
Summary
Content Addressable Memory (CAM) or associative memory, is a storage device, which can be addressed by its own
contents. Each bit of CAM storage includes comparison logic. A data value input to the CAM is simultaneously compared
with all the stored data. The match result is the corresponding address. A CAM operates as a data parallel processor. CAMs
can be used to design Asynchronous Transfer Mode (ATM) switches. Implementing CAM in ATM applications are specifically
described in this application note. As a reference, the application note XAPP201 “An Overview of Multiple CAM Designs in
Virtex™ Family Devices” presents diverse approaches to implement CAM in other designs.

Xilinx Family
Virtex™ and Virtex-E FPGAs

Introduction
A CAM is a memory device used in applications requiring
fast searches of a database, list, or pattern. Image or voice
systems, computer and communication systems are all
users of CAM. CAMs have a performance advantage over
other memory search algorithms. This is due to the simul-
taneous comparison of the desired information against the
entire list of prestored entries. CAMs are an outgrowth of
RAM technology.

XAPP201 has an overview of CAM blocks versus RAM
blocks. It also compares three approaches to designing
CAM in Virtex Family devices. This application note
focuses on a large CAM approach for ATM designs.

CAM in ATM
ATM switches, due to their connection based protocol, must
translate each ATM cell address at every point along the
routing path. As shown in Figure 1, each ATM cell address
is contained in two fields in a 5-byte header. The Virtual
Path Identifier (VPI) is eight to 12 bits wide. Usually
described as a 12-bit word. The Virtual Circuit Identifier
(VCI) is 16 bits wide.

The control and modification of a cells’ address using a VPI
and a VCI during the transmission path, through different
switches, is known as a Virtual Circuit Connection (VCC). A
second form of connection type, known as Virtual Path
Connection (VPC), controls only the VPI data in a cells’
address. This type of switching is chosen when many con-
nections follow the same path through a sequence of
switches.

The translation speed for the VPI/VCI pairs is a function of
several variables: the line speed, the number of lines con-
nected to a single line card, and the speed of the other cir-

cuitry on the line card. Typically, VPI/VCI translations are
completed within one quarter to one half the time to receive
the cell. As an example, OC12 rates (622 Mbits per sec-
ond) are 160 ns to 320 ns. Translation must be complete in
this interval whether the cell belongs to a VPC or a VCC.

An addressable space of 26.8 billion possible values is
defined by 28 bits of VPI/VCI. Decoding all these values in
a short time is impossible. Fortunately, only a few thousand
values are active at once in a switch. The switch can main-
tain a table in memory of the outbound VPI, outbound VCI,
and port values corresponding to incoming cells. Figure 2
illustrates this point.

For example, if four thousand connections need to be
active in a switch, the VPI/VCI values can be stored in a
4096-word by 28-bit CAM. The resulting 12-bit address out-
put can be used as an index for the RAM table where the
translated VPI/VCIs are stored

0

Content Addressable Memory
(CAM) in ATM Applications

XAPP202, September 23, 1999 (Version 1.1) 0 8* Application Note: Marc Defossez

R

Header Payload

5 Bytes 48 Bytes

HEC

PT+CLPVCI (4)

VCI (8)

VCI (4)VPI (4)

VPI (8)

8 Bits

x202_01_082799

Figure 1: ATM Cell Address

APPLICATION NOTE
XAPP202, September 23, 1999 (Version 1.1) www.xilinx.com 1
1-800-255-7778

RXAPP202 CAM in ATM Applications
.

VPI VCI Output Port

X-bit, most 20-bit or 24-bit16-bit12-bit

4K entries

VPI

VCI

x202_02_073099

Figure 2: Outbound VPI, Outbound VCI and Output Port Table
2 www.xilinx.com XAPP202, September 23, 1999 (Version 1.1)
1-800-255-7778

R

XAPP202: CAM in ATM Applications
CAM in Virtex Family for ATM
The Virtex Family architecture has two types of RAM inter-
nally; distributed SelectRAM+™ memory and Block Selec-
tRAM+™ memory. Virtex Family devices can also access
external RAM at the common speed of that RAM using Vir-
tex Select I/O features. This CAM implementation uses the
distributed SelectRAM+™ memory (built from Look-Up
tables or LUTs) for the VPI/VCI table and the Block Selec-
tRAM+™ memory or external RAM component as the RAM
data table.

