
®

May, 1995 Application Note BY BILL ALLAIRE AND STEVE KNAPP

© 1995 Xilinx, Inc. All rights reserved. PRELIMINARY—SUBJECT TO CHANGE Version 0.90

A Plug and Play Interface
Using Xilinx FPGAs

Summary

This Application Note describes a Plug and Play ISA interface reference design using a Xilinx XC4003-6PQ100C, or
larger, FPGA device. This design implements the features used in a majority of Plug and Play designs but does not
implement every option available within the Plug and Play specification.

Table of Contents
Assumptions...1

Overview1

The Xilinx Solution ...1

Plug and Play Card Configuration Sequence2

Plug and Play Auto-configuration Ports3

Sending and Verifying the Initiation Key4

Isolation Protocol ...4

Programming Plug and Play Devices6

Plug and Play Register Summary7

Control Register Space ..7

Plug and Play Isolation Sequence.............................9

Reading Resource Data..9

Configuring Card Resource Usage............................9

Resource Programming ...10

Run Time Access to Plug and Play registers..........10

High-Volume, Cost-Reduction Strategies10

Using the Xilinx Plug and Play Design Files...........11

Additional Resources ...12

Assumptions

This application note assumes that the reader has:

n A copy of the Plug and Play ISA Specification.

n A basic understanding of the Plug and Play ISA
functionality.

n An understanding of the ISA bus functionality.

n A working knowledge of the Xilinx XACT develop-
ment system.

The “Additional Resources” section describes where to
find additional information on these topics.

Overview

The ISA bus is the most popular expansion standard in
the PC industry. Unfortunately, ISA has no defined
hardware or software mechanism for allocating re-
sources among the various ISA cards in a system.
Consequently, users typically configure ISA cards using

“jumpers” that change the decode maps for memory and
I/O space and steer the DMA and interrupt signals to
different pins on the bus. Usually, system configuration
files need to be updated to reflect these changes. Users
typically resolve any sharing conflicts between boards in
the system by referring to the documentation provided
by each card manufacturer. For most users, this con-
figuration process can be frustrating, time-consuming,
and error-prone.

Other common PC bus standards—like Micro Channel,
EISA, and PCI—have hardware and software mecha-
nisms to automatically identify the resources requested
by a card and to resolve conflicts. Unfortunately, these
existing mechanisms are not compatible with the huge
installed base of PCs with ISA card slots.

The Plug and Play ISA specification provides a hard-
ware and software mechanism to resolve resource con-
flicts between various Plug and Play-compatible ISA
cards in a system. The Plug and Play software opti-
mally allocates system resources between the Plug and
Play ISA cards and other devices in the system without
user intervention.

A system that uses only Plug Play ISA cards should
automatically configure. However, Plug and Play ISA
cards will usually co-exist with current generation ISA
cards in the same system. In such cases, user interac-
tion may still be necessary, although the configuration is
augmented in the BIOS and/or operating system to
manage and arbitrate ISA bus resources.

The Plug and Play ISA specification requires that each
card support identification, resource usage determina-
tion, conflict detection, and conflict resolution. The
specification also presents a process for software to
automatically configure the new cards without user in-
tervention.

The Xilinx Solution

This application note includes all the logic and state ma-
chines needed to fully support the Plug and Play ISA
revision 1.0a using a single Xilinx XC4003-6PQ100C
FPGA device. The design includes five basic modules:

n Plug and Play Core Module

n I/O Decoder Module

n IRQ Steering Module

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 2

n DMA Request Steering Module

n EEPROM Control Module

The design is easily modified to include only those fea-
tures that are required in a specific application. Addi-
tional logical functions may be integrated into the same
design to minimize the number of system components.
The component cost can be reduced even further via
Xilinx HardWire™ gate arrays.

Features

n Fully compatible with Plug and Play ISA revision
1.0a

n Supports 8-bit ISA bus interface—expandable to 16-
bits

n Card isolation

n Initialization key detection

n Card resource request

n Card identification

n Card resource configuration

n I/O decode configuration

n Implements all 7 DMA channels

n IRQ channel configuration—all 15 channels sup-
ported

n Optional serial interface to industry-standard 93C46-
style EEPROM to hold additional Plug and Play re-
source data

n Supports writes to the optional EEPROM to store
customer data

Plug and Play Card Configuration Sequence

The key aspect of making Plug and Play cards easy to
install is their ability to auto-configure. The BIOS per-
forms these major auto-configuration steps:

n Issues an initiation key to begin the configuration
process. Plug and Play ISA cards power-up in a qui-
escent state and wait for initiation before activating.

n Puts all Plug and Play ISA cards in configuration
mode.

n Isolates one Plug and Play ISA card at a time.

n Assigns a handle and reads the isolated card's re-
source data structure.

n After determining the resource requirements and ca-
pabilities for all cards, the BIOS uses the handle to
assign conflict free resources to each card.

n Activates all Plug and Play ISA cards and removes
them from configuration mode.

The Plug and Play software identifies and configures
devices using a set of commands executed through
three, 8-bit I/O ports. 16-bit accesses (assertion of
IOCS16#) to the configuration ports are not supported.

A special sequence of data writes to one of the ports
enables the logic on all the Plug and Play cards in the
system. This sequence is referred to as the initiation
key .

All Plug and Play cards respond to the same I/O port
addresses. Consequently, the Plug and Play software
needs an isolation mechanism to address one particular
card at a time. The isolation protocol uses a unique

ISA _C ON TR OL _SIGN AL S
ISA _AD D R ES S_B U S
ISA _D ATA_ BU S

RE G
DE C OD ES/

SER _E E_C O M

SER _E E_C LK

SER _E E_S EL

BR D _AD D _B US

I/O_D E C OD E

DM A _R EQ _OE _BU S

CA R D_ D M A_A CK

EE_D A TA _IN

RE Q_E E_D A TA

IN IT_ D ETEC T

ISO LA TION _ W ON _LO ST

CO N FIGU R E _M OD E_ EN
W A IT_ FO R _KE Y_E N
W A KE _C OM M AN D _ZER O

IR Q_OE_BU S

ISA _D M A_ AC K
CA R D_ D M A_R EQ U EST

CA R D_ IR Q _R EQ UE ST

INITIALIZATIO N
KEY DETEC T

MO DULE

CO N FIGU R A TION
MO D U LE

PLU G & P LAY
MAI N

CON TRO LLE R

I/O DE CO DER
MO DULE

IRQ RE Q UEST
STE ER ING
MO DULE

AD DRE SS
DEC OD E R
MO DULE

DMA R EQ UES T
STE ER ING
MO DULE

EEP ROM
CON TRO L
MO DULE

ISO LATIO N
MO DULE

Figure 1. Block diagram of Plug and Play ISA circuitry.
PLUG AND PLAY CORE MODULE

3 SUBJECT TO CHANGE

number built into each card—called the serial identi-
fier —to isolate one Plug and Play card at a time. After
isolation, the Plug and Play software assigns each card
a unique handle, called the Card Select Number
(CSN), which is used to select that Plug and Play card.
Using a handle eliminates the need to use a more elabo-
rate and time consuming isolation protocol in order to
select a unique card.

Each card supports a readable data structure that de-
scribes the resources supported and those requested by
the functions on that card. The data structure supports
the concept of multiple functions per ISA card. Each
function is defined as a logical device. Plug and Play
resource information is provided for each logical device
and each logical device is independently configured
through the Plug and Play standard registers.

Following isolation, the Plug and Play software reads the
resource data structure on each card. When all re-
source capabilities and demands are known, an arbitra-
tion process determines the resources allocated to each
ISA card.

The configuration of ISA cards is done through the
command registers specified for each resource type.
However, some ISA functions may not be re-
configurable. In these cases, the resources requested
will be equivalent to the resources supported. However,
the resource data structure informs the arbiter that it
cannot assign these resources to other Plug and Play
cards in the system.

After the assignment of resources, an I/O conflict detec-
tion mechanism may be invoked. This mechanism pro-
vides a means to insure that I/O resources assigned are
not in conflict with standard ISA cards.

The command set also supports the ability to activate or
deactivate the function(s) on the card.

