Compliments of

{? EXAS
: '!;NSTRUMENTS

o™

OMAP" and DaVinci
Software

FOR

DUMMIES

Program OMAP and DaVinci
processors quickly
and easily with Tl

A R e fe rence software and tools
for the

Rest of Us!

FREE eTips at dummies.com® M
)
\\ .

J

Steve Blonstein
Alan Campbell

Discover the wonderful world of programming the
Texas Instruments OMAP and DaVinci processors.
OMAP and DaVinci devices contain two unique
processors — one general purpose, the other

a digital signal processor. Combining these
processors inside a single chip makes OMAP and
DaVinci programming an interesting challenge.
In this book, we explain the high-level concepts
required to effectively program these devices.We
then let you loose on a development board to
create a real video/audio application.

As a companion to this book, we provide a Web site
(www . ti.com/dummiesbook) where you can find all
sorts of goodies to further your OMAP and DaVinci
experience.This Web site includes all the software

to download to make the video and audio demo
run properly on the OMAP development board.You
can also visit the Tl e-store (www.ti.com/estore)
where you can purchase additional development
boards. Finally, check out (www.tiexpressdsp.com),
a developer centric wiki site with lots of useful articles
and technical documents, many that specifically
support OMAP and DaVinci processors.

OMAP" and

eoTM

DaVinci Software

FOR

- DUMMIES

by Steve Blonstein and
Alan Campbell

WILEY
Wiley Publishing, Inc.

OMAP™ and DaVinci™ Software For Dummies®

Published by

Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for
the Rest of Us!, The Dummies Way, Dummies.com, Making Everything Easier, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. The Texas Instruments
logo, OMAP, and DaVinci are trademarks or registered trademarks of Texas Instruments. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETE-
NESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITU-
ATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PRO-
FESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRIT-
TEN AND WHEN IT IS READ.

ISBN: 978-0-470-39522-6
Manufactured in the United States of America
10987654321

About the Authors

Steve Blonstein is a technical director in the Software
Development Organization (SDO) of Texas Instruments. He has
spent the last 11 years at TI working on a multitude of programs
and projects, making it easier to develop and maintain software
on Tl processors. Steve was part of the original eXpressDSP
initiative that enabled a generation of DSP developers to be more
efficient and creative programmers. Now, with the arrival of
OMAP and DaVinci class processors, Steve is again part of

a team enabling new applications to be developed on these
amazingly sophisticated and capable processors.

When away from work, Steve likes to fly his plane around
California and spend time with his wife, Andrea, and three
children, Samantha, Danielle, and Nicholas, in their home in
Palo Alto.

Alan Campbell is the SDO Applications Manager at Texas
Instruments, and has 14 years of experience in real-time and
DSP applications. He is responsible for applications support of
Foundational Tooling, the Integrated Development Environment,
and Target Content. Alan’s passion is to make all things OMAP
and DaVinci easy to use.

In his (limited!) free time, Alan likes to have fun with his twins
Erin and Olly, alongside his wife Pauline, in Houston, Texas.

Publisher’s Acknowledgments

We're proud of this book; please.send us your comments through our Dummies online
registration form located at http: //dummies.custhelp.com. For other comments,
please contact our Customer Care Department within the U.S. at 877-762-2974, outside
the U.S. at 317-572-3993, or fax 317-572-4002. For details on how to create a custom
For Dummies book for your business or organization, contact bizdeve@wiley.com. For
information about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

Some of the people.who helped bring this book to market include the following:

Acquisitions, Editorial, and Production
Media Development Senior Project Coordinator: Kristie Rees
Development Editor: Keith Underdahl Layout and Graphics: Stacie Brooks,

Senior Project Editor: Zoé Wykes Reuben W. Davis, Shawn Frazier,

Technical Editors: Chris Ring, Sarah Philippart

Katie Roberts-Hoffman, Proofreaders: Joanne Keaton,

Aravindhan K, Venugopala Madumbu Caitie Kelly, Amanda Steiner
Editorial Manager: Rev Mengle Indexer: Johnna VanHoose Dinse
Business Development Representative:

Kimberly Shelly

Custom Publishing Project Specialist:
Michael Sullivan

Cartoons: Rich Tennant
(www . the5thwave . com)

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

. Mary Bednarek, Executive Director, Acquisitions

Mary C. Corder, Editorial Director
Publishing and Editorial for Consumer Dummies

Diane Graves Steele, Vice President and Publisher, Consumer Dummies
Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Table of Contents

JNEOAUCEION ...eeeaeeneeeeeaaaaaeeeeeeeaeeeeenenaeeeennnanaee]

Who Should Read This BOOK...........ccccevevveveeieereeeereeeennes w2
How to Use ThiS BOOKcvvuiveiveieeieeieeieeeeeeeeeieeeeeeesessenens 2
How This Book Is Organized...........cccooevveererernrrrrereererennenes 2
Icons Used in This BOOK...........c.coooueveieiieieiieeeeeeeeeeeeeeeeeeens 4
Where to GO from HErec.oouveeiveeeeiviiiieeeeeeeeee e 4

Part I: Understanding the Embedded Software
and Tools for OMAP and Dalinci Processors..........5

Chapter 1: OMAP and DaVinci Processors — Hybrids of

the ProgrammingWorld 7
A Hybrid Is As a Hybrid Do€s..........ccoeuviveeererererereeeeereecnnes 8
High Frequency MeltdOWnSccoceerererveercvevererereeceeans 8
Multiplying Performance with Multi-Cores..............co............. 9
Chapter 2: Using the Right Operating Systems......... 13
DSP/BIOS — Real, Real-Timeccccceuevrereerererererereeerrnenes 14
Linux — a Real Operating System for OMAP
and DaVinci DEVICEScvuureummreuernecresseesssesessssnsssnnees 16
Using ApPliCationsccceveeueiereeieeeerctieeeeeeeeee e 19
Connecting It All Together........ccccccveveveeeeeceeeeveveeeecseene. 20
Chapter 3: Digital Media Software: Standardizing
How Codecs Work Together..................... 21
Taking a Look at TI Standardscceeeeveeeeeereeeeereereeeennns 22
XDAIS — Ensuring Codecs Play Fairly.............cccoeuvvueunnnn.... 22
XDM — Standard Interfaces for Common Classes
Of COAEES ...ttt 26
RTSC — Standardized Packaging for All Codecs 28
Chapter 4: Multimedia Framework Products —
Revving the Codec Engine 31
Multimedia Framework Productsc..ccceuevevveveenirennnnnen. 31
DSP/BIOS LINK......ccoeeiriritriienniiinee e seeeaeees 38

il
i
i
i
|
i
il

vi OMAP and DaVinci Software For Dummies

Chapter 5: Picking the Right Development Tools 43
Introducing TI Evaluation Modulescocovinviineininnnnnnns 44
Digital Video Software Development Kits (DVSDK).............. 45
Picking ARM Processor OS ToOolSs.........ccoeeriiininininiinccnienenes 46
Tools for the OMAP and DaVinci DSP Processor 48
What’s Going on with ARM-DSP Interactions?c........ 49

Part II: Building Something Real — Now!51

Chapter 6: Meetthe Board!........................ 53
Welcome to the OMAP3 EVMccccooiinniniinninenecreienes 54
CHEllo WOTLA™ ...ttt 55
Running the Decode Demo ... 57

Chapter 7: Making Codecs Play Nice

with Rules and Guidelines...................... 59
Keeping Codec Producers Honest with the QualiTI Tool60
Diving Deep into a Few XDAIS Rules..........ccccocoviniirineninnnne 64
XDM and VISA SemantiCs........cccoeererueermriniiinieinisenenseerensenns 66

Chapter 8: Making a Standard Box for Codecs....... 69
Why Bother with RTSC Packaging? eerebuen ettt 70
Getting Help from the RTSC Codec Packagmg Tool 73
Preserving All-Important Codec Performance...................... 78

Chapter 9: Generating DSP Server Executables. 81
Timeout for a Terminology Recapcccccevvvvvvivirinncnninnns 82
Getting Help from the RTSC Server Packaging Tool............. 83
Bundling Multiple Codecs into Combosccccccoeivininnennnes 88

Chapter 10: How Do | Test This Thing?.............. 9
Using the DVSDK DemOScocuccriininiiiieinieeeeseseveeens 92
The Digital Video Test Bench ..o 96
Making Single-Page Applications with DMAI......................... 98
Using Pre-Canned ComboOsccccoviiimrnrenreeicieicieeeienns 100

Part I11: The Part of Tens.........ccecceeceecceecaeecaees 101
Chapter 11: Ten (Almost) Codec Package

Requirementscooviiiniiiininns 103
Chapter 12: Ten Super OMAP and
DaVinci Resources...............ccvvueiinnnns 105

JHACK «neeeeeeeeeeeeeeeeeeereeaeeanceeecscnneecessennneeeees JOT

Introduction

® OO0 0O0O0S S O®HOODOODPO S OO B

Fe creation and consumption of cool gadgets has become
a way of life for many designers, engineers, and billions of
consumers. These gadgets, whether for music, video, Web,
navigation, games, or communications, keep getting ever
more sophisticated, and cleverer and smaller.

Buried inside these electronic gadgets are high-tech embed-
ded digital processors. Depending on the device, the proces-
sor may be responsible for decompressing and displaying
video, storing music, running and displaying a Web browser,
taking inputs from a touch-screen, or playing amusing ring-
tones. The tasks handled by these embedded processors usu-
ally fall into one of two categories:

v General purpose processing tasks such as data transfer
or running graphical user interfaces

1+~ Digital signal-processing tasks such as compressing and
decompressing video, audio, and speech streams

Traditionally, different physical devices would be employed to
perform these somewhat diverse functions. Today, however,
all of this functionality can be packed into a single device.

Texas Instruments has been a pioneer in the area of processor
integration with its family of System on Chip (SOC) devices
branded OMAP and DaVinci. These devices make clever use of
a combination of general-purpose processors, specialized dig-
ital-signal processors, and dedicated hardware accelerators to
make digital gadgets literally sing and dance. Even better,
devices based on OMAP and DaVinci are really stingy on
power consumption, so smaller, lighter batteries can last a
long time.

But — you just knew there had to be a but — to make any
OMAP or DaVinci device perform the way you want requires a
lot of software. Fortunately, there’s good news, and really good
news. The first piece of good news is that software is soft. In
other words, the functionality of a gadget is only limited by
the creativity of its programmers.

l 2 OMAP and DaVinci Software For Dummies

| The really good news is that Texas Instruments provides

i‘ much of the embedded software and tools required to get
OMAP and DaVinci developers up and running fast.

\ Developers can focus on cool applications and not lose valu-
‘ able time on tasks that don’t add real value.

~q I 3] G 'y a
Who Should Read This Book
Any designer or manager about to embark on a project that

‘ might involve an OMAP or a DaVinci processor should read
this book. If you're a software programmer, you'll discover the
various embedded software components and tools that are
offered by Texas Instruments, enabling you to get to the good
stuff sooner rather than later. If you're worried about being
forced into the world of grungy low-level software, you’ll
appreciate TI's solid software infrastructure that’s described
in this book.

How to Use This Book

OMAP and DaVinci Software For Dummies is organized so that
you can either read it front to back, jump to interesting

or relevant sections, or skip straight to the hands-on stulff. If
you have little or no experience with software on Texas
Instruments devices, we recommend that you become familiar
with all the concepts described in Part I before embarking on
your development journey in Part II. You wouldn’t want to
drive off in a rental car at night without knowing how to turn
on the headlights, and you wouldn’t want to start developing
software on a new OMAP or DaVinci device before under-
standing how TI's system works.

The embedded software and tooling available from Texas
Instruments is represented in Figure 1. This book introduces
you to the components in the figure and shows you how to
use these components to get real-world applications up and
running.

How This Book Is Organized

This book is broken into three parts, each offering a different
view of the embedded software and tools that run on OMAP
) and DaVinci devices.

Introduction 3

eXpressDSP Software
Development Tools

Code Composer
Studio™ IDE (Ch 5)

i Device Drivers {Ch 2)

Target Board/EVM (Ch 5)

Figure 1: Ti offers all these components to speed up your development.

Part I: Understanding the
Embedded Software and Tools for

OMAP and DalVinci Processors

In Chapter 1, we show you why heterogeneous multi-core
devices like OMAP and DaVinci processors have risen to such
prominence. Chapter 2 covers the operating systems (Linux,
for example) and kernels (DSP/BIOS) required to make OMAP
and DaVinci processors run efficiently. Chapter 3 digs into
standards (XDAIS, XDM, RTSC) that TI has developed to make
it easier for developers to quickly integrate multiple signal
processing codecs into the final system. Chapter 4 looks at
the framework software, Codec Engine, which forms a conven-
ient housing for XDAIS-compliant algorithms. We also discuss
the inter-processor communication protocol (DSP/BIOS Link)
used to communicate between the two cores on the SOC.
Finally in this part, Chapter 5 explores the development tool
choices for both ARM and DSP.

Part II: Building Something
Real — Now!

In Part Il you work hands-on with one of TI's hardware
evaluation platforms (OMAP35xx EVM). You build a demo

OMAP and DaVinci Software For Dummies

application where you can literally see and hear an OMAP
processor in action. You actually get a chance to run an
MPEG4 video decoder and an AAC audio decoder.

Chapter 6 helps you build a “Hello World” program on the
OMAP35xx EVM hardware. Chapter 7 explores the TI MPEG4
video decoder that is used in later chapters. Chapter 8 leads
you through packaging a codec and preserving its perform-
ance when implemented in a framework. Chapter 9 is where
you create DSP server executables. In Chapter 10, you get real
codecs running in a test bench. You get to see video and hear
audio being processed on the OMAP processor. There’s noth-
ing to it!

Part I11: The Part of Tens

A standard feature of all For Dummies books, each Part of
Tens chapter provides ten useful bits of information. In
Chapter 11, we cover (almost) ten top codec recommenda-
tions that Texas Instruments publishes for codec developers
to follow. In Chapter 12, we give you ten great resources for
helping you out during your OMAP and DaVinci development.

Icons Used in This Book

é@mm

Q\QM\- STU

D

We use icons throughout this book to call attention to mate-
rial worth noting in a special way. Here’s a list of the icons
you’ll see and a description of what each icon means.

Some points bear repeating, and others bear remembering.
When you see this icon, take special note of what you're
about to read.

This icon indicates technical information that is probably
most interesting to programmers, but you never know when
you may need to talk to one.

If you see a Tlp icon, pay attention — this is handy, real-world
advice.

Where to Go from Here

Simply turn the page.

Part|

Understanding the
Embedded Software
and Tools for OMAP

and DaVinci
Processors

In this part . . .

K his part explores the factors bringing multi-core

B processors to the forefront of the programming world,
focusing on OMAP and DaVinci Processors from Texas
Instruments. With OMAP and DaVinci Processors, you get
both a general purpose processor and a digital signal
processor. The following chapters provide a high-level
overview of a software architecture that gets the most
from OMAP and DaVinci devices. We explore operating
system choices, embedded software component stan-
dards, and TI's software framework — Codec Engine. We
also give you options for choosing development tools for
both processors.

Chapter 1

OMAP and DaVinci
Processors — Hybrids of
the Programming World

In This Chapter
Exploring hybrid System-on-Chip (SOC) trends
Working with multi-core SOCs
Using homogeneous and heterogeneous programming models

A re you driving around in one of those cool hybrid cars
yet? If not, you're probably cursing at the price of gas
because your car only gets 15 to 30 miles per gallon. Our
European friends probably think American fuel prices still
sound like a bargain, but since this is OMAP and DaVinci
Software For Dummies and not Global Energy Policy For
Dummies, in this book we stick to the subject of what hybrids
have to do with programming.

“What exactly do hybrids have to do with programming?”
Great question!

In this chapter, we discuss the unique factors that have
caused the hybrid SOC (System on Chip) trend to develop.
First, we consider the problems encountered by circuit
designers as chip clock frequencies headed towards infinity
(and literal meltdowns). Next, we explore the multi-core
trends that exploited the ability to pack hundreds of millions
of transistors on a single chip. Finally, we look at why, for

8 Part I: Understanding the Embedded Software and Tools

the types of applications described in this book, it’s best to
have both a general purpose processor (GPP) and a special
purpose digital signal processor (DSP).

A Hybrid Is As a Hybrid Does

Hybrid cars combine together electric and gasoline drive trains
to increase fuel efficiency. Hybrids also boost performance,
because the combined drive train produces better torque and
acceleration than either motor can deliver on its own. You can
even improve stopping distances by leveraging the regenerative
braking principle. Finally, don’t forget that a hybrid car emits a
much smaller amount of pollution for each mile traveled.

A remarkably similar trend has occurred during the past
decade in the embedded silicon and programming world.
SOC silicon processors have gained widespread acceptance
because they use less power, offer better performance, and
emit less heat pollution into electronic devices.

High Frequency Meltdowns

Automobile buffs clearly understand that simply doubling the
horsepower in a car doesn’t double the vehicle’s top speed.
Annoying things like road friction and wind resistance conspire
to make the math much less favorable than one would hope.

It wasn’t so long ago that most people assumed that the clock
speeds on silicon (Si) devices would continue to get higher
unabated. People were touting 5GHz processors as being “just
around the corner.” Apparently, that car spun off the road
somewhere because 5GHz chips still aren’t available, and they
don’t seem to be anywhere on the horizon.

So why aren’t there 5GHz chips? Designers ran head-on into
two related problems:

¥ v~ Fuel consumption: Fuel (or should we say electrical
power) consumption becomes too prohibitive at higher
frequencies.

AN

1~ Heat dissipation: As electrical power consumption
grows, adequate heat dissipation becomes impractical in
all but the most powerful server-type computers.

SR S T

— Chapter 1: OMAP and DaVinci — Hybrids of Programming 9

The challenge to Si designers is this: How do Si designers
boost chip performance while alleviating the power and heat
problems? Since they can’t just increase chip frequencies,
how can they make better use of lower frequencies? The
solution is the multi-core device.

Mmup:qu Performance
with Multi-Cores

The people who realized that 5GHz processors wouldn’t be
practical in common embedded applications needed to come
up with practical alternatives. As transistors got smaller, it
became possible to pack hundreds of millions of transistors
(even a billion!) on a single chip. So silicon chip designers
concluded that it would be more practical to place several
processors, each running at a lower clock speed, on a single
chip. Hence, the multi-core processor was born.

Currently, the two common approaches to designing
multi-core architectures are

1/ Homogeneous core approach. Essentially, the
silicon architect places two or more identical (homoge-
neous) cores on a single chip. Devices are already
available with four, six, or even eight cores. This homoge-
neous approach is generally the simplest multi-core

i architecture, but it has some serious limitations that we

discuss later in the chapter.

1 Heterogeneous core approach. The principle of the het-
erogeneous methodology is for silicon architects to place
two or more different cores on the same chip. Huh? Why
would you make things any more complicated than
they already are on a chip with hundreds of millions of
transistors? The reasons are very similar to the gaso-
line/electric combination in a hybrid car. The two motors
are tuned to be most efficient at different tasks and can
even be combined to produce a killer combination.
Figure 1-1 shows a Texas Instruments OMAP core that

. utilizes a heterogeneous design approach. One core

© serves as the GPP while another is the DSP,

TS

et TR RO R T

70 Part I: Understanding the Embedded Software and Tools

Display
Subsystem |
accelerators | : w;VideOE@M@ ?
(3525/3530 only) | Enc (10 bit DAC| |

.
&
=

Camera I/F

- ' Graphics | .
| " { (3515/3530 only) "Sﬁ,%“' . [Paraiiel 7F] 8

4 Interconnect

) A

& Peripherals g vity System
] ‘UsB20HS || USB A [Timers |
0TG || Host
| Controller ||Controller x2

rial Interf T ac
[McBSP | [¢ TUART | [HDO/ | [SpRC | [mmc/ |
Pt x3 x2 || l-wire el
McSPI | " [UART | GPMC || spio
x4 | w/IRDA [~ %3

Figure 1-1: OMAP processors use a heterogeneous design approach.

We could debate the pros and cons of the homogeneous and
heterogeneous approaches all day, but that it isn’t going to get
any software code running on either architecture. Ultimately,
someone (you?) has to get a software application running on a
multi-core device.

Homogeneous multi-core
programming models

The homogeneous core approach works well in a variety of
programming scenarios.

One scenario involves running the same task over and over
again, with some number of identical tasks running on one
core and more identical tasks running on the other core(s).
Suppose, for example, that you need to run a voice codec

— Chapter 1: OMAP and DaVinci — Hybrids of Programming ’ ’

application. One core might be able to handle eight channels
of voice simultaneously. This means that with two cores you
can handle 16 channels, four cores can handle 32 channels,
and so on. Of course, this presumes that you have the I/O
bandwidth to get the voice data on and off the multi-core
device in real-time.

