[image: image1.png]

V H D L

Methodology
2/3 Day Workshop

Lab Exercises

(For Foundation Express 1.4
or Synplify 3.0)

Introduction

The following lab exercises are designed to demonstrate basic concepts of VHDL and the capabilities of the Xilinx Foundation Express 1.4 tool and / or Synplicity’s Synplify 3.0 tool, using practical applications and exercises. The lab exercises will follow the lecture and will increase in complexity over the two or three day period. Solutions to each exercise may be found at the end of this publication.

READ THIS! In general there are 3 major steps in accomplishing the labs.

· Create the VHDL. This can be done in any text editor, but will primarily be accomplished using the Foundation Project Manager’s VHDL design wizard. Be sure to setup the correct design directory.

· Synthesize to a target technology. This will be done in either FPGA Express or Synplify. Currently they are both stand-alone tools that need to be opened independently of both Foundation and the M1 Implementation tools. Using a consistent lab directory will aid in streamlining this entire process.

· Implement in a Xilinx. This is done using the Xilinx M1 Implementation tools, namely the M1 Design Manager. Again, because of the current independence of the synthesis tools you will have to open this tool up independently of both Foundation and FPGA Express or Synplify.

Foundation, FPGA Express, and M1 Design Manager can be started from the start menu: “Start” -> “Programs” -> “Xilinx Foundation Series”. Synplify can be found under the “Synplicity” startup group.

Using a consistent design directory will streamline this entire process. You will always know where to save your hdl, where to find your hdl and where the output files are kept.

Perform every lab in c:\hdlclass\ directory

Lab 1

Objective: Observe the inherent correlation between a given entity level description and any block level schematic element.

The following macros are taken from the Xilinx XC4000E Unified Library. Write a corresponding VHDL entity description for each macro.

Instructions:
· Remember that an entity description describes the module interface only.
· Label each entity with the original macro name.
· Use data type bit & bit_vector for all ports. (bus inputs and outputs where appropriate)
· [image: image2.wmf]Synplify.lnk

Use VHDL-87 conventions.
Use a separate worksheet if more space is required.

Lab 2a for Foundation FPGA Express Users

Lab2a is for FPGA Express users, while lab2b is targeted for Synplify users. Do ONE or the OTHER, not both.

Objective: Write basic entity declaration & Introduction to Foundation Express.

Overview: The current version of the Xilinx tools provide the powerful synthesis capabilities of the FPGA Express tool from Synopsys. However, the program is currently a separate program that must be initiated in a stand-alone mode. The tools will be fully integrated in the upcoming “1.5” release due at the end of Summer 1998.

When using this tool for synthesis and constraint entry, you will need to create separate projects for the Xilinx Foundation Project Manager, and the Foundation Express tools. In addition, the FEXP (Foundation Express) does not include an editor for creating the source file, and thus it will necessary to the use the HDL editor in the XFPM (Xilinx Foundation Project Manager) which has a handy HDL design wizard, or any other text editor.

Instructions:
· [image: image3.wmf]Using the Xilinx Foundation Project Manager, create a new project labeled “my_mod”, under the directory c:\hdlclass\lab2\ (Select a XC4003E-PC84 –1 device.)

· [image: image4.png]-
- YR

Invoke the “HDL Editor”, select “Create Empty”. A new sheet is opened in the editor.

· Write a VHDL description for a entity labeled My_Mod, with the following I/O:
in: Data_1, Data_2, Data_3, Clk, Reset, Load out:Q_1, Q_2, Q_3 ;

· Use data-type bit or bit_vector for the ports.

· Create a shell architecture body, with no attempt to describe functionality.

· Save the file as My_Mod.vhd.

(Do not attempt to perform a “syntax-check” or “synthesis” command within this editor, this feature of the tool requires a key on the parallel port, that key is not present at this time. Syntax and other errors will be identified and addressed in the FEXP environment)

· When you are finished, invoke the Foundation Express tool from the Xilinx program group. When the tool opens, go to “File” -> “New” to create a new project called “FEX_my_mod”, under the directory c:\hdlclass\lab2\.

[image: image5.wmf]Foundation Express.lnk

· The tool now prompts you for the input source file, select the My_Mod.vhd file, which you saved in c:\hdlclass\lab2\ . (If the FEX project was properly created in the same directory, the file will be visible, if it is not, you will need to browse to the directory where the source .vhd file was created) The file is immediately analyzed as it is imported, and stored in the library (after errors have been corrected.)

NOTE: You should follow the toolbar from left-to-right, to implement your HDL. The first one (going left to right) is Add Sources (1). The second, Update (Analyze, 2), the third Create Implementation (Elaborate, 3), the fourth Optimize (Compile, 4), and the fifth is Export Netlist (5).

[image: image6.png]

 1 2

 3 4 5

· [image: image7.wmf]Xilinx Foundation Project Manager.lnk

[image: image8.wmf] If errors are present, you may now enter the limited editor features available within FEXP. Errors are shown as red X’s on the source. Warnings are shown with a red exclamation point. Those that pass the syntax check are shown with a green check.

· [image: image9.wmf]Xilinx Demo-Board Operation

 XC4003E-PC84

Power

Switch

XChecker

Connection

 XC3000

Bar

LEDs

for Counter

Down

 Up

Count

 Load

Clk Disable

Clk En

Async

 Clear

Run

D[3] :1

D[2] :1

D[1] :1

D[0] :1

D[3] :0

D[2] :0

D[1] :0

D[0] :0

Select the source file with your cursor, then click the right mouse button and select “edit file”. After you have corrected the file, click on “Update” in the “Synthesis” menu. ->

· Although no internal logic has been described as yet, it is possible to compile the module with only the pads that are inferred from the singular top-level module.

· Within the Foundation Express tool, select the My_Mod module (by name) from the pull-down selection menu on the top tool-bar. (The “implementation dialog box opens)

[image: image10.wmf]D [7:0]

Q [7:0]

UP

LD

CE

RST

OSC4

F15

CLK

D_in[7]

D_in[6]

D_in[5]

D_in[4]

D_in[3]

D_in[0]

D_in[1]

D_in[2]

UPCNT

LOAD

CLK_EN

CLOCK

RESET

P61

P62

P65

P66

P57

P58

P59

P60

P25

P26

P27

P28

P19

P20

P23

P24

CNT8

OSC15

BUFG

MYCOUNT8

Q_Out[4]

Q_Out[5]

Q_Out[6]

Q_Out[7]

Q_Out[0]

Q_Out[1]

Q_Out[2]

Q_Out[3]

· Accepting default parameters, click the “OK” button. The designed is now elaborated (compiled to gates), the results are shown in the “chips” window. However, the results are not optimized to the target technology (Xilinx) at this point!

· [image: image11.png]Change

Change]

resultrile
<No_Result>

Target
Xilinx XCADOIERCHA-1,

BUN

Fanout Limit: 100, Force GSR, M1

ViewLog

Cancel

Ready...

 Click on the design in the “chips” window, then click the mouse right button and select the “Edit Constraints” option.
Within this table, you may enter constraints that affect both synthesis, and device level implementation of the logic. Explore the various tabs and options of this feature rich tool (these options will be explored further on the 3rd day of the 3 Day VHDL class, using an FPGA Express lab).

[image: image12.png]

** This is the completion of this exercise.

Lab 2b for Synplify Users

Do this lab, ONLY if you have not done Lab2a or if you wish to use the Synplify tool.

Objective: Write basic entity declaration & Introduction to the Synplify 3.0 tool.

Instructions:
· [image: image13.png]

Using the Synflify tool from the Synplicity program group.

[image: image14.png][N

· Close the inside window labeled Unsaved Project by clicking on the X in its top right corner. Open the editor with the “File” -> “New” command. (select HDL file).

· Write a VHDL description for a entity labeled My_Add1, with the following I/O:
in: Addn1, Addn2, Carry_in, Clk, Reset, out: Sum, Carry_out ;

· Use data-type bit or bit_vector for the ports.

· Create a shell architecture body, with no attempt to describe functionality.

· Save the file as c:\hdlclass\lab2\My_Add1.vhd. Next, do a syntax check, go to “Tools” -> “Syntax Check”. This is commonly referred to as the “Analyze” step. Fix any errors or warnings.

· [image: image15.png]B albuies.vhd
® autosync.vhd

[image: image16.png]

[image: image17.png]Fex_my_mod exp

[_[O1x]

=53 Fewmnod
& @ WoRK
B my_modshd

Optinize Chip
Updste Chip
Erpor Bl

Chip Regort

Delete Chip__Del

Under the “File” menu, select “Build Project”, this will create a project with the current file included.

· Select Xilinx as the target family. Select the XC4003EPC84-1 device.

· Click on the “Run” button, this will compile the design. If there are errors, click on the file and this will return to the editor to make corrections .

