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Preliminary Product Specification

HardWire Array Design Considerations

It is important to observe good design practices when using
Xilinx FPGAs. It is possible that the FPGA device can “hide”
some less than obvious design shortcomings. However,
these problems can affect the performance of the application
when the design is converted to a HardWire Array.

For example, a small glitch generated from unstable inputs
can be filtered by the pass transistors used to control the
routing of long nets in an FPGA. However, in the HardWire
Array, the pass transistors are replaced by a short connec-
tion, and the unfiltered glitch propagates through the system.

Another example of an important design consideration has to
do with FPGA designs which have not been fully simulated.
The customer logic may have an exceptionally long net delay
in a synchronous path which could be so long as to miss the
setup and hold time requirements for the flip-flop. The simu-
lation may not report a timing error because none occurred
(the signal didn’t transit during a setup or hold time window).
The logic may even work in the system! Nonetheless, a
functional error has been left in the design. This problem
could manifest when using a faster FPGA, or different envi-
ronmental conditions. Furthermore, when the design is con-
verted to a HardWire Array, the long net delay (that allowed
the FPGA to work) will be substantially reduced and could
cause a functional error in the logic.

Xilinx recommends the designer perform both unit-delay and
maximum timing simulations. A unit delay timing simulation
can be thought of as a “best case”, since the logic will always
perform worse than unit delay. This sets the minimum pole for
the simulation. A maximum simulation provides the maximum
pole. If there are no functional differences between the two
poles, then the design is likely to be free of any timing
dependencies like those described above. See Figure 1.
Since this only works for what has been simulated, it is further
recommended that the system be tested within its environ-
mental constraints (i.e., four corner testing).

Xilinx guarantees that logic which is functionally accurate in
the FPGA will operate correctly in the HardWire Array. If
timing dependencies, or any of the issues listed below exist,
please notify Xilinx when the design is submitted for conver-
sion.

Figure 1.

In the FPGA, the net delays are built of two elements:  Metal
and PIPs (programmable interconnect points, which are built
out of pass transistors). The metal has particular thermal
characteristics while the PIPs have different thermal charac-
teristics.  Generally, at low temp, High VDD, the circuit will run
fast. At high temperature, low VDD, the circuit will run slower.
Designs should be very carefully simulated at both unit -delay
(functional) and maximum. These two simulations should
then be compared against each other so that any functional
errors may be found and fixed.  This is a particularly important
step to guarantee the HardWire Array will operate in the
system, once it is inserted.

In the HardWire Array, the net delay is purely a function of the
metal wire since the pass transistors have been removed
from the design. Since the device die area in the HardWire
Array is reduced, net delays will be consequently smaller. For
example,  in a small net  with only one PIP, both the FPGA net
delay and the HardWire net delay may be 1.2 ns. However, if
the FPGA has a 50 ns net, caused by many different PIPs, the
HardWire device might only be 5 ns. Where feedthroughs are
used in the FPGA, they are duplicated in the HardWire to
mirror the timing of the FPGA.

Figure 1 shows an example relationship of timing in the FPGA
compared to the HardWire. Note that the far right axis is the
FPGA’s maximum delay. On the far left side is the minimum
theoretical timing. These two poles are direct results of the
unit-delay simulation for the left side and the real “speeds” file
based simulation for the right side. The FPGA design will
inherently run somewhere between these two poles. If the
user has performed both simulations and compared the
results, with no functional errors, then the design can be
assured to work with in both the FPGA and the HardWire
Array.
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Figure 2.  Race Condition Example

Since the HardWire uses only metal and the FPGA uses both
metal and PIPs, net delays will be smaller for the HardWire
array. As a result, the HardWire devices will run faster than
FPGAs. Therefore, the HardWire poles will always sit be-
tween the actual worst case and the theoretical functional
best case operation of the FPGA.

If the customer has performed both the simulations refer-
enced above with the FPGA, then no further simulation is
required in order to guarantee the HardWire will meet internal
performance specifications. External specifications depend
upon meeting setup and hold relationships. These are cov-
ered in the “System Level Setup / Hold Time Requirements”
section.

Gated Clocks and Reset Directs
Glitching function generators driving CLOCK and RESET
DIRECT pins can inadvertently trigger flip-flops to an undesir-
able state. Avoid using  “gated” clocks and reset directs.

Xilinx recommends the use of flip-flops with CLOCK EN-
ABLES instead. This is good practice for circuits driven from
derived clocks (e.g. divided by N of a fundamental clock
frequency). In these situations, the CLOCK pin can be the
fundamental, and the clock ENABLE pin should be tied to the
derived clock.