Another scenario that might work well on a homogeneous
multi-core architecture is where independent tasks split
conveniently across the cores with little or no need for the
tasks to communicate with each other. An example of this
would be the previously mentioned multi-channel voice
application, but with an additional need to simultaneously
run a video codec. Hypothetically, say that the video codec
consumes about eight times the compute cycles as a single
voice channel. Voila — you run the eight voice channels on
one core and the video channel on the other core.

Homogenous multi-core processors work best when you need
to process a lot of identical tasks, or when dissimilar tasks
can be easily separated among multiple cores.

Heterogeneous multi-core
programming models

Suppose you need a device to handle voice and video media,
plus a sophisticated graphical user interface. Oh, and it’s
desirable to reuse a whole bunch of high-level OS application
code that was developed for your previous product.

General purpose processors that are good at handling high-
level operating systems and lots of I/O tasks aren’t very
efficient or capable at handling voice, audio, and video signal
processing. Meanwhile, a digital signal processor is very
capable and efficient at running video, audio, and speech
processing, but a DSP doesn’t support general-purpose
high-level OS applications efficiently.

Applications that combine diverse requirements are where
OMAP and DaVinci devices really shine. These devices
embrace the heterogeneous multi-core programming model
by combining GPP and DSP cores on a single chip. OMAP and
DaVinci devices include

12 Part I: Understanding the Embedded Software and Tools

v An ARM Litd general purpose processor. The ARM
processor is ideally suited to running a common operat-
ing system like Linux, and it can handle most of the
input/output (1/0) and housekeeping functions such as a
graphical user interface (GUI).

1+ A high performance C64x+ DSP. The DSP handles all the

really intense signal processing functions required in
today’s intense multimedia applications.

Rocket power: Accelerating
hardware performance

Hybrid cars are undoubtedly fuel effi-
cient, but hasn't everyone secretly
wanted to tune their cars for more
performance? How about bolting a
rocket motor with afterburners to the
back of the car? That'll boost the per-
formance quite a bit.

Inthe silicon world, the equivalent of a
rocket motor is referred to as a hard-
ware accelerator. A heterogeneous
multi-core device needs to perform
certain functions a zillion times at
extremely high speeds. These func-
tions are predictable, repeatable, and
deterministic. It's generally a waste to
consume either general processor

cycles or even specialized DSP cycles
on such tasks. It's much more effi-
cient, both in terms of Si area and
power dissipation, to build dedicated
hardware circuits to perform these
tasks. An example of such an accel-
erator is the video and image co-
processor (VICP). Such accelerators
often perform two dimensional
image transforms and motion estima-
tion for coding movement between
video frames. Many OMAP and
DaVinci devices like the ones shown
here leverage the hardware acceler-
ator concept to efficiently boost
performance.

Archos™ 7 Portable Media
AVM IP Set-Top Box Player

RED Embedded Design
VPHS405 Wifi Videophone

Chapter2

Using the Right Operating
Systems

(AR AN E N ENEEEENENNENENENRERNRE

In This Chapter
» Understanding the DSP scheduler

»- Using Linux — a real operating system for the general purpose
processor

» Choosing between community and commercial Linux
» Working with applications that run on the two processors

LA A A B E NN ENEENENNNNNENNEEREN)

A hybrid car contains two different types of motors. One
motor is an internal combustion engine that must be
fueled by gasoline (petrol for our European friends), and the
other is an electric motor that must be powered by electricity.
Each motor must be fed from the correct energy source; an
internal combustion engine won’t run on electricity, and if you
pour gasoline into an electric motor, you’ll probably start a fire.

A similar but less obvious problem presents itself when it
comes to powering an OMAP or DaVinci hybrid SOC (System
on Chip). As we discuss in Chapter 1, these SOCs include both
a GPP (general purpose processor) and a DSP (digital signal
processor). Something has to schedule tasks effectively on
both of these processors. For the DSP, the task scheduler is a
lightweight scheduler called DSP/BIOS. For the GPP, the SOC
leverages the wonderful world of Linux.

In this chapter, we explore DSP/BIOS and show you how the
DSP/BIOS attributes make it ideal for OMAP and DaVinci
devices. We also look at how the Linux operating system is ideal
for running the general purpose processor. Finally, we take a
brief look at applications that run on both the DSP and GPP.

’é Part I: Understanding the Embedded Software and Tools

BER

BIOS is one of those often misused acronyms. Rather than
focusing on the definition of the four letters, here’s how we
define it: DSP/BIOS is a royalty-free real-time multi-tasking
kernel (mini-operating system) created for the TMS320 family
of DSPs from Texas Instruments.

DSP/BIOS — Real, Real-Time

Considering the “DSP” part of DSP/BIOS, guess where this
operating system runs? Good guess — it’s created for the DSP
part of TI's heterogeneous multi-core devices. DSP/BIOS is
included at no charge with the standard tools distribution
from TI, and it has no run-time royalties. DSP/BIOS isn’t suit-
able for every use, but it is ideal for real-time DSP task sched-
uling, thanks to three key attributes:

v Scalability
v Speed
1 Low latency

These three traits make DSP/BIOS a real real-time task sched-
uler, preventing unacceptable performance problems in your
applications. The next few sections explore the scalability,
speed, and low interrupt latency of DSP/BIOS.

Some folks might get into lengthy philosophical discussions
about whether DSP/BIOS is truly an operating system or just a
scheduling kernel. Having flunked Philosophy 101, we’ll skip -
that debate, but we can declare that DSP/BIOS is an ideal real-
time scheduler for the kinds of tasks that the DSP is designed
to run.

Scalability

If small is beautiful, then DSP/BIOS is definitely the Beauty.
(We'll try to avoid any Beast references!) A small (and beauti-
ful) scheduling kernel helps you leverage on-chip resources
for the stuff that really matters — like video, imaging, speech,
and audio algorithms.

Chapter 2: Using the Right Operating Systems ’ 5

It’s really important for the scheduling kernel on the DSP to be
scalable so that it uses just what’s needed to get the job done.
Since it doesn’t link in a whole bunch of code that’ll never get
used, DSP/BIOS can run flat-out when needed. In many cases —
including examples shown in Part I — DSP/BIOS can actually
reside in slower external memory outside the SOC, leaving
maximum internal chip resources for the signal processing
functions. Table 2-1 shows the scalable DSP/BIOS memory con-
figuration for a typical DSP configuration.

To put the size in perspective, DSP/BIOS fills just tens of kilo-
bytes (yes, kilobytes). Compare that to “typical” operating sys-
tems that tend to be hundreds of kilobytes or (in most cases)
several Beastly Mbytes! (Uh oh — there’s that Beast we
wanted to avoid mentioning.) Refer to TI document SPRA772A
at www. ti.com for detailed memory size information.

Table 2-1 Typical DSP Memory Configuration

Data or Code Section DSP/BIOS 5.3x Size (C64x Bytes)
Code: 15648

Initialized Data 291

Uninitialized Data 8616

C-Initialization 3460

TOTAL 28015

Speed

A small DSP scheduling kernel isn’t much good if it consumes
too many MIPS (million instructions per second) on the
processor core. Every cycle taken by the scheduler is one less
cycle available for what the DSP is supposed to be doing —
namely, signal processing algorithms. DSP/BIOS shines
because all of its modules are highly optimized for the DSP
core. It’s also ideally suited for handling streaming data,
which is exactly what the typical DSP will see in an
audio/video application. Table 2-2 shows the high execution
speeds for certain key DSP/BIOS modules.

’6 Part I: Understanding the Embedded Software and Tools

Table 2-2 DSP/BIOS Latency

Speed/Latency Benchmark DSP/BIOS 5.3x (C64x cycles)
HWI_Enable 12

HWI_dispatcher 125

Hardware interrupt to SWI | 184

SWI post, including context switch 117

Hardware interrupt to blocked task 584

TSK_create: no context switch 849
TSK_yield 226

Post a semaphore, no waiting task 28

Post a semaphore, context switch 256

Low latency

A DSP operating system must be deterministic, which means
that the system produces the same results every time with no
random wishy-washy performance ambiguities. If an operating
system claims a task switch time of one millisecond (1ms), is
that a 1ms average or a best case? What'’s the worst case?
What if the worst case is 50ms and you're operating a video
system where something really important has to happen
every 33.3ms? Oops.

Latency — the delay between when an operation is initiated
and it starts to take effect — is one thing that separates so-
called real-time operating systems (like DSP/BIOS) from larger
beast-like operating systems. As you can see in Table 2-2,
DSP/BIOS has very low latency and it’s deterministic, so it
gets to the next task in a timely fashion — every time!

Linux — a Real Operating System
for OMAP and DaVinci Devices

On both OMAP and DaVinci devices, the General Purpose
Processor part of the device is a member of the ARM family of

Chapter 2: Using the Right Operating Systems ’ 7

cores. These cores typically have a multitude of peripherals
connected to the core such as serial ports, USB ports,
Ethernet ports, multimedia cards, and more. Several aspects
of Linux make it the ideal choice for the general purpose
processor.

In the following sections, we discuss the popularity of Linux,
and the interesting business model aspects of using Linux.
Finally, we look at the applications that the Linux community
has created.

Linux has become so widespread that variants of it are used
in different types of applications. So-called Enterprise Linux
runs on “heavy-iron” server farms that are running search
applications and other heavy-duty tasks. Another variant,
Embedded Linux, is usually configured (stripped-down) to run
in lighter-weight applications like the ones we describe
throughout this book. Note: Even though we use Embedded
Linux, we call it simply Linux — for the sake of brevity.

Linux wins popularity contests

Linux has become very popular, so it has a lot of supporters
and followers. These dedicated supporters — both paid and
pro bono (donated) — ensure regular updates and advances
to the Linux operating system. Many different types of proces-
sors are supported, with ARM being a popular one. Software
drivers for a wide variety of peripherals and ports are also
readily available. In recent years, Linux has become a lot more
proficient at running embedded applications as opposed to
just enterprise server-type applications, where Linux first
made inroads.

The Linux price is right

You can’t argue with the price of Linux: It’s free! The open
source model and the Free Software Foundation have helped
to make Linux ubiquitous. But it’s not necessarily all roses —
there are real costs associated with developing and maintain-
ing a Linux application. Here we spend a minute or two
exploring the realities of the Linux world, which actually
divides into two continents: community Linux and commer-
cial Linux.

’8 Part I: Understanding the Enbedded Software and Tools

Picking community Linux

If there ever was a software “Wild West,” some would argue
that the public community “git tree” version of Linux would
be it. Community Linux is usually based on the absolutely
latest and greatest version of the Linux kernel. Common prob-
lems are incompatibilities between kernel versions and
dependencies of non-kernel components (for example, soft-
ware drivers) on certain kernel versions.

‘Unless you're a Brit, the word git probably doesn’t mean much

to you. Git is an English word for a silly or worthless person.
But don’t be confused when you visit the public git tree to
download the latest version of the software. Although free, the
software is definitely not “silly” or “worthless.” In the Linux.
programming world, Git is a version control system and a git
tree is where you go to see the version history and status of a
given Linux kernel or other project.

How a given community Linux version is maintained varies
greatly based on the owner of that git tree. Basically, there are
no guarantees. Individuals relying on a community version of
Linux should not only be comfortable in the world of Linux,
but should also be able to take a few knocks as they discover
and become victim to not-completely-baked code. Both OMAP
and DaVinci Linux have community git trees that you can find
simply by searching the Web.

1 1 OMAP git tree:
£ http://source.mvista.com/git/gitweb.cgi?p=1
¥ inux-omap-2.6.git;a=summary

| » DaVinci git tree:
http://source.mvista.com/git/gitweb.cgi?p=1
inux-davinci-2.6.git;a=summary

Public Linux git trees usually have owners. An owner is often
a single person who is responsible for posting updates and
patches to-a publicly available version of the operating
system. This person-must have the respect of the Linux com-
munity (a somewhat vague concept in itself) and be viewed as
somewhat neutral in the decision-making process for the
merits of what does and doesn’t get posted to the git tree.

montavista-

Chapter 2: Using the Right Operating Systems ’ 9

Paying for commercial Linux

Several companies exist to tame the Wild West of Linux devel-
opment. The value-add from these companies is that they take
a snapshot of a recent version of Linux and then test it a lot,
fix bugs, and make the version robust and bullet-proof. The
obvious upside to this approach is that the final product-ized
version of Linux is probably quite a bit more stable than the
latest public version. But there are two key downsides:

1+ Commercial Linux providers are companies that need
money to stay in business. (Funny how that works!)
They extract your money either for development tools
and/or for support and services.

'~ Updates are a step behind community versions. By the
time a commercial Linux version is product-ized, the
_snapshot of the public version on which it’s based has
‘moved on. So, commercial versions are generally behind
the leading edge.

TI has partnered with MontaVista Software as the commercial
Linux provider of choice for OMAP and DaVinci processors.
For more on these offerings, see Chapter 5.

Using Applications

Al

reen Wills
CEMCERATE INE.

Anytime an operating system becomes popular, application
developers are likely to follow. Many new applications are
open source and readily available at no cost to the user. A
good example is GStreamer, an OS-independent multimedia
framework that has been ported to Linux and supports multi-
ple multimedia applications.

As we discuss in more detail in Chapter 4, Codec Engine is the
primary application running on DSP/BIOS on the DSP for OMAP
and DaVinci processors. Codec Engine is a unique software
framework designed, maintained, and supported by Tl itself to
specifically run all the cool signal-processing algorithms that
run so efficiently on the DSP part of the hybrid SOC.

Although this book focuses on the Linux OS for the ARM gen-
eral purpose processor, other operating systems are also sup-
ported on OMAP and DaVinci devices. Two examples are
Microsoft WinCE and Greenbhills Integrity.

2 0 Part I: Understanding the Embedded Software and Tools

Connecting It All Together

In order for the two hybrid processors (the DSP and the GPP)
to work together effectively, you need a few more building
blocks.

Typical Linux application developers don’t want to have to
learn the nitty-gritty details of the DSP and DSP/BIOS sched-
uler. This means that the DSP functionality needs to be
abstracted in a simple and efficient way. It turns out that the
Codec Engine framework application software (see Chapter 4)
running on the DSP has a companion piece running on the
ARM general purpose processor. These two framework pieces
communicate with each other in a predetermined way via
another piece of software called DSP/BIOS Link (again, see
Chapter 4). Thus, the application developer doesn’t have to
worry about the DSP details.

Meanwhile, another group of developers is building the really
clever signal-processing algorithms that run on the DSP. Tl
refers to these signal-processing algorithms as eXpressDSP
Digital Media Software.

In order for these algorithms to play fairly on the DSP, they all
need to follow certain rules and guidelines so that they inte-
grate easily and correctly into the final system. The rules and
guidelines apply to the algorithm component developers.
They're also useful for the algorithm consumer who wants to
check and verify that the components are indeed good citizens
before integrating them into the final system. If the algorithms
don’t follow the rules, chaos is quite likely to ensue. And in the
software world, chaos equates to inexplicable crashes that defy
discovery or explanation and just end up wasting valuable
evenings and weekends — nothing any of us really want to do.

Chapter 3 explores a set of TI created standards that set the
rules of the playground so that you can keep those precious
weekends and evenings to yourselves.

Chapter 3

Digital Media Software:
Standardizing How Codecs
Work Together

In This Chapter

Reviewing codec standards

Verifying codecs with XDAIS

Working with standard interfaces for classes of codecs through XDM
Taking a look at RTSC and why consistent packaging is important

odern multimedia-rich electronic devices use digital
4 ¥ Zsignal processing for playing, storing, sending, and
retrieving various kinds of media. To make this all happen,
designers use sophisticated software codecs that compress,
decompress, transmit, and play back video, audio, still
images, and speech data. To fully enable OMAP or DaVinci
devices, designers choose one or more algorithms to run on
each device. These algorithms are called eXpressDSP Digital
Media Software.

In this chapter, we explore three OMAP and DaVinci codec stan-
dards. We start with the granddaddy of them all — XDAIS
(eXpressDSP Algorithm Interoperability Standard). Next, we
look at XDM (eXpressDSP Digital Media), an extension to XDAIS
that provides standard interfaces for specific classes of codecs.
Finally, we take a look at RTSC (pronounced “RITSY” — imagine
that, like having our own cereal! . . . more on that in a minute),
which is a collection of tools and utilities for Real Time
Software Components. These standards enable developers

2 2 Part I: Understanding the Embedded Software and Tools

video/audio algorithms to easily integrate multiple codecs into
their systems.

. Taking a Look at T] Standards

Literally hundreds of different algorithms are available from
both TI and various third parties, and new algorithms are

| being created all the time. Some algorithms implement exist-

‘ ing industry standards (for example, MPEG4, H.264, and so
on) or meet new standards. Sometimes algorithms are proprl-
etary because the creators believe they have some extra “spe-
cial sauce” that differentiates their design from the pack.
Unfortunately, where there is great flexibility, there is also
potential danger in the form of rogue software that looks good
on paper but causes problems in real systems. This leads to
the need for additional standards.

who know little about the inner workings of sophisticated
|
|
|

Standards are important in nearly all aspects of life. Consider,
for a moment, one of those breakfast cereal multi-packs that
contain eight cute little single-serving boxes — you know, the
little boxes the kids love to fight over. As you look at the
single-serving boxes, consider the various standards used in
the product. Each box has the same physical size (even if the
contents are different), they all open in the same manner, and
they all contain a standardized nutrition label. (Yup, way too
much sugar!) The eight little boxes also bundle together per-
fectly in a shrink-wrapped package, ready to be snatched off
the shelf by sugar-deprived children. Standards make these
single-serving boxes successful products.

Standards are also necessary for eXpressDSP Digital Media
Software, even if we don’t add excessive amounts of sugar.
Texas Instruments has implemented a set of standards that
makes using multimedia codecs on either OMAP or DaVinci
SOCs as painless as possible.

| XDAIS — Ensuring Codecs
Play Faily

The eXpressDSP Algorithm Interoperability Standard (XDAIS,
pronounced X-Dayus) was introduced in 1999. XDAIS is an

Chapter 3: Digital Media Software 23

extensive set of rules to make codecs behave appropriately,
allowing seamless system integration. XDAIS brought order to
what was rapidly becoming a chaotic world of commercial off-
the-shelf (COTS) codec software that was exploding in popular-
ity with the advent of the TMS320C55x and TMS320C6x DSPs.

Before XDAIS, codec developers pretty much had a lawless
free-for-all. Problems came when unfortunate system integra-
tors had to take one or more codecs and make them work
together in a single system. Countless nights and weekends
were lost to the resulting insanity. Some codec development
behaviors that were bad included the following:

- ¥ Codecs couldn’t be relocated in system memory, forcing
system integrators to have codecs hog certain places in
the system.

| 1~ Some codecs made calls directly into the underlying
: hardware, possibly clashing with other processes already
using that hardware.

. ¥ Some codecs weren't re-entrant. This prevents proper
multi-channel operation of codecs.

| Interrupts were disabled for excessively long periods,
: making it so that other processes couldn’t get a word in
edgeways.

v “Creative” marketing numbers for performance and
memory usage were often best-case numbers as opposed
to real performance measures.

XDAIS has undergone several revisions since its introduction.
The revisions have largely been supersets of previous ver-
sions of the standard. The TI document covering XDAIS is
called SPRU352 and can be found at www. ti . com. Following
the number, you see a letter, indicating the revision version.
That letter should be version G or later.

XDAIS breaks down into three distinct categories: rules, guide-
lines, and generic interfaces. The next few sections take a
brief look at each group.

XDAIS rules

Needless to say, the XDAIS rules are mandatory. The rules
must be followed in order for an algorithm to declare

2& Part I: Understanding the Embedded Software and Tools

“compliance” with the standard. Currently, there are 46 rules.
Although this number might seem large, a lot of the rules are
based on common sense. Other rules may seem arbitrary, but
they force consistency. For example, Rule 25 requires that all
C6x-based algorithms are delivered in a little-endian format.
More on this later.

The good news is that for an algorithm consumer (rather than
the original creator), it’s not critical to know the number of
rules and exactly what they do. What is important is knowing
that the rules-have been followed so that the algorithm easily
integrates into the system, operates as expected, and delivers
performance that matches the documentation. Some of the
most important XDAIS rules include

1+ Rule 2: All algorithms must be reentrant within a pre-
emptive environment. This ensures that algorithms sup-
port multiple instances.

1+ Rule 4: All algorithm code must be fully relocatable.
This ensures that system integrators are free to place
codecs where they see fit, not where algorithm creators
might force them to go.

