
XPLA Architecture White Paper

Mark Aaldering
Philips Semiconductors

Programmable Products Group Albuquerque, NM USA

In designing with CPLDs, designers want it all - devices that offer high speed,
high density, and the flexibility to make changes to their design at any stage of the design
process - especially last minute changes to the logic. A particular devices’ ability to meet
all of these critical needs efficiently is often constrained by the basic architecture of the
CPLD. The Philips XPLA (eXtended Programmable Logic Array) architecture is the
result of extensive research into the effect of architecture on these three critical system
needs - speed, density, and design flexibility - and delivers a fourth generation solution
that is superior to previous architectures.

The XPLA Architecture

The basic components of CPLD architecture that affect the devices’ speed,
density, and design flexibility can be broken into four distinct areas. These four areas are
the basic interconnect methodology, the size of the logic blocks, the methods used to
allocate logic to the Macrocells, and the timing model of the device.

Interconnect

Early in the evolution of PAL Architectures, designers at MMI developed a device
called the “MegaPAL”. This device was an early pre-cursor to today’s CPLDs. The basic
concept was that if a small 16 series PAL was good, a much larger device would be even
better. They did this by simply growing the size of the programmable AND fixed OR
PAL array to accommodate the larger number of inputs and macrocell outputs.
Unfortunately, the speed obtainable through a conventional PAL array decays near
exponentially as additional inputs and outputs are added - The MegaPAL was also
MegaSlow - and never became commercially successful. From this failure came the seeds
to successfully making PLD architecture devices larger, by adding a simple interconnect
array that joins many smaller PLD-like blocks (logic blocks) onto a single chip.

In CPLDs, this interconnect resource acts like a crosspoint switch to route signals
from the Inputs, I/Os, and Macrocell feedbacks to a number of logic blocks. As a small,
simple switching mechanism, it’s design can avoid the capacitive loading that caused the
large, unified MegaPAL array to suffer in performance. In addition, the logic blocks
themselves are kept relatively small, and as a result their programmable logic arrays are
fast.
The XPLA Architecture’s interconnect, called the ZIA (Zero-power Interconnect Array) is
conceptually similar to other CPLDs interconnect. The ZIA offers a fixed, deterministic
delay for routing signals from any macrocell or pin to the logic blocks. This delay is so
small (on the order of 1/5th of a nanosecond), that the timing is not specified as a separate
specification but is included in the Tpd and Tsu specifications. In addition, the ZIA has
been designed to consume zero static power in operation.

The single most critical parameter of interconnect operation, however, is rarely
discussed by CPLD vendors. This metric is in fact the degree to which the interconnect
fulfills its ability to route signals under worst case conditions like a true crosspoint switch

Tom Pyles
Xilinx has acquired the entire Philips CoolRunner Low Power CPLD Product Family. For more technical or sales information, please see: www.xilinx.com

http://www.xilinx.com

would. Many users have been burned by architectures that are able to do an initial routing,
when the software ‘floats’ the pins, but fails to route signals into the logic blocks when
minor design changes occur late in the design after the printed circuit board has been laid
out. The interconnect is the first area that impacts the ability to support fixed pin-outs. The
ideal performance of an interconnect is to fully emulate a crosspoint switch, where every
input to the array can be connected to every output of the array under fixed pin-outs.
Some first generation devices used full crosspoint switch arrays, and as a result offered
100% routability, at a significant price. In building a crosspoint switch, these devices
required a fuse at every intersection of the input and output line in the array. For a 128
macrocell device, this would translate into more than 65000 fuses. More significantly,
these fully populated crosspoint switches were relatively slow - accounting for an 8 to
15ns delay by themselves.

The next step in interconnect evolution was the use of muxes to emulate crosspoint
switches, a technique that all contemporary devices deploy. In Figure 1, a set of 16 muxes
that are 2 bits wide form an interconnect that has 32 inputs and 16 outputs. The use of
muxes has two immediate effects. The first is that the delay through the interconnect is
typically equivalent to a single mux delay which is typically well under 1 ns.

