Unusual Clock Dividers

Sometimes you need to divide a clock by odd or non-integer num bers – here are four circuits that are efficient and simple, plus they are cheaper and faster than any external PLL alternative.

by Peter Alfke, Xilinx Applications Engineering, peter@xilinx.com

> his article describes how to divide clocks by 1.5, 2.5, and by 3, and 5 with a 50% duty-cycle output. Dividing an incoming clock frequency by any integer number is trivial, and division by any even number always generates a 50% duty cycle output. However, sometimes it is necessary to generate a 50% duty cycle frequency that is not an even integer sub-multiple of the source clock.

> These circuits are useful in XC4000-family and Spartan-family devices, where they are simple and efficient, and both cheaper and faster than any external phase-locked-loop alternative. Virtex devices do not need to use these tricks because they can implement these and many other functions in either of their four dedicated delay-locked-loop circuits, if the incoming clock rate is higher than 25 MHz.

How They Work

Each circuit assumes a 50/50 duty cycle of the incoming clock, otherwise the fractional divider output will jitter, and the integer divider will have unequal duty cycle. All four circuits use combinatorial feedback around a look-up table, which works perfectly and is glitch-free, but may cause your circuit simulator to fail.

These circuits have a look-up table input driven from the clock signal, with minimal skew between the A and B inputs. The chosen vertical clock line must, therefore, also have access to a LUT input. This is best achieved by coding the design as a Hard Macro.

Divide by 1.5 in One CLB.

This circuit divides the clock by 1.5, generating 60 MHz from a 90 MHz input for example (Figure 1). The two flip-flops form a ÷3 circuit, and the G and H look-up tables together generate two output periods at the H output. The first output pulse is driven by the A flip-flop, the second output pulse is derived from the B flipflop, but is delayed half an incoming clock cycle. The output stays Low while the clock is High, and stays High, after B has gone Low, until the clock goes Low again. It is this latch circuit that may cause simulator problems.

Divide by 2.5

Divide by 2.5 in Two CLBs

This circuit divides the clock by 2.5, generating 40 MHz from a 100 MHz input for example (Figure 2). Three flip-flops form a +5 circuit, and the G and H look-up tables together generate two output periods at the H output. The first output pulse is driven by the A flip-flop, the second output pulse is derived from the B AND C signal, but is delayed half an incoming clock cycle. The output stays Low while the clock is High, and stays High after B has gone Low, until the clock goes Low again. It is this latch circuit that may cause simulator problems.

Divide by 5 with 50% Output Duty Cycle

This two-CLB circuit divides the clock by five and maintains a 50/50 output duty cycle (Figure 3). Three flip-flops form a +5 circuit, and the G look-up tables generate the divided output. The first output pulse is started by the A flip-flop and terminated by the B flip-flop, when the clock is Low. It is this latch circuit that may cause simulator problems.

Divide by 5

н Θ 3 Θ н 0 3 0 E 1 н Θ 0 0 ٤ Θ н 1 0 E. n

А 8 с OUT

0

0 0 0

1

1

1 0

8

0 3

0

3 0

ъ.

0

0

3

CLK

н 0 0 0 3

E 0 0

31

	CLK	А	8	OUT
	н	0	0	0
	L	0	0	0
	н	1	0	1
- CIX-3	L	1	0	1
	н	0	1	1
DW_9	L	0	1	0
Figure 4				

Divide by 3 with 50% Output Duty Cycle

This one-CLB circuit divides the clock by three, and maintains a 50/50 output duty cycle (Figure 4). The two flip-flops form $a \div 3$ circuit, and the G look-up tables generate the divided output. The first output pulse is started by the A flip-flop and terminated by B flip-flop, when the clock is Low. It is this latch circuit that may cause simulator problems.

Divide by 3

CIR