
Methods of Using
Processor Cores To
Optimize System
Performance & Cost

2Copyright 2003. All rights reserved

The Designer’s Challenge
• How to partition between HW and SW to get the

best cost and performance?
– Hardware is fast and cost grows with complexity
– Software is inexpensive and performance degrades

with complexity
– Some functions are naturally meant to be implemented

in processors

3Copyright 2003. All rights reserved

Accelerating Software Example
Inverse Discrete Cosine Transform

• A typical software development starts as 100% “C”
• Performance profiling determines the critical paths

– IDCT function is in the critical path
– The system requirements are off by an order of

magnitude

Identify opportunities for system
performance acceleration

4Copyright 2003. All rights reserved

If All Code is Run in Software...
IDCT

Software Library
Main Software

Calling IDCT Function
xil_idct (int *indata, int *outdata) {

int i, j, k;
int sum;

for (j = 0; j < 8; j++) {
sum = 0;
for (i = 0; i < 8; i++)

sum += (indata[i] * idct_constants[j][i]);

outdata[j] = (sum >> 2);
outdata[j] = (int) DESCALE (outdata[j], 10);

}

#include "mb_interface.h"

int main() {
int indata[8], outdata[8];
...
xil_idct (indata, outdata);
...

}

• Entire IDCT function takes 1144 clock cycles to execute
• 896 clock cycles (14*64) reside in the inner loop

This implementation is an order of
magnitude too slow

5Copyright 2003. All rights reserved

Traditional Acceleration
Define New User Instruction

Add User-Defined
MAC Instruction

xil_idct (int *indata, int *outdata) {
int i, j, k;
int sum;

for (j = 0; j < 8; j++) {
sum = 0;
for (i = 0; i < 8; i++)

asm (“MAC %0, %1”
: d (indata[i]) : d (idct_constants[j][i]));

asm (“READMAC %0” : “=d” (sum));
outdata[j] = (sum >> 2);
outdata[j] = (int) DESCALE (outdata[j], 10);

}

Main Software
Calling IDCT Function

#include "mb_interface.h"

int main() {
int indata[8], outdata[8];
...
xil_idct (indata, outdata);
...

}

• Saving 3 clock cycles per iteration in the inner loop
• IDCT function runs only 1.2x faster - still too slow

Large effort for a small return

6Copyright 2003. All rights reserved

Xtreme Processing Acceleration
Option 1:
Use small (200 LUTs)
implementation of IDCT in HW

– only 107 clock cycles
–– 10x faster10x faster

Option 2:
Use fast (1,600 LUTs)
implementation of IDCT in HW

– only 52 clock cycles
–– 22x faster22x faster

LocalLink
Ports

LocalLink
Ports

OPB PCI

IDCT Function in HW
through LocalLink

#include "mb_interface.h"

int main() {
int indata[8], outdata[8];
…
xil_idct_hw(indata, outdata);
…

}

void xil_idct_hw(int indata[8], int outdata[8] {
microblaze_bwrite_datafsl (indata[0], 0);
microblaze_bwrite_datafsl (indata[1], 0);
microblaze_bwrite_datafsl (indata[2], 0);
microblaze_bwrite_datafsl (indata[3], 0);
microblaze_bwrite_datafsl (indata[4], 0);

microblaze_bread_datafsl (outdata[0], 0);
microblaze_bread_datafsl (outdata[1], 0);
microblaze_bread_datafsl (outdata[2], 0);
microblaze_bread_datafsl (outdata[3], 0);
microblaze_bread_datafsl (outdata[4], 0);

}

This achieves our performance goals!

IDCT Logic

IDCT Logic

LocalLink
Ports

LocalLink
Ports

Main Software
Calling IDCT Function

7Copyright 2003. All rights reserved

MicroBlaze LocalLink
Accelerates System Performance

Control Tasks

Control Tasks

IDCT Function

Control Tasks

IDCT Function

IDCT Function IDCT Function

Xtreme
Processing

Parallel HW Acceleration

LocalLink
LocalLink

3

+

2

+

0 1

+

n

+

Xtreme Processing Advantage
Up to 22x Faster!