CAM Bit Table

In this design example the VPI uses 12 bits and the VCI
uses 16 bits hence a 28-bit wide search table is essential.
The connections list for a CAM is at least 4096 words long.
Therefore, the RAM size required is 28 by 4096 words.
There are two types of memory in the Virtex Family
architecture, distributed SelectRAM+ memory and Block
SelectRAM+ memory. Distributed SelectRAM+ memory is
built using the four, 4-input LUTs in a CLB. It can be
configured as a 1-bit by 16 word RAM. Block SelectRAM+
memory is an embedded RAM block that can be configured
as a 1-bit by 4096 word, a 2-bit by 2048 word, a 4-bit by
1024 word, an 8-bit by 512 word, or a 16-bit by 256 word
RAM.

The suggested approach for this design is to build the CAM
in distributed SelectRAM+ memory. The implementation of
a 1-bit by 4096 words RAM will require 256 distributed
SelectRAM+ memories. Since this application needs 28

bits by 4096 words, there will be a requirement for 7168
distributed SelectRAM+ memories. The XCV400 device
can be used for this purpose. The 20 Block SelectRAM+
memories available in the XCV400 can be used as the
output table.

By doing the compare table in distributed SelectRAM+
memories, the other logic in the CLB (carry chain, muxes,
flip-flops, etc.) is still available to the designer. Virtex and
Virtex-E data sheets are a good source of information on
the Virtex Family CLBs. When building the complete CAM
described in this application note, the LUTs required are
1.6 x 7168 = 11,469 LUTs.

The compare table needs to be initialized with data. This
can be done by:

• Initializing at configuration by using the INIT parameter
of the distributed SelectRAM+ memories.

• Writing to a continuous list of data (block of RAM).
• Or a combination of these methods.

No matter how the list is built, using the INIT parameter is
always possible. Building the RAM table as a consecutive
list may lengthen the search as the list grows. It is
prohibitive for even a 4096 word table. The distributed
SelectRAM+ memory approach appears more useful in this
example. The table in Figure 3 is built as a continuous list
for initialization and as small parts of 16 entries for the
Compare-and-Match operation.
XAPP202, September 23, 1999 (Version 1.1) www.xilinx.com 3
1-800-255-7778

RXAPP202 CAM in ATM Applications
CAM Compare (ByteEngine)

The ByteEngine is the basic block of the CAM. The data
width size is not a concern when using the LUT approach.
A straightforward data width of 16 bits is used in this basic
building block (12-bit VPI or 16-bit VCI). A combined
VPI/VCI data width is possible (28-bit VPI/VCI).

The ByteEngine in Figure 4 is a small CAM used as often
as needed to form the requested CAM size. It has a com-
pare table with 16 entries, the XNOR-gate to do the com-
pare and all the necessary logic for generating a valid and
stable Match (HIT) signal.

The RAM table can be initialized using the RamData bus
and cycling through the RAM by using the RamAddress
bus. Once the table is initialized, the RamWe signal is set to
false, and cycle-read can be done through the table. When
a compare value drives the ToCompData bus, the XNOR
and the Wide-AND gate performs the Compare-and-Match
operation. Only when all XNOR are valid is a Match signal
produced and registered (Figure 4).

F

0

254 B
locks of 16 E

ntries

FFF

FF0

Only four lowest

addresses used

to cycle in parallel

all the 256 small

RAM blocks.

Clk

WriteEna

RamAddress [11:0]

RamData [15:0]

Width = 16

Depth = 16

Depth = 16

x202_03_072699

Clk

WriteEna

RamAddress [11:0]

RamData [15:0]

0000

FFF

Fill or

modify

the RAM

search

table.

RAM

looks as

one

sequential

block.

Depth = 4069

Width = 16

Figure 3: Distributed SelectRAM+ Memory Table
4 www.xilinx.com XAPP202, September 23, 1999 (Version 1.1)
1-800-255-7778

R

XAPP202: CAM in ATM Applications
CAM Size

By using the basic ByteEngine block, any size CAM can be
built. Figure 5 details the 256-entry table called
EntriesEngine256.

