Application Notes

Two Simple Solutions
for Tricky Problems

Here are two solutions that can help you create trouble-free designs.

by Peter Alfke, Xilinx Applications Engineering, Xilinx,
Peter@xilinx.com

How to Eliminate False Triggering

s FPGA flip-flops become faster, they can

respond to very short clock pulses and

undesired glitches from clock reflections
and ground bounce. Here's a simple solution.

Fast clock transitions often lead to reflections
on long printed circuit clock lines, and such
reflections can result in overshoot, undershoot,
and ringing. This can lead to multiple crossings
of the flip-flop input thresholds and thus false
triggering. There are well-known methods to
keep reflections under control, but they require
an understanding of high-frequency,
transmission-line effects; they may also be
difficult and expensive to implement, and
impossible to retrofit.

Systems with multiple un-correlated clocks
are especially vulnerable, even when the clock
edges are noise free. Ground bounce caused by
one clock can occur during the transition of
another clock, especially when this transition is
slow, and can cause the apparently monotonic
transition to be interpreted as multiple clock
transitions inside the chip. In the past, FPGAs
were slow enough to be forgiving, so that many
high-frequency problems could be ignored. Now,
double pulses separated by one or a few
nanoseconds, as shown in Figure 1, can lead to
double triggering and result in system failure.

54

- 'B"

Threshold
o\
Clock

Figure 1- Reflections Causing Clock Noise

Here are two effective remedies against such
problems. The description assumes rising-edge
triggering, but can easily be modified for falling-
edge triggering.

(A) Double clocking on the rising edge - this
means that a reflection caused the internal clock
signal to go Low-High-Low-High (L-H-L-H)
instead of a simple Low-High (L-H) transition.
The second L-H transition might clock the flip-
flops again, if they are fast enough to respond to
two clock edges that are only a few
nanoseconds apart.

The simple solution is to give all affected flip-
flops sufficient delay in front of the D-inputs, so
they cannot change in the short time between
the two rising clock edges, as shown in Figure 2.
Use redundant LUTs or additional routing to
slow the few flip-flops that are sensitive;
typically they are the least-significant bits of a
counter.



Clock

Solution "A"

Figure 2 - Delaying the D-input

(B) Clocking on the wrong (falling) edge -
this is always caused by a H-L-H-L sequence of
clock transitions within a few nanoseconds. (No
flip-flop can possibly be affected by the wrong
edge. On the other hand, no flip-flop will ever
ignore the edge it is supposed to trigger on.)

This false triggering which seems to occur on
the wrong edge in the middle of the clock period
cannot be cured by slowing down the flip-flop
inputs. Instead, a slightly delayed and inverted
version of the incoming clock signal must be
used as Clock Enable to the flip-flops, as shown
in Figure 3. CE will be active High before and
during the legitimate rising clock edge, but will
be inactive (Low) before and during the
unintended clock glitch, caused by a reflection of
the falling clock edge.

—D QI
E>_c CE
D
Clock
Solution "B"

Figure 3 - Inverting the Clock

These two problems (on the rising and the
falling edge), although caused by the same
phenomenon, require two very different
solutions. Luckily, both solutions are simple, and
can be used together.

55

Clock reflections are best avoided by proper
printed circuit board design, but accidents do
happen, and it is nice to have a simple solution,
especially one that is so easily applied in an
FPGA without any harmful side-effects. These
techniques can be used to retrofit older designs
that fail when faster devices (which are more
susceptible to noise) are used.

Proper Use of Mode-Pin Pull-Up Resistors

XC4000-series mode pins have an internal pull-
up resistor that guarantees a logic High level on
an unconnected mode pin during power-up.
After configuration, the default bitstream turns
these resistors off. Subsequent re-configurations
can, therefore, fail.

For all modes except Master Serial (where all
three mode pins are being pulled Low), we
recommend either external pull-up resistors to
guarantee a High level upon reconfiguration, or
an explicit change of the configuration bitstream.

Here's how to change the configuration
bitstream:

e From command-line: use the following
options upon invoking bitgen:
bitgen -g MOPin:Pullup -g M1Pin:Pullup -g
M2Pin:Pullup <design_name>.ncd

From the Design Manager GUI: under the
Configuration tab of the Edit Configuration
Options Window, select the PullUp radio
buttons for the MO, M1, and M2 Configuration
pins. &