· After compiling the design, use the HDL Analyst to examine both the “RTL” and “Technology” view. These tools provide a graphical representation of the synthesized code. You make click on a given feature in the RTL view and the tool will link to the editor and source code, displaying the specific construct that generated that particular piece of logic.

[image: image18.wmf]M1 Design Manager.lnk

RTL
Technology

From this point forward, users may select either FPGA Express or Synplify for the lab exercises.

 Lab 3

Objective: The purpose of this lab is to help you gain an understanding of how to build hierarchy using VHDL.

Write a behavioral/RTL and a structural description for the following logic.

Observe the following and-or combination. First, write the entity description for the logic. Then write both a behavioral and structural architecture body for the entity.

Instructions:
· Write entity & architecture descriptions for My_And2, and My_Or2. Save in the directory c:\hdlclass\lab3\.

· Label the top level entity AND_OR.

· Label the ports as you wish, using data-type bit.
· Label the structural implementation STRUCT.

· Declare and instantiate each component, with appropriate port map statement.

· Declare internal signals as necessary.

· Use named association for the port map.

· Label the behavioral implementation BEHAVE.

· Use VHDL-87 conventions.

>> Bonus : Rewrite the Structural description using direct entity instantiation.

[image: image19.png]

[image: image20.png]

[image: image21.png](3]

@ e non® &
X Add New Fis |

[image: image22.png]-
- YR

[image: image23.png]

[image: image24.png][N

[image: image25.png]

[image: image26.png]§V

[image: image27.png]Clocks | Paths | Ports | Modues | iinx Options |

Hame Clock
<deraut- 20mno
: acicr_dec_speed_iick|

[image: image28.png]Clocks Paths | Ports | Modules | Xiin: Options |

o
[o [v [&]

B FLRC-ck FLRC-ck 20

[image: image29.png]Clocks | Paths Ports | Moduies | X Options |

nput etay | output ne rad putieg | use | siew
Name.[oicection| "PDElY | WO DY | s uter (%o osistance| "BURED | Ve | Siow
O wTaATe I = 7
R TR T TS TG
R T T YR TS
O TR T YR o)
R TR T YR IS
b fesurert=lrpw {20,017
T fesareitelrpu |20,
R TN T YR IS
R TN T YR)

[image: image30.png]Clocks | Paths | Ports Modules | Xiink Options |

=
[me | worwy | rmaves | Sertr | ommes | e |

2 8 ack_dec

[image: image31.png]

[image: image32.png]Clocks | Paths | Ports Modules | jinx Options |

=
[me | worwy | rmaves | et | P | e | s | rvorions | vanes

2 B acr_dec e 2 o

[image: image33.png]

[image: image34.png]Cell Counts [21x]

Cell Type. T Count [
BUFG 1
FMAP 2
HMAP 3
1BUF 1
INFF 18
OUTFF 14
STARTUP 1

[V Counts cumulstive for all subhisrarchy

Close. Help

[image: image35.png]

[image: image36.png]

[image: image37.png]

[image: image38.png][N

[image: image39.png]§V

[image: image40.png]

[image: image41.png]

[image: image42.png]

[image: image43.png]

[image: image44.png]Fle Edt Seach View Design Simuation To

[NEEEEE

e machine VHD.
) ste_machine by

[image: image45.png]

Lab 4

Objective: Write two behavioral/RTL descriptions for the 4-1 mux shown below. Use If-Elsif statements for the first, and Case statements for the second.

(Note that If/Elsif allows for arbitrary and overlapping conditions, as where the case is more precise and limited to the value of a single expression. What is the potential impact with respect to logic synthesis within a Xilinx FPGA? Sketch the two possible logic implementations.

(Hint: Overlapping condition causes priority encoded logic to be generated !))

Instructions:
· Invoke the XFPM or Synplify tool.

· Invoke the HDL Editor. Use VHDL-87 conventions if using FEXP for synthesis.

· Label the entity MUX4_Case & MUX4_If. (use separate file)

· Determine the inputs and outputs and label the ports.

· Label the behavioral implementation using case as “CASE_MUX.

· Label the behavioral implementation using if-elsif as “IF_MUX.

· Save as c:\hdlclass\lab4\mux4_case.vhd and mux4_if.vhd respectively.

[image: image46.png]Blesign Broy

[@_sate_mach (5] -

D ne_s4

B reset_proc

D a_and_b_process
B std standard
B eeestd_logc_1164

e Tvae T[]

> a 1
> b 1
o ok 1
© 0
o reset 1
"o init

g init

[image: image47.png]> fiome [

[image: image48.png]

[image: image49.png][=Rl Q| & | a8 i = @i | e

Name. Value. [R R =

> a 1 T =

s |]

- ok ' A Ty Y o B o B

o ot 0 D (D (]

o reset 0

" os init jump, foac

ns load fump)ferch it foad
| »|«lo. ..r'

Eltb_state_m..| & waveform1 | Sstate_mach., & waveform2

[image: image50.png]

[image: image51.png]

[image: image52.png]& XILINX®

[image: image53.png]

[image: image54.wmf]
[image: image55.wmf]
[image: image56.wmf]D [7:0]

Q [7:0]

UP

LD

CE

RST

OSC4

F15

CLK

D_in[7]

D_in[6]

D_in[5]

D_in[4]

D_in[3]

D_in[0]

D_in[1]

D_in[2]

UPCNT

LOAD

CLK_EN

CLOCK

RESET

P61

P62

P65

P66

P57

P58

P59

P60

P25

P26

P27

P28

P19

P20

P23

P24

CNT8

OSC15

BUFG

MYCOUNT8

Q_Out[4]

Q_Out[5]

Q_Out[6]

Q_Out[7]

Q_Out[0]

Q_Out[1]

Q_Out[2]

Q_Out[3]

[image: image57.wmf]Xilinx Demo-Board Operation

 XC4003E-PC84

Power

Switch

XChecker

Connection

 XC3000

Bar

LEDs

for Counter

Down

 Up

Count

 Load

Clk Disable

Clk En

Async

 Clear

Run

D[3] :1

D[2] :1

D[1] :1

D[0] :1

D[3] :0

D[2] :0

D[1] :0

D[0] :0

[image: image58.png]Create Implementation - my_mod

nglenension Nare [15_mo7

Terget device

Optiriz for

Vendor Device @ Speed

il =l hiea

B Efont

ey Spesd gade B

ecaona N = | o
Clockfequency [50 Miz ™ Dot et 11 pads

I Skip constaint entry oK T Help

[image: image59.wmf]Xilinx Foundation Project Manager.lnk

[image: image60.png]lab1 - 4003EPC8:
Fle Document View Tools Messages Help

D[] 8] olx| ol als s K

roject Manager

Flow | Carfents | Status | Reporls

£ LAB1.UCF —— 2

chematic HDL state | _|
a g\ﬁ;ws Editor Editor Editor
Bl xcaoo0E T

s Implement Design
Funct Info

e

g -
KIN| []
Pem Start ACTIVE-CAD 3.0 - Messages - Fri May 08 19:09:28 1998 -l
Opening project: cihdlclassilab1yab1 -

Pem : Project should include at least one of documents:
Pem - Schematic, VHDL, ABEL, Finite State Machine

Lab 5

Objective: . Create a 4 stage state-machine using enumerated data-types.

First, observe the state-machine diagram below. Implement and optimize the file.

Instructions:
· Label the entity STAT_MACH.

· Determine the inputs and label the ports.

· Label the RTL level implementation RTL.

· Use the same enumerated types as shown in the diagram.

· Use integer data-type integer on output, assign to output signal when in that state !

· Add asynchronous RST input, when asserted, return to Init State.

· Save as c:\hdlclass\lab5\stat_mach.vhd
 [image: image61.png]

[image: image62.wmf]Foundation Express.lnk

[image: image63.png]-
- YR

[image: image64.wmf]Synplify.lnk

[image: image65.png]Synplify - Unsaved Project
Fie View Souce laigel Sythesize HDLAnapst Oplions Window Help

MEIE

M ERE e

25
=

[EEEEEEES

Womereirroest M)ﬁ

Source Files

Use the right mouse button to
bring up a context sensitive

bl 3
ResultFile
<No_Result>

Target
ilinx XCADDSXLPCH4-09,

Fanout Linit

ViewLog
BUN —

Cancel

For Help, press F1

Frequency (MHz)

Symbolic FSM Campiler

100,

L
Synplicity
[

o

Force GSR. M1

[LnoOOOCaiOOO | | |

[image: image66.png]Synpl Wwis\euclid\edited_vhdl\edited_snplfy.pri
Fie View Souce laiget Syrthesize [[UUNEIRY Options Window Help

E|P |

Technology View

J_‘

[image: image67.png]

[image: image68.png]Change

Change]

resultrile
<No_Result>

Target
Xilinx XCADOIERCHA-1,

BUN

Fanout Limit: 100, Force GSR, M1

ViewLog

Cancel

Ready...