Outputs
(To Logic Block)

Inputs

Figure 1

The second obvious effect is the reduction of the number of fuses required to implement
the interconnect. A 128 Macrocell device no longer requires a fuse at the intersection of
every input and every output. As result, the number of fuses can be reduced from
approximately 65,000 to less than 2,000. Unfortunately if the architecture of this
interconnect is not well engineered, signal blocking can occur that results in devices that
will not route as iterative changes are made to a design that has had the pinout fixed
(sometimes referred to a refitting). As an example, consider a design as shown in Figure 2
that with has routed signals ACK and /IRQ connected to pins A an D early in the design
before the PCB has been layed out. The design software will place these signals onto
muxes 1 and 2 so that they will both route into the logic block. Later in the design, the
engineer is requested by marketing to add some power down modes so that the end
product can be sold as a ‘green’ appliance.

Now that the PCB has been completed, this signal can only be tied to pin C. Looking at
our interconnect, we can see that pin C is blocked from entering the logic block, as the
mux that would have allowed the sleep signal into the logic block is already in use by the
/IRQ signal. In order to add this feature, the engineer must re-layout his PCB. If this
occurs on the Friday before Comdex, the engineer will not be happy about this change.

A B C DPCB Signal: ACK PCB Signal: /IRQ

Figure 2

Let’s suppose instead that the Muxes were both wider, and that there were a larger
number of them. Looking at Figure 3., we can observe that each input signal now
propagates to more muxes, that are now 3 bits wide. As a result each input now has more
opportunities to enter the logic block - on average 2.25 instead of just 1.

A B C D

Figure 3

If in fact the muxes were 4 bits wide, this mux based interconnect would in fact logically
emulate a crosspoint switch, but would require more E 2 fuses, and be slower due to the
wider mux width. This is the trade off that faces architects that design modern CPLD
interconnects. By extensively simulating the width of the muxes, and the number
deployed, mux based interconnect can be designed such that the probability of signal
blocking is statistically very low. Philips XPLA interconnect deploys a sufficiently large
number of input muxes, of sufficient width, to guarantee routability under worst case
conditions. At Philips, this interconnect architecture was subjected to over 16 Million

iterations of worst case fixed pin-out routing by our software design team. This resulted in
worst case signal routing of 99.997% when every signal is in use and all signals have a
fixed pin-out. If only 35 of the 36 logic block inputs are used, 100% of the 16 million
fixed signal routings completed successfully. We believe that this solution allows
designers total freedom to make design iterations without the fear of having to re-layout
his PCB.

Logic Block Size

The next area that merits consideration is the number of inputs to the logic block.
If this number is too large, the size of the logic array inside the logic block will grow to a
size where the speed of the array is compromised (just like the MegaPAL). If the number
of inputs is too small, the complexity of the logic that can be implemented in a logic block
(and therefore within a single clock cycle) will suffer. As an example, consider a
common design example - a 16 bit loadable counter, as shown in Figure 4.

16 15

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

T
Q

Logic Array

Figure 4

The counter requires 15 bits of feedback to operate correctly. In addition, to support the
ability to load the counter with an external value, another 16 data bits are needed. Finally a
minimum of a single control signal is required to enable the load function. Thus a 16 bit
loadable counter requires a minimum of 32 signals that must be able to enter the Logic
Block. In architectures that feature 16 Macrocells, but have fewer than 32 inputs, this
trivial counter design will not fit. This scenario also impacts complex state machines
which inherently have extensive feedback and input signals. The XPLA Logic Blocks
feature 36 inputs, which allow complex state machines and 32 bit decoders to easily fit
along with any associated control signals.