If gated clocks or gated reset directs are unavoidable, Xilinx
HardWire Engineering should be notified of these nets prior to
conversion so that they may be analyzed. For any circuits that
use gated clocks or reset directs, the logic should be designed
so that inputs are always stable and that the signal changes
are at least one CLB (TILO) delay apart from one another.

Multiplexers Implemented in Function Generators
Two input multiplexers can be implemented in a single F or G
function generator. However, there is a possibility of generat-
ing a glitch if the selected signal and input changes within a
CLB’s TILO delay. This is generally not a problem with data
and address multiplexers if the output is given enough time to

settle.  If the multiplexer is feeding a clock or reset direct input
for a CLB flip-flop, it is possible to toggle the register at an
undesired time.

To avoid this problem, the edge(s) of select signals for a clock
and/or reset direct multiplexer should be stable before and
after the edge(s) of the inputs. The edges should be at least
one CLB TILO delay apart.

Race Conditions
All race conditions in the circuit need to go through a careful
analysis. Depending upon the routing resources responsible
for the net delays the correct signal may always “win the race.”
Then again, it might not! See Figure 2.

Delay Generators
Using the routing resources as delay lines in the FPGA is
highly undesirable. This practice can create timing problems
in the FPGA as well as the HardWire Array, so all delay
generators should be removed from the design. This redesign
effort should be completed and tested prior to submitting an
FPGA for HardWire conversion.

Combinatorial Loops
Combinational feedback loops may cause incorrect circuit
operation due to differences in routing delays. This design
practice causes problems in the FPGA, and Xilinx strongly
discourages the use of these circuits. If faster FPGAs are
used in the application, significant functional problems could
be experienced

In addition, the problem can be even worse in the HardWire
Array. This is particularly true when the combinational loop
has a lot of delay caused by net delays. The result of such
circuits in a HardWire may not be the same as that of the
FPGA.

One-Shots
One shots are often implemented by feeding the Q pin back
to the RD pin where the pulse width is determined by the RD
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to Q delay + routing. In some cases there is a chain of logic
between the Q to the RD. (See Figure 3.) The FPGA’s
cumulative delay for this path will always be larger than the
HardWire Array and will therefore have a wider pulse. These
circuits should be used with great care, and should not be
used to clock other flip-flops since the width is not guaranteed
to produce a viable clock pulse. If such a circuit is used in the
FPGA design, it should be identified to Xilinx at the time of
design submittal so that it can be properly analyzed.

Choppers or Differential Circuits
Chopper or differential circuits where the pulse width is
determined by the difference in delays between two
reconvergent paths should not be used. Designs which
contain such circuits should be redesigned so as not to be
dependent upon delay. Figure 4.

Ring Oscillators
Ring Oscillators, where the oscillation frequency is deter-
mined by the propagation delay time through a chain of
inverters in the ring, should never be used in FPGA-based
design.

“Tweaked” FPGA Design
Any design technique or structure that is normally unpredict-
able, but is “tweaked” to work in the FPGA may not work in the
HardWire Array. “Tweaking” includes deliberate lengthening
of routing to meet hold time, addition of extra delay gates to
lengthen a path, etc.

TBUF Multiplexers
The FPGA supports the ability to build large data path
multiplexers by utilizing  three-state TBUFs. The HardWire
Array converts these TBUFs into real multiplexers of the
appropriate size and width. The TBUF longline Pull-up in the
FPGA guarantees a high state on the longline if no TBUF is
on. The HardWire Array maintains this functionality by guar-
anteeing the multiplexer output is high when no specific input
is selected.

Simultaneous Switching Outputs
Current FPGAs have substantially more I/O pins than previ-

X4575

Figure 4. Differential Circuits

ous generations of FPGAs. Today’s systems continue to
increase in bit width as well.  The result of this is a potential
problem in the FPGA design which is known as Simultaneous
Switching Outputs (SSOs).

Simultaneous Switching Outputs can generally be defined to
be the total number of outputs which switch from one state to
another state within a certain amount of time.  In the case of
the Xilinx FPGAs, a working definition for SSOs is the number
of I/O which switch within 8 ns of each other.