LUT

LUT

C
A

R
R

Y
 C

H
A

IN

Hit

LUT

RAM

LUT

RAM

0

15

Rst

Clk

ToCompData[15:0]

RAMData[15:0]

RAMAddr[3:0]

RAMWe

Clk

x202_04_073099

LUT

RAM

Figure 4: Compare Table

ToCompData[15:0]

RAMData[15:0]

RAMAddr[3:0]

RAMWe

Clk

15

15

ToCompData[15:0]

RAMData[15:0]

ToCompData[15:0]

RAMData[15:0]

RAMAddr[3:0]

RAMWe

Clk

OR

OR

0 15

0 0

15

0

Hit Hit

WriteEna

RAMAddress[7:0]

Clk

UpAddress[3:0]

Hit256

x202_05_082499

Figure 5: EntriesEngine256 CAM
XAPP202, September 23, 1999 (Version 1.1) www.xilinx.com 5
1-800-255-7778

RXAPP202 CAM in ATM Applications
EntriesEngine256 is a larger building block for designing
large CAMs. It has only the necessary logic to bank select
a 16 ByteEngine block at the input, and to generate the
Output Address and the Match. The 16 ByteEngine blocks
are put together to form a list with 256 entries. An address
decoder makes it possible to address (initialize) the list as

one long table. On the output, an encoder (Wide-OR-gate)
is made for generating the Match signal. A second encoder
is made for generating the address where the Match
occurred. This application uses the basic block in the fol-
lowing examples.

CAM example

Figure 6 shows a 16 x 256 CAM using up to 257 Virtex
Family slices. It will run at around 70 MHz in a Virtex device.

Figure 7 shows a cycle diagram. The assumptions for the
CAM are as follows:

- If DataToCompare = ‘1’ and DataToRun = ‘0’, then
data can be clocked into the DataToCompare
register.

- If DataToRAM = ‘1’ (the DataToCompare register is
disabled) then data is passed to the RAM.

- If RAMOrCnt = ‘0’, then the CycleCnt is passed to
the RAM for reading the contents.

- If RAMOrCnt = ‘1’, then the addresses are passed to
the RAM.

- To fill the RAM table: DataToRAM and RAMOrCnt
must both = ‘1’.

- Make DataToCompare = ‘1’ and DataToRAM = ‘0’
and set RAMOrCnt = ‘0’.

- The “value_to_compare_to “ can be latched into the
register.

- Make DataToCompare = ‘0’ afterwards
- Start the cycle counter by bringing the signal

StartCompare = ‘1’.

When this is done, the cycle counter (CycleCnt) reads
(CycleCnt) through the RAM data and compares it against
the DataToComp. When a match is found in one of the 16
banks (for 256 deep), the match register of that bank is set.
The value is decoded and a Hit256 signal is generated.

Hit256 stops the cycle counter. The address that matches
the incoming data is generated out of the decoding of the
bank where the Hit is found and the state of the counter.

Hit256 and StartCompare enable an AddressMatch regis-
ter to latch the valid address.

When no Hit is found and the Cycle counter reaches the
end, a CompleteMatch cycle signal is generated and the
Cycle counter is stopped.

C
ycleC

ut

DataToComp[15:0]

RAMData[15:0]

RAMAddress[7:0]

WriteEna

Clk

Rst

Hit256

Upaddr[3:0]

EntriesEngine256

Addr[7:4]

CycleCnt[3:0]

0

1

Addr[3:0]

AddrMatch[7:0]

TC (registered in counter) CompletedMatch

Rst

Clk

StartCompare
Hit256

RAMOrCnt

Address[7:0]

Data

DataToCompare

DataToRAM

REG

SuccesFullMatch

x202_06_073099

Figure 6: 16 X 256 CAM
6 www.xilinx.com XAPP202, September 23, 1999 (Version 1.1)
1-800-255-7778

R

XAPP202: CAM in ATM Applications
0 1 2 14 15CycleCnt

AddressMatch

AddressMatch

CompletedMatch

SuccessFullMatch

CompletedMatch

SuccessFullMatch

When no match is found, then the Cycle

Counter runs out, and a CompletedMatch

signal is generated. The address

'AddressMatch' will be "0000F."

Assume that a match is found at

the end of the cycle, then a CompletedMatch

signal will be generated and a valid

AddressMatch and SuccessFullMatch

are generated.

When the match is found somewhere during

the cycle, then no CompletedMatch signal will

be generated, but there will be a

SuccessFullMatch and AddressMatch.