Logic Block Allocation Method

In the earliest simple PLDs, the logic array allocated a fixed number of product
terms to each output - typically 8. In later versions, the number of product terms was still
fixed, but in order to accommodate the need for varying amounts of logic in different
macrocells the number of product terms was varied by output. The classic example of this
approach is the workhorse of simple PLDs, the 22V10. This device has two output
macrocells that have 8 product terms, another two that have 10 product terms, and then
pairs with 12, 14, and 16 product terms respectively. This approach allows the designer to
place logic that requires a large amount of logic on an output that has a higher number of
product terms - say 16. This approach is a distinct improvement over the earlier approach

of 8 fixed product terms per output, but still has some problems. These problems are the
fixed nature of the product terms and the granularity of the logic distribution. The
difficulty with the product terms on an output having a fixed number is that the logic
required may exceed the amount available. The worst case scenario is that the logic
becomes so complex that the number of product terms require exceeds the maximum
available on the device - 16 product terms. When this occurs early enough in the design,
different synthesis options, taking multiple passes through the array, or splitting of the
logic may resolve the problem. If this occurs after the PCB has been layed out the
designer may be facing the difficult necessity of re-laying out his board to accommodate
additional devices. Knowing in advance that additional logic may be needed in the 11th
hour of the design, many designers tried to implement designs that did not use all of the
product terms available on an output. Having a few ‘spare’ product terms allowed small
changes to be made without grief. Unfortunately small changes sometimes follow
Murphy’s law and become large design changes, and the amount of logic needed goes
beyond what is available on the output. Once again, because the logic is allocated on a
fixed rather than a dynamic basis, the designer is placed into a difficult situation. Thus
having logic that has a fixed allocation scheme can result in a design that cannot easily
undergo changes and refit into a fixed pinout. Therefore logic allocation methods are the
second area where refitting fixed pinout designs are affected in PLDs of any size. The
second issue with the 22V10 logic allocation method is the granularity with which product
terms are distributed. Since the minimum number of product terms on any output is 8,
what happens on logic that requires only one product term? Since the logic allocation is
fixed, the other 7 product terms are wasted. PLD Synthesis experts we consulted with
have stated that 70% to 80% of all designs deploy fewer than 5 product terms per output.
In an architecture that has no fewer than 8 product terms per output, it is clear that there is
considerable loss of logic in unused terms. Every engineer that has used this device knows
that there are outputs that use only a few product terms. But at the same time most
engineers have run into sticky problems that need more than the 16 product terms
available in this device. Thus the fixed variable logic distribution present in the 22V10
attempts to minimize the loses that occur due to the granularity of the logic while still
offering sufficient logic on specific outputs to perform complex logic.

Early CPLDs attempted to solve the problems of logic allocation by providing
both a fixed set of product terms and a dynamic ‘pool’ of logic that could be used by all of
the macrocells. These devices offered 3 dedicated product terms per output, citing
statistics by the manufacturer that “80-90% of all logic implemented in typical designs
could be achieved with 3 terms”. To augment these dedicated product terms, they added
an array of foldback NAND gates (also referred to as ‘shared expander product terms’).
The use of foldback NAND gates was previously pioneered (and patented) by Philips in a
line of devices call Programmable Macro Logic, that could implement extremely wide
gating functions (up to a 128 wide AND). In use in these CPLDs, the foldback NAND
implemented logic that would be fed back into the array for use by any or all of the
dedicated product terms to expand the logic on an output. As a side benefit, pairs of
foldback NANDs could be configured as a ‘soft’ register, and increase the register count.
The basic problem with foldback NANDs (aside from patent violation issues...) is that the
logic that uses them first must make a pass through the array into the foldback NAND,
then be fed back into the array, then be AND’ed into the dedicated product terms. Thus
two full passes through the array must be taken to implement the desired logic. Where the
dedicated product terms could implement logic in 25ns, using the foldback NANDs would
stretch this to 40ns. In addition to being relatively slow, foldback NAND structures were
much more difficult to synthesize general purpose logic to. As a result much of their use
was based on hard-coded macros to perform very specific functions.

The next trend to appear was the use of dynamic product term switching schemes.
Alternatively called product term steering or parallel expanders, the basic premise is that
the groups of product terms (often called clusters) are sent to a switch box that can route
them from one macrocell to another when needed.