Processor(s) and HW on a single programmable platform
C++ Code Stack

Traditional

Processing time

8Copyright 2003. All rights reserved

Optimizing Hardware Example
Digital Down Converter

• Hardware is ideal for high performance
– Developing complex algorithms in hardware can be challenging
– Low sample rate processing HW tends to be overkill

• Software is cost effective for low performance requirements
– Time sharing of resources leads to dramatic silicon area savings
– SW handles significantly more complex algorithms easier

Identify opportunities for
cost reduction

9Copyright 2003. All rights reserved

Don’t Let High Speed Logic
Drive Design Requirements

Digital Down Converter for GSM Base Station

4 Stage
CIC Down

Sample
By D1=48

R
N
D

CIC
Course
Grain =1

R
N
D

PolyPhase
Decimator
Decimate
by D2=2

R
N
D

PolyPhase
Decimator
Decimate
by D2=2

R
N
D

1.08 MHz 0.27 MHz

Q

PFIR H(z)
M2

CFIR G(z)

R
N
D

M1

C(z)

x(n)

Input Sample Rate = 108 MSPS

High Speed Logic Low Speed Logic

52 MHz 0.54 MHz

• Low speed circuitry must be designed to high speed rules
• Half of the circuitry is 10x faster than required
• Wasted performance, power, and silicon cost

10Copyright 2003. All rights reserved

Don’t Run at 52 MHz
When 0.27 MHz is Enough

HW-only requires
~1373 Slices, 1 BRAM, 1 Multiplier
HW/SW mix requires
~785 Slices, 3 BRAM, 2 Multipliers

LocalLink
Ports

LocalLink
Ports

4 Stage
CIC Down

Sample
By D1=48

R
N
D

CIC
Course
Grain =1

R
N
D

PolyPhase
Decimator
Decimate
by D2=2

R
N
D

PolyPhase
Decimator
Decimate
by D2=2

R
N
D Q

PFIR H(z)M2 CFIR G(z)

R
N
D

M1

C(z)
x(n)

1.08 MHz

0.54 MHz 0.2
7 M

HzIn HW In SW

1.08 MHz 0.27 MHz52 MHz 0.54 MHz

Input Sample Rate = 108 MSPS

HW/SW mix is 34% smaller

11Copyright 2003. All rights reserved

MicroBlaze Device Support

Spartan Series FPGAs

Virtex Series FPGAs

12Copyright 2003. All rights reserved

MicroBlaze Soft Processor
• 32-bit Harvard bus RISC architecture
• 32 general purpose registers
• 3 operand instruction format
• New features in EDK v3.2

– Instruction and data caches
– 32-bit barrel shifter
– Hardware divider
– LocalLink
– MicroKernel
– Hardware debug module

• Standard peripheral set
• GNU development tools

525 Slices in Spartan-3
68 D-MIPS at 85 MHz

Effective cost as low as $1.40*Effective cost as low as $1.40*

~ 6% of XC3S1000

An Implementation Example

* Based on pricing for 2004, 250K units

13Copyright 2003. All rights reserved

LocalLink with MicroBlaze
• 300MB/sec direct processor interface
• 2-cycle transfer
• Point-to-point connection

– Inter-process communication
– Custom functions & hardware
– Co-processing functions

• Up to 32 input/output LocalLinks
• Configurable depth FIFOs on

input/output LocalLink
• Use CoreConnect™ OPB bus,

LocalLinks, or both
LocalLink

Soft-IP

CoreConnect OPB

LocalLink
Ports

LocalLink
Ports

LocalLink
Ports

LocalLink
Ports

User
Logic

LocalLink
Ports

LocalLink
Ports

LocalLink
Ports

LocalLink
Ports

User
Logic

LocalLink
Ports

LocalLink
Ports

Serial
Port

Serial
Port

LEDs
DIPs

LEDs
DIPs

UARTGPIO

14Copyright 2003. All rights reserved

Example: Birger Engineering
68 Billion Color LED Display

Large scale LED Display
(4 x 5 meter)

