

Asynchronous FIFO V1.0.3

December 17, 1999 Product Specification
Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
E-mail: coregen@xilinx.com
URL: www.xilinx.com/support/techsup/appinfo

www.xilinx.com/ipcenter

R

Features
• Drop-in module for Virtex, VirtexTM-E, and SpartanTM-II

FPGAs
• Supports data widths up to 64 bits
• Supports memory depths of up to 4095 locations
• Memory may be implemented in either SelectRAM+ or

Distributed RAM

• Fully synchronous and independent clock domains for
the read and write ports

• Supports full and empty status flags
• Optional almost_full and almost_empty status flags
• Invalid read or write requests are rejected without

affecting the FIFO state
• Four optional handshake signals (wr_ack, wr_err,

rd_ack, rd_err) provide feedback (acknowledgment or
rejection) in response to write and read requests in the
prior clock cycle

• Optional count vector(s) provides visibility into number
of data words currently in the FIFO, synchronized to
either clock domain

• Incorporates Xilinx Smart-IP technology for maximum
performance

• To be used with version 2.1i or later of the Xilinx CORE
Generator System

Functional Description
The Asynchronous FIFO is a First In First Out memory
queue. Its control logic performs all the necessary read and
write pointer management, generates status flags, and
optional handshake signals for interfacing to user logic. The
individual read and write ports are fully synchronous (all
operations qualified by a rising clock edge), but this FIFO

Figure 1: Asynchronous FIFO Parameterization
Screen

Figure 2: Handshaking Options Dialog Box
December 17, 1999 1

Asynchronous FIFO V1.0.3Asynchronous FIFO V1.0.3

does not require the read and write clocks to be synchro-
nized to each other.

FIFO status cannot be corrupted by invalid requests.
Requesting a read operation while the empty flag is active
or conversely a write operation while the full flag is active
will not cause any change in the current state of the FIFO. If
enabled, the rd_err and wr_err handshake signals will indi-
cate the rejection of these invalid requests.

In addition to the empty, almost_empty, full and almost_full
flags, you may enable a count vector to provide a more
granular measure of the FIFO state. The width of this vector
is user programmable to provide easy generation of addi-
tional flags. For instance, a vector width of one creates a
half_full flag; a width of two creates binary encoded quad-
rant flags, and so on. In keeping with the fully synchronous
interface, you can synchronize the count to either clock
domain or two independent counts may be enabled, one for
each clock domain.

Synchronization and Timing Issues
As previously stated, the read and write ports may be oper-
ated on independent asynchronous clock domains. How-
ever, the user interface logic still needs to be concerned
with synchronization issues. The Core Schematic Symbol,
see Figure 3, divides the signals between their appropriate
clock domains, write on the top half, read on the bottom. All
signals, either input or output are synchronous to one of the
two clocks, with the exception of ainit which performs an
asynchronous reset of the entire FIFO. On the write side

the control (wr_en) and data input (din) are sampled by the
rising edge of wr_clk and should be synchronous to the
wr_clk. For the read side the read control (rd_en) should be
synchronous to the rd_clk and the output data (dout) is
valid after the subsequent rising edge of rd_clk. All status
outputs are synchronous to their respective clock domain
and should only be sampled by logic operating on a syn-
chronous clock. FIFO performance can be effectively con-
strained and analyzed by placing the desired PERIOD
constraints on both the wr_clk and rd_clk source signals.

WR_CLK and RD_CLK are always rising edge active for
the FIFO core. They can be mode falling edge active (rela-
tive to the clock source) by inserting an inverter between
the clock source and the FIFO’s clock inputs.

Behavior of Status Signals
The activation of the ainit, asynchronous initialization
(reset), will force all four FIFO flags to the active (high)
state. On the first wr_clk after the release of ainit the full
and almost_full flags will become inactive indicating that
the FIFO is now ready to accept write operations. Empty
and almost_empty are deactivated on a rising edge of the
rd_clk following the first and second writes respectively.
The almost_empty flag, is active when the FIFO has one
data word or is empty. The almost_full flag is active when
the FIFO has only one available memory location or is full.
Stated another way, the almost flags are active during the
almost condition and their respective empty or full condi-
tions.

