held in W-stage. This applies

whether the FPOP register is RS1, RS2, or RD.

■ FPLD followed by FPST - single cycle interlock if the FP register (modulo 2) being

loaded is the same as the FP register being stored (modulo 2).

■ FPLDFSR/FPSTDFQ followed by any FPOP/FPMEMOP/FPCMP - single cycle

interlock.

■ FPOP followed by FPLDFSR/FPSTDFQ - LDFSR or STFSR must wait for FPOP to

complete.

■ FP branch in decode and FCCV (FP condition code valid) deasserted. The IU pipe

will interlock until FCCV is reasserted. FCCV is deasserted when an FCMP is

started and reasserted when the FCMP completes. The branch is held in D-stage.

2.2.6.2 Functional Units

There are two functional units: the multiplier and the Meiko core, which handles all

other operations. The multiplier can start an operation every three cycles, but

operations dependent on the multiplier results must wait five cycles for the result to

be written. The initial multiply must also be in the first queue entry if the second

multiply is to be started before the first results are written. The Meiko core is not

pipelined; when an operation completes, the data and functional unit are both

available. See Chapter 4, for details on instruction cycle count.

2.2.6.3 FP Queue Details

The FP queue is three entries deep. It allows out-of-order issue, but forces in-order

completion. Only one operation can be started per cycle, and only one operation

may complete per cycle. An operation does not leave the queue until it has written

its results. The following examples demonstrate how dependencies affect the

pipeline.

■ Out-of-order issue, no dependencies - data written back in-order, issued out of

order because of functional unit availability.

Unit Issued Written

fmuld %f0, %f2, %f4 Mult x x+5

fmuld %f6, %f8, %f10 Mult x+3 x+8

faddd %f12, %f14, %f16 Adder x+2 x+9

■ FADD throughput - dependencies have no effect, 5 cycles per operation, due to a

single functional unit.

Unit Issued Written

faddd %f0, %f2, %f2 Adder x x+5

faddd %f2, %f2, %f0 Adder x+5 x+10
20 microSPARC-IIep User’s Manual • June 1999

■ FMUL throughput - no dependency, 3 cycles per operation.

Unit Issued Written

fmuld %f0, %f2, %f4 Mult x x+5

fmuld %f6, %f8, %f10 Mult x+3 x+8

■ FMUL throughput - with dependency, 5 cycles per operation.

Unit Issued Written

fmuld %f0, %f2, %f2 Mult x x+5

fmuld %f0, %f2, %f2 Mult x+5 x+10

■ FMUL/FADD pair - no dependency, 5 cycles per pair. The second multiply cannot

enter the queue until the first add has completed, at which time the second add is

being started.

Unit Issued Written

faddd %f0, %f2, %f4 Adder x x+5

fmuld %f6, %f8, %f10 Mult x+1 x+6

faddd %f0, %f2, %f4 Adder x+5 x+10

fmuld %f6, %f8, %f10 Mult x+6 x+11

■ FMUL/FADD pair - one dependency, 6 cycles per pair. It is immaterial which way

the dependency goes.

Unit Issued Written

faddd %f0, %f2, %f4 Adder x x+5

fmuld %f4, %f6, %f8 Mult x+5 x+10

faddd %f0, %f2, %f4 Adder x+6 x+11

fmuld %f4, %f6, %f8 Mult x+11 x+16

Unit Issued Written

fmuld %f0, %f2, %f4 Mult x x+5

faddd %f4, %f6, %f8 dder x+5 x+11

fmuld %f0, %f2, %f4 Mult x+6 x+11

faddd %f4, %f6, %f8 Adder x+11 x+16

■ FMUL/FADD/FMUL - two dependencies, 10 cycles per pair.

Unit Issued Written

faddd %f0, %f2, %f4 Adder x x+5

fmuld %f4, %f6, %f0 Mult x+5 x+10

faddd %f0, %f2, %f4 Adder x+10 x+15

fmuld %f4, %f6, %f8 Mult x+15 x+20

■ Longer instructions (divide, square root) - other instructions can enter the

pipeline, but none complete out of order. The integer pipe is not held unless a

fourth FPop tries to enter the queue. Note that the second multiply cannot start

until the first advances to the first queue entry.
Chapter 2 CPU Performance 21

Unit Issued Written

fdivd %f0, %f2, %f4 Adder x x+35

fmuld %f6, %f8, %f10 Mult x+1 x+36

fmuld %f12, %f14, %f16 Mult x+36 x+41

2.2.7 Loads and Stores

Load and store ordering has a large impact on the microSPARC-IIep CPU’s

performance. The microSPARC-IIep CPU has an 8-kilobyte write through, with write

allocate, data cache. If all accesses hit the cache, the order of accesses makes little

difference. The order of access can have a large effect on the latency of cache misses

though. The following guidelines may help improve performance:

■ Group memory accesses by DRAM page — Cache misses require reads from

DRAM. The DRAM access is faster if it can be accessed in page mode. Therefore,

loads and stores to the same page should be grouped together. One way to do this

is to group accesses that use the same base register together, since these are likely

to be in the same page. For instance:

Poor order: Good order:

ld [%o0], %f3 ld [%o0], %f3

ld [%i5-12], %f4 ld [%o0+8], %f5

ld [%o0+8], %f5 ld [%i5-12], %f4

ld [%i5-8], %f2 ld [%i5-8], %f2

See Section 2.3, Using the Two Page-Hit Registers for gaining further improvement

by effectively using the page-hit registers.

■ Minimize write buffer full penalty — the microSPARC-IIep CPU has four write

buffers. At higher frequencies, the write buffers take more cycles to flush. So, use

fewer store instructions, if possible, and reduce clustering of stores to allow the

buffers a chance to empty. One technique is to maximize the use of store double

(std). A double word store occupies only one write buffer entry and takes one

memory access. Storing the two registers separately requires two write buffer

entries and two memory accesses.

Since the microSPARC-IIep CPU has four write buffers, up to four stores can be

clustered together without stalling the pipe if the stores hit. However, all issued

stores must be written to memory before the next cache miss can be processed. It

is recommended that the number of instructions between the stores and the next

memory access be roughly proportional to the number of stores, to allow time for

the write buffer to empty.

■ Minimize usage of STB and STH — Memory accesses have word write enables, so

these instructions are implemented as a read-modify-write memory operation.

This is slower than a normal store operation.
22 microSPARC-IIep User’s Manual • June 1999

2.2.8 General Techniques

The following actions help performance, but are not microSPARC-IIep specific

optimizations.

■ Decrease instruction count

■ Reduce integer load use interlock through better instruction scheduling.

■ Reduce register window overflow/underflow

■ Reduce cache miss rates, especially store miss rates

2.3 Using the Two Page-Hit Registers
The two page-hit resisters can be used to improve the microSPARC-IIep CPU’s

performance. See Section 5.7.1, Processor Control Register for information on how to

enable page-mode operations.

Each time a virtual address (VA) is translated for a memory operation, the resulting

physical address (PA) is compared to the PA of the previous memory operation

stored in the page-hit registers. If the two PAs are within the same 4 kilobyte

physical address space, the MMU signals that the current operation is a page hit. This

indicates to the memory interface logic that there is no need to toggle the RAS lines

to the memory, and the overall access is therefore much faster. Every memory access

puts its page address into the page hit register.

In the microSPARC-IIep CPU, there are two page-hit registers. This allows the

saving of two PAs for possible page hits. This also requires the memory interface to

divide its memory into two groups, one for each page-hit register. Each group also

has its own RAS lines. The actual banks of memory are set up so that every other

bank/SIMM belongs to a given page-hit register.

The two page-hit registers especially help applications that alternate a large number

of accesses between text and data. If there were only a single page-hit register, text

and data accesses would thrash the page hit register and reduce its effectiveness.

With the existing page allocation software, the first bank’s pages must be entirely

used or allocated before any of the second bank’s pages are used. This means that

the benefit of having two page-hit registers is not seen until that point is reached.

This also means that when an application is mapped, the banks are used serially, one

after the other.

To maximize the benefit of the page-hit register scheme, the two registers have to be

used as much as possible. This means dividing all of the available pages into two

groups that correspond to the two page-hit registers. After this is done, a number of

allocation preferences can be used. One group can be used for text and the other for
Chapter 2 CPU Performance 23

data, or simply alternate between the two groups. In the microSPARC-IIep CPU, the

DRAM page size is 4 kilobytes, so alternating makes available a total of eight

kilobytes of fast-access memory at any given time.

The difference between page and non-page access in the microSPARC-IIep CPU is

four cycles for a page hit compared with 11 cycles for non-page hit.

Note – When the microSPARC-IIep CPU accesses main memory on behalf of the

PCI Controller (PCIC) for PCI DMA accesses, the page-hit registers are marked

invalid prior to the DMA access to prevent hitting into these registers incorrectly.
24 microSPARC-IIep User’s Manual • June 1999

CHAPTER 3

Integer Unit

The microSPARC-IIep integer unit (IU) implements SPARC integer instructions as

defined in the SPARC Architecture Manual version 8. This integer unit is derived from

the integer unit of the microSPARC-II CPU. This implementation balances the needs

of high-performance and low-cost while maintaining software compatibility. The

only differences between the microSPARC-II and microSPARC-IIep integer units are

noted in Section 3.13, Compliance With SPARC Version 8 in this chapter.

3.1 Overview
The microSPARC-IIep integer unit is a CMOS implementation of the SPARC 32-bit

RISC architecture version 8. Important features include:

■ 5-stage instruction pipeline

■ Branch folding

■ Instruction and data cache streaming support

■ Hardware implementation of IMUL and IDIV

■ 136-register register file supporting eight register windows

■ Interface to on-chip floating-point unit

■ 4-deep instruction queue supporting instruction prefetching

■ Little- and big-endian byte ordering support
25

Figure 3-1 IU Block Diagram

Pipeline
Control

Execute
Datapath

8 -window
register
file

I$
addr gen.

Instruction
Queue

IRegs

From I$ To I$

D$ data/adr

From FPU

From D$ To D$

To/From
MMU

To FPU

To FPU

To/From
FPU
26 microSPARC-IIep User’s Manual • June 1999

3.2 Instruction Pipeline
The microSPARC-IIep IU uses a double (1-branch, 1-other) instruction issue pipeline

with five stages.

1. F (Instruction Fetch): Instruction fetch occurs in this stage. Instructions may be

fetched either from the 4-instruction deep queue or directly from the instruction

cache. The instruction is valid at the end of this stage and is registered inside the

IU.

2. D (Decode): This stage decodes the instruction and reads the necessary operands.

Operands may come from the register file or from internal data bypasses. The

register file has three independent read ports — two for operand or address

calculation, and one for store operand read in the E-stage. For situations where

the necessary operand is in the pipeline and has not been written to the register

file yet, internal bypasses are supplied to prevent pipeline interlocks. In addition,

addresses are computed for CALL and Branch in this stage.

3. E (Execute): This stage performs ALU, logical, and shift operations. For memory

operations (e.g., LD) and for JMPL/RETT, the address is computed in this stage.

Store operand read is done in this stage from the register file’s third read port and

sent to the data cache.

4. W (Write): This stage accesses the data cache. For cache reads, the data is valid by

the end of this stage, at which point it is aligned as appropriate. Store data read

out in the E-stage is written to the data cache at this time.

5. R (Result): This stage loads the result of any ALU, logical, shift, or cache read

operation into the register file.

Table 3-1 lists the cycles per instruction.

Table 3-1 Cycles per Instruction

Instruction Cycles

CALL 1

Single Loads 1

Jump/Rett 2

Double Loads 2

Single Stores 1

Double Stores 2

LDF/LDDF 1
Chapter 3 Integer Unit 27

3.3 Memory Operations

3.3.1 Loads

All load operations take one cycle in the microSPARC-IIep IU except for LDD which

takes two cycles. For LD, LDB, and LDH, the pipeline does the following:

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E — Address operands are added to compute the memory address. This address

is presented to the cache in this stage.

3. W — Address is registered in the cache and access is started. Data is expected at

the end of this stage. Any necessary alignment and sign extension is done by the

data cache prior to being registered by the IU.

4. R — Data is registered in the IU and is written into the register file.

In the event of a cache miss, the miss signal is given to the IU in the W stage. The

miss signal holds the pipeline. Once the miss data is available, the cache signals the

IU to release the pipeline. The IU also registers the miss data into the appropriate R-

stage register and writes it into the register file. As the cache line is being filled, the

IU can accept additional data either from within the filling line or from another line

that exists in the data cache.

An integer LDD takes 2 cycles to complete because of the use of 32-bit datapaths.

The pipeline does the following operations:

STF/STDF 1

LDA/STA 2

LDDA/STDA 2

STA FLUSH 3

IFLUSH 3

Taken Trap 3

Atomic Load/Store 2

Table 3-1 Cycles per Instruction (Continued)

Instruction Cycles
28 microSPARC-IIep User’s Manual • June 1999

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E — Address operands are added to compute the even memory address. This

address is presented to the data cache in this stage.

3. W (E2) — The even memory address is registered in the cache and access is

started. This data is sent to the IU. At the same time, the odd address is generated

by the IU and sent to the cache.

4. R (W2) — The even word is registered in the IU and written to the register file.

The odd word address is registered in the cache and its access is started.

5. R2 — The odd word is registered in the IU and written to the register file.

In the event of a cache miss, the miss signal is generated in the W-stage of the LDD.

The miss holds the pipeline. When the cache receives the miss data, the IU control

releases the pipeline, registers the even data into the R register, and writes it to the

register file. It picks up the odd data in the next stage. As the cache line is being

filled, the IU can accept additional data either from the filling line or from another

line that exists in the data cache.

Floating-point load-single and load-double instructions (LDF/LDDF) operate like an

integer load, except that the floating-point register file is loaded with the data

coming from the data cache. In the case of LDDF, the instruction is executed in only

one stage using the 64-bit datapath that exists between the data cache and FPU.

3.3.2 Stores

The microSPARC-IIep IU register file has three independent read ports. As a result,

store operations take one cycle, except integer STD which takes two cycles. For

integer stores and floating point single stores, the IU duplicates the store data on

both words of the 64-bit bus from IU to data cache. For floating point store double,

the words are aligned correctly.

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E — The store virtual address is computed in the ALU. The store operand is read

from the third read port of the register file — this includes potential bypassing of

results and a store aligner. If it is a floating point store of any size, operands are

read from the floating-point file instead. Integer and floating point store data are

correctly selected and sent to the data cache.

3. W — The store data is registered by the data cache and written.

4. R — The store is complete.
Chapter 3 Integer Unit 29

For integer STD the pipeline does the following:

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E (D2) — The address operands are added to compute the even memory address

and sent to the data cache. This address is registered within the IU to provide the

data cache with the odd address in the next stage. At the same time, the even

store data is read from the register file’s port 3 or bypassed from instructions still

in the pipe and is sent to the data cache.

3. W (E2) — The odd address is sent to the data cache. The odd word is read from

register file or bypassed from instructions still in the pipe and is sent to the data

cache. The even word is written to data cache.

4. R (W2) — The odd word is written to the data cache.

5. R2 — The STD is complete.

3.3.3 Atomic Operations

SWAP and LDSTUB each take two cycles to complete. The pipeline does the

following on the SWAP instruction:

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E (D2) — The address operands are added to compute the swap memory address.

This address is sent to the data cache to start the cache read portion of the

operation. The register to be swapped is read out in this stage and sent to the data

cache.

3. W (E2) — The data cache returns the memory location accessed. The register to be

swapped is sent to the data cache again. The store address is not sent to the data

cache again.

4. R (W2) — The IU registers the read data and writes it to the register file.

5. R2 — The SWAP is complete.

The pipeline does the following on the LDSTUB instruction:

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E (D2) — The address operands are added to compute the LDST address. This

address is sent to the data cache to start the cache read portion of the operation.

0xffff.ffff is sent to the data cache along with the appropriate bytemarks for the

store.
30 microSPARC-IIep User’s Manual • June 1999

3. W (E2) — The data cache returns the memory location accessed and it is shifted

appropriately and sent to the IU. 0xffff.ffff is sent to the data cache again. (The

store address is not sent to the data cache again.)

4. R (W2) — The IU registers the read data and writes it to the register file.

5. R2 — LDSTUB is complete.

3.4 ALU/Shift Operations
Most ALU and shift operations take a single cycle to complete. The exceptions are

integer multiply and integer divide. On add, subtract, boolean, and shift operations,

the pipeline does the following operations:

1. D — Operands are read from the register file or bypassed from instructions still in

the pipe

2. E — Appropriate operation is executed in ALU or shifter. There is a selective

inverter on the B input of the ALU to allow for subtracts and certain Boolean

operation (e.g. ANDN)

3. W — Result of operation is forwarded to the next stage

4. R — Result is stored in the register file

3.5 Integer Multiply
Integer multiply normally takes 22 cycles to complete, but may complete in 19 cycles

if the three instructions preceding the multiply instruction do not write into the

integer register file. The algorithm implemented in the microSPARC-IIep IU is a

modified Booth’s (2-bit) multiply. The multiply process can be broken up into four

distinct steps:

1. Initialization: 1–4 cycles

2. Booth’s iteration: 16 cycles

3. Correction (per Booth): 1 cycle

4. Writeback: 1 cycle
Chapter 3 Integer Unit 31

The first cycle is used to set up the registers used in the multiply. The RS1 and RS2

registers are initialized to the operands of the multiply. The W-stage result register

and the RS2 register are used as accumulators. At the completion of the multiply, the

W-stage register contains the most significant 32 bits of the result and the RS2

register contains the least significant 32 bits of the result. The W-stage register

contents are then written to the Y register and the RS2 contents to the destination

register in the register file.

3.6 Integer Divide
Integer divide normally takes 42 cycles to complete, but may complete in 39 cycles if

the three instructions preceding the divide instruction do not write into the integer

register file. If an overflow is detected, however, the instruction completes in six

cycles. The algorithm implemented in the microSPARC-IIep IU is non-restoring

binary division (add and shift). The divide process can be broken into five distinct

steps:

1. Divide by zero detection: 1–4 cycles

2. Initialization/overflow detection: 3 cycles

3. Non-restoring division iteration: 33 cycles

4. Correction (for non-restoring): 1 cycle

5. Writeback: 1 cycle

Because the microSPARC-IIep IU does not allow traps to be taken in the middle of

instructions, the first step is to determine if there is a divide by 0 condition.

The high order bits of the dividend are in the Y register. The low order bits are in the

RS1 operand. The divisor is in the RS2 operand. In the initialization step, the Y

register is read out and put into the RS1 register in the datapath. The RS1 operand is

passed through to the W-stage register. The RS2 operand is passed to the RS2

register. The W-stage and RS1 registers are used as accumulators. At the completion

of the divide, the W-stage register contains the final quotient.

There are two overflow options for signed divide with a negative result as defined in

the SPARC version 8 manual. The microSPARC-IIep IU generates overflow when the

result is less than -2
31

with a remainder of zero.

If an overflow condition is detected, the divide terminates early with the appropriate

result being written to the destination register.
32 microSPARC-IIep User’s Manual • June 1999

If no overflow is detected, the non-restoring (sub and shift) divide stage is started. A

correction step is provided to correct the quotient (necessary for this algorithm).

After the correction step, the quotient is written to the correct destination register.

3.7 Control-Transfer Instructions

3.7.1 Branches

Branches are handled in two ways in the microSPARC-IIep CPU. A branch may be

folded with its delay slot instruction or it may flow down the integer pipeline. Refer

to Section 5.7.1, Processor Control Register for information on how to enable branch

folding.

In order for a branch to be folded with its delay slot, several criteria must be met.

Among these are:

■ The branch, delay slot instruction, and the instruction following the delay slot

must all be in the instruction queue or at the inputs of the IU from the instruction

cache.

■ No other control-transfer instruction (CTI) may be in the D-stage.

■ No multi-cycle instruction may precede the branch.

A target instruction fetch is immediately started in the D-stage of the BICC/delay-

slot pair. In addition, the delay slot + 1 instruction is sent to a special alternate

buffer. All folded branches are predicted taken. In the next cycle, the target

instruction may begin execution (if the delay slot is not a multi-cycle instruction). In

this cycle, it may be determined that the branch was not taken, which results in the

target instruction’s being ignored and the delay slot +1 instruction’s being fetched

from the alternate buffer. Taken folded branches require zero cycles to execute, while

untaken folded branches require one cycle to execute.

Nonfolded branches usually take a single cycle to execute. There is no penalty for

taken compared with untaken branches, even if the instruction prior to the branch

sets the condition codes, provided the delay slot + 1 instruction is in the instruction

queue. In the event that the branch is untaken and the delay slot + 1 is not in the

instruction queue, the branch takes two cycles.

In the Decode stage, the IU evaluates the condition codes and branch condition to

determine whether the branch is taken or untaken. The IU outputs the correct

instruction address for either the target or fall-through paths in time to be registered

by the instruction cache for the fetch occurring in the next cycle. Refer to Section 2.2,

Compiler Optimization Guidelines for more information.
Chapter 3 Integer Unit 33

3.7.2 JMPL

JMPL is a two cycle instruction in the microSPARC-IIep IU.

1. D — Read operands from register file or bypass from instructions still in the pipe.

Sign extend immediate operands. The delay slot instruction is fetched in this

stage.

2. E (D2) — Compute target address and send this to the instruction cache.

3. W(E2) — Fetch target.

4. R (W2) — Load the program counter (PC) of the JMPL instruction into the

destination register.

3.7.3 RETT

RETT is a two cycle instruction in the microSPARC-IIep IU.

1. D — Read operands from register file or bypass from instruction still in the pipe.

Sign extend immediate operands. The delay slot instruction is fetched in this

stage.

2. E(D2) — Compute target address and send this to the instruction cache.

3. W(E2) — Fetch target.

4. R(W2) — Set PSR.ET to 1, move PSR.PS to PSR.S, and increment PSR.CWP.

3.7.4 CALL

CALL is a single cycle instruction in the microSPARC-IIep IU.

1. D — Add PC and disp30 to form target address. Send this address to instruction

cache. The delay slot instruction is fetched in this stage.

2. E — The CALL target is fetched.

3. W — No action is taken

4. R — The program counter (PC) of the CALL is written to r[15].
34 microSPARC-IIep User’s Manual • June 1999

3.8 Instruction Cache Interface
In the event of an instruction cache miss, the IU is informed of the miss early in the

F-stage to prevent the pipeline from moving the missed instruction into the D-stage.

The IU then waits for the instruction to be fetched. Once the missed instruction is

returned, the IU releases the pipe and execution continues.

The instruction cache is implemented so that the missed word of the cache line is

returned first. The IU is free to stream instructions from the instruction cache as the

cache is doing its line fill. This means that the IU is not held for the entire duration

of the cache fill, but it can use the instructions as soon as either the instruction cache

receives it or, when fetching out of the filling line and that line is valid, directly out

of the instruction cache. To do this, the IU is told when the instruction addressed by

the IU is available to be registered. Then the IU either holds or releases the pipe.

If one of the instructions encountered during the instruction streaming is a taken CTI

whose target is outside of the cache line being filled, and if that cache line is valid in

the instruction cache, the fetch may take place. If the line is not in the cache, the IU

holds and waits for that line to be filled after the previous line filling is completed.

3.9 Data Cache Interface
The data cache interface is roughly similar to the instruction cache interface. In the

event of a data cache miss, the IU holds the pipeline in the W-stage.

The data cache is also implemented to return the missed word first. On Load

instructions, when the data cache indicates that the load data is available, the data is

passed through the load aligner for any necessary alignment. Afterwards the IU

releases the pipe and strobes data into the R-stage (and the appropriate E-stage)

register prior to its being written to the register file.

As for the instruction cache, the data cache can return data words as they are being

filled. In addition, if, during a fill, a word is addressed from a different cache line,

and if the line is valid in the data cache, that word is sent to the IU.
Chapter 3 Integer Unit 35

3.10 Interlocks

3.10.1 Load Interlock

There is a single-cycle load usage interlock in the microSPARC-IIep IU that is

involved when a load instruction is followed by an instruction that uses the load

operand (data) as a source operand.

3.10.2 Floating Point Interlocks

The IU interlocks the integer pipeline if it detects certain conditions in combinations

of FP instructions. The single-cycle interlock is involved for the conditions:

■ Floating-point load or load double in the E-stage of the pipe, a floating-point store

or store double in the D-stage of the pipe and the FP register number (modulo 2)

to be loaded is the same as the FP register number (modulo 2) to be stored

■ A LDFSR or STDFQ operation in the E-stage of the pipe and the D-stage has any

FP math operation, an FP compare, or any FP memory operation

In addition, the IU interlocks when the FPU deasserts the FCCV (floating point

condition code valid) signal and the IU has a floating-point branch in D-stage. The

IU continues to interlock the pipe until FCCV is reasserted. The FPU deassert FCCV

when it begins an FCMP instruction and reasserts it when the FCMP is complete.

3.10.3 Miscellaneous Interlocks

Due to the datapath design, the microSPARC-IIep IU is unable to bypass special

register read data to the instruction immediately following it in the pipeline. A

single-cycle interlock occurs in those cases.

A CALL instruction followed by an instruction that reads R15 (destination register

for the CALL), causes a one-cycle interlock.

IMUL and IDIV require datapath structures associated with the register file ports. As

a result, they cannot use datapath bypass paths. If the three instructions preceding

the IMUL or IDIV write the register file, the IU interlocks until these instructions

have completed. The maximum length of this interlock is three cycles. The minimum
36 microSPARC-IIep User’s Manual • June 1999

is zero. (Examples of instructions that do not write the integer register file are: stores,

FPops, integer and floating point branches, and IFLUSH. NOP does write the

register file, into Register 0.)

There are also interlocks associated with branch folding. These are dependent on

queue, cache, and pipeline state.

3.11 Traps and Interrupts

3.11.1 Traps

The microSPARC-IIep IU implements all SPARC V8 traps except the optional traps:

■ Data store error

■ R-register access error

■ Unimplemented FLUSH

■ Watchpoint detected

■ Coprocessor exception

Trap priorities are defined in SPARC version 8. If multiple traps occur during one

instruction, only the highest priority trap is taken. Lower priority traps are ignored

since it is assumed that lower priority traps will persist, recur, or are meaningless

owing to the presence of the higher priority trap.

In the pipeline, the trap indication always occurs when the trapping instruction

reaches the W-stage of the pipeline. Note that traps may be detected as early as the

D-stage of the instruction, in which case the trap indication is piped to the W-stage

of that instruction.

After the assertion of the TRAP signal, instructions following the trapped instruction

in the pipeline and any instructions in the instruction queue are flushed out. The

processor status register (PSR) is set with:

■ Bit ET (enable trap) = 0

■ Bit PS (previous status) = S (i.e., the state of the S bit at the time of the trap)

■ Bit S = 1 (supervisor mode)

■ Bits CWP = value of current window pointer at the time of the trap

Also field TT (trap type) of the (trap base register (TBR) is set to the corresponding

trap code and the PC and nPC values at the time of the trap are written into r17 and

r18. Instruction fetches then transfer operation to the trap vector as defined in the

TBR.
Chapter 3 Integer Unit 37

The microSPARC-IIep IU does not allow traps during execution of multi-cycle

instructions. There are no deferred integer traps. The IU detects and acts on deferred

floating-point traps.

3.11.2 Interrupts

The microSPARC-IIep IU is interrupted using the PCI controller and the PCI

interrupt request lines (IRL). The interrupt controller in the PCI controller selects the

highest priority interrupting device. It then signals to the IU which is the highest

priority interrupt on the IRL lines.

The interrupt levels for the PCI interrupt controller are programmable by software.

Two 32-bit timers in the PCI controller can be programmed to generate interrupts at

any level required. Refer to Chapter 11, Mode, Timing, and Test Controls.

The PCI interrupt controller can be disabled and bypassed, which allows an external

interrupt controller to generate the IRLs directly to the microSPARC-IIep IU.

To ignore glitches on the IRL lines, the IRL signals must be stable for at least two

cycles. Only then does the IU initiate an interrupt request to the processor. This

request is pipelined by one cycle. The interrupt is taken by the instruction currently

in the W stage of the pipeline (or, if that instruction is a help instruction, by the next

non-help W stage) if the IRL level is greater than the current processor interrupt

level (PIL) and there are no higher priority traps that take precedence. A help

instruction is a dummy instruction inserted whenever additional cycles are required

to complete execution of certain instructions, for example, the second cycle on LDD.

The help instruction propagates through the pipeline and maintains its integrity and

consistency.

Note – Due to the one cycle delay existing between them when the IRL and PIL are

compared and when the trap priorities are checked, a problem could arise where

back-to-back PSR writes cause an interrupt to occur when the existing value in

PSR.PIL is greater than the IRL. The microSPARC-IIep IU employs hardware to

prevent this situation from occurring.

3.11.3 Reset Trap

On reset, the following steps occur:

■ Traps are disabled (that is., PSR.ET ≤ 0) and supervisor mode is entered (that is,

PSR.S ≤ 1)
38 microSPARC-IIep User’s Manual • June 1999

■ If the reset occurs during power-up, then PSR.PS, PSR.CWP, TBR.TT, r[17], and

r[18] are undefined

■ Otherwise, PSR.PS, PSR.CWP, TBR.TT, r[17], and r[18] are unchanged

■ Execution begins at location PC=0 and nPC=4. Refer to section 9.9 for more

information on programmable reset generation and section 10 for the reset

controller operation

For more information, refer to Section 9.9, System Status and System Control on

programmable reset generation and Chapter 11, Mode, Timing, and Test Controls on

the reset controller.

3.11.4 Error Mode

Error mode is entered when a trap occurs and PSR.ET = 0. Entry into error mode

causes the following occurrences.

■ PSR.S ≤ 1; PSR.PS and PSR.CWP remain unchanged

■ The contents of PC and nPC are stored into r[17] and r[18]

■ PC and nPC are set to 0 and 4 respectively and the IU_ERROR signal is asserted

In addition, the TBR.TT may be changed if the trapping instruction is a RETT. The

TBR.TT reflects:

■ Privileged instruction trap when PSR.S = 0

■ Underflow trap when a window underflow occurred

■ Misaligned trap when a misaligned target address occurred

The IU remains in error mode until it is reset. For more information, refer to

Section 9.9, System Status and System Control on programmable reset generation and

Chapter 11, Mode, Timing, and Test Controls on the reset controller.

3.12 Floating-Point Interface
The microSPARC-IIep IU controls the addresses for all instructions and floating-

point memory operations. The IU supplies the fetched instruction directly to the

FPU from the instruction queue. The IU also informs the FPU if the instruction just

loaded into the instruction register is valid.
Chapter 3 Integer Unit 39

For floating-point loads, the IU starts the cache access and the FPU reads the data. If

the FPLOAD causes a data-cache miss, the IU sequences the cache miss. The FPU

picks up the missed data once the IU releases the pipeline. For floating-point stores,

the IU starts the cache access and picks up the store data from the FPU. The IU

forwards this data to the data cache store bus.

The IU detects FP resource conflicts and interlocks the pipeline. In addition, the FPU

may assert FHOLD to hold the IU pipeline when it detects an internal resource

conflict. It deasserts FHOLD once the conflict is resolved.

FCC and FCCV are used by the IU to determine taken and untaken options for

floating-point branches. If a floating-point branch is detected in decode stage and

FCCV is not asserted, the IU stalls the pipeline until FCCV is asserted.

The FPU asserts the FEXC line when it detects a floating-point exception. The IU

acknowledges the floating-point exception (FXACK) when the floating-point

instruction is in the W-stage of the pipe. Then the IU takes a floating-point exception

trap.

Floating-point operations take one cycle in the IU plus additional cycles in the FPU.

For the number of cycles in the FPU, please refer to Chapter 4.

3.13 Compliance With SPARC Version 8
The microSPARC-IIep IU is designed to comply with the SPARC version 8

architecture, including hardware integer multiply and divide. However, it deviates

from full support of SPARC version 8 features in the following ways:

■ The microSPARC-IIep CPU has two additional bits in the PSR register for endian

control. See Section 1.3.1, Processor-internal Endian Support for more information.

■ Instead of decoding the eight bits of Address Space Identifier (ASI) for alternate

space memory operations, the microSPARC-IIep MMU only decodes six bits and

ignores the remaining two most-significant bits. Therefore, out-of-bound ASI

encodings are not detected.

■ The microSPARC-IIep IU does not implement the STBAR instruction since there is

no need to force store ordering in this system. STBAR is interpreted as a read Y

register operation with a null destination (%g0).

■ The microSPARC-IIep IU does not support reads and writes to the ancillary state

registers. All reads act like read Y register operations. All writes act like NOPs.

■ When entering error mode, the microSPARC-IIep IU decrements the current

window pointer (CWP) and updates R17 and R18. While not in conflict with the

SPARC version 8 specification, this behavior is noted here.
40 microSPARC-IIep User’s Manual • June 1999

■ The hexadecimal value read from the implementation field (IMPL) of the

microSPARC-IIep processor state register (PSR) is 0x0. The value read from the

version (VER) field of the PSR is 0x4.
Chapter 3 Integer Unit 41

42 microSPARC-IIep User’s Manual • June 1999

CHAPTER 4

Floating-Point Unit

The microSPARC-IIep floating-point unit (FPU) serves multiple purposes It executes

floating-point instructions, detects data dependencies among those instructions, and

handles floating-point related exceptions.

The FPU consists of a fast multiply unit, the Meiko core, and state machines to

control the two datapaths. The Meiko core is licensed from Meiko, Inc.

Note – The floating-point unit of the microSPARC-IIep CPU is identical to that of

the microSPARC-II, which has been in production and has gone through extensive

laboratory and field testing.

This chapter covers the inner workings of the floating-point unit. For information

relating to floating-point performance, refer to Section 2.2.6, Floating-Point
Instructions.

4.1 Overview
The microSPARC-IIep floating-point unit (FPU) consists of the Meiko floating-point

core and a fast multiplier.

The Meiko floating-point design implements the following algorithms which result

in an optimized implementation of the floating-point engine.

■ 8-bit multiply

■ 2-bit division

■ 1-bit square root

■ Short distance (0-15 bits) shifter/normalizer

■ Separate single-cycle rounding

■ microcode state machine to control FPP and decode operation
43

The fast multiplier implements FMULS, FMULD, and FSMULD. In most cases, these

operations can be executed in parallel while the Meiko core executes other floating-

point instructions such as FADD. This ability to execute floating-point instructions in

parallel provides significant instruction throughput.

In certain corner cases, the fast multiplier may not be able to complete

multiplications. In such cases, the operation is aborted and restarted in the Meiko

core instead. Nonetheless, the correct sequence of execution is maintained.
44 microSPARC-IIep User’s Manual • June 1999

Figure 4-1 FPU Block Diagram

ram

WD[63:0] 64

64

64

write data

RD1[63:0] RD2[63:0] RD3[63:0]

WA[3:0] WE[1:0]

RA1[3:0]

RA2[3:0]

RA3[3:0]

fprf_din[63:0]
fprf_we[1:0]

fprf_wa[3:0]

fprf_ra1[3:0]

fprf_ra2[3:0]

fprf_ra3[3:0]

bypass muxes

alignment muxes

ss_scan_mode

2

fprf_hold_din

wr_data[63:0]

dc_data[63:0]

Meiko FPP FP Multiplier

fp_rf

fp_dataout[63:0]

inst_for_int[31:0]

FQ_2

FQ_1

FQ_0

FSR

fp_fpc

fprf_dout3[63:0]

[63:0]

epc[31:2]

IR_D

IR_E

25

55

19

fprf_hold_ra3
Chapter 4 Floating-Point Unit 45

Figure 4-2 Meiko FPP Block Diagram

Areg

4 : 1

Breg

4 : 1

Exp_adder

4 : 1 4 : 1

XY

AregFrac

“0”“0”

constantnormalizer

SR1

Exponent Datapath [13-bits]

BregAreg

Treg

Creg

Shift
Left

Shift
Right

Frac_adder

8 : 1 5 : 1

3 : 1 2 : 1

2 : 1

2 : 1

Operand A Operand B

SL2SL1
SL1

SL2

SR1

XY

2 : 1

2 : 12 : 1

4-level Carry-save
Adder 8-bits/cycle

SUMCARRY

SUMCRY

Multiplier

Frac_Result

InitCry

‘1’s

constant

ROM
256x64

MicroInstruction

MI_ptr

Control
Floating point Register File Interface

Exp_Result

Fractional Datapath [58-bits]

Sign Datapath
46 microSPARC-IIep User’s Manual • June 1999

Figure 4-3 microSPARC-IIep Multiplier Mantissa Block Diagram

[52:28]

array
(53x28)

carryReg sumReg

half_adder_55

xReg yReg

opymuxopxmux

carry[79:1] sum[79:0]

fbsum
fbcarry

add28

add52

[27:1]
[27:0]

or28

mux4to1

zReg

RoundingLogic

rs1[54:0] rs2[54:0]

fpm_frac[51:0]

c51 sticky
[53:51]

[53:52]

[79:28]
[79:28]

sum_0 sum_1

[27:0]
Chapter 4 Floating-Point Unit 47

Figure 4-4 microSPARC-IIep Multiplier Exponent Block Diagram

xReg yReg

opymuxopxmux

resMux

zReg

rs1[62:52] rs2[62:52]

fpm_exp[10:0]

cnstAdd (carry-save)
(-127, -1023, +769)

adder13_2
sum_0 sum_1

frac_ovf

fpmSpecial

11 11

13 13

fpm_unfin
48 microSPARC-IIep User’s Manual • June 1999

4.2 FPU Internal Information
The FPC logic is partitioned into four main sections:

■ FHOLD generation which occurs is cases of:

■ a full FQ with a FPop in pipeline (held in E-stage)

■ a dependent fp store (held in E-stage)

■ a dependent fp load (held in W-stage)

■ FQ load control: An FPop can be loaded into the FQ if:

■ an entry is available, and

■ the FPU is in fp_execute mode

■ FQ issue control: An FPop can be issued to the FPP if:

■ the FPop is in the FQ or E-stage of the pipeline and

■ the FPP is not busy, and

■ there are no data dependencies, and

■ the FPU is in fp_execute mode

■ FQ writeback control: An FPop can write back its result if:

■ the FPop is in the front entry of the FQ, and

■ the FPP has finished execution and

■ the FPU is in fp_execute mode

The figures below show internal state diagrams and waveforms for some control

signals.

Figure 4-5 FPU Internal Control Flow Diagram

E-stage
FQ

wait to
issue

FPP
Meiko/

Mul

FQ
wait to

writeback
load issue

write,
restart,
or trapFPop

load&issue

writebackdone

done&writeback

restart multiply
Chapter 4 Floating-Point Unit 49

Figure 4-6 FPU Instruction Pipeline Diagram

Figure 4-7 FPC/Meiko FPP Interface Waveforms

D E W R

F
Q
0

F
Q
1

F
Q
2

fp_rf

Meiko FPP

 Fast Multiplier

lddf

faddd

nop

D E W R

D E W

D E

R

W R

ld_fpu_w

fpp_fop

fpp_ld

FpBusy

result
50 microSPARC-IIep User’s Manual • June 1999

Figure 4-8 FPC/Multiplier FPP Interface Waveforms

4.3 Deviations from SPARC version 8
The microSPARC-IIep FPU supports all single- and double-precision floating-point

(FP) instructions as defined in the SPARC Architecture version 8. Quad-precision

floating-point instructions are not supported and execution of these instructions

results in assertion of an unimplemented trap in the floating-point trap type (FTT) of

the FSR. All implemented instructions except FSMULD complete in hardware.

Therefore, the unfinished exception can only be generated by the execution of

FSMULD.

The microSPARC-IIep floating-point unit also differs from the SPARC IEEE 754
Implementation Recommendations defined in Appendix N of the SPARC version 8
Architecture Manual in the NaN format. The following figures show the value

returned for an untrapped floating-point result which is in the same format as the

operands.

In Figure 4-9, all QNaN results have their sign bit set to zero.

lddf

fmuld

nop

D E W R

D E W

D E

R

W R

ld_fpu_w

fpm_start

result
Chapter 4 Floating-Point Unit 51

Figure 4-9 Untrapped FP Result in Same Format as Operands

In Figure 4-10, QNaN2 is a copy of the mantissa bits of the operand with the extra

low order bits zeroed and the sign bit zeroed.

Figure 4-10 Untrapped FP Result in Different Format

4.4 Implementation Specific Features
The microSPARC-IIep FPU implements a 3-entry floating-point deferred trap queue.

When a floating-point instruction generates an fp_exception, the microSPARC-IIep

CPU delays the handling of the fp_exception trap until the next floating-point

instruction is encountered in the instruction stream. This implementation can be

modeled as a state machine having three states: fp_execute, fp_exception_pending, and

fp_exception. (see Figure 4-11.)

rs2 operand

number QNaN2 SNaN2

none

number

QNaN1

SNaN1

rs1

operand

IEEE 754

IEEE 754

QNaN1

ME_NaN

QNaN2

QNaN2

QNaN1

ME_NaN

ME_NaN

ME_NaN

ME_NaN

ME_NaN

ME_NaN: 0x7fff.0000 (single-precision)
 0x7fff.e000.0000.0000 (double-precision)

 operand (rs2)

+QNaN -QNaN +SNaN

fstoi

fstod

fdtos

fdtoi

operation -SNaN

ME_NaN

(QNaN2)

ME_NaN

ME_NaN

-imax

(QNaN2)
ME_NaN

-imax

+imax

ME_NaN

ME_NaN

+imax

-imax

ME_NaN

ME_NaN

-imax

+imax = 0x7fff.ffff
-imax = 0x8000.000
52 microSPARC-IIep User’s Manual • June 1999

Figure 4-11 FPU Operation Modes

4.4.1 fp_execute State

Normally, the FPU is in fp_execute state. It transitions to fp_exception_pending when

an floating-point operation results in a floating-point exception. If a STDFQ

instruction is executed when the floating-point queue is empty, the FPU immediately

generates an fp_exception trap while setting the Floating-point Trap Type (FTT) field

of the Floating-point State Register (FSR) (bits 16 to 14) to sequence_error. However,

in this case, the FPU remains in the fp_execute state.

4.4.2 fp_exception_pending State

The FPU moves from fp_exception_pending to fp_exception when the integer unit

dispatches any floating-point instruction (including FBCC). The transition to

fp_exception triggers a fp_exception trap. At this time, the first entry on the floating-

point queue contains the instruction and address of the floating-point operation that

caused the fp_exception originally. fp_exception traps can only be triggered when the

FPU transitions from fp_exception_pending to fp_exception.

EXECUTION

PENDING
EXCEPTIONEXCEPTION

RESET

FP EXCEPTION

FXACK

SEQUENCE ERROR

EMPTY
FP
QUEUE
Chapter 4 Floating-Point Unit 53

4.4.3 fp_exception State

While in the fp_exception state, the FPU can only execute floating-point store

instructions such as STDFQ and STFSR. However, these instructions do not cause

another fp_exception trap.

The FPU remains in the fp_exception state until the floating-point queue is emptied

by STDFQ instructions. Once the queue is empty, the FPU returns to the fp_execute
state. While in the fp_exception state, if the FPU encounters floating-point operations

or floating-point load instructions, it returns to the fp_exception_pending state while

setting the floating-point trap type (FTT) field in FSR (bits 16 to 14) to

sequence_error, that is 0x4. However, the instruction triggering this sequence_error

is not entered into the floating-point queue.

4.4.4 STDFQ Instruction

STDFQ stores the address and instruction from the floating-point queue to the

effective address and effective address + 4 respectively.

4.5 Software Considerations
This section describes the software-visible features of the microSPARC-IIep floating-

point unit.

The floating-point trap type (FTT) field is set whenever a floating-point operation

completes or causes an exception. This field remains unchanged until another

floating-point operation completes or causes a sequence_error. The FTT field can be

cleared by executing a non-trapping floating-point operation such as

fmovs %f0, %f0.

Table 4-1 describes the bits in the floating-point state register (FSR).
54 microSPARC-IIep User’s Manual • June 1999

4.6 FP Performance Factors
The microSPARC-IIep FPU instruction cycle counts are provided in Table 4-2. The

counts are in processor core clock cycles.

Table 4-1 Floating-Point State Register (FSR) Summary

Bits Field Description Values
Writable by
LDFSR

31:30 RD Rounding Direction 0 — Round to nearest (tie even)

1 — Round to zero

2 — Round to +infinity

3 — Round to -infinity

Yes

29:28 res reserved Always 0 No

27:23 TEM Trap Enable Mask 0 — Disables corresponding

trap

1 — Enables corresponding trap

Yes

22 NS Nonstandard FP Always 0 No

21:20 res reserved Always 0 No

19:17 ver FPU Version Number Always 4 No

16:14 FTT FP Trap Type 0 — None

1 — IEEE Exception

2 — Unfinished FPop

3 — Unimplemented FPop

4 — Sequence error

No

13 QNE Queue Not Empty 0 — Queue empty

1 — Queue not empty

No

12 res reserved Always 0 No

11:10 FCC FP Condition Codes 0 — ==

1 — <

2 — >

3 — ? (unordered)

Yes

9:5 AEXC Accrued Exception

Bits

0 — No corresponding

exception

1 — Corresponding exception

Yes

4:0 CEXC Current Exception Bits 0 — No corresponding

exception

1 — Corresponding exception

Yes
Chapter 4 Floating-Point Unit 55

Because of the limited shifter size (0–15 bits was chosen to save hardware), the FP

instruction cycle counts are data dependent. There are five ways in which operations

may take longer than the typical cycle count:

Table 4-2 FPU Instruction Cycle Counts

Instruction Min Typ Max

FADDS 4 5 17

FADDD 4 5 17

FSUBS 4 5 17

FSUBD 4 5 17

FMULS 3 3 28

FMULD 3 3 35

FSMULD 3 3 3

FDIVS 6 20 38

FDIVD 6 35 56

FSQRTS 6 37 51

FSQRTD 6 65 80

FNEGS 2 2 2

FMOVS 2 2 2

FABSS 2 2 2

FSTOD 2 2 14

FDTOS 3 3 16

FITOS 5 6 13

FITOD 4 6 13

FSTOI 6 6 13

FDTOI 7 7 14

FCMPS 4 5 15

FCMPD 4 5 15

FCMPES 4 5 15

FCMPED 4 5 15

unimplemented 3 3 3
56 microSPARC-IIep User’s Manual • June 1999

■ Exceptional operands (such as NaN, etc.) may add several cycles to the typical

cycle count. In a normal environment, these are rare events probably caused by

ill-conditioned data and are trapped (if traps are enabled).

■ Possible exceptional results (results which are very close to underflow or

overflow) may add up to five cycles to the typical cycle count. In a normal

environment these are rare events, probably caused by ill-conditioned data.

■ Denormalized operands add one extra cycle for each 15-bit shift required to

normalize before the operation, and one extra cycle for each 15-bit shift required

to denormalize the result after the operation (if necessary). Because operations on

denormalized numbers always complete in hardware (except for the FSMULD

instruction), the overall performance is greater than for an FPU which traps on

denormalized operands.

■ An add or subtract that requires an initial alignment of more than 15 bits adds

one extra cycle for each 15-bit shift. Also, a subtract result that requires a shift of

more than 15 bits to normalize adds one extra cycle for each 15-bit shift.

■ Non-standard rounding modes (RZ and RN are the typical operating modes) may

require up to three additional cycles for some corner cases and exceptions.

Statistical analysis shows that, on average, 90% of FPU instructions complete with

the typical cycle count.

For a more detailed description of the Meiko FPP, please refer to the Meiko FPU

specification, provided by Meiko Limited of Bristol, England.

The figures below show the peak performance (cached) of the microSPARC-IIep FPU

for certain interesting FPOP combinations.

Figure 4-12 FP Add Peak Performance

Figure 4-13 FP Mul Peak Performance (No Dependencies)

faddd %f0, %f2, %f4

faddd %f6, %f8, %f10

faddd %f12, %f14, %f16

 .

 .

 .

faddd %f0, %f2, %f4

5 cycles per instruction =

20 MFLOPS @ 100 MHz

fmuld %f0, %f2, %f4

fmuld %f6, %f8, %f10

fmuld %f12, %f14, %f16

 .

 .

 .

fmuld %f0, %f2, %f4

3 cycles per instruction =

33.3 MFLOPS @ 100 MHz
Chapter 4 Floating-Point Unit 57

Figure 4-14 FP Mul Peak Performance (Dependency)

Figure 4-15 FP Mul-Add Peak Performance (No Dependencies)

Figure 4-16 FP Mul-Add Peak Performance (Dependency)

fmuld %f0, %f2, %f2

fmuld %f0, %f2, %f2

fmuld %f0, %f2, %f2

 .

 .

 .

fmuld %f0, %f2, %f2

5 cycles per instruction =

20 MFLOPS @ 100 MHz

fmuld %f0, %f30, %f0

faddd %f10, %f12, %f12

fmuld %f2, %f30, %f2

 .

 .

 .

fmuld %f0, %f30, %f0

5 cycles per instruction pair =

40 MFLOPS @ 100 MHz

fmuld %f0, %f30, %f0

faddd %f0, %f12, %f12

fmuld %f2, %f30, %f2

 .

 .

 .

fmuld %f0, %f30, %f0

6 cycles per instruction pair =

33.3 MFLOPS @ 100 MHz
58 microSPARC-IIep User’s Manual • June 1999

CHAPTER 5

Memory Management Unit

The microSPARC-IIep memory management unit (MMU) provides the functions

specified in the SPARC version 8 Reference MMU Architecture. The implementation

of the microSPARC-IIep MMU is based on the microSPARC-II MMU design.

However, minor changes were made which include a separate dedicated I/O

translation lookaside buffer (IOTLB) for translating I/O memory references. The

IOTLB resides in the PCI controller and is separate from the CPU translation

lookaside buffer (TLB).