After configuration is complete, Plug and Play cards are
removed from configuration mode. The initiation key
needs to be re-issued in order to re-enable configuration
mode. This prevents accidental erasure of the configu-
ration information.

Plug and Play Auto-configuration Ports

The system software access the configuration space on
each Plug and Play ISA card through three 8-bit ports.
The ports are listed in Table 1. The configuration space
is implemented as a set of 8-bit registers. The Plug and
Play software uses these registers to issue commands,
check status, access the resource data information, and
configure the Plug and Play hardware. The decoding
logic is shown in Figure 10—Plug and Play Ports
(PP_DEC.1) on page 20.

The ports were cleverly chosen so as to avoid conflicts
in the installed base of ISA functions, while at the same
time minimizing the number of ports needed in the ISA
I/O space.

The ADDRESS and WRITE_DATA ports are located at
fixed addresses. The WRITE_DATA port is located at
an address alias of the ADDRESS port. All three auto-
configuration ports use a 12-bit ISA address decode.

Table 1. Auto-configuration Ports
Port Name Location Type

ADDRESS 0x0279 (Printer
status port)

Write-
only

WRITE_DATA 0x0A79 (Printer
status port + 0x0800)

Write-
only

READ_DATA Relocatable in range
0x0203 to 0x03FF

Read-
only

The READ_DATA port is relocatable within the I/O
range from 0x0203h to 0x03FFh. This is the only read-
able auto-configuration port.

ADDRESS Port

The Plug and Play registers are accessed by

n Writing the address of the desired register to the
ADDRESS port, followed by a

n Read of data from the READ_DATA port or a write of
data to the WRITE_DATA port.

A write to the ADDRESS port may be followed by any
number of WRITE_DATA or READ_DATA accesses to
the same register location without the need to write to
the ADDRESS port before each access.

The ADDRESS port is also the write destination of the
initiation key, which is described later.

Note the extra three flip-flops used to synchronize the
write strobe signal, WR_STRB, to the ISA bus clock,
CLK. Similar circuitry is used to sychronize the write
strobe when writing to the internal registers.

WRITE_DATA Port

The WRITE_DATA port is used to write information to
the Plug and Play registers. The destination of the data
is determined by the last setting of the ADDRESS port.

Logical device
configuration

Logical device
control

Card
control

Address
register

LFSR
key

ISA Bus

Decoder
ADDRESS port

WRITE_DATA port

READ_DATA port

ENABLE

SELECT

OUTPUT
ENABLE

ADDR[11:00]

CONTROL

DATA[7:0]

Figure 2. Logic flow for auto-configuration.

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 4

READ_DATA Port

The READ_DATA port is used to read information from
the Plug and Play registers. The source of the data is
determined by the last setting of the ADDRESS port.

The address of the READ_DATA port is set by writing
the proper value to a Plug and Play control register.
The isolation protocol verifies that the location selected
for the READ_DATA port is free of conflict.

Sending and Verifying the Initiation Key

The Plug and Play logic is quiescent on power up and
must be enabled by software.

Logic Modules Used

The logic that performs this function is included in the
following modules:

1. the INIT_DETECT symbol shown in Figure 7—Plug
and Play Demonstration Design, Sheet 1
(PLGPLY.1) on page 14.

2. the underlying logic for INIT_DETECT shown in
Figure 18—Initiation Key Schematic (INITKEY.1)
on page 32.

3. the ABEL source code for the initiation key state
machine shown in Figure 20—ABEL source file
for Initiation Key state machine (INIT_KEY.ABL)
on page 34.

4. the underlying logic for the LFSR initiation key
shown in Figure 19—Initiation Key LFSR Sche-
matic (LFSR_KEY.1) on page 33.

5. the MAIN_CONTROL symbol shown in Figure 7—
Plug and Play Demonstration Design, Sheet 1
(PLGPLY.1) on page 14.

6. the ABEL source for the Plug and Play main control-
ler (states ‘wait_init’ and ‘sleep’) shown in Figure
17—ABEL source file for Plug and Play main
state machine on page 30.

The initiation key places the Plug and Play logic into
configuration mode. This is done by a predefined series
of writes to the ADDRESS port. The write sequence is
decoded by the logic and state machine in the
INIT_DETECT symbol. If the proper series of I/O writes
is detected, then the Plug and Play auto-configuration
ports are enabled.

The hardware verification of the initiation key is ac-
complished using a Linear Feedback Shift Register
(LFSR) shown in Figure 19. The LFSR powers-up pre-

loaded with 0x6Ah. Software generates the LFSR se-
quence, also shown in Figure 19, and writes it to the
ADDRESS port as a sequence of 8-bit write cycles. The
hardware compares the byte of write data with the value
in the shift register at each write. Any time the data
does not match, the hardware resets the LFSR to the
initial value. Software should reset the LFSR to its ini-
tial value by a sequence of two write cycles of 0x00 to
the ADDRESS port before the initiation key is sent.

Isolation Protocol

A simple algorithm is used to isolate each Plug and Play
card. This algorithm uses the signals on the ISA bus
and requires lock-step operation between the Plug and
Play hardware and the isolation software. The state
diagram for the isolation process is shown in Figure 4.

Logic Modules Used

The logic that performs the isolation protocol is shown in
the following modules:

1. the ISOLATION symbol shown in Figure 7—Plug
and Play Demonstration Design, Sheet 1
(PLGPLY.1) on page 14.

2. the underlying logic for ISOLATION shown in
Figure 15—Isolation Protocol Schematic
(ISO_MOD.1) on page 26.

3. the underlying ABEL source code for the isolation
state machine shown in Figure 16—Isolation State
Machine Listing (ISOLATE.ABL) on page 27.

4. the MAIN_CONTROL symbol shown in Figure 7—
Plug and Play Demonstration Design, Sheet 1
(PLGPLY.1) on page 14.

5. the ABEL source for the Plug and Play main control-
ler shown in Figure 17—ABEL source file for Plug
and Play main state machine on page 30.

Serial Identifier

The key element of this mechanism is that each card
contains a unique number, called the serial identifier.
The serial identifier is a 72-bit unique, non-zero, number
composed of two, 32-bit fields and an 8-bit checksum as
shown in Figure 3. The first 32-bit field is a vendor
identifier. The other 32 bits can be any value, for ex-
ample, a serial number, part of a LAN address, or a
static number, as long as there will never be two cards
in a single system with the same 64 bit number. The
serial identifier is accessed bit-serially by the isolation
logic and is used to differentiate the cards.

Byte 0

Vendor ID

7:0

Byte
7:0

Byte 2
7:0

Byte 3
7:0

Byte 0
7:0

Byte
7:0

Byte 2
7:0

Byte 3
7:0

Byte 0
7:0

Serial NumberCheck-
sum

Shift

Figure 3. Serial Identifier format

5 SUBJECT TO CHANGE

The shift order for all Plug and Play serial isolation and
resource data is always defined as bit[0], bit[1], and so
on through bit[7].

In this design, the serial identifier is stored in external
EEPROM along with the card’s resource information.
The serial identifier can also be stored internally using
CLB ROMs for simple boards with few resources. Using
CLB ROMs simplifies the overall logic.

The Plug and Play software sends the initiation key to all
Plug and Play cards to place them into configuration
mode. The software is then ready to perform the isola-
tion protocol.

Isolating the Cards

The hardware on each card then expects 72 pairs of I/O
read accesses to the READ_DATA port. The card's re-
sponse to these reads depends on the value of each bit

of the serial identifier which is being examined one bit at
a time. The response is controlled by the isolation
ABEL state machine defined in Figure 16.

n If the current bit of the serial identifier is a “1”, then
drive the data bus to 0x55 to complete the first I/O
read cycle (State ‘s3’ in Figure 16).

n If the bit is “0”, then the data bus is high impedance.

n All cards in high impedance check the data bus dur-
ing the I/O read cycle to sense if another card is
driving D[1:0] to “01” (State ‘s6’ in Figure 16).

n During the second I/O read, the card(s) that drove
the 0x55 now drive a 0xAA (State ‘s4’ in Figure 16).

n All high impedance cards check the data bus to
sense if another card is driving D[1:0] to “10” (State
‘s8’ in Figure 16).