Figure 5 shows examples of both synchronous outputs rela-
tive to each other. The system clock provides the synchro-
nous outputs A on the rising edge of the clock while the
synchronous outputs B are generated off the falling edge. In
addition, some timing relationship exists between the asyn-
chronous outputs C and the synchronous output A. This
timing relationship allows the C outputs to change within 8 ns
of the A outputs. This makes ALL of the A outputs and C
outputs SSOs. Conversely, Synchronous Output B and Asyn-
chronous Output D do not switch within 8 ns of A or C, nor with
each other. Therefore outputs B and D are not SSOs relative
to A or B.

Another not-so-obvious aspect of SSOs in an FPGA has to do
with synchronous outputs from CLB FFs. In this case, al-
though all the internal flip-flops switch at the same time, the
external signals may not due to routing delays from the CLB
to the IOB. Since the HardWire will tend to equalize these
delays, a SSO issue may present itself in the HardWire that
does not SEEM to present itself in the orginal design. In
reality, a faster FPGA may also experience this problem.
Therefore, careful analysis should be done to avoid or mini-
mize the effect.
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Figure 6. Simultaneous Switching Outputs

SSOs can cause a wide variety of problems in customer
designs. The most obvious problem is internal ground bounce.
This ground bounce (or for that matter VDD bounce) can
sometimes be severe enough to cause a clock transition on
a stable internal FF.  Further, the slew rate of the outputs can
cause problems to the system because of undershoot or
overshoot.  In this case, the input of another system can sense
an incorrect logic level.  In addition, if the output has enough
ringing, excess energy can cause damage to output and input
structures in the ICs of the system.  SSOs can therefore affect
logic functionality, system integrity, and long term reliability.

There are some general guidelines which should be followed
in order to avoid these effects.  First, the single most important
cause of SSO negative effects is relatively high inductance
paths for the power and ground paths of the FPGA. It is very
important to have sufficent  ground or power pins. In the FPGA
design, there are certain guidelines which should be followed
in order to minimize SSOs.

The basic guidelines for SSOs are to have no more than 8 I/Os
per VDD/VSS pair. This implies distributing the outputs across
the die, possibly across multiple edges. In addition, it is
imperative to make sure that global inputs, particulary clocks
are isolated with their own pairs of power or grounds. Another
rule of thumb to follow is to allow no more than 100 mA of IOH/
IOL current per VDD/VSS pair.

The customer should ensure that the package pin for the
power or ground has the smallest possible inductance to a
PCB power plane. Xilinx strongly recommends the use of
separate power and ground plane layers on PCBs when
contemplating designs which might have SSOs.  Second,
adequate high and low frequency bypass capacitors should
be placed as close as physically possible to the power and
ground pins.

A second aspect that affects SSOs is the slew rate of the
output.  Outputs which have very fast slew rates will tend to
cause more system level problems for SSOs. Outputs which
have slower slew rates will have less SSO effects. In the
FPGA two different slew rates are available for the I/O.
Whenever possible, the slow I/O slew rate should be used.

When a printed circuit board is being designed, consider
leaving room for series termination resistors to reduce the

effective rise and fall times. Series resistors offer the oppor-
tunity to tune the PCB impedance to the driver impedance.
The artifact of adding series termination to critically dampen
an output will be to reduce all of the effects of SSOs.  An added
benefit is that it will be easier to meet EMI /EMC guidelines for
the whole system.

Clock inputs for the FPGA should be kept as far away as
possible from SSOs. If possible, they should have their own
ground pin that is not shared with other outputs. Since one of
the effects of SSOs is internal clocking of statically set flip-
flops, this step can go a long ways towards system reliability
and robustness.

Another tactic is moving the outputs along different edges of
the package. This will help to distribute the instantaneous
current requirements of the Simultaneous Switch Outputs. If
distribution is possible, this is the very best way to reduce the
effects caused by SSOs.

Xilinx XC4400/XC5400 HardWire Family offers a unique
ability to help resolve the SSO problem. In the XC4400/
XC5400 product families any pin can be made into a VDD or
VSS. This means that careful upfront planning of an FPGA
pinout can solve the SSO problem. Consider Figure 6. Here
we see a total of 16 SSOs that have had additional user   I/O
pins allocated to VDD or VSS.  The user PCB has these pins tied
to VDD/VSS, therefore the FPGA I/O pin should be configured
as an input I/O PUP or PDOWN. In the HardWire the pins can
be tied to VDD or VSS. Two important facts should be noted
here: A) the FPGA user I/O pin used for VDD/VSS must not be
a configuration pin, and B) the customer must tell Xilinx that
they have used additional pins for VDD/VSS since that informa-
tion can not be ascertained otherwise.

