
�������
��	���
�����
�

XAPP 303
Altera (AHDL) to Philips (PHDL)
design conversion guidelines

Author: Reno L. Sanchez 1998 Jun 26

INTEGRATED CIRCUITS

Tom Pyles
Xilinx has acquired the entire Philips CoolRunner
Low Power CPLD Product Family.
For more technical or sales information, please see: www.xilinx.com

http://www.xilinx.com

Philips Semiconductors Application note

XAPP 303Altera (AHDL) to Philips (PHDL) design conversion
guidelines

21998 Jun 26

DOCUMENT SCOPE
This document provides information required to translate an Altera
Hardware Description Language (AHDL) based design into a Philips
Hardware Description Language (PHDL) based design. Designs
which should be targeted for conversions are ones in which the
customer system needs require one of Philips CoolRunner CPLD
advanced features including: dramatic power savings, increased
routability with fixed pins, and higher logic density, etc.

This memorandum first gives the key conversion factors which
determine if the conversion is feasible. Next, the structural and
language syntax differences between the AHDL and PHDL
languages are given. Finally, a design example written in both AHDL
and PHDL is given. This document also addresses pin capability
issues between Altera’s MAX7000 family and the Philips
CoolRunner XPLA1 family.

Terminology
AHDL Altera Hardware Description Language

CPLD Complex Programmable Logic Device

CR32 CoolRunner 32 Macrocell CPLD

CR32CS CoolRunner 32 Macrocell ISP and Enhanced
Clocking CPLD

CR64 CoolRunner 64 Macrocell CPLD

CR64CS CoolRunner 64 Macrocell ISP and Enhanced
Clocking CPLD

CR128 CoolRunner 128 Macrocell CPLD

CR128CS CoolRunner 128 Macrocell ISP and Enhanced
Clocking CPLD

CR320 CoolRunner 320 Macrocell CPLD

CR960 CoolRunner 960 Macrocell CPLD

DFF D type flip-flop

DFFE D-type flip-flop with Clock Enable

JKFF JK type flip-flop

JKFFE JK-type flip-flop with Clock Enable

OE Output Enable

PHDL Philips Hardware Description Language

SRFFE SR-type flip-flop with Clock Enable

TFF T type flip-flop

TFFE T-type flip-flop with Clock Enable

XPLA1 Philips CoolRunner CPLD family ranging from 32 to
128 Macrocells

KEY CONVERSION FACTORS
This section gives the key conversion factors which must be
addressed before the design conversion is attempted. If these key
conversion factors are not met, the design conversion has no
possibility of success and the designer should not attempt the
conversion. In other words, the factors given in this section must be
satisfied or the design conversion is not possible (with fixed pins). If
these factors are satisfied, then the designer should attempt the
design conversion.

Number of Macrocells
First and foremost, one must ensure that the number of macrocells
between an Altera CPLD and a Philips CPLD are equivalent. One
should attempt to convert a 32 macrocell Altera CPLD (EPM7032)
into a 32 macrocell Philips CPLD (PZ5032). In some cases however,
it may be possible to fit a larger macrocell Altera CPLD (i.e.
EPM7064) into a smaller Philips CPLD (i.e. PZ5032) if the design is
logic (product term) constrained and not macrocell constrained.

Clocking
The clocking approach taken is dependent on which CoolRunner
family is being used. The XPLA1 enhanced clocking CPLDs
(CR32CS, CR64CS, and CR128CS) have more clocking capabilities
than the XPLA1 non-enhanced clocking CPLDs (CR32, CR64, and
CR128). The XPLA1 non-enhanced clocking CPLDs have either 2
or 4 clock pins, depending on macrocell count (see Table 2). The
XPLA1 enhanced clocking CPLDs have the same clocks pins but
also contain 2 additional control term clocks per logic block. These
control term clocks can be used to make any input a clock resource.
Therefore, it is much easier to match the pinout of a corresponding
Altera CPLD to a XPLA1 enhanced clocking device than to a XPLA1
non-enhanced clocking device. The main constraint for the XPLA1
enhanced clocking devices to be pin compatibility (in the context of
clocking constraints) with the Altera MAX7000 family is the number
of available clocks. As long as the maximum number of clocks is not
exceeded, the XPLA1 enhanced clocking CPLDs should be pin
compatible. Table 1 gives the number of clocks provided by the
XPLA1 enhanced clocking CPLDs.