Optional handshake signals are provided to simplify the
user control logic designed to interact with the FIFO. The
wr_ack and wr_err signals indicate acknowledgment or
rejection of requested write operations (wr_en active)
respectively. Similarly, rd_ack and rd_err signals indicate
the acknowledgment or rejection of read operations (rd_en
active). Each of these control signals maybe made Active
High or Low, from the GUI. Note that all of these handshake
signals are synchronous to their respective clock domains
and indicate the acknowledgment or rejection of requests,
(wr_en or rd_en) if active, during the prior rising clock edge.
Because, an acknowledgment or error response depends
on an active request (wr_en or rd_en) the ack and err sig-
nals are not always the inverse of each other. If no opera-
tion is requested then both the acknowledgment and the
error signal will be inactive during the subsequent clock
period.

The optional data count outputs (wr_count and rd_count)
support the generation of user programmable flags. In the
simplest case selecting a width of one for a data count pro-
duces a half full flag. Like all other FIFO outputs the counts
are synchronized to their respective clock domains and
should only be sampled by logic operating on the same (or
a synchronous) clock. The data count vectors have clock
latency and should not be used as substitutes for the full,
almost_full, empty or almost_empty flags. The clock

DIN[N:0]

WR_EN

WR_CLK

RD_EN

RD_CLK

FULL
ALMOST_FULL

WR_COUNT[W:0]
WR_ACK
WR_ERR

DOUT[N:0]
EMPTY

ALMOST_EMPTY
RD_COUNT[R:0]

RD_ACK
RD_ERR

AINT

X9093

Figure 3: Core Schematic Symbol
 2 December 17, 1999

Xilinx, Inc.

latency of the counts in their respective clock domain is one
cycle, e.g. the wr_count does not reflect the impact of a
write operation performed as a result of a request (wr_en)
active during the prior clock cycle. The latency for opera-
tions in the opposing clock domain can be up to three clock
cycles, e.g. in the case of the wr_count reads operations
that may have been performed during the immediately
three prior rd_clk periods will not be reflected in the data
count vector. This latency was a clock frequency versus
count accuracy trade-off and is not as extreme as it may
appear at first glance.

Consider the following scenario, FIFO depth of 63,
wr_count[1:0] is feedback to the users write logic to throttle
back write operations. As writes are performed the first
wr_count of 11, corresponds to 110000 (=48). As long as
the users wr_count is not 11, no more than 48 data words
(47 plus one for the write operation clock latency) are
present in the FIFO. The users control logic is assured that
at least 15 (63-48) additional memory locations are avail-
able in the queue. There could be a few more due to recent
read operations occurring on the read side, but this only
increases the available memory locations. In this scenario
at least 14 additional writes may be performed after the
write that causes the wr_count to transition from 10 to 11.
In another scenario, the users read control logic may wish
to wait for a fixed number of data words to be present in the
FIFO in preparation for performing a burst operation. In this
case since read operations are suspended before the
appropriate count is reached the read latency. It is not an
issue. (The user logic isn’t requesting reads). So for the
same FIFO when the rd_count transitions to 11 (110000)
there are at least 48 data words in the FIFO. The write oper-
ation latency means that there maybe as many as 51 words
in the FIFO, but the users read logic is guaranteed that at
least 48 words are present. So it can start reading the FIFO
assured that at least 48 words are available or it can read
and until the empty flag indicates that the FIFO is empty.

Pinout
Signal names are shown in Figure 3 and described in Table
1.

CORE Generator Parameters
The main Core Generator parameterization screen for this
module is shown in Figure 1. The parameters are as fol-
lows:

• Component Name : The component names is used as
the base name of the output files generated for this
module. Names must begin with a letter and must be
composed from the following characters: a to z, 0 to 9
and “_”.