Both the FPGA and the HardWire Array are  vulnerable to the
effects of Simultaneous Switching Outputs. The HardWire
Array has similar I/O characteristics as the FPGA and will
therefore perform in a similar manner. Xilinx HardWire Engi-
neering evaluates all incoming designs for SSO effects and
will report these to the customer in the HardWire Design
Review Report. The customer will have an opportunity to
modify and resubmit the design for conversion.  However, this
is often a time consuming process. Therefore, Xilinx strongly
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recommends employing good design practices listed above,
and resolving any problems in the system design stage
PRIOR to HardWire conversion.

System Level Setup / Hold Time Requirements

The FPGA has specified  system level Setup and Hold time
requirements relative to very specific conditions. The condi-
tions typically assume the nearest IOB/CLB flip-flop to the
IOB will be used for the measurement. The times specified in
the FPGA data sheet are dependent upon the time through
the IOB, a net, and the setup time of the IOB/CLB FLIP-FLOP
for the input case and the opposite for the output case.

The HardWire Array utilizes the same structure as the FPGA,
but will have a smaller net delay than the FPGA. The reduced
delay is due to the fact that the signal in the FPGA must go
through at least two programmable pass transistors while the
HardWire Array provides only a wire delay.

The impact on the design for the customer is an effective
decrease in required setup and available hold time require-
ments on the inputs. In addition, the available system hold
time can decrease substantiality. The input flop-flop condi-
tions are effectively unimportant because the system will
guarantee that the internal requirements are met. (See Figure
7) However, the output flip-flop conditions must be carefully
reviewed.
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Figure 8.  Output Measurements (schematic + timing diagrams)

The HardWire Array will have faster net delays compared to
the FPGA. See Figure 8. In this case, the faster net delay will
result in less available setup time from a clock to output
perspective.  Since the effective time for HardWire is likely to
be different from the FPGA, Xilinx will publish the system hold
time numbers in the Design Review Report. The customer will
then have the option to approve those timing numbers. If
additional hold time is required, Xilinx can add delay in the flip-
flop Q to OBUF path to compensate.

I/O Slew Rate

The FPGA utilizes complimentary drivers providing 8 or 12 mA
of source current and 8 or 12 mA of sink current. In addition,
the FPGA allows for slew rate control of “fast” and “slow”
outputs.

Figure 7: Demonstration of INPUT Measurements
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HardWire Configuration

A very important aspect for the customer to consider in
HardWire is how to deal with the configuration of the device.
In the FPGA world, data is stored on the system, generally in
some form of PROM. This data is then downloaded to the
FPGA via one of the many configuration modes. This allows
the system to “wake-up” in an orderly fashion.

This orderly system wake-up is an often overlooked factor.
FPGA systems typically have five stages that they must pass
through prior to system operation. These are detailed in Figure
8. The basic stages are VDD arriving at a valid level, Power-On-
Reset, Initialization, Configuration, and Startup. At the end of
the Startup phase, the user’s logic will be available. The
important aspect of this is that the FPGA provides status
information for the system to identify which phase it is currently
in. Many systems use this status information to control differ-
ent parts of the greater system. For example, the LDC pin
might be used to hold a system’s CPU in reset until the FPGA
is configured.

Table 1.  Configuration Modes

Mode M2 M1 M0 CCLK Data

Master Serial 0 0 0 output Bit-Serial
Slave Serial 1 1 1 input Bit-Serial
Master Parallel Up 1 0 0 output Byte-Wide, ADDR 00000↑
Master Parallel Down 1 1 0 output Byte-Wide, ADDR 3FFFF↓
Synchronous Peripheral* 0 1 1 input Byte-Wide
Asynchronous Peripheral 1 0 1 output Byte-Wide
Express 0 1 0 input Byte-Wide
Reserved 0 0 1 - -

* Synchronous Peripheral can be considered byte-wide Slave Parallel

The HardWire, on the other hand, is a mask programmed
device. Therefore, in theory, one should just be able to power
it on, and start running the system. Many other vendors use
this approach to FPGA conversion. The reality is that the
HardWire must also maintain these same phases if the
system is to be properly functional – even though it does not
require any data to be loaded into it. Xilinx has provided a
variety of mechanisms in HardWire to deal with the loading of
data into the FPGA. These mechanisms are collectively
known as Configuration Emulation.