Xilinx FPGA featuring MicroBlaze
for the video processor module

15Copyright 2003. All rights reserved

MicroBlaze Enables Video
Processing in LED Display

Virtex-II (XC2V1000)*
USB

OPB
UART
OPB

UART

JTAG OPB USBSystem
ACE

OPB
Arbiter OPB Timer

OPB
SDRAM

OPB Video
Processor

OPB I2C RS 232

RS 232

RS 422

Xilinx
System
ACE CF

SDRAM

3 x 10 bit
ADC

3 x 10 bit
DAC

VGA
In

VGA
Out

Clock
GEN

Compact
Flash
64 MB

Xilinx Memory CPU Non-Xilinx Mixed Signal Embedded Logic

*Can be implemented
in Spartan-3

16Copyright 2003. All rights reserved

When Speed Is Bad...

• Many peripheral components have been designed to
be controlled by a processor

• Some peripherals require deliberately slow interfaces
• Implementing complex state machines in HDL with

artificial timing constraints is challenging and
inefficient

17Copyright 2003. All rights reserved

Natural Processor Interface

E
R/W
RS

DB7~DB0• Many peripherals are
meant to be driven by a
processor

– Bus interface
– Sequential initialization
– Micro-second timing…

Clear Display
(01HEX)

Power
On

Wait
>15ms

Set 8-bit communication mode
(send 38HEX four times)

Set data entry
mode (06HEX)

Display on and
Cursor mode (0EHEX)

18Copyright 2003. All rights reserved

Deliberately Slow Operations
LCD Module Timing

E

>82 µs

Clear Display and memory - wait 82µs to 1.64ms
Write data to character memory - wait 40µs

PWM

δt

PeriodDuty

Total ClocksRate δt Clock Cycles/ δt
150Hz1% Duty Resolution

50 MHz Hardware Clock
66µs

1KHz 10µs
10KHz 1µs

3330 333,000
500 50,000
50 5000

19Copyright 2003. All rights reserved

Complex State Machines
Digital Clock

0-9
Counter

0-5
Counter

0-9
Counter

0-2
Counter

=23?

0-59
Counter

Divide
50,000,000

Decimal to
7-Segment

50MHz
1sec

20Copyright 2003. All rights reserved

Complex State Machines
Digital Clock

Mode Set
HOW

?

0-9
Counter

0-5
Counter

0-9
Counter

0-2
Counter

=23?

0-59
Counter

Divide
50,000,000

Decimal to
7-Segment

50MHz
1sec

21Copyright 2003. All rights reserved

Complex State Machines
Digital Clock

Mode Set
HOW

?

0-9
Counter

0-5
Counter

0-9
Counter

0-2
Counter

=23?

0-59
Counter

Divide
50,000,000

Decimal to
7-Segment

50MHz
1secDivide

50

Registers

1µs

IN_PORT[7:0]

PORT_ID[7:0]INTERRUPT

INSTRUCTION[15:0]

OUT_PORT[7:0]

ADDRESS[7:0]
CLK

READ_STROBE

WRITE_STROBE

KCPSM

RESET

inc_minutes: ADD minutes, 01
SUB minutes, 3C
JUMP Z, inc_hours
ADD minutes, 3C
JUMP show_time

inc_hours: ADD hours, 01
SUB hours, 18
JUMP Z, show_time
ADD hours, 18

show_time: CALL display_time

22Copyright 2003. All rights reserved

PicoBlaze Features
• 8-bit Data
• 16 Registers
• Interrupt
• Reset
• Built-In CALL &

RETURN Stack
• Free Reference

Design
• Source VHDL
• Program Stored in

Block RAM

IN_PORT[7:0]