+* Rule 6: Algorithms must never directly access any
peripheral device. This solves the problem of rogue
algorithms directly accessing the peripheral hardware
while other processes may already be using the
peripheral.

» Rule 12: All algorithms must implement the IALG inter- -
face. IALG is a memory resource management interface
that all algorithms deploy to allow system integrators to
distribute memory resources as they deem appropriate,
as opposed to algorithms just “grabbing” whatever they
feel like. We cover IALG in more detail later in this chapter.

+” Rule 23: All algorithms must characterize their worst-
case interrupt latency for every operation. Rules 19-24
are so-called performance characterization rules that
force algorithm creators to document resource usage and
performance numbers.

1+ Rule 25: All C6x algorithms must be supplied in little-
endian format. This is one of those potentially arbitrary
rules. What about big-endian format? By picking at least
one format for everyone to deploy, system integrators
are guaranteed to have at least one set of little-endian

Chapter 3: Digital Media Software 2 5

algorithms as opposed to a mix (up!) — which is poten-
tially troublesome.

XDAIS guidelines

XDAIS has rules, and it also has guidelines. What'’s the differ-
ence? XDAIS guidelines are sort of like those dietary guide-
lines that “suggest” limiting how much sugar your kids
consume. The guidelines are practical most of the time, but
you’'ll always find exceptions in which you can break them
(like while on vacation, for example). For the software system
integrator, the impact of not following a guideline should be
minor, not catastrophic. Some important XDAIS guidelines
include

v Guideline 5: Algorithms should keep stack size require-
ments to a minimum. System integrators want to know
how much total stack size their final systems will require.
Generally they want to keep sizes manageable so they
don’t have to plan for ridiculous resource-hogging worst-
case scenarios. Guideline 5 suggests that each codec do
its part to help with the overall stack size goal.

»* Guideline 12: All C6x algorithms should be supplied in
both little and big-endian formats. Here’s a guideline
that is really a companion to Rule 25 discussed earlier.
Although Rule 25 requires the algorithm developer to
supply all algorithms in at least little-endian format, it’s
actually better if the developer provides both a little-
endian and a big-endian implementation of the algorithm,
hence this guideline.

XDAIS interfaces

The XDAIS standard mandates the use of one or more inter-
faces that standardize the way codecs request and are sup-
plied with resources. The principle behind these interfaces is
to ensure fairness in the assignment of critical resources. So,
rather than “selfish” algorithms that just grab all the good
stuff, the XDAIS interfaces standardize how algorithms
request resources. System integrators then make either
design-time or run-time decisions about who gets what. The
XDAIS standard defines three core interfaces:

it
|

26

W

Part I: Understanding the Embedded Software and Tools

v IALG. This interface is required by all algorithms and
handles each algorithm’s memory requirements.

v IDMAS3. This version replaces earlier versions called
IDMA and IDMAZ2. IDMAS3 is required if the algorithm
needs certain types of DMA resources.

» IRES. This interface is required if the algorithm needs
other resources like hardware accelerators. (Check out
Chapter 2 for some good stuff about a rocket motor
strapped to the back of the hybrid car.)

XDAIS compliance

Standards are all well and good, but at some point you need to
be assured that what you're buying actually adheres to the
standards. In our cereal analogy discussed earlier in this
chapter, various federal agencies test for compliance with
nutrition labeling, food safety, and packaging safety stan-
dards. TI offers a tool called QualiTI that is specifically
designed for testing algorithms for standards compliance:
QualiTI helps codec creators check their handiwork, and lets
codec users verify compliance before getting into serious
system integration.

The QualiTI tool is available as part of the XDAIS Developer’s
Kit, which you can download (for free!) from www. ti.com. We
give this tool a tryout in Chapter 7.

XDM — Standard Interfaces for
Common Classes of Codecs

XDAIS handles the rules, guidelines, and interfaces common
to all codecs. But a limitation appears because XDAIS knows
nothing about the specific nature of interfaces used in video,
imaging, speech, and audio codecs. As a result, most codec
developers used to produce their own unique interfaces. This
was fine until system integrators wanted to exchange one
video codec for another or simply swap brand A for brand B.

Chapter 3: Digital Media Software 2 7

¥

With different codec interfaces, extra work was required to
integrate the replacement codec into the system. XDM
extends the original XDAIS standard to address this specific
issue. XDM specifies encoder and decoder interfaces for four
classes of algorithms: video, audio, speech, and imaging. XDM
interfaces are simple, lightweight, and extensible where -
required by codec developers.

The main benefit of deploying XDM interfaces on certain
classes of codecs is interchangeability. For example, replacing
one vendor’s XDM MPEG4 video codec with another vendor’s
version should be easy. The application only has to know
about the XDM interface (which doesn’t change) and doesn’t
have to worry about the specifics of a particular video codec
in question.

As you work with codecs, you may see references to the
acronym VISA. This acronym has nothing to do with credit
cards or getting permission to visit foreign countries. In the
XDM world, VISA is the name of the application level interface
that’s used to call the four standard classes of XDM codecs:
Video, Imaging, Speech, and Audio. We recommend that you
don’t leave home without this acronym. You might not be able
to pay for all those multi-pack cereals that the kids want!

The XDM standard specifies eight different generic code inter-
faces. They are

v IVIDENCX, for video encoders

v IVIDDECx, for video decoders
" 1 IAUDENCX, for audio encoders

1 JAUDDECY, for audio decoders

v ISPHENCX, for speech encoders

v ISPHDECX, for speech decoders

v IIMGENCX, for image encoders

v+ [IMGDECx, for image decoders
If you want to extend XDM, refer to the article entitled
“Extending data structures in XDM” found on

http://wiki.davincidsp.com, but proceed with caution.
Problems occur when interfaces are extended for too many

f‘ 28 Part I: Understanding the Embedded Software and Tools

‘ “marginal” reasons. The net result is that many codecs aren’t
really standard anymore. The onus is on codec developers to
make judicious use of extensibility and for consumers to insist
on and check that extensibility isn’t being abused.

<® Like all good things that mature over time, some additional
interfaces have been introduced, such as IVIDDEC2 and IVI-
DENC]1. These interfaces provide improvements to the origi-
nal interfaces such as enabling advanced buffer management
on the DaVinci High Definition platforms. The advice for
codec creators is to implement the most recent interfaces
since these often provide capabilities that can be used with-
out having to make custom extensions. See the preceding
warning for more on custom extensions.

RTSC — Standardized
Packaging for All Codecs

Earlier in this chapter, we talk about little cereal boxes and
how we probably just take for granted that the boxes and
cereal conform to established standards. Until recently, we

‘ could not have said the same about signal-processing codecs.
There weren’t any standards, so it was pretty much a free-for-
all when it came time to package codecs for delivery. The suc-
cess of codec integration owed as much to chance and good
fortune as.to skill and developer knowledge.

Real Time Software Components (RTSC) is an open-source ini-
tiative that was initially driven by TI to help standardize
embedded components. Component software concepts have
been around for years, first in the enterprise computing world
and then rapidly spreading to the desktop world. The whole
concept relies on the reuse of software components by multi-
ple consumers. To make component reuse possible requires
standards and methodologies that foster the easy transfer of
components between producers and consumers.

Chapter 3: Digital Media Software 2 9

Why RTSC?

For various reasons, component technology was late in
coming to the embedded programming world. There are prob-
ably a few key reasons for this. One reason is the overhead
associated with component models — and the words over-
head and embedded programming usually don’t mix well.
Embedded systems are all about performance and lightweight
designs, so overhead is a dirty word. RTSC is ideal for embed-
ded programming because it tackles the issue of overhead, er,
head-on, so to speak. '

The second reason that component technology has been slow
to catch on is the fractured nature of the embedded world. No
single large company is driving standards the same way that
IBM, Microsoft, and Sun have done in the enterprise and desk-
top worlds. By taking RTSC open source, RTSC should gain
broad acceptance across the industry without the need for a
single 800-pound gorilla to drive its acceptance. There’s a lot
to RTSC that we don’t cover in this book, but we do talk about
packaging because that’s the last part of the puzzle for deliv-
ering a “good” codec.

To find out more about RTSC, visit www.eclipse.org/
dsdp/rtsc. Eclipse is an open-source industry consortium
in which TI participates. RTSC is a project in the Eclipse
community.

RTSC rules and guidelines

RTSC consists of rules and guidelines that packages (for
example, codec packages) should follow in order to be consid-
ered RTSC-compliant. As with XDAIS, the consumer of a pack-
age doesn’t have to worry too much about specific rules
because most of that burden is placed on the component pro-
ducer. However, the rules and guidelines have been written so
that it's easy for tools such as the RTSC Package Wizard to
automate much of what has to be done by the producer. (We
discuss the RTSC Package Wizard in Chapter 7.)

30 Part I: Understanding the Embedded Software and Tools __________

The basic principles that drive RTSC packaging requirements
are delivery (standard look/feel, documentation, and so on),

configurability (versioning and so on), and assembly (modu-

larity and so on).

Here are examples of some of the more important rules:

I 1~ Package Naming:

e Every package must have a unique name comprised
of lowercase letters (for example, ti.sdo.codecs.
mpeg4dec). We recommend starting each package
with your company/organization name.

¢ Each package must reside in a directory structure
that matches its package name, such as /alan/
workdir/dummiesbook/ti/sdo/codecs/mpeg4dec.

\ 1 Package Files: All package files must exist in the pack-
| age’s base directory or sub-directory, such as
| impeg4dec.hin the mpeg4dec directory.

1~ Package Basic Rule: All filename references within a
package should use / not \ so packages can exist in
both Windows and Linux host environments.

O, O,

I

1+ Package Compatibility: Packages must specify which
other packages they depend upon, as well as which ver-
sions of those packages are required.

SRR

|+~ Package Documentation: Documentation should be

. included as part of the package and must be in PDF

| format, except that online release notes may be in HTML
. format.

;—Q v Source Packages:

e Source packages should be 100 percent develop-
ment host independent.

e Configurable source packages must not require ref-
erenced packages to be rebuilt.

Chapter 4

Multimedia Framework
Products — Rewving
the Codec Engine

In This Chapter

Exploring Multimedia Framework Products

Understanding XDAIS Framework Components and Codec Engine
Connecting multiple processors with DSP/BIOS Link

Picking the right multimedia codecs for your application

Texas Instruments has been busy building a software infra-
structure that represents the programming equivalent of
plumbing, electricity, and wood beams. The elements of this
infrastructure are called Multimedia Framework Products
(MFP). Although most developers could probably create this
stuff on their own, there’s not much value in reinventing the
same items over and over again. TI maintains and enhances
these products so that you don’t have to.

In this chapter, we introduce you to the MFPs available from
TI. We also introduce additional foundational software —
DSP/BIOS Link — for inter-processor communications.

Multimedia Framework Product

Multimedia Framework Products provide the software infra-
structure you need as you develop your own applications for
OMAP and Danc1—based systems. MFPs break down into two
distinct categories:

32 Part I: Understanding the Embedded Software and Tools

1+~ Framework Components (FC) are off-the-shelf modules
designed specifically to help instantiate (which is just a
fancy one-word way of saying “create an instance of
something”) and run XDAIS/XDM codecs (refer to
Chapter 3 for more on XDAIS and XDM standards). Think
of Framework Components as the plumbing, electrical
systems, and wood beams used to construct the software
house that your application will leverage. These
Framework Components are freely available to any devel-
oper. You can get started at www. ti.com/dummiesbook.

v Codec Engine is more like a model home. It makes exten-
sive use of the Framework Components (the virtual
plumbing, electrical systems, and wood beams) as well
as other infrastructure components that we discuss in
Chapters 2 and 3. Even though TI provides a fairly com-
plete model home, it’s still up to the user (that’s you) to
decorate the place. In the OMAP and DaVinci world, this
means picking off-the-shelf codecs, adding proprietary
algorithms, and writing high level applications.

Multimedia Framework Products replace a previous range of
software frameworks called Reference Frameworks. If you've
seen references to things like RF3 or RF5, these acronyms
refer to different levels of Reference Frameworks. Many of the
key concepts from the original Reference Frameworks are now
incorporated in MFP. A benefit of the new MFP approach is
that the individual Framework Components are separately
available — something that wasn’t the case in previous gener-
ations of Reference Frameworks.

Taking inventory of XDAIS
framework components

In Chapter 3, we talk about the eXpressDSP Algorithm
Interoperability Standard (XDAIS). This standard consists of a
set of rules, guidelines, and interfaces that all eXpressDSP
Multimedia Software (codecs) must implement to be consid-
ered compliant with the standard. As we note in Chapter 3,
XDAIS rules are mandatory whereas XDAIS guidelines are
optional (though strongly recommended, of course). Codecs
must follow XDAIS rules and guidelines to allow the system
integrator, either at design-time or run-time, to determine who
gets what in terms of valuable on-chip resources.

Chapter 4: Multimedia Framework Products 33

Interfacing to standardized codecs requires some basic soft-
ware components that every application developer must use
in order to instantiate, query, and properly run the codec in
OMAP and DaVinci environments. TI provides several key pre-
built components to jump-start the task of putting together an
integrated system:

+# DSKT2 (pronounced D-Socket 2). This Framework
Component exercises the XDAIS IALG interface (see
Chapter 3). The IALG interface is responsible for
determining what system memory resources are required
by the codec. To ensure fair play, codecs are not allowed
to just grab resources at will, but must adhere to the
IALG interface. DSKT2 establishes resource require-
ments, allocates memory as the system sees fit, and
then instantiates the codec so it operates properly.

+* DMAN3 (pronounced D-MAN3 — that was hard!). This
component uses the XDAIS IDMA3 interface (see
Chapter 3) to establish which DMA resources are
required by each codec in the system. Just like memory
resources handled by IALG, codecs are not allowed to
simply access DMA resources before going through an
approved negotiation.

Okay, someone probably wants to know how we got to
DSKT2 and DMAN3? What happened to DSKT, DMAN and
DMANZ2? Did they quit or get fired? More advanced DSP
cores such as the C64+ DSP core, found on both OMAP
and DaVinci devices, feature advanced DMA features
called QDMA and EDMA 3.0. In order to leverage these
new capabilities, DMAN and DMAN2 had to be put out to
pasture, and the new, more capable DMAN3 was brought
in to take full advantage of the new C64+ features.

v+ ACPY3 (pronounced A-COPY3). This component is
designed specifically for usage by codecs in which huge
amounts of data must be copied from one memory to
another. ACPY3 leverages fast DMA-based memory
copies. These DMA resources are acquired through the
DMANS interface. ACPY3 has been highly optimized for
the C64+ DSP core found on both OMAP and DaVinci
devices. And before you ask what happened to ACPY and
ACPY2, check the same unemployment lines where you’ll
find DMAN and DMAN?2!

34 Part I: Understanding the Embedded Software and Tools

BER

Starting the Codec Engine

There’s a lot to be said for moving into a house that has
already been built. There are some advantages to having a
fully custom home built, but time and cost are usually not
among them. With some luck you may find a house that’s
about right for your needs, and then when you move in, you
can put in the finishing touches. TI offers a pre-built, ready-to-
use multimedia software framework called Codec Engine (CE).
It’s ideally suited to run on both OMAP and DaVinci platforms.

Although most OMAP and DaVinci devices consist of both an
ARM and a DSP processor, some exceptions do exist in which
parts may have only a DSP or an ARM core. The good news is
that your application — if it's based on Codec Engine — will
port easily between these different Silicon platforms.

The Codec Engine builds on everything that we've already
discussed in this book. It builds on the DSP/BIOS kernel
running on the DSP core, and it uses the XDAIS Framework
Components which in turn instantiate and run XDAIS/XDM
compliant codecs. The Codec Engine uses the DSP/BIOS Link
discussed later in this chapter for inter-processor communi-
cations, and it leverages the concepts from Real Time
Software Components (RTSC) discussed in Chapter 3. Figure
4-1 shows the component blocks of Codec Engine.

LINUX/WinCE on ARM

A/V Application

Storage
Driver

Network

Driver

Video
Driver

Audio
~ Driver

DSP/BIOS LINK

DSP/BIOS on DSP
ACPY |
DMAN |

DSKT

. Codec Engine D Components

Figure 4-1: Codec Engine builds on other components available from TI.

\GM S Tl’&e

@

added in the future.

Chapter 4: Multimedia Framework Products 3 5

Codec Engine is currently supported on Linux, WinCE, and
Green Hills Integrity. Other operating systems will likely be

o
—

VISA — Video, Imaging, Speech, Audio

Key to the ultimate abstraction in
Codec Engine are the VISA APIs.
VISA stands for Video, Imaging,
Speech, Audio. These APls allow the
high level application developer to
instantiate and run various codecs
without knowing the specifics of the
codec interface, other than the class
of codec to which it belongs. The
Codec Engine infrastructure allows a
codec to be easily substituted with
another one from the same class with
very little effect on the application
developer. Such seamless substitu-
tion is what abstraction is all about!

Each VISA codec is either an
encoder or a decoder. There are sep-
arate APIs for encoding and decod-
ing, giving rise to a total of eight API
classes:

1. VIDENC
. VIDDEC
. IMGENC
. IMGDEC
. SPHENC
. SPHDEC
. AUDENC

0 ~N DUl W N

Like other APls, some of these have
already been updated to a later ver-
sion like VIDENC2. In a new design,
always use the highest version
number. Newer APls for Analytics
and Transcoding have also recently
been added.

Within each class mentioned here,
there are four APls:

1. xxx_create()
2. xxx_control()
3. xxx_process()
4, xxx_delete()

These four interfaces provide a stan-
dard way for each codec class to be
used. Initially the system creates the
codec by preparing and loading pro-
gram and data memories in the
appropriate places and readying the
codec to operate. The codec will
then receive one or more blocks of
data to process and pass the results
back to the client. Usually then, con-
trol parameters can be passed to
alter the operation of the codec.
Finally, when the codec is no longer
needed, it can be deleted, freeing
processor and memory resources for
other processes.

. AUDDEC
L'—_'h__————-zm_—_—-h—4

36 Part I: Understanding the Embedded Software and Tools

But wait — there’s more! If you call in the next 30 minutes,
you’ll get access to one of the coolest features offered by the
Codec Engine: abstraction. Okay, kidding about the phone
call, but in the following section, we do explain why the
abstraction capabilities of Codec Engine are so cool.

Abstracting performance with Codec Engine

As we mention in Chapter 1, hybrid cars have two types of
engines: One is powered by electricity, and the other by gaso-
line. Imagine a hybrid with two accelerators on the floor —
one for each engine — and that it’s up to the driver to figure
out how much pressure to use on each pedal to make the car
accelerate and cruise at the right speed. Confusing! That par-
ticular hybrid probably wouldn't sell very well. Of course, real
hybrid cars don’t have two accelerators. They have one accel-
erator pedal, and the systems built into the cars employ the
concept of abstraction to figure out how and when to deploy
either or both engines.

In the land of OMAP and DaVinci processors, not only are
there two heterogeneous cores, but there are also two parts
to the Codec Engine. One part resides on the ARM processor,
and the other resides on the DSP. This enables the ultimate
performance abstraction. A high level applications developer
running Linux on the ARM processor (for example), can create
an instance and run very powerful codecs without having to
worry about how and where the codec actually runs. In an
ARM/DSP system in which the codecs require lots of proces-
sor cycles, the codec processing will likely be done on the
DSP and attached hardware accelerators. However, when run-
ning a codec that requires limited processor cycles, it might
be possible to run the codec on just the ARM core (also true
when there is only an ARM and no DSP core).

As long as the application developer can provide a steady
stream of data for the codec to operate on, and as long as
there’s enough available processing MIPS (millions of instruc-
tions per second) to run the codec, then Codec Engine takes
care of pretty much everything else. Rather than worrying
about which processor to address and detailed things such as
inter-processor communication, address translation, and
cache management, the application developer can focus on

Chapter 4: Multimedia Framework Products 3 7

CMBER

Ta)

the application itself and can just assume that the plumbing
isn’t going to leak, the electricity will stay on, and the wood
beams will stay termite free.

Reviewing the Codec Engine process

In this section, we walk through the various steps and proce-
dures that have to occur to make abstraction possible in
Codec Engine.

1+~ Step 1: Cool algorithms. Codec algorithms can either be
off-the-shelf or homemade, but either way they need to
implement XDAIS and XDM (refer to Chapter 3) for every-
thing to integrate nicely. As we mention in Chapter 3,
there are tools (like QualiTI) that help verify compliance
with the standards, and you’d be wise to use them. You
can’t move forward if your algorithms won'’t function cor-
rectly in the integrated system.