During each read cycle, the Plug and Play hardware
drives the entire 8-bit data bus, but only checks the
lower 2 bits.

The software checks that it receives 0x55 and 0xAA
data returned from each pair of I/O reads. If both 0x55
and 0xAA are read back, then the software assumes
that the hardware had a “1” bit in that position. All other
results are assumed to be a “0.”

If a high impedance card senses another card driving
the data bus with the appropriate data during both cy-
cles, then the high impedance card ceases to participate
in the current round of card isolation. The testing for
another card driving the bus is done during States ‘s6,’
‘s7,’ and ‘s8’ in Figure 16. If another card is detected,
then the card jumps back to State ‘s0.’ All the cards that
lose on in the current iteration will participate in future
iterations of the isolation protocol.

If a card was driving the bus or if the card was in high
impedance and did not sense another card driving the
bus, then it should prepare for the next pair of I/O reads.
The card shifts the serial identifier by one bit and uses
the shifted bit to decide its response. States ‘s11’ and
‘s12’ shown in Figure 16 perform this function.

The above sequence is repeated for the all 72 bits in the
serial identifier. During the first 64 bits, software gen-
erates a checksum using the received data. The check-
sum is compared with the checksum read back in the
last 8 bits of the sequence. The software checksum al-
gorithm can be found in Appendix B of the Plug and
Play ISA Specification .

Special Software Considerations

There are two other special considerations for the soft-
ware protocol. During an iteration, it is possible that:

n The 0x55 and 0xAA combination is never detected.

n The checksum does not match.

If the software encounters either of these cases on the
first iteration, it must assumed that there is a conflict on

Isolation State

Read from serial
isolation register. Get
bit from serial identifier

Is the data bit =
'1'?

Three-state the data
bus and monitor the

value on the bus

Is there
another card driv-
ing lower bits to

"01"?

Wait for next read from
serial isolation register

Wait for next read from
serial isolation register

Drive bus with 0x55

Is there
another card driv-
ing lower bits to

"10"?

Drive bus with 0xAA

Read al 72
bits from the serial

identifier?

Sleep StateThis card is now
isolated.

Three-state the data
bus and monitor the

value on the bus

YES

NO

NO

YES

NO

YESYES

NO

Figure 4. Isolation process state diagram.

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 6

the READ_DATA. If a conflict is detected, then the
READ_DATA port needs to be relocated.

The above process is repeated until a non-conflicting
location for the READ_DATA port is found. The entire
range between 0x200 and 0x3FF is available, however
in practice it is expected that only a few locations will be
tried before software determines that no Plug and Play
cards are present.

During subsequent iterations, the occurrence of either of
these two special cases should be interpreted as the
absence of any further Plug and Play cards (i.e.—the
last card was found in the previous iteration). This ter-
minates the isolation protocol.

The software must delay 1 msec prior to starting the first
pair of isolation reads, and must wait 250 µsec between
each subsequent pair of isolation reads. This delay
gives the ISA card time to access information from pos-
sibly very slow storage devices.

One Card Remains—The Isolation Winner

At the end of isolation process, only one card remains.
This card is assigned a handle referred to as the Card
Select Number (CSN). The CSN will be used later by
the software to select the card. The logic that controls
the process is contained in the MAIN_CONTROL sym-
bol shown in Figure 7 and in the ABEL state machine
listing showin in Figure 17. The specific states involved
are named ‘iso_mode’ and ‘wait_csn.’

Cards that have already been assigned a CSN do not
participate in subsequent iterations of the isolation pro-
tocol: They have already been uniquely identified. A
cards must be assigned a CSN before it will respond to
other Plug and Play commands.

The protocol permits the 8-bit checksum to be stored in
non-volatile memory on the card or generated by on-
card logic in real-time. The same LFSR algorithm de-
scribed in the initiation key section is used in the check-
sum generation. In this example, the checksum is
stored in the EEPROM.

Plug and Play cards must not drive the IOCHRDY signal
during serial isolation. However, cards may drive
IOCHRDY at any other time.

Programming Plug and Play Devices

This section describes how configuration resource data
is read from Plug and Play ISA cards as well as how
resource selections are programmed. The Plug and
Play state machine and Plug and Play commands are
introduced.

The Card Select Number (CSN) register is written during
the isolation process and is actively involved in most
Plug and Play commands. The CSN is an 8-bit register
used to select one or more ISA cards and is shown as
CSN_REGISTER toward the top of Figure 7.

The CSN is an 8-bit register because it allows a wide
variety of devices to manage their configuration and
control using this mechanism. The CSN is defined such
that all cards power-up with this register set to zero
(0x00). Once a card has been isolated, the CSN on that
card is assigned a unique, non-zero value. This value
allows the Plug and Play software to select this card at
later points in the configuration process without going
through the isolation protocol again.

Logic Modules Used

1. the CSN_REGISTER symbol shown in Figure 7—
Plug and Play Demonstration Design, Sheet 1
(PLGPLY.1) on page 14.

2. the MAIN_CONTROL symbol shown in Figure 7—
Plug and Play Demonstration Design, Sheet 1
(PLGPLY.1) on page 14.

3. the ABEL source for the Plug and Play main control-
ler shown in Figure 17—ABEL source file for Plug
and Play main state machine on page 30.

Main Controller States

The Plug and Play control states are summarized as
follows:

n Wait for Key — State ‘wait_init’ in Figure 17. All
cards enter this state after initial power-up or in re-
sponse to the Wait for Key command. No com-
mands are active in this state until the initiation key
is detected on the ISA bus. The Wait for Key state
is the default state for Plug and Play cards during
normal system operation. After configuration and
activation, software should return all cards to this
state.

n Sleep — State ‘sleep’ in Figure 17. In this state,
Plug and Play cards wait for a Wake[CSN] com-
mand. This command selectively enables one or
more cards to enter either the Isolation or Config
states based on the write data and the value of the
CSN on each card. Cards leave the Sleep state in
response to a Wake[CSN] command when the value
of write data bits[7:0] of the command matches the
card’s unique CSN. All the cards that have not been
assigned a CSN value have CSN=0x00 (the default
value). If the write data for the Wake[CSN] com-
mand is zero then all cards that have not been as-
signed a CSN will enter the Isolation state. If the
write data for the Wake[CSN] command is not zero
then the one card whose assigned CSN matches the
parameter of the Wake[CSN] command will enter the
Config state.

n Isolation — State ‘iso_mode’ in Figure 17. In this
state, Plug and Play cards respond to reads of the
Serial Isolation Register as described in the previous
section on the isolation process. Once a card is iso-
lated, it is a assigned unique CSN value in State
‘wait_csn’ in Figure 17. This number will later be
used by the Wake[CSN] command to select the card.

7 SUBJECT TO CHANGE

Once the CSN is written, the card transitions to the
Config state.

n n Config — State ‘config’ in Figure 17. A card in the
Config state responds to all configuration commands
including reading the card's resource configuration
information and programming the card's resource
selections. Only one card may be in this state at a
time.

Plug and Play Register Summary

Plug and Play card standard register space is divided
into three parts; card control, logical device control, and
logical device configuration.

There is exactly one of each card control register on
each ISA card. Card control registers are used for
global functions that control the entire card. Logical
device control registers and logical device configuration
registers are repeated for each logical device. Logical
device control registers control device functions, such
as enabling the device onto the ISA bus. Logical device
configuration registers are used to program the device's
ISA bus resource use. There are several vendor de-
fined registers in all three register locations so vendors
may configure non-standard ISA resources through the
Plug and Play mechanism as well.