PORT_ID[7:0]INTERRUPT

INSTRUCTION[15:0]

OUT_PORT[7:0]

ADDRESS[7:0]
CLK

READ_STROBE

WRITE_STROBE

KCPSM

ADDRESS[7:0]

INSTRUCTION[15:0]

CLK

Block Memory(Program)

RESET

Interface
to logic

SpartanSpartan--II/E = 256 Instruction Code SpaceII/E = 256 Instruction Code Space
SpartanSpartan--3 = 1,024 Instruction Code Space3 = 1,024 Instruction Code Space

23Copyright 2003. All rights reserved

PicoBlaze Features
• 8-bit Data
• 16 Registers
• Interrupt
• Reset
• Built-In CALL &

RETURN Stack
• Free Reference

Design
• Source VHDL
• Program Stored in

Block RAM

76 Slices

9% of XC2S50E

~81 MHz

SpartanSpartan--II/E = 256 Instruction Code SpaceII/E = 256 Instruction Code Space
SpartanSpartan--3 = 1,024 Instruction Code Space3 = 1,024 Instruction Code Space

24Copyright 2003. All rights reserved

PicoBlaze for Simple Processing
XC2S50E

supports up to 8
PicoBlaze cores

Key pad reader with
DTMF dialing
and tone
generation

UART communication
providing
remote
diagnostic
commands

1 2 3

4 5 6

7 8 9

* 0 #

Display Control

“We found that having some intelligence in the hardware so close
to the parts that actually do all of the work is remarkably efficient.”

Steve Brett - Technical Director - Pandora International Ltd

25Copyright 2003. All rights reserved

Emulated Embedded 8051
on PicoBlaze in Spartan-II

Spartan-II FPGA
(XC2S30)
featuring
PicoBlaze

to emulate 8051
operation

26Copyright 2003. All rights reserved

Xilinx Soft Processor Offerings

75

125

100

150

50

MicroBlaze 32-bit

PicoBlaze 8-bitPe
rfo

rm
an

ce
 in

 D
-M

IP
S

2001 2002 2003 2004 2005

27Copyright 2003. All rights reserved

The Designer’s Solution
• Solve every problem the most cost-effective way

– Some functions belong in HW
– Some functions belong in SW
– And some functions are just meant to interface to

processors

Xilinx FPGAs With Soft Processor Cores
Enable Flexible HW/SW Tradeoffs

Thank You!

Reference Slides

30Copyright 2003. All rights reserved

Need More Information?

• Processor Central: www.xilinx.com/processor
• EDK: www.xilinx.com/edk
• MicroBlaze: www.xilinx.com/microblaze
• PicoBlaze: www.xilinx.com/picoblaze