The approach is much different with the XPLA1 non-enhanced
clocking CPLDs. Before starting the design conversion, one must
ensure that all clocks used in the design conform to the Philips
CoolRunner pinout. Table 1 gives the Philips CoolRunner clock
pinout for the CR32, CR64, and CR128 CPLDs. Please note that
CLK0 is a Synchronous clock (must be driven by an external
source) while CLK1, CLK2, and CLK3 can be used as either
Synchronous clocks (driven by an external source) or Asynchronous
clocks (driven by a macrocell equation).

If the design uses any pin as a clock that is different than the ones
specified in Table 1, the design will not be pin compatible with the
CoolRunner CPLD. However, as long as the number of clocks in the
design does not exceed the number of clocks offered by the specific
CoolRunner CPLD, the design will probably still fit. What you lose in
this case is pin compatibility with the corresponding Altera MAX7000
CPLD. Your decision on whether or not to proceed with the design
conversion depends on whether pin compatibility is important. If pin
compatibility is a requirement, then there is no reason to convert the
design. However, if pin compatibility is not a requirement, then you
should convert the design.

Table 1. XPLA1 Enhanced Clocking Clock
Resources

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Device ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

of Clocks
Pins
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

of Control Term
Clocks

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Total # of
Clocks

ÁÁÁÁÁCR32CS ÁÁÁÁ2 ÁÁÁÁÁÁ4 ÁÁÁÁÁ6ÁÁÁÁÁ
ÁÁÁÁÁCR64CS

ÁÁÁÁ
ÁÁÁÁ4

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ8

ÁÁÁÁÁ
ÁÁÁÁÁ12ÁÁÁÁÁ

ÁÁÁÁÁCR128CS
ÁÁÁÁ
ÁÁÁÁ4

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ16

ÁÁÁÁÁ
ÁÁÁÁÁ20ÁÁÁÁÁ

ÁÁÁÁÁ
CR3320

ÁÁÁÁ
ÁÁÁÁ

8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

32
ÁÁÁÁÁ
ÁÁÁÁÁ

40
ÁÁÁÁÁ
ÁÁÁÁÁ

CR3960
ÁÁÁÁ
ÁÁÁÁ

8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

96
ÁÁÁÁÁ
ÁÁÁÁÁ

104

Tom Pyles
Xilinx has acquired the entire Philips CoolRunner Low Power CPLD Product Family. For more technical or sales information, please see: www.xilinx.com

Philips Semiconductors Application note

AN057
Altera (AHDL) to Philips (PHDL) design conversion
guidelines

1998 Jun 26 3

Table 2. XPLA1 Non-enhanced Clocking Clock PinoutsÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Package/Device
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Clock
Number

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Clock Type
ÁÁÁ
ÁÁÁ
ÁÁÁ

44
PLCC

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

44
TQFP

ÁÁÁ
ÁÁÁ
ÁÁÁ

68
PLCC

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

84
PLCC

ÁÁÁ
ÁÁÁ
ÁÁÁ

100
PQFP

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

100
TQFP

ÁÁÁ
ÁÁÁ
ÁÁÁ

128
LQFP

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

160
PQFP

ÁÁÁÁÁ
ÁÁÁÁÁ

CR32 ÁÁÁÁÁ
ÁÁÁÁÁ

CLK0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Sync ÁÁÁ
ÁÁÁ

43 ÁÁÁÁ
ÁÁÁÁ

37 ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLK1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Sync/Async ÁÁÁ
ÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

42 ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
CR64 ÁÁÁÁÁ

ÁÁÁÁÁ
CLK0 ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Sync ÁÁÁ

ÁÁÁ
43 ÁÁÁÁ
ÁÁÁÁ

37 ÁÁÁ
ÁÁÁ

67 ÁÁÁÁ
ÁÁÁÁ

83 ÁÁÁ
ÁÁÁ

89 ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLK1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Sync/Async ÁÁÁ
ÁÁÁ