[image: image69.png]Fex_my_mod exp

[_[O1x]

=53 Fewmnod
& @ WoRK
B my_modshd

Optinize Chip
Updste Chip
Erpor Bl

Chip Regort

Delete Chip__Del

[image: image70.png]

[image: image71.png]

[image: image72.png]= FPGA Express.

{Warrings

[image: image73.png]Syny

\design\viterbi\vhdi\reencode. vhd (vhdI)

HDL AnalystDptions Window Help

MEIE

Fie Edt View Took

BPEEHS

N El el

= EleEle

13]e 9]

begin
if(

B - \designwiterbivwhdireencode.vhd (vhdl] A=
delay s0_sl : process (sOMSB,

B9 vit_tom URE UDL - (RTL View] - sheet 1 of 1

CLK'event and CLK =
- CLRB is
when "0 =>
for i in 1 to 10 lot
DLYS0 (i) <= ;
DLYS1(i) <=
end loop;
when "17 => L |
if (ENA = thes
DLYS0 (1) 50MS]
DLYS1(1) <= S1MS]
for i in 2 to 10
DLYS0 (i) <= DL
DLYS1{i) <= DL’
end loop;
end if;

when others

o

[LnoOOOCaiOOO | | |

[image: image74.png]Create new FPGA Express Project [21x]

O T = =

hel_solutons
table_salions
Labcoc

Name: fen_addr_dec_ithen Ceate
Cancel

[image: image75.png]B albuies.vhd
® autosync.vhd

Lab 6 (Testbench Lab)

Objective: Develop a testbench for the 4 state - State-machine developed earlier.

A testbench is a VHDL entity/architecture that is use to verify the functionality of another module. The 4 state, state-machine below was created yesterday. Using the Active VHDL simulator, we will develop a testbench to behaviorally verify the module.

[image: image76.png][N

[image: image77.wmf]M1 Design Manager.lnk

[image: image78.png]

[image: image79.png]

[image: image80.png]Look i

File pame:

Filesof ype:

Sources

[Srasmee =] B]

e
121200 decthens

i fthenshd
e sy vhd

oddi_dec-v Open
Common Souces (" vhd* " edf edn; =) Cancel

[image: image81.png](3]

@ e non® &
X Add New Fis |

[image: image82.png]

[image: image83.png]§V

[image: image84.png]Create Implementation - addr_dec

Inclenerision Name [333_dee_speed

Terget device

Optiriz for

Vendor Device @ Speed

il =l hiea

Efont

Fani Spesd gade B

ecaona N = | o
Clockfequency [50 Miz ™ Dot et 11 pads

I Skip constaint entry oK T Help

[image: image85.png]Clocks | Paths | Ports | Modues | iinx Options |

Hame Clock
<deraut- 20mno
: acicr_dec_speed_iick|

[image: image86.png]Clocks Paths | Ports | Modules | Xiin: Options |

o
[o [v [&]

B FLRC-ck FLRC-ck 20

[image: image87.png]Clocks | Paths Ports | Moduies | X Options |

nput etay | output ne rad putieg | use | siew
Name.[oicection| "PDElY | WO DY | s uter (%o osistance| "BURED | Ve | Siow
O wTaATe I = 7
R TR T TS TG
R T T YR TS
O TR T YR o)
R TR T YR IS
b fesurert=lrpw {20,017
T fesareitelrpu |20,
R TN T YR IS
R TN T YR)

[image: image88.png]Clocks | Paths | Ports Modules | Xiink Options |

=
[me | worwy | rmaves | Sertr | ommes | e |

2 8 ack_dec

[image: image89.png]

[image: image90.png]Cell Counts [21x]

Cell Type. T Count [
BUFG 1
FMAP 2
HMAP 3
1BUF 1
INFF 18
OUTFF 14
STARTUP 1

[V Counts cumulstive for all subhisrarchy

Close. Help

[image: image91.png]Clocks | Paths | Ports Modules | jinx Options |

=
[me | worwy | rmaves | et | P | e | s | rvorions | vanes

2 B acr_dec e 2 o

[image: image92.png]

[image: image93.png][N

[image: image94.png]

· Invoke the Active VHDL tool. Select “”Create new design”.

· Label Design (project) My_Test.

· Select Add “existing resource files”, then “next”.

· Browse to the location of the source file c:\hdlclass\lab5\stat_mach and select it.

· Then click on the “next” button, the program acknowledges the file.

· Click “finish”. The file is imported and immediately compiled.

Creating the Test-Bench

· [image: image95.png]

[image: image96.png]Gorerl Proect |
I™ Default Export Timing constraints option to YES

™ Inset LCELL bulfers, stle WYSIWYG (Alera FLEX onl)
Defauit FSM Encoding takes effecton e anslze)
€ OneHat
& Binay

XNF Bus syl [es> (regular expression -cick Help for examples)

™ Save these setlings as user defauls for new projects

[Cancel Help

In the “Design Browser” window, double click on “Add New File”. Then select the default “Create VHDL Source File using Wizard”. Use this wizard to create a template for the testbench (try out the wizard on other designs!).

· Instantiate the state_mach and create stimulus for it. Save it in the Lab 5 directory.

· [image: image97.png]ort Netl

e [@roiow =] B el

pump o
=] u,_fom vhd
am_wrshd

I Export Timing Speciications.

Compile the test bench code. Correct any errors.

· [image: image98.png]Fle Edt Seach View Design Simuation To

[NEEEEE

e machine VHD.
) ste_machine by

Add the file to the design. Go to “Design -> Add Files to Design” and select the test bench that you just created. Or select “Add New File” in the “Design Browser” Window. ->

· Initialize the simulation. Go to “Simulation -> Initialize Simulation”. Select the tab “Top-level Selection”. Select tb_state_mach. Select “OK”.

[image: image99.png][Add New File.

What would you ke to do?

 Eieaie VAL Satice e using Wieaid
€ Create Empty VHDL Sourcs Fie
" Create State Disgram File using Wizard

€ Create Empty State Diagram Fle:

€ AddEsisting Fle

[Cancel

· [image: image100.png]

Start up the wave window. Select ->

· In the “Design Browser” window select the instantiated component state_mach. In the window below that all of the ports and signals will show up. Select each of the signals in that window and drag them into the wave window.

[image: image101.png]

· [image: image102.png]n Settings

Congle TopievelSelscion | SDF | Simton| Hacto|

& Enty Architecture
€ Configuration
Eniies:

Architectues:

=

Py

Hit ->

[image: image103.png]

Which will run the simulation for 100 ns. Check the wave window to be sure your design is simulating correctly and continue to click the “Run for 100 ns” button until the design is completely simulated.

Now, you will re-run the simulation using “Hot Keys”.

· [image: image104.png]

Restart the simulation by selecting ->

· Again select the signals and drag them into the waveform window.

· At this point we will simplify the process of creating input stimulus by using the “hot-key” and built in stimulators of the tool.

· [image: image105.png]

For each signal, first select the signal, then click the right mouse button. Select
“stimulators”. In the “Stimulator type” box, select “hot key”. With your cursor in the “press new hot-key” box, press whatever key you like on the keyboard to toggle that signal., then hit the “apply” button.

(note, if the type is boolean, you must go to the “hot-key “ tab and the specify the sequence for each each key stroke, the default is “0,1”, you shuld type “false,true” in that box.

· Attach signals A,B, RST to whatever keys you choose. CLK will be attached to an internal oscillator.

· Select CLK and the “stimulator” options, for stimulator type, select “Clock” and use the built in clock feature, you may change the frequency if you desire. These Hotkeys will overide the stimulators we created in the test bench file.

· Run the simulation as you did previously. Hit the “Hotkeys” that you selected on the keyboard to toggle these signals during the simulation

Lab 7

Only use the FPGA Express Synthesis tool for this lab! If you need to, go back and look through lab2a for an overview of this tool. Or ask the instructor for help.

Objective: Perform a “front to back” high level design description. Use RTL statements to create the 8 bit counter shown below. Implement the counter and download to a Xilinx XC4003E device for in-circuit verification.
This lab will utilize the exclusive table –based constraint entry of the FPFA Express tool.
(The instructor will provide means to download the resulting .bit file to the demo-board)

Instructions:
Label the top entity MYCOUNT8.
Determine the inputs and label the ports.

[image: image106.png]Blesign Broy

[@_sate_mach (5] -

D ne_s4

B reset_proc

D a_and_b_process
B std standard
B eeestd_logc_1164

e Tvae T[]

> a 1
> b 1
o ok 1
© 0
o reset 1
"o init

g init

· Notice that the D port uses the same 4 bits for the upper and lower nibble of the byte. Use a concatenation operator to express this.
-Fully describe the entity CNT8, then instantiate it into entity MYCOUNT8.

· The OSC4 primitive is an internal Xilinx oscillator and must be instantiated.
(Only utilize the “F15” output pin of the OSC4 primitive.)

· The BUFG macro must be instantiated since the clock is internally sourced.

(The pins of the BUFG primitive are labeled “I” and “O” respectively.)