EDK 3.2
Software Tools
Reference Slides

32Copyright 2003. All rights reserved

Optimized SW
Libs and
Drivers

libc.a
Xilinx

Micro-Kernel

Parameterizable
HW IP

ISE Platform Studio IDE – Your Desktop SoC Factory

Your Code,
Apps, OS…

Your Custom
HW

PPC
405

PPC
405

4KB IOCM
BRAM

4KB IOCM
BRAM

8KB DOCM
BRAM

8KB DOCM
BRAM

DDR
Cntrl

DDR
Cntrl

32KB
BRAM

32KB
BRAM

JTAGJTAG

128MB
DDR

SDRAM

128MB
DDR

SDRAM

BRAM
Cntrl

BRAM
Cntrl

PLB
Arbiter

PLB
Arbiter

OPB
<>

PLB

OPB
<>

PLB

16450
UART

16550
UART

OPB
Arbiter

OPB
Arbiter

OPB
GPIO

2KB
BRAM

OPB
PCI

OPB
10/100 E-Net

BRAM
Cntrl

Serial
Port

Serial
Port

LEDs
&

Buttons

LEDs
&

Buttons
Serial
Port

Serial
Port

EthernetEthernet

32/33 PCI32/33 PCI

VxWorks
BSP &
Kernel

VxWorks
BSP &
Kernel

Linux
BSP &
Kernel

Linux
BSP &
Kernel

PPC
405

PPC
405

4KB IOCM
BRAM

4KB IOCM
BRAM

8KB DOCM
BRAM

8KB DOCM
BRAM

DDR
Cntrl

DDR
Cntrl

32KB
BRAM

32KB
BRAM

JTAGJTAG

128MB
DDR

SDRAM

128MB
DDR

SDRAM

BRAM
Cntrl

BRAM
Cntrl

PLB
Arbiter

PLB
Arbiter

OPB
<>

PLB

OPB
<>

PLB

16450
UART
16450
UART

16550
UART
16550
UART

OPB
Arbiter

OPB
Arbiter

OPB
GPIO
OPB
GPIO

2KB
BRAM
2KB

BRAM

OPB
PCI
OPB
PCI

OPB
10/100 E-Net

OPB
10/100 E-Net

BRAM
Cntrl

BRAM
Cntrl

Serial
Port

Serial
Port

LEDs
&

Buttons

LEDs
&

Buttons
Serial
Port

Serial
Port

EthernetEthernet

32/33 PCI32/33 PCI

VxWorks
BSP &
Kernel

VxWorks
BSP &
Kernel

Linux
BSP &
Kernel

Linux
BSP &
Kernel

Your
Custom

Computing
Platform

Work the Way
You Want – GUI,
Command Lines

or Both!

Work the Way
You Want – GUI,
Command Lines

or Both!

GUIGUI

Bash Shell
with Tcl

applications
and text input

Programmable Platform Design

33Copyright 2003. All rights reserved

Programmable Platform Design
Bridging the gap between the promise of single-language

“co-design” and traditional “over-the-wall” HW/SW approaches

Xilinx ISE & Platform Studio IDE

Customized SW Platform for
Programmable Systems (BSP)

Customized HW Platform for
Programmable Systems

Platform
Specification
Format (PSF)

An abstraction that
enables the HW & SW
domains to be coupled
during the design
process

Does not require HW &
SW to be “unified”
Supports the traditional
bottom-up approach that
is familiar today

SW Platform Customization
• Libraries
• Device drivers
• Boot
• User code
• RTOS interfacing

HW Platform Customization
• CoreConnectTM bus IP
• PowerPCTM

• MicroBlazeTM Tight coupling of tools and
the PSF enables a
customized SW platform to
be generated that matches
the customized HW platform

Enables
traditional design

teams (HW & SW) with a
better SoC approach

Provides the foundation for automated Architectural SynthesisProvides the foundation for automated Architectural Synthesis

Coupled

HW generation using
synthesis and place & route

Code generation using
compiler tool chains

HW Platform GeneratorSW Platform Generator

34Copyright 2003. All rights reserved

Others…

XMD MB-GDB
MB Cycle

Accurate ISS

ppc-eabi-gdb

gdb remote
protocol

mb-gdb

Others…

PPC405 dbg port MB
dbg
port

UARTlite

RISCWatch
Protocol
overJTAG

Serial
XMD

Protocol

XMDStub
Simultaneous, multiple
targets and applications

Xilinx Microprocessor Debug

Tcl/Terminal Interface

Plumbing and synchronization
between host-side application
and:
• Other host-side applications
• Actual targets
Use of sockets and TCP/IP
enables remote and local
connections

Tcl Interface enables:
• Command line control of

debugging using Tcl capabilities
• Complex verification and analyses
scripting

(XMD)

gdb remote
protocol

TCP/IP
sockets

TCP/IP
sockets

JTAG

35Copyright 2003. All rights reserved

EDK 3.2 Release

• MicroBlaze
– I-Cache and D-Cache
– Hardware Divide

Instruction
– HW Debug module
– LocalLink for Processors

• Requires ISE 5.2i, SP1

• Xilinx Platform Studio
– Platform Block Diagram Editor
– GUI on Solaris
– Improved database facilities
– User Toolbar