Note – The changes to the microSPARC-II CPU that result in processor-visible

differences for the microSPARC-IIep CPU are reflected in the MMU and MMU

registers. This chapter details most of those changes. However, the addition of the

endian control bits for the processor are defined in the processor state register (PSR)

and described in Section 3.13, Compliance With SPARC Version 8.

5.1 Overview
The microSPARC-IIep MMU provides four primary functions:

■ It translates the 32-bit virtual address of each running process to a 31-bit physical

address. This translation is speeded up with the assistance of a 32-entry

translation lookaside buffer (TLB). The MMU uses the three most significant bits

of the physical address (PA[30:28]) to map to eight separate address spaces (see

Appendix B, Physical Memory Address Map). It also supports 256 contexts.

■ It provides memory protection to prevent unauthorized processes from reading or

writing another process’ address space.

■ It implements virtual memory by maintaining page tables in main memory. When

an address translation miss occurs, it performs a table-walk in the hardware and

the resulting page-table entry is cached in the TLB.
59

■ It arbitrates memory references among instruction and data caches, I/O, and TLB.

The microSPARC-IIep MMU contains a 32 entry fully-associative TLB and uses a

pseudo-random algorithm for the replacement of TLB entries.

The address and data path block diagram of the microSPARC-IIep MMU is shown in

Figure 5-1.
60 microSPARC-IIep User’s Manual • June 1999

Figure 5-1 MMU Address and Data Path Block Diagram

 local page-hit detection

Virtual
Tag
CAM
(20)

Context
Tag

CAM
(8)

LEVEL

(3)
S

(1)(1)
PTP

L1,L2,L3
(L1=Vld)

IO
(1)

mm_pa[30:00]

vtag_out[41:0]

tlb_data_in[26:2]

[7:0]

[31:0]

[22:6]

[26:10]

[30:0]

tb_out
[26:2]

mm_pa[30:0] mm_caddr[11:3]

data_pa[27:2]

Prot
(6)

•

Page Table Field (RAM)

Physical Page No. (19)

Page Table Pointer (23)
Physical Page No. (19)

C M ACC(3)
0 0

0
0 W
0

PTE

PTP
00
1

•

page_hit0 page_hit1

page_hit

VA_TAG

PA_MUX

bypass_

page-hit detection

TLB

i_vaddr[31:2]

va_mux

fb_page (PCI accesses)

pa_mux_rd

brkpt
logic

dp_mux1_out cspace

mm_pa[30:00]

data_pa[30:00]

bp_paddr

par_mux1[30:0]

[30:0]
Chapter 5 Memory Management Unit 61

5.2 MMU Programming Interface
The MMU internals are user-accessible using the load and store from alternate space

instructions with the following address space identifiers (ASI).

■ ASI = 0x03: Reference MMU flush or probe (see Section 5.6, CPU TLB Flush and
Probe Operations)

■ ASI = 0x04: Reference MMU registers (see Section 5.7, Processor MMU Registers)

■ ASI = 0x06: Reference MMU diagnostics (see Section 5.14, Diagnostic Features)

■ ASI = 0x20: Reference MMU bypass (see Section 5.12, Translation Modes)

5.3 Translation Lookaside Buffer
The TLB is a 32 entry, fully-associative cache of page descriptors. It caches CPU

virtual-to-physical address translations and the associated page protection and

usage information. The pseudo-random replacement algorithm determines which of

the 32 entries should be replaced when needed. In the descriptions that follow the

terms VA and PA are used to describe any virtual address (wb_vaddr, i_vaddr or

d_vaddr) or physical address (mm_pa, or mm_caddr) respectively. This TLB is not

used for IO translations, and only contains application translation information.

Note – The TLB operates in a fixed big-endian mode, therefore all entries should be

stored using this mode.

5.3.1 TLB Replacement

The TLB uses a pseudo random replacement scheme. There is a six-bit counter in the

TLB Replacement Control register (TRCR) which is incremented by one during each

CPU clock cycle to address one of the TLB entries. When a TLB miss occurs, the

counter value is used to address the TLB entry to be replaced. On reset the counter

is initialized to zero. There is also a bit in the TRCR which is used to disable the

counting function. See Figure 5-2. Additionally the TRCR has a programmable six-bit

field which defines the counter “roll-over” point. This effectively locks down entries

beyond the roll-over point, and prevents their replacement by subsequent

translations. For the microSPARC-IIep CPU this roll-over point should be set to

allow 32 entries at most, but can be set to a lesser value ensuring that some TLB

entries are locked.
62 microSPARC-IIep User’s Manual • June 1999

The microSPARC-IIep TLB supports another locking mechanism. By programming

bits 16 to bits 14 of the TRCR, the first three TLB entries are exclusively reserved for

page table pointers (PTP). In this case, PTPs can only be stored in those three TLB

entries. This mechanism prevents PTPs from displacing page table entries (PTE) or

vice versa.

Refer to Section 5.7.6, TLB Replacement Control Register for more information.

The MMU can store level 2 PTPs with a virtual tag or a physical tag. This is

controlled using a bit in the TLB Replacement Control Register. When physical tags

are enabled the MMU table walk algorithm starts with a root level access if a PTE

were not found on the initial look-up. If, however, virtual tags are enabled for PTP2,

the table walk algorithm searches for a virtually tagged PTP2 following the initial

PTE miss. Should the virtually tagged PTP not be found, the root-level walk is

started. When a virtually tagged PTP2 is found, the root, level 1 and level 2 look-ups

can be bypassed, and a PTE can be immediately read from memory.

Figure 5-2 Possible TLB Replacement

0 Level 0 PTP

1 Level 1 PTP

2 Level 2 PTP

3

.

.

.

.

Replaceable* PTE Entries

.

.

.

31

Locked TLB Entries*

* No entries are allocated for IOPTEs and all

tablewalking is done in big-endian mode.

TLB Replacement Counter

Wrap Around Point
Chapter 5 Memory Management Unit 63

5.3.2 TLB Entry

An entry in the TLB has the following fields: a virtual address tag, a context tag, a

PTE level field, and a page table field.

Figure 5-3 TLB Entry

Field Definitions:
■ Valid (V) - This bit is used to indicate that the entry holds valid information.

■ Virtual Address Tag —The 20 bit virtual address tag represents the most

significant 20 bits (VA[31:12]) of the virtual address used to reference a PTE.

VA[11:00] is the byte offset within a page. The address in this field is physical

when referencing PTPs with the least significant bits containing PA[26:08].

■ Context Tag — The 8-bit context tag comes from the value in the context register

as written by memory management software when referencing PTEs. Both it and

the virtual address tag must match the CXR and VA[31:12] to have a TLB hit. This

field contains a physical address (PA[07:02]) when referencing PTPs. Note that for

PTPs only six bits are used to hold PA[07:02], the two lower bits are always set to

zero.

■ Prot — The six protection bits in each TLB entry represent the decoded ACC bits

from the matching PTE, namely user Rd, Wr, Ex, and supervisor Rd, Wr, Ex. These

bits are used to check for protection violations on entries that meet the TLB hit

criteria.

■ Level — The 3-bit level field is used to enable the proper virtual tag match of

region and segment PTE’s. PTP’s have this field set to use Index 1, 2 and 3

(b‘000’).

Table 5-1 Virtual Tag Match Criteria

Match Level Match Criteria

111 None

011 Index1 (VA[31:24]

001 Index 1,2 (VA[31:18])

000 Index 1, 2, 3 (VA[31:12])

V VA tag Page Table FieldPTPIOMSURUE UW SR SW SEContext

3

Protection bits

6 2820 8

Level
64 microSPARC-IIep User’s Manual • June 1999

■ Supervisor (S) — This bit is used to disable the matching of the context field

indicating that a page has a supervisor level (ACC = 6 or 7).

■ Modified (M) — This bit is set to a one when the page is written.

■ IO Page Table Entry (IO) — This bit indicates that an IOPTE resides in this entry

of the TLB. For the microSPARC-IIep, this bit is never set.

■ Page Table Pointer (PTP) — This bit indicates that a PTP resides in this entry of

the TLB. Note that all SRMMU flush types (except page) flush all PTPs from the

TLB.

■ Page Table Field — The page table field can either be a Page Table Entry (PTE), or

an Page Table Pointer (PTP). This field can be read and written using ASI 0x06.

5.3.3 Page Table Entry

A Page Table Entry (PTE) defines both the physical address of a page and its access

permissions. A PTE is defined for SPARC reference MMUs as follows.

Figure 5-4 Page Table Entry in Page Table

Field definitions:
■ Reserved (Rsvd) — Bits [31:27] should be written as zero, and are read as zero.

■ Physical Page Number (PPN) - This field contains the high order 19 bits ([30:12])

of the 31-bit physical address of the page. The PPN appears on PA[30:12] when a

translation completes.

■ Cacheable (C) — When this bit is set to a one the page is cacheable by an

instruction and/or data cache.

■ Modified (M) — This bit is set to a one when the page is written to.

■ Referenced (R) — This bit is set to a one when the page is accessed. All PTEs in

the TLB have this bit set when the entry is loaded.

■ Access Permissions (ACC) — These bits indicate whether access to this page is

allowed for the transaction being attempted. The Address Space Identifier (ASI)

determines whether a given access is a data access or an instruction access, and

whether the access is being done by the user or supervisor. The field is defined as

shown in Table 5-2.

 Reserved PPN C M R ACC ET

31 27 26 08 07 06 05 04 02 01 00
Chapter 5 Memory Management Unit 65

■ Entry Type (ET) — This field differentiates the entry types in the TLB. Note that

the entry type is not kept in the TLB RAM. On a probe operation the ET field is

derived from a combination of other bits. See Table 5-3 for the bit definitions of the

ET field.

“Invalid” means that the corresponding range of virtual addresses is not currently

mapped to a physical address.

Figure 5-5 shows the PTE format in the TLB RAM.

Figure 5-5 Page Table Entry in TLB

■ Bits [28:27] are not implemented, should be written as zero, and are read as zero.

■ Bit [05] is set to one by hardware indicating that every PTE in the TLB has been

referenced.

Table 5-2 Page Table Access Permission

ACC
Access Mode

User Supervisor

0 Read Only Read Only

1 Read/Write Read/Write

2 Read/Execute Read/Execute

3 Read/Write/Execute Read/Write/Execute

4 Execute Only Execute Only

5 Read Only Read/Write

6 No Access Read/Execute

7 No Access Read/Write/Execute

Table 5-3 Page Table Entry Types

ET Entry Type

0 Invalid

1 Page Table Pointer

2 Page Table Entry

3 Reserved in Page Tables.

Lvl Rsvd PPN C M 1 ACC 10

31 29 28 27 26 08 07 06 05 04 02 01 00
66 microSPARC-IIep User’s Manual • June 1999

■ Bits [01:00] are set to 2’b10 by hardware indicating the entry type (ET) of a PTE.

These bits are not actually stored in the TLB rather are derived as a function of

the PTP bit of the tag.

■ Bits[31:29] are set to indicate the page table level where the entry is to be found.

The following table describes the possible encodings:

5.3.4 Page Table Pointer

A Page Table Pointer (PTP) contains the physical address of a page table and may be

found in the Context Table, in a Level 1 Page Table, or in a Level 2 Page Table. Page

Table Pointers are put into the TLB during tablewalks and removed from the TLB

either by natural replacement (also during tablewalks) or by flushing the entire TLB.

Note that the Level (Lvl) field in a PTP tag is always set to 0x7. Figure 5-6 shows the

PTP definition

Figure 5-6 Page Table Pointer in Page Table

Field definitions:
■ Reserved (Rsvd) — Bits[28:27, 03:02] should be written as zero, and are read as

zero.

■ Page Table Pointer (PTP) — The physical address of the base of a next level page

table. The PTP appears on PA[30:08] during miss processing. The page table

pointed to by a PTP must be aligned on a boundary equal to the size of the page

table. Note that this is also true of the context table at the root level. The sizes of

the tables are summarized in Table 5-5.

Table 5-4 Page Table Entry Level in TLB

LVL[2:0] Page Table Level

000 Level 0 (Root)

100 Level 1

110 Level 2

111 Level 3

Lvl Rsvd PTP Rsvd ET

31 29 28 27 26 04 03 02 01 00
Chapter 5 Memory Management Unit 67

■ Entry Type (ET) — This field differentiates the entry types in the TLB. Note that

the entry type is not kept in the TLB RAM. On a probe operation the ET field is

derived from a combination of other bits. Table 5-6 gives its bit definitions.

“Invalid” means that the corresponding range of virtual addresses is not currently

mapped to a physical address.

In the TLB, a PTP has the format of Figure 5-7.

Figure 5-7 Page Table Pointer in TLB

■ Bits [28:27] are not implemented, should be written as zero, and are read as zero.

■ Level (Lvl) — The level bits for a PTP indicate the level at which the PTP is found.

Table 5-7 shows the possible level encodings.

Table 5-5 Size of Page Tables

Level Size (Bytes)

Root 1024

1 1024

2 256

3 256

Table 5-6 Page Table Entry Types

ET Entry Type

0 Invalid

1 Page Table Pointer

2 Page Table Entry

3 Reserved

Reserved PPN Reserved W V WAZ

31 27 26 08 07 03 02 01 00

Table 5-7 Page Table Entry Types

Lvl[2:0] PTP level

000 Level-0 (root)

100 Level-1

110 Level-2
68 microSPARC-IIep User’s Manual • June 1999

■ Bits [03:02] are set to zero by hardware and are unused.

■ Bits [01:00] are set to 2’b01 by hardware indicating the entry type (ET) of a PTP.

These bits are not actually stored in the TLB; rather they are derived as a function

of the PTP bit of the tag.

5.4 Address Space Decodes
The physical address space for microSPARC-IIep is decoded into eight address

spaces, based on the upper three bits of the physical address(pa[30:28]). Table 5-8
defines the address spaces and their decodes:

5.5 CPU TLB Lookup
A virtual address to be translated by the MMU is compared to each entry in the TLB.

During the TLB lookup the value of the Level field specifies which index fields are

required to match the TLB virtual tag as shown in Table 5-9.

Table 5-8 Virtual Tag Match Criteria

PA[30:28] Address Space

000 Main Memory Space

001 Control Space (Sun-4M system registers)

010 Flash ROM Space

011 PCI Space

100 Reserved I/O Space: Should not be

accessed.

101 Reserved I/O Space: Should not be

accessed.

110 Reserved I/O Space: Should not be

accessed.

111 Reserved I/O Space: Should not be

accessed.
Chapter 5 Memory Management Unit 69

In addition to the virtual tag match, context matching of a PTE is required for all

user page references (ACC is 0 to 5) when made by either user or supervisor (ASI =

0x8–0xB). Context matching is not required for a supervisor page reference (ACC is

6 or 7) when made by a supervisor (ASI = 0x9 or 0xB). This case takes advantage of

the Supervisor bit in the TLB tag. Note that user references (ASI = 0x8 or 0xA) to

supervisor pages (ACC is 6 or 7) result in address exceptions.

Note that the TLB ignores access level checking during probe operations. The most

significant Level field bit is used as a Valid bit for the TLB. This means that root level

PTEs are not supported.

5.6 CPU TLB Flush and Probe Operations
The flush operation allows software invalidation of TLB entries. TLB entries are

flushed by using a store alternate instruction. The probe operation allows testing the

TLB and page tables for a PTE corresponding to a virtual address. TLB entries are

probed by using a load alternate instruction. The ASI value 0x3 is used to invalidate

or probe entries in the TLB. In an alternate address space used for probing and

flushing the address is composed as follows:

Figure 5-8 CPU TLB Flush or Probe Address Format

Field Definitions:
■ Virtual Flush or Probe Address (VFPA) — This field contains the address that is

used as the match criterion for the flush or probe operations into the TLB.

Depending on the type of flush or probe, not all 20 bits are significant. Note that

context flush uses the current context ID as defined in the context register.

■ Type — This field specifies the extent of the flush or the level of the entry probed.

Table 5-9 Virtual Tag Match Criteria

Level Match Criteria

111 None

011 Index1 (VA[31:24]

001 Index 1,2 (VA[31:18])

000 Index 1, 2, 3 (VA[31:12])

VFPA Type Reserved

31 12 11 08 07 00
70 microSPARC-IIep User’s Manual • June 1999

■ Reserved - These bits are ignored. They should be set to zero.

5.6.1 CPU TLB Flush

The flush operation must remove the PTEs and PTPs from the TLB that match the

type criteria in Table 5-10.

Page flush only removes matching PTEs from the TLB. All of the flushes remove

matching PTEs and all PTPs from the TLB. CPU flush context operations flushes

PTEs that match the current context, and all PTEs that have the S (Supervisor) bit set

in their tags. If the CPU is running with virtual PTPs enabled, all virtually tagged

PTPs are flushed for any occurrence of flush context, region, or segment. Flush

operations to types 5-F are reserved and do not affect the TLB

5.6.2 CPU TLB Probe

The probe operation returns either a PTE from a page table in main memory or the

TLB or a zero if there is an invalid address or translation error while searching for

the entry implied by the probe. If there is an error, a zero is returned for data. The

reserved probe types (0x5–0xF) return an undefined value. A type-4 probe (entire)

brings the accessed PTE and any PTPs that are needed into the TLB. If the PTE were

not already there, the referenced bit is updated. Probe types 0–3 affect one entry of

the TLB which is invalidated at the end of the probe operation.

The value returned by a probe operation is specified in Table 5-11.

Table 5-10 TLB Entry Flushing

Type Flush PTE Match Criteria

0 Page ((ACC > 6) OR CID match) AND VA[31:12] match

1 Segment ((ACC > 6) OR CID match) AND VA[31:18] match

2 Region ((ACC > 6) OR CID match) AND VA[31:24] match

3 Context (ACC > 6) OR CID match

4 Entire None (Entire TLB Flush)

5 to F Reserved –
Chapter 5 Memory Management Unit 71

5.7 Processor MMU Registers
The Processor Control register (CR) contains general CPU control and status flags.

The current context identifier is stored in the Context Register (CXR), and a pointer

to the base of the context table in memory is stored in the Context Table Pointer

Register (CTPR). If an MMU fault occurs on a CPU-initiated transaction the address

causing the fault is placed in the Synchronous Fault Address Register (SFAR) and

the cause of the fault can be determined from the contents of the Synchronous Fault

Status Register (SFSR). The TLB Replacement Control Register is used to control

which TLB entries are to be replaced next. All of these internal MMU registers can be

accessed directly by the processor through alternate address space word accesses

with an ASI value of 0x4. Table 5-12 gives the address map for these registers.

Table 5-11 Return Value for MMU Probes

Type

If No Memory Errors Occur

Mem
Err

Level - 0
Entry Type1, 2

1. pte = page table entry
res = reserved
inv = invalid
ptp = page table pointer

2. For a given probe type, the table is read left-to-right:
"0" = a zero is returned
"X" = the page table entry itself is returned
"→" = the next-level page table entry is examined
"—" = don’t care

Level - 1
Entry Type

Level - 2
Entry Type

Level - 3
Entry Type

pte res inv ptp pte res inv ptp pte res inv ptp pte res inv ptp

0(page) 0 0 0 → 0 0 0 → 0 0 0 → X 0 X 0 0

1(seg) 0 0 0 → 0 0 0 → X 0 0 X — — — — 0

2(reg) 0 0 0 → X 0 X X — — — — — — — — 0

3(ctx) X 0 X X — — — — — — — — — — — — 0

4(entire) X 0 0 → X 0 0 → X 0 0 → X 0 0 0 0

5-0xF (undefined)
72 microSPARC-IIep User’s Manual • June 1999

VA bits [31:13] are zero. VA bits [07:00] are ignored and should be set to zero by

software. The use of a second access mode for the Synchronous Fault registers is

provided as a diagnostic function (VA[12:08] = 0x13, 0x14). See the register

description for details.

5.7.1 Processor Control Register

The Processor Control Register contains control and status bits for the

microSPARC-IIep processor. The BM, IE, DE, and EN bits receive both the normal

reset and watchdog resets (BM is set, IE, DE, and EN are reset). It is highly

recommended that STAs to the PCR are immediately followed by 10 NOP

instructions to keep the machine in a very consistent state. The PCR is defined in

Figure 5-9.

Figure 5-9 Processor Control Register

Field Definitions:
■ Reserved (Rsvd/Rsv) — Bits [06:02] are unimplemented, should be written as

zero and are read as zero.

Table 5-12 Address Map for MMU Registers

VA[12:08] Register

00 Processor Control Register

01 Context Table Pointer Register

02 Context Register

03 Synchronous Fault Status Register

04 Synchronous Fault Address Register

05-0F Reserved

10 TLB Replacement Control Register

11–12 Reserved

13 Synchronous Fault Status Register
1

1. Registers are cleared on read when this address is used

14 Synchronous Fault Address Register**

15–1F Reserved

 IMPL VER ST WP BF PMC PE PC AP AC BM RC IE DE SA Reserved NF EN

31 28 27 24 23 22 21 20 19 18 17 16 15 14 13 10 09 08 07 02 01 0-
Chapter 5 Memory Management Unit 73

■ Implementation (IMPL) — The implementation number of this SPARC Reference

MMU. This field is hardwired to 0x0 and is read only.

■ Version (VER) — The version number of this SPARC Reference MMU. This field is

hardwired to 0x4 (read only).

■ Software Tablewalk enable (ST) — This bit enables the

instruction_access_MMU_miss and data_access_MMU_miss traps for software

instruction and data table walking respectively.

■ Watch point enable (WP) — This bit enables the watch point trap. When set, it

enables the Watch Point Trap logic within the MMU logic.

■ Branch folding (BF) — This bit enables IU branch folding operation. When set

enables the branch folding feature in the IU logic.

■ Page Mode Control (PMC) — This bit enables the Page mode operation of the

MMU/MEMIF interface. When it is set, the MMU’s page mode registers track the

usage of pages in memory to exploit page mode access to the DRAM when

possible. Bit[19] controls page hit register 0, and Bit[20] controls page hit register

1. These bits are cleared on reset.

■ Local (PCIC) Page Mode Control (AP) — This bit enables the Page mode

operation of the local (PCI) bus interface. When it is set, the MMU’s page mode

registers track the usage of pages in Local Bus (PCI) space to exploit page mode

access when possible. Page Mode operation is allowed to address space mapped

to this PCI address space. Only PCI address space can be enabled with the Local

Page Mode Control bit. This bit is cleared on reset.

■ Parity Control (PC) — This bit controls the generation of parity (and checking on

memory reads) in the memory interface as shown in Table 5-13.

Parity is disabled with the PE bit.

■ Refresh Control (RC) — These four bits control the system DRAM refresh rate.

For 100 MHz operation the RC field requires a 0x6 value. The RC field is defined

in Table 5-14.

Table 5-13 Parity Control Definition

PC Meaning

0 Even Parity

1 Odd Parity
74 microSPARC-IIep User’s Manual • June 1999

■ Boot Mode (BM) — This bit is set by both normal reset and watchdog reset and

must be cleared for normal operation.

■ Parity Enable (PE) — When set to one this bit enables word parity checking for all

data entering the processor over the memory bus.

■ Instruction Cache Enable (IE) — The instruction cache is enabled when this bit is

set to a one. When it is zero, all references miss the cache. It is reset by both

normal reset and watchdog reset.

■ Data Cache Enable (DE) — The data cache is enabled when this bit is set to a one.

When it is zero, all references miss the cache. It is reset by both normal reset and

watchdog reset.

■ Store Allocate (SA) — When set, this bit enables user store misses to be run in

allocate mode. This means that if the page has been mapped as cacheable, the

MMU signals the D-cache that a line fill must be done to satisfy the store miss. If

the bit is cleared, the MMU disregards the page mapping information, and signals

the D-cache that no line fill is required. The effect is that subsequent accesses to

this data also “miss” in the D-cache if no allocate were done during the store

miss. However, the amount of time the CPU is stalled is reduced when the

allocate is not done. In either case the store data is placed in the store buffer, and

subsequently to memory. No cache fill is done regardless of the line’s cacheability.

The bit has no affect on Supervisor store misses. All Supervisor store misses are

done in no-allocate mode. Table 5-15 shows the possible settings.

Table 5-14 Memory Refresher Control Definition

RFR_CNTL Refresh Interval

0000 Every 128 MCLKs (down to 8.6 Mhz)

0001 No Refresh

0010 Every 704 MCLKs (down to 48 Mhz)

0011 Every 896 MCLKs (down to 60 Mhz)

0100 Every 1216 MCLKs (to 83 Mhz)

0101 Every 5120 MCLKs (low refresh)

0110 Every 1408 MClks (down to 100 Mhz)

0111 Every 1792 MClks (down to 125 Mhz)

1xxx Reserved

Table 5-15 Store Allocate Setting

SA User ST miss Sys ST miss

0 No Allocate No Allocate

1 Allocate No allocate
Chapter 5 Memory Management Unit 75

■ No Fault bit (NF) — When the NF bit is set, any access to an ASI, other than 8 or

9, that causes a fault is captured in the FSR and FAR, but no fault is generated to

the processor. Faults resulting from access to ASI 8 or 9 are handled as normal

regardless of the setting of this bit. Normal operation occurs while this bit is

cleared.

■ MMU Enable (EN) — When this bit is set to a one the MMU is enabled and

translation occurs normally. When it is not set the physical address is forced to the

31 least-significant bits of the virtual address. This bit is reset by both normal

reset and watchdog reset.

■ Alternate Cacheability (AC) — When set, this bit specifies that the caches are

enabled by the IE and DE bits even with the MMU disabled. When not set, the

caches are disabled when the MMU is disabled. This should not be used during

boot mode accesses. The access privilege associated with memory operations

done under alternate cacheability mode is hardwired to ACC = 0x011 (User R/

W/E and Sys R/W/E). Alternate Cacheability is a diagnostic feature that allows

the caches to be enabled by the IE and DE bits even with the MMU disabled.

When not set, the caches are disabled when the MMU is disabled. This should not

be used during boot mode accesses. Instruction accesses work well with alternate

cacheability when the accesses are to main memory space.

5.7.2 Context Table Pointer Register

The context table pointer register (CTPR) contains the base address of the context

table. It is defined in Figure 5-10.

Figure 5-10 Context Table Pointer Register

The Context Table Pointer is 18 bits wide. The reserved fields are unimplemented,

should be written as zero, and read as a zero.

5.7.3 Context Register

The context register (CXR) indexes into the context table. It is defined in Figure 5-11.

Figure 5-11 Context Register

Reserved Context Table Pointer[27:10] Reserved

31 24 23 06 05 00

Reserved Context Number

31 08 07 00
76 microSPARC-IIep User’s Manual • June 1999

The Context Register defines which virtual address space is considered the “current”

address space. Subsequent accesses to memory through the MMU are translated for

the current address space. This continues until the CXR is changed. The physical

address of the root pointer is obtained by taking bits [23:06] from the CTPR to form

mm_pa[27:10] and bits [07:00] from the CXR to form mm_pa[09:02].

mm_pa[30:28,01:00] are zero. Bits [31:08] of the CXR are unimplemented, should be

written as zero, and read as zero.

5.7.4 Synchronous Fault Status Register

The Synchronous Fault Status Register (SFSR) provides information on exceptions

(faults) issued by the MMU during CPU type transactions. There are three types of

faults: instruction access faults, data access faults, and translation table access faults.

If another instruction access fault occurs before the fault status of a previous

instruction access fault has been read by the IU, the latest fault status is written into

the SFSR and the OW bit is set. If multiple data access faults occur only the status of

the one taken by the IU is latched into the SFSR (and address in the SFAR). If data

fault status overwrites previous instruction fault status the OW bit is cleared since

the fault status is represented correctly. An instruction access fault does not

overwrite a data access fault. If a translation table access fault overwrites a previous

instruction or data access fault the OW bit is cleared. An instruction access or data

fault does not overwrite a translation table access fault. Reading the SFSR using ASI

0x4 and VA[12:08]= 0x03 clears it. However, reading the SFSR with VA[12:08]=0x13

does not clear it. Writes to the SFSR using ASI 0x4 and VA[12:08]=0x03 have no

effect, while writes using VA[12:08]=0x13 update the register. The SFSR is only

guaranteed to be valid after an exception is signalled. In other words, it may not be

valid if there is no exception.

Figure 5-12 Synchronous Fault Status Register

Field Definitions:
■ Reserved (Rsvd) (R) — Bits [31:17, 15, 12] are not implemented, should be written

as zero, and read as zero.

■ Control Space Error (CS) — This bit is asserted on the following conditions:

■ invalid ASI space

■ invalid ASI size

■ invalid VA field in valid ASI space and

Reserved CS R PERR R TO RE L AT FT FAV OW

31 17 16 15 14 13 12 11 10 09 08 07 05 04 02 01 00
Chapter 5 Memory Management Unit 77

■ invalid ASI operation (for example a swap instruction to an ASI other than

0x8-0xB,0x20).

Note that the AT field is not valid on Control Space Errors.

■ Time Out (TO) — A Time Out results from a CPU-initiated read transaction from

an unsupported address space.

■ Read Error (RE) — An error indication is returned on a CPU initiated read

transaction from an unsupported address space.

■ Parity Error (PERR) — The Parity Error[1:0] bits are set for external memory bus

parity errors on the even and odd words respectively from memory.

■ Level (L) — The Level field is set to the page table level of the entry which

caused the fault. If an error occurs while fetching a page table (either a PTP or

PTE) this field records the page table level for the entry. The level field is defined

in Table 5-16.

■ Access Type (AT) — The Access Type field defines the type of access which

caused the fault. Loads and Stores to user/supervisor instruction space can be

caused by load/store alternate instructions with ASI = 0x8–0xB. The AT field is

defined in Table 5-17. Note that this field is not valid on Control Space Errors.

Table 5-16 SFSR Level Field

L Level

0 Entry in Context Table

1 Entry in Level 1 Page Table

2 Entry in Level 2 Page Table

3 Entry in Level 3 Page Table

Table 5-17 SFSR Access Type Field

AT Access Type

0 Load from User Data Space

1 Load from Supervisor Data Space

2 Load/Execute from User Instruction Space

3 Load/Execute from Supervisor Instruction Space

4 Store to User Data Space

5 Store to Supervisor Data Space

6 Store to User Instruction Space

7 Store to Supervisor Instruction Space
78 microSPARC-IIep User’s Manual • June 1999

■ Fault Type (FT) - The Fault Type field defines the type of the current fault. The FT

field is defined in Table 5-18.

Invalid address errors, protection errors, and privilege violation errors depend on

the AT field of the SFSR and the ACC field of the corresponding PTE. The errors are

set according to Table 5-19.

A translation error code (FT=4) is set when a SFSR PE type error occurs while the

MMU is fetching an entry from a page table, a PTP is found in a level 3 page table,

or a PTE has ET=3. The L field records the page table level at which the error

occurred. The PE field records the word(s) having a parity error, if any. The

protection error code (FT=2) is set if an access is attempted that is inconsistent with

the protection attributes of the corresponding PTE. The privilege error code (FT=3) is

set when a user program attempts to access a supervisor only page. An access bus

error code (FT=5) is set when the SFSR PE field gets set on a memory operation that

Table 5-18 SFSR Fault Type Field

FT Fault Type

0 None

1 Invalid Address Error

2 Protection Error

3 Privilege Violation Error

4 Translation Error

5 Access Bus Error

6 Internal Error

7 Reserved

Table 5-19 Setting of SFSR Fault Type Code

AT

FT Code

PTE[V]=0
PTE[V]=1(ACC)

0 1 2 3 4 5 6 7

0 1 - - - - 2 - 3 3

1 1 - - - - 2 - - -

2 1 2 2 - - - 2 3 3

3 1 2 2 - - - 2 - -

4 1 2 - 2 - 2 2 3 3

5 1 2 - 2 - 2 - 2 -

6 1 2 2 2 - 2 2 3 3

7 1 2 2 2 - 2 2 2 -
Chapter 5 Memory Management Unit 79

was not a table walk. Additionally, this error code is also set on an alternate space

access to an unimplemented or reserved ASI or the memory access is using a size

prohibited by the particular type of ASI. If multiple errors occur on a single access

the highest priority fault is recorded in the FT field (see below). If a single access

causes multiple errors, the fault type is recognized in the priority given in Table 5-20.

■ Fault Address Valid (FAV) — The Fault Address Valid bit is set if the contents of

the Synchronous Fault Address Register (SFAR) are valid. The SFAR is valid for

data exceptions and data errors.

■ Overwrite (OW) — The Overwrite bit is set if the SFSR has been written more

than once to indicate that previous status has been lost since the last time it was

read. Overwrite status for combinations of error occurrences is given in Table 5-21.

Table 5-20 Priority of Fault Types on Single Access

Priority Fault Type

1 Internal Error

2 Translation Error

3 Invalid Address Error

4 Privilege Violation Error

5 Protection Error

Table 5-21 Overwrite Operations

Pending Error New error OW Status Action Signalled

Translation Error Translation Error Set Translation Error

Translation Error Data Access Exception Unchanged Data Access Exception

Translation Error Instruction Access

Exception

Unchanged Instruction Access

Exception

Data Access Exception Translation Error Clear Translation Error

Data Access Exception Data Access Exception Set Data Access Exception

Data Access Exception Instruction Access

Exception

Unchanged Instruction Access

Exception

Instruction Access

Exception

Translation Error Clear Translation Error

Instruction Access

Exception

Data Access Exception Clear Data Access Exception

Instruction Access

Exception

Instruction Access

Exception

Set Instruction Access

Exception
80 microSPARC-IIep User’s Manual • June 1999

5.7.5 Synchronous Fault Address Register

The Synchronous Fault Address register (SFAR) records the 32-bit virtual address of

any data fault or translation reported in the SFSR. The SFAR is overwritten

according to the same policy as the SFSR on data faults. Reading the SFAR using ASI

0x4 and VA[12:08] 0x04 clears it. Using VA[12:08] 0x14 to read the SFSR does not

clear it. Writes to the SFAR using ASI 0x4 and VA[12:08] 0x04 have no effect while

writes using VA[12:08] 0x14 update the register.

Note – Note that the SFAR should always be read before the SFSR to ensure that a

valid address is returned. The structure of this register is shown in Figure 5-13.

Figure 5-13 Synchronous Fault Address Register

5.7.6 TLB Replacement Control Register

The TLB Replacement Control register (TRCR) contains the TLB Replacement

Counter and counter disable bit. The TRCR can be read and written using alternate

load/store (LDA and STA) at ASI 0x4 with VA[12:08]=0x10. It is defined as follows.

Figure 5-14 TLB Replacement Control Register

Field Definitions:
■ Reserved (R) — Bits [31:25, 19:17, 13] are unimplemented, should be written as

zero and may be read as zero or one.

Note – In the MicroSPARC-II CPU, the Memory Speed (MEMSP) setting was able to

be read in bit positions 22–21. In the microSPARC-IIep, the Memory Speed setting

can be read from the MID register, described in this MMU section. Bit positions 22–

21 are now used to read the boot mode.

■ Boot Mode Select (BM_SEL) — These bits are used to indicate which boot mode

has been selected by hardwired pin values (BM_SEL). The locations to boot from

are encoded as shown in Table 5-22:

Faulting Virtual Address

31 00

 Reserved PCISP BM SEL VP Reserved PL R WP TC TLBRC

31 25 24 23 22 21 20 19 17 16 14 13 12 07 06 05 00
Chapter 5 Memory Management Unit 81

.

Note – When the PCI bus is selected for boot mode, the flash PROM interface is still

available to the processor (physical address space 0x2), and defaults to the 32-bit

Flash-PROM mode on the Memory Data Bus.

■ PCI Bus Speed (PCISP) — These bits are used to indicate the divide by speed

used to generate the PCI Bus clock (up to 33 MHz) from the internal CPU clock.

This speed select value is defined by a hardwired pin values (div_ctl). The value

is encoded as shown in Table 5-23.

.

■ Virtually tagged PTPs (VP) — This bit is used to enable the tagging of level-2

PTPs, in the TLB, with virtual tags instead of physical tags. When a table walk is

started a check is made for a virtually tagged level-2 PTP before checking for a

root level PTP. This check does not make the tablewalk any longer than usual. If a

VPTP2 is found, the tablewalk goes directly to the level-3 PTE lookup. The TLB

should be flushed after setting, or resetting, this bit to avoid mixing physically

tagged level-2 PTPs and virtually tagged level-2 PTPs.

■ TLB Replacement Counter Disable (TC) — The TLBRC does not increment when

this bit is set.

■ TLB Replacement Counter (TRC) — This is a 5-bit modulo-32 counter which is

incremented by one during each CPU clock cycle to point to one of the TLB

entries unless the TC bit is set. When a TLB miss occurs, the counter value is used

to address the entry to be replaced.

■ Wrap around Point (WP) — This 5-bit value is used to set a wrap around point for

TLB replacement. For the microSPARC-IIep, this value should be set to wrap at 32

entries maximum. It may be set to a smaller value, to allow locked TLB entries.

Table 5-22 Boot Mode Select (BM_SEL)

BM_SEL[1:0] Boot From:

00 32 Bit Flash-Prom, on Memory Data Bus

01 8 Bit Flash-Prom, on Memory Data Bus

10 PCI Bus, Addresses Fooo.000 – F0FF.FFFF

11 PCI Bus, Addresses FFFE.000 – FFFF.FFFF

Table 5-23 PCI Speed Select

PCI_SP
PCI Bus is
CPU clock divided by:

0 Reserved

1 3 (up to 100 MHz CPU)

2 4 (up to 133 MHz CPU)

3 5 (up to 166 MHz CPU)
82 microSPARC-IIep User’s Manual • June 1999

■ PTP Lock (PL) — This bit is used to enable PTP location limits. When this bit is

set, PTP placement in the TLB is limited to entries 0–2. Bit[16] locks PTPs for level

2, Bit[15] locks PTPs for level 1, and Bit[14] locks PTPs for level 0. When PTP lock

is used, the wrap point should not be set to a value less than 0x5. The MMU tries

to use locations (entries) 3, 4, and 5 as alternate PTE stores when 0, 1, and 2 are

reserved for PTPs. This use of locations 3, 4, and 5 is done without regard for the

current setting of the WP.

5.8 MISC MMU Registers
The MISC MMU Registers contain controls for the remaining functions in the MMU.

IOPTE entries should not normally occupy any locations in the TLB. If they have

been placed there by diagnostic operations, they may be flushed from the TLB by

doing writes to the write-only Address Flush register (AFR). All of these internal

MMU registers can be accessed directly by software using Control Space accesses

with PA[30:24] = 0x10. Also, the entire TLB can be flushed using a control space

access. The Control Space address map is shown in Table 5-24.

Table 5-24 MISC MMU, and Perf Counter Control Space

PA[30:00] Device R/W

1000 1000 Asynchronous (Memory) Fault Status Register R/W

1000 1004 Asynchronous (Memory) Fault Address Register R/W

1000 1050 Memory Fault Status Register R/W

1000 1054 Memory Fault Address Register R/W

1000 2000 MID Register R/W

1000 3000 Trigger A Enables Register R/W

1000 3004 Trigger B Enables Register R/W

1000 3008 Assertion Control Register R/W

1000 300C MMU Breakpoint Control Register R/W

1000 3010 Performance Counter A R/W

1000 3014 Performance Counter B R/W

1000 3018 VA Mask Register R/W

1000 301C VA Compare Register R/W
Chapter 5 Memory Management Unit 83

5.8.1 Asynchronous (Memory) Fault Status Register

The Asynchronous (Memory) Fault Status Register (AFSR) provides information on

asynchronous faults during CPU initiated transactions to reserved address space and

CPU write operations. This register is accessed using Control Space (0x10001000). A

hardware lock is used to ensure that this register does not change while being read.

Reading this register unlocks it. The bits of the AFSR are defined as follows:

Figure 5-15 AFSR Register

Field definitions:
■ [31]: Summary Error Bit (ERR) — One or more of LE, TO, or BE is asserted.

■ [30]: Late Error (LE) — An error was reported after the transaction was done.

■ [29]: Time Out (TO) — A write access timed out. An attempt to write reserved

address space may result in this error.

■ [28]: Bus Error (BE) — A write access received an error acknowledge. An attempt

to write reserved address space may result in this error.

■ [27:25]: Size (SIZE) — Reserved

■ [24]: Supervisor (S) — CPU was in Supervisor mode when the error occurred.

■ [23:20]: — Reserved; hard-wired to 0x1000

■ [19]: Multiple Error (ME) — At least one other error was detected after the one

shown.

■ [18]: Read Operation (RD) — The error occurred during a read operation.

■ [17]: Fault Address Valid (FAV) — The address contained in the AFAR is accurate

and can be used in conjunction with the status in the AFSR. The only time the

AFAR contents are invalid is on a late error.

■ [16:00]: Reserved; not implemented; should be written as zero and read as zero

1000 4000 Local Bus (IAFX) Queue Level W

1000 6000 Local Bus (IAFX) Queue Level R/O

1000 7000 Local Bus (IAFX) Queue Status R/O

err le to be size s 1000 me rd fav Reserved

31 30 29 28 27 25 24 23 20 19 18 17 16 00

Table 5-24 MISC MMU, and Perf Counter Control Space (Continued)

PA[30:00] Device R/W
84 microSPARC-IIep User’s Manual • June 1999

5.8.2 Asynchronous (Memory) Fault Address Register

The Asynchronous (Memory) Fault Address Register (AFAR) records the 31-bit

physical address that caused the fault. This register is accessed using Control Space

(0x10001004). Bit [31] should be written as zero and is read as zero. A hardware lock

is used to ensure that this register does not change while being read. Reading the

AFSR unlocks the AFAR. Figure 5-16 shows the structure of this register.

Figure 5-16 AFAR Register

Note that bit 31 is unimplemented, should be written as zero, and is read as zero.

Also, this register is only held when an error is reflected in the AFSR.

5.8.3 Memory Fault Status Register

The Memory Fault Status Register (MFSR) provides information on parity faults. It is

accessed using Control Space (0x10001050). This register is loaded on every request

to memory unless it is locked. A hardware lock is used to ensure that this register

does not change while being read if there were an error condition. Reading the

register allows it to begin loading once again.

Figure 5-17 Memory Fault Status Register

Field Definitions:
■ Reserved (Rsvd) — Bits [30:25, 22:20, 18:16, 10:08, 03:00] are not implemented,

should be written as zero, and read as zero.

■ Summary Error Bit (ERR) — One or more of PERR[1] or PERR[0] is asserted.

■ Supervisor (S) — CPU was in Supervisor mode when the error occurred.

■ CPU Transaction(CP) — The CPU initiated the transaction that resulted in the

parity error.

■ Multiple Error (ME) — At least one other error was detected after the one shown.

■ Parity Error[1:0] (PERR) — These bits are set on external memory parity errors for

the even and odd words (respectively) from memory. Parity errors can result from

CPU or IO-initiated memory reads and byte or halfword (8 or 16 bit) write

operations (which result in read-modify-writes).

0 Faulting Address Register

31 30 00

ERR Rsvd S CP Rsvd ME Rsvd ATO PERR BM C Rsvd Type Rsvd

31 30 25 24 23 22 20 19 18 16 15 14 13 12 11 10 08 07 04 03 00
Chapter 5 Memory Management Unit 85

■ Local Bus (PCI) Timeout (ATO) — This bit is used to indicate that a time out has

occurred for the current Local Bus operation.

■ Boot Mode (BM) — This bit indicates that the error occurred while the PCR was

indicating Boot Mode.

■ Cacheable (C) — Address of error was mapped cacheable. In CPU initiated

transactions this bit was from the C bit of the PTE, otherwise it is set to zero.

■ Memory Request Type (Type[3:0]) — This field records the type of request that

generated the parity error as shown in Table 5-25.

5.8.4 Memory Fault Address Register

The Memory Fault Address Register (MFAR) records the 31 bit physical address that

caused the fault. This register is accessed using Control Space (0x10001054) and is

loaded on every request to memory unless it is locked. A hardware lock is used to

ensure that the register contents do not change during a read if there were an error

condition. Reading this register allows it to begin loading once again. Bit [31] should

be written as zero and is read as zero. Figure 5-18 shows the structure of this register.

Figure 5-18 Memory Fault Address Register

Table 5-25 Memory Request Type

Value(Hex) Name Definition

0 NOP No memory operation

1 RD64 Read of 64 bits (2 words)

2 RD128 Read of 128 bits (4 words)

3 - Reserved

4 RD256 Read of 256 bits (8 words)

5–8 - Reserved

9 WR8 Write of 8 bits (1 byte)

A WR16 Write of 16 bits (2 bytes)

B WR32 Write of 32 bits (1 word)

C WR64 Write of 64 bits (2 words)

D–F - Reserved

0 Faulting Physical Address

31 30 00
86 microSPARC-IIep User’s Manual • June 1999

Note that bit 31 is unimplemented, should be written as zero, and is read as zero.

Also, this register is only held when an error is reflected in the AFSR.

5.8.5 MID Register

The MID register is used to control the miscellaneous functions of the

microSPARC-IIep. This register can be accessed using IO MMU Control Space

(0x10002000). The MID is defined in Figure 5-19.

Figure 5-19 MID Register

Field definitions:
■ Reserved — Bits [31:17, 15-12] are not implemented, should be written as zero,

but may be read as zero or one.

■ I/O Arbitration Enable (IO) — This bit is used to enable arbitration for the PCI

interface to access the DRAM memory bus. This arbitration is between other

internal usage of the DRAM memory bus, not between PCI devices. This bit must

be set to a one to allow I/O access to the memory and is cleared to zero by reset.

■ Standby Enable (SE) — This bit is used to enable the microSPARC-IIep to enter a

power savings standby mode. While this bit is set, and there is no activity on the

PCI bus, the processor stops execution and stops internal processor clocks.

Refresh and PCI clocks are not affected by standby and continue. This Standby

Enable bit is reset whenever there is PCI activity, including PCI DMA activity,

which does not involve the processor. Therefore the Standby Enable bit should be

set as part of a software idle loop. Refer to section on Chapter 10 for more

information.

■ Memory Speed (sp_sel[2:0], bits 10:08) — These bits are used to indicate the speed

select being used for the DRAM memory interface. The values are encoded as

shown in Table 5-26.

Reserved IO Reserved SE Mem Spd ROM Speed 0x8’

31 17 16 15 11 10 08 07 04 03 00
Chapter 5 Memory Management Unit 87

■ ROM Speed. Bits[07–04] — These bits select the speed for read/write timing of

the flash ROM. The Flash ROM interface supports devices that are compatible

with the industry standard 28FxxxXX devices. This field is set to 0xF on reset.

Refer to chapter 10 for more details on the Flash ROM operation. The ROM access

time is set according to the relation:

((ROM Speed) - 1) X 3 X CPU cycle time = ROM access time*.

*If the ROM Speed is set to 0x0 or 0x1 the ROM access time used is 6 X CPU cycle

time. These bits are R/W.

MID — This field is a constant 0x8 and is read only (writes to these bits are ignored).

Note – Endian control is performed using the Processor State register, and described

in Compliance with SPARC Version 8.

5.8.6 Trigger A Enables Register

The Trigger A Enables register is used to define trigger events for Performance

Counter A. Setting a field to “1” enables that trigger event for counting. This register

can be accessed using Control Space (0x10003000).

Figure 5-20 Trigger A Enables Register

Field definitions:
■ Reserved (R) — Bits [31:27, 25:23] are not implemented and reserved, should be

written as zero, and are read as zero.

Table 5-26 Memory Speed Select

MEMSP
sp_sel[2:0]

Fault Type

000 Up to 70 Mhz

001 Up to 85 Mhz

010 Up to 100 Mhz

011 Up to 133 Mhz

100–111 Reserved*

Reserved C

O R R R

FQ FP ST M

U

SU SR XL M

R

M

C

M

P

AB M

B

W

B

DF DS D

M

D

H

IF IS IM IH OR L

31 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
88 microSPARC-IIep User’s Manual • June 1999

■ Trigger on edge or Level (L) — When set to a “1” this bit causes triggers defined

in this register to be level sensitive; When cleared to a “0” the trigger becomes

edge sensitive.

■ OR — Combine triggers by ORing or ANDing function; When set to a “1”, this bit

enables the Logical OR of the specified triggers to be counted. If the bit is set to a

“0”, the triggers are logically ANDed to form the increment signal.