Table 1: Core Signal Pinout

Signal
Signal

Direction
Description

DIN[N:0] Input Data_INput: N is any integer
1 to 64

WR_EN Input WRite_ENable (request)
WR_CLK Input Clock for write domain oper-

ations (rising edge)
RD_EN Input Read_ENable (request)
RD_CLK Input Clock for read domain opera-

tions (rising edge)
AINIT Input Asynchronous reset of all

FIFO functions, flags, and
pointers

FULL Output FULL: no additional writes
can be performed, synchro-
nous to WR_CLK

ALMOST_ FULL Output ALMOST_FULL: only one
additional write can be per-
formed before FIFO is FULL,
synchronous to WR_CLK

WR_
COUNT[W:0]

Output WRite_COUNT: count vector
(unsigned binary) of number
of data words currently in
FIFO, synchronized to
WR_CLK. If 2^(W+1) <
[FIFO depth +1], the least
significant bits of count are
truncated. (W=0 produces a
half full flag)

WR_ACK Output WR_ACKnowledge: hand-
shake signal WR_EN active
on prior WR_CLK edge has
written a data word into FIFO

WR_ERR Output WRite_ERRor: handshake
signal indicates WR_EN ac-
tive on prior WR_CLK edge
was ignored and no data
word was written into the
FIFO.

DOUT[N:0] Output Data_OUTput: synchronous
to RD_CLK

EMPTY Output EMPTY: no additional reads
can be performed, synchro-
nous to RD_CLK

ALMOST_ EMP-
TY

Output ALMOST_EMPTY: only one
additional read can be per-
formed before FIFO is EMP-
TY, synchronous to RD_CLK
December 17, 1999 3

Asynchronous FIFO V1.0.3Asynchronous FIFO V1.0.3

• Memory Type : Select the appropriate radio button for
the type of memory desired. Block Memory implements
the FIFO’s memory using SelectRAM+. Selecting the
Distributed Memory radio button will implement FIFO
memory using LUT based dual port memory. The
defaults is Block Memory.

• Input Data Width : Enter the width of the input data bus
(also the width of the output data bus). The valid range
is 1 - 64. The default value is 16.

• FIFO Depth: Select the available depth from the pull
down list. Note: the available depths are dependent on
the selected memory type. Since one memory location
has been sacrificed in the interest of optimizing FIFO
performance available, depths are (2^N –1). When
using SelectRAM+, N may be any integer from 1 to 12,
with additional restrictions based on the Data Width.
Distributed RAM FIFOs have a maximum depth of 255
(N = 8) and Block Memory FIFO have a maximum
depth of 4095.

• Optional Flags : Generate Almost Full and Almost
Empty status flags by selecting the appropriate check
boxes. The default value is unchecked.

• Optional Handshake Signals : Handshaking control
signals (acknowledge and/or error) can be enabled via
the Handshaking Options button. A pop up dialog box
will appear, as shown in Figure 2. Each of the four
handshake signals (write acknowledge, write error, read
acknowledge, and read error) can be enabled by
selecting the appropriate check box. Selecting any
handshaking signal will enable its associated Active
High, Active Low radio buttons (default is Active High).
To make any of these flags Active Low, check the
corresponding Active Low check box. The default state
for all four handshaking signals is disabled.

• Data Count : Two Data Counts, one for each clock
domain may be enabled by selecting the appropriate
radio button. Once selected the corresponding count
width dialog box becomes active.Valid count widths are
any integer from 1 to N (where 2^N = (FIFO Depth + 1).
If an integer greater than N is entered in will turn red
and core generation will be inhibited until this error is
corrected. The default value is 2 (encoded quadrant
flags).

• Create RPM : When this box is checked the module will
be generated will relative location attributes attached.
The FIFO with be produced with two (or three if
distributed memory was selected) individual RPMs. A
single RPM is not produced to allow an RPM’d FIFO to
support varying footprints.

Parameter Values in XCO File
Names of XCO file parameters and their parameter values
are identical to the names and values shown in the GUI,
except that underscore characters (_) are used instead of
spaces The text in an XCO file is case insensitive.