Figure 5

Figure 6

At first inspection in Figure 5, this seems like a rational method of increasing the logic on
outputs where it is needed. What is often overlooked, however, is that whenever product
terms are steered to a macrocell that needs more logic they have to be taken away from
some other macrocell. When this occurs, the donor macrocell is either stranded without
any associated logic, or is left with so little logic that it is unlikely to be useful. In the
example in Figure 6, each macrocell has 4 product terms routed to it in the native state. As
shown, macrocell #2 has a complex equation associated with it that requires 16 product
terms. To accomplish this, 3 neighbor macrocells switch their cluster of product terms to
macrocell #2. At first glance, it is tempting to state that the logic steered away from the
donor macrocells could be replaced with a cluster from some other macrocell. While this
is true, what this ends up being is an elaborate shell game, as this next donor is left
without logic. The net impact of macrocell #2 needing additional product terms is the loss
of 3 macrocells to serve the logic needs of one output - a significant penalty. This is why
some refer to this scheme as product term ‘stealing’, as the donor macrocells are likely to
encounter logic starvation. The second issue with product term steering is the same
problem encountered with the 22V10 - the issue of logic allocation granularity.Since the
steering mechanism is deployed on groups of 4 product terms, some logic waste will
occur when logic is needed that is not a multiple of 4. As an example, when an output
requires 5 product terms as shown in Figure 7, only a single extra term is needed from the
neighboring macrocell. Instead all four product terms are steered away, wasting 3 product
terms that are not needed.

Figure 7

The final issue in product term steering is the ability to refit designs. As an example, let’s
look at a design that is in the final stages of completion that has utilized all of the
macrocells in the block, and being uncharacteristically well behaved uses just 3 product
terms per output. Should marketing suddenly require an extra feature, the design tweak
will inevitably require that one of these outputs have more than 4 product terms. Since we

are using all of our macrocells, stealing logic from one of them will result in the design no
longer fitting as the ‘starved’ macrocell can no longer route logic to the output pin it was
serving on the PCB. This is true regardless of whether the device has macrocells that are
hard wired to pins or employs an additional ‘output routing pool’. As a result, designers
that use these devices often learn through painful experience that with these architectures
it is safest to leave a number of macrocells unused if refitting designs is important.
Therefore, to be safe, expensive devices are often not fully utilized. This is especially true
in the case of devices that are in-circuit programmed after soldering to the board as not
being able to refit when attempting to do a field update can be quite expensive.

Philips, when it was operating under the Signetics label for its PLD division,
developed the first commercially available device with a programmable logic array (PLA)
array in it’s 82S100. This device offered a fully programmable AND array that delivered
its’ product terms to a fully programmable OR array. This Philips patented combination of
programmable AND with a programmable OR array eliminates the logic allocation issues
associated with foldback NANDs and product term steering mechanisms. Traditionally,
however, having two fully programmable arrays resulted in devices that were slower than
devices that featured a programmable AND with a fixed OR (PAL). As a result, the
XPLA logic allocation method uses a patent-pending structure that combines a PAL array
and a PLA array - hence the term eXtended Programmable Logic Array.

Figure 8

As detailed in Figure 8, the PAL array has 5 dedicated product terms for every output
macrocell. These PAL terms are never steered, stolen, or folded back. Speeds from any
pin to any pin through this PAL array section on 32 macrocell devices are estimated to be
6nS. As additional logic is needed on any output, the free pool of 32 product terms in the
PLA section can be tapped via the fully programmable OR array. As shown in the close-
up detail of Figure 9, the lower macrocell that requires 6 product terms uses its 5
dedicated terms, and one additional term from the PLA array to reach the required logic

needed. It is important to contrast that this logic was used without stealing logic from
neighbor macrocells, and the additional logic was allocated exactly as needed - just one
additional term, not four with three wasted. In the XPLA architecture, the cost of using
this additional logic is a fixed 2nS delay. For the example above, the Tpd from any pin to
the pin that is now using logic in the PAL + PLA is 8nS total.