Save as c:\hdlclass\lab6\mycount8.vhd
Synthesis, Constraints, Optimization

· Create an FPGA Express Project “Fex_lab6” under the directory c:\hdlclass\lab6\. Import the source file into the Foundation Express tool.

· Use the constraint table in the FEXP tool to indicate pad locations for the ports. To do this, right click on the implemented chip in the “Chips” window. Select “Edit Constraints”. Select the “Ports” tab and enter pad locations.
(Look at the schematic to determine the pad locations, use uppercase, i.e. “P61”)

· Optimize the module, and export the net-list to the original project directory.

· Examine the estimates for the register to pad data-paths in the FEXP tool. To do this, select the Optimized netlist in the “Chips” window and right click on it. Select “View Results” then select the “Paths” tab. Here you can view the delay estimates for global paths.

[image: image107.png]> fiome [

Xilinx Implementation

· Create a new project in the Xilinx Design Manager, this is the Xilinx design implementation tool. Look for this under the “Xilinx Foundation Series” program group. Browse to the MYCOUNT8.XNF file as the input.

· Place & route the design, using default selections. If you are not familiar with this tool, ask for help from the instructor.

· [image: image108.png][=Rl Q| & | a8 i = @i | e

Name. Value. [R R =

> a 1 T =

s |]

- ok ' A Ty Y o B o B

o ot 0 D (D (]

o reset 0

" os init jump, foac

ns load fump)ferch it foad
| »|«lo. ..r'

Eltb_state_m..| & waveform1 | Sstate_mach., & waveform2

Compare the estimates with the actual delays using the Xilinx Timing Analyzer.

In-circuit Verification

· Connect the Xilinx demo board to the serial port on the PC workstation using the Xchecker cable.

· Turn the demo board on, so that the Xchecker cable is powered.

· [image: image109.png]

Within the Xilinx Design Manager, invoke the “Hardware Debugger”, (it should auto-detect the cable) > ignore messages regarding readback verification disabling.

· Select the bit file, and go to the “Download” menu, and select “Download Design”.

· After the download and configuration is complete, you can control and verify the counter operation as shown in the table below.

[image: image110.png]il | Hoteys | Preeines |

Signal Stimelor ype: Stengin

Name Type =
Dok

Custom

Fomia

Fredsfined
[value

™ Display paths

Close.

Lab 8

Objective: Encode a traffic signal as a “One-Hot Encoded” state machine, making it potentially more optimal for the Xilinx architecture.

This traffic controller is designed to control one traffic signal. The operation is as follows: the light will initialize at Red, and always cycle from Green, to Yellow, to Red. However, if Reset, the light will cycle to Red, and remain until Reset is released!

Instructions:
· Label the entity OHE_TRAFFIC.

· Determine the necessary inputs and outputs and label the ports as you wish.

· Label the RTL implementation “OHE”.

· Use appropriate subtype (i.e. bit_vector (2 downto 0);,

· Use constants, i.e. Green, Yellow, Etc., encode as shown in the drawing.

· Save as c:\hdlclass\lab7\ohe_traffic.vhd
· At this point you can simulate this design if you wish, and/or synthesize it.

[image: image111.png]Synplify - [Unsaved Project |- [5]x]
4 Fie View Souce Tagel Synhesze HOLAnabst Oolors Window Help ~15]x]

FrE PR EEEEEEEERCD]

Synplify

Use the right mouse button to

Change ..
bring up a context sensitive .
ga || o Synplicity
Frequency (MHz) [50
I | > [Symbolic FSM Compiler &0
PResultFile

Change| <o_Result>

arget
¥ilinx ¥C4003EPCE4-1, Fanout Limit: 100, Forcs GSR, M1

an [Ready...

Cancel

Ln1,Chart | |

 Lab 9: Address Decoder

Introduction:

In this lab you will write code to implement an address decoder. You should get a feel for writing rtl code and the usefulness of using HDL. You should have to spend very little time simplifying the decoder, rather, you will let the synthesis tool do the work. Next, you will put your code through the Synopsys FPGA Express tool or Synplicity’s Synplify tool. There you will explore some of the settings and use some of the features that these tools provide you.

Design Description:

This address decoder is simply decoding the addresses given, using HDL code. Solutions are given, but please use your knowledge and the knowledge of the instructor to figure this out. You will find this lab to be very instructional on how to write rtl and will get a chance to see the power of HDL when used in a synchronous design. Write this code at a very abstract level, i.e. don’t try to decode the addresses as you would in a schematic, rather put everything in there (notice the readability) and let the synthesis tool do all the work to simplify the decoding. You want to get this design running at ~50 Mhz in a Xilinx 4000e-1 part.

FFFF

RAM

RAM

C000 to FFFF

C000

BFFF

Flash/

Flash/ROM 0800 to 1FFF

ROM

2200 to BFFF

2200

21FF

RISM

RISM
0100 to 06FF

2000

2000 to 21FF

1FFF

Flash/

ROM

0800

07FF

I/O

External I/O 0500 to 07FF (see below)

0500

06FF

RISM

0100

00FF
 Internal I/O

Internal I/O 0000 to 00FF

0000

uP Mapped (IGNORE!)
External I/O

Control Lines
BSEL

0500 to 0503

WRB is asserted when :

LCD

0504 to 0507

WR AND (RISM XOR IOSEL)

TIM

0508 to 050F

RDB is asserted when

IOSEL
0710 to 07FF

RD AND (RISM XOR IOSEL)

IOSEL0
0710 to 073F

READY is NOT asserted when

IOSEL1
0740 to 077F

RISM XOR IOSEL

IOSEL2
0780 to 07FF

BW same as READY

INPUTS:

ADDR (15:0)

CLK

RD

WR

1) Write the HDL for this design using if-then-else’s.

2) Write the HDL for this design using Case statements.

DESIGN DIRECTORY: c:\hdlclass\lab9\

Questions/Hints:

· You want to make this design run at ~50 Mhz in a Xilinx FPGA -1 part. To get that kind of speed you will have to register the inputs and register the ouputs. Registering the outputs of a module is a good start to designing synchronously.

· You should write this code using a minimum of 2 processes. You could do it with more however, and receive similar results.

· What is going to happen if you don’t take care of every possible value in the if-then-else code? In the case code? Try it, what do you get?

· Where are you going to put the equations for WRB, RDB, READY, and BW?

Synopsys FPGA Express:

Now that you have your address decoder you will put it through the synthesis tool. Start with the if-then-else implementation.

· FPGA Express. Start Synopsys FPGA Express. Go to: “Start -> Programs -> Synopsys -> FPGA Express”. Create a new project by going to “File -> New”, or by clicking on the “new page” in the toolbar. Traverse through the directory structure until you are at the design directory. Now enter a name for the FPGA Express working directory, something like FEX_design_name (FEX_dec_ifthen?), will do. Then hit “Create”.

· NOTE: You should follow the toolbar from left-to-right, to implement your HDL. The first one (going left to right) is Add Sources. The second, Update (Analyze), the third Create Implementation (Elaborate), the fourth Optimize (Compile), and the fifth is Export Netlist.

 1 2

 3 4 5

· Identify / Analyze HDL files. Now it will ask you to identify the source code. Simply select your code and hit “Open”. Immediately it will begin analyzing your code. If you have written syntatically correct code it will give you a green check, otherwise it will give you a red X (errors) or a red ! (warnings). Make sure the Error/Warnings/Messages window is up at the bottom of the FEX window. If not, select it in the “View -> Output Window”.
· If there are warnings or errors, select the code in the Design Sources window and click the right mouse button and select “Edit File”. Edit the file based on the errors and warnings given. Re-Analyze if needed by selecting the “Update” button on the toolbar or by going to “Synthesis -> Update”. Note that you can find out the reason for your errors using the “Help -> Find” and entering in the error name. E.g. an error will have something like VSS-1089, or HDL-110. Enter those in the Find section of the Help and it will give examples of what is wrong with your code.
· Elaborate. Now that you have analyzed your code, the next step is elaboration. Select your analyzed file, select the + in front of it and down will pop the name of the entity(s) in that file. Select the top level and from the toolbar select the next button (going from left to right), called the “Create Implementation” button or go to “Synthesis -> Create Implementation”. A dialog box will appear. This is where you select a vendors part and speed grade, set a general speed constraint for the design, set the optimize option to either area or speed, and select the effort level, high or low. For now let’s see how fast you can get this design to run in a Xilinx XC4000EPC84 –1 part. Set the clock speed to 50 (Mhz). Optimize for speed and high effort level. At the top of the dialog box change the name of the implementation to addr_dec_speed_hi to indicate that you are optimizing for speed with a high effort level. Select OK. Fix any errors or warnings, if needed. Note that some warnings may be ignored.