As implemented, this design currently supports only one
logical device—common for most applications. How-
ever, additional logical devices may be supported by
connecting the appropriate signals to the LOG_DEV_
REG_SEL symbol and the LOGIC_DEVICE_DECODE
symbol shown in Figure 8 on page 16.

c

Card control

0x00

0x2F

One per
logical device

One per card

Logical device control

Logical device configuration

Reserved

0x30

0x3F
0x40

0xFE

0xFF

Figure 5. Plug and Play High-Level Register Map

Control Register Space

Plug and Play cards respond to commands written to
Plug and Play registers as well as certain ISA bus con-
ditions. The address decoding for these registers and
commands is located in the REGISTER_DECODE sym-
bol in Figure 7 and the underlying logic shown in Figure

10. These associated commands are summarized be-
low:

n RESET_DRV — This is the ISA bus reset signal. In
this application, the ISA_RESET directly drives the
GSR input of the STARTUP symbol shown in Figure
8. When the card detects this signal, the Plug and
Play main controller state machine enters the Wait
for Key state (State ‘wait_init’ in Figure 18). All
CSNs are reset to 0x00. The configuration registers
for all logical devices are loaded with their power-up
values from non-volatile memory or jumpers. All
non-boot logical devices become inactive. Boot de-
vices become active using their power-up ISA re-
sources. Note: The software must delay 1 msec af-
ter RESET_DRV before accessing the auto-
configuration ports.

n Config control register — The Config Control regis-
ter consists of three independent commands which
are activated by writing a “1” to their corresponding
register bits. The logic is contained in the
CONFIG_CNTRL symbol in Figure 7 and the under-
lying logic is shown in Figure 14. These bits are as-
serted automatically reset by the logic two clock cy-
cles after the commands execute.

• Reset command — The Reset command is sent
to the Plug and Play cards by writing a value of
0x01 to the CONFIG_CNTRL register. All Plug
and Play cards in any state, except Wait for Key ,
respond to this command. This command per-
forms a reset function on all logical devices. This
resets the contents of configuration registers to
their default state. The configuration registers for
all logical devices are loaded with their power-up
values from non-volatile memory or jumpers. The
READ_DATA port, CSN and Plug and Play
state are preserved. Note: The software must
delay 1 msec after issuing the reset command
before accessing the auto-configuration ports.

• Wait for Key command — The Wait for Key
command is sent to the Plug and Play cards by
writing a value of 0x02 to the CONFIG_CNTRL
register. All Plug and Play cards in any state will
respond to this command. This command forces
all Plug and Play cards to enter the Wait for Key
state. The CSNs are preserved and no logical
device status is changed. This command is ac-
complished by resetting the Plug and Play main
controller state machine to State ‘wait_init’ shown
in Figure 17.

• Reset CSN command — The Reset CSN com-
mand is sent to the Plug and Play cards by writing
a value of 0x04 to the CONFIG_CNTRL register.
All Plug and Play cards in any state, except Wait
for Key , will reset their CSN to 0x00. This com-
mand is accomplished by resetting the
CSN_REGISTER symbol in Figure 7.

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 8

NOTE: On a CTRL-ALT-DEL key sequence, the BIOS
issues a reset of all logical devices, restores configura-
tion registers to their default values, and returns all
cards to the Wait for Key state (i.e.—write a value of
0x03 to the Config Control register). This retains the
CSNs and READ_DATA port and will eliminate the need
to go through the isolation sequence again. A write to
this register with all three bits set is equivalent to a
RESET_DRV event.

n Set RD_DATA Port command — This command
sets the address of the READ_DATA Port for all Plug
and Play cards. Write data bits[7:0] is used as ISA
I/O bus address bits[9:2]. The ISA bus address
bits[1:0] is fixed at binary “11.” The ISA bus address
bits[15:10] is fixed at binary “000000.” This com-
mand can only be used in the Isolation state. The
exact method for setting the read data port is:

• Issue the Initiation Key

• Send command Wake[0]

• Send command Set RD_DATA Port

 Note: After a RESET_DRV or Reset CSN command,
this register is considered uninitialized and must be
reinitialized.

n Serial Isolation register — A read from the Serial
Isolation register causes Plug and Play cards in the
Isolation state to respond to the ISA bus read cycle
as described in the Isolation Protocol section above.
Cards that “lose” the isolation protocol will enter the
Sleep state.

n Card Select Number — A Card Select Number is
uniquely assigned to each Plug and Play card when
the card has been isolated and is the only card in the
Isolation state. A Card Select Number of zero rep-
resents an unidentified card, the default state. Valid
Card Select Numbers for identified ISA cards range
from 1 to 255 and must be assigned sequentially
starting from 1. The Card Select Number is used to
select a card via the Wake[CSN] command as de-
scribed above. The Card Select Number on all ISA
cards is set to zero on a RESET_DRV command.
The CSN is never set to zero using the CSN register.

n Wake[CSN] command — This command is used to
bring ISA cards in the Sleep state to either the Iso-
lation state or the Config state.

• A Wake[CSN] command with a parameter of zero
will force all cards without a CSN to enter the
Isolation state.

• A Wake[CSN] command with a parameter other
than zero will force the card with the matching
CSN to enter the Config state.

• Any card in the Isolation or Config states that re-
ceives a Wake[CSN] command with a parameter

that does not match its CSN will transition to the
Sleep state.

All Plug and Play cards function as if their 72-bit se-
rial identifier and their resource data come from a
single serial device. The pointer to this data is reset
to the beginning whenever a card receives any
Wake[CSN] command.

n Resource Data register — A read of the Resource
Data register will return one byte of resource data
from the Plug and Play card in the Config state.
Resource data is always returned byte sequentially.
The Status register must always be read to confirm
that resource data is available before reading the
Resource Data register.

n Status register — Bit[0] of the Status register indi-
cates that the next byte of resource data is available
to be read. If this bit is one, then data is available
otherwise resource data is not yet available. The
Plug and Play software will poll this location until
bit[0] is set, then the next data byte from the Re-
source Data register is read.

n Logical Device Number register — The logical de-
vice number register is used to select which logical
device the following configuration commands will
operate on. Cards may contain more than one logi-
cal device, in which case the logical device is se-
lected by writing the 8-bit logical device number into
this register. The logical device number is deter-
mined by the order in which the logical devices are
read from the resource data. The first logical device
number is 0, the second is 1, and so on.

n I/O Range Check register — The I/O Range Check
register is not implemented in this design. This

Byte 0PNP Version and Card String ID

Byte 0

End Tag

Byte 0

Byte 0Serial Number

Byte 3

Byte 2

Byte 1

Byte 0Vendor ID

Byte 1

Byte 2

Byte 3

Bit
7

Bit
0

Serial
Identification

Resource
Data
(read sequentially
per card)

seridres

Checksum Byte 0

Logical Device ID 0

Resources for Device ID 0

Byte 1

Byte m

Byte 0

Byte 0Logical Device ID x

Resources for Device ID x

Byte 1

Byte n

Byte 0

Figure 6. Serial Identifier and Resource Data

9 SUBJECT TO CHANGE

command is optional and is not implemented on
cards that do not have configurable I/O port ranges.

n n Activate register — The Activate register is a
read/write register that is used to activate a logical
device. An active logical device responds to all ISA
bus cycles as per its normal operation. An inactive
logical device does not respond to nor drive any ISA
bus signals. Bit[0] is the active bit, if it is set to “1”
then the logical device is active, otherwise it is inac-
tive.

Plug and Play Isolation Sequence

On power up, all Plug and Play cards detect
RESET_DRV, set their CSN to 0, and enter the Wait for
Key state. There is a required 1 msec delay from either
a RESET_DRV or ResetCmd to any Plug and Play port
access to allow a card to load initial configuration infor-
mation from a non-volatile device.

Cards in the Wait for Key state do not respond to any
access to their auto-configuration ports until the initiation
key is detected. Cards ignore all ISA accesses to their
Plug and Play interface.

When the cards have received the initiation key, they
enter the Sleep state. In this state, the cards listen for a
Wake[CSN] command with the write data set to 0x00.
This Wake[CSN] command will send all cards to the
Isolation state and reset the serial identifier/resource
data pointer to the beginning.

The first time the cards enter the Isolation state it is
necessary to set the READ_DATA port address using
the Set RD_DATA port command.