0 1615
x202_07_073099

StartCompare

RAMOrCnt

DataToCompare

DataToRAM

Address

Data

Clk

Data to fill the RAM table
Value to compare to

Load the value to compare to

Up to here is filling the RAM Table

Figure 7: Cycle Diagram
XAPP202, September 23, 1999 (Version 1.1) www.xilinx.com 7
1-800-255-7778

RXAPP202 CAM in ATM Applications
Figure 8 describes a 4096 word CAM built in the same
manner using 16 basic EntriesEngine256 modules and
more decoding logic.

DataToComp[15:0]

RAMData[15:0]

RAMAddress[7:0]

WriteEna

Clk

Rst

Hit256 Hit256_15

Upaddr[3:0]

EntriesEngine256

15

DataToComp[15:0]

RAMData[15:0]

RAMAddress[7:0]

WriteEna

Clk

Rst

Hit256

Upaddr[3:0]

EntriesEngine256

1

C
ycleC

nt

DataToComp[15:0]

RAMData[15:0]

RAMAddress[7:0]

WriteEna

Clk

Rst

Hit256

WriteEna 0

WriteEna 0

WriteEna 15

Upaddr[3:0]

EntriesEngine256

UpAddr[11:8]

CycleCnt[3:0]

0

15

CycleCnt[3:0]
UpAddr[7:4]

AddressMatch[11:0]

UpAddress[7:4]

UpAddress[11:8]

SuccessFullMatch

Hit256_0

TC (registered in counter) CompletedMatch

Rst

Clk

StartCompare

SuccessFullMatch

AddrRAMOrAddrCnt

Address[7:0]
Address[11:0]

Address[11:8]

Data

DataToCompare

DataToRAM

REG
0

OR

x202_08_082099

Hit256_0

Hit256_15

Figure 8: 4096 Word CAM
8 www.xilinx.com XAPP202, September 23, 1999 (Version 1.1)
1-800-255-7778

R

XAPP202: CAM in ATM Applications
Figure 9 outlines a complete CAM solution using the Block
SelectRAM+ memory as the output data table. The data in
the output table can be easily modified when using the full
Dual Read/Write Port™ capabilities of the Block Selec-
tRAM+ memory.

BlockRAM

or

External RAM

Port used to fill,

and possibly update

contiguously the

contents of this

table.

WEA

ENA

RSTA

CLKA

ADD[11:0]

DIA[19:0]

WEA

ENA

RSTA

CLKA

ADD[11:0]

DIA[19:0]

AddressMatch[11:0]

CompletedMatch

SuccessFullMatch

20 bits * 4K = 20 Virtex BlockRAM Modules = XCV400

DOB[19:0]

VPI or VCI Table

of 4K (or smaller)

Entries Build

from LUT RAM

Data[15:0]

Address[11:0]

DataToRAM

DataToCompare

RAMOrCnt

StartCompare

Clk

Rst

x202_09_073099

Clk

Figure 9: Complete CAM Solution
XAPP202, September 23, 1999 (Version 1.1) www.xilinx.com 9
1-800-255-7778

RXAPP202 CAM in ATM Applications
CAM Design Summary
- Use the 1x16 distributed SelectRAM+ memory

SelectRAM+in an arrangement of 4096 words (or
less). Look-up the contents of the RAM in 16 clock
cycles (Synchronous RAM).

- When a match is found, the generated address is
used to select data in the Block SelectRAM+
memory or in the external RAM outside the FPGA.

- Between two Compare-and-Match operations, the
Search RAM Table can be easily adapted. Since it
appears as a normal consecutive RAM and only the
address and data are needed to write to a specific
location in the table.

- By using the full Dual Read/Write Port capabilities of
the Block SelectRAM+ memory, the data stored in
the Block SelectRAM+ memory can be independent
of the modified search table. For ATM the data
stored in the Block SelectRAM+ memory is the
Output Port.

- This design is not concerned about the size of the
data or the size of the Search Table because there is
a new data look-up in every 16 clock cycles. Some
extra cycles are needed to latch the VPI or VCI
address and to output the address found in the
register (maximum of 18 cycles).

- A CAM with 4096 entries will fit into a XCV600 or a
XCV600E. This will use all 24 Block SelectRAM+
memory available as a 24-bit by 4096 word data
table.

- Smaller CAMs such as an 256 words by 80 bits can
be made entirely with distributed SelectRAM+
memorys.