· Enter Constraints. Now is the time to enter constraints on the design. Select the elaborated design in the Chips window. Click the right mouse button and select “Edit Constraints”. Another box will appear.
· Clock. The first one highlighted will be Clocks. You have already defined your clock for this design implementation and it is shown here as 20/0/10. The 20 is the period, the 0 is the rise time and the 10 is the fall time. You can redefine the clock here by selecting the numbers in the Clock box, and changing it.
· Paths. Now select the Paths tab. Shown here are the global paths of the design. RC stands for Rising edge Clock. This should show the delay allowed for pad to clock, clock to pad, and the clock to clock of the design. If you want to change that here for any of those global paths, you can do so by selecting the number in the Req. Delay box and changing it to a new value.

· Ports. Now select the Ports tab. Here you can change the use of global buffers, add pullups and pulldowns on ports, change delays used on ports, disable / enable use of I/O registers, change the output slew rate of ports, and lock down pad/pin locations for the ports. At the top are the defaults for the design. You can change the defaults here. Let’s change the default setting for the Slew Rate to FAST. Now all the output ports in the design will have a fast slew rate.
· Modules. Now select the Modules tab.
· Hierarchy. Here you can select the settings for the hierarchy. Eliminate (the default) will eliminate hierarchy in the design so it can run aggressive algorithms on larger portions of the design to get better optimization results. Preserve will keep Express from optimizing across hierarchical boundaries. Hint: If the outputs of each module are registered you can safely preserve the hierarchy with little change in the synthesis results.
· Primitives. A design primitive is a vendors basic library unit used in the vendors netlist. Preserve (the default) will leave any instantiated primitive in the design and make no effort to optimize it with other parts of the design. Optimize will try to optimize it with other logic.
· Operator Sharing. This controls sharing of hardware resources. ON (the default) will share hardware resources (e.g. Adders / Subtractors) while OFF will disable sharing.
· Optimize for. Speed (the default) or Area. The classic trade-off. Optimizing for speed may increase the amount of area used. Optimizing for area may decrease the speed of the design. The default for each module can be changed individually. Giving you more control over implementation of each hierarchy level.
· Effort level. The amount of effort to use during optimization. A high effort level will produce better results but take more time to implement.
· Vendor Options. Edit any specific options available for that vendor. The Xilinx options include: Ignore unlinked cells during GSR mapping. This means that if you instantiate Xilinx specific components that Express cannot link, it will still allow the use of the GSR; Optimize for Place & Route. This selects which Xilinx implementation tool to optimize for.
· Implement/Optimize. Exit out of the Edit Constraints. Select the elaborated design in the Chips window and select the Optimize tab in the toolbar or select “Synthesis -> Optimize”. When it is done, select the optimized design and look at the Error/Warnings/Messages window at the bottom. Correct anything that is wrong.
· Synthesis Results. Now, let’s take a look at the results from synthesis. Select the optimized design, right click on it and select “View Results”. Now it brings up essentially the Constraints window, but now it gives the results of the synthesis run. Look through the results, and fill in the results below. Now, go directly to the Modules section. It gives the results of the amount of modules used. The Area is the sum of all the Look Up Tables (LUT) used in the design. If you select the area number you can find out more detailed information about the design. I.e . how many flops are used in the design, how many global buffers, and so on and so forth. Look through these. Use these results to fill in the table below.

· Save / Export XNF. Now you will save out the synthesized netlist in a xnf (Xilinx Netlist Format) file. Save it in the FEX_design_name directory created earlier. Now it can be implemented in the Implementation tools.Export the netlist by selecting the Export Netlist box on the toolbar or going to “Synthesis -> Export Netlist”.

· Implement. Implement the design in the Xilinx implementation tools. Compare the results there with those received in the synthesis run.

· Re-implement if-then-else design. Now re-implement the design and change from optimizing for speed to optimizing for area. Compare the results from the previous run.

· NOTE: Notice how ALL implementations are kept. This way you can return to a previous implementation. So the first one was optimized for speed and this one will be optimized for area. This gives you the flexibility to try several different implementations of the same HDL code. And use the one the best fits your design.

· Implement the Case design. Now, implement the Case HDL. Try implementing for Speed the first time and Area the next. Try changing the effort levels. Fill in the results and run it through the Xilinx implementation tools to see how the results differ.

Synplicity’s Synplify:

Note: for a review of the Synplify tool, go back and look at lab2b.

· Create a New Project. Go to “File -> New” and select “Project” in the selection window.

· In the “Project” window click on the “Add” button to add the source file. Go to c:\hdlclass\lab10 and select your source code.

· Xilinx. Change the part type to Xilinx.

· RUN. Select the “Run” button. Correct any errors.

· View the Log. Now click on the button “View Log” to view the compilation log.

· Browsing through the log you will find various information. Including, timing a timing report and a resource report. Use the Resource report to fill in the table below.

· Take a look at the schematic. Using the “Hdl Analyst” look at the created rtl schematic. Use the hierarchy button to push and pop in and out of the hierarchy levels. -> Use the sheet arrows to look at the different sheets in the schematic. ->

Optimize for ->

if-then-else (Speed)

high <effort> low
if-then-else (Area)

high <effort> low
Case (Speed)

High <effort> low
Case (Area)

high <effort> low

Synthesis - estimated speed

(MHz)

Implemented – speed

(MHz)

Synthesis - # of LUT's: F Maps, H maps, & CLB’s

Implemented - # of LUT's: F/G Maps, H Maps & CLB’s

Synthesis - # of flops

Implemented - # of flops

Lab 10: Water Pump

· You will not need to specify the encoding style in your code, rather you will use enumerated types for your FSM encoding and let FPGA Express / Synplify do the work of encoding either in binary or one-hot.

Design Description:
We are going to create a FSM to control a water pump. This is the classic water pump design. Name your module pump_fsm.

Level full 10 to 15

Level med 4 to 9

Level low 0 to 3

State A:

Reset state;

Water level low state;

Pumps 1 & 2 off;

State B:

Water level med state;

Pump 1 or 2 on;

· Each new time you enter state B you should change which pump is turned on, so that one pump doesn’t wear out before the other. But it should not change which pump is on if state B was the previous state.

State C:

Water level full state;

Pumps 1 & 2 on;

DESIGN DIRECTORY : c:\hdlclass\lab10\

Synopsys FPGA Express implementation:
· Open FPGA Express. Create a new project under the directory c:\Hdlclass\lab10. Identify your source file. Fix any problems with your code.
· VHDL: Choose the FSM encoding style. Under the menu, “Synthesis -> Options” and the Project tab select Binary as the Default FSM Encoding Style, select “OK”. You will then have to do a Force Update. Select the file, then under the Synthesis menu do, “Synthesis -> Force Update”.

· Create Implementation. Select the pump design and create an implementation for it. Set the speed for 50 MHz. Select the Xilinx part XC4002XLPC84 –09.
· Optimize. Now optimize the design. Take a look at the synthesis results, what is the estimated speed?, the number of FMAP’s, HMAP’s and flip flops? Export the netlist twice, once selecting the check box – Export Timing Specifications and once without it. Just compare the two files and note the differences.

· View the .xnf file. With your favorite text viewer, open the pump_fsm.xnf (the default output file format named <design>.xnf) file that you exported. Look for the number of state registers. How many registers did it use to implement the 3 states? Is it what you expected?

· View Results. Select your optimized design and view the results. Write down the optimized results and compare them with the next run. Try different options. Optimizing for speed or area and optimizing with a high or low effort level.

· Re-implement. Change the FSM encoding style to One Hot.
· Simulate? Now, if there is enough time you could write a test-bench for this lab and simulate it in Aldec’s Active VHDL.

Synplicity’s Synplify:

· Create a Project, add the source file.
· “Run”.
· Browse through the log to view the results of the synthesis run.
· Based on the directory you saved the project to, use your favorite text viewer and look at the created .xnf file.
· This time re-synthesize and select the “Symbolic FSM Compiler”
· Again, analyze the results of the synthesis run.
Simulate?