Next, 72 pairs of reads are performed to the Serial Iso-
lation register to isolate a card as described previously.
If the checksum read from the card is valid, then this
means one card has been isolated. The isolated card
remains in the Isolation state while all other cards have
failed the isolation protocol and have returned to the
Sleep state. The CSN on this card is set to a unique
number. Writing this value causes this card to transition
to the Config state. Sending a Wake[0] command
causes this card to transition back to Sleep state and all
cards with a CSN value of zero to transition to the Iso-
lation state. This entire process is repeated until no
Plug and Play cards are detected.

If a conflict is detected on the READ_DATA port, a
Wake[0] command is issued to cause all the cards that
are in the Isolation state to reset their serial identifer
data pointer to the beginning while remaining in the
Isolation state. Further, after a read port conflict has
been detected and a Wake[0] has been issued, the
software must wait 1 msec before beginning the next 72
pairs of serial isolation read cycles.

Reading Resource Data

Card resource data may only be read from cards in the
Config state. A card may get to the Config state by
one of two different methods:

1. A card enters the Config state in response to the
card “winning” the serial isolation protocol and hav-
ing a CSN assigned.

2. The card also enters the Config state in response to
receiving a Wake[CSN] command that matches the
card's CSN.

As shown in Figure 6, all Plug and Play cards function
as if their 72-bit serial identifier and their resource data
both come from a single byte-serial device (an industry-
standard EEPROM, in this design). As stated earlier,
the pointer to the byte-serial device is reset in response
to any Wake[CSN] command. This implies that if a card
enters the Config state directly from Sleep state in re-
sponse to a Wake[CSN] command, the 9-byte serial
identifier must be read first before the card resource
data is accessed. The Vendor ID and Unique Serial
Number are valid. However, the checksum byte is not
valid when read in this way. For a card that enters the
Config state from the Isolation state (i.e. after the iso-
lation protocol has been run and all 72 bits of the serial
identifier have been read), the first read of the Resource
Data register will return resource data.

Card resource data is read by first polling the Status
register and waiting for bit[0] to be set. When this bit is
set it means that one byte of resource data is ready to
be read from the Resource Data register. After the Re-
source Data register is read, the Status register must be
polled before reading the next byte of resource data.
This process is repeated until all resource data is read.
The format of resource data is described in the following
section.

The above operation implies that the hardware is re-
sponsible for accumulating 8 bits of data in the Re-
source Data register. When this operation is complete,
the status bit[0] is set. When a read is performed on the
Resource Data register, the status bit[0] is cleared, eight
more bits are accumulated in the Resource Data regis-
ter, then the status bit[0] is set again.

Configuring Card Resource Usage

Plug and Play cards support the following registers
which are used for configuring the card's standard ISA
resource usage per logical device.

n Memory Address Base registers (up to four non-
contiguous ranges in the Plug and Play specification,
not implemented in this design)

n I/O Address Base registers (up to eight non-
contiguous ranges in the Plug and Play specification,
a single contiguous range in this design)

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 10

n Interrupt Level Select registers (up to two separate
interrupt levels in the Plug and Play specification, a
single level in this design)

n DMA Channel Select registers (up to two DMA chan-
nels in the Plug and Play specification, a single
channel in this design)

These registers are read/write and always reflect the
current operation of all logical devices on the Plug and
Play card. If a resource is not programmable, then the
configuration register bits are read-only.

Resource Programming

Plug and Play cards are programmed by sending the
card a Wake[CSN] command with the write data set to
the card's CSN. This will force the one card with the
matching CSN into the Config state and force all other
cards into the Sleep state. Next, the logical device to
be programmed is selected by writing the logical device
number to the Logical Device Number register. If the
card has only one logical device, this step may be
skipped.

Resource configuration for each logical device is pro-
grammed into the card using the registers for I/O, mem-
ory, IRQ, and DMA selection defined in Appendix A in
the Plug and Play ISA Specification . Each and every
resource requested by a logical device must be pro-
grammed, even if the resource is not assigned. Each
resource type is described below.

n Memory Configuration — NOT SUPPORTED IN
THIS DESIGN. Memory space resource use is pro-
grammed by writing the memory base address to the
memory base address registers. Next, the memory
control is written with the correct 8/16/32 bit memory
operation value and the decode select option. If the
memory decode option was set to range length, then
the range length is written to the memory upper
limit/range length registers. If the memory decode
option was set to upper limit, then the upper limit
memory address is written to the upper limit/range
length register. If no memory resource is assigned,
the memory base address registers must be set to
zero and the upper limit/range length registers must
be set to zero.

n I/O Space Configuration — I/O space resource use
is programmed by writing the I/O base address[15:0]
to the I/O port base address registers. The logic for
the base registers is shown in Figure 11. If a logical
device indicated it uses 10-bit I/O space decoding,
then bits [15:10] of the I/O address are not imple-
mented on the card. If no I/O resource is assigned,
the I/O base address registers must be set to zero.

n Interrupt Request Level — The interrupt request
level for a logical device is selected by writing the
interrupt request level number to the Interrupt Level
Select register. This select number represents the
number of the interrupt on the ISA bus. The interrupt

request logic is shown in Figure 13. The reference
design only uses IRQ2 through IRQ5 though all 15
are available.

 The edge/level and high/low active state of the inter-
rupt must be written to the Interrupt Request Type
register. If no interrupt is assigned, the Interrupt
Level Select register must be set to 0. The IRQ2
signal on the ISA bus is routed to IRQ 9 on the 8259
interrupt controller. To select IRQ 2 on the ISA bus,
the Interrupt Level Select register must be set to 2,
not 9.

n DMA Channel — The DMA channel for a logical
device is selected by writing the DMA channel num-
ber to the DMA Channel Select register. The DMA
logic is shown in Figure 12. The select number rep-
resents the number of the DRQ/DACK channel on
the ISA bus. If no DMA channel is assigned, this
register must be set to 4.

The last step in the programming sequence is to set the
logical device's activate bit. This forces the logical de-
vice to become active on the ISA bus at its assigned
resources. When finished programming configuration
registers, all cards must be set to the Wait for Key
state.

Run Time Access to Plug and Play registers

Read access to Plug and Play configuration is available
at all times with no impact to the function(s) on the card.
However, write accesses to Plug and Play registers
must be done with the full knowledge of the device
driver controlling the device and the operating system
environment. Even though it is possible to re-assign the
CSNs during run time, this is not necessary since CSNs
for all Plug and Play cards are assigned during initiali-
zation. The only exception to this case is for docking
stations, hot-insertion capability or if power manage-
ment is supported. It is required that prior to changing
the value of any registers, the logical device be de-
activated, the resource register re-programmed, and the
logical device is activated again. When finished access-
ing Plug and Play registers, all cards must be returned
to the Wait for Key state.

High-Volume, Cost-Reduction Strategies

Plug and Play ISA cards typically will be shipped in high
production volumes. While the Plug and Play ISA
specification is still in a state of flux, programmable
logic is probably the best solution for implementing the
interface.

However, as the specification matures, there are a few
strategies for reducing the overall cost. In this applica-
tion note, the design is implemented using an XC4003-
6PQ100C. This provides a relatively low cost solution
while retaining the benefits of flexible, changeable pro-
grammable logic. As of this writing (February 1995),
Xilinx recently introduced a new FPGA family called the

11 SUBJECT TO CHANGE

XC5200. The attributes of the XC5200 family important
for this design are:

n Pin-compatibility with corresponding XC4000 de-
vices.

n A revolutionary, low-cost architecture by exploiting
advanced 0.6µ triple-layer metal CMOS technology.

This design can be migrated to the lower-cost XC5200,
when available, without changing the PC board pinout.
The XC5200 offers a cost reduction over the XC4003
while remaining fully re-programmable.

Once the Plug and Play ISA specification has solidified,
another option for higher-volume applications is to cov-
ert the programmable XC4003 design into a mask-
programmed Xilinx XC4303 or XC4403 HardWire™ gate
array. The HardWire gate array offers:

n 100% pin- and design-compatibility with the XC4003

n Low NRE charge

n “Design Once” — A low-risk conversion process us-
ing the same design files as used in the XC4003
without requiring test or simulation vectors

n 100% fault coverage without requiring user-written
test vectors

n Reduced production costs

Using the Xilinx Plug and Play Design Files

This design is made available on diskette. This section
describes what software is required to run the design
and the steps involved. Also, please read through the
Limitations and Restrictions section.