• Xilinx Microkernel libraries
– Highly modular, OS-like

services

36Copyright 2003. All rights reserved

Xilinx Platform Studio 3.2

• Platform Block
Diagram Editor
– Integrates System

Generator Pro
functionality

– Provides editing
as well as
generated
diagrams

37Copyright 2003. All rights reserved

Xilinx Platform Studio 3.2
• Full GUI on Solaris
• New Platform Specification Format database

facilities
– Foundation for improved and more robust rules

checking of design before generation
– Expanded SW platform generation capabilities

• User Toolbar
– Launches user-identified applications, scripts, etc.

38Copyright 2003. All rights reserved

Xilinx Microkernel Libraries
• Goal: Provide highly modular, OS-like facilities for Xilinx

embedded CPU systems
– Utilize “the FPGA way” in HW design for SW design

• Only build-in exactly what you need
• Minimize resource usage and footprint size

– Supports PPC405 and MicroBlaze
• Existed in EDK 3.1, as an unsupported capability – in

3.2, this is now supported
– User changes made to source are not supported

• Source included, open license model
– No exposure of your IP, customization, etc. is required
– Free to do with as you will

39Copyright 2003. All rights reserved

New Debug Capabilities in 3.2
• New MicroBlaze HW debug module

– Connects via JTAG just like PowerPC 405 core
– Includes runtime control and/or trace and/or profiling

data
– No memory space for debug kernel needed
– No debug kernel to crash/more robust debug
– Runs with Xilinx Parallel IV cable and EDK-supplied

SW debugger

EDK 3.2
Processor IP
Reference Slides

41Copyright 2003. All rights reserved

Released Processor IP (EDK)
• Shipped as Evaluation (Includes Eval

License)
– OPB Uart-16450 & OPB Uart-16550
– OPB HDLC
– OPB IIC
– OPB Ethernet 10-100 EMAC
– OPB Ethernet-Lite 10-100 EMAC
– OPB ATM Master Utopia Level 2
– OPB ATM Slave Utopia Level 2
– OPB PCI 32 Bridge
– OPB ATM Master Utopia Level 3
– OPB ATM Slave Utopia Level 3
– PLB ATM Master Utopia Level 2
– PLB ATM Slave Utopia Level 2
– PLB GMAC Ethernet
– PLB RapidIO (Installs in to EDK)

• Shipped as Clear text VHDL Source
– OPB SDRAM Controller
– OPB DDR Memory Controller
– OPB EMC Memory Controller
– OPB Block Memory Controller
– OPB ZBT Memory Controller
– PLB Block Memory Controller
– PLB DDR Memory Controller
– PLB SDRAM Memory Controller
– OPB Uart-Lite, OPB JTAG Uart
– OPB Timer / Counter, OPB Watchdog Timer
– OPB GPIO, OPB SPI
– OPB Interrupt Controller

• Additional Included IP
– OPB System ACE controller
– OPB IPIF Interface
– PLB IPIF Interface

Open Source for Infrastructure Cores (EDK SP2)

42Copyright 2003. All rights reserved

IP Evaluation In The EDK
For LogiCORE IP that Xilinx Licenses ($$)

• Evaluation IP in the EDK (EDK SP1)
– To Evaluate $$ IP, Customer Must Buy the EDK
– OPB 10/100 Ethernet MAC, OPB2PCI 32/33 Bridge, IIC,

UART 16450/550, ATM Utopia 2 & 3
• EDK 3.2 Install Includes Evaluation IP

– Installed with 10 month Evaluation License
• Evaluation Core can be Treated in Every Way Like its Licensed

Counterpart
– Evaluation Core can be Processed Through MAP, PAR and Through

Bitstream Generation
– Logic Added to Disable Some Aspect of the LogiCORE’s Functionality