HardWire Configuration Emulation
Xilinx FPGAs and the HardWire Arrays support seven differ-
ent configurations modes described in Table 1. In addition,
the HardWire has two additional modes - INSTANT_ON and
NO_PROM. Each configuration mode is supported by “emu-
lation” of the configuration process (patent-pending).

The HardWire Array behaves exactly like an FPGA device
from power on until user operation, following the standard set
of sequences which are documented in the FPGA Data
Sheet. Refer to Figure 9 and the FPGA data sheets for any
additional details.

Figure 9. Details the HardWire Array  behavior  from power-on to user operation (XC4400 example).
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First the device waits until the VDD reaches approximately 3.5
Volts. Once  power has been reliably detected, the HardWire
Array will wait approximately 4 or 16 ms (POR phase) and
begin the Initialization phase. During this phase an internal
counter guarantees that  the INIT pin is held low. Depending
upon the configuration mode selected, the HardWire will wait
for approximately 64 ms (master mode) or 16 ms (slave
mode) longer.

Once the INIT pin is released internally by the HardWire, it will
sample the INIT pin to see if another system component
desires to delay the configuration phase by holding INIT low.
If no other system component holds INIT low, INIT will
transition from low to high where it will remain until the start-
up phase has been completed. By holding INIT Low, bound-
ary scan operation, if chosen by the customer may be
performed at this time (“Before Configuration” BSCAN). When
INIT transitions high, the configuration emulation logic then
waits two internal clock cycles and samples the states of the
mode pins (M2, M1, M0).  Based upon this encoding, one of
the seven configuration modes will be chosen for emulation.
The encoding of the mode pins is identical to that specified in
the FPGA data sheet.

At the end of the two clock synchronization period, the actual
configuration phase will begin. During this configuration phase,
the HardWire Array will load data from its serial or parallel path
as is indicated by the configuration mode. The HardWire
Array will transmit the header information to all downstream
devices. The HardWire Array will swallow  the correct amount
of data for itself, and then passes any remaining data down
stream to any other FPGA devices that exist in the chain.
Once all of the FPGAs in the chain have received their proper
amount of data, the HardWire Array will proceed into the
Start-up phase.

The Startup phase is used to ensure that multiple FPGA/
HardWire devices will wake-up in a predefined order. At this
time, the flip-flops are in UN RESET, the DONE pin is allowed
to float high, and the user outputs become active as specified
by the customer design. The order is specified by options set
in the MakeBits program, and is reported in the
design_name.mbo file. The HardWire Array  supports all of the
specialized Start-up modes that exist in the FPGA in order to
guarantee correct system operation.

Configuration Emulation: INSTANT_ON and
NO_PROM Options

In addition to the standard seven configuration modes, the
HardWire Array supports two other configuration modes
intended to further reduce system cost. Each mode reduces
the total system cost by allowing FPGA configuration storage
element (SPROM, EPROM, SRAM, etc.) to be removed from
the system. Each mode has unique features which must be
analyzed before choosing to use the option.

INSTANT_ON
INSTANT_ON is recommended for single FPGA to HardWire
design conversions where the system timing is known and no
other programmable logic needs to be loaded from the FPGA.
In order for this mode to be implemented in the HardWire
array, it must be specified at the time of initial design submittal.

In the INSTANT_ON mode, the HardWire Array will skip the
configuration phase shown in Figure 9. The device will pro-
ceed from VCC reaching a valid level through the Power-On-
Reset phase and then through the initialization phase. At this
point, rather than entering the configuration phase, the FPGA
proceeds directly to the Startup phase. Refer to Figure 10.

INSTANT_ON may be used if multiple devices are to be
converted. However, all devices in the daisy chain must be
HardWire Arrays configured in the INSTANT_ON mode of
operation. It is not possible to have a mixed Configuration
Emulation chain since the INSTANT_ON mode does not pass
any data down the chain, nor does it acquire any data from the
programmable storage element.

In addition, if INSTANT_ON mode is chosen, no other con-
figuration modes will be available. The INSTANT_ON logic
takes the place of the Configuration Emulation logic for this
mode, and reduces the die area.  When the INSTANT_ON
option is chosen by the user, the mode pins M2, M1, and M0
must all be statically set on the user’s PC board to the value
specified in the Design Submittal Form.

The INSTANT_ON mode reduces the system’s power-on-to-
HardWire-operational time.  This is due to the fact that no data
is loaded into any of the HardWire devices on the board that
use the INSTANT_ON mode. Note that Figure 10 shows  the
“Configuration” time of approximately 1 microsecond / bit is
missing. Care should be exercised in verifying that the system
is not affected by changing the overall time from power-on to
the HardWire Array being ready for device operation.