Software Requirements

The following software is required to process this design:

n PKUNZIP 2.04e, or later, unarchiving pro-gram.

n Xilinx XACT 5.0, or later, FPGA development sys-
tem.

n VIEWdraw or VIEWdraw-LCA schematic editor with
Xilinx XC4000 Unified libraries. This is required in
order to make modifications to the schematics.

n Xilinx X-ABEL or Data I/O ABEL 5.0 or later. This is
required in order to make modifications to the vari-
ous state machine design implemented using ABEL.

n QBASIC BASIC intrepreter usually included with MS-
DOS. This is only required for executing the various
BASIC test programs.

Using the Design on Your System

1. Create a new directory called PLGPLY on your hard
disk.

2. Copy the file called PLUGPLAY.EXE into the
PLGPLY directory.

3. Type PLUGPLAY.EXE on the command line. This
extracts a README.TXT file, and a hierarchical ar-
chive of the design files called PLGPLY.ZIP .

4. Invoke PKUNZIP -D PLYGPLY.ZIP to extract the
files, including their hierarchical path names, onto
your disk.

5. Edit the VIEWDRAW.INI file. Make sure that the
VIEWlogic design library pointers are set appropri-
ately for your machine. You will find the library
pointers near the end of the file.

6. Invoke the XDM program.

7. Set the part type for a XC4003-6PQ100C.

8. Run XMAKE on PLGPLY.MAK to process the design.
The schematic files named PLGPLY.1 through
PLGPLY.3 include the top-level schematics.

Design Directories

The files are installed in separate sub-directories as
shown in Table 2.

Table 2. Design Sub-directories.
Sub-Directory Files

/SCH VIEWdraw schematic designs
/SYM VIEWdraw symbols used in the

schematics
/WIR VIEWdraw wire files
/BASIC QBASIC routines used to test and

access the Plug and Play design
/CMD VIEWsim command files for

simulation

Limitations and Restrictions

WARNING: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or war-
ranty regarding this design or any item based on this
design. Xilinx disclaims all express and implied warran-
ties, including but not limited to the implied fitness of
this design for a particular purpose and freedom from
infringement. Without limiting the generality of the fore-
going, Xilinx does not make any warranty of any kind
that any item developed based on this design, or any
portion of it, will not infringe any copyright, patent, trade
secret or other intellectual property right of any person
or entity in any country. It is the responsibility of the
user to seek licenses for such intellectual property rights
were applicable. Xilinx shall not be liable for any dam-
ages arising out of or in connection with the use of the
design including liability for lost profit, business interrup-
tion, or any other damages whatsoever.

Design Support and Feedback

This application note, like the Plug and Play ISA specifi-
cation itself, is still under development. Consequently,
there will most likely be future changes and additions.

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 12

If you would like to be updated with new versions of this
application note, or if you have questions, comments, or
suggestions, or if you discover potential problems,
please send an E-mail to

PnP@xilinx.com

or a FAX addressed to "Corporate Applications: Plug
and Play Application Note" sent to

1+(408) 879-4442.

Updates to this document can be received via E-mail.
Send an E-mail message to xdocs@xilinx.com with
send 21610 in the subject header.

IMPORTANT: Please be sure to include which version
of the application note you are using. The version num-
ber is in the lower right-hand corner of page 1.

Additional Resources

The following additional information is available on Plug
and Play:

Plug and Play ISA 1.0a Specification

Available via the ComuServe Plug and Play forum (GO
PLUGPLAY). Requires a CompuServe account. The
specification is available as a downloadable Microsoft
Word for Windows 6.0 .DOC file.

Plug and Play X-NOTES

Contains additional basic background information on the
Plug and Play market and design solutions. Available
from your local Xilinx sales office.

Acknowledgments

Portions reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1994.

13 SUBJECT TO CHANGE

NOTES:

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 14

Figure 7—Plug and Play Demonstration Design, Sheet 1 (PLGPLY.1)

15 SUBJECT TO CHANGE

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 16

Figure 8—Plug and Play Demonstration Design, Sheet 2 (PLGPLY.2)

17 SUBJECT TO CHANGE

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 18

Figure 9—Plug and Play Demonstration Design, Sheet 3 (PLGPLY.3)

19 SUBJECT TO CHANGE

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 20

Figure 10—Plug and Play Ports (PP_DEC.1)

21 SUBJECT TO CHANGE

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 22

Figure 11—I/O Range Selector Schematic (IO_DEC.1)

23 SUBJECT TO CHANGE

Figure 12—DMA Selector Schematic (DMA_SEL.1)

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 24

Figure 13—Interrupt Steering Schematic (IRQ_SEL.1)

25 SUBJECT TO CHANGE

Figure 14—Configuration Register Schematic (CONF_REG.1)

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 26

Figure 15—Isolation Protocol Schematic (ISO_MOD.1)

27 SUBJECT TO CHANGE

Figure 16—Isolation State Machine Listing (ISOLATE.ABL)

" Copyright (c) 1994 Xilinx, Inc.

module isolate
title 'Plug & Play isolation state machine'

" clock
 clk pin;

" inputs
 iso_mode pin; "card in isolation mode

 prom_data pin; "ID data one bit at a time
 bit_avail pin; "bit available from PROM

 rd_port pin; "ISA I/O port read to isolation address

 db_reg0 pin; "Registered databus bit 0
 db_reg1 pin; "Registered databus bit 1

 rd_cnt_cmp pin; "when 72 isolation reads completed goes true

 restart pin; "signal used to force back to state s0

" outputs
 next_bit pin istype 'reg_D'; "requests another bit of data from PROM

 db0 pin istype 'reg_D'; "output data 0
 db1 pin istype 'reg_D'; "output data 1
 drv_db pin istype 'reg_D'; "output enable for data bus driver

 clr_iso_mode pin istype 'reg_D'; "clears the register that indicates in isolation mode
 clr_rd_cnt pin istype 'reg_D'; "isolation read count clear signal
 rd_cnt_inc pin istype 'reg_D'; "increment the isolation read counter

 isolated pin istype 'reg_D'; "sucess -- 72 isolation reads done

" state diagram label definitions
 sbit STATE_REGISTER istype 'reg_D';
 s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12 STATE;

" The power-on initial state is 's0'
xilinx property 'Initialstate s0';

" label definitions
 db_in =[db_reg1, db_reg0];
 db_out =[db1, db0];

 HIGH = 1;
 LOW = 0;

EQUATIONS

 next_bit.clk = clk;
 db0.clk = clk;
 db1.clk = clk;
 drv_db.clk = clk;
 clr_iso_mode.clk = clk;
 clr_rd_cnt.clk = clk;
 rd_cnt_inc.clk = clk;
 isolated.clk = clk;
 sbit.clk = clk;

" STATE MACHINE DESCRIPTION
" -------------------------
" There are two main branches to this state machine, depending on the data
" from the Serial Identification data in the PROM.
" When the PROM data is HIGH, then the state machine actively drives a

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 28

" 0x55h pattern and then a 0xAAh pattern on the bus. Then the state
" machine increments the isolation read counter and the isolation
" sequence continues.
" When the PROM data is LOW, then the state machine monitors the data bus.
" If this card detects another card driving the bus with 0x55h followed
" by 0xAAh, then this card drops out of the current isolation round (but
" it will compete in the next round). If no other card is detected
" driving the bus, then the read counter is incremented and the sequence
" contiues.
"
" Sucessful isolation is indicated by the ISOLATED signal going high.
"

 State_Diagram sbit

 ASYNC_RESET s0: restart;

" Wait for the card to be in ISOLATION mode.
" ---
 state s0: if (!iso_mode) then s0
 else s1 with
 next_bit := HIGH;
 endwith;

" Wait for data to be available from PROM.
" ---------------------------------------
 state s1: if (!bit_avail) then s1 with
 next_bit := HIGH;
 else s2;