■ I-cache miss (IH) — Asserted 1-cycle after the miss is detected, and sustained

until the miss is resolved (ssparc.iwait_f)

■ I-cache miss pending (IM) — Asserted 1-cycle after the miss is detected, and

sustained until a corresponding memory request has been made (ssparc.ic_miss)

■ I-cache streaming (IS) — Asserted after the first word has been fetched from

memory, and until the cache line fill has completed

(ssparc.ssparc_mmu.MMU_cntl.ic_stream)

■ I-cache lookup (IF) — Instruction fetch from the Instruction cache

■ D-cache miss (DH)— Asserted 1-cycle after the miss is detected, and sustained

until the miss is resolved (ssparc.dwait_w)

■ D-cache miss pending (DM) — Asserted 1-cycle after the miss detected and

sustained until corresponding memory request is made (ssparc.dc_miss)

■ D-cache streaming(DS) — Asserted after the 1st word has been fetched from

memory, and until the cache line fill has completed

(ssparc.ssparc_mmu.MMU_cntl.dc_stream)

■ D-cache lookup (DS)— data read from the Data cache

■ Write buffer full (WB)— Asserted while all four write buffer entries are valid

(ssparc.dc_shold)

■ Translation(XL) — 1-cycle pulse for each translation attempt

(ssparc.ssparc_mmu.MMU_cntl.r_tlb_used)

■ Processor Tablewalk (SR) — Asserted for the duration of processor tablewalks; It

can be used in conjunction with the translation count to determine TLB hit rate

(ssparc.ssparc_mmu.MMU_cntl.sr_tw)

■ Supervisor mode (SU) — Based on the processor PSR.S bit; can be used with other

fields to determine supervisor overhead

■ MMU breakpoint(MU) — Combined signal from MMU breakpoint decode

■ Pipeline stalled (ST) — Asserted whenever the pipeline is stalled (1-cycle delay)

(ssparc.iu_pipe_hold)

■ Memory busy (MB) — Memory currently busy

■ Local Bus (PCIC interface bus) busy (AB) — IAFX (Local Bus) interface currently

busy

■ Memory RMW op (MR)— Memory Read/Modify/Write operation requested

■ Memory page mode access (MP) — Asserted once for each memory access that is

on the same page as the previous access (for a given DRAM bank)

(ssparc.mm_page)

■ Memory precharge request (MC) — Asserted once for each memory access that

indicated non-page hit prior to request (ssparc.mm_precharge)
Chapter 5 Memory Management Unit 89

■ fhold_perf (FP) — FPU hold signal asserted for fld/fst dependency cases, or FP

queue is full and another FP op is in the pipeline; guaranteed to hold the iu

pipeline if psr.ef==1

■ fhold_fq_full (FQ) — indicates that fhold is asserted because the FP queue is full

and another FPop is in the pipeline

■ Counter B_CO (CO)— Counter B Carry out; for trigger A only; this allows

Counter A to reflect the number of counter B overflows

5.8.7 Trigger B Enables Register

The Trigger B Enables Register (see Figure 5-21) is used to define trigger events for

Performance Counter B. Setting a field to "1" enables that trigger event for

counting. This register can be accessed using Control Space (0x10003004).

Figure 5-21 Trigger B Enables Register

Field definitions:
■ Reserved (R) — Bits [31:27,25:23] are not implemented and are reserved. They

should be written as zero, and are read as zero.

■ Trigger on edge of Level(L) — When set to a "1" this bit causes triggers defined in

this register to be level sensitive. When cleared to a "0" the trigger becomes edge

sensitive.

■ Combine triggers by ORing or ANDing function(OR) — When set to a "1", this bit

enables the Logical OR of the specified triggers to be counted. If the bit is set to a

"0", the triggers are logically ANDed to form the increment signal.

■ I-cache miss (IH) — Asserted 1-cycle after the miss is detected and sustained until

the miss is resolved (ssparc.iwait_f)

■ I-cache miss pending (IM) — Asserted 1-cycle after a miss is detected and

sustained until corresponding memory request is made (ssparc.ic_miss)

■ I-cache streaming (IS) — Asserted after the 1st word has been fetched from

memory and held until the cache line fill has completed.

(ssparc.ssparc_mmu.MMU_cntl.ic_stream)

■ I-cache lookup (IF) — Instruction fetch from the Instruction cache

■ D-cache miss(DH) — asserted 1-cycle after the miss is detected, and sustained

until the miss is resolved (ssparc.dwait_w)

■ D-cache miss pending (DM) — asserted 1-cycle after miss is detected and

sustained until a corresponding memory request is made (ssparc.dc_miss)

Reserved CY

R R R

FQ FP ST M

U

SU SR XL M

R

M

C

M

P

AB M

B

W

B

DF DS D

M

D

H

IF IS IM IH O

R

L

31 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
90 microSPARC-IIep User’s Manual • June 1999

■ D-cache streaming(DS) — asserted after the first word is fetched from memory

and until the cache line fill has completed

(ssparc.ssparc_mmu.MMU_cntl.dc_stream)

■ D-cache lookup (DF) — Data read from the Data cache

■ Write buffer full (WB) — Asserted while all four write buffer entries are valid

(ssparc.dc_shold)

■ Translation (XL) — 1-cycle pulse for each translation attempt

(ssparc.ssparc_mmu.MMU_cntl.r_tlb_used)

■ Processor Tablewalk (SR) — asserted for the duration of processor tablewalks; can

be used in conjunction with the translation count to determine TLB hit rate

(ssparc.ssparc_mmu.MMU_cntl.sr_tw)

■ Supervisor mode (SU) — based on the processor PSR.S bit. Can be used with

other fields to determine supervisor overhead

■ MMU breakpoint (MU) — combined signal from MMU breakpoint decode

■ Pipeline stalled (ST) — asserted whenever the pipeline is stalled (1-cycle delay)

(ssparc.iu_pipe_hold)

■ Memory busy (MB) — memory currently busy

■ Local Bus (PCIC Interface bus) busy (AB) — Local Bus (IAFX) interface currently

busy

■ Memory RMW op (MR) — memory Read/Modify/Write operation requested.

■ Memory page mode access (MP) — asserted once for each memory access that is

on the same page as the previous access (for a given DRAM bank)

(ssparc.mm_page)

■ Memory precharge request (MP) — asserted once for each memory access that

indicated non-page hit prior to request (ssparc.mm_precharge)

■ fhold_perf (FP) — FPU hold signal asserted for fld/fst dependency cases or FP

queue is full and another FPop is in the pipeline; guaranteed to hold the IU

pipeline if psr.ef==1

■ fhold_fq_full (FP) — indicates that fhold is asserted because the FP queue is full

and another FPop is in the pipeline

■ Cycle count (FP) — always active

5.8.8 Assertion Control Register

The Assertion Control register (see Figure 5-22) can be used to invert any trigger

event defined in the two trigger registers. Setting a field to “1” causes the trigger

event for that field to be inverted prior to its entering the trigger register logic.

This register can be accessed using Control Space (0x10003008).
Chapter 5 Memory Management Unit 91

Figure 5-22 Assertion Control Register

Field definitions:
■ Reserved (R) — Bits [31:23, 01:00] are not implemented, should be written as zero,

and are read as zero

■ I-cache miss (IH) — asserted 1-cycle after the miss is detected and sustained until

the miss is resolved. (~ssparc.iwait_f)

■ I-cache miss pending (IM) — asserted 1-cycle after miss detected and sustained

until corresponding memory request is made (~ssparc.ic_miss)

■ I-cache streaming (IS) — asserted after the first word is fetched from memory, and

until the cache line fill has completed (~ssparc.ssparc_mmu.MMU_cntl.ic_stream)

■ I-cache lookup (IF) — Instruction fetch from the Instruction cache

■ D-cache miss (DH) — asserted 1-cycle after the miss is detected and sustained

until the miss is resolved. (~ssparc.dwait_w)

■ D-cache miss pending (DM) — asserted 1-cycle after miss detected and sustained

until the corresponding memory request has been made. (~ssparc.dc_miss)

■ D-cache streaming (DS) — asserted after the 1st word is fetched from memory

and until the cache line fill has completed

(~ssparc.ssparc_mmu.MMU_cntl.dc_stream)

■ D-cache lookup (DF) — Data read from the Data cache

■ Write buffer full inverted (WB) — (~ssparc.dc_shold)

■ Translation inverted (XL) — (~ssparc.ssparc_mmu.MMU_cntl.r_tlb_used)

■ Processor Tablewalk inverted (SR) — (~ssparc.ssparc_mmu.MMU_cntl.sr_tw)

■ Supervisor mode inverted (SU)

■ MMU breakpoint inverted (MU)

■ Pipeline stalled inverted (ST) — (~ssparc.iu_pipe_hold)

■ Memory busy inverted (MB)

■ Local Bus (PCIC interface) busy inverted (AB)

■ Memory RMW op inverted (AB)

■ Memory page mode access inverted (AB) — (~ssparc.mm_page)

■ Memory precharge request inverted (MC) — (~ssparc.mm_precharge)

■ FPU pipeline hold inverted (FP)

■ FPU Queue full inverted (FQ)

Reserved R FQ FP ST M

U

SU SR XL M

R

M

C

M

P

AB M

B

W

B

DF DS D

M

D

H

IF IS IM IH Rsvd

31 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
92 microSPARC-IIep User’s Manual • June 1999

5.8.9 MMU Breakpoint Register

The MMU Breakpoint Register can specify a single breakpoint based on a number of

field comparisons defined in the register. Any of the fields can be used as a stand

alone compare or combined with other fields that are part of the MMU function.

This register can be accessed using Control Space (0x1000300C).

Figure 5-23 MMU Breakpoint Register

Field definitions:
■ Reserved (R) — Bits [31:12] are not implemented and are reserved; should be

written as zero and are read as zero

■ Virtual Address Breakpoint enable (VE)

■ Virtual Address Source (VAS) — these bits are used to control the source of the

address to be used for breakpoint compare operations. The three bits are defined

in Table 5-27.

:

■ Virtual Address Memory operation (VAM) — these bits are used to describe the

type of memory operation to be used together with the address compare for

breakpoint. The possible memory operations for breakpoint definition are shown

in Table 5-28.

:

Reserved Reserved R MT RE TWS VAM VAS VE

31 16 15 13 12 11 08 07 06 05 04 03 02 01 00

Table 5-27 MMU Breakpoint Register VAS Field decode

VAS Virtual Address Source

00 I-Cache Address

01 D-Cache Address (includes write buffer)

10 Reserved

11 Physical Address

Table 5-28 MMU Breakpoint Register VAM Field decode

VAM Virtual Address Memory operation

00 disabled

01 read (D-Cache miss, or I-Cache miss)

10 write (D-Cache miss)

11 LDSTO
Chapter 5 Memory Management Unit 93

■ Table Walk translation source (TWS) — these bits are used to describe the type of

table walk operation to be used for the breakpoint. The bit definitions are shown

in Table 5-29.

:

■ Memory Request compare Enable (RE) — this bit field is used to enable

breakpoint compare on the size and type information for memory operations.

When used with the MT field this enable allows breakpoints on operations of a

specific size to be enabled.

■ Memory request Type (MT — this bit field is used to define the type and size of

the memory operation for the breakpoint event. The possible definitions for this

field are shown in Table 5-30.

Table 5-29 MMU Breakpoint Register TWS Field decode

TWS TableWalk translation Source

00 disabled

01 Instruction Fetch Table Walk

10 Data op Table Walk

11 Reserved

Table 5-30 MMU Breakpoint Register MT Field decode

MT Memory Request Type

0000 nop

0001 READ 8 bytes

0010 READ 16 bytes

0011 Reserved

0100 READ 32 bytes

0101–1000 Reserved

1001 WRITE 1 byte

1010 WRITE 2 bytes

1011 WRITE 4 bytes

1100 WRITE 8 bytes

1101 WRITE 16 bytes

1110–1111 Reserved
94 microSPARC-IIep User’s Manual • June 1999

5.8.10 Performance Counter A

Performance Counter A is the first of two 32 bit counters. Counter A is incremented

based on the assertion of triggers defined for counter A in the Trigger A Enables

Register (see Section 5.8.6). Performance Counter A can be accessed using Control

Space (0x10003010).

Figure 5-24 Performance Counter A

5.8.11 Performance Counter B

Performance Counter B is the second 32 bit counter. Counter B is incremented based

on the assertion of triggers defined for counter B in the Trigger B Enables Register

(see Section 5.8.7). Performance Counter B can be accessed using Control Space

(0x10003014).

Figure 5-25 Performance Counter B

5.8.12 Virtual Address Mask Register

The Virtual Address Mask Register is used to disable the compare of specific bit

fields in the Virtual Address Compare Register. Enables I1–I9 enable their respective

fields for comparison. The N11 and N bits are used to decode the 'compare not'
function. The N11 bit only affects the F field (VA[11]), and the N bit affects the range

of VA[31:12]. When N=0, normal comparisons are made. When N=1, the compare

result is inverted; so a 'hit' occurs when the addresses mismatch. This register can be

accessed using Control Space (0x10003018).

Figure 5-26 Virtual Address Mask Register

Counter A Value

31 00

Counter B Value

31 00

Mask ID Reserved I1 I2 I3 I4 I5 I6 I7 I8 I9 N11 N

31 24 23 11 10 09 08 07 06 05 04 03 02 01 00
Chapter 5 Memory Management Unit 95

Field definitions:
■ Reserved — Bits [31:11] are not implemented, should be written as zero, and are

read as zero.

■ N — Normal or inverted comparison enable; N=0 enables normal comparisons,

N=1 enables inverted comparisons.

■ N11 — Normal or inverted compare mode for bit 11 only

■ I1 — Compare enable for VA[31:24]

■ I2 — Compare enable for VA[23:18]

■ I3 — Compare enable for VA[17:12]

■ I4 — Compare enable for VA[11].

■ I5 — Compare enable for VA[10:04]

■ I6 — Compare enable for VA[03].

■ I7 — Compare enable for VA[02].

■ I8 — Compare enable for VA[01].

■ I9 — Compare enable for VA[00].

■ Mask ID — This read-only eight bit field is used to uniquely identify the revision

level of the mask used to manufacture the part. The revision number is one of the

entries found in Table 5-31.

5.8.13 Virtual Address Compare Register

The Virtual Address Compare Register (Figure 5-27) is used to set the value of the

virtual address that the breakpoint logic uses to compare against. This register

should be used together with the Virtual Address Mask register to define the exact

match criteria for the breakpoint. The VA can be either the I-cache or D-cache virtual

address, or the address that is being translated by the MMU. Since the caches are

virtually tagged, cache hit accesses do not need to be translated. Therefore, selects

are provided to maintain address checking on a single source of address (regardless

of hit/miss results). This register can be accessed using Control Space (0x1000301C).

Table 5-31 Mask ID

Mask ID Mask Revision

0011 0100 (0x34) 1.0 First Tapeout

0011 0101 (0x35) 1.1 Revision

0011 0110 (0x36) 2.0 Tapeout
96 microSPARC-IIep User’s Manual • June 1999

Figure 5-27 Virtual Address Compare Register

5.8.14 Local Bus (PCIC Interface) Queue Level Register

The Local Bus (PCIC Interface) Queue Level register is used to set the threshold

value of the for CPU Local Bus (PCIC interface) read holdoff. If the number of

operations in the queue is greater than the set threshold, CPU Local Bus (PCIC

interface) operations are not issued. The CPU is held until such time as the Local Bus

queue is at a level that would allow the operation to be issued. During this hold time

the DVMA may freely access main memory. The threshold may only be set to 0x0, or

0x1. Note that this register is accessed through two different addresses. For writing

this register, writes must be done to address 0x10004000. Writes to 0x10006000 do not
update the register contents. For reading this register, reads must be done to address

0x10006000, reads to 0x10004000 do not return the current register contents. All

reserved bits should be written as “0”, and are read as “0”. This register can be

accessed using Control Space (0x10004000 for writes and 0x10006000 for reads).

Figure 5-28 Local Bus Queue Level Register

5.8.15 Local Bus (PCIC Interface) Queue Status Register

The Local Bus (PCIC Interface) Queue Status register is a read only register that

reflects the current number of Local Bus (PCIC interface) operations in the Local Bus

queue. When read, this register should have a value of between 0x0 and 0x4. All

reserved bits are read as “0”. This register can be accessed using Control Space

(0x10007000).

Figure 5-29 Local Bus Queue Status Register

Virtual Address Compare Value

31 00

Reserved Lvl

31 01 00

Q LVL

31 00
Chapter 5 Memory Management Unit 97

5.9 Physical Address Register
The Physical Address Register (PAR) is used to hold translated physical addresses

before they are used for either memory requests. This register cannot directly be

read or written.See Figure 5-30 for the structure of this register.

Figure 5-30 Physical Address Register

To avoid redundant retranslation, two extra registers are used to store PAR data.

They are the Data Physical address register (DPAR) and the Instruction Physical

Address register (IPAR).

5.10 TLB Table Walk
On a translation miss the table walk hardware translates the virtual address to a

physical address by “walking” through a context table and from one to three levels

of page tables. The first and second levels of these tables typically—but not

necessarily—contain Page Table Pointers (PTP) to the next-level tables when accesses

are due to CPU instruction or data addresses. A third level table entry should always

be a page table entry (PTE) that points to a physical page to avoid a translation fault.

The table walk for a CPU-generated virtual address uses the context table pointer

register (CTPR) as a base register and the context number contained in the context

register (CXR) as an offset to point to an entry in the context table. The context table

entry is then used as a PTP into the first level page table. At any address the table

walk hardware finds either a PTE (which terminates its search) or a PTP. A PTP is

used in conjunction with a field in the virtual address space to select an entry in the

next level of tables. The table walk continues, searching through levels of tables as

long as PTPs are found pointing to the next table. The table walk terminates when

either a PTE is found or an exception is generated if a PTE is not found after

accessing the 3rd level page table (or if an invalid or reserved entry is found). Note

that PTPs and PTEs encountered during a table walk are not cached in the data

cache. A full table walk is shown in Figure 5-31.

Note – The hardware table walking is done in big endian mode.

Physical Address

31 00
98 microSPARC-IIep User’s Manual • June 1999

Figure 5-31 CPU Address Translation Using Table Walk

When the PTE is found, it is stored in a TLB entry, indexed by the TLBRC, and used

to complete the original virtual to physical address translation. A table walk that is

forced by a store operation to an unmodified region of memory causes the M bit in

the PTE to be set. Any “entire” probe or normal tablewalk operation causes the R bit

of the PTE to be set if it were not already.

The table walk mechanism is simplified when virtually-tagged level-2 PTPs are

enabled. They are enabled by setting bit 20 of the TRCR (see Section 5.7.6, TLB
Replacement Control Register). In this case, the MMU initially searches for the level-2

PTP by using the CXR, Index 1, and Index 2 of the virtual address. Should this PTP

be found in the TLB, there is no need for the Context table and level-1 lookups, and

the level-2 PTP can be used to look up the required PTE directly. This effectively

halves the time required for the table walk. If the virtual-tagged PTP is not found in

the TLB, the MMU starts the table walk from the context table.

31 001824 23 17 12 11
Index 1 Index 2 Index 3 Page Offset

30 0012 11

Physical Page Number Page Offset

CTPR

CXR PTP

PTP

PTP

PTE

Context Table

Level 1 Table

Level 2 Table

Level 3 Table

Virtual Address

Physical Address
Chapter 5 Memory Management Unit 99

The I/O address translations occur in the separate IOTLB in the PCI controller,

which is managed by software. There are no IO PTEs placed in the CPU’s TLB, and

there are no operations performed on the CPU’s TLB that are related to IO. IO

translations are described in the PCIC section. See Section 9.5.6, PCIC IOTLB
Operation (DVMA) and Section 9.5.7, PCIC IOTLB Write Registers.

5.11 Arbitration
The MMU block performs the primary memory arbitration function within the CPU.

This is owing to the central nature of the MMU in the address flow of the machine.

The different sources of memory activity are the:

■ instruction cache block (for instruction fetches)

■ data cache block (for loads and stores)

■ TLB (during tablewalks and to keep the referenced and modified bits in the main

memory page tables up to date)

■ I/O DMA activity

The other entity needing main memory is the DRAM refresh logic. This function is

folded into the arbitration scheme by the Memory Controller which must arbitrate

between it and a request from the MMU.

The arbitrating requirements can be broken down into several different resource

arbiters grouped into TLB arbitration and the internal memory bus arbitration.

5.11.1 TLB Arbitration

The current priority scheme places TLB references as highest priority, followed by

data references, and finally instruction references. Tablewalks and updates to the

memory PTEs due to changes to the Referenced and Modified bits are the highest

priority. They imply that some other operation is in progress.

Table 5-32 TLB Reference Priority

Operation pending1

1. X = Don’t Care,

Results
IU Data Ref Instr. Fetch

Yes X
Translate for IU Data Reference, Tablewalk if

miss

No Yes Translate for Instruction Fetch, Tablewalk if miss
100 microSPARC-IIep User’s Manual • June 1999

5.12 Translation Modes
Translation of virtual addresses to physical addresses is done in the following

modes:

5.12.1 Page Hit Registers

The MMU is responsible for generating a signal to the memory controller indicating

whether or not the current memory request can use page mode of the DRAMs. This

is done by comparing the current physical address (mm_pa) against the physical

addresses of the previous memory access to the even and odd memory banks. For

this purpose the MMU has two registers which are used to store the current physical

address: Register 0 is used if the memory operation is to an “even” bank or Register

1 is used if the memory operation is to an “odd” bank. The even or odd state of an

address is determined by bit 25 of the physical address. For the page hit registers a

bank refers to the physical address space consumed by a single DRAM SIMM

module. Each register is used to store bits 30:12 of the physical address. If either

register detects that the current access is to the same bank as the previous access the

page mode signal to the memory controller is activated. This signal can be over-

ridden by the control bits in the PCR register to disable this feature.

Table 5-33 Translation Modes

Name ASI Boot Mode MMU En. PA[30:00]

Boot IFetch 0x8, 0x9 Yes X PA[30:28]=0x2, PA[27:00]=VA[27:00] for

flash boot

PA[30:28]=0x3, PA[27:00]=VA[27:00] for PCI

boot

Pass

Through

0x8, 0x9 No Off PA[30:00]=VA[30:00]

Translate 0x8, 0x9 No On PA[30:12]=PTE[26:08], PA[11:00]=VA[11:00]

Pass

Through

0xA, 0xB X Off PA[30:00]=VA[30:00]

Translate 0xA, 0xB X On PA[30:12]=PTE[26:08], PA[11:00]=VA[11:00]

Bypass 0x20 X X PA[30:00]=VA[30:00]
Chapter 5 Memory Management Unit 101

5.13 Errors and Exceptions
The MMU generates: instruction access error, instruction access exception, data

access error, and data access exception for the SPARC IU. Also, an external interrupt

is driven for asynchronous faults, which would indicate a level 15 interrupt. This

interrupt must be enabled in the PCIC interrupt controller to be signalled to the

CPU.

5.14 Diagnostic Features
All registers and RAM (and CAM) are accessible directly through alternate virtual

address space loads and stores. There is also the capability to execute a breakpoint

on certain conditions. This facility is set up through use of the various Breakpoint/

Performance counter registers.

5.14.1 Diagnostic Access of TLB

Diagnostic reads and writes to the 32 TLB entries are performed by using load and

store alternate instructions in ASI 0x6 and the virtual address to select a particular

TLB entry explicitly. The access must be a word access, all other data sizes result in

an internal error. Depending on the virtual address specified, either the TLB Tag, or

TLB PTE is referenced. The format for the TLB PTE is as described earlier. Figure 5-32
gives the format of the Tag.

Figure 5-32 CPU Diagnostic TLB Upper Tag Access Format

Field Definitions:
■ Virtual Address Tag — The 20 bit virtual address tag represents the most

significant 20 bits (VA[31:12], the page address) of the virtual address being used.

VA[11:00] is the byte within a page. The address in this field is physical when

referencing physically tagged PTPs with the least-significant 20 bits containing

PA[27:08].

Virtual Address Tag Tag Context ID V Level

31 12 11 04 03 02 01 00
102 microSPARC-IIep User’s Manual • June 1999

R

■ Context Tag — The 8-bit context tag comes from the value in the context register

written by memory management software. Both it and the virtual address tag

must match the CXR and VA[31:12] in order to have a TLB hit. This field contains

a physical address {(PA[07:02]) + 2’b00}when referencing PTPs.

■ Valid bit, Level bits — These three bits are used to enable the proper virtual tag

match of root, region, and segment PTE’s. The Valid bit indicates a valid entry. Bit

2 is the index bit for the root, bit 1 is the index for the region, and bit 0 is the

index for the segment.

Figure 5-33 CPU Diagnostic TLB Lower Tag Access Format

Field Definitions:
■ Reserved — These bits are not used and always return zero.

■ UE — This bit indicates that the page has User Execute permission set.

■ UR — This bit indicates that the page has User Read permission set.

■ UW — This bit indicates that the page has User Write permission set.

■ SE — This bit indicates that the page has Supervisor Execute permission set.

■ SR — This bit indicates that the page has Supervisor Read permission set.

■ SW — This bit indicates that the page has Supervisor Write permission set.

■ Modified (M) — This bit is used to indicate that the page has been modified by a

previous write operation.

■ RE — Reserved; this bit is insignificant and is reserved

■ Page Table Pointer (PTP) — This bit indicates that a PTP resides in this entry of

the TLB. Note that all SRMMU flush types (except page) flush all PTPs from the

TLB. This bit is insignificant for an ITLB Tag and is read as zero.

Note that when loading TLB entries under software control (using alternate space

accesses) care should be taken to ensure that multiple TLB entries cannot map to the

same virtual address. This may inadvertently occur when combining TLB entries

that map different sizes of addressing regions. A level-3 PTE could be included in a

TLB region for a level-1 or level-2 PTE, for example. The TLB output is not valid

when this occurs.

Table 5-34 shows the virtual address is used to select the TLB entries:

eserved UE UR UW SE SR SW S RE PTP M

31 10 09 08 07 06 05 04 03 02 01 00
Chapter 5 Memory Management Unit 103

5.14.2 MMU Breakpoint Debug Logic

The MMU breakpoint debug logic is intended for use in lab debug only since it

requires setup through a scan facility. Its basic function is to stop the clocks when

certain conditions occur. These conditions can be selected from a large number of

conditions. The breakpoints which can be enabled are virtual address matching,

virtual address source matching (includes type of request), memory request

matching, tablewalk detection (includes type), and tablewalk level matching. A more

detailed description and suggested pairings of these conditions follows.

A breakpoint can be entered on portions of the virtual address (the output of the

virtual address multiplexing logic). These portions of the virtual address can be

combined with other conditions to make their match conditions more case specific as

shown in Table 5-35.

Table 5-34 TLB Entry Address Mapping

Virtual Address TLB Entry

0x0 Entry 0 PTE

0x4 Entry 1 PTE

: :

0x78 Entry 30 PTE

0x7C Entry 31 PTE

0x80–0xFC Reserved

0x100 Entry 0 Tag[9:0]

0x104 Entry 1 Tag[9:0]

: :

0x178 Entry 30 Tag[9:0]

0x17C Entry 31 Tag[9:0]

0x180–0x2FF Reserved

0x300 Entry 0 Tag[41:10]

0x304 Entry 1 Tag[41:10]

: :

0x378 Entry 30 Tag[41:10]

0x37C Entry 31 Tag[41:10]

0x380–FFFFFFFC Reserved
104 microSPARC-IIep User’s Manual • June 1999

A breakpoint can be invoked on the particular type of memory request being sent

from the MMU to the MEMIF. This case is sampled when a memory request is

actually being issued (mm_issue_req = 1). This condition can be paired with two

other fields indicating the type of tablewalk occurring and the tablewalk level to

match (if memory request indicates a tablewalk) as shown in Table 5-36.

Table 5-35 Virtual Address Match Condition

Virtual Address Conditions Conditions to be Paired With

VA[31:00] ic_tlb & iu_fetch_f

VA[31:01] (valid instruction fetch - D stage)

VA[31:02] dc_tlb & read_w

[31:03] (valid data read - W stage)

VA[31:12] dc_tlb & write_w

VA[31:18] (valid data write - W stage)

VA[31:24] dc_tlb & ldsto_w

VA[10:02] (valid data atomic op - W stage)

VA[11:02]

!VA[31:12] & VA[11:02]

!VA[31:11] & VA[10:02]
Chapter 5 Memory Management Unit 105

5.14.3 Additional Features

There are other features that can be used for microSPARC-IIep debug. Some of these

features are enabled using Processor Control register bits. Software tablewalks can

be enabled by asserting PCR[23], the STW bit. For tablewalks in this mode—for

instruction and data tablewalking respectively—the MMU causes the

instruction_access_MMU_miss and data_access_MMU_miss traps to be done by

software.

Table 5-36 Memory Request Type

Name Definition

NOP No memory operation

RD64 Read of 64 bits (2 words)

RD128 Read of 128 bits (4 words)

RD256 Read of 256 bits (8 words)

WR8 Write of 8 bits (1 byte)

WR16 Write of 16 bits (2 bytes)

WR32 Write of 32 bits (1 word)

WR64 Write of 64 bits (2 words)

Tablewalk Type

None No tablewalk in progress

ic_tlb_tw Tablewalk from instruction fetch

dc_tlb_tw Tablewalk from data reference

Tablewalk Level

Root Level

Level 1

Level 2

Level 3
106 microSPARC-IIep User’s Manual • June 1999

CHAPTER 6

Data Cache

6.1 Overview
The microSPARC-IIep data cache is an 8 kilobyte, direct-mapped cache that is used

on load or store accesses from the CPU to cacheable pages of main memory. It is

virtually-indexed and virtually-tagged. The write policy for stores is write-through

with write allocate. The data cache is addressed by iu_dva[12:0] and it is organized

as 512 lines of 16 bytes of data, each line of which has a cache tag associated with it.

There is no sub-blocking. On a data cache miss to a cacheable location, 16 bytes of

data are written into the cache from main memory.

Within the data cache block there are cache bypass paths. These paths are used for

non-cached load references, and for streaming data into the integer unit and

floating-point unit on cache misses.

A simple block diagram is shown in Figure 6-1.
107

Figure 6-1 Data Cache Block Diagram

6.2 Data Cache Data Array
Since the data cache is a write-through cache, all write operations trigger an update

of main memory. On cache misses, the missed cache line is read from memory into

the cache (that is, write allocate). This avoids stale data remaining in the virtual data

=?

iu_dout[63:00]

2:1

1
9

iu_dva[31:00]

COUNTER

1

 19

DATA
CACHE
DATA ARRAY

(1024 x 64 bits)

(512 x 19 bits) (x 3)

CONTEXT

(512 x 8)

DATA
CACHE
TAG ARRAY

misc [31:0]

dc_hit

WRITE
ENABLE
CONTROL

8

3

WRITE

[2:0][3]
[12:4]

[31:13]
2:

1
2:1

iu_dva - Data virtual Address
iu_dout - Store bus from IU/FPU

 - Diagnostic use

KEY:

dc_dbus - Data Bus to IU/FPU
cache_fill - Memory cache fill Bus
WRB - Write Buffer

2:1

10
9 WRB0

2:1

dc_dbus[63:00]

WRB1

WRB2

WRB3

to fputo iu

V ACC

[31:13]

64

cache_fill[63:0]

64

64

64

64 64

Write Buffer
 (DATA)

3

iu_size[1:0]

[12:4]

[12:4]

ROTATOR
and ENDIAN
Conversion

32

ENDIAN
Conversion
108 microSPARC-IIep User’s Manual • June 1999

cache owing to aliasing. This write-through with write allocate policy makes the

data cache controller design more uniform than would be the case for a write-

invalidate policy, since load misses are also handled in a similar way.

Diagnostic software can read and write the data cache directly by executing load or

store alternate space instructions of any size, in ASI space 0xF. Virtual address bits

VA[12:0] index the cache line in this mode (addresses roll-over to the proper cache

line, modulo 512 cache lines). All other virtual address bits (addresses rollover), as

well as the context bits, ACC bits and the valid bit are ignored during ASI=0xF

operations.

There are two input sources to the data cache data array. The IU data_out bus

(iu_dout) is used when the data cache is updated on an integer or floating-point

store operation. The memory cache fill bus (cache_fill[63:0]) is used as input for fills

on data cache misses, and also for diagnostic ASI [0xC, 0xD, 0xE] loads.

6.3 Data Cache Tags
A data cache tag entry consists of several fields as shown in Figure 6-2.

Figure 6-2 Data Cache Tag Entry

Field Definitions:
■ [31:13]: Virtual Address Tag (VA TAG) — This field contains the virtual address of

the data held in the cache line.

■ [12]: Reserved (R) — Reserved.

■ [11:4]: Context bits — These eight bits indicate the context of the particular cache

line. They are filled from the TLB.

■ [3:1]: Access (ACC) — These three bits indicate various levels of protection for

that cache line. This field is copied from the TLB.

■ [0]: Valid (V) — When set, the cache line contains valid data. This bit is set when

a cache line is filled due to a successful cache miss; a cache line fill which results

in a memory parity error leaves the valid bit unset. Stores to ASI space (0x10-

0x14) conditionally clear the valid bits, as defined in The SPARC Architecture
Manual, Version 8. See also Section 6.10, Data Cache Flushing.

 V VA TAG[31:13]

31

 ACC

 13

R CONTEXT

 4 3 1 0 11 12
Chapter 6 Data Cache 109

■ R bit — This bit is reserved (Not to be confused with the Reference bit in the

TLB).

There are two input sources to the data cache tag array. The Virtual Address bits

(DVA[31:13]) are used for cache tag updates on data cache misses. The miscellaneous

bus (misc[31:0]) is used for store operations to ASI space (0xC, 0xD, 0xE) and to

empty the store buffer contents to main memory.

Diagnostic software can read and write the data cache tags by executing only word-

length LDA and STA (load and store alternate) instructions in ASI space 0xE. The

virtual address bits [12:4] select one of the 512 tags; all other address bits are

ignored.

Note – Due to different line sizes, the VA bits used to access the data cache are

different from those used to access the instruction cache.

6.4 Write Buffers
The write buffers (WRB) are four, 64-bit registers in the data cache block used to

hold data being stored from the IU or FPU to memory or other physical devices.

WRB temporarily holds the store data until it is sent over the misc bus to the

destination device. For halfword or byte stores, this data is left-shifted (with zero-

fill) and replicated into proper byte alignment for writing to a word-addressed

device (and the resulting word is replicated to make a 64bit doubleword), before

being loaded into one of the WRB registers. There is no diagnostic read/write access

to the WBR registers. The WRB is emptied prior to (actually before completion of) a

load or store miss cache line fill sequence to avoid any stale data from being read in

to the data cache on a miss to a virtual alias. Thus no snoop logic is needed to check

for any data hazards between the WRB and the data coming back from main

memory.

The address portion of the WRB contains virtual addresses rather than physical

addresses. Thus the need for translation on store hits is avoided until the store is to

be written to memory. The WRB is filled from the data cache controller and it is

emptied by the MMU controller. There is an array of four valid bits associated with

each entry of the WRB. On a store which traps, the WRB is properly flushed by the

data cache controller, while the IU pipeline is held by that controller. This is

necessary because the WRB is written at the end of the E-stage, and the store could

trap in the W-stage of the pipeline.

The microSPARC-IIep CPU has a fifth bit for each write buffer. This bit holds the

endian mode setting for the register at the time the entry is written.
110 microSPARC-IIep User’s Manual • June 1999

6.5 Data Cache Fill
A 16-byte cache line is fetched from memory on a data cache miss. The requested

doubleword is always returned first followed by the other doubleword, which wraps

around a 16-byte boundary until the entire 16-byte block has been returned. The

transfer rate is one doubleword every four to five cycles from memory (one double

word, then 3 or 4 dead cycles)—see Section 5.8.5, MID Register for MID register and

memory speed select for timing.

The cache array is written one clock cycle after each word appears on the cache_fill

bus.Table 6-1 illustrates the fill operation showing the order in which words are

written into the cache.

During the write cycles of a cache fill, data can be bypassed (or streamed) to the IU

or FPU, one cycle after it appears on the cache_fill bus. During the dead cycles, data

from any line in the cache can be written or read by subsequent load or store

instructions.

On a cache miss for both loads and stores, the IU waits in the W-stage while the

protections are being checked in the TLB. It resumes execution when the first

requested word of the line is returned from memory.

6.6 ASI/STore Bus Interface
The data cache block interfaces to the misc bus for ASI ST/LD operations. Data from

the data cache block to misc bus comes from the WRB. Control signals from the

MMU and Memory Controller indicate when data is on the cache_fill bus, for

loading into the data cache, and when data from the write buffer is to be driven onto

the misc bus.

Table 6-1 Data Cache Fill Ordering

Requested Word Order of Fill

0 (0, 1), (2, 3)

1 (0, 1), (2, 3)

2 (2, 3), (0, 1)

3 (2, 3), (0, 1)
Chapter 6 Data Cache 111

6.7 Cache Fill Bus Interface
The data cache is filled by a separate 64-bit bus, the cache_fill bus, from main

memory. Because this bus is separated from other buses on the chip, it can be

performance tuned without incurring a large chip area. In addition, this separation

makes, it possible to use a 64-bit cache fill, rather than a 32-bit fill. The Cache Fill bus

can also be bypassed directly (after being latched inside the Data RAM) to the IU

and FPU, through a multiplexer in the data RAMs. This bypass path is used for

streaming and for non-cached loads.

6.8 IU/FPU Data Bus Interface
The data cache block interfaces to an input and output IU/FPU data bus (iu_dout

and dc_do). Data to the IU or FPU is either sourced from the latched output of the

cache_fill bus (for streamed data on data cache misses, and for non-cached loads) or

from the data cache (for data cache hits). Load data to the IU/FPU has to pass

through a “rotator” block, which aligns the 64-bit word from memory or the cache to

the IU/FPU. Data from the IU or FPU on store operations is loaded into the WRB

and written into the cache RAMs. The interface to the FPU is 64 bits wide for both

LD’s and ST’s, whereas the IU only has a 32 bit interface.

6.9 Endian Conversion
Two bits of the processor state register (PSR) control the endian conversion blocks.

Refer to Section 3.13, Compliance With SPARC Version 8 on page 40.

6.10 Data Cache Flushing
The data cache tags are implemented with all the five flush mechanisms (page,

segment, region, context and user) as suggested in the SPARC Reference MMU

appendix of The SPARC Architecture Manual, Version 8. These mechanisms are
112 microSPARC-IIep User’s Manual • June 1999

activated by word size store instructions to ASI 0x10 - ASI 0x14. The addressed data

cache line’s (addressed by iu_dva[12:04]) valid bit is reset to zero by this operation,
if it matches the flush address.

The store alternate flush using ASI 0x10 to ASI 0x14 flushes both the data cache and

the instruction cache, although not necessarily in exactly the same clock cycle.

Another way to flush both the caches is by explicitly writing a 0x0 into the valid bit

of the cache line using the cache tag diagnostic ASIs 0xC for the instruction cache

and 0xE for the data cache. Doing this resets the valid bit of the addressed cache line

(addressed by iu_dva[12:04] in the data cache).

Note – The data cache is not flushed by the FLUSH instruction but the addressed

instruction cache line is flushed.

A cache line is flushed if it meets the minimum criteria given in Table 6-2. S is the

supervisor bit, U is the inverse of S, CNTXT is the matching of the context register

and tag context, and VA[31:xx] is a comparison based on the virtual address tag.

6.11 Data Cache Protection Checks
The data cache tags also incorporate three access permission bits (ACC[2:0]) for

checking access violations. These bits detect a protection or privilege exception in

the W-stage, so that protection traps can occur in this stage. This decouples the

virtually-addressed data cache from the TLB for a lot of cases. Load and store

instructions that hit in the cache do not need the corresponding TLB entry to be

present in the TLB although stores do need a translated physical address when they

are ultimately drained from the WRB to main memory. If a store instruction creates a

protection violation, the corresponding data cache line is invalidated. This action is

necessary because the protection check signal is slower than the write to the data

cache.

Table 6-2 Flush Criteria for ASI 0x10-0x14

ASI[2:0] Flush Type Compare Criterion

0 Page (S or CNTXT) and VA[31:12]

1 Segment (S or CNTXT) and VA[31:18]

2 Region (S or CNTXT) and VA[31:24]

3 Context U and CNTXT

4 User U

5, 6 reserved -
Chapter 6 Data Cache 113

6.12 Cacheability of Memory Accesses
Pages that are declared as non-cacheable (C=0 in the PTE) are not cached in the data

cache. For data consistency and implementation reasons, the following data are also

not cached:

■ Accesses when the MMU is disabled and alternate cacheability is disabled (EN,

AC bits of the MMU PCR=0). See Section 5.4, Address Space Decodes on page 69 for

more information.

■ Accesses while the data cache is disabled (DE bit of the MMU PCR=0). See

Section 5.7.1, Processor Control Register.

■ Accesses while alternate cacheability is disabled (AC bits of the MMU PCR=0).

■ Accesses to any ASI except 0x8, 0x9, 0xA and 0xB.

■ Accesses to any non-memory physical address (i.e., PA[30:28]) 0x1, 0x3, 0x4, 0x5,

0x6, 0x7). See Section 5.4, Address Space Decodes on page 69 for more information.

Flash memory space (PA[30:28]=0x2) is cacheable.

■ Accesses while in boot mode.

■ Accesses by the MMU during tablewalks.

Note – An ST instruction to a non-cached address in ASI space 0x8, 0x9, 0xA and

0xB, invalidates the corresponding data cache line. This is because the ST has

already updated the data RAM by the time the cacheable information is available.

This information is usually in the MMU. for example, the TLB PTE.C bit.

Flash Prom space (PA[30:28]==0x2) may be cacheable.

6.13 Data Cache Streaming
When the first half of the data cache line is brought back from main memory, the IU

pipeline is released by the data cache controller for both load and store instruction

misses. During the period from the time the first half of the cache line is back until

the second half of the cache line is filled, most instructions in the IU are allowed to

proceed or stream, except in the following cases:

■ LD/ST instructions to any ASI space other than 0x8 to 0xB.

■ LD/ST instructions that access the second half of the missed cache line.

■ Any instruction issued one cycle after a parity error is detected on a cache line fill.
114 microSPARC-IIep User’s Manual • June 1999

■ A store instruction issued one cycle before the second half of a line-fill cycle, due

to resource conflict (both the IU and the data cache controller are trying to write

the data-cache RAM).

The four-deep write buffer allows stores to continue execution during a cache miss.

However, the pipeline is held if the write buffers become full during this streaming.

6.14 PTE Reference Bit Clearing
Many paging-based operating systems use the referenced bit (R bit) in the page table

entry (PTE) to approximate least recently used (LRU) behavior in accessing

frequently used pages quickly. Clearing the referenced bit of a PTE could be costly in

the microSPARC-IIep CPU because clearing the R bit of a PTE entails flushing that

page from the instruction and data caches, and the microSPARC-IIep CPU has

virtual caches and no flush clear instruction. The cost of flushing is twofold:

■ The cycles spent in flushing each line of the cache.

■ The loss of cycles due to extra cache misses as a result of the cache line

invalidations.

To avoid both of these problems, do not flush the instruction and data caches when

the reference bit of PTE is reset.

This action could mean that some recently referenced pages get thrown out

unnecessarily, but this should not happen often in practice. This scheme nearly

approximates the original LRU behavior, and it works on the following paradigm:

If a page is frequently accessed, it generates at least one cache miss which is enough

to make the MMU do a tablewalk (and hence set the R bit back to 1), before the

operating-system daemon re-examines the R bit. This statement is based on the

observation that, on average, if a page’s R bit is reset, and this page is frequently

accessed, there will be at least one cache miss to that page which forces the MMU to

set the R bit back to 1 quickly.

6.15 Powerdown
The data cache RAM and tag RAM are both powered down to conserve energy

during cycles when they are not used by the data cache controller. Powerdown is

initiated by:

■ The external standby pin
Chapter 6 Data Cache 115

■ The MID register bit

■ The data cache controller state machine

Externally, the data cache controller follows a simple two-way handshake protocol of

request/grant to go into powerdown mode. The data cache controller also holds the

IU pipeline during this period. For more on this refer to Chapter 11, Mode, Timing,
and Test Controls.

Internally the data cache controller goes into powerdown mode during various state

machine states, when the data RAMs and tags are both not needed. This is because

the RAMs and the tags both share the same powerdown control signal.

6.16 Diagnostic Strategy
Sublines and cache tags may be both read and written using ASI 0xF and 0xE

respectively as previously discussed.

6.17 Parity Errors
Parity errors occurring on data cache line fill invalidate only that particular cache

line being filled when the parity error occurred. Parity errors during non-cached

misses do not cause any invalidations.
116 microSPARC-IIep User’s Manual • June 1999

CHAPTER 7

Instruction Cache

7.1 Overview
The microSPARC-IIep instruction cache is a 16-kilobyte, direct-mapped cache. It is

accessed on CPU instruction fetches from cacheable pages of main memory. It is

virtually-indexed and virtually-tagged. The instruction cache is normally addressed

by iu_iva[13:0] and is organized as 512 lines of 32 bytes of data. Each line has a cache

tag store entry associated with it. There is no sub-blocking. On an instruction cache

miss to a cacheable location, 32 bytes of data are written into the cache from main

memory. The Instruction cache tags contain an 18-bit IVA[31:14] tag field, an 8-bit

context field, 3-bit ACC field, and one valid bit.

Within the instruction cache block there are also cache bypass paths. These paths are

used for non-cached instruction fetches, and for streaming instructions into the IU

on a cache miss. A simple block diagram is presented in Figure 7-1.
117

Figure 7-1 Instruction Cache Block Diagram

2:1

ic_ibus[63:0]iu_iva[31:2]

INSTRUCTION
CACHE
DATA ARRAY

(2Kx 64 bits)

misc[31:0]iu_dva - Data Virtual Address
iu_iva - Instruction Virtual Address

 - Diagnostic use

KEY:

ic_ibus - Instruction Bus to IU
misc - miscellaneous bus

2:1

2:1

2

Counter
2

18

[3:2]

[13:4]

11
9

2:1

iu_dva[13:2]

2:1

cache_fill bus

=?

(512 x 19 bits) (x 3)

CONTEXT

(512 x 8)

INSTRUCTION
CACHE
TAG ARRAY

ic_hit

V ACC

64 64

64

64

18

4 ENTRY
I-QUEUE

64

9

[31:14]

18
[31:14]

[13:5]
118 microSPARC-IIep User’s Manual • June 1999

7.2 Instruction Cache Data Array
Diagnostic software may read and write the instruction cache directly by executing a

single word load or store alternate space instructions in ASI space 0xD. Virtual
address bits iu_dva[13:2] are used to address the instruction cache in this mode. All

other virtual address bits (addresses rollover), as well as the Context bits, ACC bits

and the Valid bit are ignored during these operations.

The internal misc[31:0] data bus is used as input/output for ASI operations, and the

cache_fill[63:0] bus is used to fill the Instruction cache on instruction cache misses.

7.3 Instruction Cache Tags
An instruction cache tag entry consists of several fields shown in Figure 7-2.

Figure 7-2 Instruction Cache Tag Entry

Field Definitions:
■ [31:14]: Virtual Address Tag (VA TAG) — This field contains the virtual address of

the data held in the cache line. The instruction cache controller writes this field

from bits [31:14] of the virtual address (iu_iva) of the line.

■ [13:12] — Reserved.

■ [11:4]: Context bits — These indicate the context of the particular cache line. They

are filled from the TLB.

■ [3:1]: Access (ACC) bits — This 3-bit field indicates various levels of protection

for that cache line. The field is copied from the TLB (see Table 5-2 on page 66).

■ [0]: Valid (V) — When set, the cache line contains valid instructions. This bit is set

when a cache line is filled due to a successful cache miss; a cache line fill that

results in a memory parity error leaves the valid bit cleared. A flush instruction

clears the valid bit of the single line that is addressed by iu_dva[13:5] only if the

tag for the addressed line matches the flush address. See Section 7.8, Instruction
Cache Flushing.

 V VA TAG

31

ACC

 14 13 12 11 4 3 1 0

CONTEXTR
Chapter 7 Instruction Cache 119

There are two input sources for the instruction cache tag array. The virtual address

bits needed for the tag are used for cache updates due to instruction cache misses.

The misc bus is used as input for alternate store operations.

Diagnostic software can read and write the instruction cache tags by executing

word-length LDA and STA (Load and Store Alternate) instructions in ASI space

0xC.; dva bits [13:5] select one of the 512 tags; all other address bits are ignored.

Note – Due to different line sizes, the VA bits used to access the instruction cache

are different from those used to access the data cache.

7.4 Instruction Hit/Miss
Data is fetched from memory on instruction cache misses in 32-byte blocks. Memory

returns 32 bytes of data, starting with the requested double word followed by the

three remaining double words (even double word, then odd double word), which

wraps around a 32-byte boundary until the entire 32-byte block is returned. The

transfer rate is one double word every four or five cycles from memory (one

doubleword, then 3/4 dead cycles). The cache array is written during the cycle that

each word appears on the cache_fill bus[63:0]. Table 7-1 illustrates the fill operation

showing the order that words are written into the cache. Depending on the “sp_sel”

memory speed selection setting of the microSPARC-IIep CPU, there is a gap of some

(usually 3 or 4) internal clocks in between every two words filled into the cache.

Table 7-1 Instruction Cache Fill Ordering

Requested Word Order of Fi.ll

0 (0, 1), (2, 3), (4, 5), (6, 7)

1 (1, 0), (2, 3), (4, 5), (6, 7)

2 (2, 3), (4, 5), (6, 7), (0, 1)

3 (3, 2), (4, 5), (6, 7), (0, 1)

4 (4, 5), (6, 7), (0, 1), (2, 3)

5 (5, 4), (6, 7), (0, 1), (2, 3)

6 (6, 7), (0, 1), (2, 3), (4, 5)

7 (7, 6), (0, 1), (2, 3), (4, 5)
120 microSPARC-IIep User’s Manual • June 1999

During an instruction cache fill, instructions from the missing line can be supplied to

the IU or FPU by means of two separate mechanisms, collectively called streaming. In

the first type of streaming—bypass streaming—instructions are bypassed around the

cache data array to the IU/FPU in the same cycle that the array is being written.This

action can occur in all clock cycles of the fill sequence except the gap cycles. The

second form, gap streaming, occurs only during the gap cycles. Any instruction

word, from any line in the cache, that has already been written into the RAM array

can be accessed by reading the array. In a given cycle, the IU is able to accept

immediately the instruction word that it needs and instruction words that it may

need in the future (prefetching). If, in a given cycle, the IU requests a word that is

available via streaming, that word is supplied to the IU and the pipeline is allowed

to advance. The concept of streaming does not apply to non-cached instructions, as

the IU does not have to be held for a cache fill.

7.5 IASI Bus Interface
The instruction cache block interfaces to the misc bus for ASI operations. Data from

the misc bus to the instruction cache comes from the write buffer. There are control

signals from the MMU to indicate when data on misc[31:0] is to be loaded into the

instruction cache.