· Solutions

Lab1

entity NAND4 is

port (A,B,C,D : in bit;

 F : out bit);

end NAND4;

entity M4_1E is
port (D: in bit_vector (3 downto 0);

 S : in bit_vector (1downto 0);

 E: in bit;

 O : out bit);

end M4_1E;
entity CB4CLED is

port (D : in bit_vector (3 downto 0);

 UP, L, CE, CLK, CLR : in bit ;

 Q : out bit_vector (3 downto 0) ;

 CEO, TC: out bit) ;

end CB4CLED;

Lab 2a
Entity My_Mod is

Port (Data_1 : in bit_vector (3 downto 0);

Data_2 : in bit_vector (3 downto 0);

Data_3 : in bit_vector (3 downto 0);

Clk
: in bit;

Reset
: in bit;

Load
: in bit;

Q_1 : out bit_vector (3 downto 0);

Q_2 : out bit_vector (3 downto 0);

Q_3 : out bit_vector (3 downto 0)

);

Lab 3

entity My_And2 is

port (I1, I2 : in bit ;

 O1 : out bit) ;

end My_And2;

entity My_Or2 is

port (I1, I2 : in bit ;

 O1 : out bit) ;

end My_Or2;

architecture BEHV_RTL of My_And2 is

begin

O1 <= I1 and I2 ;

end BEHV_RTL ;

architecture BEHV_RTL of My_Or2 is

begin

O1 <= I1 or I2 ;

end BEHV_RTL ;

entity AND_OR is

port (A,B,C,D : in bit ;

 Z : out bit) ;

end AND_OR;

architecture STRUCT of AND_OR is
component My_And2

 port (I1, I2 : in bit;
 O1 : out bit) ;
end component;

component My_Or2

 port (I1, I2 : in bit ;

 O1 : out bit) ;

end component;

signal SIG_1, SIG_2 : bit; -- internal signals

begin

 U1 : My_And2 port map (I1 => A, I2 => B, O1 => SIG_1); -- named association

 U2 : My_And2 port map (I1 => C, I2 => D, O1 => SIG_2);

 U3 : My_Or2 port map (I1 => SIG_1, I2 => SIG_2, O1 => Z);

end STRUCT;

architecture BEHAVE of AND_OR is - - this is synthesizable

begin

 Z <= (A and B) or (C and D); -- using predefined logical operators

end BEHAVE ;

Lab 4

architecture CASE_MUX of MUX4_1 is
 begin

 process (Sel, A,B,C, D)

 begin

 case Sel is

 when “00” => Z <= A ;

 when “01” => Z <= B ;

 when “10” => Z <= C ;

 when “11” => Z <= D;

 end case ;

 end process ;

end CASE_MUX ;
architecture IF_MUX of MUX4_1 is

 begin

 process (Sel, A,B,C, D)

 begin

 if Sel = “00” then Z <= A ;

 elsif Sel = “01” then Z <= B ;

 elsif Sel = “10” then Z <= C ;

 elsif Sel = “11” then Z <= D ;

 end if ;

 end process ;

end IF_MUX ;

Lab 5

library IEEE;

use IEEE.std_logic_1164.all;

entity STAT_MACH is

 port (

 A: in bit;

 B: in bit;
 CLK : in bit;

 RST : in bit ;

 OUT_1: out integer range 0 to 3);

end entity STAT_MACH;

architecture RTL of STAT_MACH is

type My_State is (Init, Load, Jump, Fetch);

signal State : My_State ;

begin

 process (CLK, RST)

begin

If RST = ‘1’ then

Out_1 <= 0 ;

State <= Init ;

elsif CLK'event and CLK = '1' then

case State is

when Init =>

Out_1 <= 0 ;

State <= Load;

when Load =>

Out_1 <= 1;

if (a = ‘1’ and b = ‘1’) then

State <= Jump;

elsif (a = ‘1’ and b = ‘0’) then

State <= Fetch;

else

State <= Load;

end if;

when Jump =>

Out_1 <= 2;

State <= Fetch;

when Fetch =>

Out_1 <= 3;

State <= Init;

end case;

end if; -- remember the initial rising edge detection

 end process;

 end RTL ;

Lab 6

library ieee;

use ieee.std_logic_1164.all;

entity tb_state_mach is

end tb_state_mach;

architecture tb of tb_state_mach is

component state_machine

 port (

 clk: in STD_LOGIC;

 reset: in STD_LOGIC;

 a: in STD_LOGIC;

 b: in STD_LOGIC;

 out_1: out INTEGER range 0 to 3

);

end component;

signal clk_i, reset_i, a_i, b_i : std_logic := '1';

begin

state_machine_inst : state_machine

port map (

clk
=> clk_i,

reset
=> reset_i,

a

=> a_i,

b

=> b_i,

out_1
=> open

);

clk_i <= not clk_i after 20 ns;

reset_proc: process

begin

wait for 20 ns;

reset_i <= '0';

wait;

end process;

a_and_b_process : process

begin

a_i <= '1';

b_i <= '0';

wait for 100 ns;

a_i <= '0';

wait for 100 ns;

b_i <= '1';

wait for 100 ns;

a_i <= '1';

wait;

end process;

end tb;

Lab 7

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity CNT8 is

port (D :in std_logic_vector (7 downto 0);

 UP,LD,CE,CLK,RST : in std_logic;

 Q : out std_logic_vector (7 downto 0)) ;

end CNT8;

architecture RTL of CNT8 is

signal NQ : std_logic_vector (7 downto 0);

begin

process (CLK, RST)

begin

 if (RST = '1') then

 NQ <= "00000000" ;

 elsif (CLK'event and CLK ='1') then

 if (LD ='1') then

NQ <= D ;

 elsif (CE = '1')then

 if (UP = '1')then

NQ <= NQ + ‘1’ ;

 else

NQ <= NQ – ‘1’ ;

 end if ;

 end if;

 end process;

 Q <= not NQ;

end RTL ;

entity MY_COUNT8 is

port (D_In : in std_logic_vector (3 downto 0);

 UPCNT, LOAD, CLK_EN, CLK, RESET : in std_logic;

 Q_OUT : out std_logic_vector (7 downto 0);

end MY_COUNT8;

architecture STRUCT of MY_COUNT8 is

component CNT8

 port (D :in std_logic_vector (7 downto 0);

 UP,LD,CE,CLK,RST : in std_logic;

 Q : out std_logic_vector (7 downto 0)) ;

end component;

component BUFG

 port (I: in std_logic;

 O: out std_logic);

end component;

component OSC4

 port (F15: out std_logic)

 end component;

signal CLOCK, OSC15 : std_logic

signal D_port : std_logic_vector (7 downto 0) ;

begin

D_port <= D_in & D_in -- concatentation

-- instantiate Counter8 module

U1: CNT8 port map (D =>D_port, UP=> UPCNT, LD => LOAD, CLK => CLOCK,
 CE => CLK_EN, RST => RESET, Q => Q_OUT);

-- instantiate OSC4 and BUFG primitives

U2: OSC4 port map (F15 => OSC15) ;

U3: BUFG port map (I => OSC15, O => CLOCK) ;

end STRUCT;

Lab 8

library IEEE;

use IEEE.std_logic_1164.all;

entity OHE_TRAFFIC is

 port (

CLK : in bit;

 RST : in bit ;

 OHE_Out : bit_vector (2 downto 0));

end OHE_TRAFFIC;

architecture TRAFFIC_RTL of OHE_TRAFFIC is

subtype OHE_State is bit_vector (2 downto 0);

constant Red
: OHE_State := “100” ;

constant Yellow
: OHE_State := “010” ;
constant Green
: OHE_State := “001” ;
signal State : OHE_State ;

begin

 OHE_Out <= State;

 process (CLK, RST)

begin

if RST = ‘1’ then

State <= Red;

Elsif clk ‘event and CLK = ‘1’ then

case State is

when Red =>

State <= Green ;

when Green =>

State <= Yellow ;

when Yellow =>

State <= Red ;

end case;

end if;

 end process;

 end TRAFFIC_RTL ;

Lab 9 case

-- Technically Speaking

--

-- File name : addr_dec.vhd

-- Author : Rhett Whatcott

-- Purpose : HDL coding experience, use of FEX tools

--

-- Revisions :

-- 02/25/98 RWW initial code

--

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

USE ieee.std_logic_unsigned.ALL;

ENTITY addr_dec IS

 PORT (

 addr : in std_logic_vector (15 DOWNTO 0);

 rd : in std_logic;

 wr : in std_logic;

 reset : IN std_logic;

 clk : IN std_logic;

 iosel : OUT std_logic;

 iosel2 : OUT std_logic;

 iosel1 : OUT std_logic;

 iosel0 : OUT std_logic;

 lcd : OUT std_logic;

 tim : OUT std_logic;

 bsel : OUT std_logic;

 rism : OUT std_logic;

 rom : OUT std_logic;

 ram : OUT std_logic;

 wrb : OUT std_logic;

 bw : OUT std_logic;

 ready : OUT std_logic;

 rdb : OUT std_logic

);

 END addr_dec;

 ARCHITECTURE rtl OF addr_dec IS

 SIGNAL addr_i : std_logic_vector(15 DOWNTO 0);

 SIGNAL rd_i, wr_i : std_logic;

 BEGIN

 decode_addr : PROCESS (reset, clk)

 -- Combinatorial signals i.e. not intended to be registered signals

 -- _i: for internal v: for variable _iv: internal variable

 VARIABLE rism_iv : std_logic;

 VARIABLE iosel_iv, iosel0_iv, iosel1_iv, iosel2_iv : std_logic;

 BEGIN

 IF reset = '1' THEN

 iosel <= '0';

 iosel2 <= '0';

 iosel1 <= '0';

 iosel0 <= '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism <= '0';

 bsel <= '0';

 wrb <= '0';

 rdb <= '0';

 ready <= '0';

 bw <= '0';

 ELSIF clk 'event AND clk = '1' THEN

 -- ##

-- In VHDL you cannot specify ranges in a "from - to" sense, except

-- with discrete types. VHDL compilers cannot understand ranges

-- in std_logic or bit_vectors, why?, because there is not

-- weighting to the numbers, i.e. there are not LSB's, or MSB's.

