
T his article describes how to divide
clocks by 1.5, 2.5, and by 3, and 5 with
a 50% duty-cycle output. Dividing an

incoming clock frequency by any integer num-
ber is trivial, and division by any even number
always generates a 50% duty cycle output.
However, sometimes it is necessary to generate
a 50% duty cycle frequency that is not an even
integer sub-multiple of the source clock.

These circuits are useful in XC4000-family
and Spartan-family devices, where they are
simple and efficient, and both cheaper and
faster than any external phase-locked-loop
alternative. Virtex devices do not need to use
these tricks because they can implement these
and many other functions in either of their four
dedicated delay-locked-loop circuits, if the
incoming clock rate is higher than 25 MHz.

How They Work
Each circuit assumes a 50/50 duty cycle of the
incoming clock, otherwise the fractional divider
output will jitter, and the integer divider will
have unequal duty cycle. All four circuits use
combinatorial feedback around a look-up table,
which works perfectly and is glitch-free, but
may cause your circuit simulator to fail.

These circuits have a look-up table input
driven from the clock signal, with minimal
skew between the A and B inputs. The chosen

vertical clock line must, therefore, also have
access to a LUT input. This is best achieved by
coding the design as a Hard Macro.

Divide by 1.5 in One CLB.
This circuit divides the clock by 1.5, generating
60 MHz from a 90 MHz input for example
(Figure1). The two flip-flops form a ÷3 circuit,
and the G and H look-up tables together gener-
ate two output periods at the H output. The first
output pulse is driven by the A flip-flop, the
second output pulse is derived from the B flip-
flop, but is delayed half an incoming clock
cycle. The output stays Low while the clock is
High, and stays High, after B has gone Low,
until the clock goes Low again. It is this latch
circuit that may cause simulator problems.

by Peter Alfke, Xilinx Applications
Engineering, peter@xilinx.com

Clock Dividers
Sometimes you need to divide a clock by odd or non-integer num-
bers – here are four circuits that are efficient and simple, plus they
are cheaper and faster than any external PLL alternative.

30

(Continued)
Figure 1

Divide by 1.5

Divide by 2.5 in Two CLBs
This circuit divides the clock by 2.5, generating
40 MHz from a 100 MHz input for example
(Figure 2). Three flip-flops form a ÷5 circuit, and
the G and H look-up tables together generate
two output periods at the H output. The first
output pulse is driven by the A flip-flop, the sec-
ond output pulse is derived from the B AND C
signal, but is delayed half an incoming clock
cycle. The output stays Low while the clock is
High, and stays High after B has gone Low, until
the clock goes Low again. It is this latch circuit
that may cause simulator problems.

Divide by 5 with 50% Output Duty Cycle
This two-CLB circuit divides the clock by five
and maintains a 50/50 output duty cycle
(Figure 3). Three flip-flops form a ÷5 circuit, and
the G look-up tables generate the divided out-
put. The first output pulse is started by the A
flip-flop and terminated by the B flip-flop, when
the clock is Low. It is this latch circuit that may
cause simulator problems.

Divide by 3 with 50% Output Duty Cycle
This one-CLB circuit divides the clock by three,
and maintains a 50/50 output duty cycle
(Figure 4). The two flip-flops form a ÷3 circuit,
and the G look-up tables generate the divided
output. The first output pulse is started by the A
flip-flop and terminated by B flip-flop, when the
clock is Low. It is this latch circuit that may
cause simulator problems.

31

Figure 2

Divide by 2.5

Figure 3

Divide by 5

Figure 4

Divide by 3