24 ÁÁÁÁ
ÁÁÁÁ

18 ÁÁÁ
ÁÁÁ

36 ÁÁÁÁ
ÁÁÁÁ

44 ÁÁÁ
ÁÁÁ

42 ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLK2 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Sync/Async ÁÁÁ
ÁÁÁ

21 ÁÁÁÁ
ÁÁÁÁ

15 ÁÁÁ
ÁÁÁ

33 ÁÁÁÁ
ÁÁÁÁ

41 ÁÁÁ
ÁÁÁ

39 ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLK3 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Sync/Async ÁÁÁ
ÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

42 ÁÁÁ
ÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁ
ÁÁÁ

94 ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ

CR128 ÁÁÁÁÁ
ÁÁÁÁÁ

CLK0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Sync ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

83 ÁÁÁ
ÁÁÁ

89 ÁÁÁÁ
ÁÁÁÁ

87 ÁÁÁ
ÁÁÁ

114ÁÁÁÁ
ÁÁÁÁ

139

ÁÁÁÁÁÁÁÁÁÁCLK1 ÁÁÁÁÁÁSync/Async ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ44 ÁÁÁ42 ÁÁÁÁ40 ÁÁÁ53ÁÁÁÁ62ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁCLK2

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSync/Async

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ41

ÁÁÁ
ÁÁÁ39
ÁÁÁÁ
ÁÁÁÁ37

ÁÁÁ
ÁÁÁ50
ÁÁÁÁ
ÁÁÁÁ59ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLK3
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Sync/Async
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4
ÁÁÁ
ÁÁÁ

94
ÁÁÁÁ
ÁÁÁÁ

92
ÁÁÁ
ÁÁÁ

119
ÁÁÁÁ
ÁÁÁÁ

144

If the number of clocks used in the design exceeds the number of
clocks contained within the targeted Philips CPLD, then the design
will not fit. It may be possible to convert asynchronous clocks in an
Altera design to synchronous clocks by modifying the original
design. Of course, any design modifications must be tested to insure
functionality.

Reset/Preset/Output Enable
The final restriction is reset/preset/oe functionality. The Philips
CoolRunner CPLDs have the ability to provide either 36 AND terms
or 36 SUM terms (control terms) for each preset/reset/oe function
without using any of the macrocells. For example:

signal.ar = A & B & C & ... – up to 36 terms

signal.oe = A # B # C # ... – up to 36 terms

However, if a combination of AND and SUM terms are needed to
control reset/preset/oe, then a macrocell must be used as an
internal node to generate the sum of product signal. For example:

node = (A & B) # (C & D);

signal.ar = node;

In the Altera MAX7000 family, a macrocell is not needed for a very
limited set of combination of AND and SUM terms which control the
reset/preset/oe function.

STRUCTURE TRANSLATION
This section describes the structural differences between the AHDL
and PHDL languages.

AHDL Structure
An AHDL file is broken into several sections including: a Header
section, a Design Section, a Subdesign section, a Variable section,
and a Logic section. An example of the AHDL structure is given in
Figure 1. Listed below is a brief description of each section:

• The Header section can contain the following items: Title
Statement, a Constant Statement, a Function Prototype
Statement, an Include Statement, and an Options Statement.

• The optional Design Section specifies pin, buried logic cell, chip,
clique, logic option, and device assignments.

• The Subdesign Section declares the input, output, and
bi-directional ports of the file.

• The Variable Section is used to declare any variable used in the
Logic Sections. These variables include both external and internal
logic.

• The Logic Section specifies the logical operations of the design
file and is the body of the Subdesign Section.

PHDL Structure
A PHDL file is broken into four distinct sections: the Header, the
Declarations, the Logic Description, and the End. An example of the
PHDL structure is given in Figure 2. Listed below is a brief
description of each section:

• The Header section contains descriptive information about the
design. This section must contain a name for the PHDL file and it
can contain title and property statements.

• The Declaration section is where constants, variables, signals,
and macro functions are declared and initialized. The start of the
declaration section is indicated by the reserved word
“Declarations” placed by itself on one line and the declarations
that follow.

• The Logic section is where the design is defined by establishing
relationships between the inputs and outputs created in the
Declaration section. The design may be defined using equations,
state machines, or truth tables.

• All PHDL files must close with the reserved word “end”.