1~ Step 2: Codec Engine Server. In order for the Codec
Engine to support the notion of remote codecs (that is,
codecs running on another core), there needs to be a
server. This server combines the core codec along with
the other infrastructure pieces (DSP/BIOS, Framework
Components, DSP/BIOS Link, and so on) and ultimately
produces an executable that is callable from another
core. It’s possible to combine more than one codec
together into various combinations. However, it’s critical
that someone evaluates system resource requirements
(MIPS, memory, DMA, and so on) to make sure that the
codec combination can co-exist and run as required by
the application. It’s also possible to build multiple
servers for a given application, for example if the applica-
tion has different profiles (such as a “player” server and
a “recorder” server).

You may see a combination of codecs referred to as a
Codec Combo. TI spent a lot of time coming up with
that name!

1~ Step 3: Codec Engine Integration. A system integrator
will create one or more engine configurations. These
configurations will include the names of the engines, the
codec or codecs included in those engines, where the
codecs will run (usually the DSP, but there can be excep-
tions), and the name of the server image if the engine
includes remote codecs.

38 Part I: Understanding the Embedded Software and Tools

1~ Step 4: Codec Engine Application. The application
leverages Codec Engine APIs provided by Codec Engine
to create and delete engine instances; create, delete,
and interact with codecs; acquire data buffers for the
operation of the codecs; and more. The Codec Engine
itself doesn’t perform 1/O; that’s left to the top-level
application to implement.

e

DSP/BIOS Link
As you put together a software system on a multi-core SOC,
you must consider the “minor” issue of how the processors
are going to communicate with one another. Traditionally,
developers made in-house inter-processor communication
(IPC) schemes to solve this problem. About ten years ago,
TI recognized this trend and produced an inter-processor
communication component aptly called DSP/BIOS Link.
Sometimes you see it referred to as BIOS Link, DSP Link, or
simply Link. Figure 4-2 illustrates the basic component

blocks of DSP/BIOS Link.
GPP | APPLICATION/ APPLICATION/ DSP,
oS FRAMEWORK FRAMEWOR BIO

Config

Build

0S
ADAPTER
LAYER

GPP DSP

% B ! Key DSP/Link Components

Figure 4-2: DSP/BIOS Link provides a standardized link between
processors.

Chapter 4: Multimedia Framework Products 39

Why use DSP/BIOS Link?

DSP/BIOS Link is like the plumbing in your house; its function
is critical, but nobody gives it much thought as long as every-
thing is working correctly. You won’t earn any bonus points
for spending (wasting?) time building new inter-processor
communication schemes when DSP/BIOS Link is available and
ready to use. The primary advantages of using DSP/BIOS Link
are that it:

1~ Serves as a generic APl interface to applications, thus
providing portability of those applications.

v~ Provides a hardware abstraction layer between the
applications and the underlying hardware, also enabling
portability between hardware platforms.

v Multiple RTOS ports of DSP/BIOS Link (as well as a port-
ing kit) are available, meaning less repetitive work when
moving a Link-based application from one OS to another.

v Like its cousin — DSP/BIOS —is scalable so that only the
modules required by the application are linked in.

What does DSP/BIOS Link offer?

Your home’s plumbing system provides several key services,
such as supplying fresh water where needed and draining
away waste water safely and completely. DSP/BIOS Link pro-
vides important services as well, and they’re divided into
three groups:

1~ Basic processor control. This service allows the ARM
processor to attach itself to the DSP, loads the DSP with
code, starts and stops the DSP, and detaches itself from
the DSP.

+ Inter-processor communication protocols. These pro-
vide for data transfer between the processor cores.

1 Inter-processor communication building blocks. The
basic processor control and inter-processor communica-
tion protocols build upon the inter-processor communi-
cation building blocks. The building blocks are made
available separately for framework writers to develop
their own protocols.

40 Part I: Understanding the Embedded Software and Tools

ST
g ‘{‘g \ Here’s a more detailed list of services provided by the
& DSP/BIOS Link:

I 1 PROC: Basic Processor Control

| e GPP process attaches to DSP

i e GPP loads DSP with DSP executable

g o GPP starts DSP
¢ GPP stops DSP
s GPP process detaches from DSP

v Inter-processor Communication (IPC) Protocols

e MSGQ — message queue

e CHNL — data streaming based on an issue-reclaim
model

* RinglO — data streaming based on a circular ring
buffer

L Inter-processor Communication Building Blocks
* POOL — memory manager

¢ NOTIFY — interrupt abstraction and de-multiplexing
for event notification

e MPCS — Multi-Processor Critical Section for
mutually exclusive access to shared objects

o MPLIST — Multi-Processor doubly linked circular list

¢ PROC_read/PROC_write — read from or write to DSP
memory

Picking the Right Multimedia
Codecs

The really great thing about the OMAP and DaVinci family of
devices is the almost infinite number of combinations of
codecs and algorithms that can be run either consecutively or
simultaneously. In this section, we explore what’s available,
different sources of the codecs, and things to look for when
you go shopping.

Chapter 4: Multimedia Framework Products 4 7

Codec categories

The four most significant classes of codecs are video,
audio, speech, and imaging. You may see references to VISA
(an application API that addresses these four key classes

of codec). It’s important to note that there are other newer
categories such as video analytics. There’s also a myriad of
niche-type signal-processing algorithms and an almost end-
less list of possibilities for buying and creating proprietary
algorithms.

Here’s a partial list of popular codecs available to run on
OMAP and DaVinci class processors.

1 1~ Video: MPEG2, MPEG4, H.263, H.264, WMV9, DivX
| »~ Imaging: JPEG

| 1~ Speech: G.711, G.723, G.726, G.729

| 1~ Audio: MP3, WMAS, WMA9, AAC, MPEG1 L2,

For updated complete lists visit www.ti.com/digital
mediasoftware.

Places to acquire codecs

You can acquire codecs in several ways. Two key sources are
Tl itself, or a member of the TI Developer Network often
referred to as an Authorized Software Provider (ASP). When
picking between suppliers, consider the following factors:

| v Cost, both up-front and any run-time licensing costs. |
. v~ Licensing terms and indemnification issues.

| » Whether demo or watermarked versions of the codec are
~ available for evaluation purposes.

' Performance, both subjective and objective. Note that
many of these algorithms have been highly optimized
for the underlying DSP core and hardware accelerators.
Simply taking standard C code and using the standard
C-compiler may produce a functional codec, but
performance is likely to be lower than what is possible
with various optimization techniques.

42 Part I: Understanding the Embedded Software and Tools

:: » Quality, both subjective and objective.

i v Support and maintenance.
|
' 1 Reputation and history of the supplier.

Assuming that you can come to business and licensing terms
for the codec(s) that you're interested in acquiring, there are
still some key technical things to look for while shopping and
some very important questions to ask the supplier:

7 v Is the codec XDAIS/XDM compliant? If it isn’t, it’s critical
to understand exactly why and how it isn’t. Do this
before proceeding so that you don’t spend the rest of
your living years in an integration nightmare.

. 1 Performance numbers. Verify under what conditions the
algorithm was tested in order to achieve the claimed
performance numbers. Over the years, we’ve seen all
kinds of “amazing” claims that weren’t quite true!

| 1 Has the codec been tested and benchmarked in a Codec
Engine-type environment, preferably on a test platform
‘on which you can also verify the performance?

- 1+ Has the codec been tested in a real system? By this,
we mean does the codec operate properly when
all the other sub-systems are running at full-speed and
the processor(s) is close or actually fully loaded.

Chapter 5

Picking the Right
Development Tools

In This Chapter

Considering TI Evaluation Modules
Delving into the Digital Video Software Development Kit

Selecting OS tools for the OMAP and DaVinci ARM and DSP
processors

Exploring ARM-DSP Interactions

u{'e realize that a lot of the chapters in this book start
out by discussing hybrid cars, overly sweet cereals,
and leak-free plumbing. Or, is it overly sweet cars, leak-free
cereals, and hybrid plumbing? Hmm . . . In any case, in this
chapter, we introduce a convenient software bundle called the
Digital Video Software Development Kit (DVSDK). DVSDKs
contain all the software components, introduced in Chapters
2,3, and 4, to allow demo applications to run right out of

the box. But, at some point you’ll want to add your own
differentiated content to the project. Read on.

In the upcoming sections, we introduce the OMAP hardware
Evaluation Module (EVM), the tools available for program-
ming and debugging the ARM processor, the DSP processor,
and some specialized tools for seeing what’s going on
between the two processors.

In Part II of the book, you actually get to see and hear a demo
application consisting of an MPEG4 video decoder and an AAC
audio decoder.

44 Part |: Understanding the Embedded Software and Tools

Introducing Tl Evaluation
Modules

Evaluation Modules (EVM) may be a fancy term tossed about
by TI, but they do exactly what the name implies: they're ideal
platforms for evaluating hardware and getting your initial soft-
ware up and running. EVMs aren’t designed to be pretty, but
they are functional. Typically, if the device supports a particu-
1 lar type of /O, then that peripheral is “pinned out” to the edge
| of the board so that users can experiment with the interface.

‘ The boards aren’t cramped, so there’s room to poke around
with oscilloscopes and logic analyzers.

Here’s what you’ll find included in an OMAP EVM bundle:

I » Hardware:
! ' e OMAP35xx Processor Target Board

e Touch Screen LCD display and stylus
e Power Cords (US & EU)

e Serial Cables

¢ Power Supply

ST

v Connectivity:

» Daughter card-connections to most peripheral
interfaces

\ e Ethernet, USB 2.0, SDIO, 12C, JTAG, Keypad
5 ¢ S-Video output

. e SD/MMC

g v Software:

2 ¢ OMAP3530 Linux Support Package (LSP)

& e Sourcery G++ evaluation tools from CodeSourcery

AT e A

TI usually makes the board layout design available so
customers can copy some of the trickier techniques required
to connect high speed memories or I/O directly to their OMAP
and DaVinci devices. Part Il of this book gives you a tour of
the OMAP 3530 EVM, similar to the one shown in Figure 5-1.

Chapter 5: Picking the Right Development Tools 4 5

Figure 5-1: This is the OMAP35xx EVM.

Digital Uideo Software
Development Kits (DUSDK)

Evaluation modules (see the previous section) help you evalu-
ate hardware. The software equivalent of an EVM is called

the Digital Video Software Development Kit (DVSDK). It’s a
complete software bundle that allows you to quickly get appli-
cations up and running on the EVM we describe earlier. We
introduce most DVSDK elements in Chapters 2, 3, and 4 of this
book. The DVSDK typically includes

1+ Linux Support Package (LSP): Kernel base port plus
peripheral driver set (see Chapter 2)

v~ XDAIS developers kit: XDAIS standard including the
XDM digital media interface extensions (visit Chapter 3)

v Evaluation codecs: These run on the DSP and hardware
accelerators (See Chapter 4)

v Codec Engine: Framework for creating and interacting
with multimedia codecs (see Chapter 4)

v Linux utilities: A set of useful utilities to enhance the
base Linux PSP

v “Decode” Demo applications: Illustrates usage of the
Linux drivers and codecs

46

CWBER

,!!?;' \ you can reuse and ship many DVSDK components in a
@ final product.

Part |: Understanding the Embedded Software and Tools

v~ File-based “Encode” example: Shows basic usage of
video encoders

v A/V data: Contains A/V clips and other data files needed
by the demo applications

L Digital Video Test Bench (DVTB): A simple test fixture
for testing basic codec operation (see Chapter 10)

1+ DSP/BIOS: A ready-to-run DSP scheduler (covered in
- Chapter 2)

. 1+~ DSP/BIOS Link: A component for interprocessor
communication (see Chapter 4)

v Documentation: Fun stuff to read

Unlike the EVM, which you're not likely to ship in a product,

Picking ARM Processor 0S Tools

At some point, you need to start development and debugging
of your application on the ARM processor. Your choice of
development and debugging tools is often driven by the
embedded operating system you choose for the ARM proces-
sor. Currently, the most common operating system choice for
OMAP and DaVinci processors is Linux. But, support for other
operating systems and tools is also available. The next couple
of sections outline the development and debugging tools
available for various operating systems.

Choosing tools for Linux
applications

In Chapter 2 we discuss the pros and cons or choosing
between a community open source version of Linux versus
commercially available Linux versions. OMAP and DaVinci
devices generally have support from both camps. In this
book, we focus primarily on a community open source
version of the Linux kernel (in Part Il we show an open source
implementation on an OMAP 35xx system). Our preferred

set of support infrastructure tools is Sourcery G++, provided
by CodeSourcery.

Chapter 5: Picking the Right Development Tools 4 7

Sourcery G++ from CodeSourcery is a complete software
development environment based on the GNU Toolchain.
Sourcery G++ includes the GNU C and C++ compilers, the
Eclipse IDE, and other tools. Sourcery G++ for ARM supports
(§ (ooeSourceny the OMAP family of processors, runs on GNU/Linux and

) Windows, and targets GNU/Linux, uClinux or EABI (bare
board) system A command line only version of these tools is
available for free. Visit www. ti.com/dummies

book for more information.

Commercial Linux development and debugging tool support is
provided by MontaVista. The MontaVista Pro product
includes a fully tested open-source Linux kernel ported to
OMAP and DaVinci. It also provides a fully integrated develop-
ment tool chain for the particular kernel version you select.

SOMBER You pay a premium for a commercial package, but there are
m?‘ . benefits. The commercial provider does a lot of integration
‘d and testing that you may have to do yourself with a commu-
— nity version. Additionally, commercial products are often

several releases behind the latest git version.

Selecting tools for other
operating systems

No one says you have to run embedded Linux on OMAP and
DaVinci devices. Alternative operating system tools fall into
two categories. The first category provides a base port of the
OS to the ARM processor, and also a port of Codec Engine and
DSP/Link to the operating system. This gives you easy access
to all the cool stuff we describe in Chapters 2, 3, and 4. There
are currently two operating systems that fall into this first
category:

v Microsoft WinCE (supported by BSquare) integrated
with the tool suite Microsoft Platform Builder. For
more information, visit www.bsquare . com and www.
microsoft.com.

v~ Integrity from Greenhills Software integrated with the
tool suite Greenhills Multi. For more information, go to
www . ghs . com.

48 Part I: Understanding the Embedded Software and Tools

The second category of alternate operating systems provides
just a base port of the OS to the ARM processor, but no direct
support for Codec Engine and DSP/Link. Because this second
category is so dynamic, it would be hard to list all possible
operating systems here. Instead, we suggest that you contact
your favorite operating system company and ask them about
support for OMAP and DaVinci devices. Perhaps you can con-
vince them to do a port of Codec Engine and DSP/BIOS Link to
their OS and move themselves into the first, better-supported
category!

Tools for the OMAP and Dalinci
DSP Processor

TI provides multimedia codecs and a complete software infra-
structure on the DSP. This means you don’t have to directly
program or debug the OMAP and DaVinci DSP. However, there
will be certain applications and developers who want to, or
need to, get more deeply involved with DSP development. If
you’re one of them, you'll need a set of DSP development and
debug tools. Code Composer Studio (CCS) is an Integrated
Development Environment (IDE) provided by TI to help with
DSP development. For more details, visit www. ti.com.

Even though CCS is ideally suited for DSP development
and debugging, you can also use it for ARM development and
debugging on OMAP and DaVinci devices.

Because DSP development and debugging is different than on
an ARM processor, CCS has been optimized specifically for
DSP program development and debugging. The basic feature
set of Code Composer Studio includes

v~ IDE: Integrated editor, project manager

1 Debugger: Debugs the DSP and provides data visualiza-
tion, cache visibility, and robust host-to-target
connection

+* Real-Time Debug: Gives non-intrusive memory access
and handles interrupts while halted

» Advanced Event Triggering: Provides watchpoints,
event sequences, and non-intrusive counters

Chapter 5: Picking the Right Development Tools 4 9

1+~ Simulation: Includes cycle accurate simulation and code
coverage

v Code-Generation Tools: Offer industry-leading perform-
ance and program-level optimization

v Profiling: Profiles functions and loops, and measures
cache activity and pipeline stalls

57y Unlike the ARM development tools described earlier in this

$ chapter, CCS focuses heavily on an emulation-based debug-

- ging approach. Emulation leverages on-chip hardware specifi-
cally designed to assist with debugging. Among other things
the built-in emulation hardware can scan register sets,
memory locations, and other states, and then report back to
the development host for display and analysis. Usually, an
emulator (a small hardware “box”) connects between the
target board and the development host, serving as an inter- -
face between the two. This kind of “peeking” and “poking”
around the chip can often be performed while the chip is
running the application, meaning that debugging has little or
no effect on the application itself.

What's Going on with ARM-DSP
Interactions?

In the good old days of discrete processor designs, it was
relatively simple to find out what was going on between two
different processors in a system. Now that both processor
cores are packed into a single device, it’s much harder

to see what’s happening. Fortunately, TI provides a solution.
It’s called Data Visualization Tools (DVT), which operate
independent of any other tools; you can think of DVT as a
software logic analyzer. DVT relies on two key concepts:

ﬁ

v “Breadcrumbs.” In Chapters 2, 3, and 4, we introduce
components such as DSP/BIOS, DSP/BIOS Link, and
Codec Engine. Scattered throughout these components is
the ability to drop “breadcrumbs” along the execution
path. These breadcrumbs record events on the ARM, on
the DSP, or between the two. These informational bread-
crumbs are swept up by the software infrastructure and
passed to the host development environment, most likely

5 0 Part I: Understanding the Embedded Software and Tools

via an emulation channel (introduced in the previous
; section). All this dropping and sweeping of breadcrumbs
© happens in the background so it doesn’t disturb the
3" operation of the system, even when it’s running at full
‘ speed.

}“ v~ Visualization. Execution information stored in the bread-
. crumbs isn’t very useful if you can’t see it. The host
development PC provides dedicated visualization win-

. dows to display this information to the developer in a

.~ useful, often graphical way. Figure 5-2 shows an example.
. The visualizations are great tools for watching messages
.~ go back and forth between the processors. You can also
see who's interrupting who, who’s waiting for what, or
who’s grabbing what resources.

) Even if the system isn’t actually broken, DVT provides a
great way to tune your system for maximum performance
by discovering and removing bottlenecks that could throttle
(in the wrong direction) performance.

@B T Bhoweswx vkl [| 7 soution
B, Contrz! Pars! (Do Care) S TS aEosiogs CElugs BAIS iop LR "B
Achpn Sessa 2
PostProcess . || woopback “ Il

Symbetie
Cavtsa 12300 | [}

Sfi] s i (B o (3) A
3503 1995955% rs::emnm:nm:me:}
[General Sen Agvanzed &
Lo Processca . | B BV Graph, 17 BIOS T Lond Guas Systembses ek | [oden Sngee s, £ Guer e Codec Sumery CodecCountsPerse..
ELE B R Y I R HEE - B~

Pty S Py

Sy he— — e P

§= ARAR AR
5 i Y
3o ’\ M;"“"* v - JEW«M
5, AN &
r = rrr T - —— T
Lg05a10 23059 20950 L3900 FERMS 99910 2ovinss
TFime (psec) Tme (usec)
< 34 >
s shates BjE R 28 #
. i . . . -
r - —r T —— 1~
2 130ty R 21805010 23859410 2 1908157 2195410
Time {psec) ~
« *
p asgef T)

Figure 5-2: DVT visualizations help you see what's going on.

Partli

Building Something
Real — Now!

The 5th Wave By Rich Tennant

M OKkay — you Were right,
| 1 was wrong. The yed | 22
button opens the ==
garage dooy, and the
green button backs [
the car out.

In this part . . .

Okay, it’s time to build something real — so boot up
your computer and get ready to start.

In this part, we lead you on a short journey from getting
“Hello World” to run on the TI development board to a
final application that can decode and display video while
also playing audio. Your kids will be so impressed that you
not only know what a multimedia player is, but you also
built one between lunch and dinner.

Chapter 6
Meet the Board!

In This Chapter
Saying hello to the OMAP3530 EVM
Building an OMAP or DaVinci program
Working with the decode demo

]t’s time for you to meet the board. “Meet the board”?
You’re probably thinking we mean the folks upstairs in grey
suits who never quite understand people like us engineers.
But, we're not talking about that kind of board! We're talking
about the OMAP 3530 board, the Evaluation Module you work
with throughout Part II of this book.

If you're currently staring at a different board such as the
DM6446 or DM6467 EVM, don’t despair. The DVSDK is a con-
sistent bundle of components — you’ll find Codec Engine
(CE), RTSC Tooling, codecs, drivers, and a standard set of
demos. The programming model and design flow applies
equally to all GPP (for example, ARM) and DSP platforms.