7.6 ICache fill Bus Interface
The instruction cache is filled by a separate 64-bit bus, cache_fill[63:0], from main

memory. Because this bus is separate from the other misc[31:0] bus on the chip, this

bus can be tuned for higher performance. Using a 64-bit bus, rather than a 32 -bit

one, gives the microSPARC-IIep CPU a shorter cache fill latency.

7.7 IU Instruction Bus Interface
The instruction cache block drives the ic_ibus, the IU instruction bus. Instructions to

the IU or FPU are sourced from either the latched value of the cache_fill bus—for

bypass-streamed instructions on instruction cache misses, and for non-cached

instruction fetches—or from the instruction cache data array for instruction cache

hits, and for dead-cycle streamed instructions on instruction cache misses. The IU

also fills the I-queue from this bus(ic_ibus).
Chapter 7 Instruction Cache 121

7.8 Instruction Cache Flushing
The instruction cache tags are implemented with all five flush mechanisms: page,

segment, region, context and user, as suggested in the SPARC Reference MMU
Architecture appendix of The SPARC Architecture Manual, Version 8. They are activated

by word length alternate store instructions to ASI=0x10 to ASI=0x14. The IFLUSH

instruction also can be used to flush the instruction cache. In both cases, the addressed
(by iu_iva[13:05]) instruction cache line’s valid bit is reset if the corresponding tags

match. The match criterion is determined by the type of flush instruction. The

instruction queue is not flushed on an instruction cache flush because the maximum

depth of the instruction queue is only four instructions and the IU disables any more

instruction fetches when it decodes an instruction cache flush opcode in the D-stage.

The SPARC Architecture Manual, Version 8 allows five instructions after an instruction

cache flush instruction, for the IU to make the pipeline, instruction queue, and

instruction cache consistent. For the data cache, the instruction tag diagnostic

ASI=0xC can be used to reset the valid bit.

It is recommended that the instruction cache be flushed whenever the referenced bit

(R bit) of any cacheable line is reset in the corresponding entry in the page tables.

Note – To maintain consistency, software must flush the instruction cache whenever

the ACC bits or the C bit of a cacheable location is changed in the corresponding

entry in the page tables.

A cache line is flushed if it meets the minimum criteria given in Table 7-2, where S is

the supervisor bit, U is the inverse of S, CNTXT is the matching of the context

register and tag context, and VA[31:xx] is a comparison based on the virtual address

tag.

Table 7-2 Flush Criteria for ASI 0x10–0x14

ASI[2:0] Flush Type Compare Criterion

0 Page (S or CNTXT) and VA[31:12]

1 Segment (S or CNTXT) and VA[31:18]

2 Region (S or CNTXT) and VA[31:24]

3 Context U and CNTXT

4 User U

5, 6 reserved –
122 microSPARC-IIep User’s Manual • June 1999

7.9 Cacheability of Memory Accesses
Pages that are declared as non-cacheable (C=0 in the PTE) are not cached in the

instruction cache. For data consistency and implementation reasons, the following

instruction fetch operations are not cached regardless of the state of the PTE.C bit.

■ Accesses when the MMU is disabled and alternate cacheability is disabled (EN,

AC bits of the MMU PCR=0). Refer to Section 5.7.1, Processor Control Register.

■ Accesses while the instruction cache is disabled (IE bit of the MMU PCR=0). Refer

to Section 5.7.1, Processor Control Register.

■ Accesses that occur while in boot mode.

■ Accesses to sources in physical address spaces 1-7. See Section 5.4, Address Space
Decodes for more information. Flash memory space (PA[30:28]=0x2) is cacheable.

Note – Flash PROM space (PA[30:28]==0x2) may be cacheable.

7.10 Diagnostic Strategy
Sublines and cache tags may both be read and written using ASI 0xD and 0xC

respectively.
Chapter 7 Instruction Cache 123

124 microSPARC-IIep User’s Manual • June 1999

CHAPTER 8

Memory Interface

8.1 Overview
The memory interface provides tight coupling between the processor core and the

external memory. The important features include:

■ Support for 256 megabytes of system DRAM

■ 64-bit data bus to increase memory bandwidth.

■ 1-bit parity per word (32 bits) for reduced cost; parity checking can be disabled.

■ Support for different density devices by dividing memory into blocks. This allows

relatively small memory increments with a small number of blocks.

■ Usage of compatible EDO DRAM that meets fast-page mode DRAM timing is

allowed (provided it meets the conditions described in Section 8.2.

■ Support for dual-RAS and single-RAS modes. In dual RAS mode even and odd

RAS can be active together.

■ Support for the next generation of DRAM devices by allowing for future higher

memory requirements.

The microSPARC-IIep Memory Interface block is logically divided into three

subsections, the Memory Control Block (MCB), The Data Aligner and Parity check/

Generation Logic (DPC) and the RAM Refresh Control (RFR).

Typically a carefully laid out system board using the microSPARC-IIep chip requires

60 ns, 3.3 V/5 V DRAMs at 100 MHz clock speed. however, the designer should use

the memory interface AC specifications in the microSPARC-IIep datasheet to select

the appropriate DRAM speed for a specific system and clock speed.
125

8.2 Memory Organization
The microSPARC-IIep architecture defines a 28-bit physical address space for

memory (with PA[30:28] = 0x0). This supports a 256 megabyte block for system

DRAM. See Appendix B, Physical Memory Address Map.

This 256 MB is divided into eight banks, each capable of addressing up to 32

megabytes. The banks are defined as follows:

■ Each bank is selected by a separate RAS line. There is a total of eight RASs

(RAS_L[7:0]) for eight DRAM banks.

■ The banks have 64-bit data paths to the microSPARC-IIep CPU.

■ Banks 0, 2, 4, 6 use the same 2-bit CAS lines (CAS_L[1:0]) to select the upper or

lower 32 bits (high or low word).

■ Banks 1, 3, 5, 7 use the other 2-bit CAS lines (CAS_L[3:2]) to select the upper or

lower 32 bits (high or low word).

■ All the banks use the same write signal (MWE_L) and same output enable

(MOE_L, required for EDO RAMS only). Fast-page mode and EDO DRAMs

cannot be mixed within the same system unless their output RAM enables can be

connected to the microSPARC-IIep memory output enable pin MOE_L.

■ All the banks use the same 22-bit multiplexed row/column address bus

MEMADDR[11:0].

The memory interface is designed with the 4-bit wide DRAM devices in mind. To

provide a 64-bit wide data bus, 16 such devices (or two SIMMs with eight devices on

each) are required. Each bank requires two additional 1-bit wide devices of the same

depth (if using SIMMs, one on each SIMM) to store the two parity bits. Hence, each

bank can be populated using one of the configurations listed in Table 8-1.

Table 8-1 Memory Bank Population

Size of Data Width of Data Bus Configuration

8MB 64
16 1Mx4 devices for data and 2 1Mx1 for parity

2 1Mx33 SIMMs

16MB 64
8 2Mx8 devices for data and 2 2Mx1 for parity

2 2Mx33 SIMMs

32MB 64
16 4Mx4 devices for data and 2 4Mx1 for parity

2 4Mx33 SIMMs
126 microSPARC-IIep User’s Manual • June 1999

8.2.1 Access to Unused or Unpopulated Memory

Regions

If a bank contains less than the defined maximum of 32 megabytes, the real memory

is mirrored on to the higher unused sections of the bank. Any access to the unused

sections is mirrored to the corresponding location in the lowest block and no errors

are generated. For example, if a bank contains 8-megabytes of real memory, this

memory is mirrored on the remaining three empty 8 megabyte sections.

However, access to a completely empty bank results in undetermined data that may

cause a parity error.

8.2.2 Dual-RAS Mode

Two basic modes of operation are supported as controlled by the SIMM32_SEL input

pin:

■ When this input pin is hardwired low, the memory interface operates in dual RAS

mode. In this mode, an even and odd RAS are allowed to be active

simultaneously. The CAS lines are also qualified by even or odd block.

CAS_L[1:0] are qualified with even banks (physical address bit 25 = 0) and

CAS_L[3:2] are qualified with odd banks (physical address bit 25 = 1). Using this

technique, an even and odd RAS_L line can be active without conflict on the

memory data bus. This mode is only supported with fast-page mode DRAMs in

configurations of 16 MB SIMMs (or less) and 32 MB DIMMs (or less). See the

dual-RAS mode configuration example in Figure 8-4. The two page-hit registers

support page mode operations while under dual-RAS mode. See Section 5.12,

Translation Modes on page 101 for more information about these two page-hit

registers.

■ When the SIMM32_SEL input pin is hardwired high, only a single RAS_L line is

allowed to be active and CAS_L lines are not qualified by even or add block

(CAS_L[1:0] and CAS_L[3:2] are logically identical). This allows support of EDO

DRAMs—without performance improvement—and 32 MB SIMMs. This mode

could result in up to a 5% performance loss. See the single-RAS mode examples in

Figure 8-5 and Figure 8-6 for usage of 32-megabyte FPM SIMMs and 32 megabyte

EDO DIMMs respectively.

Note – Any EDO memory module that has its output enable grounded internally is

currently not supported as this results in a drive conflict on the memory data bus.
Chapter 8 Memory Interface 127

8.2.3 Address Mapping For System DRAM

From the 31 bits of the physical address bus driven by the MMU block

(mm_pa[30:0]), the three MSBs (mm_pa[30:28]) represent one of the eight physical

address spaces (PAS) as defined in microSPARC-IIep architecture. From these, only

PAS0 is of concern to the MCB, since an MMU request from the MCB is only made if

an access to system memory is required. Hence ADEL ignores the mm_pa[30:28]

bits.

When a memory cycle request is detected (that is, PA[30:28] = 0x0), the address bits

PA[27:02] are used to generate DRAM column and row addresses and control

signals. Table 8-2 describes the decode scheme used for system memory.

A maximum of 1024 memory cycles can be made from a contiguous block, while

remaining within a DRAM page. This gives a maximum of 8K (1024x64) block size

that can theoretically be accessed using page mode cycles only.

Table 8-2 Physical Address Decode for System Memory

PA Decode

30-28 Not used. System memory limit is 256 MB.

27-25 Select 1 of 8 RASes (each bank is 32 MB):

000RAS_L[0]Bank 0 100 RAS_L[4] Bank 4

001RAS_L[1]Bank 1101 RAS_L[5] Bank 5

010RAS_L[2]Bank 2110 RAS_L[6] Bank 6

011RAS_L[3]Bank 3111 RAS_L[7] Bank 7

24 Row address bit 10 (MEMADDR[10]). Required for 16MBit DRAMs.

23 Column address bit 10 (MEMADDR[10]) and row address bit 11 (MEMADDR[11]).

Required for 16MBit DRAMs. See text for more information.

22 Row address bit 9 (MEMADDR[9]). Required for 4MBit DRAMs.

21 Column address bit 9 (MEMADDR[9]). Required for 4MBit DRAMs and up.

20-12 Row address bits 8 to 0 (MEMADDR[8:0]). Required for 1MBit DRAMs and up.

11-3 Column address bits 8 to 0 (MEMADDR[8:0]). Required for 1MBit DRAMs and up.

2 Select one of 4 CASes: (only qualified with PA[25] when SIMM32_SEL = 0)

0CAS_L[0]Lower address word (MEMDATA[63:32]) for banks 0,2,4,6. (PA[25] = 0)

1CAS_L[1]Higher address word (MEMDATA[31:0]) for banks 0,2,4,6. (PA[25] = 0)

0CAS_L[2]Lower address word (MEMDATA[63:32]) for banks 1,3,5,7. (PA[25] = 1)

1CAS_L[3]Higher address word (MEMDATA[31:0]) for banks 1,3,5,7. (PA[25] = 1)

1-0 Not used for external decode. Byte and halfword writes are achieved by a MCB and

DPC read, modify, write sequence. This bits are then used to select the appropriate

data fields.
128 microSPARC-IIep User’s Manual • June 1999

Table 8-2 shows the staggered decoding of PA[24:21] for MEMADDR[10:9]. This was

necessary in order to allow different size devices (1Mx4 and 4Mx4) to be used while

maintaining the largest common contiguous block, which is dictated by the least

dense device.

Also, as shown in Table 8-2, PA[23] is used as both MEMADDR[10] for column

address and MEMADDR[11] for row address. This supports two different 4Mx4

DRAM architectures, 11x11 matrix and 12x10 matrix.

The 4Mx33 SIMMs use the DRAMs based on 11x11 matrix (to allow the use of a

4Mx1 DRAM for parity). The microSPARC-IIep CPU also provides a 12th DRAM

address bit, which allows the 12x10 matrix DRAMs to be used.

Note – Byte and half word writes are converted to read-modify-write sequences

where the full word is read, updated with the byte or half word, and written beck to

DRAM.

8.3 Memory Control Block (MCB)
The Memory Control Block (MCB) keeps track of the priorities of memory

operations and completely controls the DRAM based main memory during the

memory operations:

■ data reads

■ writes

■ read-modified-writes required for CPU execution

■ instruction fetches and prefetches

■ translation buffer accesses during table walks

■ reads and writes by IO devices

■ all RAM refreshes

The MCB contains two major logic blocks, “ASM” and “ADEL” which perform

memory arbitration and address mapping functions respectively. These blocks are

described in the following subsections. The MCB also includes some input and

output register blocks, which provide input and output signal synchronization.

A schematic diagram of the MCB is shown in Figure 8-1.
Chapter 8 Memory Interface 129

Figure 8-1 Memory Control Block diagram

m
m

_i
ss

ue
_r

eq

RAM address/control
registers

ARASL[7:0]

ACASL[3:0]

ARCA[10:0]

mc_cyc[5:0]

MCB

m
m

_p
a[

27
:1

2]

m
m

_p
a[

4:
0]

MCB i/f latch & reg

m
m

_m
re

q[
3:

0]

CLK~

mc_rack_l

rf
_r

re
q_

l

m
m

_p
ag

e

mc_mbsy

mc_mstb_l

Address
Decode
&
Evaluate
Logic

ADEL

AMWEL

ADSF

CLK

GCLK

MCBPG

RAMCTL[4:0]

ROW

ra
s_

l[7
:0

]

m
w

e_
l

AMDTL

m
m

_c
ad

dr
[1

1:
3]

rf
_c

br

RST mc_dpct[5:0]

mc_state[8:0]

Arbitration
State
Machine

ASM
mc_odat_hld

pr
ec

ha
rg

e_
ea

rly

m
c_

re
fr

es
h

ca
s_

l[3
:0

]

m
em

ad
dr

[[1
1:

0]

ab
[[1

4:
12

]

m
oe

_l
130 microSPARC-IIep User’s Manual • June 1999

8.3.1 Arbitration State Machine (ASM)

The ASM detects the requests from the MMU and Refresh blocks, arbitrates between

them if necessary, and grants the appropriate request. Once a request is granted, the

MCB carries out the requested memory operation of one or more memory cycles.

Table 8-3 lists all the types of memory operations performed by the MCB, the

possible request sources and the type and number of cycles involved.

Table 8-3 Memory operations performed by MCB

Operation Source Memory Cycles produced

d.rd.32b MMU. Used to fill one line

of I-cache (Inst-Fetch).

32 bytes are read from DRAM in a single operation, using 4

longword (64bit) read cycles. The first read is paged or non-paged,

from the address given on PA. The following 3 reads are paged.

ADEL will supply the address for the next 3 reads, incrementing or

wrapping it as necessary, in order to read a 32 byte aligned block

and fill a whole I-cache line.

d.rd.16b MMU. Used to fill one line

of D-cache.

16 bytes are read from DRAM in a single operation, using 2

longword (64bit) read cycles. First read is a paged or non-paged

cycle, using the address supplied on PA. The next cycle is a paged

read, where ADEL will increment or wrap the address in order to

read a 16byte aligned block from memory.

d.rd.8b MMU. Used for IU

longword reads.

8 bytes are read from DRAM, using a paged or non-paged

longword read from the address supplied by PA.

d.wr.8b MMU. Used for IU

longword writes.

8 bytes are written to DRAM, using a paged or non-paged

longword write to the address supplied by PA.

d.wr.4b MMU. Used for IU word

writes.

4 bytes are written to DRAM, using a paged or non-paged word

write to the address supplied by PA.

d.rmw.2b MMU. Used for IU byte

writes.

a halfword (16bit) write to DRAM in a single operation, using a

paged or non-paged word read followed by a paged word write,

using the same address supplied by PA. MCB will perform the read

and write cycles and will instruct DPC to latch the 16bit write-data

from the source, insert it in the appropriate halfword of the word

read from memory and then gate it back on memory data-bus as

the write data.
Chapter 8 Memory Interface 131

8.3.2 Arbitration for Memory Access and ASM Priority

Scheme

All requests are checked at the end of each operation. For multi cycle operations, the

checking is done at the end of the last memory cycle. The MEMIF arbitration scheme

is based on the following rules.

■ If no requests are pending, the MEMIF enters the idle state and remains there

until a request is detected. If only one request is pending, it is granted and the

operation begins. If more than one request is pending, the one with the highest

priority is granted and the operation begins. The priorities are given as follows.

■ The MMU has the highest priority, except when the current cycle is also an

MMU request, in which case it is considered the lowest priority. This is to

prevent bus locking as a result of back to back MMU requests.

■ The PCIC has the second highest priority except when the current and last

cycles are also PCIC requests.

■ A DRAM refresh request has the lowest priority, except when the current cycle

is an MMU request, in which case it has a higher priority.

■ If a DRAM refresh request is detected while MEMIF is in idle, the state machine

advances to a check state, where it checks to see if an MMU request occurred just

as the DRAM refresh request was accepted. If there are no pending MMU

requests, MEMIF continues to acknowledge the DRAM refresh request and

perform a DRAM refresh. Otherwise, it services the MMU cycle.

d.rmw.b MMU. Used for IU byte

writes.

a byte (8bit) write to DRAM in a single operation, using a paged or

non-paged word read followed by a paged word write, using the

same address supplied by PA. MCB will perform the read and

write cycles and will instruct DPC to latch the 8bit write-data from

the source, insert it in the appropriate byte of the word read from

memory and then gate it back on memory data-bus as the write

data.

cbr.ref RFR. Used to do a refresh

cycle on all DRAM

Will force a Cas-before-Ras refresh cycle to be performed on all

DRAM banks with four banks refreshing at the same time.

d.wr.16b MMU. Unused. 16 bytes are written to DRAM in a single operation, using 2

longword (64bit) write cycles. First write is a paged or non-paged

cycle, using the address supplied by PA. The next cycle is a paged

write, where ADEL will increment.

Table 8-3 Memory operations performed by MCB (Continued)

Operation Source Memory Cycles produced
132 microSPARC-IIep User’s Manual • June 1999

8.3.3 Address Decode & Evaluate Logic (ADEL)

This block primarily monitors the address and function-select signals coming from

the MMU and RFR and performs the necessary decode and re-mapping of the

memory address and control lines. Based on commands received from ASM, ADEL

gates the low address (bits [4:3], and uses the result with the rest of the address bits

driven from MMU) and with memory control signals required for the current

memory operation.

The mapping of system memory is discussed in Address Mapping For System DRAM
on page 128.

8.4 Data Alignment and Parity Check/
Generate Logic (DPC)
During any read, write or hardware controlled read-modify-write cycle, DPC

performs the necessary data alignment and byte/halfword placement. It also

provides temporary storage for hardware-controlled read-modify-write cycles,

resulting from byte/halfword write cycles to memory.

The DPC also contains the parity generation and checking logic. The parity

comprises one bit per 32-bit word and is used for system DRAM only.

The type of parity operation for the system DRAM is determined by the state of the

parity control bit (PC) and the parity enable control bit (PE) in the MMU processor

control register. See Section 5.7.1, Processor Control Register on page 73 for the details.

Since system parity is one bit per word, any byte or halfword store operation results

in a hardware-controlled read-modify-write cycle. During the read part of such

operation, the word parity is checked and if an error is detected, a parity error is

generated. After the word has been updated to contain the new byte/halfword, a

write operation is performed, which also updates the parity. MEMPAR[0] is

associated with MEMDATA[31:0] while MEMPAR[1] is associated with

MEMDATA[63:32].

Table 8-4 Parity Control Definition

PC Description

0 Check/Generate even Parity

1 Check/Generate odd Parity
Chapter 8 Memory Interface 133

The data flow and type of operations performed by the DPC are governed by the

commands it receives from the MCB.

The DPC block diagram of Figure 8-2, shows the basic data paths connecting the 64-

bit external memory bus (b_memdata[63:00]) to the 32-bit internal one (misc[31:00]).

The parity check/generation logic is shown to be on the output path, but for input

data, parity is checked after it is clocked into the registers and gated through the

alignment multiplexer.

The alignment multiplexer is also used to combine and produce the output data

during a read modify write sequence. The complexity of this multiplexer is reduced

by having the byte or forward data which is to be written to memory, already in the

correct position. This is done by the block sourcing the data on the misc bus (D or I

cache, or IU).
134 microSPARC-IIep User’s Manual • June 1999

Figure 8-2 DPC Datapath and Parity Control Block Diagram

b_memdata[63:00]

P
A

-

PAR_IN[1:0

PARI[1:0]
mm_mden

mm_mdata_view

C
T

R
L[

19
:0

0]

C
T

R
L[

19
:0

0]

CTRL[19:00]

misc[31:00]

mm_oddmpar

POD[63:00

R
ID

[6
3:

00
]

RID[31:00]

RID[63:32]

P
ID

[6
3:

32
]

P
ID

[3
1:

00
]

P
ID

[6
3:

00
]

R
O

D
[6

3:
00

]

R
O

D
[6

3:
32

]

R
O

D
[3

1:
00

]

ROD[31:00]

out0

out1

in1

in0

Parity Generate/
Check Logic

b_mempar[1:0]

dp_perr[1:0]

Ctrl
logic

Byte-
wide2:1 mux

in0
mc_cyc[5:0]

mc_dpct[5:0]

mc_state[8:0]
mc_odat_hld

word-wide 2:1
 mux

mc_cfb_data[63:0]

out2

quad_sel]

word mux
Chapter 8 Memory Interface 135

8.4.1 RAM Refresh Control (RFR)

The refresh control logic (RFR) is a simple request generator, asserting a request to

MCB at fixed intervals. MCB will service this low priority request by performing a

CAS-before-RAS type refresh cycle on all system RAM. Banks 0, 2, 4, 6 and banks 1,

3, 5, 7 will have RAS’s asserted at a different cycle to reduce the magnitude of

current spikes.

Figure 8-3 RAM Refresh Control block diagram.

RFR refresh rate can be selected by programming three bits of the Processor Control

register according to the following table. These bits are then passed to RFR as

mm_rf_cntl[2:0] input bits, which controls the rf_rreq_l rate.

Table 8-5 Refresh Rate Control bits.

mm_rf_cntl [2:0] Refresh interval

0 0 0 Assert a refresh request once every 128 CLK periods. With this

setting, adequate refresh is guaranteed for CLK values of down to

8.6MHz. This is the default after power up.

0 0 1 No Refresh!

0 1 0 Assert a refresh request once every 704 CLK periods. With this

setting, adequate refresh is guaranteed for CLK values of down to

48MHz.

0 1 1 Assert a refresh request once every 896 CLK periods. With this

setting, adequate refresh is guaranteed for CLK values of down to

60MHz.

1 0 0 Refresh every 1216 CLK periods to run above 83 MHz.

7-bit sync’d
down cntr

RREQ

RFR

& misc. Ctrl

refresh
freq. decode

mm_rf_cntl[2:0]

clk/64
MCLK

rf_rreq_l

mc_rack_l

rf_cbr
136 microSPARC-IIep User’s Manual • June 1999

The RFR is also responsible for initializing the DRAMs on power-up.

After power-up and before they can be reliably used, DRAMs require a 500 µs wait pe-

riod followed by eight CAS-before-RAS refresh cycles.

For systems built around the microSPARC-IIep CPU, the reset must remain active for

at least 500us after power-up, to satisfy the Wait period. However, PCI subsystems re-

quire the source of the PCI reset signal to be stable 1.0ms after power has stabilized

and.1 ms after clocks have stabilized. microSPARC-IIep systems should guarantee an

active reset duration of 1.1ms or more.

After an active reset, the “mm_rf_cntl[2:0]” bits which reside in the MMU’s PCR regis-

ter are set to “000” (See Table 8-5), setting RFR to generate a refresh request every 128

clocks. In addition, RFR itself, asserts its “rf_cbr” and “rf_rreq_l” signals, forcing MCB

to enter a “cbr” state, where it performs eight CAS-before-RAS refresh cycles, complet-

ing the DRAM initialization cycle. After that, RFR negates both “rf_cbr” and

“rf_rreq_l” signals, allowing the MCB to proceed to its normal operation state.

8.5 Clock Speeds
The microSPARC-IIep memory controller is designed to operate over a variety of

clock frequencies, selected by means of speed select pins SP_SEL[2:0]. Table 8-6 lists

the four speeds available and the corresponding settings of SP_SEL[2:0].

1 0 1 Refresh every 5120 clocks for low refresh DRAMs.

1 1 0 Refresh every 1408 CLK periods to run above 100 MHz.

1 1 1 Refresh every 1792 CLK periods to run above 125 MHz.

Table 8-6 Processor Core Clock Speeds Available

sp_sel[2:0] Clock Value Comment

000 70 MHz Low speed

001 85 MHz Medium/low speed

010 100 MHz Normal speed

011 133 MHz High speed

100-111 – Reserved for higher speeds

Table 8-5 Refresh Rate Control bits.

mm_rf_cntl [2:0] Refresh interval
Chapter 8 Memory Interface 137

Wait states are inserted for medium speed compared to low speed; and higher

speeds use even more wait states. For example, low speed has a read bandwidth of

four cycles; medium speed, high speed and ultra high speed have 5, 6, and 7-cycle

read bandwidths, respectively. The microSPARC-IIep processor timing is designed

for systems that use 60 ns DRAM. Wait states and therefore the number of cycles of

read bandwidth must be increased at higher clock speeds to maintain sufficient

access-time margin for a given DRAM specification.

8.6 Summary of Cycles
Table 8-7 provides a summary of the number of cycles designed for different interface

signals to the DRAM at various speed selects. Only cycles that are important to

system usage are given here. This information provides the system designer with a

quick reference to evaluate which types of DRAMs may be suitable for the speed

select choice. Note that cycle numbers are given in terms of processor clock and not

PCI clock. Actual delays from clock to output of each pin may differ.

Table 8-7 Number of Cycles for Different Interfaces

Parameter
Specification
(ns)

Number of
cycles at
SP_SEL = 000

Number of
cycles at
SP_SEL = 001

Number of
cycles at
SP_SEL = 010

Number of
cycles at
SP_SEL = 011

t_RP 40 3.5 3.5 4.5 5.5

t_RAS (rd) 60 7.5 8.5 9.5 11.5

t_RAS (wr) 60 5.5 8.5 8.5 9.5

t_CP (rd) 10 1 1 2 2

t_CP (wr) 10 2 3 3 3

t_CAS (rd) 15 3 4 4 5

t_CAS (wr) 15 2 3 3 3

t_ASC 4 1 3 3 4

t_RAD, t_RAH 15-25, 10 1.5 1.5 1.5 1.5

t_RCD (rd) 20-40 3.5 3.5 4.5 5.5

t_RCD (wr) 20-40 2.5 4.5 4.5 5.5

t_DS, t_WCS 0, 4 1 3 - 2 3 - 2 4 - 2

t_DH, t_WCH 20, 19 2 3 3 3

t_RPC (ref) 10 2 2 2 2

t_CSR (ref) 15 1.5 1.5 2.5 3.5
138 microSPARC-IIep User’s Manual • June 1999

8.7 Memory Configurations
Memory configurations are illustrated in Figure 8-4, Figure 8-5, and Figure 8-6.

t_CHR (ref) 20 4.5 4.5 4.5 6.5

t_RAS (ref) 60 6.5 6.5 6.5 8.5

t_RAS (rmw) 111 13.5 15.5 17.5 18.5

t_CAS1 (rd) (rmw) 3 4 4 5

t_CAS2 (wr) (rmw) 2 3 3 3

t_CP (rmw) 4 5 6 7

Table 8-7 Number of Cycles for Different Interfaces

Parameter
Specification
(ns)

Number of
cycles at
SP_SEL = 000

Number of
cycles at
SP_SEL = 001

Number of
cycles at
SP_SEL = 010

Number of
cycles at
SP_SEL = 011
Chapter 8 Memory Interface 139

Figure 8-4 Dual-RAS Mode: Fast-Page Mode, 16-MB SIMMs (SIMM32_SEL=0)

x33 SIMM

x33 SIMM

x33 SIMM

x33 SIMM

x33 SIMM

x33 SIMM

x33 SIMMx33 SIMM

x33 SIMM

x33 SIMM

x33 SIMM

x33 SIMM

x33 SIMM

x33 SIMM

x33 SIMM

C
A

S
_L

[0
]

C
A

S
_L

[1
]

C
A

S
_L

[2
]

C
A

S
_L

[3
]

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7RAS_L[7]

RAS_L[0]

RAS_L[3]

RAS_L[2]

RAS_L[1]

RAS_L[6]

RAS_L[5]

RAS_L[4]

[63:32][31:0]

M
W

E
_L

x33 SIMM
140 microSPARC-IIep User’s Manual • June 1999

Figure 8-5 Single-RAS Mode: Fast-Page Mode, 32 MB SIMMs (SIMM32_SEL=1)

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

[63:32][31:0] M
W

E
_L

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

not used

not used

not used

not used

not used

not used

not used

not used

C
A

S
_L

[0
]

C
A

S
_L

[1
]

C
A

S
_L

[2
]

C
A

S
_L

[3
]

RAS_L[7]

RAS_L[0]

RAS_L[3]

RAS_L[2]

RAS_L[1]

RAS_L[6]

RAS_L[5]

RAS_L[4]
Chapter 8 Memory Interface 141

Figure 8-6 Single-RAS Mode: EDO, 32 MB DIMMs (SIMM32_SEL=1)

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

[63:32][31:0]

M
W

E
_L

M
O

E
_L

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

x66 DIMM

not used

not used

not used

not used

not used

not used

not used

not used

C
A

S
_L

[0
]

C
A

S
_L

[1
]

C
A

S
_L

[2
]

C
A

S
_L

[3
]

RAS_L[7]

RAS_L[0]

RAS_L[3]

RAS_L[2]

RAS_L[1]

RAS_L[6]

RAS_L[5]

RAS_L[4]
142 microSPARC-IIep User’s Manual • June 1999

8.8 Local Bus (IAFX bus to PCIC) interface
An internal only version of a Local Bus is used within the microSPARC-IIep to

interface to the PCI Controller. This internal version of the Local Bus is referred to as

the IAFX bus. In addition to the same transfer characteristics as the AFX bus that

were available in the microSPARC-II, the IAFX bus has the capability to allow

another master access to the IAFX bus to initiate transfers. The following paragraphs

explain how the PCIC accesses memory on behalf of PCI devices (DVMA).

The IAFX bus provides the interface from the PCIC to the microSPARC-IIep CPU. It

uses an internal version of the data and address bus that connects to DRAMs. The

microsparc-IIep allocates 256 megabytes of address space for the IAFX local bus

(PCIC) physical address access. The PCIC responds to these addresses. This space is

addressed by PA[30:28] being set to 011. The clock GCLK controls all transfers on the

IAFX bus and is obtained by dividing the processor’s clock by three. All internal

local bus signals have timing requirements with respect to GCLK. There are a page-

mode, and a non-page mode operation types depending on which address lines are

changed from the previous access to the local bus space. There is no parity checking

or generation associated with Local (IAFX) Bus access. (PCIC DVMA activity does

generate parity when the IAFX bus is connected to the memory bus for DVMA

writes to DRAM.)

The PCIC interface that connects to the IAFX bus has a four double-word deep FIFO

for store (PIO) buffering. To avoid potential time-out problem, microSPARC-IIep

allows 2.0 µs maximum operational latency for any Local Bus (IAFX) instructions.

Local Bus interfaces, such as that of the PCIC and any PCI devices that reside on the

PCI bus, should have a worst case latency of 2.0 µs, and an average latency of no

more than 1.0 µs. If the 2.0 µs worst case reply latency is violated, the integrity of

DRAM contents cannot be guaranteed.

To summarize the Local Bus (IAFX) interface features:

■ Non-cached direct processor access - including bytes, halfword, word and double

word access.

■ Cached direct processor access.

■ Full DMA access - supports sizes up to 32 bytes that microSPARC-IIep supports.

All non-burst mode DMA operations are required functionality. Burst mode

operations are consistent with existing design.

■ Page mode detection to Local Bus (IAFX and PCIC) access.

■ Suppressed parity checking.

■ Hold off on processor read access until slave’s write FIFO has zero or one writes

pending. Also hold off on processor write access until a slot is available in the

slave’s FIFO. See Section 5.8.14, Local Bus (PCIC Interface) Queue Level Register and

Section 5.8.15, Local Bus (PCIC Interface) Queue Status Register.
Chapter 8 Memory Interface 143

■ Time-out declared when no response from Local Bus slave (PCIC) for 2047 GCLKs

after the last request to Local Bus (PIO) is issued. This condition generates a Level

15 interrupt.

■ Support bandwidth of one GCLK cycle (3 CPU cycles) per write access; and two

GCLKs per read access.
144 microSPARC-IIep User’s Manual • June 1999

CHAPTER 9

PCI Controller

9.1 Overview
The PCI Controller (PCIC) provides a bridge function between the 64-bit, internal,

IAFX local bus and a 32-bit PCI bus. The high-bandwidth IAFX local bus can be

connected to the main MicroSPARC-IIep processor system DRAM. Transfers on the

IAFX local bus do not activate any external pins except when IAFX transfers to or

from the main DRAM are undertaken. In this case the signals to or from the DRAMs

are activated.

9.1.1 Features

The PCIC has the following key features.

■ Complete 32-bit PCI interface

■ Operation as host processor or intelligent satellite processor—see Figure 9-1

■ Programmed Input/Output (PIO) transactions between the CPU and PCI slave

devices

■ Up to four Master/Slave external 32-bit PCI subsystems in host mode

■ Direct Memory Access (DMA) transactions between PCI masters and host system

memory

■ 16-entry TLB provides address mapping from 32-bit PCI addresses to the 28-bit

DRAM physical addresses.

■ Direct transactions between PCI masters and PCI slaves.

■ Selectable clock speed: CPU clock frequency is a multiple of input PCI clock

frequency and pin-setting selectable
145

■ The PCI interrupt controller supports up to eight external interrupts (bidirectional

I/O pins) and generates interrupt vectors to the CPU. This controller can be

disabled by the user if external interrupt vector generation is required

■ Programmable configuration registers, always accessible from the CPU and

accessible from the PCI bus when the microSPARC-IIep processor is configured in

satellite mode

■ On-chip PCI arbiter (which can be disabled) supports four external masters

■ FIFO rate matching buffers between IAFX and PCI.

■ Two 32 bit counters or one 32 bit counter and one 64 bit timer.
146 microSPARC-IIep User’s Manual • June 1999

Figure 9-1 Host and Satellite microSPARC-IIep Modes

DRAM

RAS, CAS, WE

data (64)

adr (12)

PCI bus

load 3

load 2

load 1

load 0

Host IIep

memif

PCIC
Bridge

Internal Arbiter Enabled

DRAM

RAS, CAS, WE

data (64)

adr (12)

PCI bus IIep

IAFX
/AFX memif

PCIC

Internal Arbiter Disabled

Host Mode

Satellite Mode

IAFX
/AFX
Chapter 9 PCI Controller 147

9.2 Data Translation (Endian Modes)

9.2.1 Overview

The PCIC interface to the processor takes place across an internal version of the

IAFX bus. Refer to the AFX (Local) bus specification for details of the this bus. The

internal version of the AFX bus is referred to as the IAFX bus in this document.

Transfers across this IAFX bus do not activate external pins but the signals used and

their timing are similar to those applicable for external AFX bus operation.

The first consideration is that the PCIC uses little-endian bit format, where bit 31 is

the most significant bit, while SPARC uses a big-endian bit format, where bit 0 is the

most significant bit. Consequently, the PCI address bit AD 0 equates to SPARC

address bit 31, and the PCI address bit 31 equates to SPARC address bit 0.

The second consideration involves the byte ordering within the data that are

comprised of more than a single byte. For little-endian data the least significant byte

is stored at the lowest, or starting, address while the most significant byte is stored

at the highest, or ending, address. For big-endian data, the most significant byte is

stored at the lowest, or starting, address while the least significant byte is stored at

the highest, or ending, address. The PCIC translates the data and address internally,

with the IAFX interface numbered according to big-endian format. This allows for

straightforward system interconnect. The PCIC twists all data to little-endian format

by reordering the bytes as they are brought into the PCIC. Therefore each of the

PCIC internal FIFOs contain little-endian formatted address and data.

Refer to Section 1.4 for more information on endian support and operation.
148 microSPARC-IIep User’s Manual • June 1999

63 0

0

1

2

3

4

5

6

7

addr[2]=1 addr[2]=0
63 0

0

1

2

3

4

5

6

7
31 0

PCIC

PCI Bus

64-bit

63 0

Figure 9-2 PCIC Byte Twisting

AFX/IAFX

BusMemory
Chapter 9 PCI Controller 149

9.3 Memory Map and Address Translation
The PCIC memory map is defined within microSPARC-IIep as a 256-megabyte

physical address space, in the range 0x3000.0000–0x3FFF.FFFF. This region maps all

accesses to the PCI bus. The PCIC partitions this address space to memory map the

different PCI cycle types supported. Table 9-1 shows the fixed memory spaces for

Type 0 and Type 1 PCI configuration cycles (with indexed access through address

and data registers), PCI Special cycles, and a 64 kilobyte I/O cycle region that uses

standard ISA I/O addresses. The PCIC supports two programmable regions for

mapping the 28-bit IAFX physical address to the 32-bit PCI memory cycle physical

addresses. There is also one programmable region supported for PCI I/O cycle

types. The programmable memory map is discussed in the IAFX to PCI memory

map section.

The reset, and power-on, default memory map supports the fixed region decodes,

and allocates the remainder of the 256-megabyte IAFX address region to PCI

memory cycles (with no address translation, that is, AD[31:28] == 0). The fixed

portion of the PCIC memory map represents only one megabyte of the address space

that is reserved. The fixed I/O space region maps to the first 64 kilobytes of the PCI

I/O cycle region. This may be overlapped with the programmable PCI I/O space

region—see Section 9.3.1.

The mapping of PCI virtual addresses to microSPARC-IIep DRAM address is

described in the subsequent sections. This mapping is performed by the IOTLB,

which is managed by software. This is described in section 9.3.2.

Table 9-1 microSPARC-IIep Memory Map

PA[30:28] Address Space (256 MB partitions)

000 Main Memory (DRAM)

001 Control Space

010 Flash PROM (boot space available)

011 PCIC Bridge (boot space available)

100 Reserved Space

101 Reserved Space

110 Reserved Space

111 Reserved Space
150 microSPARC-IIep User’s Manual • June 1999

Note – The capability of booting executable code through the PCI bus is allowed

when the boot mode select pins are set to select booting from the PCI bus. In this

case, there must be a subsystem on the PCI bus that responds to the memory read

request immediately after reset, without configuration operations as are generated

by the PCIC bus master. Refer to Section 11.7 for a table of boot mode addresses.

9.3.1 IAFX to PCI Memory Map

The PCI memory address space and the PCI I/O address space are mapped into the

upper 255 megabytes of the PCIC physical address space. The map of PCI memory

and PCI I/O address spaces are controlled by a set of programmable registers,

known as translation registers. The translation registers provide software control for

mapping the PCI address spaces of the PCI bridge anywhere in the physical address

space. These registers work in concert with a fixed memory map for control, I/O and

configuration space specified in the first one megabyte. That is, these registers define

the expansion range of the specific memory maps. Although they may be

programmed to overlap control spaces, the control space definitions of the memory

map selected have precedence. The register set that accomplishes the mapping has

separate control for PCI memory and PCI I/O spaces. Table 9-2 illustrates possible

address space mappings.

Table 9-2 PCIC Fixed Memory Map

AFX (CPU) Physical Address2

2. Symbol key: a is a bit in an address; x is a bit whose value is ignored

PCI cycle Byte 0 Byte 1 Byte 2 Byte 3

I/O cycle (64 kB) 0011 0000 0000 0xxx aaaa aaaa aaaa aaaa

Configuration Address 0011 0000 0000 100x xxxx xxxx xxxx xxxx

Configuration Data
1

1. The three least significant bits of the physical address used to access the configuration data space must match
address specified by the configuration address register

0011 0000 0000 101x xxxx xxxx xxxx x***

PCIC Registers 0011 0000 0000 110x xxxx xxxx aaaa aaaa

Special cycle 0011 0000 0000 1110 xxxx xxxx xxxx xxxx

Interrupt Acknowledge 0011 0000 0000 1111 xxxx xxxx xxxx xxxx

Pass-through memory (without

SIMBARs)

0011 0000 (!= 0000) aaaa aaaa aaaa aaaa aaaa
Chapter 9 PCI Controller 151

Figure 9-3 IAFX to PCI Addressing

Figure 9-3 shows how the PCIC bridge might map the IAFX bus memory address to

the PCI bus. The PCIC monitors the address on the IAFX bus, and translates those

operations decoded to fall within the range specified by the SMBAR0/MSIZE0,

SMBAR1/MSIZE1 or SIBAR/ISIZE registers. The programmable size for each field

can be set to 32 megabytes, 64 megabytes, 128 megabytes, or the entire 256

megabytes. If the IAFX address falls within these ranges, the PCIC translates the

address using PMBARn/PIBAR to generate the appropriate PCI operation. There is

SMBAR1

MSIZE1

SMBAR0

MSIZE0

PCI I/O

PCI I/O

PMBAR1

ISIZE

SIBAR

PIBAR

+64 KB

0x3000.0000

0x3FFF.FFFF

PCI
MEMORY
SPACE 1

PCI
MEMORY
SPACE 1

PCI I/O ADDR PCI MEM ADDR

Fixed I/O PCI I/O

PCI
MEMORY
SPACE 0

PMBAR0

PCI
MEMORY
SPACE 0

IAFX Physical Address
152 microSPARC-IIep User’s Manual • June 1999

a built-in priority decode of the address, which resolves an overlapping address

space definition. The fixed address map has highest priority, followed by memory

translation registers—with 0 having higher priority than 1—and the I/O translation

register with the lowest priority. This priority decode can be used to define address

maps with regions other than the sizes specifically defined. The following equations

show how the PCIC derives the PCI address from the IAFX bus.

PCI address =

{(PMBARn[7:4]), ((IAFX PA[27:24] & ~MSIZEn[3:0]) | PMBARn[3:0]),(IAFX

PA[23:00])};

In these formulae, the 4-bit size field is used as a mask to remove the affected IAFX

address bits and allow the PCI address bits to be merged. The PMBARn and PIBAR

registers always prefix the most significant nibble (Addr[31:28]) on the resulting PCI

address. An address that is not translated is routed to the PCI bus untranslated.

Note – Any microSPARC-IIep processor-generated system memory or I/O

transaction on the PCI bus should not use addresses within the range accepted by

the PCIC slave. System memory operations on the PCI bus that are accepted by the

PCI slave interface, result in a memory operation request back to the IAFX bus. This

loopback condition is forbidden—see Section 9.3.2, PCI to IAFX Memory Map.

9.3.2 PCI to IAFX Memory Map

The PCIC allows PCI memory or I/O cycles to access the system DRAM from any

PCI master except the microSPARC-IIep host itself. The PCI memory and I/O

address range acknowledged (DEVSELd) by the PCIC is based on the value loaded

into one of the six PCI Base Address Registers (PCIBARn) and the value loaded in

the PCI address space Size register (PCISIZEn). These registers define the range of

virtual addresses that are accepted for memory or I/O transactions that are mapped

into the microSPARC-IIep DRAM.

Table 9-3 PCIC PIO Address Decode Priority

Priority Address space

1 (highest) Fixed address map (First 16 MB)

2 SMBAR0

3 SMBAR1

4 SIBAR

5 (lowest) Pass Through (256 MB)
Chapter 9 PCI Controller 153

PCI memory or I/O cycles cannot access any of the other address spaces defined in

the microSPARC-IIep memory map. These spaces must be reached by DMA

operations through memory. The software implementation should ensure that a

DMA access is within the range of populated memory because his task is not

performed by the hardware.

Figure 9-4 PCI to microSPARC-IIep DRAM mapping

0x0000.0000

0xFFFF.FFFF

PCI
MEMORY
SPACE 15

DRAM
MEMORY
SPACE 15

 DRAM ADDR (256 MB)

DRAM
MEMORY
SPACE 1

PCI
MEMORY
SPACE 1

PCI Memory Addresses

PCI
MEMORY
SPACE 2

256 kB
page

4 kB
page

PCIBAR and
PCISIZE select

16 MB
page

DRAM
MEMORY
SPACE n

Space n

256 kB
page

DRAM
MEMORY
SPACE 0

PCI
MEMORY
SPACE 0

DRAM
MEMORY
SPACE 2

up to 16
variable
page size
entries in
iotlb

256 byte
I/O page

I/O and Memory
Address for DEVSEL
154 microSPARC-IIep User’s Manual • June 1999

The mapping from an accepted (DEVSELd) PCI slave memory transaction to the

MicroSPARC-IIep DRAM memory is done by the IOTLB. The IOTLB provides a fully

associative 16-entry PCI to DRAM address mapping. The IOTLB is managed by

software with no table walking provided by hardware. All PCI mappings must be

put into the IOTLB before the DMA operation is started. An accepted PCI memory

address that does not match a translation entry has its address captured and an error

interrupt signaled. The memory operation completes using a direct mapped

(untranslated) address.

9.4 PCI Bus Interface
This section describes the microSPARC-IIep implementation of the PCI local bus. See

the PCI Specification reference in Bibliography on page 275. Table 9-4 lists the basic

PCI bus operations and restrictions.

9.4.1 Basic PCI Bus Operations/Restrictions

Table 9-4 Basic PCI Bus Operations and Restrictions

Operation Restriction

Addressing modes Only the linear incrementing addressing mode is supported.

Master/slave

modes

The microSPARC-IIep processor can either operate in Host Master mode

or Satellite, or slave, mode. In Host Master mode, the PCIC may use the

internal arbiter and generate PCI resets when appropriate. Also in Host

master mode, the generation of configuration operations as a PCI master

are supported. In Satellite mode, the internal arbiter is disabled and the

PCIC is not allowed to drive PCI reset. In satellite mode, PCI

configuration operations are supported. The req1_ pin is used as the idsel

input pin. (The arbiter inputs are not required when operating in Satellite

mode.) satellite mode is selected by having the pll_byp_l and ext_clk2

input pins both set to a 1 on power up. (The ext_clk1 pin can be connected

to the system PCI clock source.) Host Master mode is selected when either

of these two pins are at logic 0 on power up (The ext_clk1 pin can be

connected to a 33 MHz clock source)
Chapter 9 PCI Controller 155

Before making the PCI bus quiescent, the microSPARC-IIep CPU ensures that there

is no memory activity outstanding. This action ensures that all outstanding memory

transactions are complete prior to the completion of a quiescent bus read. See section

9.5.4 (PCIC DVMA (IAFX Master) Control Register) for more details.

Note – When performing PCI configuration by accessing the address space of

configuration address and configuration data, the three least significant address bits

used for the configuration data space access must be identical to those for the

previously loaded configuration address space access. For example, if the

configuration address register is loaded with 0b100 in the three least significant bits,

then the configuration data access must also contain 0b100 in the three least

significant bits.

9.4.2 PCI Host/Satellite Mode

The microSPARC-IIep CPU can be programmed to operate in PCI host mode or

satellite mode.

In PCI host master mode:

■ The PCI arbiter is enabled and is responsible for asserting PCI reset.

■ The microSPARC-IIep CPU is responsible for configuring other PCI entities with

PCI configuration transactions.

In PCI satellite mode:

■ The PCI arbiter is disabled.

■ External configuring of PCI registers via PCI configuration transactions is

disallowed.

Configuration

cycles

The PCIC can generate both type 0 and type 1 configuration accesses as a

bus master. The technique of resistively coupling the drive of the IDSEL

lines is used, as described in the PCI specification. The configuration

registers that are contained within the PCIC are only accessible through

PCI configuration cycles during PCI satellite mode.

Cache support The PCIC does not support any cache operations.

Exclusive access The PCIC does not implement locking at all and the LOCK# signal is not

connected. Any exclusive access proceeds as if it were a non-exclusive

access.

Table 9-4 Basic PCI Bus Operations and Restrictions (Continued)

Operation Restriction
156 microSPARC-IIep User’s Manual • June 1999

The microSPARC-IIep CPU operates in satellite mode if PLL_BYP_L and EXT_CLK2

input pins are both tied to 1 at power-up. Otherwise, it operates in host master

mode.

The PCI mode is visible to and programmable by software. Refer to Section 9.9.1,

System Status and System Control (Reset) Register

Table 9-6 lists the PCIC-generated commands.

Table 9-5 PCIC Slave Accepted Commands

Command C/BE Accepted

Interrupt acknowledge 0000 No

Special cycle 0001 No

I/O read 0010 Yes

I/O write 0011 Yes

reserved 0100 No

reserved 0101 No

Memory Read 0110 Yes

Memory Write 0111 Yes

Reserved 1000 No

Reserved 1001 No

Configuration read 1010 Yes, only in satellite mode

Configuration write 1011 Yes, only in satellite mode

Memory read multiple 1100 Treated as Memory Read

Dual address cycle 1101 No

Memory read line 1110 Treated as memory read

Memory write & invalidate 1111 Treated as memory write

Table 9-6 PCIC Master Generated Commands

Command C/BE Generated Notes

Interrupt acknowledge 0000 yes

Special cycle 0001 yes

I/O read 0010 yes
Not to microSPARC-IIep

CPU’s own I/O space

I/O write 0011 yes
Not to microSPARC-IIep

CPU’s own I/O space
Chapter 9 PCI Controller 157

9.5 PCIC Control
The PCIC control is accessed through a set of registers in the PCIC—see Table 9-7.

These registers can be accessed through the microSPARC-IIep CPU through the

PCIC configuration register space. Some of these registers are standard PCI

configuration registers as defined by the PCI specification. Some of these registers

control specific operations within the PCIC itself.