Key Structural Differences
The key differences between the PHDL and AHDL design file
structure is the way pins and outputs of logic functions are defined.
In PHDL, if the output of the logic function drives an external pin, the
name of function can be the same as the pin name and only needs
to be declared once. In AHDL, if the output of the logic function
drives an external pin, the name of function must be different from
the pin name and the two must be equated in the Logic section. This
can be confusing in AHDL because it is not obvious which logic will
drive external pins and which are used as buried logic until you
examine the entire AHDL file. In PHDL, all node and pin declarations

Philips Semiconductors Application note

AN057
Altera (AHDL) to Philips (PHDL) design conversion
guidelines

1998 Jun 26 4

are made in the Declaration section near the front of the PHDL file
where the user can easily distinguish between logic which drives
external pins and logic which drives internal nodes.

LANGUAGE TRANSLATION
The following subsections give the PHDL equivalent for keywords,
operators, and ports for primary inputs. These subsections can
serve as a quick reference as you begin creating designs with
PHDL.

Keyword cross-reference
Table 3 lists AHDL keywords in the first column and gives the PHDL
equivalents in the second column.

Table 3. AHDL – PHDL Keyword Cross Reference
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

AHDL Keyword ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

PHDL Equivalent or
Cross Reference

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

CASE ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CASE

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

DEVICE IS ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

DEVICE

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ELSE, ELSIF, and END IF ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ELSE

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

END CASE ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ENDCASEÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁAHDL State Machine section

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁENDWITHÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁAHDL Logic Section
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁEQUATIONSÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
AHDL Options Statement

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

FLAG
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

None
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

FUSES
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

AHDL State Machine Section
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

GOTO
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

IF ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

IF
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

AHDL Subdesign Section ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

IN

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

AHDL Primitives ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ISTYPE

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

AHDL Function Prototype StatementÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

LIBRARY

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

AHDL Function Prototype StatementÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

MACRO

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

DESIGN IS ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

MODULE

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

NODE ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NODE

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

@ ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

PIN

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

WITH STATES ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

STATE

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

MACHINE OF BITS ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

STATE_DIAGRAM

ÁÁÁÁÁÁÁÁÁÁTHEN ÁÁÁÁÁÁÁÁTHENÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁTITLE

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁTITLEÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁTABLE
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁTRUTH_TABLEÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
WHEN

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

WHEN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

AHDL State Machine Section
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

WITH

Operator Equivalents
Table 4 shows AHDL operators and their PHDL equivalents. Each
operator’s priority is listed in parentheses beside the symbol for both
AHDL and PHDL operators. The operators are similar in AHDL and
PHDL.

Table 4. AHDL – PHDL Operator EquivalentsÁÁÁÁÁ
ÁÁÁÁÁ

AHDL
ÁÁÁÁÁ
ÁÁÁÁÁ

PHDL
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Operation

ÁÁÁÁÁ
ÁÁÁÁÁ

– (1)
ÁÁÁÁÁ
ÁÁÁÁÁ

– (1)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
negation

ÁÁÁÁÁ
ÁÁÁÁÁ

! (1)
ÁÁÁÁÁ
ÁÁÁÁÁ

! (1)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
NOT (invert)

ÁÁÁÁÁ
ÁÁÁÁÁ

+ (2) ÁÁÁÁÁ
ÁÁÁÁÁ

+ (3) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
arithmetic addition

ÁÁÁÁÁ
ÁÁÁÁÁ

– (2) ÁÁÁÁÁ
ÁÁÁÁÁ

– (3) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
arithmetic subtraction

ÁÁÁÁÁ
ÁÁÁÁÁ

= = (3) ÁÁÁÁÁ
ÁÁÁÁÁ

= = (4) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
equal to

ÁÁÁÁÁ
ÁÁÁÁÁ

! = (3) ÁÁÁÁÁ
ÁÁÁÁÁ

! = (4) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
not equal to

ÁÁÁÁÁ
ÁÁÁÁÁ

< (3) ÁÁÁÁÁ
ÁÁÁÁÁ

< (4) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
less than

ÁÁÁÁÁ
ÁÁÁÁÁ

< = (3) ÁÁÁÁÁ
ÁÁÁÁÁ

< = (4) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
less than or equal to