(Controlled by License File)
– Evaluation Core will Function in Hardware for 6-8 Hours

43Copyright 2003. All rights reserved

PCI 32/33 is not “Free”

• To Evaluate PCI32 OPB Bridge, You Buy the EDK
3.2

• To get Full License for PCI32, You a PCI32
LogiCORE Product

– Full OPB2PCI32 Install and License is in the PCI32
Lounge

Same Process for ATM, Ethernet, RapidIO, Etc

44Copyright 2003. All rights reserved

Interfacing to FPGA Fabric

• Key to efficient user model is interface to FPGA fabric
– FIFOs cross clock domains between MicroBlaze and other FPGA

Logic
• Input and Output FIFOs efficiently handle data transfer to/from MicroBlaze and

other logic in the FPGA
– Simplifies the users data flow control
– Proven solution that matches user mindset

– H/W support for simple “semaphore” operation
• Simplifies “connecting” FPGA hardware operations with software task
• Synchronize hardware to software processes.

– MicroBlaze LocalLink Input and Output Ports for sampling and
driving signals

45Copyright 2003. All rights reserved

Processing Requirements
• DSP systems require varying levels of processing power
• HW runs fast

– Great for higher rate processing, usually lower complexity algorithms
– Developing complex algorithms in hardware is very challenging
– Downside: Low sample rate processing H/W tends to be overkill and leads

to significantly higher cost solutions.

• SW runs much slower
– Suitable for low sample rate processes
– Time sharing of resources leads to dramatic silicon area savings
– Upside: handles significantly more complex algorithms easier

An ideal solution has support for BOTH HW and SW!

LocalLink for
Processors
Reference Slides

47Copyright 2003. All rights reserved

LocalLink vs BUS

• Unidirectional point to point communication
• Unshared non-arbitrated communication

mechanism
• Supports any arbitrary connection topology

– Star topology
– Pipelined unidirectional flow network
– Bi-directional flow
– Ring topology etc.

48Copyright 2003. All rights reserved

LocalLink & BUS:
Complementary

• Support for any imaginable data flow requirements
• Match interconnect architecture to data flow

requirements of user program

49Copyright 2003. All rights reserved

LocalLink with MicroBlaze (1)
• Available today on MicroBlaze !
• New instructions

– Get : Read from LocalLink into register
– Put : Write register contents to LocalLink

• Blocking Get and Put instructions
– Stall until the instructions succeed

• Non-blocking Get and Put instructions
– No stalling of processor pipeline
– Carry bit set if instruction succeeds

50Copyright 2003. All rights reserved

LocalLink with MicroBlaze (2)
• Configurable depth input FIFO on input LocalLink
• Configurable depth output FIFO on output LocalLink

– Get and Put MicroBlaze Instruction
– get fromInputFSL M, toReg N
– put toOutputFSL M, fromReg N

• 5 bit opcode describing get and put instructions
– 32 input and 32 output LocalLink Registers

• Input and Output LocalLink width same as datapath
width of MicroBlaze (32 bit)

51Copyright 2003. All rights reserved

Software Programming Model
• Direct access to input and output LocalLink via

inline assembly of opcodes C/C++ program
• Macros for LocalLink access within C code

– XilReadFsl (value, fslN) - read from input LocalLink N
into C program variable ‘value’.

– XilWriteFsl (value, fslN) - write C program variable
‘value’ into output LocalLink N

– fslN : integer value between 0 and 32
• Fully supported by Assembler
• Automatic inference and scheduling not yet

supported by compiler

52Copyright 2003. All rights reserved

LocalLink Performance (1)
• No latency beyond input FIFO delay assuming

non-empty FIFO (data available)
• No latency beyond output FIFO delay assuming

non-full FIFO (data ready)
• Get/Put instructions operate at Fmax of processor

– Adding logic over LocalLink does not affect processor
speed

• 2 cycles to execute get instruction
– One cycle to test if data available on input FIFO
– One cycle to transmit data from input FIFO to register