Reserved 0100 no

Reserved 0101 no

Memory read 0110 yes
not to microSPARC-IIep

CPU’s own memory

Memory write 0111 yes
not to microSPARC-IIep

CPU’s own memory

Reserved 1000 no

Reserved 1001 no

Configuration read 1010
yes (type 0 and

type1)

not to microSPARC-IIep

CPU’s own config. registers

Configuration write 1011
yes (type 0

and type1)

not to microSPARC-IIep

CPU’s own config. registers

Memory read multiple 1100 no

Dual address cycle 1101 no

Memory read line 1110 no

Memory write &

invalidate
1111 no

Table 9-7 Configuration/Control Register Addresses

Offset
Number
of Bytes

Register Name Details in Section

00 4 Device and vendor ID 9.5.2.1

04

06

2

2

PCI Command register

PCI Device Status

9.5.2.2

9.5.2.3

Table 9-6 PCIC Master Generated Commands (Continued)

Command C/BE Generated Notes
158 microSPARC-IIep User’s Manual • June 1999

08

09

1

3

Revision

Class Code

9.5.2.1

9.5.2.1

0C

0D

0E

0F

1

1

1

1

Cache Line-Size

Latency Timer

Header Type

BIST

9.5.3

9.5.3

9.5.2.1

9.5.3

10/14/

18/

1C/20/24

4 PCI Base Address register

(

PCIBAR0/1/2/3/4/5)

9.5.5.1

40

68

4

2

PCI counters (Retry and Trdy)

PCI Discard Timer (Half word)

9.5.3

9.5.3

44/48/

4C/

50/54/58

4 PCI address space Size (PCISIZE0/1/2/3/4/5) 9.5.5.1

60

62

63

1

1

1

PCIC PIO (IAFX Slave) Control

PCIC DVMA (IAFX Master) Control

PCIC Arbitration/Interrupt Control

9.6.3

9.6.4

9.6.5

64

6A

6E

4

2

2

PCIC Processor Interrupt Pending register

PCIC Software Interrupt Clear register (Half Word)

PCIC Software Interrupt Set register (Half Word)

9.7.5

9.7.6

9.7.6

70 4 PCIC System Interrupt Pending register 9.7.2

74

78

7C

4

4

4

PCIC System Interrupt Target Mask register

PCIC System Interrupt Target Mask Clear register

PCIC System Interrupt Target Mask Set register

9.7.4

9.7.4

9.7.4

83 1 PCIC Clear System Interrupt Pending register 9.7.3

88 2 PCIC Interrupt Assignment Select register 9.7.1

8A 2 PCI Arbitration Assignment Select register 9.6.1

8c 2 PCIC Intrerrupt Assignment Select register 9.7.1

8e 1 PCIC Hardware Interrupt Output Register 9.7.7

84

90

94

98

9C

4

4

4

4

4

PCI IOTLB Control register

PCI IOTLB RAM Input register

PCI IOTLB CAM Input register

PCI IOTLB RAM Output register

PCI IOTLB CAM Output register

9.5.7.3

9.5.7.1

9.5.7.2

9.5.8.1

9.5.8.2

A0

A1

A2

1

1

1

System Memory Base Address register (SMBAR0)

Memory address space Size (MSIZE0)

PCI Memory base Address register. (PMBAR0)

9.5.4.1

9.5.4.1

9.5.4.1

Table 9-7 Configuration/Control Register Addresses (Continued)

Offset
Number
of Bytes

Register Name Details in Section
Chapter 9 PCI Controller 159

9.5.1 Configuration Register Accessing

The PCIC configuration registers can always be accessed by the CPU. The PCIC

registers can be accessed through the PCIC fixed space register map. PCIC maps the

registers to the address space starting at 0x300C.00xx, where the least significant

byte defines the register offset. The register offset in the PCIC fixed space register

map is the same as it is for the PCI configuration Space Header. All PCIC registers

are defined in Little Endian (LE) format. This is because the registers are defined to

be consistent with the PCI Local Bus Specification, which defines all PCI devices as

LE format devices. When programming the PCIC, registers that can be accessed as

byte registers, can be accessed by the byte, thus eliminating any potential confusion

with regards to “endian-ness”. However, PCIC registers can also be accessed as any

size, up to and including a word access.

A4

A5

A6

1

1

1

System Memory Base Address register (SMBAR1)

Memory address space Size (MSIZE1)

PCI Memory base Address register. (PMBAR1)

9.5.4.2

9.5.4.2

9.5.4.2

A8

A9

AA

1

1

1

System I/O Base Address register (SIBAR)

Memory address space Size (IOSIZE)

PCI Memory base Address register. (PIBAR)

9.5.4.3

9.5.4.3

9.5.4.3

AC

B0

B4

B8

BC

C0

C4

C5

C6

4

4

4

4

4

4

1

1

1

Processor Counter Limit register or User Timer MSW

Processor Counter register or User Timer LSW

Processor Counter Limit register (non-resetting port)

System Limit register

System Counter register

System Limit register (non-resetting port)

Processor Counter User Timer Start/Stop register

Timer Configuration register

Counter Interrupt Priority Assignment Level register

9.8.2

9.8.3

9.8.4

9.8.5

9.8.6

9.8.7

9.8.8

9.8.9

9.8.10

C7

C8

1

4

PIO Error Command register

PIO Error Address register

9.5.9

9.5.9

CC 4 PCIC IOTLB Error Address register 9.5.8.3

D0 1 System Status and Control register 9.1

Table 9-7 Configuration/Control Register Addresses (Continued)

Offset
Number
of Bytes

Register Name Details in Section
160 microSPARC-IIep User’s Manual • June 1999

Note – The registers in the PCIC can be accessed as little-endian or big-endian.

Refer to the DVMA (IAFX Master) control registers for a description of the selection

on the mode. This allows the access method to be selectable by software, and

registers that are used for little-endian control can be accessed as little-endian and

registers, such as those that control the interrupt controller or IOTLB, can be

accessed as big-endian representations. Refer to Section 1.3, microSPARC-IIep Endian
Support on page 4 for a description of the endian support.

9.5.2 PCI Configuration Register Definitions

This section describes the function of the PCI configuration registers supported by

the PCIC. These registers are defined in Little Endian (LE) format, as per the PCI

Local Bus Specification. The register definitions are divided into sections according

to their function.

9.5.2.1 PCI Device Identification

Five fields in the PCI configuration header define the device identification (see

Table 9-8 through Table 9-11). All PCI devices implement these fields, for standard

software identification. Each register is read-only.

Table 9-8 PCI Vendor ID Register:4 bytes @ offset = 00

Bit(s) Reset Field name R/W

31:16 0x9000 Device ID -- - 0x9000 R

15:00 0x108e
Vendor ID. Sun Microelectronics -

0x108e
R

Table 9-9 PCI Revision Register: 1 byte @ offset = 08

Bit(s) Reset Field name R/W

07: 00 00 First revision of PCIC R

Table 9-10 PCI Class Code Register: 3 bytes @ offset = 09

Bit(s) Reset Field name R/W

23: 16 06 Base class code - bridge device R

15: 08 00 Sub-class code - other bridge device R

07: 00 00 Programming interface - not applicable R
Chapter 9 PCI Controller 161

9.5.2.2 PCI Device Control

The PCI Command Register (Table 9-9) provides coarse control over the PCIC’s

ability to generate and respond to PCI cycles. When a 0 is written to bits [02:00] of

this register, the PCIC is logically disconnected from the PCI bus for all accesses.

9.5.2.3 PCI Device Status

The PCI Status Register is used to record status information for PCI bus related

events. Reads to this register behave normally. Writes to the PCI status register can

reset individual bits, but can not set any bits. A bit is reset whenever the register is

written, and the data in the corresponding bit location is a 1. For example, to clear

the system Error bit[14] and not affect any other bits, write the value

0b0100.0000.0000.0000.

Table 9-11 PCI Header Type Register: 1 byte @ offset = 0E

Bit(s) Reset Field name R/W

07: 00 00 Header type R

Table 9-12 PCI Command Register: 2 bytes @ offset = 04

Bit(s) Reset Field name R/W

15:10 0 reserved; read as zero R

09 0 Fast Back-to-back Enable; read as zero R

08 0 SERR# enable R/W

07 0 Address Stepping; read as zero. R

06 0 Parity Check Enable R/W

05 0 VGA Palette Snooping; read as zero. R

04 1
Memory Write And Invalidate; read as one

(treated as a memory write)
R

03 0 Special Cycle Support; read as zero R

02 1 PCI Bus Master
1

1. Should be set to 1 for normal operation

R/W

01 0 Memory Space
1

R/W

00 0 I/O space
1

R/W
162 microSPARC-IIep User’s Manual • June 1999

9.5.3 PCI Miscellaneous Functions

The following three registers must have a defined response for PCI configuration

accesses. The PCIC does not implement or support cache coherence on the PCI bus,

and therefore the PCI cache line size register is set to zero (not actually

implemented). The PCIC also does not implement any type of built-in self test, and

therefore the PCI BIST register is supported only with “read as zero”. The PCI

latency timer register is implemented as recommended in the PCI 2.1 specification,

as an 8-bit register with the bottom three bits read-only, resulting in a timer

granularity of eight clocks. The PCI latency timer is used to determine how long

PCIC, as a master, is allowed to burst on the PCI bus.

Table 9-13 PCI Status Register: 2 bytes @ offset = 06

Bit(s) Reset Field Name R/W

15 0 Detected parity error R/C

14 0 Signaled SERR# R/C

13 0 received Master Abort R/C

12 0 received Target Abort R/C

11 0 signaled Target Abort R/C

10: 09 00 DEVSEL# timing - Medium=01

Refer to Section 9.6.5, PCIC Arbitration Control Register
R

08 0 Data Parity Error Detected While a Master R/C

07 0 Fast Back-to-back Capable; read as zero R

06 1 User Definable Features; read as one R

05 0 66 MHz capable; read as zero R

04 0 Master Retry Count Expired Read or Clear

Note: this bit is not standard in PCI
R/C

03 0 Master Trdy Count Expired Read or Clear

Note: this bit is not standard in PCI
R/C

02: 00 0 reserved; read as zero R

Table 9-14 PCI Cache Line Size Register: 1 byte @ offset = 0C

Bit(s) Reset Field name R/W

07: 00 00 no support for PCI cache. Read as zero R
Chapter 9 PCI Controller 163

Note – The PCI Trdy Counter and the PCI Retry Counter are for diagnostic testing

only. Setting these counters to anything other then the default value of zero may

result in a violation of PCI protocol, and should not be done.

Note – The PCI Discard Counter is for diagnostic testing only. Setting these counters

to anything other then the default value of 0x7f may result in a violation of PCI

protocol, and should not be done. The discard timer is used to discard data that has

been fetched and is pending transfer

Table 9-15 PCI Latency Timer Register: 1 byte @ offset = 0D

Bit(s) Reset Field name R/W

07: 03 00000 PCI Latency Timer. R/W

02: 00 000 reserved R

Table 9-16 PCI BIST Register: 1 byte @ offset = 0F

Bit(s) Reset Field name R/W

07: 00 00 PCI BIST; no BIST. read as zero R

Table 9-17 PCI Counters: 4 bytes @ offset = 40

Bit(s) Reset Field name R/W

31:24 00 unimplemented (reserved) R

23:16 00 PCI Trdy Counter R/W

15:08 00 PCI Retry Counter R/W

07: 00 00 unimplemented (reserved) R

Table 9-18 PCI Discard Counters: 2 bytes @ offset = 68

Bit(s) Reset Field name R/W

15: 00 0x7f Discard Timer R
164 microSPARC-IIep User’s Manual • June 1999

9.5.4 Processor (IAFX) to PCI Translation Registers

(PIO)

The PCIC translation registers are used to map the processor’s 28-bit physical

address received from the IAFX bus (PIO) into a 32-bit PCI physical address. The

translation registers function as groups, with two groups for mapping PCI memory

cycles and one group for mapping PCI I/O cycles. If the IAFX physical address

matches one of the system translation registers in the group, the physical address is

translated accordingly. If the IAFX physical address does not match any of the

system translation registers, or is not in the first one megabyte of the PCIC address

space (fixed memory map) then the address is passed directly to the PCI bus,

untranslated.

9.5.4.1 PCI Memory Cycle Translation Register Set 0

The PCI Memory Cycle Translation Register Set 0 is comprised of three registers:

SMBAR0, MSIZE0, and PMBAR0. These are detailed in Table 9-19, Table 9-20, and

Table 9-21 respectively. The 4-bit value stored in SMBAR0 is used to compare with

the IAFX physical address (PA) [27:24]. Both the IAFX PA and the SMBAR0 values

are first masked (ANDed) with the contents of MSIZE0.

Address Match 0 = ((IAFX PA[27:24] & MSIZE0[3:0]) = = (SMBAR0[3:0] &

MSIZE0[3:0]));

If the result of the comparison is true, PMBAR0 is used to form the PCI memory

cycle address according to this equation.

PCI address = {(PMBAR0[7:4]), ((IAFX PA[27:24] & ~MSIZE0[3:0]) |

PMBAR0[3:0]),(IAFX PA[23:00])};

Note that the PCI memory address is always prefixed with PMBAR0[7:4], regardless

of the size specified by MSIZE0. If the result of the address comparison is false, then

no translation is performed based on PMBAR0.

Table 9-19 System Memory Base Address Register 0 (SMBAR0) (1 byte @ offset = A0)

Bit(s) Reset Field Name R/W

07: 04 0b0000 reserved R

03: 00 0b0000 System Memory Base Address [27:24] R/W
Chapter 9 PCI Controller 165

9.5.4.2 PCI Memory Cycle Translation Register Set 1

The PCI Memory Cycle Translation Register Set 1 is comprised of three registers:

SMBAR1, MSIZE1 and PMBAR1. The 4-bit value stored in SMBAR1 is used to

compare with the IAFX physical address (PA) [27:24]. Both the IAFX PA and the

SMBAR1 values are first masked (ANDed) with the contents of MSIZE1.

Address Match 1= ((IAFX PA[27:24] & MSIZE1[3:0]) = = (SMBAR1[3:0] &

MSIZE1[3:0]));

If the result of the comparison is true, PMBAR1 is used to form the PCI memory

cycle address according to the equation:

PCI address = {(PMBAR1[7:4]), ((IAFX PA[27:24] & ~MSIZE1[3:0]) |

PMBAR1[3:0]),(IAFX PA[23:00])};

Note that the PCI memory address is always prefixed with PMBAR1[7:4], regardless

of the size specified by MSIZE1.If the result of the address comparison is false, then

no translation is performed based on PMBAR1, MSIZE1, and PMBAR. See Table 9-22,

Table 9-23, and Table 9-24 respectively.

Table 9-20 System Memory Size Register 0 (MSIZE0) (1 byte @ offset = A1)

Bit(s) Reset Field Name R/W

07: 04 0x0 reserved R

03: 00 0x0 System Memory Size

R/W

mask for address bits[27:24]

Value Memory Size

0xF 16 MB

0xE 32 MB

0xC 64 MB

0x8 128 MB

0x0 256 MB

Table 9-21 PCI Memory Base Address Register 0 (PMBAR0) (1 byte @ offset = A2)

Bit(s) Reset Field Name R/W

07: 00 0x00 PCI Memory Base Address [31:24] R/W
166 microSPARC-IIep User’s Manual • June 1999

9.5.4.3 PCI I/O Cycle Translation Register Set

The PCI I/O Cycle Translation Register Set is comprised of three registers: SIBAR,

ISIZE and PIBAR. The 4-bit value stored in SIBAR is compared with the IAFX

physical address (PA) [27:24]. Both the IAFX PA and the SIBAR values are first

masked (ANDed) with the contents of ISIZE.

Address Match = ((IAFX PA[27:24] & ISIZE[3:0]) = = (SIBAR[3:0] & ISIZE[3:0]));

If the result of the comparison is true, PIBAR is used to form the PCI memory cycle

address according to the equation:

PCI I/O address = {(PIBAR[7:4]), ((IAFX PA[27:24] & ~ISIZE[3:0]) |

PIBAR[3:0]),(IAFX PA[23:00])};

Table 9-22 System Memory Base Address Register 1 (SMBAR1) (1 byte @ offset = A4)

Bit(s) Reset Field Name R/W

07: 04 0000 reserved R

03: 00 0000 System Memory Base Address [27:24] R/W

Table 9-23 System Memory Size Register 1 (MSIZE1) (1 byte @ offset = A5)

Bit(s) Reset Field Name R/W

07: 04 0x0 reserved R

03: 00 0x0 System Memory Size

R/W

mask for address bits[27:24]

Value Memory Size

0xF 16 MB

0xE 32 MB

0xC 64 MB

0x8 128 MB

0x0 256 MB

Table 9-24 PCI Memory Base Address Register 1 (PMBAR1) (1 byte @ offset = A6)

Bit(s) Reset Field Name R/W

07: 00 0x00 PCI Memory Base Address [31:24] R/W
Chapter 9 PCI Controller 167

Note that the PCI memory address is always prefixed with PIBAR[7:4], regardless of

the size specified by ISIZE. If the result of the address comparison is false, then no

translation is performed based on PIBAR.

9.5.5 PCI to DRAM (IAFX) Translation Registers and

Operation

PCI transactions are accepted by the PCIC PCI slave interface, based on the

transaction type (memory or I/O), and an acceptable address. The PCIC slave

interface accepts memory or I/O transactions that match the address range specified

in any one of the six PCI Base Address Registers. A full 32-bit address is presented

Table 9-25 System I/O Base Address Register (SIBAR) (1 byte @ offset = A8)

Bit(s) Reset Field Name R/W

07: 04 0x0 reserved R

03: 00 0x0
System I/O Base Address

[27:24]
R/W

Table 9-26 System I/O Size Register (ISIZE) (1 byte @ offset = A9)

Bit(s) Reset Field Name R/W

07: 04 0x0 reserved R

03: 00 0x0 System I/O Size (mask) R/W

mask for address bits[27:24]

Value Memory Size

0xF 16 MB

0xE 32 MB

0xC 64 MB

0x8 128 MB

0x0 256 MB

Table 9-27 PCI I/O Base Address Register (PIBAR) (1 byte @ offset = AA)

Bit(s) Reset Field Name R/W

07: 00 00 PCI I/O Base Address [31:24] R/W
168 microSPARC-IIep User’s Manual • June 1999

on the PCI bus and may be mapped into a 28-bit physical address to be used to

access Main Memory (DRAM). The mapping from PCI addresses to DRAM

addresses is done by the IOTLB.

9.5.5.1 PCI Base Address/Size Registers

The PCI base address registers contain the most significant 24 bits of the 32-bit base

address for PCI operations that are accepted (DEVSELd) by the PCI slave interface

for memory or I/O operations. The PCIC slave interface compares all memory and

I/O requests presented on the PCI bus for this value. When the address presented

on the PCI bus matches the value in the PCI Base Address register, along with the

size specified by the PCI Size register, the PCIC slave accepts that memory or I/O

operation—if enabled in the PCI Command register—and subsequently performs a

memory operation on the DRAM. The address used to perform the main memory

operation on the IAFX bus is subject to mapping using the PCI IOTLB if enabled (see

next section). There are six base address registers and size registers sets.

bit 00, PCI I/O Base Address Select, selects between I/O addresses and memory

addresses. When bit 00 is set to a one, the contents of this base address register—and

the size register associated with it—are used to compare against I/O addresses that

are received by the PCIC slave. When this bit is set to zero, the base address register

and size register are used to compare against memory addresses received by the

PCIC slave. These operations must also be enabled in the PCIC command register.

The PCI Memory Size (PCISIZE#) registers, shown in Table 9-29, are used to select

the size of the address comparison. The bits that are written as ones allow the

corresponding base address register bits to participate in the comparison. When a bit

is set to a zero, the corresponding bit of the Base Address register is not used in the

comparison of the PCIC-accepted address with the value in the base address register.

The address bits that are not compared are still accepted and propagated to the

IOTLB and DRAM. This allows I/O cycles that have been accepted within different

256-byte boundaries (mask set to all F’s) to be mapped to the same page in the

IOTLB.

Table 9-28 PCI Base Address Registers (PCIBASE0: 4 bytes @ offsets = 10,14,18,1C,20,24)

Bit(s) Reset Field name R/W

31:08 0 PCI Base Address Register [31:08] R/W

07: 01 0 unused R

00 0 PCI I/O Base Address Select R/W
Chapter 9 PCI Controller 169

Table 9-29 PCI Memory Size Register (PCISIZE0) (4 bytes @ offset = 44,48,4C,50,54,58)

Bit(s) Reset Field Name R/W

31:08 0 System Memory or I/O Size R/W

mask for address bits[31:08]

Value Memory Size

0xFF FF FF 256 B

0xFF FF FE 512 B

0xFF FF FC 1 kB

0xFF FF F8 2 kB

0xFF FF F0 4 kB

0xFF FF E0 8 kB

0xFF FF C0 16 kB

0xFF FF 80 32 kB

0xFF FF 00 64 kB

0xFF FE 00 128 kB

0xFF FC 00 256 kB

0xFF F8 00 512 kB

0xFF F0 00 1 MB

0xFF E0 00 2 MB

0xFF C0 00 4 MB

0xFF 80 00 8 MB

0xFF 00 00 16 MB

0xFE 00 00 32 MB

0xFC 00 00 64 MB

0xF8 00 00 128 MB

0xF0 00 00 256 MB

0xE0 00 00 512 MB

0xC0 00 00 1 GB

0x80 00 00 2 GB

0x00 00 00 4 GB

07:00 0 unused R
170 microSPARC-IIep User’s Manual • June 1999

9.5.6 PCIC IOTLB Operation (DVMA)

Memory operations that are accepted by the PCIC slave interface (DVMA) are

mapped to main memory DRAM addresses by the IOTLB. The IOTLB is a 16-entry

fully-associative content-addressable memory (CAM) and random access memory

(RAM) set that is fully managed by software. Five registers are provided in the PCIC

to manage the IOTLB.

Before any read or write operations access the IOTLB, all pending PCI operations

should be made quiescent. The control to ensure quiescence is provided in the PCI

DVMA control register (configuration register 0x62). If a read or write to the IOTLB

for control purposes is attempted at the same time as a normal PCI to DRAM access

is tried, the translation attempt is aborted and an undefined address may be used to

access the DRAM.

To ensure that the quiescent state is not extended any longer than necessary,

interrupts may be disabled while the PCI bus is made quiescent.

The PCI IOTLB can contain three different -sized entries. Posted entries can match

on 4-kilobyte page size, 256-kilobyte page size, or 16-megabyte page size. All three

entry types can be resident in the IOTLB at the same time. Software should never

allow multiple entries to be written into the IOTLB that can result in multiple

matches. This rule also applies to mapping a 4-kilobyte or 256-kilobyte page inside

another larger sized page.

The IOTLB can be flash flushed on any single page entry, or the entire IOTLB can be

flushed at once.

The PCI IOTLB can be disabled by setting a bit in the PCI DVMA (IAFX Master)

Control Register (configuration register 0x62). When the IOTLB is disabled, the

addresses that have been accepted from the PCI slave for DRAM operations are

untranslated and directly mapped into DRAM physical addresses. In this case the

most significant PCI address bits [31:28] are ignored.

A block diagram of the IOTLB and associated registers is shown in Figure 9-5.
Chapter 9 PCI Controller 171

Figure 9-5 IOTLB Block Diagram with Control Registers

9.5.7 PCIC IOTLB Write Registers

The PCI IOTLB RAM Input register and the PCI IOTLB CAM Input register contain

write data for the RAM and the CAM respectively. The PCI IOTLB control register is

used to control the operation of the IOTLB. The IOTLB CAM and RAM are always

accessed together. Normal content addressable searches result in a single match

indicator, which is used to select the appropriate entry from the RAM.

C
o

m
p

a
re

 u
si

n
g

P
C

IM
B

A
R

/
P

C
IM

S
IZ

E

32 Bit
PCI
Memory
Addresses

Bypass
Select

DRAM

Physical
Address

16 Entry
Content
Address
Memory
(CAM)

16 Entry
Random
Access
Memory
(RAM)

28 Bit

rd_input
Register
(0x90)

Register
(0x94)

cd_input

rd_output
Register
(0x98)

Register
(0x9c)

cd_output

CAM/RAM
read/write
control register
(0x84)

entry size
Address
Select
172 microSPARC-IIep User’s Manual • June 1999

A read operation is performed by selecting which entry number to read and writing

an IOTLB read command into the IOTLB control register, then reading the CAM

output register and the RAM output register.

A write operation is performed by first writing the CAM input register with the data

to be written into the CAM (the PCI address to translate), and the RAM input

register with the corresponding RAM data (the DRAM physical address). Following

setting up of an entry for these two registers, the IOTLB control register is loaded

with the entry number selected for the write, followed by the write command.

9.5.7.1 PCI IOTLB RAM Input Register

The PCI IOTLB RAM Input register (Table 9-30) contains physical address bits that

are used to address the DRAMs as a result of a successful translation.

Bits 11:03 are written into the RAM, but do not participate in the translation process.

These bits can be used to store entry information.

Bits 02:00 are unused and are not written into the RAM. The actual input to the RAM

is the size of the translation being written to the CAM. The input to the RAM is

derived from the input to the CAM—bit position[02:00]. The outputs from the RAM

are used when the IOTLB is enabled and there is an IOTLB hit to select the portion

of the real address to be overridden by the translated address. This allows multiple-

sized entries to be placed in the CAM at once.

9.5.7.2 PCI IOTLB CAM Input Register

The PCI IOTLB CAM input register (see Table 9-31) contains address bits that are

used to write information into the CAM for subsequent compares with PCI

addresses.

Table 9-30 PCI IOTLB RAM Input Register (PCIRIR) (4 bytes @ offset = 90)

Bit(s) Reset Field Name R/W

31:28 0 unused (not written to RAM) R/W

27:24 0 DRAM Physical Memory Address (4K/256K/16M) R/W

23:18 0 DRAM Physical Memory Address (4K/256K) R/W

17:12 0 DRAM Physical Memory Address (4K) R/W

11:03 0 unused (written to ram also) R/W

02:00 0 unused (NOT written to ram) R/W
Chapter 9 PCI Controller 173

Bit 03 is the valid bit, and must be set to a one for an entry to be valid. An entry

must be marked valid in order to result in a successful translation. When bit 03 is set

to a zero and written into the CAM, that entry is marked invalid and is not used for

PCI address compares. The remaining portion of the CAM and RAM input registers

are a don’t care if the entry is to be written as invalid.

Bit 02 disables the comparison for 16-megabyte page sizes. When an entry is written

into the CAM with bit 02 set to a zero, that entry is a 4-kilobyte, 256-kilobyte, or

16-megabyte page, and requires address bit 31:24 to match the IOTLB contents. The

value of bit 02 is also written into position 02 of the RAM when the CAM is written.

Bit 01 disables the comparison for 256-kilobyte pages. When an entry is written into

the CAM with bit 01 set to a zero, that entry is a 4 kilobyte or a 256-kilobyte page.

This requires address bit 23:18 to match the IOTLB contents. The value of bit 01 is

also written into the RAM in position 01 when the CAM is written.

Bit 00 disables the comparison for 4-kilobyte page sizes. When an entry is written

into the CAM with bit 00 set to a zero, that entry is a 4-kilobyte page. This requires

PCI bus address bit 17:12 to match the IOTLB contents. When bit 00 is set to a one,

address bits 17:12 do not participate in the address comparison. The value of bit 00

is also written into the RAM in position 00 when the CAM is written.

When flushing the CAM, all valid bits that match the compare prior to the flush are

set to zero after the flush completes.

Table 9-31 PCI IOTLB CAM InputReg.(PCICIR): 4 bytes @ offset = 94

Bit(s) Reset Field name R/W

31:24 0 PCI Address to Translate (4 kB/256 kB/16 MB) R/W

23:18 0 PCI Address to Translate (4 kB/256 kB) R/W

17:12 0 PCI Address to Translate (4 kB) R/W

11:04 0 unused (not written to CAM) R

03 0 PCI Address Valid R/W

02 0 PCI Address Check Enable for 16 MB Pages R/W

01 0 PCI Address Check Enable for 256 kB Pages R/W

00 0 PCI Address Check Enable for 4 kB Pages R/W

Valid Combinations

of bits 2:1:0

for compares

0b000 enables 4 kB page size for translation

0b001 enables 256 kB page size for translation

0b011 enable 16 MB page size for translation

0b111 disables all page size comparisons

Valid Combinations

of bits 2:1:0

for Flush Operations

000 flush entries that match on 4-kB page size

001 flush entries that match on 256-kB page size

011 flush entries that match on 16-MB page size

111 flush all entries
174 microSPARC-IIep User’s Manual • June 1999

9.5.7.3 PCI IOTLB Control Register

The PCI IOTLB control register—see Table 9-32—contains address bits used to

compare with PCI addresses. When there is a match of the PCI address with the

contents previously written into the CAM, a successful translation has been made.

9.5.8 PCIC IOTLB Read Registers

The PCI IOTLB RAM Output Register and the PCI IOTLB CAM Output Register are

used to read data from the RAM and the CAM respectively. The PCI IOTLB Control

Register is used to control the operation of the IOTLB and is described in

Section 9.5.7.3, PCI IOTLB Control Register. The IOTLB CAM and RAM are always

accessed together.

A directed read operation is performed by selecting which entry number to read and

writing a IOTLB read command into the IOTLB control register. After writing the

read command in the control register, the CAM output register and RAM output

register may be read.

Table 9-32 PCI IOTLB Control Register (PCICR) (1 byte @ offset = 84)

Bit(s) Reset Field Name R/W

07 0 IOTLB Write Select R/W

06 0 IOTLB Flush Enable R/W

05 0 IOTLB Address Select R/W

Valid Commands for bits 7:6:5

0b111 invalid; undefined

0b110 invalid; undefined

0b101 Directed Write of CAM and RAM at entry in “entry select” field

0b100 invalid; undefined

0b011 invalid; undefined

0b010 Flush (size of flush defined by bits 02:00 of CAM Input Register)

0b001 Directed Read of CAM and RAM at entry in “entry select” field

0b000 invalid; undefined

Bit(s) Reset Field Name R/W

04 0 unused R/W

03:00 0 IOTLB Entry Select R/W
Chapter 9 PCI Controller 175

9.5.8.1 PCI IOTLB RAM Output Register

The PCI IOTLB RAM output register (see Table 9-33) contains physical address bits

used to address the DRAMs as a result of a successful translation.

Bits 11:03 are read from the RAM, and can be used to store entry information, but do

not participate in any translation process.

Bits 02:00 are read from the RAM and reflect the size of the translation entry. The

input to the RAM is derived from the input to the CAM bit [02:00]. The outputs from

the RAM are used when the IOTLB is enabled and there is a IOTLB hit to select the

portion of the real address to be overridden by the translated address. This

mechanism allows multiple-sized entries to be placed in the CAM at the same time.

9.5.8.2 PCI IOTLB CAM Output Register

The PCI IOTLB CAM output register (see Table 9-34) contains virtual address bits

that have been written into the IOTLB. The IOTLB CAM output register is used to

read entries previously written into the IOTLB. This facility is useful for diagnostic

testing.

Table 9-33 PCI IOTLB RAM Output Register (PCIROR) (4 bytes @ offset = 98)

Bit(s) Reset Field Name R/W

31:28 0 unused (read as zero) R

27:24 0 DRAM Physical Memory Address (4K/256K/16M) R

23:18 0 DRAM Physical Memory Address (4K/256K) R

17:12 0 DRAM Physical Memory Address (4K) R

11:03 0 unused (read from RAM) R

02:00 0
Page size selected, as written to CAM on input

[02:00]
R

Table 9-34 PCI IOTLB CAM Output Register (PCICOR) (4 bytes @ offset = 9C)

Bit(s) Reset Field Name R/W

31: 24 0 PCI Virtual Address to Translate (4 kB/256 kB/16 MB) R

23:18 0 PCI Virtual Address to Translate (4 kB/256 kB) R

17:12 0 PCI Virtual Address to Translate (4 kB) R

11:04 0 unused, read as zeros R

03 0 Valid Bit as read from CAM R

02:00 0 Page Size Selected, as read from CAM] R
176 microSPARC-IIep User’s Manual • June 1999

9.5.8.3 PCIC DVMA Error Address Register

The PCI DVMA Error Address Register captures a DVMA address that was used to

translate (IOTLB) and then access memory. When an error is indicated, the address

that was in use when the error occurred is captured in this register. For IOTLB access

errors, the address captured is the address that was used in the unsuccessful IOTLB

translation attempt. For DVMA parity errors, the address captured is the virtual

address that was used to read from memory, plus eight. This error also generates a

level-15 interrupt, and sets a bit in the interrupt registers to reflect this state.

9.5.9 PCIC PIO Error Command and Address Registers

The PCIC PIO error command and address registers reflect the command and

address information that is current when an error is signaled during a PIO

operation.

9.5.9.1 PCIC PIO Error Command Register

The PCIC PIO Error Address Register captures the address used in the last PIO

command processed. For configuration Type 1 operations, this is not the same as the

address that was presented on the PCI bus.

Table 9-35 PCIC DVMA Error Address Register: 4 bytes @offset = CC

Bit(s) Reset Field name R/W

31:03 0 PCI DVMA Address (or Address plus 8) R

02: 01 0

Error Type code:

00: Translation failed in IOTLB access

01: Parity Error on DVMA read, wd0

10: Parity Error on DVMA read, wd1

11: Parity Error on DVMA read, both words

R

00 0 Access for IOTLB Operation Was a Read (=1) R

Table 9-36 PCIC PIO Error Cmd Register: 1 byte @offset = C7

Bit(s) Reset Field name R/W

07: 04 0 reserved R

03: 00 x PCIC PIO Error Command R
Chapter 9 PCI Controller 177

9.6 PCI Arbitration and Control
While the microSPARC-IIep CPU is operating as the host and host bridge, the

arbitration function for the PCI bus is contained in the PCIC. When the

microSPARC-IIep CPU is operating as a non-host bridge subsystem the arbiter is

external. As a host bridge, four external masters, in addition to the PCIC, can request

the use of the PCI bus. To enable or disable the internal arbiter, refer to Section 9.6.5,

PCIC Arbitration Control Register

Locking the bus for continuous operations using the LOCK signal is not supported.

As a host arbiter the PCI bus is “parked” on the last master that has been granted

the PCI bus.

9.6.1 PCIC Arbitration Assignment Select Register

The PCIC arbitration assignment select register (see Table 9-38) is used to select the

assignment of request-grant pairs within the PCIC arbiter. The request-grant

assignment is used to determine priorities for bus arbitration and allows the

priorities to be programmable. However, each assignment must be programmed

with a unique value.

Table 9-37 PCIC PIO Error Address Register: 4byte @offset = c8

Bit(s) Reset Field name R/W

31: 00 x PCIC PIO Error Address R
178 microSPARC-IIep User’s Manual • June 1999

The three-level arbitration algorithm describes the operation of the request and

grants as they are in the default condition, which is in response to reset.

Programmable assignment of request and grants allows the arbitration priority of all

bus masters to be determined by software. The priorities should only be changed

when there is no bus activity. The programmable assignment operates for the default

round-robin algorithm, even though all bus masters have equal priority in that

algorithm.

Note – The PCIC arbitration assignment select register should never be set such that

any two loads or the host are assigned the same level and agent. Each assignment

must be unique.

Table 9-38 PCIC Arbitration Assignment Select Register (2 bytes @ offset = 8A)

Bit(s) Reset Field Name R/W

14:12

Host agent assignment

100 100: host (internal) assigned as host at level 0

011: req_[3] assigned as host at level 0

010: req_[2] assigned as host at level 0

001: req_[1] assigned as host at level 0

000: req_[0] assigned as host at level 0

R/W

11:09

Agent 3 assignment

011 100: host assigned as Agent 3 at level 2

011: req_[3] assigned as Agent 3 at level 2

010: req_[2] assigned as Agent 3 at level 2

001: req_[1] assigned as Agent 3 at level 2

000: req_[0] assigned as Agent 3 at level 2

R/W

08:06

Agent 2 assignment

010 100: host assigned as Agent 2 at level 2

011: req_[3] assigned as Agent 2 at level 2

010: req_[2] assigned as Agent 2 at level 2

001: req_[1] assigned as Agent 2 at level 2

000: req_[0] assigned as Agent 2 at level 2

R/W

05:03

Agent 1 assignment

001 100: host assigned as Agent 1 at level 1

011: req_[3] assigned as Agent 1 at level 1

010: req_[2] assigned as Agent 1 at level 1

001: req_[1] assigned as Agent 1 at level 1

000: req_[0] assigned as Agent 1 at level 1

R/W

02:00

Agent 1 assignment

000 100: host assigned as Agent 0 at level 1

011: req_[3] assigned as Agent 0 at level 1

010: req_[2] assigned as Agent 0 at level 1

001: req_[1] assigned as Agent 0 at level 1

000: req_[0] assigned as Agent 0 at level 1

R/W
Chapter 9 PCI Controller 179

9.6.2 PCI Arbitration Algorithm

There are two arbitration algorithms available in the PCIC. Both implement a

fairness algorithm as described in revision 2.1 of the PCI specification, on page 56,

Implementation Note: System Arbitration Algorithm. The first algorithm deals with all

possible PCI masters at the same priority level, and rotates a token to the next

requestor. In this way all masters are assured of equal access to the PCI bus.

The second algorithm has three levels of assignment for the bus requests (see

Figure 9-6). Level 0 is the highest priority, with the host processor as the only agent

at that level (Agent H). The processor is allocated the bus every other bus operation

cycle. Level 1 requests have three agents, representing PCI request 0 (Agent 0), PCI

request 1 (Agent 1) and all level 2 requests. When a level 1 agent is granted, and

uses, the bus, a token is set representing which level 1 agent last used the bus. All

level 1 agents have the same priority, and are granted the bus equally (rotating

within level 1). There are two more agents at level 2. The agents at level 2 represent

PCI request 2 (Agent 2) and PCI request 3 (Agent 3).

Figure 9-6 Three Level Arbitration Algorithm

Host

Level 0

Level 1
Level 1

Agent 0 Agent 1

Level 2

Agent 3Agent 2

level 2

any

or
Level 2

any
180 microSPARC-IIep User’s Manual • June 1999

9.6.3 PCIC PIO (IAFX Slave) Control Register

The PCIC PIO (IAFX Slave) control register (see Table 9-39) is used to control the

operation of the PIO (IAFX Slave) interface. This interface accepts transactions from

the microSPARC-IIep CPU, buffers the requests in various FIFOs, and dispatches

these requests to the PCI bus. Three control bits are defined in Table 9-39.

Bit 07 is the Prefetch Enable bit. When enabled, the PCI interface prefetches memory

references from the PCI bus. This increases the performance of PIO loads.

Bit 06 is the Burst Enable bit. When this control bit is set, it allows requests for

consecutive memory data operations to be packed into a burst on the PCI bus. When

set, PIO performance is increased.

Note – It may be required to turn off burst enable when interfacing to very-slow-

responding external PCI slave devices, owing to the host’s being assigned a low

arbitration priority, or for other reasons. This action makes no noticeable difference

to the speed of the transfer, since it is already slow. Without burst enable, the CPU to

PCIC transfer handshakes on each transaction, rather than implementing transfers in

bursts. This mode may prevent timeouts on the IAFX bus. Any reduction in PIO

performance is insignificant because that performance was initially poor.

Bit 02 is used to enable big-endian mode on read and write accesses to PIO (IAFX

slave) data. When this bit is set, the data and byte enables are not switched to little-

endian mode when performing any operations on the PCIC (IAFX Slave) interface.

This condition applies to configuration-register reads and writes and PIO. This

property may be useful when software operates on big-endian data and requires to

maintain big-endian representation when accessing PCIC configuration registers, for

example, counters/timers, and the IOTLB. When changing this bit, a store byte

should be used to avoid uncertainty as to the current bit setting. In addition, to

ensure that all preceding operations have completed prior to changing this bit, a

read from this register should be done, discarding the data. Refer to Section 1.3,

microSPARC-IIep Endian Support on page 4 for more information on endian support

and operation.

Table 9-39 PCIC (IAFX Slave) PIO Control Register (1 byte @ offset = 60)

Bit(s) Reset Field Name R/W

07 0 PIO Prefetch Enable R/W

06 0 PIO Burst Enable R/W

05: 03 0 PIO Reserved R

02 0 PIO Big-Endian R/W

01:00 0 PIO Reserved R
Chapter 9 PCI Controller 181

9.6.4 PCIC DVMA (IAFX Master) Control Register

The PCIC DVMA (IAFX Master) control register (see Table 9-40) is used to control the

operation of the DVMA (IAFX Master) interface that accepts transactions from the

PCI bus, buffers the requests in various FIFOs, and dispatches the requests to the

IAFX bus. Three control bits are defined.

Bit 00 and bit 04 are used when the slave PCI interface must be quiescent to allow

for memory and I/O activity. When bit 00 is set to one, a request for quiescence is

made. After some time, all PCI slave input activity completes (FIFOs are emptied)

and any new memory or I/O requests are rejected (retry on PCI). This ensures that

any pending memory store operations in the PCI slave input FIFOs are completed.

When the quiescent state is reached, it is signaled by the setting of bit 04 of this

register.

Note – Quiescence of the PCI bus is needed when entries to the IOTLB are changed.

Interrupts may be disabled while requesting quiescence to prevent any additional

period of suspension of PCI bus activity to the host.

Bit 01 is used to enable the IOTLB. When set, all addresses that have been accepted

by the PCI slave to be used to access main DRAM memory first pass through the

IOTLB for translation. When cleared, the IOTLB is bypassed, and addresses are

untranslated.

Bits 02 and 03 are reserved and should be set to zero.

9.6.5 PCIC Arbitration Control Register

The PCIC arbitration control register (see Table 9-41) is used to control the operation

of the internal PCI arbiter and the interrupt controller.

Table 9-40 PCIC DVMA (IAFX Master) Control Register (1 byte @ offset = 62)

Bit(s) Reset Field Name R/W

07:05 00 reserved R

04 0 PCIC DVMA (IAFX Master) Quiescence Acknowledge R

03 0 reserved R/W

02 0 reserved R/W

01 0 PCIC DVMA (IAFX Master) IOTLB Enable R/W

00 0 PCIC DVMA (IAFX Master) Quiescence request R/W
182 microSPARC-IIep User’s Manual • June 1999

When bit 00 is cleared, it selects the single level of priority. When it is set it selects

the three levels of arbitration. When three-level arbitration is selected, the

Arbitration Assignment Select register can be used to map which request/grant

pairs are assigned to each level (and must remain uniquely set for each device).
Refer to Section 9.6.1, PCIC Arbitration Assignment Select Register.

Bit 02 is used to disable the internal arbiter. When this is done, an external arbiter is

required to resolve bus requests. When the internal arbiter is disabled:

■ The microSPARC-IIep CPU signals a request to use the bus on the output pin

PCI_GNT_L[0] and receives an acknowledgment from the external arbiter on the

input pin PCI_REQ_L[0]. (The direction of these signals is independent of the

internal arbiter enable state. However, the interpretation of these signals changes

with the state of the internal arbiter disable bit.) Bit 2 is set to 1 when reset occurs,

if the microSPARC-IIep CPU has pins PLL_BYP_L and EXT_CLK2 set to power

up in slave mode (refer to Section 9.4.2, PCI Host/Satellite Mode and Section 9.9,

System Status and System Control). Bit 2 is set to 0 when reset occurs if the

microSPARC-IIep CPU has these pins set to power up in host mode.

■ The PCI_GNT_L[1] output pin signals when the microSPARC-IIep CPU is

requesting to use the PCI bus for an extended operation. An extended operation

is requested for PCI configuration cycles (IDSEL bus charging), when quiescence

has been requested (preventing retries from occurring too often), or when the PCI

host is requesting the bus to be parked. During an extended operation request,

the bus activity may not start immediately following the bus grant signal.

■ The PCI_GNT_L[2] output pin signals when the microSPARC-IIep CPU has

detected any unmasked internally detected interrupts. When the internal

interrupt controller is bypassed (refer to bit 04) and an external interrupt

controller is used to drive the IRL lines directly into the microSPARC-IIep CPU,

this output pin could be monitored by the external controller. This signal is

asserted when any unmasked lever I5 interrupt is signaled or when an unmasked

timer interrupt is signaled.

Table 9-41 PCIC Arbitration/Interrupt Control Register (1 byte @ offset = 63)

Bit(s) Reset Field Name R/W

07:05 0 reserved R

04 0 PCI External Interrupt Controller Select R/W

03 0 Reserved (must be set to zero) R/W

02 0/1
1

1. Bit 2 is set to 1 at reset, if the microSPARC-IIep CPU is configured to power up in
slave mode (refer to section 9.9). Bit 2 is set to 0 at reset if the microSPARC-IIep
CPU is set to power up in host mode.

Internal Arbiter Disable R/W

01 0 reserved R

00 0 PCIC Arbitration Level Select R/W
Chapter 9 PCI Controller 183

Bit 03 is reserved and must be set to zero.

Bit 04 selects an external interrupt controller and bypasses the internal interrupt

controller. In this case the four PCI interrupt signals (INTD/C/B/A or

PCI_INT_L[3:0]) are routed directly to the four internal interrupt request lines (IRL)

of the microSPARC-IIep CPU. These IRL lines are those that interface directly to the

standard SPARC version 8 interrupt request inputs:

INTD#->IRL[3]

INTC#->IRL[2]

INTB#->IRL[1]

INTA#->IRL[0]

The CPU samples the IRL lines at each cycle and, if they are seen unchanged for two

cycles, responds to the interrupt request following the standard SPARC interrupt

priority. When the internal interrupt controller is bypassed, an external interrupt

controller could be used to provide up to 15 levels of interrupt to the microSPARC-

IIep CPU. Refer to the description of bit 02 for how to access the interrupts that are

detected internally when an external interrupt controller is used. For more

information, refer to Section 9.7.2, PCIC System Interrupt Pending Register.

9.7 PCIC Interrupts
The PCIC also contains interrupt control logic that receives interrupts from the PCI

bus (INTD#/C#/B#/A# or PCI_INT_L[3:0]) and generates an interrupt vector to the

microSPARC-IIep core. The same interrupt pins may be used as outputs of signal

interrupt conditions to external devices if the internal interrupt controller is

disabled. In addition, any internally detected error conditions generate a level 15

interrupt vector. Interrupt vectors in the microSPARC-IIep processor are processed

according to the normal SPARC interrupt structure. There are several configuration

registers in the PCIC devoted to interrupt control. These registers provide the same

function as the interrupt control unit of the 89C105 interrupt controller.

The PCI interrupts are level signals, and must be held low for a minimum of two

processor clocks before the IRL lines appear stable to the processor to ensure that it

responds to the interrupt.
184 microSPARC-IIep User’s Manual • June 1999

9.7.1 PCIC Interrupt Assignment Select Registers

The PCIC interrupt assignment select registers—see Table 9-42 and Table 9-43—are

used to assign interrupt input signals a chosen priority level. When this is done,

subsequent masking operations apply to the assigned interrupt priority level. Each

interrupt can be mapped to any priority level, independently of other interrupt

assignments. More than one interrupt can be assigned the same priority level, which

requires that the software interrupt handler determine which interrupt occurred.

Any interrupt assigned priority zero is disabled, since an IRL code of zero signals

the absence of any interrupt to the processor.

Figure 9-7 shows a block diagram of the PCIC interrupt controller.

Table 9-42 PCIC Interrupt Assignment Select Register (2 bytes @ offset = 88)

Bit(s) Reset Field Name R/W

15:12 0x7 PCI INTD# (PCI_INT_L[3]) assignment field R/W

11:08 0x5 PCI INTC# (PCI_INT_L[2]) assignment field R/W

07:04 0x3 PCI INTB# (PCI_INT_L[1]) assignment field R/W

03:00 0x2 PCI INTA# (PCI_INT_L[0]) assignment field R/W

Table 9-43 PCIC Interrupt Assignment Select Register (2 bytes @ offset = 8C)

Bit(s) Reset Field Name R/W

15:12 0x0 PCI_INT_L[7] assignment field R/W

11:08 0x0 PCI_INT_L[6] assignment field R/W

07:04 0x0 PCI_INT_L[5] assignment field R/W

03:00 0x0 PCI_INT_L[4] assignment field R/W
Chapter 9 PCI Controller 185

Figure 9-7 PCIC Interrupt Controller Block Diagram

Hardware/Timer
System Interrupts
(INTA#/B#/C#/D#)

Errors/Level 15

System
Interrupt
Pending
Register

System
Interrupt
Mask
Register

Processor
Interrupt
Pending
Register

Priority
Encoder

Software
Interrupts

Hardware
Interrupts

Vector
to V8

Interrupt

Assignment IRL

SPARC

bypass
select

Priority

Interrupts
A
N
Y

lvl15

Interrupt

PCI and
Processor

INT_L[7:0]

Controller
Bypassed
(INT[3:0])

System Interrupts
(INTA#/B#/C#/D#)
INT_L[7:0]

Hardware
Interrupt
Output Register
186 microSPARC-IIep User’s Manual • June 1999

9.7.2 PCIC System Interrupt Pending Register

The PCIC System Interrupt Pending register, described in Table 9-44, is used to read

status information for any pending system—that is, hardware associated—

interrupts. The state of the eight PCI interrupt lines and the two timer interrupts can

be examined by reading this register. Any error conditions detected by the PCIC that

result in a level 15 interrupt are also signaled by posting bits in this register.