-- e.g. 0101 binary is not interpreted as 5 or 10 decimal. It is

-- simply a representation 0101!

--

-- Therefore, to specify ranges in this case example it might

-- be easiest to simply transfer to an integer interpretation.

-- NOTE: converting the hex values to integer using a conversion

-- function, is not allowed inside of the case statements

-- by FPGA Exress (it must be a static expression).

--

-- Another way of doing this would be to assign :

-- rism_rng1 : integer range 256 to 1788;

-- rism_rng2 : integer range 8192 to 8700;

-- then in the case statement using: (for the rism range)

-- When rism_rng1'range | rism_rng2'range =>

--###

 CASE conv_integer(addr_i) IS

 -- x"0700"

 WHEN 1792 =>

 bsel <= '1';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 lcd <= '0';

 tim <= '0';

 rism_iv := '0';

 rom <= '0';

 ram <= '0';

 -- x"0100" to x"06ff" | x"2000" to x"21ff"

 WHEN 256 TO 1791 | 8192 TO 8703 =>

 rism_iv := '1';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 lcd <= '0';

 tim <= '0';

 rom <= '0';

 ram <= '0';

 -- x"c000" to x"ffff"

 WHEN 49152 to 65535 =>

 ram <= '1';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 lcd <= '0';

 tim <= '0';

 rom <= '0';

 -- x"0800" to x"1fff" | x"2200" to x"bfff"

 WHEN 2048 to 8191 | 8704 to 49151 =>

 rom <= '1';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 lcd <= '0';

 tim <= '0';

 -- x"0704" to x"0707"

 WHEN 1796 TO 1799 =>

 lcd <= '1';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 -- x"0708" to x"070f"

 WHEN 1800 to 1807 =>

 tim <= '1';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 -- x"0710" to x"073f"

 WHEN 1808 to 1855 =>

 iosel0_iv := '1';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 -- x"0740" to x"077f"

 WHEN 1856 to 1919 =>

 iosel1_iv := '1';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 -- x"0780" to x"07ff"

 WHEN 1920 to 2047 =>

 iosel2_iv := '1';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 -- have to take care of all possible values in VHDL!

 WHEN OTHERS =>

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 END CASE;

-- ##

-- Notice how the variables are used to carry combinatorial

-- signals inside of the process

-- ##

 iosel_iv := iosel0_iv OR iosel1_iv or iosel2_iv;

 iosel <= iosel_iv;

 iosel0 <= iosel0_iv;

 iosel1 <= iosel1_iv;

 iosel2 <= iosel2_iv;

 rism <= rism_iv;

-- ##

-- Notice that these next 4 signals all share similar logic

-- A good synthesis tool will reduce this and share resources

-- ##

 wrb <= wr_i AND (rism_iv xor iosel_iv);

 rdb <= rd_i AND (rism_iv xor iosel_iv);

 ready <= NOT (rism_iv XOR iosel_iv);

 bw <= NOT (rism_iv XOR iosel_iv);

 END IF;

 END PROCESS;

 -- ##

 -- Why do we need this process? Notice that in the other

 -- process addr_i is read. If we tried to register addr_i in

 -- that process we would get incosistent results from:

 -- 1. Functional Simulation 2. synthesis 3. Timing simulation

 -- ##

 REGISTER_addr : PROCESS (reset, clk)

 begin

 IF reset = '1' THEN

 addr_i <= (OTHERS => '0');

 rd_i <= '0';

 wr_i <= '0';

 ELSIF clk 'event AND clk = '1' THEN

 addr_i <= addr;

 rd_i <= rd;

 wr_i <= wr;

 END IF;

 END PROCESS;

END rtl;

Lab 9 if-then-else

--

-- File name : addr_dec_ifthen_snplfy.vhd

-- Author : Rhett Whatcott

-- Purpose : HDL coding experience, use of FEX tools

--

-- Revisions :

-- 02/25/98 RWW initial code

--

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

USE ieee.std_logic_unsigned.ALL;

ENTITY addr_dec IS

 PORT (

 addr : in std_logic_vector (15 DOWNTO 0);

 rd : in std_logic;

 wr : in std_logic;

 reset : IN std_logic;

 clk : IN std_logic;

 iosel : OUT std_logic;

 iosel2 : OUT std_logic;

 iosel1 : OUT std_logic;

 iosel0 : OUT std_logic;

 lcd : OUT std_logic;

 tim : OUT std_logic;

 bsel : OUT std_logic;

 rism : OUT std_logic;

 rom : OUT std_logic;

 ram : OUT std_logic;

 wrb : OUT std_logic;

 bw : OUT std_logic;

 ready : OUT std_logic;

 rdb : OUT std_logic

);

 END addr_dec;

 ARCHITECTURE rtl OF addr_dec IS

 SIGNAL addr_i : std_logic_vector(15 DOWNTO 0);

 SIGNAL rd_i, wr_i : std_logic;

 BEGIN

 decode_addr : PROCESS (reset, clk)

 -- Combinatorial signals i.e. not intended to be registered signals

 VARIABLE rism_iv : std_logic;

 VARIABLE iosel_iv, iosel0_iv, iosel1_iv, iosel2_iv : std_logic;

 BEGIN

 rism_iv := '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 iosel_iv := '0';

 IF reset = '1' THEN

 iosel <= '0';

 iosel2 <= '0';

 iosel1 <= '0';

 iosel0 <= '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism <= '0';

 bsel <= '0';

 wrb <= '0';

 rdb <= '0';

 ready <= '0';

 bw <= '0';

 ELSIF clk 'event AND clk = '1' THEN

 IF addr_i = (x"0700") then

 bsel <= '1';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 ELSIF ((addr_i >= (x"0100")) and

 (addr_i <= (x"06fc"))) or

 ((addr_i >= (x"2000")) and

 (addr_i <= (x"21fc"))) then

 rism_iv := '1';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 ELSIF (addr_i >= (x"c000") and

 addr_i <= (x"Fffc")) then

 ram <= '1';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ELSIF ((addr_i >= (x"0800")) and

 (addr_i <= (x"1ffc"))) or

 ((addr_i >= (x"2200")) and

 (addr_i <= (x"bffc"))) then

 rom <= '1';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 ELSIF addr_i = (x"0704") then

 lcd <= '1';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 ELSIF (addr_i >= (x"0708") and

 addr_i <= (x"070c")) then

 tim <= '1';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 ELSIF (addr_i >= (x"0710") and

 addr_i <= (x"073c")) then

 iosel0_iv := '1';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 iosel1_iv := '0';

 ELSIF (addr_i >= (x"0740") and

 addr_i <= (x"077c")) then

 iosel1_iv := '1';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 iosel2_iv := '0';

 ELSIF (addr_i >= (x"0780") and

 addr_i <= (x"07fc")) then

 iosel2_iv := '1';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 ELSE

 -- have to take care of all possible values in VHDL!

 iosel2_iv := '0';

 iosel1_iv := '0';

 iosel0_iv := '0';

 tim <= '0';

 lcd <= '0';

 rom <= '0';

 ram <= '0';

 rism_iv := '0';

 bsel <= '0';

 END IF; -- if address = ?

-- ##

-- Notice how the variables are used to carry combinatorial

-- signals inside of the process

-- ##

 iosel_iv := iosel0_iv OR iosel1_iv or iosel2_iv;

 iosel <= iosel_iv;

 iosel0 <= iosel0_iv;

 iosel1 <= iosel1_iv;

 iosel2 <= iosel2_iv;

 rism <= rism_iv;

-- ##

-- Notice that these next 4 signals all share similar logic

-- A good synthesis tool will reduce this and share resources

-- ##

 wrb <= wr_i AND (rism_iv xor iosel_iv);

 rdb <= rd_i AND (rism_iv xor iosel_iv);

 ready <= NOT (rism_iv XOR iosel_iv);

 bw <= NOT (rism_iv XOR iosel_iv);

 END IF; -- if reset/clk'event

 END PROCESS; -- decode_addr

 -- ##

 -- Why do we need this process? Notice that in the other

 -- process addr_i is read. If we tried to register addr_i in

 -- that process we would get incosistent results from:

 -- 1. Functional Simulation 2. synthesis 3. Timing simulation

 -- ##

 REGISTER_addr : PROCESS (reset, clk)

 begin

 IF reset = '1' THEN

 addr_i <= (OTHERS => '0');

 rd_i <= '0';

 wr_i <= '0';

 ELSIF clk 'event AND clk = '1' THEN

 addr_i <= addr;

 rd_i <= rd;

 wr_i <= wr;

 END IF;

 END PROCESS;

END rtl;

VHDL Answers
Optimize for ->

if-then-else (Speed)