Table 3 shows the XCO file parameters and values, as well
as summarizing the GUI defaults. The following is an exam-
ple of the CSET parameters in an XCO file:

CSET component_name = my_fifo_name
CSET fifo_depth = 255
CSET input_data_width = 8
CSET memory_type = block
CSET almost_full_flag = TRUE
CSET almost_empty_flag = TRUE
CSET write_count = TRUE
CSET write_count_width = 1
CSET read_count = TRUE
CSET read_count_width = 8
CSET write_acknowledge = TRUE
CSET write_acknowledge_sense = active_high
CSET write_error = TRUE
CSET write_error_sense = active_low
CSET read_acknowledge = TRUE
CSET read_acknowledge_sense = active_high
CSET read_error = TRUE
CSET read_error_sense = active_low
CSET create_rpm = TRUE

Core Resource Utilization
The resource requirements of the asynchronous FIFO are
highly dependent on the memory size, memory type and
the presence of optional ports. Resource utilization can be
estimated by addition of the requirements for the FIFOs
memory and control logic. Table 3 lists the number of
SelectRAM+ blocks required to implement various width
and depth combinations when using SelectRAM+ blocks
for the FIFO’s memory.

RD_
COUNT [R:0]

Output ReaD_COUNT: count vector
(unsigned binary) of number
of data word currently in
FIFO, synchronized to
RD_CLK. If (2^R+1)<(FIFO
depth+1), the least signifi-
cant bits of count are truncat-
ed (R=0, produces a half full
flag)

RD_ACK Output ReaD_ACKnowledge: hand-
shake signal RD_EN active
on prior RD_CLK edge has
placed next data word on Q
output pins

RD_ERR Output ReadD_ERRor: handshake
signal RD_EN active on prior
RD_CLK edge was ignored
and subsequently data on Q
output pins was not updated

Signal
Signal

Direction
Description
 4 December 17, 1999

40
0

60
0

80
0

1
us

A
IN

IT

W
R

_C
LK D
IN

X
X

0E
0D

0C
0B

0A
09

08
07

06
05

04
03

02
01

00
03

06
09

W
R

_E
N

W
R

_A
C

K

W
R

_E
R

R

F
U

LL

A
LM

O
S

T
_F

U
LL

W
R

_C
O

U
N

T
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
14

13
12

11
10

8
7

6
5

4
0

R
D

_C
LK

D
O

U
T

00
0E

0D
0C

0B
0A

09
08

07
06

05
04

03
02

01
00

R
D

_E
N

R
D

_A
C

K

R
D

_E
R

R

E
M

P
T

Y

A
LM

O
S

T
_E

M
P

T
Y

R
D

_C
O

U
N

T
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

Figure 4: Write/Read Waveform for 15deep by 16 FIFO

Asynchronous FIFO V1.0.3Asynchronous FIFO V1.0.3
Table 4 shows the approximate number of slices per bit for
a distributed ram based FIFO. Multiply this number by the
data width to determine the total slice count for the mem-
ory. Control logic resource utilization is a function of the
required addressing width N (N = log2(fifo_depth+1) and
the optional features enabled. The slice count calculation
varies slightly depending on N being odd or even.

For N even, slice count is:

- (N * 3.5) + 6 (Base)
- +(N * 0.5) + 2 (per almost flag)
- +(N * 2.0) + 1 (per data count)
- +(1) (for write handshaking)
- +(1) (for read handshaking))

 For N odd, slice count is:

- (N * 3.5) + 7.5 (Base)

 Table 3: Default Values and XCO File Values

Parameter XCO File values Default GUI Setting
component_name ASCII text starting with a letter and based

upon the following character set: a..z, 0..9,
and _

blank

memory_type Keyword block, anything else generates
LUT RAM

block

input_data_wiidth Integer in the range 1 to 64 16
fifo_depth Integer in the range 15 to 4095. Must be

equal to (2^N-1;, N = 4 to 12)
63

almost_full_flag One of the following keywords: true, false false
almost_empty_flag One of the following keywords: true, false

false

write_acknowledge_flag One of the following keywords: true, false
false

write_acknowledge_sense One of the following keywords: active_high,
active_low active_high

write_error_flag One of the following keywords: true, false
false

write_error_sense One of the following keywords: active_high,
active_low active_high

read_acknowledge_flag One of the following keywords: true, false
false

read_acknowledge_sense One of the following keywords: active_high,
active_low active_high

read_error_flag One of the following keywords: true, false
false

read_error_sense One of the following keywords: active_high,
active_low active_high

write_count One of the following keywords: true, false
false

write_count_width Integer in the range 1 to N, where N is deter-
mined by the fifo_depth