Figure 9

In figure 10, we see the case where 8 product terms are now needed on this macrocell. In
this case, three product terms are used from the PLA in addition to the 5 dedicated PAL
terms.

Figure 10

Once again, logic is utilized in the exact amount required, exactly where needed without
sacrificing other macrocells. And the Tpd from pin to pin is still 8ns for this example. In
fact, as many as all 32 PLA terms can be used on any output in conjunction with the 5
dedicated product terms on the output to deliver a total of 37 terms - and the Tpd is still
8nS pin to pin. Thus the XPLA mechanism delivers logic where needed in precisely the
quantity needed to minimize waste at very high speed. The additional benefit of the

programmable OR array is that the PLA product terms can be shared across multiple
outputs. Consider Figure 11, where we see a case in which multiple macrocells share a
common set of logic.

Via the OR array, this logic is made available to both macrocells from a single product
term. This product sharing capability of the PLA increases the effective density of the
device. Architectures that do not have this fast sharing capability would replicate the logic
needed on terms at each macrocell to implement this design. As a final consideration in
the area of logic allocation, lets consider the problem of refitting designs with fixed
pinouts.

Figure 11

With the 22V10, the fixed product term distribution leads to problems in refitting where
late design changes require more logic on an output than available. This is true even if
there are extra product terms available on other macrocells, because these terms cannot be
dynamically re-allocated to where they are needed. In the XPLA architecture, as extra
logic is needed it is dynamically added from the PLA array to any macrocell that needs it.
Therefore, the only limitation in refitting designs is quite simple - there must be sufficient
remaining logic in the PLA array to implement the desired change. Another way to state
this is that the only limitation to refitting designs is the total capacity of the device -
refitting will always be successful as long as there are enough gates available to fit the
logic. In product term steering, if all of the product term clusters or macrocells are being
used, then a change that requires more logic on an output than is previously remaining in
the cluster (which in the best case would be only 3 product terms) will not refit as there is
no donor logic left that will accommodate the existing PCB layout. With the XPLA
architecture, 100% of the macrocells and associated PAL terms can be used because
additional logic can once again be allocated from the PLA as needed. Therefore, unlike
steering, as many as 32 terms are always available for use for additional logic utilization
on any of the outputs. As stated previously, the only limitation to refitting a design is the
total capacity of the device.

Timing Model

With simple PLDs like the 22V10, determining whether the device would meet
the required timing requirements was fairly simple. The critical specifications for this

device are the propagation delay from pin to pin (Tpd) for combinatorial applications, and
the set-up (Tsu) & clock to output time (Tco) for registered applications. Internal logic
feedback times are typically faster that external Tsu, so for most designs, these three
specifications provide designers with all the information they need to know to determine
whether the device will be fast enough. As a result of the simplicity of this timing model,
designers could also make reasonably accurate estimations of the performance of their
design before they began using the device.

As FPGAs became available, designers were attracted by the large number of
available gates these devices offered. They soon found however that the timing of the
finished device was no where near the flip-flop toggle rates touted by manufacturers. In
fact, the designs’ performance not only seemed difficult to predict, but would change from
one design iteration to the next. The fundamental problems that made the timing of these
devices difficult to deal with were twofold. First, the timing from logic element to logic
element varied with relative placement. Since the placement would change with design
iterations, so would the timing. The second issue is that the logic elements themselves
typically have a small number of inputs - often less than 8 - and therefore designs that
needed wide gating like complex state machines required multiple passes through the
logic elements. Each additional pass through logic elements held the potential of cutting
performance in half. If a last minute design change required an additional pass, the logic
might fit, but now the performance could be far lower than needed.