In this chapter, you start doing real work. In fact, if you follow
along through the remaining chapters in this Part, you’ll end
up with an MPEG4 or H.264 video decoder running alongside
MP3 or AAC audio decoders. In other chapters of this book,
you see how to build demos from bare deck codecs by lever-
aging various tools, helper wizards, and sample applications.
We hope these chapters will make you a DVSDK guru capable
of building multimedia applications at the board’s whim.
(This time we do mean the folks upstairs in grey suits!)

514 Partil: Building Something Real — Now!

Welcome to the OMAP3 EUM

Chapter 5 introduces you to what’s on the OMAP 3530 board.
Now, take a look at Figure 6-1 to see which parts you use in

this book.
DVl
Coqngctor
nEEN DvI Level OMAP35x GPMC, Camera, 12C and ETM
LLL) Transmitter Shifter ENEEEEEEEEEEE
IIIIIIIIIIIII,I
Level DSS McBSP, UART, SPI, MMC, DSS
Shifter) ENEEEEEENEREE
— ‘ll!!!!llllnll]
Touch ESPN
=== <«— Screen. il UAHT Connecters
37" LCD with TP Controller UART2 o1 -......
Port1
UART3 FTTT]
(LT
PoP Port2
Memory P
v
....) LANG115 Level GPMC l—m
CLL ™ Shifter V-DAC ; CVBS
MMC
C y
or?rTef:tor ‘ iME JTAG S-Video
(@
LPI
usB SPis0n oo
Connector o0 12C McBSP g
= AudioIn_/#
l ‘ I Audio Out
TW4030
Keypad
(15 Keys)
Power ON

Battery

Figure 6-1: These are the major hardware components of the OMAP

3530 EVM.

Chapter 6: Meet the Board! 5 5

CMBER
)

{a

A\

In this book, we focus on creating video and audio applica-
tions. That means you output decoded video streams to the
onboard LCD and optionally a flat panel LCD computer display
over Digital Visual Interface (DVI). You also use audio inputs
and outputs via a McBSP-based codec Platform Support
Package (PSP) driver. You may also play with the keypad to
start, stop, and toggle between video streams to decode.

The OMAP 3530 EVM is a powerful beast. It offers

v 600Mhz Cortex ARM A8 for applications programming
v 360Mhz c64+ DSP for multimedia acceleration
v Graphics support primarily via the Open GL ES 2.0 API

Texas Instruments baselines off the Linux 2.6 kernel and con-
tributes back to the community “git tree” (refer to Chapter 2).
All of the PSP drivers run on the ARM Cortex-A8 core under
Linux. These drivers are provided in source form to facilitate
porting to your hardware. The advantages of following the
latest kernel tree are numerous; you can pick up new features
others have contributed, and it’s easier to apply patches.
Wherever possible, the PSP drivers implement the standard
Linux interfaces, such as Advanced Linux Sound Architecture
(ALSA) for audio and Video 4 Linux 2 (V4L2) on the display
subsystem.

(it [il)

Hello Worlc

Your first adventure in OMAP and DaVinci programming is to
build and run a program that simply says, “Hello world.” This
may sound strange or simplistic if you've read about all the
advanced features we describe in this book, but you have to
start somewhere.

This chapter assumes you've installed the software from
each of the CDs in the DVSDK. Before you start building a
program, you should browse through TI's “Getting Started
Guide (SPRUFZ7)” that came in the box. That means you have
the Linux source and binaries for the OMAP35x platform

and all necessary tools, such as the CodeSourcery GNU build

5 6 Part II: Building Something Real — Now!

S

L

)

environment. The target file system should boot the pre-built
Linux kernel image using your preferred method, such as
TFTP boot with NFS file system. The supplied serial cable
should be connected from UART 1 to your PC, and a terminal
emulator such as Teraterm (Windows) or minicom (Linux)
should show a successful boot sequence.

To get started, move to your Linux host system (under
VMWare or a true Linux box), and perform the following steps.

1.

Make sure you're logged in under the username
user, not root.

. Create a directory for the earth-shattering “Hello

World” program by typing
[>] mkdir -p ~/workdir/filesys/opt/hello

. Change to the new directory by typing

[>] cd ~/workdir/filesys/opt/hello

. Create a file called hello.c with the following

contents:

#include <stdio.h>

int main(int argc, char **argv) {
printf("This is OMAP3530 saying Hello
World!\n") ;
return 0;

}

. Build the program by typing

[>] arm-none-linux-gnueabi-gcc hello.c -o
hello

This command assumes that you've already added the
CodeSourcery tools to your path as per TI's “Getting
Started Guide (GSG).”

. Now flip across to your OMAP3530 target terminal

emulator.

You're not on the Linux host at this point. You're on a
terminal within the target file system. In our examples
here, we use a $ sign instead of a > to denote the target
system as opposed to the host.

Chapter 6: Meet the Board! 57

7. Change to the sample program directory by typing

[$] cd /opt/hello
8. Type [$] ./hello to run the program.

When you run the program, you should see output that looks
like this:

This is OMAP3530 saying Hello World!

lunning the Decode Demo

If you want to experience the true power of the OMAP 3530
platform, you can do so using the decode demo. Each DVSDK
platform supplies at least three demonstration applications:

v decode: Audio and video decode typically displays to a
monitor or EVM LCD display.

v encode: Audio and video encode input from a micro-
phone and camera.

+ loopback: This application encodes and decodes audio
and video.

Each of these applications uses the multimedia codecs, Codec
Engine, PSP drivers, RTSC tooling, and other key content
provided in the DVSDK.

In this section, we show you how to get the decode demo
running. In Chapter 10, we show you how to rebuild the
demos to leverage a new DSP server executable that can be
built by following Chapters 7 through 9.

The demos can be run either standalone or via the command
line. In standalone mode, you don’t need a connection to a
Linux host system. All interaction (Start, Stop, Pause, and so
on) is done using the keypad interface. For example, key S17
is designated as “Play” by the GSG.

We use command line mode for now because that’s what you
use when you build and run other multimedia applications in
this book. Follow these steps:

58 Partli: Building Something Real — Now!

1. Make sure your OMAP3530 LCD display is turned on
and that speakers or headphones are connected via
the P9 connector on the board.

The demos, the partner DSP executable, and a bunch
of audio and video clips should already be on the
target file system.

2. In Teraterm or minicom, execute

[$] cd /opt/dvsdk

Before you run the demos from the command line,
various Linux kernel modules must be loaded. These
should already be loaded via the boot script.

3. To confirm that the correct Linux kernel modules
are loaded, type

[$] lsmod

At a minimum, you should see dsplink and the CMEM
Contiguous Memory Allocator modules loaded.

4. Inspect the supported command line options by call-
ing up the Help menu:

[$] ./decode -h

5. Pick one encoded video and one encoded audio clip
to decode:

[$]1 ./decode -v
./data/videos/davincieffect_ntsc_1.264
-a ./data/sounds/davincieffect.mp3

You should see a decoded H.264 Base Profile DaVinci Effect
clip on the EVM LCD display, accompanied by MP3 audio
output through your speakers. The terminal also reports
some useful statistics such as bit-rate and CPU load percent-
age of both the ARM and DSP.

Now that you know how the DVSDK contents work, you're
ready to start building your own multimedia applications. In
Chapters 7 through 9, we walk you through the complete flow
of designing and building ARM plus DSP systems.

Chapter 7

Making Codecs Play Nice
with Rules and Guidelines

In This Chapter
Checking codecs using the QualiTI tool
-Reviewing common XDAIS rule violations
Working with XDM classes

W'len a car manufacturer develops a new type of
vehicle — a hybrid-powered car, for example — it

has to make sure that the new design will be compatible with
existing highway infrastructures. The car can’t be too wide
for traffic lanes and should be capable of maintaining normal
highway speeds. Likewise, the new car must comply with
government safety regulations; if the manufacturer follows
the rules and guidelines of proper automotive design, the

car won’t be a hazard to other road users and buyers will find
it useful.

Car designers aren’t the only engineers who have to follow
rules and guidelines. Codec producers must play by the rules
too! Without rules and guidelines, programming chaos ensues
and systems may crash when someone else adds a new codec
or feature. This chapter shows you how to spot-check codecs
for integration success. Also in this chapter, we pre-check an
MPEG4 decoder, which you get to run on our OMAP3530 EVM
in later chapters.

60 Partii: Building Something Real — Now!

Keeping Codec Producers Honest
with the QualiTl Tool

What ensures that you don’t go barreling down the road at
100 mph in your shiny new hybrid? Two things: The police
department, and your own self-preservation instincts.

What ensures that your shiny new codec doesn’t barrel
destructively through the devices in which it’s installed? Most
police officers are too big to fit inside silicon devices, and
your job-preservation instincts can’t guarantee against every
mistake. But, there is a handy tool called QualiTI that checks
your codecs for XDAIS standard compliance. QualiTl is
included with the XDAIS developers kit (refer to Chapter 3).

A sample codec to validate

To show you how QualiTI works, we use it to inspect the
codec described in Table 7-1. The TI video codes are either
watermarked with the TI logo or incorporate a timeout feature
to distinguish evaluation from production releases.

Table 7-1 Sample Codec

Codec Name M4H3DEC (mpeg4 decode)
Vendor Tl (Texas Instruments)
Version Number 2.00.003

Validated on Platform OMAP3530 EVM

XDAIS compliant? Yes

XDM Interface version IVIDDEC2

The small amount of data in Table 7-1 actually says quite a bit.
Key pieces of information include

v Codec Name and Vendor. The name “M4H3DEC” and
vendor “TI” are prefixes on symbol names to ensure that
it doesn’t clash with other codecs. We've seen systems

— Chapter 7: Making Codecs Play Nice with Rules and Guidelines 6 7

with as many as 26 codecs, and if everyone called their
main processing function “dolt,” we’d have a slight prob-
lem! See the section “Rules 8, 9, and 10: Namespace com-
pliance” later in the chapter.

v~ Validated on Platform. Specifying OMAP3530 EVM indi-
cates that the performance and footprint-size numbers of
the codec were validated on that platform.

v~ XDM Interface Version. The algorithm has implemented
the IVIDDEC?2 interface.

Getting set to run QualiTl

The data in Table 7-1 claims that our MPEG4 decoder is
XDAIS-compliant. How can you be sure? Run the QualiTI tool.
QualiTl is available as part of XDAIS 6.10 or greater, and you
can get it at:

www . ti.com/dummiesbook ->XDAIS Developers Kit &
QualiTIl

After you've installed QualiTI on your computer, you can find
it in the following directory tree:

xdais_6_20/packages/ti/xdais/qualiti

The “packages” concept is something you see more of
throughout this Part. All Target Content and many develop-
ment tools sit in packages. Packages are TI's embedded equiv-
alent of supermarket cereal packs because they help keep
things organized.

QualiTI has a couple of prerequisites that must be installed
before you can run it. They are

v XDCtools v3.00 or greater
v~ Code Generation Utility Scripts v1.20 or greater

You can find both at www. ti.com/dummiesbook.

$8-57ye These scripts and executables do the grunt work of checking
%;;{ codecs for rules compliance. For example, the sectti utility
y script parses the object files in a decoder, checking for prob-
lematic section names. It also provides a neat-and-tidy foot-
print report.

TEL';//I,

02 Partll: Building Something Real — Now!

Running QualiTl

You're now ready to run QualiTl. Here’s how:

1. Launch the QualiTI program.

As described in the previous section, you can find
QualiTl in the directory:

xdais_6_20/packages/ti/xdais/qualiti

2. Tweak the startup file xdais_6_20/startqti.bat (or
startqti.sh on Linux) to point to your XDC tools
installation, and then execute it.

3. Enter the module name and vendor, as shown in
Figure 7-1.

In Figure 7-1, you're checking the same codec men-
tioned earlier in this chapter.

Texas Instruments: GualiTl {6.20]

T Lo

Module: M4H3DEC Base Dir: ¢/ 10DE_V_MPEG4_D_2_00_001/C64XPLUS_ASP_00)

Venier: T Liwary Lityindh3dec te.l64P

Figure 7-1: Enter the module name and vendor.

4. Point QualiTI to the base directory of the codec and
the library archive itself.

5. Switch to the Tools tab and set the paths to the pre-
requisite tools, as shown in Figure 7-2.

As described in the previous section, the XDC Tools
and Code Generation Utility Scripts are prerequisites
for QualiTI.

Cads Tl 'cgroaks' Dir: Japydmswicgbix 6_0_16

oyt sk D | foptidmswdvadh_3.00_00 2y mivz12.00 | L]

Figure 7-2: Enter the paths to the codec'’s directory and library archive.

6. Click Run and dive for cover!

— Chapter 7: Making Codecs Play Nice with Rules and Guidelines 63

B4

Okay, we're just kidding about running for cover. Ideally, you
should soon see the “Test passed” message under Status
Details, as shown in Figure 7-3. If you see this message, it’s time
to celebrate with a coffee break. But, if the codec doesn’t pass,
cancel the coffee break and review the list of broken rules. The
Status column under Rules indicates which rules were broken.

g

slgarsn | i | Spo |

Hoduk: MA4H3DEC Booa D | eIO0EV_MPEGH.D_2_ 00_D0VCEAXPLUS_ASP. 002
Vondor T thrare | Libmahidec_te bap B
Ierfacs | INAHIDEC

— v
Headers =

2

sEEEgE] £ |

XDAIS Rule 12: 1ALG nterface implementation
XDAIS Rule 13+ correct inker secian names

=
£
5
2
i
E

[l

Detab L {77) i Runighlgmes Tesonly Frogress 50
7} Stop at ot akire

Figure 7-3: The codec passed QualiTl’s test!

QualiTI provides a useful sanity check on your codecs.
However, you may notice that it doesn’t check all the XDAIS
rules. In fact, as of XDAIS 6.20, it doesn’t actually run the
codec’s algorithm, hence it can’t check interrupt latency or
execution time numbers. Nevertheless, you can avoid most of
the common system integration pitfalls if the algorithms in
your system pass QualiTI.

QualiTI automatically generates an HTML report. You want to
make sure that the codec vendor ships this report with its
codec packages to prove that its algorithm is easy to integrate.

e

i

0/ Partil: Building Something Real — Now!

Diving Deep into a
Few XDAIS Rules

If the codec fails QualiTI, the tool will list which specific XDAIS
rules were broken. You need to know what the rules mean if
you want to fix the codec. In the next few sections, we dive
deep into a few of the rules and show you how QualiTI
catches problems.

Rules 8, 9, and 10: Namespace
compliance

What does namespace compliance mean? In a nutshell, name-
space compliance refers to globally exposed symbols that
won’t clash with the next 25 algorithms you might add to your
system. As described earlier in this chapter, the name “dolt” is
a problem, but “M4H3DEC_TI_dolt” is not because it conforms
to namespace rules. On the other hand, if “dolt” is a local
(static) function, there can be lots of function names like

that in the system — the XDAIS rules only care about global
symbols.

Rule 13+: Correct linker
section names

First question: What does the + in Rule 13+ stand for? Answer:
The plus sign signifies that TI has stretched XDAIS to cover
common integration pitfalls. The original Rule 13 simply
required algorithm writers to mark each IALG function with a
tag to enable individual linker placement. A function may have
looked something like this:

#pragma CODE_SECTION(FIR_TI_alloc,
" text:algAlloc")

Marking functions in this manner was important in the days of
ultra small DSPs with tiny internal memories and no cache. It
allowed non-critical stuff to be pushed off to slower external
memory, leaving more room for the critical functions of

“dolt” (sorry, “M4H3DEC_TI_dolt™). But OMAP and DaVinci

— Chapter 7: Making Codecs Play Nice with Rules and Guidelines 6 5

processors all have advanced program (and data) caches, so
they won’t grind to a halt if Rule 13 isn’t followed. The proces-
sor might, however, stall in the pit lane if you have ambiguous
section names like “.tables”. Thankfully, QualiTI informs you
of such problems, as shown in Figure 7-4.

Rules SHEE e - =
|00 17ee e ISR R R L s e S
[xpAIS Rule 12: IALG interface implementation PASS
XDAIS Rule 13 +: correct linker section names FAIL
XDAIS Rule 15: library filename extension PASS .
[XDAIS Rule 20: must declare worst-case stack requirements PASS (prif) =
A : - i i
Description
- IEach of the IALG methods implemented by an algorithm
must be independently relocatable.
+ Additional rule: there should be no non-standard finker
sections. (Standard linker sections are: “.cinit", *,switch", !
{".far", "text", “.const", ".bss", ".pinit".) Pk -

Figure 7-4: Uh-oh! Somebody broke Rule 13+.

In the sample rogue FIR filter algorithm shown in Figure 7-4,
QualiTI found a nonstandard section named “.tables”, so it
kindly tells you why this name is a problem. If the section isn’t
explicitly placed by its section name, the linker has no

clue whether the section is code, un-initialized data, or con-
stant data. The linker may arbitrarily place the function in

the wrong type of memory (that is, Program-only). Such mis-
placement is a frequent source of crashes and is the reason
for the + in Rule 13.

Rules 21, 22: Must characterize
static data and program memory
requirements

The cool thing about QualiTl is that it practically does some
of your job for you. QualiTI runs a bunch of scripts and pro-
duces a footprint report looking something like this:

REPORT FOR LIBRARY:
D:/TI_Docs/dummiesBook/mpegddec/10 0E_V_MPEG4_D_1
_10/DM644x_SP_001/./Lib/m4h3dec_ti.164P

G0 Partli: Building Something Real — Now!

REPORT FOR FILE: common.o
Name : Size (dec) Size (hex) Type

.text : 3648 0x00000e40 CODE
.const : 15 0x0000000f DATA

REPORT FOR FILE: conceal.o
Name : Size (dec) Size (hex) Type

.text : 7616 0x00001dc0 CODE
.switch : 16 0x00000010 DATA

Uninitialized Data : 3736 0x00000e98
Initialized Data : 23088 0x00005a30
Code : 154272 0x00025aa0

Armed with the footprint report data, plus the stack, scratch,
and persistent data requirements, the system integrator can
start carving up the memory between codecs.

XDM and VISA Semantics

Recall that VISA stands for Video, Imaging, Speech, and Audio.
Specifically, we care about the interfaces (IAUDDEC, IVID-
DEC2, and so on) it defines. Within these interface header
files, various parameters, which have been generally agreed
as key fields for that class, are defined. Many codecs don’t
need to extend these parameters, but several others do. The
MPEG4 decoder used here doesn’t need extensions, but TI's
H.264 encoder on DM6467 (for example) needs extended
parameters to tweak the Quantization Parameter (QP) values.
The application sets these as follows:

/* Use extended dynamic parameters to allow
tweaking of the QP value */
IH264VENC_DynamicParams extDynParams = {
Vencl_DynamicParams_DEFAULT,

0, /* ChromaQPOffset */

18, /X 0PTISldce */

20, /* QPSlice */

e

— Chapter 7: Making Codecs Play Nice with Rules and Guidelines 6 7

extDynParams.videncDynamicParams.size =
sizeof (IH264VENC_DynamicParams) ;

/* Create the video encoder */
hvel = Vencl create(hEngine, "h264enc",
¶ms,
(VIDENC1_DynamicParams *)
&extDynParams) ;

This code is okay. Dynamic parameters have been applied to
obtain the maximum encoder quality, yet the logic of the code
remains unchanged.

However, extending inArgs and outArgs of XDM interfaces has
an enormous effect on application code since it basically nulli-
fies the plug-and-play functionality of the codec. Custom
application logic becomes necessary for codecs that extend
inArgs and outArgs. If, for example, you have an AAC encoder
that extends the standard AUDENC interface, you invariably
end up with something like this: -:

#ifdef AACENC_VENDOR

// do custom code for AACENC from VENDOR
#else

// do standard processing for AUDENC codec
#endif

That’s ugly because you have to maintain code specific to a
particular vendor’s codec implementation. Plug and play is
gone.

é’@l\ﬂfﬂ Newer XDM interfaces (v1.x and higher) were introduced

II"Y specifically to alleviate problems like this. Extending inter-
|d) faces via DynamicParams is fine, but doing so via inArgs and
outArgs requires custom application logic and is strongly
discouraged.

O8 Partli: Building Something Real — Now!

Chapter 8

Making a Standard é
Box for Codecs

In This Chapter
Appreciating the need for standardized RTSC packaging
» Simplifying package creation with the RTSC Codec Packaging tool

Preserving all important codec performance

Have you ever wondered why shipping containers are all
¥ B the same shape and size? Shipping containers are a
standard-sized box. That way the folks who load them onto
ships know how to deal with the containers and can keep the
docks running efficiently. No matter what is being transported
inside the containers, they all work the same in ships, trains,
and trucks. Without standardization, docks and other trans-
portation hubs would have a difficult time stacking the boxes.