53Copyright 2003. All rights reserved

LocalLink Performance (2)
• 2 cycles to execute put instruction

– One cycle to test if output FIFO not full
– One cycle to transmit data from register to output

FIFO
• Data transfer rate over LocalLink on MicroBlaze:

300Mbyte/sec
– assuming 150 MHz processor speed (VII Pro)
– 32 bit data path
– assuming no stalls due to empty or full FIFO
– 300 Mbyte/sec = (32/8 byte)*(150M/sec)*(1/2 cycles)

54Copyright 2003. All rights reserved

Streaming Data Performance:
LocalLink vs BUS

• LocalLink
– Data availability tests performed in hardware for

LocalLink
• BUS

– Requires busy loop for polled bus transfers
– Requires interrupt handler for interrupt driven bus

transfers
– Larger overhead associated with data availability tests

and arbitration for buses

55Copyright 2003. All rights reserved

LocalLink : Direct
Communication

• Communication between two MicroBlaze cores with data
transfer rates of 300 Mbyte/sec

– Point-to-point communication with no arbitration overhead
• Communication between hardware processing engines

implemented on the FPGA
– Data transfer rate = 600 Mbyte/sec
– assuming 150 MHz clock, and 32 bit data

• LocalLink not associated with processor can clock at a
much higher rate ~600 MHz

– Data transfer rate = 2.4 Gbyte/sec
– Multiple clock domains not supported yet

56Copyright 2003. All rights reserved

Hardware System Implementation

• Number of input and output LocalLink on
configurable on MicroBlaze

• MHS based interconnect specification
• PlatGen based interconnect generation
• Can be used in conjunction with buses

(LMB/OPB/PLB)

	Methods of Using Processor Cores To Optimize System Performance & Cost
	The Designer’s Challenge
	Accelerating Software Example Inverse Discrete Cosine Transform
	If All Code is Run in Software...
	Traditional Acceleration Define New User Instruction
	Xtreme Processing Acceleration
	MicroBlaze LocalLink Accelerates System Performance
	Optimizing Hardware ExampleDigital Down Converter
	Don’t Let High Speed LogicDrive Design Requirements
	Don’t Run at 52 MHz When 0.27 MHz is Enough
	MicroBlaze Device Support
	MicroBlaze Soft Processor
	LocalLink with MicroBlaze
	Example: Birger Engineering 68 Billion Color LED Display
	When Speed Is Bad...
	Natural Processor Interface
	Deliberately Slow Operations
	Complex State Machines
	Complex State Machines
	Complex State Machines
	PicoBlaze Features
	PicoBlaze Features
	PicoBlaze for Simple Processing
	Emulated Embedded 8051on PicoBlaze in Spartan-II
	Xilinx Soft Processor Offerings
	The Designer’s Solution
	Thank You!
	Reference Slides
	Need More Information?
	EDK 3.2 Software Tools Reference Slides
	Programmable Platform Design
	Programmable Platform Design
	Xilinx Microprocessor Debug
	EDK 3.2 Release
	Xilinx Platform Studio 3.2
	Xilinx Platform Studio 3.2
	Xilinx Microkernel Libraries
	New Debug Capabilities in 3.2
	EDK 3.2 Processor IPReference Slides
	Released Processor IP (EDK)
	IP Evaluation In The EDK For LogiCORE IP that Xilinx Licenses ($$)
	PCI 32/33 is not “Free”
	Interfacing to FPGA Fabric
	Processing Requirements
	LocalLink for Processors Reference Slides
	LocalLink vs BUS
	LocalLink & BUS: Complementary
	LocalLink with MicroBlaze (1)
	LocalLink with MicroBlaze (2)
	Software Programming Model
	LocalLink Performance (1)
	LocalLink Performance (2)
	Streaming Data Performance: LocalLink vs BUS
	LocalLink : Direct Communication
	Hardware System Implementation