NO_PROM
The INSTANT_ON option affects designs in two ways. First,
INSTANT_ON changes the system timing because there is
no time delay for the configuration of the HardWire Array.
Second, the INSTANT_ON option does not permit the user to
have other non-HardWire devices  in the configuration chain.
Xilinx has added an additional configuration emulation mode
called NO_PROM to address both these effects.

Like the INSTANT_ON option, the NO_PROM option must be
chosen by the user prior to conversion to a HardWire array.
This mode works in concert with the other seven configuration
modes, and is a data monitoring device that watches the first
unit of incoming data to the configuration chain. If that data is
an expected first piece of data, the Configuration Emulation
logic will default to the NO_PROM mode.
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Figure 10. Configuration Timing Diagram For Instant-On Mode

The major advantage of the NO_PROM mode is the ability to
remove the programmable element that is used to configure
the FPGA at a later time. Removing the programmable
element further reduces the overall  system cost by saving
part count and the cost of the device(s).

This feature is especially useful for designers who are inter-
ested in structuring a multiple  HardWire conversion program.
In this situation,  the customer may not desire to convert all the
FPGA designs to HardWire at once. Since any programmed
FPGA on the board need to be configured, the configuration
storage element is still required. However, once all the
designs are in production as HardWire the configuration
storage element can be removed. This can result in a sub-
stantial overall cost reduction.

The basic operation of the NO_PROM mode is nearly identi-
cal to the INSTANT_ON mode. Refer to Figure 11.

The primary difference between INSTANT_ON and
NO_PROM is that when the NO-PROM mode reaches the
configuration phase, it reads the first data bit / byte from the
bitstream, and then determines if it is to enter the NO_PROM
condition. The data stream of a FPGA expects the very first
byte to be a 0xFF.  If the NO_PROM option is chosen, Xilinx
adds internal pull-down resistors to the D[7:0] configuration
pins. (Or to the DIN pin only if a serial mode is used). Since
these pins are often dedicated in the design, or are at least not
driven during FPGA configuration, the HardWire Array can
sense the data as a 0x00 instead of the required 0xFF. When
this condition is detected, the HardWire device will automati-
cally jump to the Startup phase, bypassing the remainder of
the Configuration phase. In order to accommodate other
HardWire devices in the chain, each device will also present
its DOUT as a LOW. This guarantees that ALL HardWire
devices in the chain will sense the LOW at the same time and
will bypass the rest of the Configuration Phase. If an FPGA is

in the device chain, a configuration error will result and the
INIT pin will be driven low by the FPGA. Therefore the
configuration storage element should not be removed until all
devices in the chain are converted to HardWire Arrays.

The designer needs to review any effects of having internal
pull-down resistors (approximately 50K ohms) on the D[7:0]
or DIN configuration pins. These pulldowns would take
precedence over any specified user pull-ups . Only the
master device is required to have the pull-down resistor(s).

The NO_PROM mode is always present when Configuration
Emulation is enabled. However, the pull-down resistors are
not added to the configuration data pins unless the NO_PROM
option is chosen in the Design Submittal Form. To use the
No_PROM mode without the use of the internal pull-down
resistor(s), the designer  should ensure that the first byte or bit
written to the lead device is a 0x00. (or to the customer value).

Another use of the NO_PROM mode is in identifying if a
HardWire device or programmable part is present. For ex-
ample, one possible method uses the Peripheral Asynchro-
nous Configuration Emulation mode, and has both software
and hardware that detects if the INIT pin is driven LOW when
a 0x00 is written to the FPGA or HardWire device. The INIT
pin will be driven LOW on an FPGA if it detects an error in the
configuration data stream. If the INIT pin does go LOW, the
device is an FPGA and requires being reset via PROG and
then programmed. If INIT does not go LOW, the device will be
identified as a HardWire Array, and will go straight to the start-
up phase causing DONE to go HIGH.

The DONE pin could also be sampled after approximately
10 ms. If DONE is HIGH, the device is a HardWire Array
and is programmed. If DONE is LOW, then the device is an
FPGA and requires being reset (using PROG) and then
must be programmed.