Now imagine a customer with 26 codecs. What if each codec
was packaged differently? How would you know where the key
header files were? If the codec wanted to tell users how much
stack size it requires, you might end up with 26 different ways
to read it. System integrators want to add new codecs without
thinking too much about them. A standardized box — a codec
shipping container, if you will — is what’s rieeded. This chap-
ter shows you how to use the RTSC Codec Packaging tool to
ensure that codecs can be easily plugged into the framework.

70 Partli: Building Something Real — Now!

Why Bother with RTSC
| Packaging?

What’s a RTSC package (also called an XDC package) and
what goes inside it? Figure 8-1 shows the basic contents of a
RTSC package. According to the official glossary, RTSC is

defined as follows:

A RTSC package is a named collection of files
that form a unit of versioning, update, and deliv-
ery from a producer to a consumer. Each pack-
age is embodied as a specially named directory
(and its contents) within a file system. Packages
are the focal point for managing content
throughout its lifecycle. All packages are buill,
tested, released, and deployed as a unit.

i What does all that mean in plain English? It basically trans-
lates as, “Add a few files around your codec library to ensure

‘ the codec fits nicely in the Codec Engine framework.” To find
‘ out which files you need to add, check out the next section for

\ a list of RTSC package files.

&aﬂ\m With one or two codecs, the value of packaging may not seem
&

M) apparent at first. But, as you add more content, possibly from
different vendors, the benefits of a standard box become clear

during system integration.

= +00-=

Original XDC files: .

target content: additional information

libraries and on using the content

header files (specifications and
scripts)

Figure 8-1: The basic elements of a RTSC package.

XDC package:

an active container
for the embedded
target content

Chapter 8: Making a Standard Box for Codecs 7 ’

What's in the package?

Take a look at the MPEG4 decoder package shown in Figure
8-2. This package is shipped in the DVSDK and contains the
following files:

v~ app: This contains an example application using TI's
MPEG4 decoder.

v~ ce: This stands for Codec Engine. It adds a bunch of
meta information to let the framework make smarter
decisions. We show you how it works when we run
Step 5 of the wizard.

»” docs: You can probably guess what’s in here!

»~ lib: This is the heart of the RTSC package because it
contains the codec library.

v~ package.bld: This is like the key to the RTSC build
system. Written in XDCscript — a superset of industry-
standard JavaScript — it gives you fine-grain control over
how you build your code.

1+ im4h3dec.h: There’s nothing clever here, it’s just the
header file interface to the MPEG4 decoder.

v~ package.xs: This item is a bit more clever. It enables
programmatic selection of libraries. For example, the
getLibs() function may return either the production
or evaluation version of the library, depending on the
profile selected by the system integrator.

=) packages Chapp

B0 Sice
(sdocs
b
&]package.hld .
! imah3dec.h
E&:package.xs
| MPEG4DEC . xdc
%] package.xdc
[#]link, xdt

-0 servers

Figure 8-2: Tl's MPEG4 decoder RTSC package.

72 Partll: Building Something Real — Now!

1 MPEG4DEC.xdc: This typically comprises a bunch of
configuration and memory placement parameters, such
as codeSection and dataSection.

v~ package.xdc: This item is small but important. This is
what it looks like:

package ti.sdo.codecs.mpegddec {
module MPEGA4DEC;
}

This code basically says, “l am a package. My name is
MPEG4DEC, and I live in the ti.sdo.codecs.mpeg4dec
namespace.”

v~ link.xdt: This item is very clever! It specifies a compo-
nent’s contribution to the linking process. We talk more
about this during the section on preserving codec
performance.

What are the RTSC
package benefits?

Creating the RTSC package files listed in the previous section
seems like extra work. So why bother? The standard box
brings at least five concrete benefits:

v No need to specify different -I”/path1” -I"/path2” codec
preprocessor directives. You can have one package path
for multiple codecs.

v Codec-Engine add-on methods, such as getStackSize(),
enable specification of stack size (declared by the
expert — the codec producer!) for optimal task stack
creation.

v The linker template allows contribution of required
placement directives on a per-codec basis. This means
no messy cutting and pasting from example files.

» The package enables additional tooling, such as the RTSC
Codec Package Wizard we use in the next section.

v When you've learned one package, you've learned
them all.

Chapter 8: Making a Standard Box for Codecs 73

Getting Help from the RTSC
Codec Packaging Tool

The preceding section shows you the benefits of standardized
RTSC packages. Even if you're convinced of the benefits,
wouldn’t a tool to generate all that stuff be nice? Enter the
RTSC Codec Packaging Wizard.

Created with a similar look and feel to the QualiTI tool
(described in Chapter 7), you basically point the RTSC Codec
Packaging tool to your codec library, enter some basic
package information (such as which XDM interface is imple-
mented), and out pops a RTSC codec package. The payoff is
easier integration with the Codec Engine.

Getting ready for the wizard

Of course, there are a few prerequisites before you can run
the RTSC Codec Packaging tool. Here are the basic steps:

1. Assemble your DVSDK content.

The Codec Packaging Wizard requires XDC tools,
XDAIS, Codec Engine, TI c6x Code Generation Tools,
and the Codegen Utility Scripts package. Thankfully
all these items are included in the DVSDK, as is

the wizard itself under dvsdk_3_<version_num>/
ceutils_1_<version_nums>.

2. Set your XDCPATH.

What does this mean? The XDCPATH tells the XDC
tools where to find all the packages (including Codec
Engine, XDAIS, and the wizard itself), much like the
Java CLASSPATH and Windows/Linux PATH for
executables. There are several ways to do this, the
simplest of which is to leverage the Makefile provided
with the wizard. Since you're likely using the wizard
from within the DVSDK, the Makefile takes advantage
of the top-level Rules.make, which sets up all the
paths for you.

74 Part II: Building Something Real — Now!

If you're using the wizard standalone, the other ways
to set the XDCPATH are specified in the Wizard FAQs in
www . ti.com/dummiesbook.

3. Run it!
Simply type
make genpackage

In plain English, this says, “use the part of the Makefile
that relates to kicking off the Codec Packaging
Wizard.”

Running the wizard

The RTSC Codec Packaging-Tool is easy to use because it
walks you through a series of screens where you enter details
about your codec package. When you execute the wizard as
described in the preceding section, the first thing you see is a
graphical user interface. You start at (surprise!) Step 1, as
shown in Figure 8-3. The next few sections walk you through
each step.

RTSC Codec Package Wizard A
Eite Help
Basic Codec Information, Step 1 of 6
Fill in the package name and version, then select a codec class and ISA.
Package names should be formatted: company.group.project. Also indicate if
codec engine content is to be created. Then input an output repository. See
Help for detailed information about field input.
Package Name. |ti.gdo.codecs.mpegddec
Modular |MPEG4DEC B
Version: 200001
v
Codec Class: j t.sdo.ce.videa? IVIDDEC2 = ‘
instruction Set i
Architecture: | L7 v
Create ce @
content:
| Set owput repository) ‘ codecs, |
h - .
| cmack || Mew»] Ensh | gancel |

Figure 8-3: Enter basic codec infoin Step 1.

Chapter 8: Making a Standard Box for Codecs 75

¥

You can click Help on the wizard’s menu bar at any time to get
context sensitive help.

Step 1

Fill in the blanks in Step 1 of the RTSC Codec Packaging Tool
wizard. The package name we entered in Figure 8-3 is
ti.sdo.codecs.mpeg4dec and the module name MPEG4DEC.
This package name follows this convention:

companyname . groupname . codecs . codecname

It’s not mandatory to follow this naming convention, but it
helps ensure uniqueness so we strongly recommend it. Other
items to enter in Step 1 include

! v~ Version. This is simply the codec version. Again, it’s not
mandatory but it is helpful when looking at codecs.

. v Codec Class. This field specifies whatever XDM / VISA

' interface the documentation states it implements. At the
time of writing, the MPEG4DEC implements the IVIDDEC2
interface.

| v~ Instruction Set Architecture. This field defaults to
. ¢64Plus, so no change required.

. 1~ Create CE content. This subtle checkbox is important
because it ensures all the Codec Engine add-on functions
are generated. These functions include the getStackSize()
method for specifying stack requirements.

1+~ Set output repository. This box tells the RTSC Codec
Packaging Wizard where to place the output content.

Step 2

Next is Step 2 as shown in Figure 8-4. This step is pretty
simple. The “watermark” is simply a boolean variable

to indicate whether this is a production or evaluation codec.
In Figure 8-4, we use an evaluation codec (as denoted by

the “_e” in the name) so the watermark should equal True.
Click Next again to move to Step 3.

[IEETEN = 00 001/Co4xPLUS _ASP_002/Lib/mAh3dec_ti_e 64P|

Figure 8-4: Enables the system integrator to select between an
evaluation or production codec.

Step 3

Step 3 inquires about any extra directories that may be
needed to complete the package. If you have header files,
source files, or other items in different directories, specify
them as shown in Figure 8-5. Adding the codec header

file is important if there are extended parameters you need
to expose.

Add extra files to package, Step 3 of 6

Add any extra files or directories (such as header files, source fites, or a docs
directory). You may optionally indicate an output focation {e.g."sec™); if not
specified, the default is the base directory.

Add extra files:
i?npu(File or Dir Name gompu(Directory \
8] i iginal_cot

Tomedd kioriginal_cot

0 .
0 2_o0r/CoaxPLUS ASP_002inc/mansdec. | NN

T
| Browse for fles

1 e 3
S Browse for dizectories

Figure 8-5: Choose extra directories and files to include in the
end package.

Step 4

Click Next again in the Packaging Wizard to progress to Step 4,
as shown in Figure 8-6. Step 4 brings in the prerequisite tools
we highlighted earlier in this chapter. There’s nothing new to
download since it’s all in the DVSDK, however you need to get
the paths right.

Wizard Genevates "Guesses”, Step 4 of 6

If you want the wizard to calcudate the link.xdt section information, the worst
case stack size, and ICodec Interface function names, enter the following
paths. See Help for more details.

| Browse for cg_xmi lacation jnsw/dvsdk_!_m_uc_zl/cg_xmL_vZ_lZ_OO

113_00_00_21/cg_xml_v2_12_ O0fuilsiofdé
5.0

Chieck ta guess guStackSizet: |7
Stack Size Pad %: 20

A
Check to updare section infa; 73]

Figure 8-6: Select paths to the tools you'll need in the final steps.

H

i

i

Chapter 8: Making a Standard Box for Codecs 77 ‘
!
?

Step 5

In Figure 8-7, you can see that the wizard has magically

retrieved the symbol names M4H3DEC_TI_IALG and
M4H3DEC_TI_IDMA3. How’d it do that? The wizard finds these

names thanks to the structure inherent in the XDAIS standard.

All codecs must expose a symbol <MODULE>_<VENDOR>_

IALG. This is the entry point to the IALG memory interface

functions. Because of this convention, the symbol listing tool

nm6x (remember, we specified that in Step 4) can search for

the symbol and fill in the blanks for you. The same is also true
with MAH3DEC_TI_IDMA3, which is the entry point to the
algorithm’s requests for DMA resources.

1Codec Configs and Return Values, Step 5 of 6

frhe wizard will atrempt to find the Config names using nm6x it the nimbx path
was given on the previcus page. f no names are generated. manually enter
these values. Additionally, specify values in the Finctions section.

Ovemde Canfigs in I adec

|Cmﬁg g(‘omig Name 'H
ialgFxns MAHIDEC_TI_IALG !

idma3Fxns MAHIDEC_TI_IDMA3

=
Set rerum values in ICoder

[Functions in [Codec {Rotumvalues B

|
L

Figure 8-7: The wizard automatically finds the key symbols you need.

Codec Engine uses these entry points to step in to the under-
lying function tables and call the correct initialization and pro-
cessing functions. The XDAIS standard and well-defined VISA
interfaces make this functionality feasible.

Step 6

When you click Next to go to Step 6, you see a screen like the i
one shown in Figure 8-8. Fear not. You don’t have to type in E
the code shown in the figure. The wizard generates the code
for you via the ofd6x and cg_xml tools. Once again the library
object files are parsed, this time to get the linker section
names for the functions and data.

_—

78 Part II: Building Something Real — Now!

UL

TEI,‘;,

e

Generate linker template, Step 6 of 6

Edit the table as needed, such as adding alignment information, and then
click the button to guess the linker. If you do not see the sections you expect,
see Help jons for more i i

{u« !SecnenNa’--\e Seelin e !Type .ni‘*@"“‘“’{.
© . text_MAH3DEC_TI_updateChromaBoun CODE A i}
5] text_MAHIDEC_T!_updateBoundingBox. CODE

.text:_MAH3DEC_TI_pred_BVOP CODE ol

Kai
R e ey
i Use Minimum i—;;—ness Lm}v:.xdlz

SECTIONS

(a1

« 0l

% f {this MPEGADEC .codeSection) { =
text:_MAH3DEC_Ti_updateChromaBoundingBox_BVOP » ‘this. MPEG: |
Ltext:_MAH3DEC_Ti_updateBoundingBox_BVOP > ‘this. MPEG4DEC.ci|
_text:_MAH3DEC_TI_pred_BVOP > ‘this. MPEGADEC.codeSection”
text:_M4H3DEC_Ti_mcD_Avg > 'this. MPEG4DEC .codeSection -

< T =l

Figure 8-8: You're almost done! Enter code and data placement directives.

A clever trick in the wizard is automatic grouping of code
into an MPEG4DEC.codeSection, data into an MPEG4DEC.
dataSection, and uninitialized data into an MPEG4DEC.
udataSection. Why care? You may not, but the linker does. If
you do nothing, the linker might place data in a code-only
memory type, at which point your program starts to veer off
the road.

If you have 25 more codecs to package, you'd quickly get
bored typing the paths each time. Hence, the RTSC Codec
Packaging Wizard lets you save an XML representation of
the inputs. You can use the XML as a template for the next
codec, or simply import it as a baseline for modifications to
existing codecs.

After you complete Step 6, click Finish and you're done. You
now have a codec package that will fit nicely in Codec Engine.

Preserving All-Important
Codec Performance

We can optimize the wizard output a little to gain precious
cycles. How so?

W

Chapter 8: Making a Standard Box for Codecs 79

RTSC provides a unique feature that can be described as:
“Stick your special sauce codec memory placement in this
file, and the tools will make sure it gets honored at system
integration time.” We've observed an H.264 encoder running
on the DM6446 platform and found that memory placement
special sauce can give a 10 percent performance boost.
Consider the following code:

% if (this.MPEG4DEC.codeSection) {
GROUP : {
.text: M4H3DEC_TI_decodeNextFrame
.text:_M4AH3DEC_TI_getCurRefBufs
.text: M4H3DEC_TI_initErrConcealOb]j

} > “this.MPEGADEC.codeSection”,align =
0x10000
%}

The codec vendor who wrote this code has labored to provide
the optimal placement grouping of functions to yield the best
possible c64+ Level 1 Program cache performance. With video
codecs in particular, this can have a big performance impact.

Before RTSC, the codec vendor simply said, “Please copy and
paste this special sauce into your system.” But now, link.xdt
and the XDC tools automate this for you.

To check the result of this placement, look in the generated
.xdl file in the upcoming codec server build.

8 0 Part II: Building Something Real — Now!

Chapter 9

Generating DSP Server
Executables

In This Chapter
Taking a look at the Codec Engine server generator
- Using configuration to tweak the knobs
Bundling multiple codecs together in combos

In Chapter 8, we talk about the fact that shipping containers
conform to certain standards to ensure they’re all the same
size and stack easily. But, no matter how standard the con-
tainers are, they're pretty useless unless you can find ships to
put them on. .

Just like shipping containers, neatly packaged codecs also
conform to standards. And, also like shipping containers, you
need somewhere to put your codecs for them to be useful. In
the case of codecs, your ship is a DSP server executable.
That’s the DSP end-application that your GPP code will start
and run.

The DSP server executable contains Codec Engine, DSP/BIOS,
Framework components, DSP Link content, and various BIOS
utility modules. In “ye olde days,” the user would have to put
all these components together and make the complete system
from scratch. But today, the RTSC Server Wizard gives you a
major head-start on packaging. In this chapter, we show you
how to use the RTSC Server Wizard to bundle codecs into a
Codec Engine-based DSP server application.

&2 Partli: Building Something Real — Now!

Timeout for a Terminology Recap

Figure 9-1 illustrates the hierarchy of codecs, servers, and
engines in a system. As you study the diagram, you may
notice that the TLA (that’s a three letter acronym for “three
letter acronym”) count is beginning to creep up. Here’s a
recap of what’s in an OMAP or DaVinci system and explana-
tions of what all that stuff means:

1 1 RTSC Codec Package. This is the RTSC package for the
codec library. It implements an XDM-based interface
such as video, imaging, speech, or audio.

1 RTSC Server / Combo Package. This is a complete
DSP application bundling one or more codecs
together with DSP/BIOS, CE (Codec Engine), and
framework components.

1+ Engine. You need something to invoke your server from
the remote GPP side of the system, and that “something”
is called the engine. You “open” an Engine to get a handle
to that collection, then you can create instances of those
codecs given the Engine handle. Quite often you have
several engines in a GPP application.

1+~ DVTB (Digital Video Test Bench). This is a command
line interface that uses engines to get and set codec
parameters and execute codecs.

+* Demos. Demos are real-world GPP end-applications upon
which you can build. "

RTSC Codec_ | RN [
Demos, DVTB Package | [eeviy |

RTSC Codec HIFEIY
s Audio

B Decoder

Package

Customer
Application

Framework | £
Components [ESEESEEE

o

T o SRS TR

ARM Subsystem DSP Subsystem

Figure 9-1: This is the hierarchy of codecs, servers, and engines in an
OMAP or DaVinci system.

Chapter 9: Generating DSP Server Executables 83

Getting Help from the RTSC
Server Packaging Tool

The RTSC Server Packaging Tool is a little simpler than the
RTSC Codec Packaging Tool described in Chapter 8 because it
has just one window and a couple of boxes to fill in. What the
Server Packaging Tool generates, however, is rather useful.
The next couple of sections show you how to prepare for and
run the RTSC Server Packaging Tool.

Getting ready for the wizard

Before you can build a server package, you need to build a
codec package. (We show you how to package a codec in
Chapter 8, so pay a visit to that chapter if your codecs still
need packaging.)

You can build a codec package in lots of ways. The easiest
way is to just type make from the ceutils directory location
inside the DVSDK. ‘

Sounds simple, doesn'’t it? Yeah — too simple! The build will
fail because you haven’t updated your RTSC package path
(XDCPATH) to point to your newborn codec. Comment out the
previous CODEC_INSTALL_DIR in Rules.make and point it to
the new path as follows:

Where the codec servers are installed.
CODEC_INSTALL_DIR=${HOME} /workdir/dummiesbook/om
ap3_codecs_combos

Now, you can build it. Type make from the ceutils directory
and you’re done. It looks like this:

[ceutils_1_06 >] make

You're not actually building the codec source code — you're
just building the package “meta-data,” which contains
add-on wrapper functions such as getStackSize(), getLibs(),
and others.

84

Part |l: Building Something Real — Now!

Running the wizard

The Server Packaging Wizard is bundled along with the Codec
Packaging Wizard, so there’s no need to spend half a day hunt-
ing for prerequisite tools. To kick-start and run the Server
Packaging Wizard, follow these steps:

1

e Help

Input Basic Server Information
Cadec Package Name: \
Moduie Name:
Fiatform: ti.platforms.evmBM6446 [vi

Server Package Name:

l Set Qutput Server rapository

. Start the wizard by typing

[ceutils_1_06 >] make genserver

After a few seconds, you see a dialog box like the one
shown in Figure 9-2.

_ Unil Server Wizard

Figure 9-2: This is the server wizard in action.

2

. Type ti.sdo.codecs.mpeg4dec for the codec

package name.

It would be nice if you could just enter mpeg4dec for
the codec name, but there could be lots of mpeg4
decoders out there from several vendors. Therefore,
the name needs to be unique and identifiable.

. Choose ti.platforms.evm3530 in the Platform menu.

As with the codec package name, the platform must
be unique. A name like omap3530 wouldn’t be suffi-
cient, because Vendor X might offer a blue 3530
EVM, while Vendor Y sells a pink version. The wizard
automatically fills in the rest of the fields for you, as
shown in Figure 9-3.