2

read_count One of the following keywords: true, false
false

read_count_width Integer in the range 1 to N, where N is deter-
mined by the fifo_depth

2

create_rpm One of the following keywords: true, false
false
 6 December 17, 1999

Xilinx, Inc.

- +(N * 0.5) + 1.5 (per almost flag)
- +(N * 2.0) + 2.0 (per data count)
- +(1) (for write handshaking)
- +(1) (for read handshaking))

Example: a 1023x8 SelectRAM+ based FIFO with all of the
features enabled requires 2 blockRAMs, see Table 2, and
an additional 99 slices (N=10) for the control logic.

41+7+7+21+21+1+1 = 99 slices (N=10)

Table 4: Resource Utilization (LUT/MUXF5/MUXF6/FD)
for Distributed RAM FIFO Memory Only (per bit, multi-
ply by data width)

Ordering Information
This core is downloadable free of charge from the Xilinx IP
Center (www.xilinx.com/ipcenter), for use with the Xilinx
Core Generator System version 2.1i and later. The Core
Generator System 2.1i tool is bundled with the Alliance 2.1i
and Foundation 2.1i implementation tools.

To order Xilinx software contact your local Xilinx sales rep-
resentative at www.xilinx.com/company/sales.htm.

Table 2: Select RAM+ Usage

Data FIFO Depth
Width 15 31 63 127 255 511 1023 2047 4095

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 2
3 1 1 1 1 1 1 1 1 3
4 1 1 1 1 1 1 1 2 4
5 to 6 1 1 1 1 1 1 2 3 NS1

7 to 8 1 1 1 1 1 1 2 4 NS
9 to 12 1 1 1 1 1 2 3 NS NS
13 or 16 1 1 1 1 1 2 4 NS NS
17 to 24 2 2 2 2 2 3 NS NS NS
25 to 32 2 2 2 2 2 4 NS NS NS
33 to 48 3 3 3 3 3 NS NS NS NS
49 to 64 4 4 4 4 4 NS NS NS NS
Note:
1. FIFOs requiring more than 4 BlockRAM blocks are not

currently supported.

 Table 5: Virtex ASYNC_FIFO_V1_0 Performance Benchmarking (SelectRAM+ implementation)

PART FIFO Implementation
V50PQ240 255x16 no options (BASE) 255x16 all options (MID) 1023X8 all options BIG)
-4 110 MHz – (9.0 nS 106 MHz – (9.6 nS) 96 MHz – (10.4 nS)
-5 125 MHz – (7.9 nS) 120 MHz – (8.3 nS 105 MHz - (9.5 nS)
-6 150 MHz – (6.6 nS) 136 MHz – (7.3 nS) 120 MHz - (8.3 nS)
Notes:
1. These benchmark designs contain only one FIFO without any additional logic, so benchmark numbers approach the

performance ceiling rather than representing performance under typical user conditions. Highest frequencies will be
obtained by using the create RPM option or your own floorplanning.

2. Over constraining the FIFO (applying overly aggressive timing constraints) will degrade the achievable performance. For
example, applying a 6.0nS constraint to the BASE implementation (-6) will result in a placed and routed implementation that
is considerably slower than the 6.6nS shown in the table.

FIFO_depth Resources Used Slice Estimate
15 2/0/0/1 2
31 6//0/0/1 3
63 12/2/0/1 6

127 24/4/2/1 11
255 49/8/4/1 22
December 17, 1999 7

	Asynchronous FIFO V1.0.3
	Features
	Functional Description
	Pinout
	CORE Generator Parameters
	Parameter Values in XCO File
	Core Resource Utilization
	Ordering Information