" Wait for the system to read the PROM data. Jump to the appropriate loop
" in the state machine depending on whether the PROM data is HIGH or LOW.
" If HIGH, then jump to state 's3' while driving 0x55h on the bus.
" Otherwise, jump to state 's6'.
" ---
 state s2: if (!rd_port) then s2
 else if (rd_port & prom_data) then s3 with
 drv_db := HIGH;
 db_out := ^b01; " drive the bus with 0x55h
 endwith;
 else if (rd_port & !prom_data) then s6

" ==============================
" SERIAL IDENTIFIER DATA IS HIGH
" ==============================
" WAIT for read cycle to end and continue to drive the bus with 0x55h.
" ---
 state s3: if (rd_port) then s3 with
 drv_db := HIGH;
 db_out := ^b01; " drive bus with 0x55h
 endwith;
 else s4;

" WAIT for next read cycle but now drive the bus with 0xAAh.
" ---
 state s4: if (!rd_port) then s4
 else s5 with
 drv_db := HIGH;
 db_out := ^b10;
 endwith;

" Keep driving the bus with 0xAAh until the end of the read cycle. At the
" end of the cycle, increment the read counter and proceed to state 's11'.
" --
 state s5: if (rd_port) then s5 with
 drv_db := HIGH;
 db_out := ^b10;
 endwith;
 else s11 with
 rd_cnt_inc := HIGH;
 endwith;

29 SUBJECT TO CHANGE

" =============================
" SERIAL IDENTIFIER DATA IS LOW
" =============================
" Check if another card is driving the bus with 0x55h data. If there is a
" card driving 0x55h, then goto state 's7' and begin the check for 0xAAh.
" If no other card is driving 0x55h, then goto state 's9' to complete
" this round.
" ---
 state s6: if (rd_port) then s6
 else if (!rd_port & db_reg0 & !db_reg1) then s7
 else s9;

" WAIT for next read cycle.
" ------------------------
 state s7: if (!rd_port) then s7
 else s8;

" Check if another card is driving the bus with 0xAAh data. If there is a
" card driving 0xAAh, then drop out of the this isolation round and go
" back to state 's0'.
" If no other card is driving 0xAAh, then goto state 's11' to complete
" this round.
" ---
 state s8: if (rd_port) then s8
 else if (!rd_port & !db_reg0 & db_reg1) then s0 with
 clr_rd_cnt := HIGH;
 clr_iso_mode := HIGH;
 endwith;
 else s11 with
 rd_cnt_inc := HIGH;
 endwith;

" WAIT for next read cycle. The data bus is not being driven with 0x55h.
" --
 state s9: if (!rd_port) then s9
 else s10;

" WAIT for read cycle to end, then get next bit from PROM.
" ---
 state s10: if (rd_port) then s10
 else s11 with
 rd_cnt_inc := HIGH;
 endwith;

" =================
" CHECK IF ISOLATED
" =================
" Check to see if all 72 serial identifier reads have occured. If so, then
" this card has been isolated. Otherwise, continue the isolation process.
" --
 state s11: if (rd_cnt_cmp) then s11 with
 isolated := HIGH;
 endwith;
 else s12 with
 next_bit := HIGH;
 endwith;

" This state synchronizes the EEPROM controller's data_avail signal to this
" this state machine.
" --
 state s12: if (bit_avail) then s12 with
 next_bit := HIGH;
 endwith;
 else s1 with
 next_bit := HIGH;
 endwith;

end isolate

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 30

Figure 17—ABEL source file for Plug and Play main state machine (PPMAIN.ABL).

" Copyright (c) 1994 Xilinx, Inc.

module ppmain
title 'Plug & Play main control state machine';

" CLOCK
 clk pin;

" INPUTS
 reset pin;
 init_detected pin;
 wake_cmd pin;
 iso_lose pin;
 iso_win pin;
 db_zero pin;
 csn_match pin;
 csn_wr pin;

" OUTPUTS
 restart pin istype 'reg_D';

 en_sleep pin;
 en_isolation pin;
 en_wait_init pin;
 en_config pin;
 en_wait_csn pin;

" STATE DEFINITIONS
 states STATE_REGISTER istype 'reg_D';

 wait_init,
 sleep,
 iso_mode,
 wait_csn,
 config state;

" EQUATES
 HIGH = 1;
 LOW = 0;

" Set power-up initial state to 'wait_init'
Xilinx Property 'InitialState wait_init';

EQUATIONS
 states.clk = clk;
 restart.clk = clk;

 en_wait_init = wait_init;
 en_sleep = sleep;
 en_isolation = iso_mode;
 en_wait_csn = wait_csn;
 en_config = config;

 State_Diagram states
 ASYNC_RESET wait_init: reset;

" STATE: WAIT FOR INITIATION KEY (wait_init)
" ---
" Plug and Play cards wake up in a queiscent state and wait for an initiation
" key before becoming active. Once the initiated, the cards transition to
" the SLEEP state.

 state wait_init: if (!init_detected) then wait_init
else sleep;

31 SUBJECT TO CHANGE

" STATE: SLEEP (sleep)
" --------------------
" A card wakes up with its Card Select Number (CSN) set to zero. Once a card
" is uniquely isolated, it is assigned a non-zero CSN identifier.
" Cards that have not been isolated will enter ISOLATION when the software
" sends a WAKE[CSN] command with CSN=0.
" A card that has been isolated (i.e. CSN > 0) will enter the CONFIGURATION
" state when the software sends a WAKE[CSN] command where CSN matches the
" cards unique CSN.
" All other cards will remain in SLEEP.

 state sleep: if (wake_cmd & db_zero & csn_match) then iso_mode with
 restart := HIGH;
 endwith;
 else if (wake_cmd & !db_zero & csn_match) then config with
 restart := HIGH;
 endwith;
 else sleep;

" STATE: ISOLATION
" -----------------
" Unisolated cards compete to win the isolation process using their serial
" identification data.
" If a card loses during the current isolation round, it then goes back to
" the SLEEP state.
" If a card wins, it goes to WAIT FOR CSN.
" If no winner is yet assigned, the card competes in the next isolation round.

 state iso_mode: if (iso_lose) then sleep with
 restart := HIGH;
 endwith;
 else if (iso_win) then wait_csn
 else iso_mode;

" STATE: WAIT FOR CSN
" --------------------
" A uniquely isolated card waits for the software to assign the card its
" unique Card Selection Number.
" After the CSN is written, the card enters the CONFIGURATION state.

 state wait_csn: if (csn_wr) then config
 else wait_csn;

" STATE: CONFIGURATION
" ---------------------
" A card remains in the CONFIGURATION state until the software wishes to
" wake another card (i.e. WAKE[CSN] with CSN <> card's CSN). When another
" is awakened, this card will go back into the SLEEP state because only
" one card can be in the CONFIGURATION state.

 state config: if (wake_cmd & !csn_match) then sleep
 else config;

end ppmain;

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 32

Figure 18—Initiation Key Schematic (INITKEY.1)

33 SUBJECT TO CHANGE

Figure 19—Initiation Key LFSR Schematic (LFSR_KEY.1)

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 34

Figure 20—ABEL source file for Initiation Key state machine (INIT_KEY.ABL)

" Copyright (c) 1994 Xilinx, Inc.

module init_key
title 'Plug & Play initiation key state machine'

" clock
clk pin;

" inputs
lsfr_cmp pin; "Compare between LFSR data and data bus
tc pin; "Terminal count from LFSR
restart pin; "Restart initiation process
data_avail pin; "Data is available

" outputs
clr_da pin istype 'reg_D'; "Clear data available
clr_lsfr pin istype 'reg_D'; "Put LFSR in initial state
clk_lsfr pin istype 'reg_D'; "Increment the LFSR
init_mode pin istype 'reg_D'; "Indicates INITATION complete

" State diagram declaration and assignment
sbit STATE_REGISTER istype 'reg_D';
s0, s1, s2, s3 STATE;

" The power-on initial state is 's0'.
xilinx property 'Initialstate s0';

EQUATIONS

" STATE MACHINE DEFINITION
sbit.clk = clk;
clr_da.clk = clk;
clr_lsfr.clk = clk;
clk_lsfr.clk = clk;
init_mode.clk = clk;

State_diagram sbit

ASYNC_RESET s0: restart;

" Wait for data to become available and the proceed to state 's1'.
" --

State s0: if (!data_avail) then s0
else s1;

" If the initiation key data sent by the Plug and Play software matches the
" LFSR data, then continue. Otherwise, clear the LFSR and start over.
" ---

State s1: if (lsfr_cmp) then s2
else s0 with

clr_lsfr := 1;
clr_da := 1;
endwith;

" If the LFSR has reached its terminal count, then continue to state 's3'.
" Otherwise, go back to state 's0' and wait for net byte of initiation
" key data.
" ---

State s2: if (tc) then s3 with
init_mode := 1;
clr_da := 1;
endwith;

else s0 with
clk_lsfr := 1;
clr_da := 1;
endwith;

35 SUBJECT TO CHANGE

" Once the entire initation key has been read and verified, indicate that
" the card is now in INITIATION mode.
" ---

State s3: if (!data_avail) then s3 with
init_mode := 1;
clr_lsfr := 1;
endwith;

else s0;

end init_key

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 36

Figure 21.—EEPROM control logic.