- Both the data to be compared and compare tables
need to be initialized before using the CAM. When
initialization is done during operation the following
occurs:
- The compare table in the distributed SelectRAM+

memory needs to be switched to the continue
RAM configuration mode. During normal CAM
operation, this memory is divided into smaller
words (16 words).

- The compare table in the Block SelectRAM+
memory can be updated at any time by using the
second port. The Block SelectRAM+ memory is a

true Dual Read/Write Port RAM with two com-
pletely separate ports.

Conclusion
This CAM design enables a look-up every 18 cycles. Six-
teen of these cycles ar needed to scroll through the small
distributed SelectRAM+ blocks. One clock cycle is needed
to load the data to be compared and one cycle is needed to
output the matched value.

As demonstrated by the application note XAPP201, the
flexibility of Virtex Family devices is a key advantage when
designing CAM. In addition to the solution in this applica-
tion note, XAPP203 and XAPP204 offer different
approaches based upon different application needs.

The most economical way of making a large CAM in ATM
applications is to use both the distributed SelectRAM+
(basic configuration 1 x 16) and the Block SelectRAM+
memory (basic configuration 1 x 4096) available in the
Virtex Family architecture. The distributed SelectRAM+ and
an external RAM block can also be used to make a large
CAM. The CAM compare table can be made using the
distributed SelectRAM while the data can be stored in the
Block SelectRAM+ memory or an external RAM. A CAM
with a 24-bit by 4096 word compare table will fit into the
XCV600 or the XCV600E.
10 www.xilinx.com XAPP202, September 23, 1999 (Version 1.1)
1-800-255-7778

R

XAPP202: CAM in ATM Applications
Appendix A: Synthesizable HDL Code Reference Design
This appendix describes a hierarchical, synthesizable design implementing a search engine or CAM in Virtex slices.

The complete HDL code is available as a reference design (File: xapp202.zip or xapp202.tar.Z).

The header of each VHDL module is listed below:

Module: MatchMachine4k.vhdl

-- Entity Name: MatchMachine4k

-- File Name: MatchMachine4k.vhd

-- File Path: D:\projects\Cam\vhdl\

-- Project :

--

-- Purpose: This is a machine that can do a CAM operation

-- on 16 bits for 4096 entries in 18 clock cycles.

-- files used :

-- ByteEngine.vhd

-- EntriesEngine256.vhd

--

---- Authors: Marc Defossez

--

-- Tools: Synplicity 5.2.1

--

-- Revision History: Created: 20/04/99

-- Last opened: Wednesday, 06 June 99

--

--

--

-- Disclaimer: THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY

-- WHATSOEVER AND XILINX SPECIFICALLY DISCLAIMS ANY

-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR

-- A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.

--

-- Copyright (c) 1999 Xilinx, Inc. All rights reserved.

--
XAPP202, September 23, 1999 (Version 1.1) www.xilinx.com 11
1-800-255-7778

RXAPP202 CAM in ATM Applications
Module: MatchMachine256.vhdl

-- Entity Name: MatchMachine256

-- File Name: MatchMachine256.vhd

-- File Path: D:\projects\Cam\vhdl\

-- Project :

--

-- Purpose: This is a machine that can do a CAM operation

-- on 16 bits for 256 entries in 18 clock cycles.

-- files used :

--

-- ByteEngine.vhd

-- EntriesEngine256.vhd

--

...

--

Module: EntriesEngine256.vhdl

-- Entity Name: EntriesEngine256

-- File Name: EntriesEngine256.vhd

-- File Path: D:\projects\Cam\vhdl\

-- Project :

--

-- Purpose: This is the engine that compares in 16 clock

-- cycles 256 values against a given value on a

-- double byte width (16 bits).

-- This is one section of a VPI/VCI cam.

-- Makes use of

-- Byte Engine.vhd

-- EntireEngine256.ucf

--

...

--
12 www.xilinx.com XAPP202, September 23, 1999 (Version 1.1)
1-800-255-7778

R

XAPP202: CAM in ATM Applications
Module: ByteEngine.vhdl

-- Entity Name: ByteEngine

-- File Name: ByteEngine.vhd

-- File Path: D:\projects\Cam\vhdl\

-- Project : CAM

--

-- Purpose: Engine over 16 bits.

-- Compares 16 bits over 16 deeh and give a Hit

-- signal if the 16 bit value is found in to table.