VCC > 3.5V

CCLK

C1 C2 C3 C4 F

DONE

OUTPUTS_ACTIVE

GSR(internal)

DONE, OUTPUTS_ACTIVE and GSR may be controlled in various combinations
of C1, C2, C3, and C4. The point "F" is the last rising edge of CCLK

System
Dependant

16ms
(4ms

FPGA)

4µs~64ms mas
~16ms slave

POR

Z, or Pullup

RESET UNRESET INTERNAL LOGIC

I/O Driven

INIT STARTUP USER OPERATION

X7084
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Figure 11. NO_PROM Mode Startup Sequence
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4ms
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Read First

Bit/Byte of Data

POR
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RESET UNRESET INTERNAL LOGIC

I/O Driven
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(16 ms 
HardWire)

HardWire Configuration Daisy Chaining

A HardWire Array can be a stand alone replacement of the
corresponding FPGA, as shown in Figure 12. In a daisy
chain, the HardWire Array is fully interchangeable with any
programmable device in the chain as shown in example 1, 2,
3, and 4. For more information on FPGA configuration,
refer to the Programmable Logic Data Book.

Example 1.  As a stand alone HardWire Array.

H

H

P

H H H

P or H P or H P or H

H P or H P or H P or H

Example 2.  As a daisy chain of all HardWire Arrays.

Example 3.  As a HardWire Array or programmable slave in a 
       daisy chain with a Programmable device as a master.

Example 4.  As a HardWire Array device acting as a Serial 
       Master with any combination of Programmable and 
       HardWire Arrays as slaves.

(P = Programmable device, H = HardWire Array device)
X7104

Figure 12.

The benefit of HardWire daisy chaining and NO_PROM
configuration Emulation Mode is that different designs
may be converted at different times. If one design is ready
for production, but another in the daisy chain is not, the
HardWire Array can emulate the full sequence to program
the FPGAs in the chain. Once all FPGAs have been
converted to HardWire, the PROM can be removed from
the system for additional cost savings.

HardWire Makebits Options and STARTUP

The design engineer sets the order in which three major
events take place in the FPGA during the startup phase:

• When the DONE pin goes High
• When the Outputs are no longer held 3-stated
• When the internal Global Set/Reset is released

The default sequence of events, as set by makebits is: DONE
pin High, I/Os active, and release of internal Global Set/
Reset. At the end of the STARTUP phase, the HardWire
Array will behave like a programmed FPGA. These se-
quences are illustrated in Figure 11.

It should be noted that the HardWire Design Center requires
the .MBO (Makebits option) file in order to correctly process
a customer design. This file contains the sequence of events
in the STARTUP phase and is therefore necessary.
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Design Considerations

HardWire Boundary Scan

HardWire Boundary Scan User Logic supports most FPGA
BSCAN User Logic modes. (Since the re-programmable
elements of the FPGA have been removed from the
HardWire device, the Configuration and Readback modes
are not supported.) The FPGA BSCAN macro also sup-
ports the ability to connect two additional data streams
corresponding to the USER1 and USER2 Boundary Scan
instruction decodes. The HardWire Array supports this
feature fully and automatically.

If  Boundary Scan is intended to be used after the configu-
ration process, then the BSCAN User logic must be
instantiated in the FPGA. For more information on the use
of the BSCAN User Logic, refer to the Xilinx Libraries
Guide for the appropriate FPGA. An example of the FPGA
BSCAN User Logic block is shown in Figure 13.

Figure 13. FPGA BSCAN User Logic Block

Table 2. BSCAN Supported Command Information

The HardWire Boundary Scan (BSCAN)  behaves identically
to the FPGA with a few exceptions. BSCAN has two major
areas that are affected by the HardWire implementation:
BSCAN commands and I/O logic control.

Two  BSCAN commands (BSCAN Configuration and BSCAN
ReadBack) have been replaced by two additional commands.
Refer to Table 2 for supported command information.

These commands are useable for additional testing within the
device. The first command, I-SCAN is used to allow boundary
scan access to the I_LATCH portion of the IOBs (see figure
15). The second command is used to test all of the internal flip-
flops in the user’s design.

In the FPGA BSCAN, there are three D type register and three
D type latches per IOB. Figure 14. details the logic.

Each register and latch are paired together, and then grouped
into three register-latch pairs for each IOB in the device. The

INSTRUCTION
EXTEST

IR0
0

IR1
0

IR2
0

SAMPLE/PRELOAD100
USER1010
USER2110

FULL_SCAN001
BYPASS101
I_SCAN011
BYPASS1

X6787
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D registers are turned into a miniature scan chain of three
elements each, while the Q of each register feeds the D of
each corresponding latch. The registers are labeled as I_REG,
O_REG, and T_REG to signify what element of the IOB they
have control over.  Each Latch is labeled I_LATCH, O_LATCH,
and T_LATCH as well.