37 SUBJECT TO CHANGE

Figure 22.—ABEL source file for the EEPROM control state machine (PRMCTL2.ABL).

module prmctl2
title 'EEPROM read control'

" This state machine is used to control access to an industry-standard EEPROM.
" It transmits a read command to the EEPROM and then manages the receipt of the
" serial data stream. The EEPROM data can be returned to the system in either
" a bit at a time or byte.

"clock
 clk pin;

"inputs
 cmd_sent pin;
 word_rcvd pin;

 restart pin;
 next pin;
 next_word pin;

 word_mode pin;
 bit_mode pin;

"outputs
 addr_clk pin istype 'reg_D';
 cnt_clr pin istype 'reg_D';
 sclk pin istype 'reg_D';
 din_clk pin istype 'reg_D';
 data_avail pin istype 'reg_D';
 sce pin istype 'reg_D';
 cmd_en pin istype 'reg_D';

 HIGH, LOW = 1,0;

" state diagram declarations

 sbit STATE_REGISTER istype 'reg_D';
 s0, s1, s2, s3, s4, s5, s6, s7, s8, s9 state;

xilinx property 'InitialState s0';

EQUATIONS
 sbit.clk = clk;
 addr_clk.clk = clk;
 cnt_clr.clk = clk;
 sclk.clk = clk;
 din_clk.clk = clk;
 data_avail.clk = clk;
 sce.clk = clk;
 cmd_en.clk = clk;
"
" STATE MACHINE FOR INTERFACING TO SERIAL EEPROM
"
" The serial EEPROM requires that a read command be sent with the word address
" imbedded. The states s1 through s4 control external logic to transfer a read
" command to the EEPROM.
"
" The states s5 through s7 are used to read back the serial data and indicate
" that a bit is available from the EEPROM. The state machine detects when the
" entire 16 bits has been read from the EEPROM and when the next read command
" must be sent.

 State_Diagram sbit

 ASYNC_RESET s0: restart;

 " SEND THE READ COMMAND
 state s0: if (next & bit_mode) then s2 with

A Plug and Play Interface with Xilinx FPGAs

PRELIMINARY 38

 sce := HIGH;
 cmd_en := HIGH;
 endwith;
 else if (next_word & word_mode) then s2 with
 sce := HIGH;
 cmd_en := HIGH;
 endwith;
 else s0 with
 cnt_clr := HIGH;
 endwith;

 state s2: goto s9 with
 sclk := HIGH;
 sce := HIGH;
 cmd_en := HIGH;
 endwith;

 state s9: goto s3 with
 sce := HIGH;
 cmd_en := HIGH;
 endwith;

 state s3: if (!cmd_sent) then s2 with
 sce := HIGH;
 cmd_en := HIGH;
 endwith;
 else s4 with
 sce := HIGH;
 cnt_clr := HIGH;
 addr_clk := HIGH;
 endwith;

 " READ the data back out of the EEPROM a bit at a time
 state s4: goto s5 with
 sclk := HIGH;
 sce := HIGH;
 endwith;

 state s5: if (next) then s6 with
 din_clk := HIGH;
 sce := HIGH;
 endwith;
 else if (next_word) then s7 with
 din_clk := HIGH;
 sce := HIGH;
 endwith;

 state s6: if (next) then s6 with
 data_avail := HIGH;
 sce := HIGH;
 endwith;
 else s7 with
 data_avail := HIGH;
 sce := HIGH;
 endwith;

 state s7: if (next_word & !word_rcvd & word_mode) then s4 with
 sce := HIGH;
 endwith;
 else if (next_word & word_rcvd & word_mode) then s7 with
 data_avail := HIGH;
 endwith;
 else if (!next & bit_mode) then s7 with
 data_avail := HIGH;
 sce := HIGH;
 endwith;
 else if (next & !word_rcvd & bit_mode) then s4 with
 sce := HIGH;
 endwith;
 else s0 with

39 SUBJECT TO CHANGE

 cnt_clr := HIGH;
 endwith;

 state s8: if (!next_word & word_mode) then s8 with
 data_avail := HIGH;
 endwith;
 else s0 with
 cnt_clr := HIGH;
 endwith;

end

Sales Offices

© 1995 Xilinx, Inc. All rights reserved. Xilinx and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the
Programmable Logic Company is a service mark of Xilinx, Inc. All other company names are trademarks of their respective owners.

North America

Corporate Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1+(408) 559-7778
FAX: 1+(408) 559-7114
Web: http://www.xilinx.com/

Northern California

Xilinx, Inc.
Oakmead Pkwy.
Suite 202
Sunnyvale, CA 95051

Tel: (408) 245-9850
FAX: (408) 245-9865

Southern California

Xilinx, Inc.
15615 Alton Parkway
Suite 280
Irvine, CA 92718

Tel: (714) 727-0780
FAX: (714) 727-3128

Colorado

Xilinx, Inc.
5690 DTC Parkway
Suite 490W
Englewood, CO 80111

Tel: (303) 220-7541
FAX: (303) 220-8641

New Hampshire

Xilinx, Inc.
61 Spit Brook Road
Nashua, NH 03060

Tel: (603) 891-1096
FAX: (603) 891-0890

Pennsylvania

Xilinx, Inc.
905 Airport Rd.
Suite 200
West Chester, PA 19380

Tel: (610) 430-3300
FAX: (610) 430-0470

Texas

Xilinx, Inc.
4100 McEwen
Suite 237
Dallas, TX 75244

Tel: (214) 960-1043
FAX: (214) 960-0927

Illinois

Xilinx, Inc.
939 N. Plum Grove Road
Suite H
Schaumburg, IL 60173

Tel: (708) 605-1972
FAX: (708) 605-1976

North Carolina

Xilinx, Inc.
6080-C Six Forks Road
Raleigh, NC 27609

Tel: (919) 846-3922
FAX: (919) 846-8316

Europe

United Kingdom

Xilinx, Ltd.
Suite 1B, Cobb House
Oyster Lane, Byfleet
Surry KT14 7DU
UNITED KINGDOM

Tel: (44) 932-349401
FAX: (44) 932-349499

France

Xilinx Sarl
Espace Jouy Technology
21, rue Albert Calmette, Bt. C
78353 Jouy en Josas Cedex
FRANCE

Tel: (33) 1-34-63-01-01
FAX: (33) 1-34-63-01-09

Germany

Xilinx, GmbH
Dorfstr. 1
85609 Aschheim
München
GERMANY

Tel: (49) 89-904-5024
FAX: (49) 89-904-4748

Japan

Xilinx, K.K.
Daini-Nagaoka Bldg. 2F
2-8-5, Hatchobori Chuo-ku
Tokyo 104
JAPAN

Tel: (03) 3297-9191
FAX: (03) 3297-9189

Asia Pacific

Hong Kong

Xilinx Asia Pacific
Unit No. 2318-2309
Tower 1, Metroplaza
Hing Fong Road
Kwai Fong, N.T.
HONG KONG

Tel: (852) 2410-2717
FAX: (852) 2494-7159
E-mail: hongkong@xilinx.com

®

The Programmable Logic CompanySM

