
38

TION must start in the reset state when
the FIFO is initiated with both counters
at zero.
DIRECTION is thus established well

before the actual FULL or EMPTY condi-
tion can occur. There will be at least four,
and usually many more, consecutive set or
reset inputs to the DIRECTION latch or
flip-flop before it is being used to dis-
criminate between FULL or EMPTY.

FULL goes active as a result of the
write clock edge that writes data into the
last available location. FULL goes inactive
as a result of the first read clock that reads
one word out of the previously full FIFO
buffer. EMPTY goes active as a result of
the read clock edge that reads the last
available data from the FIFO buffer.
EMPTY goes inactive as a result of the first

FIFO Buffer
Continued from previous page

write clock that writes one word into the
previously empty FIFO buffer. In a syn-
chronous design, FULL and EMPTY are
synchronous control signals, to be used
appropriately by the logic external to the
FIFO buffer.

The application note goes on to de-
scribe an asynchronous version of the
16x16 FIFO buffer, and 32x8 and 64x8
FIFO buffers with both synchronous and
asynchronous read and write clocks. The
larger FIFO buffer designs include input
and output data multiplexing between
multiple RAM banks. The asynchronous
32x8 FIFO buffer requires 28 CLBs and the
64x8 FIFO buffer needs 48 CLBs; both can
perform simultaneous read and write
operations at 40 MHz.◆

Distributed Arithmetic Laplacian Filter
A common practice in image process-

ing involves convolving an image with a
Laplacian operator. Figure 1 shows a

typical Laplacian operator that
might be used for edge en-
hancement. To convolve it with
an image, the operator is moved
over the image, and centered
over each pixel in turn. In each
position, the 25 weights in the
matrix are multiplied and accu-
mulated with the 25 pixels that
the matrix covers. This opera-
tion yields one pixel in the
resulting image.

This is an ideal application for “distrib-
uted arithmetic” techniques that exploit
the lookup-table (LUT) architecture of the
XC4000ETM FPGA family. Figure 2 shows
the basic approach. Four external line
buffers plus the incoming video data
provide simultaneous access to five lines
of the image. Inside the FPGA, each of the
video streams is serialized and passed

through four 1-bit-wide shift registers,
each of which delay the data by one pixel.
This provides simultaneous bit-serial ac-
cess to five adjacent pixels from five adja-
cent lines — the region covered by the
Laplacian filter. The shift registers can be
implemented very efficiently using the
CLB RAM feature of the XC4000E FPGA
architecture.

In the most basic distributed arithmetic
approach, the 25 signals address a 225-
word LUT which, in turn, feeds a shifting
accumulator. This is obviously impractical.
A typical cost-reduction measure would be
to partition the problem, segmenting the
addresses into multiple smaller LUTs. The
outputs of these smaller LUTs would be
combined in an adder tree to provide the
input to the accumulator.

In this particular case, however, the
weighting values involved permit the use
of more efficient techniques. Except for
the values 160 and -7, each of the
coefficients is used in four places.

Figure 1 - Example
Laplacian operator for
edge enhancement in
an image processing
system.



39

Consequently, serial adders can be used to
combine four serial bit streams into one
before addressing the multiplying LUT
(Figure 3). Effectively, this adds, and then
weights, data that would otherwise be
weighted and added afterwards. A tree of
three serial adders is needed in each case,
and each serial adder can be implemented
in a single CLB.

The value -7 is used eight times. The
eight inputs could be combined into one,
but here it is only necessary to reduce
them to two lines. The value 160 is used
once, and the data only needs to be de-
layed to match the delay introduced into
the other paths by the serial adders.

These modifications reduce the size of
the LUT from 225 words to 27 words. This
is a large reduction gained from a small
amount of logic, but the LUT still is so
large that it would have to be split. How-
ever, further techniques can be applied.

The -13, -16 and the two -7 values
need to be combined into a LUT
(Figure 4). The values 12 and 160,
however, have no non-zero bit locations
in common. Consequently, all possible
sums of the two values can be achieved
by simply wiring the input signals to
appropriate bits of the adder.

All that remains is to handle the -
1 value. This value uses the carry input
of the adder, but requires some trivial
modification to the LUT. Instead of
containing all of the possible sums of
-13, -16, -7 and -7, it is loaded with all
the sums of 13, 16, 7 and 7. The minus
signs are accommodated by subtracting
in the “adder.”

The output of the LUT is inverted as
part of a conventional invert-and-add-
one method of subtraction. The -1 value
can then be accommodated by simply
omitting the “add-one” when necessary.

Continued
on next page

Figure 2 - Basic approach
to implementing the
Laplacian operator.



40 Figure 3 - Serial bit
streams can be
combined before
entering the LUT.

Figure 4 - (top) Final
implementation of

Laplacian operator.

Figure 5 - (right)
Sharing input shift
registeres between

parallel MACs.

That means the inverted -1 input is used
as the carry input to the adder.

In this way, the 225-word LUT is re-
duced to a 16-word LUT plus 18 serial
adders and one 9-bit parallel adder.

Bit-serial arithmetic inherently involves
multiple cycles per pixel. With the multi-
plier-accumulator reduced to such a small
size, however, two or more of them could
be used in parallel to regain throughput.

Figure 5 shows how input shift registers
can be shared between two MACs.

For each MAC operation, two pixels
are brought in, and loaded simultaneously
into two parallel-to-serial converters. This
requires an additional register to tempo-
rarily hold one of the pixels. Six serial
outputs are formed, and these are used as
two overlapping sets of five each.◆

Laplacian
Continued from previous page