Bits 1–15 reflect the state of the programmable, priority-assigned hardware

interrupts which are the eight assigned PCI interrupts, and the two assigned timer

interrupts. The PCI interrupts are level sensitive, active low, and are defined by the

PCI specification to remain active until some processor action clears them. The

interrupt controller does not resynchronize these signals but it does perform the

assignment, masking and comparison to the software interrupt level before passing

the signals through to the processor IRL lines. The processor IRL lines are sampled

for two clocks to avoid reacting to glitches.

When the bypass path is selected, the four PCI interrupt pins are routed directly to

the processor IRL lines:

PCI_INT[3] → IRL[3]

PCI_INT[2] → IRL[2]

PCI_INT[1] → IRL[1]

PCI_INT[0] → INT[0]

where the processor samples them for two processor clocks (not PCI clocks) to

ensure that they are stable before responding. When the interrupt controller is

bypassed, the internal interrupt condition may not be available to the external

interrupt controller. Consequently, he internal timer interrupts and any error

conditions detected by the PCIC—or by the microSPARC-IIep CPU— may not be

Table 9-44 PCIC System Interrupt Pending Register (4 bytes @ offset = 70)

Bit(s) Reset Field Name R/W

31 0 reserved; read as zero R

30 0 PCIC PIO Detected Error R

29 0 PCIC DMA Detected Error R

28 0 PCI Bus Error (SERR#) signaled R

27 0 Processor Detected Error (AFSR or MFSR) R

26 0 PCI Reset detected R

25:16 0 Reserved. Read as zero R

15:1 0 Assigned HW Interrupts R

0 0 reserved; read as zero R
Chapter 9 PCI Controller 187

able to generate a signal to the external interrupt controller. Refer to the description

of the arbiter-disable bit in Section 9.6.5, PCIC Arbitration Control Register for a

method of monitoring these conditions externally when the internal arbiter is

disabled.

Bit 26 is set whenever the processor detects an active PCI reset input signal while the

PCI RESET pin is used as an input. If the PCI input pin is enabled as a processor

reset, bit 26 is cleared as a result of that reset—see Section 9.9.1, System Status and
System Control (Reset) Register. Bit 26 has a latching memory effect and is set on the

first detection of the PCI reset signal. While PCI RESET is asserted, bit 26 cannot be

cleared by writes to the clear system interrupt pending register. This bit remains set

after the PCI RESET input signal is removed until it is cleared with reset or by a

write to the Clear System Interrupt Pending register after the reset condition has

been removed. See Section 9.8, Counter-Timers.

Note – The PCI reset input, when enabled as a processor reset, overrides the level 15

interrupt that is set when bit 26 is set.

Bit 27 is set whenever the processor detects an internal level 15 interrupt condition

that results in bit 31 of the Asynchronous Fault Status register (AFSR) or bit 31 of the

Memory Fault Status register (MFSR) being set. Refer to Section 5.9, Control Space
MMU Registers for details on the AFSR and the MFSR.

Bit 28 is set whenever any subsystem on the PCI bus signals SERR#. The interrupt is

generated and does not depend on which particular PCI subsystems were involved

in a transaction or if any were involved at all. Polling the PCI configuration registers

of all devices on the PCI bus may be necessary to determine the cause of the SERR#

signal. Signaling of SERR# by the PCIC itself can be disabled—see Section 9.5.2.2,

PCI Device Control.

Bit 29 is set whenever an error is detected on a PCI DMA operation. This error can

occur for an IOTLB miss while the IOTLB is enabled. When bit 29 is set, the PCI

virtual address that would have resulted in a IOTLB miss is saved in the IOTLB

translation error address register (0xCC).

Bit 30 is set when an error condition is detected on a PIO transaction that is

terminated abnormally. Additional status information may be present in the PCI

Device Status Configuration register (0x06) and in external PCI device status

registers—see Section 9.5.2.3, PCI Device Status on page 162. When bit 30 is set, the

command and address that applied when the error occurred is saved in the PCI

Master Error Command register and the PCI Master Error Address register. See

Section 9.5.9, PCIC PIO Error Command and Address Registers.
188 microSPARC-IIep User’s Manual • June 1999

9.7.3 PCIC Clear System Interrupt Pending Register

The PCIC Clear System Interrupt Pending register (Table 9-45) is used to clear any

system PCIC interrupts set as a result of an error. Only error conditions detected by

the PCIC and which resulted in a level 15-nonmaskable interrupt can be cleared by

setting bits in this register. These bits cannot be used to clear the state of the four PCI

interrupt lines.

The ASFR and the MFSR interrupts are not cleared using this register. Refer to

Section 5.9, Control Space MMU Registers, for how to clear these interrupts.

■ Bit 07, when set, clears all system interrupt pending interrupts that are set as a

result of a PCIC detected error condition. This has the same effect as turning on

bits 4 through 6.

■ Bit 06, when set, clears the PCIC PIO detected error.

■ Bit 05, when set, clears the IOTLB translation error.

■ Bit 04, when set, clears the PCI SERR# interrupt.

■ Bit 03, when set, clears the PCI Reset interrupt.

9.7.4 PCIC System Interrupt Target Mask Register

The PCIC system interrupt target mask register occupies three addresses

■ 0x74, for reading the current state of the interrupt mask; see Table 9-46.

■ 0x7C, for setting the interrupt mask bits; see Table 9-47.

■ 0x78, for clearing the mask bits; see Table 9-48.

Table 9-45 PCIC Clear System Interrupt Pending Register (1 byte @ offset = 83)

Bit(s) Reset 1

1. Writing a one to the bit positions in this register clears the bit in the System Interrupt Pending reg-
ister.

Field Name R/W

07 0
Clear all PCIC Detected

system interrupt pending Level 15 Errors
W

06 0 Clear PCIC PIO Detected Error W

05 0 Clear PCIC DMA Detected Error W

04 0 Clear PCI SERR# signaled W

03 0 Clear PCI Reset Signaled W

02: 00 000 reserved; read as zero W
Chapter 9 PCI Controller 189

Table 9-46 PCIC System Interrupt Target Mask Register (4 bytes @ offset = 74)

Bit(s) Reset Field Name R/W

31 1 Mask All Interrupts, HW and/or SW R

30 1 Mask PCI PIO Detected Error R

29 1 Mask PCI DMA Detected Error R

28 1 Mask PCI SERR# Signaled R

27 1 Mask Processor Detected Error (AFSR or MFSR) R

26 1 MASK PCI Reset (as input) Detected R

25:16 0 reserved; read as zero R

15:01 0x7f Mask Assigned HW Interrupts R

00 0 reserved; read as zero R

Table 9-47 PCIC System Interrupt Target Mask Clear Register (4 bytes @ offset = 78)

Bit(s) Reset Field Name R/W

31 0 Clear Mask All Interrupts, HW and/or SW W

30 0 Clear Mask PCI PIO Detected Error W

29 0 Clear Mask PCI DMA Detected Error W

28 0 Clear Mask PCI SERR# Signaled W

27 0
Clear Mask Processor Detected Error (AFSR or

MFSR)
W

26 0 Clear Mask PCI Reset (as input) Detected W

25:16 0 reserved; read as zero W

15:01 0x0 Clear Mask Assigned HW Interrupts W

00 0 reserved; read as zero W

Table 9-48 PCIC System Interrupt Target Mask Set Register (4 bytes @ offset = 7C)

Bit(s) Reset Field Name R/W

31 0 Set Mask All Interrupts, HW and/or SW W

30 0 Set Mask PCI PIO Detected Error W

29 0 Set Mask PCI DMA Detected Error W

28 0 Set Mask PCI SERR# Signaled W

27 0 Set Mask Processor Detected Error (AFSR or MFSR) W

26 0 Set Mask PCI Reset (as input) Detected W
190 microSPARC-IIep User’s Manual • June 1999

Writing a one to any defined bit field in the mask set register disables that interrupt,

and writing a one to the same field in the mask clear register re-enables it. All

pending interrupts are cleared, and all mask bits are set upon system reset. (The

state of the PCI_INT_L[7:0] lines that are driven by external sources are defined by

that external source. However the interrupt is masked in the PCIC if the external

source were driving it.)

The interrupts in bit positions 15:01 refer to those hardware interrupts that have had

their mapping priority assignment performed.

9.7.5 PCIC Processor Interrupt Pending Register

The PCIC Processor Interrupt Pending register (see Table 9-50) is used to read status

information for any pending processor interrupts. These can be hardware or

software interrupts. This status reflects the state of the currently unmasked

interrupts. The highest-priority, unmasked, hardware or software interrupt is the

one that generates the vector to the microSPARC-IIep processor. (The PCI RESET

input detected is latched and held until cleared.)

Note – The highest priority interrupt generates an interrupt vector code to the

microSPARC-IIep processor which has the standard SPARC version 8 interrupt

processing features to process that interrupt. Interrupt inputs on the processor IRLs

are sampled using two clocks to verify that these inputs are stable.

Using the default (reset) assignment interrupt mapping priorities, the interrupts are

assigned as shown in Table 9-49.

25:16 0 reserved; read as zero W

15:01 0x0 Set Mask Assigned HW Interrupts W

00 0 reserved; read as zero W

Table 9-49 PCIC Default (Reset) Interrupt Assignments

Interrupt Priority Level Hardware Interrupt

15
1

PCI PIO Detected Error

15
1

PCI DMA Detected Error

15
1

PCI Bus (SERR#) Detected Error

15
1

Processor Detected Error (AFSR,MFSR)

Table 9-48 PCIC System Interrupt Target Mask Set Register (4 bytes @ offset = 7C)

Bit(s) Reset Field Name R/W
Chapter 9 PCI Controller 191

9.7.6 PCIC Software Interrupts

There are two registers that allow software to generate and clear software interrupts.

The software interrupts are read from the processor interrupt pending register.

However, the software interrupts are cleared by writing a one to the appropriate bit

positions in the PCIC Software Interrupt Clear register (0x6A, see Table 9-51) or set

by writing to the PCIC software interrupt set register (0x6E, see Table 9-52).

15
1

PCI reset (as input) detected

7 PCI_INTD# (PCI_INT_L[3])

5 PCI_INTC# (PCI_INT_L[2])

3 PCI_INTB# (PCI_INT_L[1])

2 PC_INTA# (PCI_INT_L[0])

0 (Disabled) PCI_INT_L[7]

0 (Disabled) PCI_INT_L[6]

0 (Disabled) PCI_INT_L[5]

0 (Disabled) PCI_INT_L[4]

0 (Disabled) Processor Counter Interrupt

0 (Disabled) System Counter Interrupt

1. not reassignable

Table 9-50 PCIC Processor Interrupt Pending Register (4 bytes @ offset = 64)

Bit(s) Reset Field Name R/W

31:17 0 Software Interrupts R

16 0 reserved; read as zero R

15:01 0 Assigned Unmasked HW Interrupts R

00 0 reserved; read as zero R

Table 9-51 PCIC Software Interrupt Clear Register (2 bytes @ offset = 6A)

Bit(s) Reset Field Name R/W

15:01 0 Clear Software Interrupt W

00 0 reserved; read as zero W

Table 9-49 PCIC Default (Reset) Interrupt Assignments (Continued)

Interrupt Priority Level Hardware Interrupt
192 microSPARC-IIep User’s Manual • June 1999

9.7.7 PCIC Hardware Interrupt Outputs

The microSPARC-IIep CPU can signal interrupts to an external controller or it can

drive output status lines directly under processor register control. Each of the eight

interrupt lines can be driven as an output. These open-drain drivers can be driven

by multiple sources and require an external pull-up.

Note – Interrupt lines that are not used to signal interrupts to the microSPARC-IIep

CPU can be used as output interrupts to another processor or they can be used to

control other functions under direct microSPARC-IIep program control. Such

programmable functions include system status indicators, control selectors, and

inter-processor interrupts.

The interrupt output lines are of open-drain configuration, and allow for multiple

sources to drive the signal. Even when the microSPARC-IIep CPU has cleared a bit

of the hardware interrupt output register, other external devices may keep the signal

active.

The PCIC hardware interrupt output register (see Table 9-53) generates hardware

interrupt outputs. When a bit in this register is set, the interrupt output signal of the

microSPARC-IIep CPU is activated. When a bit in this register is in a cleared state,

the microSPARC-IIep CPU does not activate the external pin. In addition, the

signaling of an interrupt on the external pin activates the microSPARC-IIep CPU’s

input interrupt detection circuit. If the mask bit of the input interrupt is set,

however, that interrupt does not result in the microSPARC-IIep CPU’s taking the

interrupt that it generated.

Table 9-52 PCIC Software Interrupt Set Register (2 bytes @ offset = 6E)

Bit(s) Reset Field Name R/W

15:01 0 Set Software Interrupt W

00 0 reserved; read as zero W

Table 9-53 PCIC Software Interrupt Output Register (1 byte @ offset = 8E)

Bit(s) Reset Field Name R/W

07 0 PCI_INT_L[7] Enable Interrupt R/W

06 0 PCI_INT_L[6] Enable Interrupt R/W

05 0 PCI_INT_L[5] Enable Interrupt R/W

04 0 PCI_INT_L[4] Enable Interrupt R/W

03 0 PCI INTD (PCI_INT_L[3]) Enable Interrupt R/W
Chapter 9 PCI Controller 193

9.8 Counter-Timers
The microSPARC-IIep CPU features two programmable counter-timers designed to

provide a system timer and a single processor-specific timing function. The features

of these two counter-timers are similar to those offered in the SLAVIO chip

(STP2001 Slave I/O Controller) used with the microSPARC-II. The 31-bit system

counter is dedicated to the system timer function, and it generates an interrupt upon

time-out. The processor counter can either be configured to behave as a 31-bit timer

that generates an interrupt upon time-out or it can provide a real-time 63-bit counter

for high-resolution user-performance analysis.

When the processor counter is set up to behave as a 31-bit timer, it can be used for

OS kernel profiling. In the 63-bit-counter mode, the timer can be loaded upon each

entry into user mode and saved on exit. It can also be loaded with a binary real-time

value to track time-of-day precisely.

These registers should only be accessed in word mode. There are restrictions placed

on the access sequence for the user timer. That register requires two word accesses

performed as one snapshot operation by the hardware to prevent the software-

visible counter from ticking between these accesses.

These timers tick once every four processor clocks. A block diagram of the system

counter and processor counter/user timer is presented in Figure 9-8.

02 0 PCI INTC (PCI_INT_L[2]) Enable Interrupt R/W

01 0 PCI INTB (PCI_INT_L[1]) Enable Interrupt R/W

00 0 PCI INTA (PCI_INT_L[0]) Enable Interrupt R/W

Table 9-53 PCIC Software Interrupt Output Register (1 byte @ offset = 8E) (Continued)

Bit(s) Reset Field Name R/W
194 microSPARC-IIep User’s Manual • June 1999

Figure 9-8 Counter-Timer Block Diagram

9.8.1 Counter-Timers Address Map and Function

Three addresses are associated with each counter: a count register, a limit register,

and a pseudo register that allows the limit to be loaded without resetting the count.

The registers are described in the following sections.

Each counter increments by one in bit in position 0 every four processor clocks.

When the counter reaches the value in its corresponding limit register, it is reset to

0x1, the limit-reached bits in both the counter and the limit registers are set, and an

interrupt is generated (if enabled) at the interrupt level specified in the Counter

Interrupt Priority Assignment register.

The interrupt is cleared and the limit bits reset by reading the appropriate limit

register. Reading the counter register does not change the state of the limit bit.

Writing the limit register resets the corresponding counter to 0x01.

The limit register can be loaded via the pseudo register without resetting the count.

If the count value is already higher than the new limit, the counter counts to its

maximum value, then resets and counts up to the new limit value before generating

the interrupt. This property allows alarm-clock, rather than time-tick, usage of the

counter.

=

=

31-bit counter

31-bit counter

Limit Value

Limit Value

63 bit counter

Processor Counter/User Timer

System Counter

Limit
Reached

Limit
Reached

Interrupt

Interrupt

When Used as Timer
Chapter 9 PCI Controller 195

Setting the limit register to 0x0 causes the corresponding counter to free-run. In this

case, an interrupt is generated when the counter overflows. All bits in the limit

register are cleared to zero on reset, and the counter is set to the value 0x01.

Table 9-54 shows the address map of the PCIC counter-timers.

9.8.2 Processor Counter Limit Register or User Timer

MSW

The Processor Counter Limit register or User Timer most significant word (see

Table 9-55) occupy the same address decode.

The processor counter limit-reached bit is set when the processor counter matches the

Processor Counter Limit register. It is cleared by reading the Processor Counter

Limit register.

Table 9-54 PCIC Counter-Timers Address Map

Address
Offset

Size Register R/W

0xAC word Processor Counter Limit register or User Timer MSW R/W

0xB0 word Processor Counter register or User Timer LSW R/W

0xB4 word Processor Counter Limit register (non-resetting port) W

0xB8 word System Limit register R/W

0xBC word System Counter register R/W

0xC0 word System Limit register (non-resetting port) W

0xC4 byte Processor Counter User Timer Start/Stop Register R/W

0xC5 byte Timer Configuration Register R/W

0xC6 byte Counter Interrupt Priority Assignment Level register R/W

Table 9-55 Processor Counter Limit or User Timer MSW (Word only @ offset = AC)

Processor
Counter Mode

Bit(s) Reset Field Name R/W

Counter

Mode
31 0 Processor Counter Limit Reached R

Counter

Mode
30:00 0 Processor Counter Limit register R/W

Timer Mode 31:00 0 User Timer Most Significant Word (MSW) R/W
196 microSPARC-IIep User’s Manual • June 1999

The User Timer most significant word (MSW) contains a snapshot of the user timer

register. The User Timer register is a 64-bit value and can only be read by reading

two 32-bit registers. The user timer MSW contains a snapshot of the timer value

when the user timer least significant word (LSW) was read. This allows a full 64-bit

value to be reflected in the two 32-bit reads. The user timer LSW should always be

read first, which operation also transfers the value from the timer MSW into the user

timer MSW. Reading from the user timer MSW releases the snapshot and allows the

shadow register to be reloaded.

Writing to the user timer also involves transferring from two 32-bit registers into the

user timer. There is a sequence required for this write to occur as one update to the

user timer (see Table 9-56). The user timer MSW should be loaded first, which causes

a holding register to load. When the user timer LSW is written, the contents of the

MSW holding register, along with the LSW are written into the full 64-bit user timer
register.

9.8.3 Processor Counter Register or User Timer LSW

The processor counter register or user timer least significant word (see Table 9-57)

occupy the same address decode.

The Processor Counter Limit-reached bit is set when the processor counter matches

the Processor Counter Limit register. It is cleared by reading the Processor Counter

Limit register.

Table 9-56 User Timer Read/Write Sequence Required

User Timer 64 bit operation Read Write

User Timer Most Significant Word (MSW) 2nd 1st

User Timer Least Significant Word (LSW) 1st 2nd

Table 9-57 Processor Counter or User Timer LSW (Word Only @ offset = B0)

Processor
Counter Mode

Bit(s) Reset Field Name R/W

Counter

Mode
31 0 Processor Counter Limit Reached R

Counter

Mode
30:00 0 Processor Counter Register R/W

Timer Mode 31:00 0 User Timer Least Significant Word (LSW) R/W
Chapter 9 PCI Controller 197

The User Timer least significant word (LSW) triggers a snapshot of the User Timer

register. The User Timer register holds a 64 bit value that can only be read by

reading two 32-bit registers. The User Timer MSW contains a snapshot of the timer

taken at the time that the User Timer least significant word (LSW) was read. This

allows a full 64 bit value to be reflected in the two 32-bit reads. The User Timer LSW

should always be read first, which operation also transfers the value from the timer

MSW into the User Timer MSW. Reading from the User Timer MSW releases the

snapshot and allows the shadow register to be reloaded.

Writing to the User Timer also involves transferring from two 32-bit registers into

the User Timer. There is a sequence required for this write to happen as one update

to the User Timer. The User Timer MSW should be loaded first, which actually loads

a holding register. When the User Timer LSW is written, the contents of the MSW

holding register, along with the LSW are written into the full 64-bit User Timer

register

Refer to Section 9.8.2, Processor Counter Limit Register or User Timer MSW for the

sequence required to read or write the 64-bit user timer.

9.8.4 Processor Counter Limit Pseudo Register

The Processor Counter Limit Pseudo register (see Table 9-58) allows the limit register

to be reloaded without resetting the counter. This is a write-only register location.

Reads from this register return zeros.

9.8.5 System Counter Limit Register

The System Counter Limit register (see Table 9-59) operates similarly to the Processor

Counter Limit register. The system counter limit-reached bit is set when the system

counter matches the system counter limit register. It is cleared by reading the System

Counter Limit register.

Table 9-58 Processor Counter Limit Pseudo Register (Word Only @ offset = B4)

Bit(s) Reset Field Name R/W

31:00 0 Processor Counter Limit Pseudo register W

Table 9-59 System Counter Limit Register (Word Only @ offset = B8)

Bit(s) Reset Field Name R/W

31 0 System Counter Limit Reached R

30:00 0 System Counter Limit register R/W
198 microSPARC-IIep User’s Manual • June 1999

9.8.6 System Counter Register

The system counter register (see Table 9-60) operates similarly to the processor

counter register.

The system counter limit-reached bit is set when the system counter matches the

system counter limit register. It is cleared by reading the system counter limit

register.

9.8.7 System Counter Limit Pseudo Register

The system counter limit pseudo register (see Table 9-61) allows the limit register to

be reloaded without resetting the counter. This register is write-only; an attempt to

read it returns zeros.

9.8.8 User Timer Start/Stop Register

The user timer start/stop register (see Table 9-62) controls the user timer operation,

and therefore only operates in user-timer mode. When bit zero is set, the user timer

is enabled; when reset to zero, the timer is frozen.

Table 9-60 System Counter Register (Word Only @ offset = BC)

Bit(s) Reset Field Name R/W

31 0 System Counter Limit Reached R

30:00 0 System Counter register R/W

Table 9-61 System Counter Limit or User Timer MSW (Word Only @ offset = C0)

Bit(s) Reset Field Name R/W

31:00 0 System Counter Limit Pseudo register W

Table 9-62 User Timer Start/Stop Register (1 byte @ offset = C4)

Bit(s) Reset Field Name R/W

07:01 0 unused; read as zero R

00 0 User Timer Run Enable R/W
Chapter 9 PCI Controller 199

The user timer start/stop register is provided to allow fast trap handlers to stop the

user timer blindly while processing time-critical code, without having to read and

save the count value. The timer must be restarted before reentering user state. A

software flag must be maintained to indicate whether the user timer is in use, so that

the fast trap handler may see that it must be restarted. This register has no effect if

the processor counter is configured as a counter.

9.8.9 Processor Counter or User Timer Configuration

Register

The processor counter or user timer configuration register (see Table 9-63) controls

the mode of operation of the processor counter and allows writes to the counter

registers to affect the counter value.

When bit 0 is set, the processor counter operates in the user-timer mode. When bit 0

is reset, the processor counter operates in counter mode.

When bit 6 is set, write operations to the processor counter result in the counter’s

being written. This allows diagnostic testing of the counter operation. When bit 6 is

reset, writes to the counter are disabled and have no effect on the counter.

Note – Bit 6 is not used in the user timer mode and writes cannot be disabled in this

mode.

When bit 7 is set, write operations to the system counter result in the counter’s being

written. This allows diagnostic testing of the counter operation. When bit 7 is reset,

writes to the counter are disabled and have no effect on the counter.

9.8.10 Counter Interrupt Priority Assignment Register

The Counter Interrupt Priority Assignment register (see Table 9-64) controls the

priority level for the Processor-counter and the System-counter interrupts.

Table 9-63 Processor Counter/User Timer Configuration Register (1 byte @ offset = C5)

Bit(s) Reset Field Name R/W

07 0 Allow Writes to System Counter R/W

06 0 Allow Writes to Processor Counter R/W

05:01 0 unused; read as zero R

00 0 User Timer Mode Enable R/W
200 microSPARC-IIep User’s Manual • June 1999

When the processor counter operates in user timer mode, it cannot generate an

interrupt.

Bits 07:04 assign the system counter interrupt priority. This interrupt priority is used

for masking and generation of hardware interrupt levels for the system counter. This

register works similarly to the interrupt assignment register for PCI interrupts.

Multiple interrupts can be assigned the same priority level, but then require

software to determine the source of the interrupt. Assigning a interrupt priority level

of 0 disables the interrupt.

Bits 03:00 assign the processor counter interrupt priority. The interrupt priority

assigned is used for masking and generation of hardware interrupt levels for the

processor counter. Assigning a interrupt priority level of 0 disables the interrupt.

When the processor counter is in the user timer mode, it cannot generate an

interrupt.

9.9 System Status and System Control
The system status and system control section of the PCIC is used to control

initialization of the microSPARC-IIep CPU. The source of a processor reset leaves

bits set in the System Status and System Control (Reset) register. Other bits in that

register are used to direct the processors operation for reset operations.

9.9.1 System Status and System Control (Reset)

Register

The System Status and System Control (Reset) register is used to report what kind of

reset the processor last experienced. Since reset places the processor in a known

state, most control bits in all registers become defined in response to a reset. The

Reset register allows the processor to read which reset type was last recorded. In

addition this register allows the processor to set a bit that simulates a system reset

(software reset) and select a response to a received PCI reset

Table 9-64 Counter Interrupt Priority Assignment Register (1 byte @ offset = C6)

Bit(s) Reset Field Name R/W

07:04 0 System Counter Interrupt Priority Level R/W

03:00 0 Processor Counter Interrupt Priority Level R/W
Chapter 9 PCI Controller 201

.

Bit 07 is the PCI Slave Mode Pin Setting bit. It reflects the hardwired strapping of the

mode control pins that place the microSPARC-IIep CPU in a PCI host master mode

(bit =0), or a PCI slave mode (bit = 1). In the host mode, the microSPARC-IIep CPU

drives the PCI reset pin as an output signal. In the slave mode, the microSPARC-IIep

CPU can respond to that pin as an input.

Note – The microSPARC-IIep CPU can only be placed in slave mode when the

phase-locked loop is selected as the clock source. The PLL_BYP_L pin, when tied

high, selects the normal PLL mode of operation, and allows the EXT_CLK2 pin to

select slave mode (EXT_CLK2 tied high) or master mode (EXT_CLK2 tied low).

When the PLL_BYP_L pin is tied low, the PLL is bypassed and EXT_CLK2 is used to

generate CPU clocks. In this case the PCI Slave Mode Pin Setting bit displays master

mode as the default when reset.

Bit 06 is an enable to allow the PCI reset input pin to cause a processor reset. When

bit 06 is set to a one, and the microSPARC-IIep CPU is in slave mode (bit 07 = 1), a

PCI reset forces a reset of the microSPARC-IIep CPU, and sets the PCI Reset Status

bit (bit 05). When Bit 06 is set to a zero, or if the microSPARC-IIep CPU is not in

slave mode (the microSPARC-IIep CPU is the source of the PCI reset signal), PCI

reset has no reset effect on the processor’s internal state. (Note that while the PCI

bus is being reset, the processor does not receive responses from accesses to it. Refer

to the interrupt section for a description of the level-15 interrupt effects due to a PCI

reset.) Note that power-on reset sets bit 06 to match the value of bit 07. Watchdog

reset has no effect on this bit.

Bit 05 is the PCI reset indicator, and is set in response to an input PCI reset if enabled

by bit 06. This read-only bit is set when a PCI reset is received while a slave and PCI

reset has been enabled (bit 06 = 1). This bit is cleared by a power-on reset or by

writing a ‘0’ to it. Writing a ‘1’ to it has no effect.

Table 9-65 System Status and System Control Register: 1 byte @ offset = D0

Bit(s) Reset Field name R/W

07 0/1
1

1. Reflects the hardwired strapping of the mode control pins—see text

PCI Slave Mode Pin Setting (slave mode = 1) R

06 0/1
1

Enable PCI Input Reset (slave mode only) R/W

05 0/1 PCI Input Reset Status R/C

04 0 Processor Watchdog Reset R/C

03 0/1 Input Reset Status (power-up) R/C

02 0 reserved R

01 0 Software Reset Status R/C

00 0 Software Reset Control W
202 microSPARC-IIep User’s Manual • June 1999

Note – Bit 05 is set following power up reset if the PCI reset input remains active

after the input_reset_l signal is removed. Bit 05 is reset if the PCI reset input is

removed before the input_reset_l signal is removed.

Bit 04 is the Watchdog Reset indicator. This bit is set to a 1 when a watchdog reset is

initiated. See section 10 for details on what initiates a watchdog reset. (Inside the

processor, a watchdog reset is signaled with the IU_ERROR signal.) This bit is

cleared by either a power-on reset, a PCI reset, a software reset, or by writing a zero

to this bit. Writing a one has no effect. Note: a watchdog reset does not propagate

out to the PCI bus but remains within the microSPARC-IIep CPU.

Bit 03 is the Input Reset (Power-up) indicator. This bit is set to a one when the

input_reset_l signal is activated. This bit is cleared by writing a zero to this bit.

Writing a 1 has no effect.

Bit 02 is reserved, and should not be written.

Bit 01 is the Software Reset indicator. This bit is set to 1 when a software reset has

been initiated (setting bit 00 = 1). Software Reset has the same effects on the

processor state as power-on reset, with the exception that a software reset sets this

bit. This bit is cleared by a power-on reset, a PCI reset, or by writing a 0 to it. Writing

a 1 has no effect.

Bit 00 is the Software Reset (write-only) bit. When set to a ‘1’, this generates the

equivalent of a power-on reset. When the microSPARC-IIep CPU operates as the

host processor, a power-on reset drives the reset output to the PCI bus. When the

microSPARC-IIep CPU operates in slave mode, it does not drive the PCI reset pin,

but may accept this bit as an input signal.

9.10 PCI Interface Signal Description
The PCI signal definitions are listed alphabetically. The PCIC interface does not

implement IDSEL, as it does not support PCI configuration cycle access from the PCI

bus. The LOCK signal is also not used, and there is no support for PCI locked

operations.
Chapter 9 PCI Controller 203

.

Table 9-66 PCI Signal Listing

SIGNAL NAME PINS ACTIVE I/O DESCRIPTION

AD[31:0]

Address/Data

32 HIGH O

I

AD[31:0] drive the physical address during the first clock

of FRAME# during a transaction. During subsequent

cycles, AD[31:0] contain write data.

AD[31:24] define the most significant byte, and AD[7:0]

define the least significant byte.

It represents the physical address to be decoded as a check

for being the target of the current transaction, and also for

receiving data.

C/BE#[3:0]

Command/

Byte Enables

4 HIGH/

LOW

O

I

During the address phase, C/BE[3:0] define the bus

command (see section 5.2), which is asserted high.

During the data phase C/BE[3:0] are byte enables, which

are asserted LOW. BE[3] applies to the most significant

byte (AD[31:24]). It indicates the command another PCI master is

executing, or the byte enables for input data.

DEVSEL#

Device Select

1 LOW O

I

When asserted, it indicates that the PCIC has decoded the

current physical address and is the target of the current

transaction. When negated, the PCIC has decoded that it is

not the target of the current transaction.

When asserted it indicates some other PCI device has

been selected. When negated, it indicates that no other device has

been selected.

FRAME#

Frame

1 LOW O When first asserted FRAME# indicates that a bus

transaction is beginning. While FRAME# remains

asserted, data transfers continue. When negated

FRAME# indicates that a transaction is in the final data

phase if IRDY# is asserted, or that the bus is idle if

IRDY# is negated.

GNT#[3:0]

Grant

4 LOW O When asserted, GNT# indicates that the PCI master that

asserted the corresponding REQ# has been granted bus

control. When negated, it indicates that the corresponding PCI

master must relinquish bus control at the end of the current

transaction, or that the PCI master does not have bus

control.

IRDY# 1 LOW O When asserted, IRDY# indicates that either write data is

valid on AD[31:0] for a write transaction, or that the PCIC

is ready to receive data on a PCIC read transaction.

PAR

Parity

1 HIGH O When asserted, PAR reflects odd parity across the

AD[31:0], and C/BE#[3:0] signals during both address

and data phases, 1 cycle after the address or data phase.

When negated, it reflects even parity.

I When asserted, PAR indicates odd parity driven by

another master. When negated, it reflects even parity

driven by another master.
204 microSPARC-IIep User’s Manual • June 1999

PERR#

Parity Error

1 LOW O When asserted, PERR# indicates that PCIC, as a target has

detected a data parity error. When negated, it indicates that

no error occurred.

I When asserted, it indicates that another target detected a

data parity error while PCIC was master. When negated,

it indicates that no error occurred.

REQ#[3:0]

Request

4 LOW I When asserted, REQ#[3:0] indicates that an external master is

requesting control of the PCI bus to run a transaction.

When negated, it indicates that the external master does

not have a transaction to run.

SERR#

System Error

1 LOW O Indicates that a catastrophic error has occurred. This can

be an address parity error, a data parity error during a

special cycle, or an error response from the AFX bus

when the PCIC is a target. When negated it indicates that no

error

occurred.

I When asserted it indicates another target has decoded a

catastrophic error. When negated, it indicates that no error

occurred.

STOP#

Stop

1 LOW O When STOP# is asserted, the PCIC is requesting that the current

bus

master stop the transaction. When negated the current

transaction can continue.

I When asserted, it indicates that a target is requesting

PCIC to stop the current transaction. When negated the

current transaction can continue.

TRDY#

Target Ready

1 LOW O When asserted TRDY# indicates that PCIC, as a target,

can complete the current data phase of the transaction.

During a read, TRDY# indicates that valid data is on

AD[31:0]. During a write it indicates the target is ready

to accept data.

I When asserted, it indicates another target’s ability to

complete the current data phase of a transaction. When

negated it indicates a wait from another target.

Table 9-66 PCI Signal Listing (Continued)

SIGNAL NAME PINS ACTIVE I/O DESCRIPTION
Chapter 9 PCI Controller 205

Table 9-67 PCI Bus Commands

C/BE#[3:0] Command Type
Supported
As Master

Supported
As Slave

Definition

0000 Interrupt

Acknowledge

yes no The Interrupt Acknowledge command is a read,

implicitly addressed to the system interrupt

controller.

0001 Special Cycle yes no The Special Cycle command provides a simple

message broadcast mechanism.

0010 I/O Read yes yes The I/O Read command accesses devices

mapped in I/O address space.

0011 I/O Write yes yes The I/O Write command accesses devices

mapped in I/O address space.

0100 reserved no no

0101 reserved no no

0110 Memory Read yes yes The Memory Read command accesses devices

mapped in the memory address space. The read

when seen as a target fetches one 32 B line

from memory when the address is so aligned.

0111 Memory Write yes yes The Memory Write command accesses devices

mapped in the memory address space.

1000 reserved no no –

1001 reserved no no –

1010 Configuration

Read

yes yes The Configuration Read command is used to

access the configuration space of each device, a

device is selected when its IDSEL signals is

asserted. (slave mode support when configured

in Satellite mode only)

1011 Configuration

Write

yes yes The Configuration Write command is used to

access the configuration space of each device, a

device is selected when its IDSEL signals is

asserted. (slave mode support when configured

in Satellite mode only)

1100 Memory Read

Multiple

no yes The Memory Read Multiple command causes a

prefetch of the next 32-B line. The PCIC treats

this as a Memory Read command.

1101 Dual Access

Cycle

no no This command is used to transfer 8-byte

addresses to devices.

1110 Memory Read

Line

no yes The Memory Read Line command is identical to

the Memory Read command.

1111 Memory Write

& Invalidate

no yes The Memory Write & Invalidate command is

identical to the Memory Write command. No

cache line function is supported.
206 microSPARC-IIep User’s Manual • June 1999

9.11 PCI Protocol Fundamentals
Refer to the PCI specification (version 2.1) for a description of the PCI bus protocol.

9.11.1 PCI Addressing

PCI defines three physical address spaces: Memory, I/O, and configuration space.

The memory and I/O spaces are standard. The configuration address space is

defined to support a standardized method of configuring PCI devices, and is further

defined by the PCI configuration space header. Each PCI device is responsible for its

own address decoding. The microSPARC-IIep CPU can communicate with all three

physical address spaces as a master, and responds to memory and I/O address

spaces if enabled. The configuration registers of the microSPARC-IIep CPU are only

available to the host (not through PCI configuration cycles) but the microSPARC-IIep

CPU can read or write other configuration registers as a PCI master.

9.12 IAFX Bus Interface

9.12.1 IAFX Bus Overview

The AFX bus provides a memory-level interconnect protocol, originally defined

between the microSPARC-II, system CPU, system memory, and a graphics

subsystem. The AFX bus provided high bandwidth, low latency, and slave-only

access to graphics by placing the graphics interface directly on the memory bus of a

MicroSPARC-II-based system. The microSPARC-IIep CPU has an internal version of

the AFX bus referred to as the IAFX bus. The PCIC uses the IAFX bus to provide a

high-bandwidth, low latency bridge to the PCI Local Bus. The IAFX bus definition

has been extended over that of the AFX bus to allow the PCIC to be a master on the

IAFX bus, and to directly read and write main memory. This expanded protocol is

described in Section 9.12.3, DVMA (IAFX Master) Interface on page 208 and has

required some modifications from the microSPARC-II definition. The principal

features of the IAFX Bus are:

■ A 64-bit datapath

■ A 28-bit physical address

■ Synchronous operation at 1/3 CPU clock, except interrupts
Chapter 9 PCI Controller 207

■ 1, 2, 4, or 8-byte transfers

New features for the PCIC IAFX Bus supported by MicroSPARC-IIep are:

■ Internal Only operations—allows higher speed.

■ Master access to main memory

■ Direct data and address transfer from the PCIC (memory control from CPU).

Refer to the AFX (Local) bus specification in Appendix C for a detailed description

of the AFX bus functionality. The PCIC implements separate DVMA (IAFX master)

and PIO (IAFX slave) state machines. The DVMA (IAFX master) state machine

controls IAFX transactions initiated from the PCIC (that is, PCI DVMA transactions).

The master state machine controls the request logic for IAFX bus arbitration, as well

as the sequencing logic for executing a master transaction. The PIO (IAFX slave)

state machine controls the PCIC’s internal logic when a CPU-initiated PIO (IAFX

slave) transaction is decoded as targeted at the PCIC. The control includes return

S_REPLY and P_REPLY handshakes on the IAFX bus, PIO (IAFX slave) buffer

management, and PCI read buffer management.

9.12.2 IAFX Target Interface

This interface is the same as that of the normal AFX target (see Appendix C).

9.12.3 DVMA (IAFX Master) Interface

The PCIC bridge requires master access to main memory to support the PCI bus

fully. The standard AFX bus definition does not support master access, as it is a

slave-only bus protocol. The microSPARC-IIep CPU and the PCIC have

implemented an extended AFX bus protocol, that defines six additional interface

signals—and extends the definition of two existing pins—to support bus master

operation by the PCIC. These signals allow the PCIC to read from and write to main

memory directly. The PCIC does not implement a memory controller, but is slaved to

the memory controller in the microSPARC-IIep CPU. When the PCIC initiates a

master transaction, it signals the memory controller interface in the MicroSPARC-

IIep to start the access as a random access, with the PCIC driving the address, and

then to assert RAS and CAS in accordance with the memory operation currently

executing.

Note – All signals used to support AFX and IAFX transfers are internal signals

within the microSPARC-IIep CPU, interfacing only to the PCIC. They are described

here for completeness, but are unavailable for external interfacing to the

microSPARC-IIep CPU.
208 microSPARC-IIep User’s Manual • June 1999

DVMA (IAFX Master) Signal Definitions are shown in Table 9-68.

9.12.3.1 DVMA (IAFX Master) Operations

The PCIC requires full memory access to support DMA masters on the PCI Local

bus. However, the original MicroSPARC-II graphics local bus (AFX) was designed as

a slave-only bus, not supporting external master access to memory. The

microSPARC-IIep CPU, in conjunction with the PCIC, has six additional defined

DVMA (IAFX master) signals to support external master memory access. These

signals (prefixed with “AM” for IAFX master) allow the PCIC to request a

cooperative memory operation, in which the microSPARC-IIep memory controller

directs the memory control, and PCIC drives the memory address and data. In

addition. the signal definition for the IAFX signals LO_ADDR and WRITE_L have

been expanded. The LO_ADDR IAFX signal is defined to have a meaning during

PCIC master operations, to reflect the need for either a row or column address

Table 9-68 DVMA (IAFX Master) Signal Definition

Signal Name QTY DIR Assert Definition

RefCLK 1 I H RefCLK is the MicroSPARC-IIep reference clock. The memory subsystem

and control operate at this clock frequency. All memory timing is

synchronous with the rising edge of this clock, and all DVMA (IAFX Master)

Signals are synchronous with it.

AM_READ 1 O H AM_READ is the DVMA (IAFX Master) Read/write control signal output by

the PCIC. AM_READ is valid when AM_CSTB# is asserted. When

AM_READ is active high, the PCIC is initiating a read operation. When

AM_READ is low, the PCIC is initiating a write operation.

AM_BURST 1 O H AM_BURST is the DVMA (IAFX Master) row/column address control signal

output by the PCIC. AM_BURST is valid when AM_CSTB# is asserted.

When AM_BURST is active high, the address being driven by the PCIC is a

row address (and implies a random access memory cycle being initiated).

When AM_BURST is low, the address being driven by the PCIC is a column

address (which implies a fast page-mode access).

AM_LOCK# 1 O L AM_LOCK# is the DVMA (IAFX Master) Lock signal output by the PCIC.

This signal is used by the PCIC to retain control of the IAFX bus (and

memory) in order to complete the current transaction properly. It is used to

support sub-word write, implemented as read-modify-writes due to word

parity, and also to support the PCI resource LOCK functionality.

AM_CSTB# 1 O L AM_CSTB# is the DVMA (IAFX Master) control strobe output by the PCIC.

AM_CSTB# qualifies AM_READ and AM_BURST when asserted

active low.

AM_AGNT# 1 I L AM_AGNT# is the DVMA (IAFX Master) address strobe output by the

memory controller of microSPARC-IIep. When this strobe is active, it

indicates that the PCIC can drive the IAFX address bus. (This signal is

pipelined over one cycle to remain synchronous.)
Chapter 9 PCI Controller 209

during a PCIC master memory operation, as directed by the microSPARC-IIep

memory controller. The memory controller uses WRITE_L for different functions

dependent on whether the master operation is a read or a write. During a master

read, the WRITE_L signal is used as a data strobe, qualifying that the next cycle has

valid data on the data bus (the one cycle pipeline is to allow for sampling the

WRITE_L signal as a registered input). During a master write operation, WRITE_L is

used to indicate when the current write operation has completed. The WRITE_L

signal de-asserts (goes high) in the cycle before the last cycle of the write operation

(the one cycle pipeline is present to allow for the input register).

A PCIC master memory operation begins with the PCIC asserting AM_CSTB#, the

control strobe. This signal defines a memory operation request from PCIC, and must

be asserted for each data transfer that PCIC masters (including the separate beats of

data during a burst operation). The AM_CSTB# signal also qualifies the AM_READ,

AM_BURST and AM_LOCK# signals, which are used to define the type of memory

operation that the PCIC is initiating. The AM_READ signal defines the operation as

either a read, when asserted (high), or a write when not asserted. The AM_BURST

signal indicates if the operation is a random access or part of a burst sequence. Each

master operation that asserts AM_CSTB# when AM_AGNT# (address grant) is not

asserted, must start the operation as a random access (AM_BURST not asserted). The

AM_BURST signal can only be asserted if it is part of a continuing operation

(defined by AM_AGNT# being asserted when AM_CSTB# is asserted), which

requires additional data transfers.

The microSPARC-IIep memory controller (referred to as the memory controller)

responds to a PCIC master request by asserting AM_AGNT#. The AM_AGNT#

grants PCIC ownership of the memory address bus (the PCIC drives the address bus

in the next RefCLK cycle) and, for master writes, drives the data bus. Ownership of

the memory address bus, signaled by AM_AGNT#, defines when PCIC is executing

a master memory operation. The memory controller sequences the memory control

signals, RAS, CAS, and WE appropriately to complete the operation. As each new

PCIC master operation must be initiated as a random access, the memory controller

always de-asserts RAS in parallel with asserting the AM_AGNT#. This action helps

reduce latency by overlapping the RAS-precharge with the memory bus arbitration.

The memory controller signals which address, row or column, the PCIC should be

driving, by appropriately asserting/de-asserting the IAFX signal LO_ADDR. The

LO_ADDR signal switches one cycle before PCIC should switch from driving the

row address to driving the column address (the one cycle pipeline exists to allow for

an input register on LO_ADDR). The memory controller then uses the WRITE_L

data strobe to direct the PCIC to sample the data on the memory data bus during a

master read operation, or signal the completion of a write during a master write

operation. Once the memory controller deasserts the data strobe, it waits two

RefCLK cycles for another assertion of AM_CSTB# to determine if another PCIC

master memory operation is required. If AM_CSTB# is not asserted two RefCLK

cycles after the deassertion of WRITE_L, the memory controller ends the PCIC

master memory operation by de-asserting AM_AGNT#.
210 microSPARC-IIep User’s Manual • June 1999

The PCIC can potentially burst a DMA write operation for a very long time, based

on the PCI packer state machine packing separate PCI writes into a single long burst.

(4 kilobytes is the theoretical maximum.) As this burst sequence may overlap with

the refresh requirements, the memory controller must be able to interrupt any

master burst sequence from the PCIC. The memory controller does this by removing

AM_AGNT# (as a cycle is normally terminated) even if AM_CSTB# had been

asserted within the 2 x RefCLK window after the de-assertion of AM_DSTB. The

PCIC must recognize that the AM_CSTB# asserted was not acknowledged (by an

assertion of AM_AGNT#), and retry the operation after a certain time-out period.

(the current time-out period is 16 RefCLKs.)

The PCIC also supports the PCI exclusive access function by locking all of
memory as a resource. This is performed by the PCIC asserting the AM_LOCK#
signal during a AM_CSTB# master request. When AM_AGNT# is asserted,
acknowledging the request, the memory controller locks out any access to
memory other than by the PCIC. The memory controller sequences and
completes the PCIC master memory operation normally when initiated with a
AM_LOCK#. However, no other memory operation can occur (other than
DRAM refresh) until the completion of a subsequent PCIC master memory
operation that is initiated with AM_LOCK# de-asserted.

Rules and Relationships of DVMA (IAFX Master) Signals

The DVMA (IAFX Master) signals follow certain rules and have certain relationships

that define their implementation. The following observations have no innate order,

but are numbered for easy reference.

1. AM_CSTB# is both a request strobe from PCIC, as well as a qualifier for

AM_READ, AM_BURST, and AM_LOCK#.

2. AM_AGNT# is the acknowledge and grant signal to the PCIC from the

microSPARC-IIep memory controller. When asserted, AM_AGNT# indicates that

the PCIC is driving the bus in the following cycle (pipelined one cycle to allow

the corresponding output enables to be registered).

3. The first cycle in which AM_AGNT# is asserted is always a turnaround cycle (in

which neither source drives the bus).

4. The cycle following the de-assertion of AM_AGNT# is always a turnaround cycle

(in which neither source drives the bus).

5. The memory controller determines if it can service a PCIC request
(AM_CSTB#) in the immediate state. If the memory controller cannot
immediately service the request, it only retains the status that a request was
made. The memory controller should hold-off all other operations at the
Chapter 9 PCI Controller 211

conclusion of the current operation. The memory controller does not retain
any state of the last request from the PCIC, and therefore requires the PCIC to
retry the same request.

6. During PCIC master writes, The PCIC must drive the data bus and the address

bus simultaneously. When transitioning from a master read to a write in a burst,

the PCIC drives the data bus on the third cycle following the assertion of

AM_CSTB#. The second cycle following AM_CSTB# is a turnaround cycle. When

transitioning from a master write to a burst read (an operation that is unlikely to

be needed), the PCIC disables driving of the data bus the cycle following the

assertion of AM_CSTB#. Following this, The memory controller drives the data

bus on the second cycle following the assertion of AM_CSTB#.

7. For PCIC master reads, WRITE_L is asserted as the data strobe one cycle before

the data is valid on the data bus.

8. For PCIC master writes, the assertion of WRITE_L is meaningless. The

deassertion of WRITE_L indicates that the master write will complete in the

following cycle. When another data transfer is pending, The PCIC uses WRITE_L

to determine when to assert AM_CSTB#

Master Read Operations

The PCIC starts a master read operation by asserting AM_CSTB#, with AM_READ

asserted, AM_BURST deasserted, and the condition of AM_LOCK# based on

whether or not this is a PCI exclusive access. The PCIC then waits for the assertion

of AM_AGNT# to determine when to begin the read operation. In the cycle

following the assertion of AM_AGNT#, the PCIC drives the address bus with the

row address based on LO_ADDR being de-asserted (assumed as this is the first

access of a new operation). The memory controller then asserts LO_ADDR one cycle

before the column address is required. the PCIC switches the address from row to

column on the cycle following the asserting of LO_ADDR. The memory controller

then asserts WRITE_L the cycle before the data is valid on the data bus. The PCIC

samples the data on the data bus the cycle after the assertion of WRITE_L. If the

PCIC has additional operations pending, it asserts AM_CSTB# two cycles following

the assertion of WRITE_L. If no operations are pending, and therefore AM_CSTB# is

not asserted in the two cycles following the assertion of WRITE_L, AM_AGNT#

deasserts on the third cycle following the assertion of WRITE_L.
212 microSPARC-IIep User’s Manual • June 1999

CHAPTER 10

Flash Memory Interface

The microSPARC-IIep flash memory interface provides a glueless connection to

28FxxxXX compatible flash memory devices. The interface has a programmable

latency, which is set to 45 processor cycles per access on power up. After power up,

this latency can be reprogrammed if required.