Chapter 9: Generating DSP Server Executables 8 5

A sure sign that you got it right is when the wizard
fills in the output server repository automatically.
The wizard magically (it is a wizard, after all!) peeks
at your entries, and if it finds a package match,

the wizard defaults to the repository containing

the codec.
b Unit Server Wizard
Ele telp
Input Basic Server Information
Codec Package Name: ti.sdo.codecs.mpegidec
Module Name MPEG4DEC
Platform: ti.platforms.evm3530 &]
Server Package Name, ti.sdo.servers. mpegidec_unitserver_evm3!,
L Set Gutput Server rep y § { k _codecs, kages/|
}' Finish [{ ian»cg) J

Figure 9-3: The server wizard points to the mpeg4
decoder on your OMAP3 EVM.

4. Click Finish.

The wizard asks if you want to save the data as an
XML file. You can pass on this option, since there’s not
much information to remember anyway.

Finding the server package

When you run the Server Packaging Wizard as described in
the preceding section, the wizard generates several files.
Simply open an Explorer window and point it to the server’s
folder. You see a subfolder containing the new server. Open it
(see Figure 9-4).

. dummiesbook
£} omap3_codecs_combos
| =y packages

648 bytes

1.34K8
839 bytes
9% server.cfg 2.62K8
1i8 server.tcf 5.47KB
1B ink.cmd 84 bytes

=) servers

#1023 original_codecs

_ I*#lpackage xd 63 byte:

Figure 9-4: Files and directories are automatically generated
by the wizard.

86 Parti: Building Something Real — Now!

As you review the server package, pay attention to:

1 servers/mpegddec_unitserver_evin3530 directory. The
,} wizard generates the unit server in the same package
repository as the codecs. This means you have one less
package to specify on the path.

v~ package.xs, package.xdc. These files tell the build
system, “Hey, I'm a package.” The server’s package.xs
might often have extra Javascript functions to validate
correct usage.

1~ package.bld. This file enables the RTSC build. It invokes
the configuration system on server.tcf and the two cfg
files, it specifies compilation of main.c, and then links it
all together to generate a DSP executable.

R R e R ST o S ST

WL T T

"

The main.c file simply initializes Codec Engine and sets up a
Tracing mechanism for debug. (But, let’s hope you don’t need
to debug!)

Configuring the package

After running the wizard, the only file you have to manually edit
is codec.cfg. When you first open the file, it looks like this:

var MPEG4DEC =
xdc.useModule ('ti.sdo.codecs.mpegddec.ce.MPEG4DE
CEE

// Package Config
MPEGADEC.alg.watermark = true;
MPEGA4DEC.alg.codeSection = undefined;
MPEGADEC.alg.udataSection = undefined;
MPEGADEC.alg.dataSection = undefined;

Server.algs = [

{name: "mpeg4dec", mod: MPEG4DEC ,
threadattrs: {

stackMemId: 0, priority: Server .MINPRI + 2},
groupld : O,

}
i

& and set its configuration parameters. Assign a priority so that

,zs\g“% In plain English, this code says, “Use the MPEG4DEC module
& it will play nice with other codecs that may get added later.”

Chapter 9: Generating DSP Server Executables 8 7

As you'look at the codec.cfg file, the things you need to edit
are pretty obvious; you need to edit codeSection,
udataSection, and dataSection. Each of these lines needs to be
assigned to a memory section. The wizard doesn’t know
whether you want to place the first section in fast internal
memory and the second section in slower external memory,
or vice versa. These are memory layout decisions the system
integrator must make.

For now, we just assign everything to external memory and let
the cache do the work. Edit codec.cfg as follows:

MPEG4DEC.alg.codeSection = 'DDR2';
MPEG4DEC.alg.udataSection = 'DDR2';
MPEG4DEC.alg.dataSection = ‘DDR2';
é}‘w = Not sure how to assign memory? You can find the memory
types in the platform datasheet or the DSP/BIOS configuration
server.tcf file.

),

@g_:

Building the server executable

Now you're ready to build the server executable. Type the
following:

[ceutils_1_06 >] make
If everything goes well, you will have a DSP executable named

mpeg4dec_unitserver_evm3530.x64P. The DSP side of your
build is now done. Great job!

Configuro — sticking with
a build s; you know

¢
ysiem

The content generated by the Server
Packaging Wizard leverages RTSC
build, and it should simply work.
However, if you're more comfortable
with standard makefiles or CCS proj-
ectfiles, that's okay too. The Configuro
tool from Tl enables RTSC configura-
tion in your chosen build flow.

Configuro processes a RTSC configu-
ration script — such as server.cfg —
into a set of header files, object and
library files, and compiler/linker com-
mand line options. You refer to these
generated files in your own build flow.
Configuro is also integrated into Code
Composer Studio.

_—— o1
B e

88 Part II: Building Something Real — Now!

_a Va0 |

Bundling Multiple Codecs
into Combos

A single codec on its own isn’t very exciting. For example, you
may want to add an Advanced Audio Codec (AAC) Decoder to
play audio alongside some video. The DVSDK decode combo
does exactly this, bundling the MPEG4 and H.264 video
decoders, JPEG imaging, and MP3 and AAC audio decoders. In
this section, we show you how to tweak some knobs to fine-
tune the performance of codec combos.

Building combos

We won’t cover combo creation in this book, but you can find
step-by-step instructions to build a combo from a unit server
on our Web site. Visit www . ti.com/dummiesbook and click
Building a Codec Combo.

Additionally, keep checking the Web site for details on an
upcoming Combo Wizard. As the name implies, the server
wizard is being upgraded to handle multiple codecs.

Tuning for performance

With a single codec, you don’t need to worry about memory
sharing or DMA resource contention. But in a combo, the
codecs have to share. For example, if you have the H.264 and
MPEG4 codecs, you're most likely not running them both at
the same time. Since they don’t run simultaneously, the
codecs can share scratch data memory. Scratch memory is
the opposite of persistent memory. A scratch buffer can

be freely trashed after the buffer has processed a frame,
whereas a persistent memory buffer’s content needs to stick
around. Scratch resources are important because fast on-chip
memory is limited. Because they seldom run concurrently,
video codecs are usually assigned to the same DSP/BIOS task
priority and scratch memory groups. For example, a typical
combo.cfg might look like this:

Chapter 9: Generating DSP Server Executables 89

Server.algs = [

{name: "mpegd4dec", mod:
MPEG4DEC, threadAttrs: {

stackMemId: 0, priority: Server .MINPRI +
1}, groupid : 0,

i
{name: "h264avcdec", mod: H264VDEC,

threadAttrs: {

stackMemId: 0, priority: Server.MINPRI +
S greoupIids 0y

0y

{name: "mp3dec", mod:
MP3DEC, threadAttrs: ({

stackMemId: 0, priority: Server.MINPRI +
AN Grzeientel g ks

}

1;

Each video codec in the preceding example has common
priorities and grouplds. This says, “MPEG4 decode and

H264 decode won’t preempt each other so they can share fast
on-chip scratch memory.” The sharing is achieved via the
common groupld configuration parameter.

The audio decoder has a higher priority and a different
groupld. That’s because audio has a higher frame rate

(its processing call repeats more frequently) so it should be
allowed to preempt the longer video codecs. That’s why audio
and video codecs can’t share the same scratch memory; the
different groupld specifies different scratch buffers.

| 90 Part Il: Building Something Real — Now!

Chapter 10
How Do | Test This Thing?

In This Chapter
Using the DVSDK demos
Tweaking codec knobs on the Digital Video Test Bench

Making simple applications with the DaVinci and OMAP Multimedia
Application Interface

ou’re excited! Your codecs are XDAIS-compliant and

packaged via the RTSC Codec Packaging Wizard. You also
have a DSP server executable with Codec Engine, DSP/BIOS,
and the neatly boxed codec inside. But how do you know that
everything works?

In this chapter, you finish the job of making everything work.
Flipping to the other side of TI's OMAP3530 chip — the power-
ful Cortex ARM A8 — you leverage some DVSDK General
Purpose Processor (GPP) Linux applications to run the DSP
executable.

You have several applications to start from. You can use the
DVSDK demos, the Digital Video Test Bench, or the slim line
applications provided with the OMAP and DaVinci Multimedia
Application Interface (DMA) library. In this chapter, we also
show you when and how to use each of these tools.

As a grand finale, we introduce you to some bigger OMAP
applications that do video and audio synchronization, such as
GStreamer. The cool thing about GStreamer is that you don’t
have to write and maintain much code since a lot of it is
“borrowed” from open-source plug-ins.

92 Partll: Building Something Real — Now!

TEC/,

Using the DUSDK Demos

AL S 70‘;(,

To be honest, the word demo gives the wrong impression.
You've probably seen flashy tradeshow demos that reveal lots
of corner-cutting and quick fixes when you get your hands on
the code. It may take weeks of effort and a gallon of coffee just
to get a handle on the code. The DVSDK demos from TI aren’t
like that. Consumer set-top boxes and portable media players
based on the demo code are already in the market. The design
of the processing input/output threads does a great job of
keeping real-time operation in the presence of even the tricki-
est video streams.

The DVSDK decode demo — illustrated in Figure 10-1 — uses
the Codec Engine (CE) as well as video, audio, and speech
algorithms to decode video and sound data from files on your
device’s Linux file system. The output is sent to Linux device
drivers controlling the video and audio peripherals on the
OMAP3530 EVM.

The demo decodes audio using the MP3 or AAC audio
algorithms, and video via the MPEG2, MPEG4, or H.264
codecs. These algorithms are packaged in a codec server
named decodeCombo.x64P. Encoded video and audio data is
read from separate elementary streams on the Linux file
system, and the decoded data is output to peripherals on the
OMAP3530 device.

Okay, enough introduction. We need to get to work plugging
your MPEG4 decode server into the demos to see whether
everything was done right in the work described in Chapters 6
through 9.

Modifying the demo config file

You don’t need to modify the DVSDK demo code, but you
do need to modify its configuration file. To do so, follow
these steps:

1. Bring up an editor in the decode demo by typing the
following in a terminal window:

[dvsdk_demos_3_<version>/omap3530/decode
>] emacs decode.cfg

Chapter 10: How Do | Test This Thing?

HDD Display Speakers

— Raw Data
— Encoded Data

Codec Server
A/V Decoders

DSP [DSP/BIOS]

Figure 10-1: Here's a simple overview of the DVSDK decode demo.

2. Find the lines that look like this:

var engine = Engine.createFromServer (
"decode",
" ./decodeCombo.x64P",
"ti.sdo.servers.decode"
)i

3. Replace these lines with this:

var engine = Engine.createFromServer (

"decode",
"./mpegd4dec_unitserver_evm3530.x64P",
"ti.sdo.servers.mpeg4dec_unitserver_evm
BB

)

In CE parlance, the first argument to the createFromServer
function is the engine name, which is used in the appli-
cation code’s call to Engine_open(). Just leave “decode” in
place for this argument. The second argument is the DSP
server executable that the engine must load and run. The
ti.sdo.servers.mpeg4dec_unitserver_evm3530stﬂng
matches the directory package path containing the server.

9/, Partli: Building Something Real — Now!

The function createFromServer () is a handy ease-of-use
feature. With previous CE versions (prior to 2.0), the system
integrator had to re-specify all the codecs that went into the
server and match up the memory configuration on the DSP
and GPP. This was (a) error-prone and (b) too much typing.
createFromServer reads all of the meta-data from a gener-
ated file in the servers, thus eliminating memory mismatch
possibilities.

Building the demo

To build the decode demo, first modify the config file as
described in the preceding section and then type

[omap3530/decode >] make

In the build output, you can see that the unit-server has been
processed by the RTSC Configuro Tool (refer to Chapter 9). It
should also build the demo C source code without warnings
Or errors.

Oops. Depending on which version of the demos you have,
the build might fail with a message like this:

dmai/packages/ti/sdo/dmai/ce/Adecl.c:52:
undefined reference to ‘AUDDEC1l_delete'

Remember that the demos expect to run both video and
audio. If your mpeg4 decode server doesn’t have any audio
algorithms (which it won't if you followed the examples in
Chapters 6 through 9), the GPP code referencing the audio
decoder class fails to build. To resolve these references,
simply load the audio package by adding the following to
decode.cfg:

/* link in VISA classes */
xdc .loadPackage("ti.sdo.ce.audiol") ;

This simply tells the linker to include the audiol libraries to
satisfy the linker.

Chapter 10: How Do | Test This Thing? 95

L

Nt

MBER

1)

Running your DSP server
executable with the demos

The moment of truth has arrived. It’s time to run your newly
rebuilt decode demo with your MPEG4 decoder DSP server
executable.

At this point, it makes sense to have the OMAP3530 DVSDK
“Getting Started Guide” handy. If you don’t have the hard
copy, remember it’s available in the DVSDK software in the
docs folder. Pay particular attention to the section “Running
the demos from the command line” in Chapter 3 of the
“Getting Started Guide.”

Follow these steps to test your DSP server executable.

1. Assuming your setup matches the DVSDK, copy the
GPP decode demo across to the target file system by

typing

[omap3530/decode >1 cp decode
/home/user/workdir/filesys/opt/dvsdk/

2. Change directory to the DSP server executable and
copy it across as well by typing

[servers/mpeg4dec_unitserver evm3530 >]
cp mpegd4dec_unitserver evm3530.x64P
/home/user/workdir/filesys/opt/dvsdk/

3. Boot up your OMAP EVM and flip to the directory in
which you just copied the files.

You're not on the Linux host anymore. You're on a
terminal within the target file system. As noted in
Chapter 6, TI uses the $ sign instead of > to denote
target versus host.

4. Type the following:

[opt/dvsdk §] ./decode -v
data/videos/davincieffect ntsc_1.mdv

If all goes well, you'll see the DaVinci effect video clip playing
on the OMAP EVM LCD display. You can also run the DaVinci
effect MPEG4 clip if you want. Congratulations! If you've made
it this far, you've gone through the entire flow of the DVSDK.
Take a well-deserved break.

96 Part II: Building Something Real — Now!

The Digital Video Test Bench

The demos are the right place to start your application design.
But what if you're only at the codec evaluation stage? You have
a bunch of codecs, and you want to twiddle the knobs on them
to check their quality and feature sets. The Digital Video Test
Bench (DVTB) is just what you need. Supplied with the DVSDK,
the DVTB does the following:

»* Provide an easy interface to rapidly test codec servers

v Support encode/decode of all VISA classes either from
files or the OMAP3530 audio and video drivers

v Support configuration of the drivers

v~ Support configuration of all base parameters by the
XDM/VISA classes

v Is scriptable

The last two features are the big selling points. The ability to
change your MPEG4 decoder’s maximum bit rate, or to flip the
chroma format from YUV 4:2:2 interleaved to YUV 4:2:0 planar
without changing any code, makes life easier. If you have a life
outside work, you probably want to go home at night instead
of testing every parameter combination manually. DVTB sup-
ports a simple scripting interface, so you can start a script
before you go home. Then, hopefully, when you come back in
the morning, you'll find that your codec passed all the tests.

Preparing to run DUTB

You can test DVTB by using a file we created for you called
mpeg4dec_unitserver.dvs. It’s in the code bundle at

www . ti . com/dummiesbook. It's also pretty easy to make
your own file, which typically looks like this:

Specify the codec combo to be used
setp engine name mpegé4dec_engine

Specify the decoder to be used
setp viddec2 codec mpeg4ddec

Specify number of frames to decode
setp viddec2 numFrames 1000

Chapter 10: How Do | Test This Thing? g7

Trigger the decode+display scenario
func viddec2 -s ./data/videos/
davincieffect_ntsc_1.mév

Once you've downloaded the file, there are a few more prereq-
uisite tasks to finish. Do the following:

1. Open an editor in the DVTB directory by typing
[dvtb_3_## ### >] emacs omap3530.cfg
2. Specify your server name and its path like this:

var engine = Engine.createFromServer (
"mpeg4dec_engine",
"./mpegd4dec_unitserver_evm3530.x64P",
"ti.sdo.servers.mpegd4dec_unitserver_evm353
0 "
)7

BE,

e ! The engine name, in this case mpeg4dec_engine, can
@ be anything. It just needs to match up with the name
L you specify in the .dvs script.

3. Build the application by typing

[dvtb_3_##_### >] make
CONFIGPKG="omap3530"

The argument to make is simply the name of the .cfg configu-
ration file. If you have a different config file, just supply that as
the CONFIGPKG name instead. When the build is complete,
you're ready to run the executable with DVTB.

Running your DSP server
executable with DUTB

DVTB produces both debug (dvtb-d) and release (dvtb-r) GPP
executables. As you may have guessed, the former prints out
helpful debug information as it runs.

Copy both executables (the debug and release) to the same
/opt/dvsdk directory in the target file system. Copy the
mpeg4dec_unitserver.dvs script across, too. Next, type the
following in your terminal window:

98 Part II: Building Something Real — Now!

[opt/dvsdk §]1 ./dvtb-r -s
mpegd4dec_unitserver.dvs

If it all works, you'll see the DaVinci effect video once more.

Making Single-Page
Applications with DMAI

TEL'[, ",

RLALTN
i

The first part of this chapter shows how the DVSDK demos
can serve as a production code baseline. The preceding
section shows how to use DVTB for codec parameter testing.
But how do you make an application that’s simple yet
portable to a variety of platforms?

Aha! Enter now, DMAI, the DaVinci (and OMAP) Multimedia
Applications Interface solution. You can literally fit an entire
DMAI sample application on one page. (Okay, it’s one page if
you cheat by omitting error checks.)

As shown in Figure 10-2, DMAI is a thin utility layer on top of
the operating system (Linux or DSP/BIOS) and CE. DMAI
assists in quickly writing portable applications on OMAP and
DaVinci platforms. DMAI is used by the DVSDK demos.

DMAI does not wrap the Operating System or CE. Instead, the
application can choose when to use DMAI and when to use
the OS or CE directly.

Linux or DSP/BIOS

Figure 10-2: DMAI is a thin utility layer on top of the
0S and Codec Engine.

Chapter 10: How Do | Test This Thing? 99

Included with DMALI is a collection of modules that try to
abstract common peripherals or codec operations, such as
Frame copy and Audio decode. Information is passed between
modules using a Buffer abstraction. Feel free to pick and
choose which modules to use. Since DMAI comes with source
code, it can also be used as a reference on how to accomplish
certain tasks.

To evaluate your mpeg4 decode server within DMAI, we sug-
gest using the apps/video_decode_io2 example. This is
included in the example suite shipped with DMAI The “io”
indicates that file I/O will be used, instead of the video port
driver. The “2” denotes the interface version, which in this
case is IVIDDEC2.

Because this example is file driven, you won’t see any output
on the LCD display. To verify that the MPEG4 decode worked
properly, you can use analysis tools such as the Elecard YUV
Viewer.

Synchronizing audio and video
with GStreamer

Here we take a peek at some
higher level application software. Tl
contributes to the open-source
GStreamer project. This is a multime-
dia framework capable of serving a
variety of applications, such as video
editors, streaming media broadcast-
ers, and media players. GStreamer
is designed as a pipeline allowing you
to easily string together various
media-handling components.

The Tl contribution helps you to
leverage the DVSDK software infra-
structure (Codec Engine, Linux LSP,
DSP Codecs, and so on) within the
GStreamer multimedia framework on

DaVinci and OMAP devices. These
open-source frameworks increase
productivity because code already
exists for complex tasks, such as AV
synchronization, demuxing/muxing,
and network streaming.

Tl's latest GStreamer port uses all
of the cool stuff described in
this chapter. In particular, the
createFromServer function helped to
simplify GStreamer configuration,
and DMAI sped up the ports to vari-
ous OMAP and DaVinci devices.

Have fun playing AVI files and other
fully synchronized audio and video
content.

700 Part Il: Building Something Real — Now!

We won’t go through the build and install instructions since
they’re the same as the demos and DVTB described earlier in
this chapter. The basic process is

1. Modify the config file.
2. Build the executable.
3. Copy the executable(s) to the target file system.

Okay, maybe video_decode_io2 is a bit more than one page.
However, this application also demonstrates the DMAI porta-
bility story since it has a prepackaged port for DSP-only appli-
cations. For example, you can run the same CE-based
application on the low-cost DM6437 c64+ device. That’s some-
times useful as debugging a single processor executable is
often easier than a dual-processor system. Longstanding prob-
lems with file I/O speed on the DSP have been solved by lever-
aging the new RTDX 2.0 protocol.

Using Pre-Canned Combos

Now, if we're honest, you — as an end-user — probably don’t
care how beautifully your package was boxed, or which
shipping container it was placed in. You just want the finished
product on your doorstep and ready to use. The same con-
cept applies to all this QualiTl, RTSC packaging, and server
stuff. Ideally, you (the system integrator) simply get a pre-
canned DSP combo chock-full of the codecs you care about.