The HardWire implementation is similar except that the
I_LATCH is replaced by a scannable D register, see Figure 15
.
Since the FPGA I_LATCH is not testable in a “general
purpose” manner,  a scannable D register for the I_LATCH is
substituted in the HardWire Array. Each Scan-In (SI) pin of
each I_LATCH is connected to the previous IOBs I_LATCH Q
output (SO). In this manner, a scan chain is built. This scan
chain is accessible  in Xilinx Manufacture Test Mode, or via an
added BSCAN command previously discussed. See Figure
15. Since there is a D register instead of a Latch in the design,
the effective time of change for the IOB.I signal is later in the
TCK cycle. Since all BSCAN operations are synchronous, no
functional difference exists.

The BSCAN User Logic is also supported by the HardWire
Array as previously discussed.  This permits designers to add
up to two of their own scan chains to the design.  All pins on
the BSCAN user logic macro are automatically supported.
Note that the BSCAN macro must have the TDI, TCK, TMS
and TDO pins connected to the TDI, TCK, TMS and TDO
symbols (respectively). If boundary scan operation after
configuration is required, the BSCAN macro must be instan-
tiated. Refer to the User Logic section above for more details.

Boundary Scan - Before the Configuration Phase

Both the FPGA and the HardWire Array support the ability to
perform boundary scan operations before, during, and after
the configuration process. They differ in the way BSCAN is
handled before and during configuration.

Prior to configuration, the FPGA is an unknown state.  Refer
to Figure 16A. It is impossible to predict the state of the
internal nodes. At some point in time, the FPGA will begin it’s
initialization cycle and begin clearing its memory. By holding
the INIT pin low, the customer may enter BSCAN operations.
However, the contents of the FPGA are unknown since the
initialization cycle may not have been completed.

TDI

TMS

TCK

TDO1

TDO2

DRCK

IDLE

SEL1

SEL2

UPDATE

TDO

SHIFT

RESETTDI

TMS

TCK

TDO

BSCAN

To User
Logic

IBUFOptional

From
User Logic

To User
Logic

X6978
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The HardWire Array is a mask-programmed device, and there-
fore has a pre-defined state of every node. Refer to Figure 16B.
This means that it is possible to read data back from the
HardWire which is different than the same test on a FPGA prior
to it’s configuration. The solution is to make sure that the test
program ignores the bits in the BSCAN data stream which are
sampled from internal states. (e.g. Sample DR).

Figure 15.  HardWire BSCAN Logic

Boundary Scan - During the Configuration Phase

Only three operations are supported by the FPGA during
configuration. These are SAMPLE/PRELOAD, BYPASS and
CONFIGURATION.
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Figure 14. FPGA BSCAN
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Boundary Scan - After the Configuration Phase

The HardWire Array and the FPGA behave identically once
each has been configured, see Figures 18A and 18B. BSCAN
operations are permitted after configuration only if the cus-
tomer has instantiated the BSCAN user logic macro in their
design and dedicated the TDI, TMS, TCK and TDO pins for
BSCAN.

In order to ensure results of BSCAN tests in the FPGA are
consistent with the HardWire Array, Xilinx recommends that
only the nodes which are directly controllable via BSCAN be
used for testing. This is due to the fact that any BSCAN testing
done before or during configuration can affect the internal
state of the HardWire Array, which is already “programmed”
from power on.
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Figure 16.  The Unknown State of the FPGA and HardWire Prior to Configuration

Figure 17. BSCAN Operations During Configuration
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Figure 18. BSCAN After Configuration

Note in Figure 17A that the BSCAN operations during configu-
ration have all the I/Os held at Z. This condition will last during
the entire configuration process. The HardWire Array does not
support configuration emulation via BSCAN nor does it support
the BSCAN CONFIGURATION instruction. However, the
HardWire Array will have the I/Os held at Z until it reaches the
end of the STARTUP phase.

The SAMPLE / PRELOAD instruction is not recommended
since the exact state of the configuration will asynchronously
change while sampling, resulting in incorrect data. The BY-
PASS instruction is permitted during the configuration phase
but is not recommended. See Figure 17. The internal states
may have been affected by BSCAN operations in the HardWire
so the FPGA may not have the same state information because
it has not yet been configured. See Figure 17A & 17B.
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