The flash interface is a word interface or a byte interface, and as such writes to the

flash memory must be done as word writes or byte writes. There is no byte-

collecting hardware to support the write operations. All writes are to the flash device

as a memory mapped device.

10.1 Flash Memory Programming Interface
The flash memory or PCI address space can be selected as the boot memory. Refer to

Section 11.7, Boot Options for selection of the boot address space. If the flash memory

space is not selected in boot mode, it can still be accessed through the

microSPARC-IIep address space mapping with PA[30:28]=0x2. (see Table B-1 on

page 251.)

The flash memory space resides in cacheable memory space within the

microSPARC-IIep CPU, and subsequent references are satisfied from the cache. Boot

mode accesses are non-cacheable while in boot mode. All load access widths are

supported. For stores, however, only the native access width is supported. Bits 22:21

of the TLB replacement control register indicate the native access width. Values other

than 0b01 indicate that the flash memory is 32 bits wide, while a value of 0b01

indicates that it has 8-bit width.
213

10.2 Flash Memory Speed
Refer to Section 5.8.5, MID Register on page 87 for more details on the flash ROM

parameter setup. The flash memory access time is set as follows.

 ((flash memory speed) - 1) x 3 x CPU cycle time = flash memory access time

If the flash memory speed is set to 0x0 or 0x1 the flash memory access time used is 6

x CPU cycle time. These bits are readable and writable.
214 microSPARC-IIep User’s Manual • June 1999

CHAPTER 11

Mode, Timing, and Test Controls

11.1 Overview
This section describes the functions:

■ Reset logic (Section 11.2)

■ Phase-locked loop (Section 11.3)

■ Power management (Section 11.4)

■ Clock control logic (Section 11.5)

■ JTAG architecture (Section 11.6)

■ Boot options (Section 11.7)

The JTAG logic controls all scan operation within the microSPARC-IIep CPU and in

conjunction with the clock start/stop logic, enables the single step operation of the

chip for debug purposes. All registers are scannable and are configured as one single

scan chain for testing and debugging.

11.2 Reset Logic

11.2.1 General Reset and Watchdog Reset

When the reset input is active, the microSPARC-IIep CPU activates the PCI_RST#

when operating in PCI host mode. In satellite mode, the PCI_RST# signal is an input

pin and can reset the microSPARC-IIep CPU if enabled. See Section 9.9, System Status
and System Control on page 201. All RAMs including the IU and FPU register files,
215

the data and instruction cache, and the TLB remain unchanged by the assertion of

reset. On reset, state and pipeline registers internal to the IU are programmed to

predetermined states. All other registers in the microSPARC-IIep CPU are reset to

zero. See Section 9.9, System Status and System Control.

The microSPARC-IIep reset controller performs the simple task of driving the

microSPARC-IIep CPU’s internal reset lines, and inhibiting clocks during transitions

on those lines to avoid timing violations as the flip-flops are reset.

The microSPARC-IIep CPU has two reset operations:

■ General reset is triggered by:

■ Assertion of INPUT_RESET_L input pin on powerup and or any externally-

triggered reset

■ Programmed software reset—see Section 9.9, System Status and System Control.
■ Assertion of PCI_RST# while in PCI satellite mode with reset enabled—see

Section 9.9, System Status and System Control.

During general reset, all registers except those in clock and reset logic and the

TAP controller are reset. During scan-shift, INPUT_RESET_L is disabled to

prevent loss of non-resettable state.

■ Watchdog reset is triggered when the IU takes a trap and enters error state while

the ET bit of the PSR is deasserted. However, the watchdog reset is delayed until

no loads, stores, or instructions are in progress.

During transitions on the reset lines, the reset controller has another output that

disables the outputs of the clock controller during transitions on the reset lines. This

allows the heavily-loaded reset signals to propagate completely throughout the chip

between clocks to avoid setup and hold time violations.
216 microSPARC-IIep User’s Manual • June 1999

Figure 11-1 Reset State Machine

idle

err1

err2

iu_error

mm_hold_rst

on1

on2

on3

on4

rst1

rst2

rst3

rst4

off1

off2

off3

off4

rcc_rst

Stop clocks on
this transition if

trst is not asserted
A

ss
er

t R
es

et

ds
bl

 c
lo

ck
s

ds
bl

 c
lo

ck
s

This state machine runs
at the frequency of PCI_CLK
Chapter 11 Mode, Timing, and Test Controls 217

11.2.2 Reset Controller State Machine

The reset state machine is clocked at PCI_CLK. Assertion of RCC_RST

synchronously resets the state machine into the rst1 state from any other state. The

state machine thus stays in state rst1 for as long as RCC_RST is asserted. After

completing a reset sequence, the state machine hangs in the idle state until either

IU_ERROR or RCC_RST is asserted. If IU_ERROR is asserted while in the idle state,

the state machine goes to state err1, waits there until MM_HOLD_RST is deasserted,

and then completes the reset sequence and returns to idle. RESET_ANY and

RESET_NONWD are asserted in states on2, on3, on4, rst1, rst2, rst3, rst4, and off1; if

the reset sequence were initiated by IU_ERROR, only RESET_ANY is asserted; if

initiated by RCC_RST, both RESET_ANY and RESET_NONWD are asserted.

Clocks are disabled in states on1, on2, on3, and on4 as the reset signal is turned on;

they are disabled again in states off1, off2, off3, and off4 as reset is turned off again.

This clock disabling does not put the clock state machine into the stopped state; it

merely gates off the clock outputs. The reset lines are always deasserted during a

clocks-disabled period, and for watchdog reset, they are asserted during a clocks-

disabled period.

11.3 Phase-Locked Loop
The microSPARC-IIep CPU uses a phase-locked loop design to generate the internal

high frequency clock. Figure 11-2 shows the PLL block diagram.
218 microSPARC-IIep User’s Manual • June 1999

.

Figure 11-2 Phase-Locked Loop Block Diagram

The ss_clock (REF_CLOCK) is the 133 MHz system clock inside the microSPARC-

IIep CPU. The PCI_CLK is the clock for some internal logic and state machines that

do not require a high frequency. The PCI input clock is used in the PLL feedback

loop such that the ss_clock is a multiple (3, 4, 5, or 6) of the PCI input clock.

The REF_CLK has the same frequency as the ss_clock and is routed off chip for

testing purposes.

The voltage-controlled oscillator (VCO) generates a clock at twice the frequency of

ss_clock. Depending on the state of PLL_BYP_L, different clock frequencies can be

generated:

■ PLL_BYP_L is asserted (i.e., tied to 0). EXT_CLK1 and EXT_CLK2 are XORed. If

they are 90 degrees out of phase with each other, the clock generated from the

XOR logic runs at twice the frequency of EXT_CLK1. When PLL_BYP_L is

asserted, the microSPARC-IIep CPU operates in PCI host mode. (that is, the

microSPARC-IIep CPU drives PCI_CLK[3:0] output pins.)

■ PLL_BYP_L is deasserted. (tied to 1)

VCO
 Phase
 Detect

Control

DIV_CNTL[1:0]

Clock buffer &
Skew tuning

EXT_CLK1

 O

Bypass path

PLL_BYP_L

REF_CLK

 ss_clockClock

EXT_CLK2

 O

rfr_clk

rfr_late

PCI_CLK[3:0]

gclk (internal)

sbclk (internal)

RCC_CLK

INPUT_CLK
Chapter 11 Mode, Timing, and Test Controls 219

■ If EXT_CLK2 is tied to 1 at power-up, the microSPARC-IIep CPU operates in

PCI satellite mode (that is, an external PCI host droves the clock on the PCI

bus). In that case, the PCI clock supplied by the external PCI host is connected

to EXT_CLK1. The PCI_CLK[3:0] outputs of the microSPARC-IIep CPU are

unconnected.

■ If EXT_CLK2 is not tied to 1 at power-up, then the microSPARC-IIep CPU

operates in PCI host mode, that is, the microSPARC-IIep CPU drives

PCI_CLK[3:0] output pins. In that case the PCI_CLK[3:0] output pins carry the

same frequency as that of EXT_CLK1.

DIV_CNTL_ is used to select the divider ratio for the PCI_CLK (3, 4, 5, or 6).

The following expression summarizes the clock generation:

input_clk = PLL_BYP_L?(2x * DIV_CNTL * EXT_CLK1 frequency):(EXT_CLK1 XOR EXT_CLK2)

ss_clock is at half the frequency of input_clk.

Clock skew between ss_clock and PCI_CLK, ss_clock and REF_CLK should be less

than 1 ns. The PLL is designed to operate at up to 400 megahertz.

11.4 Power Management
The following paragraphs list the microSPARC-IIep power management features.

Cache RAM powerdown — Whenever the cache controllers detect that one of the

cache RAMs need not be accessed in a given clock cycle, that RAM is automatically

put into powerdown mode for that cycle. In this mode the RAM consumes minimal

power. This mode is used when the cache is disabled, when the CPU is waiting for

cache miss data to be returned from memory, or when the chip is in standby mode.

■ The microSPARC-IIep CPU includes a programmable bit in the MID register that

allows the processor to enter the power down mode internally, without the need

of an external monitor (see Section 5.8.3, Memory Fault Status Register). When the

processor sets the standby bit in the MID register, all internal operations are

allowed to complete, and if there is no activity on the PCI bus, the processor shuts

down the internal clocks and enters standby mode. While in standby, the

processor parks the PCI bus at itself if it is operating in the PCI host mode. Any

request to use the PCI bus or any interrupt activity (counters included) resets the

bit of the MID register and takes the processor out of standby mode.

DMA activity on the PCI bus takes the processor out of standby state by resetting

the MID register bit even though the processor is not involved. In order for the

processor to return to standby, the bit in the MID register must be set again (that

is, there must be an idle loop).
220 microSPARC-IIep User’s Manual • June 1999

■ Self-refresh DRAM mode — In this mode, the DRAMs operate in self-refresh

mode, assuming that the DRAMs have self-refresh capability. It is controlled by

bit 13 of the Processor Control register PCR. After a 1 is written to PCR[13], the

DRAMs enter self-refresh mode within 2 µs (see Section 5.7.1, Processor Control
Register on page 73).

11.5 Clock Control Logic
The microSPARC-IIep clock controller generates the clock signals used by all of the

microSPARC-IIep CPU (except the TAP controller) as well as the PCI_CLK[3:0].

PCI_CLK[3:0] drive external PCI devices when the microSPARC-IIep CPU is

operating in PCI host mode. Otherwise, these output pins are unconnected and

clocks for PCI devices are supplied by the external PCI host. Its operation is

controlled by the clock control register (CCR), a collection of internal register bits

that is writable only by JTAG signals. On reset, the CCR is cleared. Subsequent scan-

shift operations can be used to set bits of the CCR and alter the operation of the

clock state machine as described in this section.

The microSPARC-IIep clock controller is designed to interface to a simple internal

cycle counter (ICC) for precise, at-speed control of system clocking. The ICC is a

simple binary counter that increments on rising edges of PCI_CLK.

Note – The ICC is currently not accessible via scan or JTAG.

The interface consists of three microSPARC-IIep I/O pins:

■ PCI_CLKn — A clock output. This output is used to clock some external logic as

well as the ICC.

■ ext_event (input) — This input is immediately registered in a PCI_CLK-clocked

flip-flop. Under control of some clock control register (CCR) bits, a logic 1 in this

flip-flop causes clocks to stop either at the next RCC_CLK edge or the next

PCI_CLK edge. This input should be driven by the terminal_count output of the

ICC and perhaps ORed with other externally-detected clock-stop signals. In a

standard binary up-counter, the terminal count output is asserted when the

counter contains all ones (i.e., a two's-complement value of -1).

■ int_event (output) — This is the output of a PCI_CLK-clocked flip-flop. It is

asserted whenever an internally-detected event occurs (e.g., virtual address

match). These events can, under control of some CCR bits, stop clocks; however,

whether or not they stop clocks, they always cause assertion of the int_event

output. This output can be used to trigger a logic analyzer; in addition, it can be

used in conjunction with the ICC as described in Section 11.5.7, Stop Clocks N
Cycles after Internal Event.
Chapter 11 Mode, Timing, and Test Controls 221

In addition, there are two microSPARC-IIep input pins that control the internal clock

divider: these bits specify the (RCC_CLK: PCI_CLK) frequency ratio D (see

Table 11-1).

The RCC_CLK range shown in Table 11-1 is the range of internal RCC_CLK

frequencies that is obtained when PCI_CLK spans its legal range up to 33 MHz. The

PHI[2:0] column shows the sequence of states traversed by the PHI[2:0] field of the

CCR in each PCI_CLK cycle. PHI[2:0] transitions to the next state in the sequence on

each RCC_CLK rising edge and the RCC_CLK rising edge that coincides with the

PCI_CLK rising edge always causes PHI[2:0] to transition to the 0 state.

The ICC/microSPARC-IIep interface runs at the PCI_CLK clock rate and the signal

I/O connects directly to inputs or outputs of flip-flops within the microSPARC-IIep

CPU. Thus, the ICC logic has nearly a full PCI cycle in which to set up its output to

the ext_event input.

11.5.1 Stopping Clocks

Rather than using the ICC., clocks can be started with the CCR bit.

11.5.2 Starting Clocks

Rather than using the ICC., clocks can be started with the CCR bit.

11.5.3 Single-Step

This mode does not require the use of the ICC. From a clock-stopped state, set both

the stop_clocks and start bits of the CCR. A single active-low RCC_CLK pulse is

issued, with a pulse width of 1/2 the normal RCC_CLK period; if the RCC_CLK

Table 11-1 Internal Clock Divide Control

DIV_CTL[1:0]
RCC_CLK Range

D (Clock Divide) RCC_CLK (MHz) PHI[2:0]

01 3 100 0,1,2

10 4 133 0,1,2,3

11 5 166 0,1,2,3,4

00 6 200 0,1,2,3,4,5
222 microSPARC-IIep User’s Manual • June 1999

pulse causes PHI[2:0] to transition to the 0 state, a single active-low PCI_CLK pulse

is also issued. Its pulse width is 1/2 the normal PCI_CLK period and its rising edge

coincides with the rising edge of RCC_CLK.

Figure 11-3 shows a divide-by-three example.

Figure 11-3 Divide-by-3 Example

11.5.4 Counting Clocks

When the ICC is enabled, it increments on every rising edge of PIC_CLK[3:0]. Since

the states of the ICC and the CCR are accessible using scan, the number of clocks

issued between any two points in time can be calculated by scanning out the state

information before clocks are started and again after they have been stopped. The

following formula can be used.

N = D*(ICC.after-ICC.before) + (phi.after-phi.before)

■ D is the divider ratio (3, 4, 5, or 6) specified by DIV_CTL[1:0].

RCC_CLK
PCI_CLK

RCC_CLK
PCI_CLK

PCI_CLK

phi

0 1

1 2

2 3

phi

phi

input_clk

input_clk

input_clk
Chapter 11 Mode, Timing, and Test Controls 223

■ ICC.before and ICC.after are the respective values of the external clock counter

before and after clocks have been issued.

■ phi.before and phi.after are the corresponding values of the phi[2:0] bits of the

CCR.

This formula assumes that the ICC has not wrapped; the ICC control logic should

contain a wraparound detector that can be read by scan.

11.5.5 Issuing N Clocks

The ICC can be used to issue exactly N system clocks, at full speed. N can be any

number from 1 to approximately D(2
X
), where D is the (RCC_CLK: PCI_CLK) clock

divide ratio and X is the number of bits in the ICC; for example, a 32-bit ICC allows

control of clocks over a 200-second range at 80-MHz operation in a divide-by-4

mode. This function does not require the use of the int_event output.

To issue N clocks from a clocks-stopped state, several CCR fields, as well as the ICC

register, are involved. Scan a 1 into the start and stop_on_ext_event control bits,

copy (using scan) the current phi[2:0] field into the ref_phi[2:0] field, and scan

appropriate values into the extra_cycles[2:0] field and into the ICC. The number of

clocks issued is given by this formula:

N = D*(-ICC.before) + extra_cycles + 1;

where -ICC.before is the positive number formed by taking the two’s-complement of

the scanned-in ICC value. Thus, to issue N clocks, scan the twos-complement of (N-

1)/D into the ICC, and scan (N-1)%D into extra_cycles[2:0], where “/” is integer

divide with the remainder discarded, and '%' is the remainder of integer divide. For

example, to issue 17 clocks in divide-by-3 mode, scan -((17-1)/3) = 0xFFFFFFFB into

the ICC, and (17-1)%3 = 1 into extra_cycles[2:0].

Because the value scanned into the ICC is treated as a negative number to be

counted up towards zero, the formula above works only when (N-1)/D > 0, i.e.

when (N > D). For (0 < N ≤ D), scan 00000000 into the ICC, scan 1 into the

ext_event_sb1 bit of the CCR, and scan (N-1)%D into extra_cycles[2:0].

A complete algorithm is shown below. It includes a few other CCR bits that must be

set to specific states.

if (N < 1)

error;

else {

ICC = -(N-1)/D;

CCR.extra_cycles = (N-1)%D;

CCR.ref_phi = CCR.phi;

if (N ≤ D)
224 microSPARC-IIep User’s Manual • June 1999

CCR.ext_event_sb1 = 1;

else

CCR.ext_event_sb1 = 0;

CCR.start = 1; CCR.stop_on_ext_event = 1;

CCR.stop_int_to_ext = 0;

CCR.int_to_ext = 0;

CCR.ext_event_sb2 = 0;

}

11.5.6 Stop Clocks on Internal Event

This facility does not require the use of the ICC. To stop clocks on detection of an

internal event, set the stop_on_int_event bit of the CCR and enable the desired

internal event detection logic. Clocks, with some limitations, stop at the end of the

RCC_CLK cycle in which the input to the int_event flip-flop is asserted. The

limitation of this mode is that clocks cannot stop in phi==2 when D==3, phi==3

when D==4, or in phi==3 or 4 when D==5;. If an internal event occurs in either of

these situations, clocks stop one cycle later (i.e., in phi==0). Note that, since the

int_event flip-flop is clocked only on PCI_CLK edges, the int_event output pin is not

set by the internal event that stops the clocks, unless clocks have stopped in phi==0.

11.5.7 Stop Clocks N Cycles after Internal Event

In this mode, the ICC is held until an internal event occurs. The internal event does

not stop clocks, but causes assertion of the int_event output. The int_event output

remains asserted until it is cleared by scan. The ICC is enabled to count whenever

int_event is asserted, so clocks continue to run until ext_event is asserted, either by

ICC or by another external event detector. The intent of this mode is to issue exactly

N more clocks than would have been issued in stop_on_int_event mode (see Section

11.5.6) That is, exactly N clocks are issued after the first rcc_clock positive edge at

which the input to the int_event flip-flop is asserted. Logic in the clock controller

records the clock phase in which the internal event occurred, and this information is

factored into the subsequent clock stop on external event, so that N can be any

integer. Due to timing limitations, N must be greater than D.

To support this mode, the ICC must have logic which, under scan control, holds the

count when int_event is not asserted.

To have clocks continue for exactly N cycles after the cycle in which the internal

event occurs, several CCR fields, as well as the ICC register, are involved. A 1 must

be scanned into the start and int_to_ext CCR bits, and a 0 scanned into the
Chapter 11 Mode, Timing, and Test Controls 225

stop_on_ext_event and stop_int_to_ext CCR bits. Scan appropriate values into the

extra_cycles[2:0] field and into the ICC. The following formula gives the number of

additional clocks to be issued after the cycle in which the internal event occurs.

N = D*(-ICC.before) + extra_cycles + D;

where -ICC.before is the positive number that results from taking the two’s-

complement of the scanned-in ICC value. Thus, to issue N clocks, scan the two’s

complement of (N/D - 1) into the ICC, and scan (N%D) into extra_cycles[2:0], where

“/” is integer divide with the remainder discarded, and '%' is the remainder of

integer divide. For example, to issue 35 clocks after an internal event in divide-by-4

mode, scan -(35/4 - 1) = 0xfffffff9 into the ICC, and (35%4) = 3 into extra_cycles[2:0].

As described for stop_on_ext_event mode, if the formula gives an initial ICC value

of 0, also scan a 1 into ext_event_sb1.

A complete algorithm:

if (N ≤ D)

error;

else {

ICC = -(N/D - 1);

CCR.extra_cycles = (N%D);

CCR.ref_phi = CCR.phi;

CCR.start = 1; CCR.int_to_ext = 1;

CCR.stop_on_ext_event = 0;

CCR.stop_int_to_ext = 0;

CCR.int_event = 0;

if (N < (2*D))

CCR.ext_event_sb1 = 1;

else

CCR.ext_event_sb1 = 0;

CCR.ext_event_sb2 = 0;

}

11.5.8 Stop Clocks after N Internal Events

In this mode clocks are stopped after the Nth detected internal event. Clocks are

stopped as described in Section 11.5.7, Stop Clocks N Cycles after Internal Event for

stop_on_int_event mode, except that the first (N-1) PCI_CLK cycles of int_event

assertion are ignored. Due to the limited resolution of the ICC interface, if more than

one internal event occurs within a single PCI_CLK cycle, that counts as only a single

event.
226 microSPARC-IIep User’s Manual • June 1999

This mode is enabled by the stop_nth_event CCR bit, and ICC needs a scannable

control bit that enables it to count only while int_event is active.

To use this mode, load ICC with (2-N) and turn on stop_nth_event. As with other

modes described above, some special action is required if the initial ICC value given

by this formula is non-negative. There follows a complete algorithm:

if (N < 1)

error;

else {

ICC = (2 - N);

CCR.start = 1;

CCR.int_to_ext = 0;

CCR.stop_on_ext_event = 1;

CCR.stop_int_to_ext = 0;

CCR.int_event = 0; if (N == 1)

CCR.ext_event_sb2 = 1; else

CCR.ext_event_sb2 = 0;

if (N == 2)

CCR.ext_event_sb1 = 1;

else

CCR.ext_event_sb1 = 0;

}

11.5.9 Clock Control Register (CCR) Bits

A list of the clock control register bits follows. These bits are only accessible by scan,

and their function is described above.

■ start

■ stop_clocks

■ stop_on_int_event

■ stop_on_ext_event

■ stop_int_to_ext

■ stop_nth_event

■ extra_cycles[2:0]

■ int_event

■ ext_event_sb1

■ ext_event_sb2

■ phi[2:0] (Treat this as read only)

■ ref_phi[2:0]
Chapter 11 Mode, Timing, and Test Controls 227

11.6 JTAG Architecture
A variety of microSPARC-IIep test and diagnostic functions, including internal scan,

boundary scan, and clock control are controlled through an IEEE 1149.1 (JTAG)

standard test access port (TAP). Commands and data are sent as serial data between

the JTAG master and the microSPARC-IIep chip (a JTAG slave), through a 4-wire

serial testability bus (JTAG bus). The TAP interface to the JTAG bus uses five

dedicated pins on the microSPARC-IIep chip. These pins are

■ TCK - input - test clock

■ TMS - input - test mode select

■ TDI - input - test data input

■ TRST_L - input - JTAG TAP reset (asynchronous)

■ TDO - output - test data output

For more details on the IEEE protocol, refer to the IEEE document IEEE Standard Test
Access Port and Boundary-Scan Architecture, published by IEEE—see Bibliography on

page 275.

11.6.1 Board Level Architecture

Any microSPARC-IIep-based system contains several JTAG-compatible chips. These

are connected using the minimum (single TMS signal) configuration as described in

the 1149.1 specification (Figure 3-1, IEEE 1149.1 standards manual). This

configuration contains three broadcast signals (TMS, TCK, and TRST,) that are fed

from the JTAG master to all JTAG slaves in parallel, and also to a fed to a serial path

formed by a daisy-chain connection of the serial test data pins (TDI and TDO) of all

slaves.

The TAP supports a BYPASS instruction which places a minimum shift path (1 bit)

between the chip’s TDI and TDO pins. This arrangement allows efficient access to

any single chip in the daisy-chain without board-level multiplexing.

11.6.2 Test Access Port (TAP)

The TAP consists of a TAP controller, a number of shift registers including an

instruction register (IR), and multiple data registers.

The TAP controller is a synchronous finite state machine that controls the sequence

of operations of the JTAG test circuitry in response to changes at the JTAG bus—

specifically, in response to changes at the TMS input with respect to the TCK input.
228 microSPARC-IIep User’s Manual • June 1999

Note – The TAP controller is asynchronous with respect to the system clock(s), and

can therefore be used to control the clock control logic.

The TAP finite state machine (FSM) implements 16 states as required by the 1149.1

protocol.

The IR is a 6-bit register that allows a test instruction to be shifted into the

microSPARC-IIep CPU. The instruction selects the test to be performed and the test

data register to be accessed. The supported instructions are listed in Section 11.6.3,

JTAG Instructions.

Although any number of loops may be supported by the TAP, the finite state

machine in the TAP controller only distinguishes between the IR and a data register.

The specific data register can be decoded from the instruction in the IR.

The following data registers are supported in the microSPARC-IIep TAP.

■ Bypass register — A single-bit shift register for efficient board-level scan

■ Device I.D. register — A 32-bit register with the field shown in Figure 11-4

Figure 11-4 Device ID Register Contents

Field Definitions:
■ [31:28]: Version — represent the version number, 0x1 for this version

■ [27:12]: Part ID — representative part number as assigned by Vendor, 0x016d

■ [11:01]: Manufacturer’s ID — representative manufacturer’s ID as per JEDEC,

0x36

■ [0]: Const — Tied to a constant logic ’1’

■ Value in ID Register: 32’h 00000009

■ Data register — this is a two-bit clock control register to sample outputs from the

clock controller (CCR)

■ Boundary Scan Register — single scan chain consisting of all of the boundary scan

cells (input, output and in/out cells)

■ MISC block Internal Scan Registers - a single scan chain of all the internal scan

flipflops in the MISC block

0031 11

Version

28 27 12

ConstManufacturer’s ID 0x36Part ID

01
Chapter 11 Mode, Timing, and Test Controls 229

11.6.3 JTAG Instructions

The instructions listed in Table 11-2 are supported by the microSPARC-IIep TAP. The

table contains the instruction bit-values and mnemonics, with the data register

selected by each instruction.

Notes:

■ The two internal scan chain instructions differ with respect to the scan chain

clocking during CAPTURE_DR state of the TAP FSM. sel_int_scan is used for

ATPG tests, where a clock pulse is needed to capture the next state when the

scan_mode signal is in the inactive state between shift cycles. The other scan

instruction, sel_dbg_scan is used during debug to read and write the scan chain.

No pulse is generated during the transition from “shift → capture → shift”

states. In other words, the scan state is preserved during the shift, capture, shift

cycle. cycle. Only the internal scan chain within the MISC block is accessible. All

core logic scan chains are directly accessible by means of four dual-use,

scan-input pins and four dual-use, scan-output pins.

■ The TDO output becomes valid at the falling edge of TCK according to the 1149.1

specification. The TDI input is clocked during the rising edge of TCK.

■ The ATEINTEST operation is used to load the boundary scan flip-flops after

which, if it enters the run_test_idle state, the JTAG controller generates a single

TCK pulse.

■ Although the capability exists to single step the chip through another mechanism,

using sys_clock itself, the ATEINTEST option provides the capability to perform

ICT on the ATE at a slow speed.

Table 11-2 JTAG Instructions

Value
Name of
Instruction

Data Register Scan Chains Accessed

000000
1

1. Encodings fixed by IEEE JTAG protocol mappings.

EXTEST Boundary Scan register boundary scan chain

000001
1

SAMPLE Boundary Scan register boundary scan chain

000010 INTEST Boundary Scan register boundary scan chain

000011 ATEINTEST Boundary Scan register boundary scan chain

100000 IDCODE JTAG ID register ID register scan chain

111111
1

BYPASS Bypass register Bypass register

011110 SEL_CCR Clock Control register Clock Control register chain

110000 CLD_RST Bypass register Bypass register
230 microSPARC-IIep User’s Manual • June 1999

■ SEL_CCR is used to sample two bits (stopped) from the clock controller block.

These two bits are synchronized—using a 2-stage synchronizer using TCK—

before being sampled during the shift-DR state.

11.6.4 JTAG Interface to MISC

The JTAG block provides two key signals to the clock controller section, two signals

directly to the microSPARC-IIep core, and a five-wire control signal to the boundary

scan flip-flops.

11.6.4.1 Clock Controller Interface

Signals testclk and testclken are generated in the JTAG block and sent to the clock

controller.

testclken is an active high signal that switches the 100 MHz ss_clock to the core. This

100 MHz clock is taken from the normal 100 MHz clock signal to testclk. This

happens only for certain JTAG instructions. They are:

SEL_INT_SCAN, SEL_DBG_SCAN, INTEST, ATEINTEST

For the remaining instructions: extest, sample, bypass, idcode, and sel_ccr, testclken

remains inactive to enable the normal 70 MHz clock to the microSPARC-IIep core.

The testclken signal is synchronized inside the clock controller using PCI_CLK. By

design, testclken is activated at least three TCK cycles before the testclk signal

becomes active. testclken signal changes state only during the transition from

exit1-IR state of the instruction scan cycle.

testclk is a gated version of TCK processed with the gating signals: sel_instruction,

shift (function of shift_DR), and capture (capture-DR) states.

11.6.4.2 Boundary Control Interface

The five-wire boundary control signal corresponds to: bin_cap, bout_cap, b_sen,

b_uen, b_mode.

Signals bin_cap and bout_cap are generated during the capture-DR state and are

used to load the values on the pins or the outputs of the core into the boundary scan

flip-flop. To avoid race conditions, b_sen is generated on the falling edge of the tck

and is used as a scan_en signal for the boundary scan flip-flop. b_uen is an update

signal for the boundary scan update latch that occurs at the falling edge of TCK.
Chapter 11 Mode, Timing, and Test Controls 231

b_mode is a mux control signal that selects between the direct pin input and the

value in the update latch. This signal changes both during the update-IR state and

when the tap goes back to test-logic-reset state on the falling edge of TCK.

11.6.4.3 RESET Mechanism

In its active low condition, the independent TRST_L signal sets the TAP into the

tap_logic_reset state. This signal asynchronously sets the TAP state machine to the

tap_logic_reset state. It adheres to the 1149.1 IEEE protocol with respect to the

initialization through reset mechanism. There is no minimum active time

requirement on this reset signal. If the board has no extra oscillator for TCK, the

JTAG reset pin (TRST_L) can be tied to an active low signal to disable JTAG

operations in the chip.

TDI and TMS inputs have pullups on the pad and consequently show input ones if

not connected. With a free running TCK, the TAP enters the tap_logic_reset state at

the end of five TCKs.

11.6.5 JTAG Operation

The following description covers some of the basic operations that, when combined,

enable the user to run any of the JTAG instructions specified above. They are given

here for an understanding of the TAP state transitions during various JTAG

operations.

The JTAG I/O consists of inputs: TCK, TMS, TDI, TRST, and output: TDO, all of

which are chip I/O. The other inputs to the chip are either in a don’t care state or a

predetermined state and should not affect the operation of the JTAG controller. Note

that, for a robust operation of the chip, this procedure should ensure that the system

is reset on entering, leaving, and returning to JTAG operations. Once in the

tap_logic_reset state, all JTAG outputs become inactive and the chip should be in

normal functional mode.

The tap state encodings, in hexadecimal, are shown in Table 11-3.

Table 11-3 Tap State Encodings

Encoding (hex.) TAP State

0 exit2-DR

1 exit1-DR

2 shift-DR

3 pause-DR
232 microSPARC-IIep User’s Manual • June 1999

To run the JTAG instructions, the following TAP state traversal is done for the

various subtasks:

Instruction Scan

The Instruction Scan Sequence is shown in Table 11-4.

4 select-IR

5 update-DR

6 capture-DR

7 select-DR

8 exit2-IR

9 exit1-IR

A shift-IR

B pause-IR

C run-test-idle

D update-IR

E capture-IR

F test-logic-reset

Table 11-4 Instruction Scan Sequence

Code TAP State Comments

F test-logic-reset

C run-test-idle

7 select-DR

4 select-IR

E capture-IR

9 exit1-IR

B pause-IR

Table 11-3 Tap State Encodings (Continued)

Encoding (hex.) TAP State
Chapter 11 Mode, Timing, and Test Controls 233

Data Scan

The Data Scan sequence is shown in Table 11-5.

At state “D” the decode instruction is latched on the falling edge of TCK. Data is

shifted into the appropriate data register during the shift cycle. At the end of shift,

the data moves to the exit-DR(1) state.

Return to New Instruction

The Data Scan sequence is shown in Table 11-6.

8 exit2-IR

A shift-IR
for 6 clocks; opcode is shifted through

tdi while in this state

9 exit1-IR

Table 11-5 Data Scan Sequence

Code TAP State Comments

9 exit1-IR

B pause-IR

8 exit2-IR

D update-IR

C run-test-idle

7 select-DR

6 capture-DR

1 exit1-DR

3 pause-DR

0 exit2-DR

2 shift-DR
of shifts equal to length of scan

chain

1 exit1-DR

Table 11-4 Instruction Scan Sequence

Code TAP State Comments
234 microSPARC-IIep User’s Manual • June 1999

Figure 11-5 shows the JTAG logic block diagram. Figure 11-6 shows the JTAG data

and instruction registers.

Figure 11-5 JTAG Logic Block Diagram

Table 11-6 Data Scan sequence

Code TAP State Comments

2 shift-DR

1 exit1-DR

3 pause-DR

0 exit2-DR

5 update-DR

C run-test-idle
wait in this state and go back to

Instruction Scan step

TAP FSM

REGISTER

CONTROL LOGIC

INSTRUCTION
REG (6 BITS)

IDCODE

CCR

BYP

DECODER

DECODER

REGISTER

IR_TDO

 IR_TDO

CCR_TDO

BYP_TDO

Control signals (shift,capture,sel_instr)

from clk controller

TDI

TCK

Update_IR

TCK
TMS
TRST_L

(shift,capture,etc) (select instruction controls)

 TCK

(JTAG outputs -- testclk, testclken, scan_mode, tg_strobe, bctl, shift)

TDI
TCK
Chapter 11 Mode, Timing, and Test Controls 235

Figure 11-6 JTAG Data & Instruction Registers

11.6.6 CLK_RST TAP Instruction

The microSPARC-IIep clk_cntl block is a collection of non-scanned logic that

generates the various clock waveforms used both on and off the microSPARC-IIep

chip. Although this logic is not directly scannable, the microSPARC-IIep CPU

implements a private TAP instruction for initializing the state of the flip-flops in the

clk_cntl block. This instruction is intended for use by a tester, since it requires

precise control of the waveforms driven onto the EXT_CLK1/EXT_CLK2

microSPARC-IIep input pins.

The instruction mnemonic is CLK_RST, and its binary opcode is 110000. Its behavior

is identical to that of the BYPASS instruction, except that the internal signal clk_rst_l

is asserted whenever the CLK_RST opcode appears on the TAP instruction register

BOUNDARY SCAN CHAIN
(BSR)

JTAG INSTRUCTION REGISTER
(IR)

JTAG IDCODE REGISTER
(IDR)

CLOCK CONTROL REGISTER
(CCR)

BYPASS REGISTER

TCK

TDI

TCK

TDOMUX
&
FF

SHIFT

MUX CONTROL

BSR_TDO

IR_TDO

ID_TDO

CCR_TDO

BY_TDO
236 microSPARC-IIep User’s Manual • June 1999

output latch; that is, starting at the falling edge of JTAG_CK when the TAP state

machine is in the update-ir state — see IEEE Std 1149.1 for details of the TAP state

machine operation. While clk_rst_l is asserted, some of the flip-flops in clk_cntl are

synchronously reset at the rising edge of the high-speed input_clock.

It is intended that the CLK_RST operation—see Figure 11-7—be used only when the

microSPARC-IIep PLL_BYP_L input pin is driven to 0, that is when the internal

phase-locked-loop is bypassed. In that mode, input_clock is equal to the XOR of the

EXT_CLK1 and EXT_CLK2 input pins. clk_cntl can be reset to a known state using

the algorithm:

1. Apply clocks to JTAG_CK, drive JTAG_TDI=1, and drive PLL_BYP_L=0 for the

duration of the test. Drive EXT_CLK1=0 and EXT_CLK2=0 through step 4 below,

with the exception of a single 0 → 1 → 0 pulse on EXT_CLK1 in step 4.

2. Assert JTAG_TRST_L, then de-assert it, to reset the TAP controller.

3. Apply this sequence of values to jtag_ms, applying a new value at each negative

edge of jtag_ck (the number below each value is a cycle count, for reference):

Note that in cycle 5, the IR is parallel-loaded with 000001. In cycle 6 and 7, ones

are shifted into the MSB end of the IR. The result is a 110000 in the IR.

4. In cycle 10 of the sequence above, apply a single 0 → 1 → 0 pulse to EXT_CLK1.

The rising edge of this pulse resets the clk_cntl block.

5. After cycle 11 of the sequence above, clk_cntl is reset and the TAP controller is in

the test-logic-reset state. JTAG_TRST can now be asserted and clocks applied to

EXT_CLK1 and EXT_CLK2 to start the test.

Value 1... 1 0 1 1 0 0 0 1 1 1 1 1...

Cycle
count 0 1 2 3 4 5 6 7 8 9 10 11
Chapter 11 Mode, Timing, and Test Controls 237

Figure 11-7 JTAG Clk Reset Operation

11.7 Boot Options
The microSPARC-IIep CPU provides four boot options (see Table 11-7). The options

are set using the BM_SEL[1:0] pins that are programmer-visible in bits 22:21 of the

TLB replacement control register.

BM_SEL options 00, 01 are described in Chapter 10, Flash Memory Interface.

Selection of options 10, 11 causes interception by the PCIC.

■ For option 10, the PCIC converts the boot address (0000.0000–00FF.FFFF) to the

PCI address (f000.0000–F0FF.FFFF) directly in hardware and does not use any of

the AFX to PCI translation registers.

Table 11-7 Boot Mode Select (BM_SEL)

BM_SEL[1:0] Boot From:

00 32-Bit flash memory on memory data bus (cacheable)

01 8-Bit flash memory on memory data bus (cacheable)

10
PCI Bus, boot from addresses in range 0xF000.000–0xF0FF.FFFF (non-

cacheable)

11
PCI Bus, boot from addresses in range 0xFFFF.000–0xFFFF.FFFF (non-

cacheable)

jtag_ck

cycle 0 1 2 3 4 5 6 7 8 9 10 11

jtag_ms

jtag_tdi

ext_clk1

ext_clk2

input_clock

clk_rst_l

clk_cntl FF
238 microSPARC-IIep User’s Manual • June 1999

■ For option 11, the PCIC converts the boot address (0000.0000– 0000.FFFF) to the

PCI address (7FFF.0000–7FFF.FFFF) in hardware. Again, this is done without

using the AFX to PCI translation registers. The above address conversions are for

boot-mode instruction accesses only. Data accesses are treated normally and there

are no restrictions while in boot mode.
Chapter 11 Mode, Timing, and Test Controls 239

240 microSPARC-IIep User’s Manual • June 1999

CHAPTER 12

Error Handling

The microSPARC-IIep CPU must detect and handle many kinds of errors and

exceptions. In all CPU error cases, the SPARC IU is interrupted by some type of trap.

DMA masters external to the CPU should cause their own IU trap using the PCIC

interrupt mechanism. Physical address references to nonexistent addresses in any

address space either return indeterminate values or cause timeouts. Table 12-1
describes the CPU action under the listed error conditions.

Table 12-1 Error Summary

Error Initiator Result Summary

Memory parity error Instruction memory

access

set PE, FT=5, L, AT in SFSR

cause Instruction Access Error trap (D stage + 1)

IU, FPU read memory

access

set PE, ERR, CP, TYPE in MFSR

save PA in MFAR

cause L15 interrupt

IU, FPU write byte,

half- word memory

access (read-modify-

write)

set PE, ERR, CP, TYPE in MFSR

save PA in MFAR

cause L15 interrupt

Translation error tablewalk on

instruction memory

access

set PE, FT=4, L, AT in SFSR

cause Instruction Access Error trap (D stage)

Translation error tablewalk on IU, FPU

data memory access

set PE, FT=4, L, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Error trap (R stage)

Invalid address error ET=0 during tablewalk

on instruction memory

access

set FT=1, L, AT in SFSR

cause Instruction Access Exception trap (D

stage)

ET=0 during tablewalk

on IU, FPU data

memory access

set FT=1, L, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)
241

Note – When a parity error is detected on a DVMA memory read, the level 15

interrupt is set reporting that error. In addition, the MFSR may also incorrectly

attempt to report that same error. The information in the MFSR may be invalid in

this case and should be cleared and ignored.

Translation error ET=3 during tablewalk

on instruction memory

access

set FT=4, L, AT in SFSR

cause Instruction Access Error trap (D stage)

ET=3 during tablewalk

on IU, FPU data

memory access

set FT=4, L, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Error trap (R stage)

Control space error CPU invalid ASI access set FT=5, L, FAV, CS in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

CPU invalid size of

access

set FT=5, L, FAV, CS in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

CPU invalid virtual

address during ASI

requiring VA

set FT=5, L, FAV, CS in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

Privilege violation

error (S bit and not

ACC 6,7)

IU instruction memory

access

set FT=3, L, AT in SFSR

cause Instruction Access Exception trap (D

stage)

Privilege Violation

error (ACC and ASI

checked)

IU, FPU data memory

access

set FT=3, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

Protection error

(Memory page ACC

and the ASI are

checked)

IU, FPU data memory

access

set FT=2, L, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

Protection error

(Memory page ACC

is checked)

IU, FPU data memory

access

set FT=2, L, AT, FAV in SFSR

cause Instruction Access Exception trap (D

stage)

Table 12-1 Error Summary (Continued)

Error Initiator Result Summary
242 microSPARC-IIep User’s Manual • June 1999

APPENDIX A

ASI Map

This chapter describes the microSPARC-IIep address space identifier (ASI) map. The

ASI is appended to the virtual address by the SPARC IU when it accesses memory.

The ASI encodes whether the processor is in supervisor or user mode, and whether

an access is to instruction or data memory. The ASI is also used to perform other

internal CPU functions.

Table A-1 lists all of the ASI values supported in a microSPARC-IIep system. Only the

least significant six bits of the ASI are decoded.
243

ASI Descriptions are given in the remainder of this section.

■ ASI=0x00

Reserved — This space is architecturally reserved.

■ ASI=0x01-0x02

Table A-1 ASI’s Supported by microSPARC-IIep

ASI Function Acc Size Details

00 reserved - -

01-02 unassigned - -

03 Ref MMU Flush/Probe R/W single Section 5.6

04 MMU registers R/W single Section 5.7

05 unassigned - -

06 Ref MMU diagnostics R/W single Section 5.14

07 unassigned - -

08 user instruction R/W all

09 supervisor instruction R/W all

0A user data R/W all

0B supervisor data R/W all

0C instruction cache tag R/W single Section 7.3, Section 7.8

0D instruction cache data R/W single Section 7.2

0E data cache tag R/W single Section 6.3, Section 6.10

0F data cache data R/W single Section 6.2

10 flush I&D cache line (page) W single Section 6.10

11 flush I&D cache line (segment) W single Section 6.10

12 flush I&D cache line (register) W single Section 6.10

13 flush I&D cache line (context) W single Section 6.10

14 flush I&D cache line (user) W single Section 6.10

15–16 reserved - -

17–1C unassigned - -

1D–1E reserved - -

1F unassigned - -

21-3F reserved - -

40-FF reserved - -
244 UltraSPARC-IIi User’s Manual • June 1999

Unassigned — This space is unassigned and may be used in the future.

■ ASI=0x03

Reference MMU Flush/Probe — This space is used for a flush or probe operation.

The virtual address is decoded as follows.

Figure A-1 TLB Flush or Probe Address Format

Field Definitions for ASI 0x03 are given below.

Virtual Flush or Probe Address (VFPA) — This field is the address that is used to

index into the TLB. Not all 20 bits are significant, depending on the type of flush

or probe.

Type — This field specifies the extent of the flush or the level of the entry probed.

Reserved — These bits are ignored and should be set to zero.

A flush is caused by a single STA instruction and a probe by a single LDA

instruction. Flushes are used to maintain TLB consistency by conditionally removing

one or more page descriptors. These conditions vary as shown in Table A-2.

Probes cause the MMU to perform a table walk. The table walk stops when a PTE is

reached. See Table 5-11 on page 72.

■ ASI=0x04

Reference MMU Registers — This space is used to read and write internal MMU

registers referencing them with a virtual address. Only single word accesses

should be used; others cause errors.

Table A-2 CPU TLB Entry Flushing

Type Flush PTE Match Criteria

0 page ((ACC > 6) OR CID match) AND VA[31:12] match

1 segment ((ACC > 6) OR CID match) AND VA[31:18] match

2 region ((ACC > 6) OR CID match) AND VA[31:24] match

3 context (ACC < 5) AND CID match

4 entire None (Entire TLB Flush)

5 to F reserved -

31 0012 11 08 07

VFPA Type Reserved
Appendix A ASI Map 245

VA bits [31:13] are zero. VA bits [07:00] are ignored and should be set to zero by

software.

■ ASI=0x05

Unassigned — This space is unassigned and may be used in the future.

■ ASI=0x06

Reference MMU Diagnostics — Diagnostic reads and writes can be made to the 32

TLB entries using the virtual address to specify which entry and whether the PTE

or Tag section is to be referenced.

■ ASI=0x07

Unassigned — This space is unassigned and may be used in the future.

■ ASI=0x08

User Instruction — This space is defined and reserved by SPARC for user

instructions.

■ ASI=0x09

Supervisor Instruction — This space is defined and reserved by SPARC for

supervisor instructions.

■ ASI=0x0A

User Data — This space is defined and reserved by SPARC for user data.

■ ASI=0x0B

Table A-3 Address Map for MMU Registers

VA[12:08] Register

00 Control register

01 Context Table Pointer register

02 Context register

03 Synchronous Fault Status register

04 Synchronous Fault Address register

05–0F Reserved

10 TLB Replacement Control register

11–12 Reserved

13 Synchronous Fault Status register
1

1. Writable for diagnostic purposes

14 Synchronous Fault Address register
1

15–1F Reserved
1

246 UltraSPARC-IIi User’s Manual • June 1999

Supervisor Data — This space is defined and reserved by SPARC for supervisor

data.

■ ASI=0x0C

Instruction Cache Tag — Instruction cache tags are read and written in this space

using the LDA and STA instructions at virtual addresses between 0x0 and

0x03FFF on modulo-32 boundaries.

Figure A-2 Instruction Cache Tag Entry

■ ASI=0x0D

Instruction Cache Data — Instruction cache data is read and written in this space

using the LDA and STA instructions at virtual addresses between 0x0 and

0x03FFF.

■ ASI=0x0E

Data Cache Tag — Data cache tags are read and written in this space using the

LDA and STA instructions at virtual addresses between 0x0 and 0x01FFF on

modulo-16 boundaries.

Figure A-3 Data Cache Tag Entry

■ ASI=0x0F

Data Cache Data — Data cache data is read and written in this space using the

LDA and STA instructions in ASI 0xF at virtual addresses between 0x0 and

0x01FFF.

■ ASI=0x10–0x14

Flush I & D Cache Line — single cache lines are flushed by directing the STA

instruction to one of these spaces.This action removes a single line from both I

and D caches.

A cache line is flushed if it meets the minimum criteria given in Table A-4.

 V VA TAG[31:14]

31

ACCCONTEXTR

12 11 4 314 13 1 0

 V VA TAG[31:13]

31

 ACC

13 1112 4 3 1 0

CONTEXTR
Appendix A ASI Map 247

■ ASI=0x15–0x16

Reserved — This space is architecturally reserved.

■ ASI=0x17–0x1C

Unassigned — This space is unassigned and may be used in the future.

■ ASI=0x1D–0x1E

Reserved — This space is architecturally reserved.

■ ASI=0x1F

Unassigned — This space is unassigned and may be used in the future.

■ ASI=0x20

Reference MMU Bypass —This space can be used to access an arbitrary physical

address. It is particularly useful before the MMU or main memory has been

initialized. Rather than using the MMU for address translation, a physical address

is formed from the least significant 31 bits of the virtual address (PA[30:00] :=

VA[30:00]). Accesses in bypass mode are not cacheable.

■ ASI=0x21–0x2F

Reserved — This space is architecturally reserved.

■ ASI=0x30–0x38

Unassigned — This space is unassigned and may be used in the future.

■ ASI=0x39

Data Cache Diag Register — This space is used to read and write internal data

cache registers using the virtual address to reference them. Single word accesses

only should be used, others result in an error.

■ ASI=0x3A–0x3F

Table A-4 Flush Criteria for ASI 0x10–0x14

ASI[2:0] Flush Type Compare Criterion

0 Page (S
1
 or CNTXT) and VA[31:12]

1. “S” is the supervisor bit, “U” is the inverse of S, “CNTXT” is the matching of the con-
text register and Tag context, and VA[31:xx] is a comparison based on the virtual ad-
dress tag.

1 Segment (S or CNTXT) and VA[13:18]

2 Region (S or CNTXT) and VA[31:24]

3 Context U and CNTXT

4 User U

5,6 reserved –
248 UltraSPARC-IIi User’s Manual • June 1999

Unassigned — This space is unassigned and may be used in the future.

■ ASI=0x40–0xFF

Reserved — Since the two high order bits are not decoded this range of encodings

should not be used. If it is used, only the lower six bits are decoded; the two

upper bits are ignored.
Appendix A ASI Map 249

250 UltraSPARC-IIi User’s Manual • June 1999

APPENDIX B

Physical Memory Address Map

The physical address space for microSPARC-IIep is mapped into eight address

spaces based on the upper three bits of the physical address(PA[30:28]). Table B-1
shows the address space mapping against the values of these bits.