--

-- Because the depth will be bigger than 16 bit's there

-- is need for working in BANKS of 16.

-- Like for 256 entries, 16 banks will be needed.

-- In the file above this, two banks are combined.

-- Reason for doing this is RLOCing.

--

-- As the ByteEngine is made now, 8 CLBs are in this way:

-- If nicely lined up, there will be a column of 8 CLBs where

-- slice S1 is used to store 2 x a RAM16X1S (16 bits).

-- and slice S0 will only contain 8 LUTs + carry chain for the comparitor.

-- Thus there is some mismatch between the RAM column hight and the

-- comparitor hight.

--

-- For UCF file test purposes, following is done

-- Combination of two of these ByteEngine.vhd files is done in TwoBanks.vhd

-- and a UCF file with RLOC's is made (TwoBanks.ucf)

--

-- A small 256 entries engine is made, lateron this 256 engine can be combined

-- to form bigger chuncks of memory.

--

--

...

--

End of Appendix A.
XAPP202, September 23, 1999 (Version 1.1) www.xilinx.com 13
1-800-255-7778

RXAPP202 CAM in ATM Applications
Revision History

Date Revision Activity
9/1/99 1.0 Initial Release

9/23/99 1.1 Initial Virtex_E Update

The Programmable Logic CompanySM

© 1999 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are
trademarks, and the Programmable Logic Company is a service mark of Xilinx, Inc. Other Xilinx registered and non-registered trademarks
are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective own-
ers.

Xilinx products are manufactured under one or more of the patents listed at http://www.xilinx.com/legal.htm. Xilinx, Inc. does not assume
any liability arising out of the application or use of any product described herein; nor does it convey any license under its patents, copy-
rights, or maskwork rights or any rights of others. Xilinx., Inc. reserves the right to make changes, at any time, in order to improve reliability,
function, or design and to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described
other than circuitry entirely embodied in its products. No other circuit patent licenses are implied. Xilinx, Inc. will not assume responsibility
for any circuits shown nor represent that they are free from patent infringement or of any other third-party right. Xilinx,. Inc. assumes no
obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not be
liable for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1 (800) 255-7778
or 1 (408) 559-7778

Fax: 1 (408) 559-7114

Net: hotline@xilinx.com
Web: http://www.xilinx.com

North America

Irvine, California
Tel: (949) 727-0780

Englewood, Colorado
Tel: (303) 220-7541

Sunnyvale, California
Tel: (408) 245-9850

Schaumburg, Illinois
Tel: (847) 605-1972

Nashua, New Hampshire
Tel: (603) 891-1098

Raleigh, North Carolina
Tel: (919) 846-3922

West Chester, Pennsylvania
Tel: (610) 430-3300

Dallas, Texas
Tel: (972) 960-1043

Europe

Xilinx Sarl
Jouy en Josas, France
Tel: (33) 1-34-63-01-01
Net: frhelp@xilinx.com

Xilinx GmbH
München, Germany
Tel: (49) 89-93088-0
Net: dlhelp@xilinx.com

Xilinx, Ltd.
Weybridge, United Kingdom
Tel: (44) 870-7350-603
Net: ukhelp@xilinx.com

Japan

Xilinx, K.K.
Tokyo, Japan
Tel: (81) 3-5321-7711
Net: jhotline@xilinx.com

http://www.xilinx.com/sup-
port/techsup/japan.htm

Asia Pacific

Xilinx Asia Pacific
Hong Kong
Tel: (852) 2424-5200
Net: hongkong@xilinx.com



14 www.xilinx.com XAPP202, September 23, 1999 (Version 1.1)
1-800-255-7778

http:www.xilinx.com/legal.htm
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
/legal.htm
/legal.htm
/legal.htm
/legal.htm

	Content Addressable Memory (CAM) in ATM Applications
	Summary
	Xilinx Family
	Introduction
	CAM in ATM
	CAM in Virtex Family for ATM
	CAM Bit Table
	CAM Compare (ByteEngine)
	CAM Size
	CAM example

	CAM Design Summary
	Conclusion
	Appendix A: Synthesizable HDL Code Reference Design
	Module: MatchMachine4k.vhdl
	Module: MatchMachine256.vhdl
	Module: EntriesEngine256.vhdl
	Module: ByteEngine.vhdl
	Revision History

