
32

New Products - Software

Simulation can be time consuming, and
often there is no visibility into what is
actually happening. That's why Profiling

or Performance Analysis can very valuable.
Performance Analysis shows where the
simulator is spending time, and can be extremely
useful at all levels of the design abstraction from
behavioral to gate level. The new ModelSim SE
simulator (Special Edition) has a built-in
Performance Analyzer, available in the 5.3
version of VSIM, with the potential to save many
hours of regression test time.

Performance Analyzer

The Performance Analyzer provides a graphical
representation of where ModelSim is spending
run time. The graphical representation is useful
in quickly and easily determining what is
impacting your design environment's simulation
performance—it is rare that a simulation
environment is fully tuned for performance. 

At any moment the simulator will be
executing a specific action, which can be
categorized into a number of groups. This action
could be attributed to a line of code or an
internal housekeeping event. Profile samples are
accumulated for each group and line of code,
and then presented as the amount of execution
time with respect to the total run time. 

The benefit of using this type of statistical
analysis is that you typically don't have to run an
entire simulation to get enough information to
analyze the environment.

Improving RTL Performance

The following example shows how the
Performance Analyzer was used to improve
simulation run time at the RTL level; it takes a
customer design and shows how the simulation
run time was improved. This VHDL design was
from a data communications application, used
as a buffer between two different data stream
rates; the concepts hold true for an equivalent
model in Verilog. The Performance analyzer was
used to take around 3000 samples. After
simulation it could be seen that 98% of the
simulation time was spent executing two lines of
code as shown in Figure 1, each using a similar
style but in separate parts of the design. These
lines of code were VHDL loop statements. The
run time for this example was 20 minutes 34
seconds (Code Fragment 1). 

Maximizing HDL Simulation
Performance

How do you know what is happening during simulation? Here's one way,
using the new ModelSim SE Performance Analyzer from MTI.

by Darron May, Technical Marketing Engineer, Model
Technology Inc, darronm@model.com

Code Fragment 1 - ORIGINAL

for i in 0 to (buffer_size - 1) loop

IF (i = ramadrs((counter_size - 1) downto 0)

THEN

rd0a <= buffers(i);

END IF;

end loop ;

Figure 1 - Profiler Report Window



33

A loop was used to make an assignment to
each of the buffer locations in the design if the
input counter address matched the currently
indexed location. It was possible to add an "exit"
command into both of these loops which would
break the loop when the match occurred. After
the code modifications, the simulation was re-
run and the run time was reduced to 10 minutes
and 3 seconds, a 2X run time improvement
(Code Fragment 2).

However, the loop was still consuming the
majority of the simulation time as detailed by the
profiler output. As the loop is being used to
compare an address pointer to a location it was
possible to re-write this model to use an indexed
array to achieve the same function. When the
simulation was re-run with the new array
version of the model the run time reduced to 1
minute 2 seconds, which was 20X faster than the
original model. Code fragments for each change
are shown. 

The profile then showed a better distribution,
however there was now another part of the
design consuming the majority of the time. This
was the control block and was centered around
a large counter that was modeled using a
std_logic_vector. In VHDL integers take less
memory than std_logic_vectors and can be
manipulated as part of the language. Therefore if
this model could be re-written to use integer
math, then time could be saved in conversion,
addition, and comparison functions (Code
Fragment 3). 

The model was again re-written to reduce
the number of events by using less processes,
integer math, and variables for connecting

functions instead of signals. Signals cause
events when they change whereas variables do
not. The simulation was re-run with the new
model and the simulation time was further
reduced to 27 seconds. 

Due to the profiler showing where time was
spent in the simulation, the use of better
modeling techniques allowed an overall speed
improvement of over 40X from the original
model. 

Gate Level Performance

The Performance Analyzer can also be used at
the gate level. ModelSim automatically
recognizes that a VITAL function is being
referenced from the IEEE library and generates
code to call hand-optimized built-in routines. All
of the functions within the VITAL_primitives and
VITAL_timing packages are accelerated in this
way for both ModelSim PE and ModelSim EE.
There is an extra level of optimization that
occurs in the EE product. To qualify for this
global acceleration, the VITAL cell has to be
VITAL Level 1 compliant. The model is then
transformed into a state machine that does the
equivalent behaviour more efficiently. This can
have a significant effect on the simulation
performance. The Performance Analyzer can be
used to see the effects of an non-accelerated
model as the execution of accelerated code is
shown in a separate category.

Conclusion

The Performance Analyzer has already been
used by a number of customers at all stages of
the design cycle to save many hours of
regression test time, or to allow more
verification in the same amount of time. With the
growing time-to-market pressures, allowing
more verification in the same time period will
increase product quality.

For more information see Model Technology at:
www.model.com.

Code Fragment 2 - EXIT

for i in 0 to (buffer_size - 1) loop

IF (i = ramadrs((counter_size - 1) downto 0)

THEN

rd0a <= buffers(i);

exit;

END IF;

end loop ;

Code Fragment 3 - ARRAY

address := conv_integer(ramadrs((counter_size-1) downto 0));

rd0a <= buffers(address);

http://www.model.com