Table B-1 Physical Address Space

PA[30:28] Address Space

000 main memory space (256 MB)

001 control space (Sun-4m system registers, 256 MB)

010 flash memory space (256 MB)

011 PCI space (256 MB)

100 reserved I/O space: should not be accessed

101 reserved I/O space: should not be accessed

110 reserved I/O space: should not be accessed

111 reserved I/O space: should not be accessed
251

252 UltraSPARC-IIi User’s Manual • June 1999

APPENDIX C

microSPARC-IIep AFX (Local) Bus

C.1 Introduction
The AFX (Local) bus employs a memory-level interconnect protocol between the

microSPARC-IIep CPU, system memory, and subsystems. This local bus provides

high bandwidth, low latency, and slave-only access by placing the interface directly

on the system memory bus in a uniprocessor environment. An internal-only version

of the local bus (not available to the external interface) is used to supply the interface

to the PCIC. A device on this internal version of the bus can request its use as a bus

master. This section describes some of the operations of the local bus.

The principal Local Bus features are:

■ 64-bit data path

■ 28-bit physical address per slave

■ Clock rate of up to 75 MHz

■ Synchronous operation, except for occurrence of interrupts

■ One, two, four, or eight-byte transfers

■ Single interrupt line per slave

The local bus provides high-speed access between the processor, system memory,

and devices. All accesses to the system memory and Local Bus slaves are controlled

by the microSPARC-IIep processor. The local bus controller, simply referred to as the

controller in this document, is integrated within the microSPARC-IIep chip. Any

local bus slave can request an interrupt of this controller, but only the controller can

perform read or write accesses. Figure A.1 shows a block diagram of the local bus.
253

.

Figure C-1 Local Bus Block Diagram

C.1.1 System Memory Interface

Since the local bus shares the system memory address and data lines, the local bus

controller and system memory interface must use arbitration for allocation of these

common lines. The memory interface is integrated within the microSPARC-IIep chip.

C.1.2 Local Bus Controller

This controller is the single master of the local bus and is responsible for initiating

each local bus cycle. The local bus controller is integrated within the

microSPARC-IIep chip.

C.1.3 Local Bus Slave

The local bus slave responds to requests given by the controller. The local bus slave

can interrupt the controller using a single asynchronous interrupt line.

The local bus may have multiple slave devices. Each local bus slave is independent

of any other local bus slave.

microSPARC-IIep

 Local
Bus Controller

System
Memory
Interface

System
Memory

Local
Bus Slave

ControlAddress,
Data

Control
254 microSPARC-IIep User’s Manual • June 1999

C.1.4 Local Bus Interface

Table C-1 shows the interface signals that connect the microSPARC-IIep chip to a

local bus slave. These signals are either generated by the microSPARC-IIep

controller or by the local bus slave. DB[63:0] bus signal lines may be driven by either

the microSPARC-II CPU or by the slave, depending on the type of bus cycle.

C.2 Basic Local Bus Cycle
A local bus slave has a minimum four-deep request FIFO that holds address, size,

and—for write requests—data. There may be at most one outstanding read request

in the FIFO at any time. Write requests sent to the slave should be saved in the FIFO

and later acknowledged. Read requests must allow the FIFO to drain before

responding.

The local bus controller must assure a FIFO depth of four slots, but may optionally

probe the slave after a power-on reset to determine the exact size of its FIFO. The

controller throttles access requests to the slave. There are no FIFO-full or

FIFO-empty signals between the controller and slave.

A complete local bus cycle consists of two major phases: address and data. These

phases may operate independently of each other. Addresses of successive accesses

may be sent to the slave without regard for the associated data, provided the slave’s

FIFOs are not overloaded. Data transfers are completed using the reply control

signals, allowing FIFO entries in the slave to be available again.

Table C-1 Local Bus Interface Signals

Signal Name Description Driven By

CLK clock controller

AEN address enable controller

LO_ADDR low address select controller

WRITE_L read/write select controller

AB[14:0] address/byte mask bus controller

P_REPLY[1:0] port reply slave

S_REPLY[1:0] system reply controller

DB[63:0] data bus controller/slave

RESET_L reset controller
Appendix C microSPARC-IIep AFX (Local) Bus 255

C.2.1 Address Cycles

Local bus address cycles send physical address, access size, and access direction in

two separate cycles. These cycles are controlled by the address enable signal AEN.

The cycle type is denoted by the state of the LO_ADDR signal. See Figure C-2.

In address cycle 0, the upper bits of the physical address are placed on the address

bus (AB) lines. In address cycle 1, the lower bits of the physical address and the

access size are placed on the AB lines, while the access direction (read or write) is

defined by the WRITE_L signal.

For subsequent accesses, address cycle 0 need not be repeated if the upper physical

address bits do not change. The slave must latch this data and use it until the

controller sends the next address cycle 0. This functionality is similar to the Page
Mode feature of DRAMs.

Figure C-2 Address Cycles

C.2.2 Data Cycles

Each time an address cycle 1 is sent, the read or write command to the slave should

be considered launched and a data cycle may be initiated.

The local bus cycle must complete within 2048 local bus clock cycles of the

launching address cycle. The local bus controller times-out if the slave has not

responded with the appropriate P_REPLY (port reply) code.

CLK

Address Address

AEN

AB[14:0]

LO_ADDR

Cycle 0 Cycle 1

WRITE_L
256 microSPARC-IIep User’s Manual • June 1999

A slave must always acknowledge accesses to its entire address range using the

appropriate P_REPLY code (read single or write single). Since the local bus does not

specify an error acknowledge, slaves may provide a readable location that identifies

when error accesses have occurred. These error types may include out-of-bounds

access, unsupported size-type access, and so on. Slaves may also interrupt the

controller to identify error accesses.

C.2.2.1 Write

The controller initiates the write data cycle by placing the Write Single code (10) on

the S_REPLY (system reply) lines. This may happen in the same clock as the

launching address cycle 1, or any clock cycle following. Once sent, the controller

places the write data on the DB (data bus) lines in the next clock cycle. The slave

must acknowledge the write by placing the Write Single code (10) on the P_REPLY
lines in the next, or later, clock cycle.

C.2.2.2 Read

In the read cycle, the CPU issues a Read Single code (11) on the S_REPLY lines in the

same clock cycle as the launching address cycle 1. When the slave is ready to

acknowledge the read, the slave drives the data on the DB lines and a Read Single

code (11) on the P_REPLY lines in the same clock cycle. Use of this mode gives the

advantage of doing a best-case read in two clock cycles.

C.2.3 Local Bus Timeout

The local bus controller supports a timeout mechanism to prevent the system from

waiting on a broken or absent local bus slave device. The timeout period for an

access is measured from the positive edge of the CLK signal which launches a Local

access (address cycle 1). This period is defined as 2048 CLK cycles (this time interval

must be greater than 10 microseconds) before the corresponding P_REPLY is

returned by the slave.

If a timeout occurs, the controller aborts the current cycle and all outstanding local

bus cycles.

C.2.4 Local Bus Latency

For read cycles, an local bus slave should respond to accesses with an average

latency of 1.0 microseconds, and a worst case latency of 2.0 microseconds.
Appendix C microSPARC-IIep AFX (Local) Bus 257

To enforce this condition, the controller must hold off write requests until a slot is

available in the slave’s write FIFO. The controller must also hold off read requests

until the slave’s write FIFO has zero or one writes pending.

The threshold is settable at the user level and exists as part of the physical address

control space on its own page. If the threshold is zero, the latency for a read is set by

the slave’s maximum read time. If the threshold is one, the maximum latency is for

one read and one write retirement. The default value default at power on is zero.

If a local bus slave implements features that would cause a write-read combination

to violate the above worst-case latency, it should support a software polling

mechanism. Immediate access register(s) should be provided to respond to inquiries

about the status of the slave device.

Local bus interrupt latency should nominally be less than 10 microseconds and less

than 50 microseconds for a worst case.

C.3 Local Memory Map
Each slave occupies 256 megabytes of address space in a system memory map.

C.4 Local Bus Interconnect
Figure A.3 shows the local bus interconnect and all of the associated signals. In the

case where a system has multiple local bus slaves, some signals are required to be

unique to each one. These are noted as radial (R). For an efficient implementation,

other signals may be common between connectors. These are noted as bused (B).
258 microSPARC-IIep User’s Manual • June 1999

Figure C-3 Local Bus Signals

.

Table C-2 Local Bus Signal Summary

Bus Signal Name I/O Description Driven By
Multiple
Slaves 1

CLK I clock controller B
1

AEN I address enable controller R
1

LO_ADDR I low address select controller B

WRITE_L I read/write select controller B

AB[14:0] I address/byte mask bus controller B

P_REPLY[1:0] O port reply slave R

CLK

AEN

AB[14:0]

S_REPLY[1:0]

P_REPLY[1:0]

DB[63:0]

RESET_L

15

2

2

64

 Local Bus

LO_ADDR

WRITE_L
microSPARC-IIep

Slave
Appendix C microSPARC-IIep AFX (Local) Bus 259

C.5 Local Bus Signals
This section provides detailed descriptions of the local bus signals.

C.5.1 CLK

Local Bus Clock: this signal is generated by the microSPARC-IIep CPU and its

frequency is within the range of 25 MHz to 42 MHz. The clocks may be used in

differential form to improve the common mode noise immunity at high clock rates.

The maximum clock frequency in the single-ended mode is 42 MHz. Typical system

clock rates can exceed 20 MHz.

C.5.2 AEN

Address Enable: when asserted (high), this signal indicates that there is a command

request and there is valid data on the AB bus and the LO_ADDR and WRITE_L lines.

The AEN signal also qualifies read cycles.

C.5.3 LO_ADDR

Low Address: this signal is qualified by the AEN (address enable) signal. LO_ADDR
defines which address cycle the controller is sending on the address bus and write

lines. When driven to 0, this signal indicates address cycle 0. When driven to 1, it

indicates address cycle 1 (low address bits and byte mask). See Table C-3.

S_REPLY[1:0] I system reply controller R

DB[63:0] I/O Data bus
Controller/

Slave
B

RESET_L I Reset Controller B

1. R = Radial, B = Bused

Table C-2 Local Bus Signal Summary (Continued)

Bus Signal Name I/O Description Driven By
Multiple
Slaves 1
260 microSPARC-IIep User’s Manual • June 1999

C.5.4 WRITE_L

Write: this signal is qualified by AEN (address enable) and is only valid during

address cycle 1. When driven to 0, this signal indicates a write request. When driven

to 1, this signal indicates a read request.

C.5.5 AB[14:0]

Address/Byte Mask bus: This bus conveys the multiplexed physical address of

where the data is to be written to or read from together with the byte mask. This

data is multiplexed over two address cycles, as shown in Table C-4.

Table C-3 LO_ADDR Signal States

LO_ADDR State Address Cycle Comments

0 0 high address bits

1 1 low address bits and byte mask
Appendix C microSPARC-IIep AFX (Local) Bus 261

C.5.6 Byte Mask (BM) Bits

The byte mask bits, BM[3:0], indicate the transfer size, as shown in Table C-5,

Table C-4 Address Bus Multiplexing

Address Bus Cycle 0 Cycle 11

1. PA = Physical address; BM[3:0] = Byte
mask bits; X = don’t care; R/W = Read or
write

LO_ADDR 0 1

WRITE_L X R/W

AB[14] PA[27] BM[3]

AB[13] PA[26] BM[2]

AB[12] PA[25] BM[1]

AB[11] PA[24] BM[0]

AB[10] PA[23] PA[13]

AB[9] PA[22] PA[12]

AB[8] PA[21] PA[11]

AB[7] PA[20] PA[10]

AB[6] PA[19] PA[9]

AB[5] PA[18] PA[8]

AB[4] PA[17] PA[7]

AB[3] PA[16] PA[6]

AB[2] PA[15] PA[5]

AB[1] PA[14] PA[4]

AB[0] X PA[3]

Table C-5 Byte Mask (BM) Bits

Mask Bits Data

BM[3:0] 1 [63:5
6]

[55:4
8]

[47:4
0]

[39:3
2]

[31:2
4]

[23:1
6]

[15:8] [7:0] Comment

0000 R/W -- -- -- -- -- -- -- Byte access 0

0001 -- R/W -- -- -- -- -- -- Byte access 1

0010 -- -- R/W -- -- -- -- -- Byte access 2

0011 -- -- -- R/W -- -- -- -- Byte access 3

0100 -- -- -- -- R/W -- -- -- Byte access 4
262 microSPARC-IIep User’s Manual • June 1999

C.5.7 Multiplexed Addresses

After any reset issued to the slave, the controller establishes a full physical address

for the first access request to the slave. Since the physical address is multiplexed

across two address cycles, both address cycle 0 and address cycle 1 must be issued to

the slave.

The slave must always latch the upper physical address bits from address cycle 0 to

combine them with the lower physical address bits in each following address cycle 1.

Another address cycle 0 only needs to be issued when the data access crosses the

page boundary and the upper address bits need to be modified.

The local bus controller is allowed to issue extraneous address cycle 0s, but it is

recommended that their generation be minimized for better system performance.

0101 -- -- -- -- -- R/W -- -- Byte access 5

0110 -- -- -- -- -- -- R/W -- Byte access 6

0111 -- -- -- -- -- -- -- R/W Byte access 7

1000 R/W R/W -- -- -- -- -- -- Half word 0

1010 -- -- R/W R/W -- -- -- -- Half word 1

1100 -- -- -- -- R/W R/W -- -- Half word 2

1110 -- -- -- -- -- -- R/W R/W Half word 3

1001 R/W R/W R/W R/W -- -- -- -- Word 0

1101 -- -- -- -- R/W R/W R/W R/W Word 1

1011 R/W R/W R/W R/W R/W R/W R/W R/W Double word

1111 -- -- -- -- -- -- -- -- Reserved

1. The BM codes in the left column are not in absolute numerical order.

Table C-5 Byte Mask (BM) Bits

Mask Bits Data

BM[3:0] 1 [63:5
6]

[55:4
8]

[47:4
0]

[39:3
2]

[31:2
4]

[23:1
6]

[15:8] [7:0] Comment
Appendix C microSPARC-IIep AFX (Local) Bus 263

Figure C-4 Multiplexed Addresses

C.5.8 P_REPLY[1:0]

Port reply: These output signals indicate that the data has been processed, that is,

removed, from the write buffer on writes. For reads they indicate that the read data

is available in the read latch.

C.5.9 S_REPLY[1:0]

System reply: these signals indicate that the local bus has been selected and they

show the type of access that is being made. See Table C-7.

Table C-6 P_REPLY[1:0] Signals

P_REPLY[1] P_REPLY[0] Type of Access

0 0 Idle

0 1 Reserved

1 0 Write single (CE) P_WAS

1 1 Read single (OE) P_RAS

Table C-7 S_REPLY[1:0] Signals

S_REPLY[1] S_REPLY[0] Type of Access

0 0 Idle

CLK

Cycle 0 Cycle 1Cycle 1Cycle 1 Cycle 1

AEN

AB[14:0]

LO_ADDR
264 microSPARC-IIep User’s Manual • June 1999

On writes, the data appears in the following cycle. In read cycles, the data is enabled

onto the bus in the same cycle as the P_REPLY signal is driven. See Figure C-5.

Figure C-5 S_REPLY[1:0] Signal

C.5.10 DB[63:0]

Data bus: This bus carries the data being transferred between the microSPARc-IIep

CPU and the local bus slave. Every local bus must carry all 64 data-bus signals, over

which data is transferred. The local bus supports four primary data formats:

■ Bytes, which consist of eight data bits

■ Half words, which consist of 16 data bits

■ Words, which consist of 32 data bits

■ Double words, which consist of 64 data bits

By convention, the least-significant bit of the data bus is DB[0] while the most-

significant bit is DB[63]. These pins have internal pullups.

The local bus uses big-endian addressing. As shown in Figure C-6, big-endian

addressing means that the significance of bytes in a half-word, word, or double-

word decreases as the address increases. The byte ordering is specified by the byte

mask bits in the address.

0 1 Idle

1 0 Write single (CE) S_WRS

1 1 Read single (OE) S_SRS

Table C-7 S_REPLY[1:0] Signals

S_REPLY[1] S_REPLY[0] Type of Access

CLK

S_REPLY[1:0]

DB[63:0]
Appendix C microSPARC-IIep AFX (Local) Bus 265

0

7

Figure C-6 Data Bus Byte Ordering

C.5.11 RESET_L

Local Bus Reset: the RESET_L signal properly initializes all local slaves after power-

up and system reset. In all cases, RESET_L must be asserted for at least 512 clock

cycles before being unasserted. In the case of power-on, RESET_L must be stable

before these 512 clock cycles begin. The leading edge of RESET_L may or may not

meet setup times with respect to CLK. The trailing edge of RESET_L must meet

setup and hold times with respect to CLK. The local bus controller may keep

RESET_L asserted for more than 512 clock cycles, if required.

Upon detecting the assertion of RESET_L, a local bus slave must perform whatever

internal operations are required to initialize itself. While RESET_L is asserted, a local

bus slave must not drive bused signals and must drive radial signals to an inactive

state.

Bit 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte

Half word 0 Half word 1 Half word 2 Half word 3

Word 0 Word 1

Double word

Address 000 001 010 011 100 101 110 111

Address 00 01 10 11

Address 0 1

Address 0
266 microSPARC-IIep User’s Manual • June 1999

C.6 Local Bus Timing Diagrams
This section shows the timing diagrams for write and read cycles on the local bus for

the microSPARC-IIep CPU.

C.6.1 Write Cycle

In a write, the controller places the address on AB[14:0] and asserts AEN. This

example shows a two-cycle address, so the controller asserts LO_ADDR for address

cycle 1 (the low address). The controller asserts S_REPLY either simultaneous with

the second address or up to n cycles later.

The controller places the write data on DB[63:0] on the next cycle after receiving the

S_REPLY write single (10) code. The slave acknowledges receipt of the data by

asserting the P_REPLY write single (10) code.

Figure C-7 shows the timing for a fast write. Figure C-8 shows the timing for a slow

write.
Appendix C microSPARC-IIep AFX (Local) Bus 267

Figure C-7 Fast Write Timing

Address Address

Data

10

10

Cycle 0 Cycle 1

Always
one cycle

0 cycles min.

1 cycle min

CLK

AEN

AB[14:0]

DB[63:0]

P_REPLY[1:0]

S_REPLY[1:0]

LO_ADDR

WRITE_L
268 microSPARC-IIep User’s Manual • June 1999

Figure C-8 Slow Write Timing

C.6.2 Read Cycle

Figure C-9 shows the read timing. In the read, the controller places the address on

AB[14:0] and asserts AEN. On the second address cycle (address cycle 1), the

controller deasserts WRITE_L and asserts LO_ADDR and the S_REPLY read single

(11) code.

As soon as it has the data available, the slave responds to the read request by placing

the requested read data on DB[63:0] and asserting the P_REPLY read single (11) code.

Address Address

Data

10

10

Cycle 0 Cycle 1

Always
one cycle

1 cycle min

CLK

AEN

AB[14:0]

DB[63:0]

P_REPLY[1:0]

S_REPLY[1:0]

LO_ADDR

WRITE_L

0 cycles min.
Appendix C microSPARC-IIep AFX (Local) Bus 269

Figure C-9 Read Cycle Timing

C.7 Back-To-Back Write and Read Cycles
Figure C-10 shows timing for back-to-back writes and reads. This example shows the

fastest possible controller and slave cycles. It also assumes the read launching bit in

the CPU is set to one.

The letter “bubbles”, for example, A, B, and C, denote the pipelining of the

command. A through D are write cycles. E and F are read cycles.

11

1 cycle min.

Address
Cycle 0

Address
Cycle 1

Data

11

CLK

AEN

AB[14:0]

S_REPLY[1:0]

DB[63:0]

P_REPLY[1:0]

LO_ADDR

WRITE_L
270 microSPARC-IIep User’s Manual • June 1999

Figure C-10 Back-To-Back Write and Read Timing

CLK

AEN

AB[14:0]

S_REPLY[1:0]

LO_ADDR

WRITE_L

HI A LOA LOB LOC LOD

A B C D

DB[63:0] A B C D

P_REPLY[1:0] A B C D

LOE

E

E

LOF

F

E F

F

Appendix C microSPARC-IIep AFX (Local) Bus 271

272 microSPARC-IIep User’s Manual • June 1999

APPENDIX D

Memory Timing Parameters

D.1 Tabulated Parameter Values
These parameter values, for a variety of primary processor clock frequencies, are

given in Table D-1 on page 274.
273

274 Table D-1 microSPARC-IIep Memory Timing Parameters

hz (ns) 200Mhz (ns)

(42.8) 8.5 (42.5)

.5 (94.2) 18.5 (92.5)

.5 (82.8) 15.5 (82.5)

(17.1) 3 (15.0)

(22.8) 4 (20.0)

(40.0) 8 (40.0)

(28.5) 5 (25.0)

(34.3) 7 (35.0)

(14.3) 2.5 (12.5)

(48.5) 9.5 (47.5)

(48.5) 9.5 (47.5)

(34.3) 7 (35.0)

(28.5) 5 (25.0)

(17.1) 3 (15.0)

(25.6) 5.5 (27.5)

(54.1) 10.5 (52.5)

.5 (65.6) 12.5 (62.5)

.5 (162.7) 32.5 (162.5)

(40.0) 8 (40.0)

(28.5) 5 (25.0)

(57.1) 11 (55.0)

0 111
m
icroS

P
A

R
C

-IIep U
ser’s M

anual
•

June 1999

Parameter Spec (ns) 70Mhz (ns) 85Mhz (ns) 100Mhz (ns) 125Mhz (ns) 150Mhz (ns) 175M

t_RP 40 3.5 (50.0)) 3.5 (41.2) 4.5 (45.0) 5.5 (44.0) 6.5 (43.3) 7.5

t_RAS (rd) 60 7.5 (107.2) 8.5 (100.0) 9.5 (95.0) 11.5 (92.0) 13.5 (89.9) 16

t_RAS (wr) 60 5.5 (78.6) 8.5 (100.0) 8.5 (85.0) 9.5 (76.0) 12.5 (83.2) 14

t_CP (rd) 10 1 (14.3) 1 (11.8) 2 (20.0) 2 (16.0) 2 (13.3) 3

t_CP (wr) 10 2 (28.6) 3 (35.3) 3 (30.0) 3 (24.0) 4 (26.6) 4

t_CAS (rd) 15 3 (42.9) 4 (47.1) 4 (40.0) 5 (40.0) 6 (40.0) 7

t_CAS (wr) 15 2 (28.6) 3 (35.3) 3 (30.0) 3 (24.0) 4 (26.6) 5

t_ASC 4 1 (14.3) 3 (35.3) 3 (30.0) 4 (32.0) 4 (26.6) 6

t_RAD, RAH 15-25, 10 1.5 (21.5) 1.5 (17.6) 1.5 (15.0) 1.5 (12.0) 2.5 (16.6) 2.5

t_RCD (rd) 20-40 3.5 (50.1) 3.5 (41.1) 4.5 (45.0) 5.5 (44.0) 6.5 (43.3) 8.5

t_RCD (wr) 20-40 2.5 (35.8) 4.5 (52.9) 4.5 (45.0) 5.5 (44.0) 7.5 (49.9) 8.5

t_DS, WCS 0, 4 1 (14.3) 3 (35.3) 3 (30.0) 4 (32.0) 4 (26.6) 6

t_DH,WCH 20, 19 2 (28.6) 3 (35.3) 3 (30.0) 3 (24.0) 4 (26.6) 5

t_RPC (ref) 10 2 (28.6) 2 (23.6) 2 (20.0) 2 (16.0) 3 (20.00) 3

t_CSR (ref) 15 1.5 (21.5) 1.5 (17.6) 2.5 (25.0) 3.5 (28.0) 3.5 (23.3) 4.5

t_CHR (ref) 20 4.5 (54.4) 4.5 (52.9) 4.5 (45.0) 6.5 (52.0) 8.5 (56.6) 9.5

t_RAS (ref) 60 6.5 (92.9) 6.5 (70.7) 6.5 (65.0) 8.5 (68.0) 10.5 (89.9) 11

t_RAS (rmw) 111 13.5 (193.0) 15.5 (182.9) 17.5 (175.0) 18.5 (148.0) 24.5 (163.2) 28

t_CAS1 (rd) (rmw) 3 (42.9) 4 (47.1) 4 (40.0) 5 (40.0) 6 (40.0) 7

t_CAS2 (wr) (rmw) 2 (28.6) 3 (35.3) 3 (30.0) 3 (24.0) 3 (20.0) 5

t_CP (rmw) 4 (57.2) 5 (58.9) 6 (60.0) 7 (56.0) 9 (59.8) 10

sp_sel 000 001 010 011 100 11

Bibliography

General References

Books and Specifications

[Weaver, David L., editor.] The SPARC Architecture Manual, Version 8, Prentice-Hall,

Inc., 1992.

IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std 1149.1-1990,

IEEE, New York, NY, 1990.

PCI Local Bus Specification, Revision 2.1: PCI Special Interest Group, Portland OR, June

1995.

Sun Microelectronics (SME) Publications
These books and papers are available in printed form, and some are also available

through the World Wide Web. See “On Line Resources” below for information about

the SME WWW pages.
275

Data Sheets

microSPARC-IIep Highly Integrated 32-bit RISC/PCI Microprocessor Data Sheet,
802-7327-03, February, 1997

User’s Guides

microSPARC Microprocessor User’s Manual, STP1010TAB50, Rev. 1.0, June 1994

microSPARC-II Microprocessor User’s Guide, STP1012PGA-UG, Rev 1.1, July 1994

microSPARC-II Microprocessor User’s Guide Errata, STP1012-UGE

microSPARC-IIep Megacell Reference, Part No: 806-1955-01 (note that this is part of the

CSL release.)

How to Contact Sun Microelectronics
Sun Microelectronics can be reached at:

Sun Microsystems, Inc.

Microelectronics

901 San Antonio Road

Palo Alto, CA, U.S.A. 94303

Tel: 800 681-8845

On Line Resources
The Sun Microelectronics WWW page is located at:

http://www.sun.com/microelectronics

It contains the latest information about the entire SPARC product line, including the

microSPARC-IIep CPU.
276 microSPARC-IIep User’s Manual • June 1999

Index
A
AB[14:0] signals, 261

access direction, 256

access size, 256

address bus, 261

address bus multiplexing, 262

address cycle, 256

address enable, 260

AEN signal, 260

ALU, 27, 29, 31

Ancillary state register, 40

ANDN instruction, 31

Arbitration, 100

ASI, 5, 40, 62, 109, 113, 114, 119, 243

Assertion control register, 91

ATEINTEST instruction, 230

Atomics, 28, 30

B
back-to-back write and read timing, 271

Benchmark test results, 13

BICC instruction, 18

Block diagram, 8, 9, 11, 26, 45, 46, 47, 48, 61, 108,

118, 195, 219, 235

Boundary scan register, 229

Branch folding, 18, 25, 37

bus cycle, 255

BYPASS instruction, 230

byte ordering, data bus, 266

C
CALL instruction, 18, 27, 34, 36

CCR, 227

CLD_RST instruction, 230

CLK and CLK_L signals, 260

Clock control register, 221

Clocks, 137, 218, 221, 223, 224, 225, 226

configuration, 254

connector

block diagram, 259

Context register, 76, 98

Context table pointer register, 76, 98

controller, 254

Counter interrupt priority assignment register, 200

Counters, 194

CPU, 1, 4, 13, 14, 102, 156, 241, 243

CTI instruction, 18, 33, 35

CWP register, 18, 40

cycle, bus, 255

Cycles per instruction, 27

D
data bus, 265

Data cache, 5, 18, 25, 27, 28, 29, 30, 35, 100, 107, 111,

115

Data cache tags, 109, 112, 113

data cycle, 256

Data registers, 229

DB[63:0] signals, 265

Dhrystone benchmark, 13, 15

Diagnostics, 102

DIMM, 142
277

DMA, 18, 100, 220, 241

DRAM, 9, 18, 100, 101, 125, 128, 137, 138, 171, 221

E
EDO, 125

Endian control, 4, 40, 112, 148

error acknowledge, 257

Error mode, 39

Errors, 102

Exceptions, 102

EXTEST instruction, 230

F
FABSS instruction, 56

FADD instruction, 18, 44

FADDD instruction, 56

FADDS instruction, 56

fast write timing, 268

FCC signal, 40

FCCV signal, 18, 36, 40

FCMP instruction, 18, 36

FCMPD instruction, 56

FCMPED instruction, 56

FCMPES instruction, 56

FCMPS instruction, 56

FDIVD instruction, 56

FDIVS instruction, 56

FDTOI instruction, 56

FDTOS instruction, 56

features, 253

FEXC signal, 40

FHOLD signal, 40

FIFO, 255

FITOD instruction, 56

FITOS instruction, 56

Floating-point unit (see FPU)

Flush operation, 70

FMOVS instruction, 56

FMUL instruction, 18

FMULD instruction, 44, 56

FMULS instruction, 44, 56

FNEGS instruction, 56

FP interlocks, 18, 36

FP queue, 18

FPCMP instruction, 18

FPLD instruction, 18

FPLDFSR instruction, 18

FPLOAD instruction, 40

FPMEMOP instruction, 18

FPOP instruction, 18

FPP, 57

FPST instruction, 18

FPSTDFQ instruction, 18

FPU, 9, 14, 36, 39, 40, 43, 51, 52, 55, 57, 110, 111

FSMULD instruction, 44, 51, 56, 57

FSQRTD instruction, 56

FSQRTS instruction, 56

FSTOD instruction, 56

FSTOI instruction, 56

FSUBD instruction, 56

FSUBS instruction, 56

FXACK signal, 40

I
ICC, 221, 222, 224

ID register, 229

IDCODE instruction, 230

IDIV instruction, 18, 36

IFLUSH instruction, 18, 28, 37, 122

IMUL instruction, 18, 36

Instruction cache, 25, 35, 100, 117, 119, 120

Instruction cache tags, 119, 122

Instruction cycles, 56

Instruction pipeline, 25, 27

Instruction register, 228

Integer divide, 32

Integer multiply, 31

Integer unit (see IU)

Interlocks, 36

Internal cycle counter (see ICC)

Interrupt control logic, 184

Interrupts, 38

INTEST instruction, 230

IRL signal, 38

IU, 9, 18, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39,

40, 102, 110, 111, 114, 116, 216, 241, 243

J
JMP instruction, 18

JMPL instruction, 27, 34
278 microSPARC-IIep User’s Manual • June 1999

JTAG, 1, 9, 215, 221, 228, 230, 231, 232

JUMP instruction, 27

L
latency, 257

LD instruction, 27, 28, 114

LDA instruction, 18, 28, 110

LDB instruction, 28

LDD instruction, 18, 28, 29, 38

LDDA instruction, 18, 28

LDDF instruction, 27, 29

LDF instruction, 27, 29

LDFSR instruction, 18, 36

LDH instruction, 28

LDSTB instruction, 18

LDSTBA instruction, 18

LDSTUB instruction, 30, 31

LO_ADDR signal, 260, 262

LOAD instruction, 27

Loads, 18, 28, 36

LOCK signal, 178

low address, 260, 262

M
Meiko core, 18, 57

MEMIF, 132

Memory fault address register, 86

Memory fault status register, 85

Memory map, 4

memory map, 258

Memory operations, 28

MFLOPS benchmark, 13

MID register, 87, 111, 116, 220

MIPS benchmark, 13

MMU, 59, 83, 101, 114, 132

MMU breakpoint register, 93

Multicycle instructions, 18, 33

Multiplier, 18

N
NaN rounding mode, 51

O
Operation modes, 53

out-of-bounds access, 257

P
P_REPLY[1:0] signals, 263, 264

Page hit register, 18

Page table pointer, 98

Pages, non-cacheable, 114, 123

Parity errors, 116

PCI arbitration, 180

PCI bus, 1, 6, 9, 18, 38, 155, 182, 213, 220

PCI configuration registers, 161

PCI IOTLB CAM input register, 173

PCI IOTLB CAM output register, 176

PCI IOTLB RAM output register, 176

PCI memory base address register 1, 166

PCIC arbitration assignment select register, 178

PCIC arbitration control register, 182

PCIC clear system interrupt pending register, 189

PCIC DVMA (IAFX master) control register, 182

PCIC interrupt assignment select register, 185

PCIC PIO (IAFX slave) control register, 181

PCIC processor interrupt pending register, 191

PCIC slave interface, 171

PCIC software interrupt clear register, 192

PCIC software interrupt set register, 192

PCIC system interrupt pending register, 187

PCIC system interrupt target mask register, 189

PCR register, 221

Performance counter A, 95

Performance counter B, 95

Physical address, 18

physical address, 256, 263

Physical address space, 251

PIL signal, 38

Pipeline interlocks, 18

port reply, 263, 264

power-on reset, 255, 266

Probe operation, 71

Processor control register, 72

Processor counter limit pseudoregister register, 198

Processor counter limit register or user timer, 196

Processor counter or user timer configuration

register, 200

Processor counter register or user timer, 197

Processor state register, 59
Index 279

Processor status register (see PSR register)

PSR register, 4, 5, 18, 37, 40, 41

R
R register, 37

R15 register, 36

R17 register, 40

R18 register, 40

RD register, 18

read/write signal, 261

request FIFO, 255

Reset, 38, 215

reset, 266

RESET_L signal, 266

RETT instruction, 18, 27, 34

RN rounding mode, 57

RS1 register, 18, 32

RS2 register, 18, 32

RZ rounding mode, 57

S
S_REPLY[1:0] signals, 264

SAMPLE instruction, 230

S-before-P read

timing, 270

SEC_CCR instruction, 230

Shifts, 31

signal

descriptions, 258 to ??

summary, 259

SIMM, 127, 140, 141

single-ended clock, 260

slave, 254

slow write timing, 269

SPECfp92 benchmark, 13, 14

SPECint92 benchmark, 13

ST instruction, 114

STA FLUSH instruction, 18, 28

STA instruction, 18, 28, 110

State machine, 217

STB instruction, 18

STBAR, 40

STD instruction, 18, 29, 30

STDA instruction, 18, 28

STDF instruction, 28

STDFQ instruction, 36, 54

STF instruction, 28

STFSR instruction, 18

STH instruction, 18

STORE instruction, 27

Stores, 18, 29

SWAP instruction, 18, 30

SWAPA instruction, 18

Synchronous fault address register, 81

System counter limit pseudoregister register, 199

System counter limit register, 198

System counter register, 199

system memory interface, 254, 255

System memory size register 1, 166

system reply, 264

T
TAP, 221, 228, 229, 236

TBR register, 18

Test access port (see TAP)

Three level arbitration algorithm, 179

timeout, 257

Timers, 194

timing, ?? to 271

back-to-back write and read, 271

fast write, 268

S-before-P read, 270

slow write, 269

TLB, 13, 62, 100, 103, 113

TLB replacement control register, 62, 81

Translation modes, 101

Trap base register, 37

TRAP instruction, 28

Traps, 37

Trigger A enable register, 88

Trigger B enable register, 90

U
unsupported size-type access, 257

User timer start/stop register, 199

V
Virtual address, 18
280 microSPARC-IIep User’s Manual • June 1999

Virtual address compare register, 96

Virtual address mask register, 95

W
W register, 32

WIM register, 18

Write buffer, 110

write data cycle, 257

write timing, 267

WRITE_L signal, 261

Y
Y register, 18, 32, 40
Index 281

282 microSPARC-IIep User’s Manual • June 1999

©1999 Sun Microsystems, Inc. All Rights reserved.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY EXPRESS REPRESENTATIONS
OF WARRANTIES. IN ADDITION, SUN MICROSYSTEMS, INC. DISCLAIMS ALL IMPLIED REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT OF THIRD PARTY INTELLECTURAL PROPERTY RIGHTS.

This document contains proprietary information of Sun Microsystems, Inc. or under license from third parties. No part of this document
may be reproduced in any form or by any means or transferred to any third party without the prior written consent of Sun
Microsystems, Inc.

Sun, Sun Microsystems and the Sun Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The information contained in this document is not designed or intended for use in on-line control of aircraft, aircraft navigation or
aircraft communications; or in the design, construction, operation or maintenance of any nuclear facility. Sun disclaims any express or
implied warranty of fitness for such uses.

Sun Microsystems

Microelectronics

901 San Antonio Road

Palo Alto, CA 94303–4900 USA

800/681-8845

www.sun.com/microelectronics

Part Number: 802-7100-02

	Contents
	Preface�xxv
	1. microSPARC-IIep Overview�1
	2. CPU Performance�13
	3. Integer Unit�25
	4. Floating-Point Unit�43
	5. Memory Management Unit�59
	6. Data Cache�107
	7. Instruction Cache�117
	8. Memory Interface�125
	9. PCI Controller�145
	10. Flash Memory Interface�213
	11. Mode, Timing, and Test Controls�215
	12. Error Handling�241
	A. ASI Map�243
	B. Physical Memory Address Map�251
	C. microSPARC-IIep AFX (Local) Bus�253
	D. Memory Timing Parameters�273

	Figures
	Tables
	Document Revision History
	Preface
	microSPARC-IIep Overview
	1.1 Introduction
	1.2 microSPARC-IIep Memory Map
	1.3 microSPARC-IIep Endian Support
	1.3.1 Processor-internal Endian Support
	1.3.2 Processor External PIO Endian Support
	1.3.3 DMA
	1.3.4 Settings for Endian Conversion
	1.3.4.1 Big-endian Environment
	1.3.4.2 Little-endian Environment

	1.4 Block Diagram

	CPU Performance
	2.1 Benchmark Configurations and Results
	2.1.1 Benchmark Test Configuration
	2.1.2 SPECint92 Test Results
	2.1.3 SPECfp92 Test Results
	2.1.4 Dhrystone Test Results

	2.2 Compiler Optimization Guidelines
	2.2.1 Branches
	2.2.2 Guidelines for Branch Folding
	2.2.3 Multicycle Instructions
	2.2.4 Pipeline Interlocks
	2.2.5 Other Guidelines
	2.2.6 Floating-Point Instructions
	2.2.6.1 FP Interlocks
	2.2.6.2 Functional Units
	2.2.6.3 FP Queue Details

	2.2.7 Loads and Stores
	2.2.8 General Techniques

	2.3 Using the Two Page-Hit Registers

	Integer Unit
	3.1 Overview
	3.2 Instruction Pipeline
	3.3 Memory Operations
	3.3.1 Loads
	3.3.2 Stores
	3.3.3 Atomic Operations

	3.4 ALU/Shift Operations
	3.5 Integer Multiply
	3.6 Integer Divide
	3.7 Control-Transfer Instructions
	3.7.1 Branches
	3.7.2 JMPL
	3.7.3 RETT
	3.7.4 CALL

	3.8 Instruction Cache Interface
	3.9 Data Cache Interface
	3.10 Interlocks
	3.10.1 Load Interlock
	3.10.2 Floating Point Interlocks
	3.10.3 Miscellaneous Interlocks

	3.11 Traps and Interrupts
	3.11.1 Traps
	3.11.2 Interrupts
	3.11.3 Reset Trap
	3.11.4 Error Mode

	3.12 Floating-Point Interface
	3.13 Compliance With SPARC Version 8

	Floating-Point Unit
	4.1 Overview
	4.2 FPU Internal Information
	4.3 Deviations from SPARC version 8
	4.4 Implementation Specific Features
	4.4.1 fp_execute State
	4.4.2 fp_exception_pending State
	4.4.3 fp_exception State
	4.4.4 STDFQ Instruction

	4.5 Software Considerations
	4.6 FP Performance Factors

	Memory Management Unit
	5.1 Overview
	5.2 MMU Programming Interface
	5.3 Translation Lookaside Buffer
	5.3.1 TLB Replacement
	5.3.2 TLB Entry
	5.3.3 Page Table Entry
	5.3.4 Page Table Pointer

	5.4 Address Space Decodes
	5.5 CPU TLB Lookup
	5.6 CPU TLB Flush and Probe Operations
	5.6.1 CPU TLB Flush
	5.6.2 CPU TLB Probe

	5.7 Processor MMU Registers
	5.7.1 Processor Control Register
	5.7.2 Context Table Pointer Register
	5.7.3 Context Register
	5.7.4 Synchronous Fault Status Register
	5.7.5 Synchronous Fault Address Register
	5.7.6 TLB Replacement Control Register

	5.8 MISC MMU Registers
	5.8.1 Asynchronous (Memory) Fault Status Register
	5.8.2 Asynchronous (Memory) Fault Address Register
	5.8.3 Memory Fault Status Register
	5.8.4 Memory Fault Address Register
	5.8.5 MID Register
	5.8.6 Trigger A Enables Register
	5.8.7 Trigger B Enables Register
	5.8.8 Assertion Control Register
	5.8.9 MMU Breakpoint Register
	5.8.10 Performance Counter A
	5.8.11 Performance Counter B
	5.8.12 Virtual Address Mask Register
	5.8.13 Virtual Address Compare Register
	5.8.14 Local Bus (PCIC Interface) Queue Level Register
	5.8.15 Local Bus (PCIC Interface) Queue Status Register

	5.9 Physical Address Register
	5.10 TLB Table Walk
	5.11 Arbitration
	5.11.1 TLB Arbitration

	5.12 Translation Modes
	5.12.1 Page Hit Registers

	5.13 Errors and Exceptions
	5.14 Diagnostic Features
	5.14.1 Diagnostic Access of TLB
	5.14.2 MMU Breakpoint Debug Logic
	5.14.3 Additional Features

	Data Cache
	6.1 Overview
	6.2 Data Cache Data Array
	6.3 Data Cache Tags
	6.4 Write Buffers
	6.5 Data Cache Fill
	6.6 ASI/STore Bus Interface
	6.7 Cache Fill Bus Interface
	6.8 IU/FPU Data Bus Interface
	6.9 Endian Conversion
	6.10 Data Cache Flushing
	6.11 Data Cache Protection Checks
	6.12 Cacheability of Memory Accesses
	6.13 Data Cache Streaming
	6.14 PTE Reference Bit Clearing
	6.15 Powerdown
	6.16 Diagnostic Strategy
	6.17 Parity Errors

	Instruction Cache
	7.1 Overview
	7.2 Instruction Cache Data Array
	7.3 Instruction Cache Tags
	7.4 Instruction Hit/Miss
	7.5 IASI Bus Interface
	7.6 ICache fill Bus Interface
	7.7 IU Instruction Bus Interface
	7.8 Instruction Cache Flushing
	7.9 Cacheability of Memory Accesses
	7.10 Diagnostic Strategy

	Memory Interface
	8.1 Overview
	8.2 Memory Organization
	8.2.1 Access to Unused or Unpopulated Memory Regions
	8.2.2 Dual-RAS Mode
	8.2.3 Address Mapping For System DRAM

	8.3 Memory Control Block (MCB)
	8.3.1 Arbitration State Machine (ASM)
	8.3.2 Arbitration for Memory Access and ASM Priority Scheme
	8.3.3 Address Decode & Evaluate Logic (ADEL)

	8.4 Data Alignment and Parity Check/ Generate Logic (DPC)
	8.4.1 RAM Refresh Control (RFR)

	8.5 Clock Speeds
	8.6 Summary of Cycles
	8.7 Memory Configurations
	8.8 Local Bus (IAFX bus to PCIC) interface

	PCI Controller
	9.1 Overview
	9.1.1 Features

	9.2 Data Translation (Endian Modes)
	9.2.1 Overview

	9.3 Memory Map and Address Translation
	9.3.1 IAFX to PCI Memory Map
	9.3.2 PCI to IAFX Memory Map

	9.4 PCI Bus Interface
	9.4.1 Basic PCI Bus Operations/Restrictions
	9.4.2 PCI Host/Satellite Mode

	9.5 PCIC Control
	9.5.1 Configuration Register Accessing
	9.5.2 PCI Configuration Register Definitions
	9.5.2.1 PCI Device Identification
	9.5.2.2 PCI Device Control
	9.5.2.3 PCI Device Status

	9.5.3 PCI Miscellaneous Functions
	9.5.4 Processor (IAFX) to PCI Translation Registers (PIO)
	9.5.4.1 PCI Memory Cycle Translation Register Set 0
	9.5.4.2 PCI Memory Cycle Translation Register Set 1
	9.5.4.3 PCI I/O Cycle Translation Register Set

	9.5.5 PCI to DRAM (IAFX) Translation Registers and Operation
	9.5.5.1 PCI Base Address/Size Registers

	9.5.6 PCIC IOTLB Operation (DVMA)
	9.5.7 PCIC IOTLB Write Registers
	9.5.7.1 PCI IOTLB RAM Input Register
	9.5.7.2 PCI IOTLB CAM Input Register
	9.5.7.3 PCI IOTLB Control Register

	9.5.8 PCIC IOTLB Read Registers
	9.5.8.1 PCI IOTLB RAM Output Register
	9.5.8.2 PCI IOTLB CAM Output Register
	9.5.8.3 PCIC DVMA Error Address Register

	9.5.9 PCIC PIO Error Command and Address Registers
	9.5.9.1 PCIC PIO Error Command Register

	9.6 PCI Arbitration and Control
	9.6.1 PCIC Arbitration Assignment Select Register
	9.6.2 PCI Arbitration Algorithm
	9.6.3 PCIC PIO (IAFX Slave) Control Register
	9.6.4 PCIC DVMA (IAFX Master) Control Register
	9.6.5 PCIC Arbitration Control Register

	9.7 PCIC Interrupts
	9.7.1 PCIC Interrupt Assignment Select Registers
	9.7.2 PCIC System Interrupt Pending Register
	9.7.3 PCIC Clear System Interrupt Pending Register
	9.7.4 PCIC System Interrupt Target Mask Register
	9.7.5 PCIC Processor Interrupt Pending Register
	9.7.6 PCIC Software Interrupts
	9.7.7 PCIC Hardware Interrupt Outputs

	9.8 Counter-Timers
	9.8.1 Counter-Timers Address Map and Function
	9.8.2 Processor Counter Limit Register or User Timer MSW
	9.8.3 Processor Counter Register or User Timer LSW
	9.8.4 Processor Counter Limit Pseudo Register
	9.8.5 System Counter Limit Register
	9.8.6 System Counter Register
	9.8.7 System Counter Limit Pseudo Register
	9.8.8 User Timer Start/Stop Register
	9.8.9 Processor Counter or User Timer Configuration Register
	9.8.10 Counter Interrupt Priority Assignment Register

	9.9 System Status and System Control
	9.9.1 System Status and System Control (Reset) Register

	9.10 PCI Interface Signal Description
	9.11 PCI Protocol Fundamentals
	9.11.1 PCI Addressing

	9.12 IAFX Bus Interface
	9.12.1 IAFX Bus Overview
	9.12.2 IAFX Target Interface
	9.12.3 DVMA (IAFX Master) Interface
	9.12.3.1 DVMA (IAFX Master) Operations

	Flash Memory Interface
	10.1 Flash Memory Programming Interface
	10.2 Flash Memory Speed

	Mode, Timing, and Test Controls
	11.1 Overview
	11.2 Reset Logic
	11.2.1 General Reset and Watchdog Reset
	11.2.2 Reset Controller State Machine

	11.3 Phase-Locked Loop
	11.4 Power Management
	11.5 Clock Control Logic
	11.5.1 Stopping Clocks
	11.5.2 Starting Clocks
	11.5.3 Single-Step
	11.5.4 Counting Clocks
	11.5.5 Issuing N Clocks
	11.5.6 Stop Clocks on Internal Event
	11.5.7 Stop Clocks N Cycles after Internal Event
	11.5.8 Stop Clocks after N Internal Events
	11.5.9 Clock Control Register (CCR) Bits

	11.6 JTAG Architecture
	11.6.1 Board Level Architecture
	11.6.2 Test Access Port (TAP)
	11.6.3 JTAG Instructions
	11.6.4 JTAG Interface to MISC
	11.6.4.1 Clock Controller Interface
	11.6.4.2 Boundary Control Interface
	11.6.4.3 RESET Mechanism

	11.6.5 JTAG Operation
	11.6.6 CLK_RST TAP Instruction

	11.7 Boot Options

	Error Handling
	ASI Map
	Physical Memory Address Map
	microSPARC-IIep AFX (Local) Bus
	C.1 Introduction
	C.1.1 System Memory Interface
	C.1.2 Local Bus Controller
	C.1.3 Local Bus Slave
	C.1.4 Local Bus Interface

	C.2 Basic Local Bus Cycle
	C.2.1 Address Cycles
	C.2.2 Data Cycles
	C.2.2.1 Write
	C.2.2.2 Read

	C.2.3 Local Bus Timeout
	C.2.4 Local Bus Latency

	C.3 Local Memory Map
	C.4 Local Bus Interconnect
	C.5 Local Bus Signals
	C.5.1 CLK
	C.5.2 AEN
	C.5.3 LO_ADDR
	C.5.4 WRITE_L
	C.5.5 AB[14:0]
	C.5.6 Byte Mask (BM) Bits
	C.5.7 Multiplexed Addresses
	C.5.8 P_REPLY[1:0]
	C.5.9 S_REPLY[1:0]
	C.5.10 DB[63:0]
	C.5.11 RESET_L

	C.6 Local Bus Timing Diagrams
	C.6.1 Write Cycle
	C.6.2 Read Cycle

	C.7 Back-To-Back Write and Read Cycles

	Memory Timing Parameters
	D.1 Tabulated Parameter Values

	Bibliography
	General References
	Books and Specifications

	Sun Microelectronics (SME) Publications
	Data Sheets
	 User’s Guides

	How to Contact Sun Microelectronics
	On Line Resources

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