<effort> high / low
if-then-else (Area)

<effort> high / low
Case (Speed)

<effort> high / low
Case (Area)

<effort> high / low

Synthesis - estimated speed

(MHz)
~48 ~38

~31 ~26
~49 ~39
~31 ~34

Implemented – speed

(MHz)
~55 ~50
~42 ~37
~56 ~49
~41 ~42

Synthesis - # of LUT's: F Maps, H maps, & CLB’s
~41 ~66

~4 ~19

~21 ~33

~28 ~49

~6 ~3

~14 ~25
~41 ~56

~4 ~9

~21 ~28

~32 ~36

~4 ~5

~16 ~18

Implemented - # of LUT's: F/G Maps, H Maps & CLB’s
~35 ~56

~3 ~17

~18 ~30
~21 ~42

~6 ~3

~12 ~23
~34 ~47

~4 ~8

~18 ~24
~24 ~29

~4 ~5

~14 ~16

Synthesis - # of flops
~30

~30
~30
~30

Implemented - # of flops
~28
~28
~28
~28

~ : approximately

Lab 10

-- Technically Speaking

--

-- File name : pump_fsm.vhd

-- Author : Rhett Whatcott

-- Purpose : HDL coding experience, use of FEX tools

--

-- Revisions :

-- 02/25/98 RWW initial code

--

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

USE ieee.std_logic_unsigned.ALL;

ENTITY pump_fsm IS

 PORT (

 clk : IN std_logic;

 reset : IN std_logic;

 ram_data: IN std_logic_vector (3 DOWNTO 0);

 ram_addr: OUT std_logic_vector (3 DOWNTO 0);

 p1 : OUT std_logic;

 p2 : OUT std_logic

);

 END pump_fsm;

ARCHITECTURE rtl OF pump_fsm IS

 SIGNAL clk_dly1, clk_dly2 : std_logic; -- delayed ram address enable/creation

);-- registered ram_data

 SIGNAL ram_data_i : std_logic_vector(3 DOWNTO 0-- internal addr counter up

 SIGNAL ram_addr_i : std_logic_vector(3 DOWNTO 0);

SIGNAL prev_used_p1 : std_logic; -- indicates previously used pump

 -- for use in State B

 TYPE fsm_states IS (A, B, C);

 SIGNAL state : fsm_states;

 TYPE levels IS (low, med, full);

 SIGNAL lvl_data : levels;

BEGIN

-- 2 clock delays after a reset, begin reading ram data.

-- This will assure us that we are never reading and writing

-- to the ram at the same time.

 clk_dlys : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 clk_dly1 <= '0';

 clk_dly2 <= '0';

 ELSIF clk 'event AND clk = '1' THEN

 clk_dly1 <= '1';

 clk_dly2 <= clk_dly1;

 END IF;

 END PROCESS;

 ram_addr <= ram_addr_i;

 read_ram : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 ram_addr_i <= (OTHERS => '0');

 ram_data_i <= (OTHERS => '0');

 ELSIF clk 'event AND clk = '1' THEN

 IF clk_dly2 = '1' THEN -- proper # of delays to begin reading ram

 ram_addr_i <= ram_addr_i + '1';

 ram_data_i <= ram_data;

 END IF;

 END IF;

 END PROCESS;

 -- register the clock enable signals

 reg_levels : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 lvl_data <= low;

 ELSIF clk 'event AND clk = '1' THEN

 CASE conv_integer(ram_data_i) IS

 WHEN 0 TO 3 =>

 lvl_data <= low;

 WHEN 4 TO 9 =>

 lvl_data <= med;

 WHEN 10 TO 15 =>

 lvl_data <= full;

 WHEN OTHERS =>

 lvl_data <= low;

 END CASE; -- levels

 END IF; -- if reset = '1'

 END PROCESS;

 fsm : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 prev_used_p1 <= '0';

 state <= A;

 p2 <= '0';

 p1 <= '0';

 ELSIF clk 'event AND clk = '1' THEN

 CASE state IS

 WHEN A =>

 p1 <= '0';

 p2 <= '0';

 -- Next state decoding

 IF lvl_data = med THEN

 state <= B;

 ELSIF lvl_data = full THEN

 state <= C;

 ELSE

 state <= A;

 END IF;

 WHEN B =>

 IF prev_used_p1 = '1' THEN -- this signal holds the value

 p1 <= '0'; -- of the previously used pump

 p2 <= '1';

 ELSE

 p1 <= '1';

 p2 <= '0';

 END IF;

 -- Next state decoding

 IF lvl_data = low THEN

 state <= A;

 prev_used_p1 <= NOT prev_used_p1;

 ELSIF lvl_data = full THEN

 state <= C;

 prev_used_p1 <= NOT prev_used_p1;

 else

 state <= B;

 END IF;

 WHEN C =>

 p1 <= '1';

 p2 <= '1';

 -- Next state decoding

 IF lvl_data = med THEN

 state <= B;

 ELSIF lvl_data = low THEN

 state <= A;

 ELSE

 state <= C;

 END IF;

 END CASE; -- states

 END IF; -- if reset, elsif clk

 END PROCESS;

END rtl;

End of Lab Exercises

Technically Speaking, Inc.

� EMBED PBrush ���

“001” (Green)

Out_1 <= 2

Out_1 <= 1

A and B

Jump

Sig1

My_Or2

U2

 My_And2

Lab 2a

Entity My_Mod is

Port (Data_1 : in bit_vector (3 downto 0);

	Data_2 : in bit_vector (3 downto 0);

	Data_3 : in bit_vector (3 downto 0);

	Clk 	: in bit;

	Reset 	: in bit;

	Load 	: in bit;

	Q_1 : out bit_vector (3 downto 0);

	Q_2 : out bit_vector (3 downto 0);

	Q_3 : out bit_vector (3 downto 0)

);

end My_Mod;

� EMBED Package ���

My_And2

“010” (Yellow)

“100” (Red)

� EMBED Word.Picture.8 ���

� EMBED PBrush ���

� EMBED Package ���

� EMBED PBrush ���

Load

A and not B

Init

Fetch

Out_1 <= 0

Out_1 <= 3

� EMBED Package ���

Lab 2b

Entity My_Add1 is

Port (Addn1 	 : in bit_vector (3 downto 0);

	Addn2 : in bit_vector (3 downto 0);

	Carry_in : bit;

	Clk 	 : in bit;

	Reset 	 : in bit;

	Carry_out : out bit

	Sum : out bit_vector (3 downto 0)

);

end My_Mod;

001…

 100 ?

� EMBED MS_ClipArt_Gallery ���

� EMBED PowerPoint.Show.8 ���

� EMBED PowerPoint.Show.8 ���

Sel

2

D

C

Z

B

A

Sig2

U1

 My_And2

U3

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

Fex_my_mod

� EMBED Word.Picture.8 ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED Package ���

� EMBED PBrush ���

� EMBED PBrush ���

TB_Stat_Mach

Out_1

B

A

Stat_Mach

CLK

RESET

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

Pump1

Pump2

15

11

7

3

0

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

1
30

_956640848

_956663359

_959105325

_959148376

_959153728

_959153900

_959153569

_959105874

_959106175

_959105719

_959076052

_959103748

_959105066

_956663446

_956642096

_956660515

_956663195/M1 Design Manager.lnk

_956659964

_956641044

_956641978.doc
[image: image1.png]B albuies.vhd
® autosync.vhd

_956641021

_950246830

_956159990

_956160578/Synplify.lnk

_956160877

_956160116/Foundation Express.lnk

_952145428.ppt

D [7:0]

Q [7:0]

UP

LD

CE

RST

OSC4

F15

CLK

D_in[7]

D_in[6]

D_in[5]

D_in[4]

D_in[3]

D_in[0]

D_in[1]

D_in[2]

UPCNT

LOAD

CLK_EN

CLOCK

RESET

P61

P62

P65

P66

P57

P58

P59

P60

P25

P26

P27

P28

P19

P20

P23

P24

CNT8

OSC15

BUFG

MYCOUNT8

Q_Out[4]

Q_Out[5]

Q_Out[6]

Q_Out[7]

Q_Out[0]

Q_Out[1]

Q_Out[2]

Q_Out[3]

_952148683.ppt

Xilinx Demo-Board Operation

 XC4003E-PC84

Power

Switch

XChecker

Connection

 XC3000

Bar LEDs

for Counter

Down

 Up

Count

 Load

Clk Disable

Clk En

Async Clear

Run

D[3] :1

D[2] :1

D[1] :1

D[0] :1

D[3] :0

D[2] :0

D[1] :0

D[0] :0

_956159383/Xilinx Foundation Project Manager.lnk

_950247094

_950245029

_950245431

_950245918

_950246132

_950246426

_950246775

_950246073

_950245585

_950245077

_950245345

_935816109

_950244119

_950244269

_950243074

_935753220.doc
[image: image1.png]coaciep

wa_1E o ar

NaNDa E