You may think that with so many codecs available, there are
infinite codec combinations. However, the number of combos
can be narrowed down to some extent by the target markets.
For example:

I 1~ Set top boxes. At the very least, these will need MPEG2

3

video decoders and AC3 audio decode.

v Video surveillance. These systems use MPEG4 encoders
in low-end systems, and H.264 encoders at the high-end.

To make life simpler on the OMAP3530, Texas Instruments is
providing some prepackaged DSP codec combinations. The
DVSDK ships a variety of video, audio, and imaging codecs
within the encode and decode combos. Look for more to
come in the future.

Part lli
The Part of Tens

The 5th Wave By Rich Tennant

Oh come on-

how fatal
can it be?

In this part . . .

Fe book wouldn’t be complete without the For Dummies
Part of Tens. Much of what makes OMAP and DaVinci
processors special is a unique ability to run an unlimited
variety of video, imaging, speech, and audio codecs.
Chapter 11 provides a codec “must-do” list so software
system integrators can use them quickly and efficiently.
Chapter 12 gives you a list of additional Web sites and other
resources that will enhance the overall OMAP and DaVinci
development experience.

Chapter 11

Ten (Almost) Codec
Package Requirements

In This Chapter
Revisiting the importance of XDAIS and XDM APIs
Using wizards to help get things done (correctly?)

Documenting performance properly

Fe central characters throughout OMAP and DaVinci
Software For Dummies are multimedia codecs. To help
both the codec creator and user get on the same page with
codec requirements, we've developed a list of ten (well, nine
for now) must-dos and must-haves to ensure that codecs
properly and easily integrate into complete systems.

1+~ Ensure XDAIS compliance: Compliance with XDAIS stan-
dards (described in Chapter 3) is a critical prerequisite
for any codec. A test tool, QualiTl, is available for down-
load from www. ti.com/dummiesbook.

»# Document the footprint and resource usage: The
QualiTI test tool (see Chapter 7) produces memory and
performance characteristics. This information should be
included in a properly packaged codec.

v~ Specify XDM VISA API usage: Video, Imaging, Speech,
and Audio (and now Analytics and Transcoding) codecs
should all implement the latest XDM interface and explic-
itly state which interface they implement. It’s not suffi-
cient to simply say “it’'s XDM.” For more on XDM, check
out Chapters 3 and 7.

7 04 Part lll: The Part of Tens

1 Adhere to XDM semantics: It’s not sufficient for a codec
to just apply the XDM syntax. For example, using IVID-
DEC1, a null termination of the outputlD, is required so
that the codec behaves properly in a Codec.Engine envi-
ronment. For more on XDM, see Chapters 3and 7.

v Deliver proper RTSC packages: Codecs should be deliv-
ered as RTSC packages. To make such delivery easy, you
can download a RTSC package wizard (check out Chapter
8) from www . ti . com/dummiesbook.

» Provide codec unit-server examples: The codec
provider should provide a unit-server.test example to
run in a “real” framework like Codec Engine. A RTSC
server wizard is available from www . ti.com/ dummies
book. We show you how to use the wizard in Chapter 9.

v Document coprocessor use: Codecs should document
the use of hardware coprocessors so potential conflicts
can be identified. XDAIS provides an IRES (for Interface-
Resource) API for handling the use of coprocessors. For

_more on XDAIS, refer to Chapter 3.

v Supply known good parameters: Many XDM interfaces
have a large number of parameters. Codec providers
should publish a set of known good parameters (or
ranges of parameters) so that the codec can run right

away. Visit Chapter 7 for more on codec parameters.
|

v Preserve codec performance: To preserve codec per-
formance in a production system, utilize link.xdt as a
linker contribution from the codecs. It’s a template file
that is used by the RTSC tools at the final link to figure
out the actual memory assignments on the platform that
your system uses. Stop by Chapter 8 for more on link.xdt.

Chapter 12

Ten Super OMAP and
DaVinci Resources

In This Chapter
Exploring key TI Web sites

Visiting open source Web sites
Finding other hidden gems

E/en with literally a world of information available on the
&= nternet, it’s sometimes a bit of a hassle to actually find
what you're looking for. How many times have you heard
someone say, “It’s on the Web!”? It probably is on the Web,
along with a billion other things cluttering the same space. In
this chapter we go beyond telling you, “It’s on the Web,” and
actually point out some key places to start your quest for
more details.

V¥ www.ti.com/dummiesbook: This might seem like we're
stating the obvious, but probably the most important site
for readers of OMAP and DaVinci Software For Dummies is
this book’s companion Web site. There, you'll find all the
required software downloads, updates, and a list of cor-
rections relating to the book.

v wiki.davincidsp.com: This is a wiki site dedicated to
users of all the various software components and tools
introduced throughout this book. The site contains tech-
nical articles and documents ranging from a single page
to complete application notes.

V¥ www.tiexpressdsp.com: This Web site is similar to the
wiki introduced in the preceding item, but is a more gen-
eral site that covers additional technologies and prod-
ucts not specifically covered in this book.

1 06 Part lll: The Part of Tens

| ¥ community. ti.com/forums: These forums are a new
! way for developers to interact with each other and with

TI developers on any number of technical subjects
related to OMAP and DaVinci development.

98 D

V¥ source.mvista.com/git/?p=linux-omap-
2.6.git;a=summary: This is the online home of the
OMARP git tree. Visit this site for all the latest and greatest
OMAP kernel and driver releases, updates, patches, and
more.

T AT T

L source.mvista.com/git/?p=linux-davinci-
2.6.git;a=summary: This is the online home of the
DaVinci git tree. Note that this git tree is different from
the OMAP one described in the preceding bullet. Visit
this site for all the latest and greatest DaVinci kernel and
driver releases, updates, patches, and more.

ZX7 e

| 1 www.eclipse.org/dsdp/rtsc: Real Time Software

’J Components (RTSC; refer to Chapter 3) is an open source
effort being led by T It’s an initiative to bring consis-
tency to the development, packaging, and delivery of
embedded software components. RTSC is now part of
Eclipse and has a dedicated project home page on the
eclipse.org Web site.

| ¥ focus.ti.com/lit/ug/ spru352g/spru352g.pdf:
This PDF is the defacto reference document for the XDAIS
standard (refer to Chapter 3). XDAIS has been estab-

i lished for almost ten years as a way to ease codec inte-

| gration into complex systems. It creates rules and
guidelines for codec developers to follow during the

g development cycle.

i

" »” focus.ti. com/lit/ug/spruec8b/spruec8b.pdf:
% This is an additional reference document that describes
i the multimedia extension to XDAIS referred to as XDM
% (see Chapter 3). XDM APIs create a standard for several

categories of codec classes, easing the process of switch-
ing similar codecs.

! ¥ focus.ti.com.cn/cn/lit/ug/sprue67d/sprue
67d.pdf: Last, but by no means least, is the users’ guide
developed specifically for applications on the Codec

'9; Engine (check out Chapter 4). Codec Engine is a conven-

§ ient, pre-built software framework ideally suited for run-
ning codecs on the OMAP and DaVinci processors.

Index

Numbers
5GHz chip design problems, 8-9

o/ o

AAC encoder, AUDENC interface, 67
abstraction, Codec Engine, 36-37
ACPY3 component, 33
acquiring codecs, 41-42
algorithms
Céx, 24, 25
Codec Engine, 37
creation, 22
eXpressDSP Digital Media
Software, 20
IALG interface and, 24
industry standards, 22
peripheral devices, 24
proprietary, 22
QualiTI, 26
reentrant, 24
relocatable code, 24
stack size and, 25
worst-case interrupt latency, 24
APIs (Application Programming
Interfaces), VISA, 35
app file, 71
applications, operating systems
and, 19
ARM
GPP, 16-17
Integrity (Greenhills Software), 47
Linux, 17
OS tools, Linux applications,
46-47
OS tools, Microsoft WinCE, 47
ARM general purpose processor
Codec Engine, 34

Codec Engine framework
application software, 20
DSP interactions, 49-50
ARM Ltd general purpose
processor, 12
ASP (Authorized Software
Provider), 41-42
AUDENC interface, AAC
encoder, 67
audio, sychronizing, GStreamer
and, 99
audio codecs, 41

o5 e

big-endian format, C6x
algorithms, 25

breadcrumbs, 49-50

building demos, 94

oo
C64x + DSP, 12
C6x algorithms, 24, 25
CCS (Code Composer Studio),
48-49
CE (Codec Engine), introduction, 34
CE file, 71
chip clock frequencies, 7
chip performance, boosting, 9
chips
different cores, 9
identical cores, 9
multiple processors, 9
clock speed, 8
Code Generation Utility Scripts, 61
Codec Engine, 32
abstraction, 36-37
algorithms, 37

1 08 OMAP and DaVinci Software For Dummies

Codec Engine (continued)
application, 38
ARM, 34
DSP, 34
DVSDK decode demo, 92
integration, 37
introduction, 19
process, 37-38
server, 37
Codec Engine framework
application software
ARM general purpose
processor, 20
DSP and, 20
codec server packages, 83
codec.cfg file, 87
codecs
acquiring, 41-42
audio, 41
calls to hardware, 23
combos, 100
COTS (commercial off-the-
shelf), 23
imaging, 41
interfaces, 26
interrupts, disabled, 23
preserving performance,
78-79, 104
re-entrant, 23
relocating in system memory, 23
speech, 41
unit-server examples, 104
validation, sample, 60-61
video, 41
XDAIS, 22-23
XDAIS rules and guidelines, 32
combos
_ building, 88
performance-tuning, 88-89
commercial Linux
MontaVista, 19
paying for, 19
updates, 19
community Linux, 18

component models
‘embedded programming, 29
overhead, 29
components
reusing, 28
RTSC, 28
coprocessor, documenting use, 104
cores, peripherals, 17
COTS (commercial off-the-shelf)
- codec software, 23
createFromServer() function, 94

oo

DaVinci
git tree, 18
heterogeneous design core, 10
Linux and, 16-19

decode, 57

demos
building, 94
config file modifications, 92-94
DSP server executable, 95

deterministic operating systems, 16

DM6446 EVM, 53

DM6467 EVM, 53

DMAI (DaVinci Multimedia

~ Applications Interface)

DVSDK demos, 98
modules, 99
mpeg4 decode server, 99
single-page applications, 98-100
source code, 99

DMAN3 component, 33

docs file, 71

DSKT2 component, 33

DSP (digital signal processor)
Advanced Event Triggering, 48
ARM interactions, 49-50
Code-Generation tools, 49
Codec Engine, 34
Codec Engine framework

application software, 20
‘debugger, 48
IDE (Integrated Development
Environment), 48

Index ’09

introduction, 12
memory configuration, 15
Profiling, 49
Real-Time Debug, 48
scalability, 15
Simulation, 49
SOCs and, 13
speed, 15-16
streaming data, 15
task scheduler, 13
DSP server executable, 81
BIOS utility modules, 81
Codec Engine, 81
DSP Link content, 81
DSP/BIOS, 81
DVTB and, 97-98
Framework components, 81
running with demos, 95
DSP/BIOS
attributes, 13
DSP task scheduling, 14
external memory, 15
latency, 16
operating system, 14
scalability, 14-15
DSP/BIOS Link
Codec Engine framework
application software, 20
inter-processor communication
building blocks, 39
inter-processor communication
protocols, 39
IPC (inter-processor
communication), 38
processor control, 39
reasons to use, 39
services, 39-40
DVI (Digital Visual Interface), OMAP
and, 55
DVSDK (Digital Video Software
Development Kits)
A/V data, 46
Codec Engine, 45
Decode demo applications, 45
demos, 92-95
DM6446 EVM, 53

DM6467 EVM, 53
DMAL 98
documentation, 46
DSP/BIOS, 46
DSP/BIOS Link, 46
DVTB (Digital Video Test
Bench), 46
evaluation codecs, 45
file-based encode example, 46
Linux utilities, 45
LSP (Linux Support Package), 45
RTSC Codec Packaging Wizard
and, 73

XDAIS developers kit, 45

DVTB (Digital Video Test Bench), 82
DSP server executable, 97-98
features, 96
preparations to run, 96-97
testing, 96-97

DynamicParams, 67

oF e

Eclipse IDE, 47 _
embedded applications, Linux, 17
Embedded Linux, 17
emulators, 49
encode, 57
engine, definition, 82
Enterprise Linux, 17
Ethernet ports, core, 17
EVM (Evaluation Modules)
hardware and, 44
software and, 44
eXpressDSP Digital Media Software
algorithms, 20
introduction, 20
standards, 22
external memory, DSP/BIOS, 15

of e

FC (Framework Components), 32
files, codec library; 70
footprints, documenting usage, 103

1 7 0 OMAP and DaVinci Software For Dummies

Free Software Foundation, 17
functions, createFromServer(), 94

Loy

git tree
DaVinci, 18
Linux, 18
OMAP, 18
public Linux, 18
GNU C compiler, 47
GNU C++ compiler, 47
GPP (general purpose processor)
ARM, 16-17
SOCs and, 13
task scheduler, 13
GStreamer
introduction, 19
synchronizing audio and video, 99

oy

e H ®

v

H.264, 92

hardware
accelerator, 12
calls from codecs, 23
EVMs, 44
Hello World, 55-57
heterogeneous multi-core
approach, 9
programming models, 1 1-12
homogeneous multi-core
approach, 9-10
programming models, 10-11
hybrids
cars, 8
programming and, 7

[DS

IALG
interface, algorithms and, 24
linker placement, 64

IALG interface, 26
IDE (Integrated Development
Environment), 48
IDMAZ3 interface, 26
im4h3dec.h file, 71
imaging codecs, 41
inArgs, XDM interfaces, 67
interrupts, disabled, 23
IPC (inter-processor
communication), 38
IRES interface, 26

of o

latency
description, 16
operating systems, 16
worst-case interrupt latency, 24
lib file, 71.
link.xdt file, 72
linker section names, 64-65
Linux
advances, 17
ARM, 17
commercial, paying for, 19
community, 18
DaVinci and, 16-19
Embedded, 17
embedded applications, 17
Enterprise, 17
general purpose processor, 13
git tree, 18
OMAP and, 16-19
popularity, 17
price, 17
processors, 17
software drivers, 17
updates, 17
Linux kernel, versions, 18
little-endian format, C6x algorithms,
24, 25
loopback, 57

Index 7 7 ’

o fe
make command, 83
memory
DSP, 15
persistent memory, 88
scratch data memory, 88
MFPs (Multimedia Framework
Products)
Codec Engine, 32
FC (Framework Components), 32
introduction, 31
MIPS (million instructions per
second), 15
modules, DMAI, 99
MontaVista Software, 19, 47
MPEG2, 92
MPEG4 package, 71, 92
MPEG4DEC.xdc file, 72
multi-core architecture
heterogeneous core approach, 9
homogeneous core approach, 9
multi-core devices, DSP, 14
multi-core trends, 7
multimedia, core, 17

of\fe
namespace compliance, XDAIS and,

64

<

OMAP
EVM bundle, 44
git tree, 18
heterogeneous design core, 10
Linux and, 16-19
OMAP 3530 board, introduction, 53
OMAP3 EVM
DVI (Digital Visual Interface), 55
hardware components, 54

operating system
applications and, 19
deterministic, 16
DSP/BIOS, 14
latency, 16
task switch time, 16
outArgs, XDM interfaces, 67

oo

package.bld file, 71, 86
package.xdc file, 72, 86
package.xs file, 71, 86
packages
basic rule, 30
compatibility, 30
configuration, 86-87
documentation, 30
files, 30
MPEG4, 71
naming, 30
Target Content, 61
value of, 70
parameters, supplying good, 104
performance tuning, combos, 88-89
peripherals, 17, 24
persistent memory, 88
plug-and-play
inArgs of XDM interfaces, 67
outArgs of XDM interfaces, 67
popularity of Linux, 17
price of Linux, 17
processors, multiple on chip, 9
program memory requirements,
65-66
programming
Hello World, 55-57
hybrids and, 7
PSP (Platform Support Package)
driver, 55
public Linux, git trees, 18

’ ' 2 OMAP and DaVinci Software For Dummies

o()o

QP (Quantization Parameter),
values, 66

QualiTI
algorithm testing, 26
footprint report, 65-66
HTML report, 63
preparing to run, 61
running, 62-63
XDAIS compliance and, 60

]

<

reentrant algorithms, 24
reentrant codecs, 23
Reference Frameworks, 32
relocatable algorithm code, 24
resources

documenting usage, 103

online, 105-106
RTSC (Real Time Software

Components)

embedded components and, 28

packages, 104

reasons to use, 29

RTSC Package Wizard, 29

rules and guidelines, 29-30
RTSC Codec Package, 82
RTSC Codec Packaging Wizard,

73-78

RTSC packages

benefits, 72

definition, 70

elements of, 70
RTSC Server Packaging Tool, 82-87
RTSC Server/Combo Package, 82

eSeo

scalability, DSP/BIOS, 14-15
scheduling kernel, scalability, 15
scratch buffer, 88

scratch data memory, 88

serial ports, core, 17
server executable, building, 87
server packages
codec packages, 83
Server Packaging Wizard, 85-86
Server Packaging Wizard, running,
84-85
servers/mpegddec_unitserver_evm
3530 directory, 86
Si (silicon) devices, clock speed, 8
single-page applications, DMAI and,
98-100
SOC (System on Chip)
DSPs and, 13
GPPs and, 13
hybrids, 7
silicon processors, 8
software, EVMs, 44
software drivers, Linux and, 17
Sourcery G++, 46-47
speech codecs, 41
speed, DSP, 15-16
SPRU652, 23
stack size, algorithms and, 25
static data, 65-66
streaming data, DSP, 15
system memory, codecs, 23

oJ e

task schedulers

DSP, 13

DSP/BIOS, 14

GPP, 13
task switch time, 16
testing, introduction, 91
TI standards, 22
TMS320C55x DSP, 23
TMS320C6x DSP, 23

olf o

updates, commercial Linux, 19
USB ports, core, 17

Index ’ }'3’

() V ®
validation, codec sample, 60-61
VICP (video and image
coprocessor), 12
video, sychronizing, GStreamer
and, 99
video codecs, 41
VISA (Video, Imaging, Speech, and
Audio)
APIs, 35
introduction, 27
XDM and, 66-67
visualization, 50

o l/ o

Web sites, 105-106
worst-case interrupt latency, 24

° f @
XDAIS (eXpressDSP Algorithm
Interoperability Standard)
ACPY3 component, 33
compliance, 26, 103
DMAN3 component, 33
DSKT2 component, 33

framework components, 32-33
guidelines, 25

IALG interface, 26, 33
IDMAZ3 interface, 26, 33
interfaces, 25-26
introduction, 22-23
IRES interface, 26
linker section names, 64-65
namespace compliance, 64
revisions, 23
rules, 23-25
XDAIS Developer’s Kit, QualiTI, 26
XDC packages. See RTSC packages
XDCPATH, RTSC Codec Packaging
Wizard and, 73
XDCtools, 61
XDM
algorithms, 27
audio algorithms, 27
decoder interfaces, 27
encoder interfaces, 27
imaging algorithms, 27
InArgs, 67 »
interfaces, 27
introduction, 26
OurtArgs, 67
semantics, 104
speech algorithms, 27
video algorithms, 27
VISA API usage, 103
VISA semantics and, 66-67

Acrylic Painting Set

DUMMIES

. . ’
Electric Guitar

Starter Pack
e

DVDs Music » Games * DIY
Consumer Electronics * Software ¢ Crafts
Hobbies » Cookware * and more!

Check out the Dummies Product Shop at www.dummies.com for more information! @ W ILEY

2

s
Vi

(J ol- = ad G de
D Proqre .
U AP and D3 AFOCE :
S : OMAP and D Drocesso
O Ed O e OO0l Proag 85 DrOG bl
de es proviae e pe O orid orid gene
D pOSse proce or and AlJ O proce O
g ae O O O O 2 5 q i)
op eo e O Drocesso ST
ead O e SO e provided b - it
peead P aeveiop - O ge OD d o~ 5 5
aeo/audlio o d he 5 or d X
c O
: ons in plain English
Explanations in p
TH E‘ “Get in, get out” information

DUMMIE* S |cons and other navigational aids
W A ! Toptenlists
A dash of humor and fun

Get the most from your

OMAP and DaVinci processor-based products!

Discover
how to:

Partition applications
across OMAP and
DaVinci processors

Utilize an almost
unlimited variety of -
software codecs

Leverage standards
for embedded software
components

Build a working video
and audio example

@ www.dummies.com
v~ Find listings of all our books

1 Choose from many
different subject categories

v# Sign up for eTips at
etips.dummies.com

For Dummies®
A Branded Imprint of

% WILEY