With the first CPLDs, the situation for timing was greatly improved relative to
FPGAs. They offered a fixed, constant delay through the interconnect regardless of where
the logic had to be routed. Thus they escaped the FPGA problem of timing that depended
on logic placement. Unfortunately, they were still not as simple to use as the venerable
22V10. These first devices had quoted Tpd’s of 25nS, which sounded fairly good at the
time. But buried in the fine print was the point that this Tpd was from a dedicated input
pin that bypassed the interconnect array. Since there were only 4 dedicated input pins on
devices that had 44 pins and up, this was equivalent to an automobile manufacturer
quoting 200 ‘peak’ miles per gallon when coasting downhill with a tail wind. As noted
above, the interconnect array in these devices added from 8 to 15ns to the Tpd. Inside the
logic block, the logic that used the dedicated product terms offered the fastest
performance. When additional logic was needed, foldback NANDs were used that added
as much as 15nS to the delay path.

The second generation of these devices offered faster interconnect perfor mance
by transitioning to MUX based interconnect, but still retained dedicated inputs that are
faster than signals that propagate through the interconnect. In the logic block, the device
retained the use of foldback NAND ‘shared expanders’, but added product term steering
that could incrementally steal logic from neighboring macrocells. This product term
steering added 0.8nS of delay for every cluster of product terms that were stolen, in
addition to starving the donor macrocells. With these changes, the timing was now
fragmented in many different options - fast dedicated product terms, ‘parallel expander’
stolen product terms that added delay in multiple increments as used, and foldback
NANDs that were available to all outputs, but were still quite slow. All of these options
presented the user with ‘pay as you go’ features that cost nanoseconds as you use them.
While we have focused on one architecture, it is common to find devices whose timing
diagrams seem complex enough to be the flow diagrams for controlling a nuclear reactor.
With all of these different options, relative to the simplicity of the 22V10, it becomes
quite difficult to predict the performance of design early in the cycle.

The XPLA architectures’ timing model delivers a model that is almost identical to
that of the 22V10’s. As seen in Figure 12, the XPLA timing model has only two
variations from the 22V10 timing model. For combinatorial logic, there is a Tpd through
the dedicated PAL product terms (Tpd_pal), and a second Tpd specification for logic that
uses both PAL and PLA product terms (Tpd_pla). In registered applications, there is a
setup time associated with logic that uses only the PAL terms (Tsu_pal), and a setup time
for logic that again uses both the PAL and PLA terms (Tsu_pla). There is a single
registered clock to output specification (Tco). Thus the only variation from the simplicity
of the 22V10 timing model is the additional 2nS path through the PLA array for
implementing additional logic on an output.

Tpd_pal = Combinatorial PAL
Tpd_pla = Combinatorial PAL + PLA

Input Pin Output Pin

Registered
Tsu_pal = PAL only

Tsu_pla = PAL + PLA

Registered
Tco = 5ns

D Q

clock

Output PinInput Pin

Figure 12

It is important to note that the PLA timing remains constant regardless of the number of
PLA terms that are used - from 1 to 32 on an output - or the number that are shared by
multiple outputs.

Conclusion

The XPLA architecture brings an interconnect methodology and logic allocation
method that guarantees the ability to refit designs that use 100% of the pins, macrocells,
and logic in the device. The logic blocks offer sufficient width - 36 inputs per block - to
allow the development of highly complex state machines, an area where CPLDs typically
excel. Philips has long been a pioneer in developing and patenting structures used in logic
arrays such as the PLA and foldback NAND structures. The unique XPLA combination of
PAL and PLA arrays allows logic to be allocated on an as needed, where needed basis
without causing macrocell starvation. Simultaneously, this logic is allocated at a
granularity of one product term, across all macrocells, and can be shared resulting the
highest level of efficiency possible. Finally, the timing model for the device is simple and
deterministic, allowing designer the ability to accurately predict design performance with
tools no more complex that a common pencil and paper napkin. The combination of these
capabilities provides designers with devices with high speed, high density, and the
ultimate in flexibility to make last minute changes to their designs.

	The XPLA Architecture
	Interconnect
	Logic Block Size
	Logic Block Allocation Method
	Timing Model
	Conclusion