ÁÁÁÁÁ
ÁÁÁÁÁ

> (3) ÁÁÁÁÁ
ÁÁÁÁÁ

> (4) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
greater than

ÁÁÁÁÁ
ÁÁÁÁÁ

> = (3) ÁÁÁÁÁ
ÁÁÁÁÁ

> = (4) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
greater than or equal to

ÁÁÁÁÁ
ÁÁÁÁÁ

& (4) ÁÁÁÁÁ
ÁÁÁÁÁ

& (2) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
AND

ÁÁÁÁÁ
ÁÁÁÁÁ

!& (4) ÁÁÁÁÁ
ÁÁÁÁÁ

none ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

NAND (invert AND)

ÁÁÁÁÁ
ÁÁÁÁÁ

$ (5) ÁÁÁÁÁ
ÁÁÁÁÁ

$ (3) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

XOR (exclusive OR)

ÁÁÁÁÁ!$ (5) ÁÁÁÁÁ!$ (3) ÁÁÁÁÁÁÁÁÁXNOR (exclusive NOR)ÁÁÁÁÁ
ÁÁÁÁÁ# (6)

ÁÁÁÁÁ
ÁÁÁÁÁ# (6)

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁORÁÁÁÁÁ

ÁÁÁÁÁ
! # (6)

ÁÁÁÁÁ
ÁÁÁÁÁ

none
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
NOR (invert OR)

Dot Extensions
In both AHDL and PHDL, dot extensions are used to connect the
features of the macrocell. The ports of an instance of a function are
declared in the following format:

<macrocell>.<dot extension>

Table 5 shows the AHDL and PHDL dot extension notations for
connections to macrocell logic.

Table 5. AHDL – PHDL Dot Extensions
ÁÁÁÁ
ÁÁÁÁ

AHDL ÁÁÁÁ
ÁÁÁÁ

PHDL ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Function

ÁÁÁÁ
ÁÁÁÁ

.d ÁÁÁÁ
ÁÁÁÁ

.D ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

D input to D flip-flop

ÁÁÁÁ
ÁÁÁÁ

.t ÁÁÁÁ
ÁÁÁÁ

.T ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

T input to T flip-flop

ÁÁÁÁ
ÁÁÁÁ

.q ÁÁÁÁ
ÁÁÁÁ

.Q ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Register feedback

ÁÁÁÁ
ÁÁÁÁ

.j ÁÁÁÁ
ÁÁÁÁ

.J ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

J input to JK flip-flop

ÁÁÁÁ
ÁÁÁÁ

.k ÁÁÁÁ
ÁÁÁÁ

.K ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

K input to JK flip-flop

ÁÁÁÁ
ÁÁÁÁ

.s ÁÁÁÁ
ÁÁÁÁ

.S ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

S input to SR flip-flop

ÁÁÁÁ
ÁÁÁÁ

.r ÁÁÁÁ
ÁÁÁÁ

.R ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

R input to SR flip-flop

ÁÁÁÁ
ÁÁÁÁ

.clk ÁÁÁÁ
ÁÁÁÁ

.C ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Clock to flip-flop

ÁÁÁÁ
ÁÁÁÁ

.prn ÁÁÁÁ
ÁÁÁÁ

.AP ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Preset

ÁÁÁÁ.clrn ÁÁÁÁ.AR ÁÁÁÁÁÁÁÁÁÁÁClearÁÁÁÁ
ÁÁÁÁTRI

ÁÁÁÁ
ÁÁÁÁ.OE

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁTri-state buffer

Philips Semiconductors Application note

AN057
Altera (AHDL) to Philips (PHDL) design conversion
guidelines

1998 Jun 26 5

AHDL has active-low Preset and Clear signals to all flip-flop types:
DFF, DFFE, TFF, TFFE, JKFF, JKFFE, and SRFFE. You must
explicitly use the TRI primitive when you create a tri-state output. If
no port is explicitly used in AHDL and PHDL, the default port on the
left-hand side of an equation is the primary data input to the instance
of the primitive; the default port on the right-hand side of the
equation is the primary output. JK and SR flip-flops always require
an explicit port for all inputs.

PITFALLS
This section describes potential pitfalls (language differences) when
converting between AHDL and PHDL.

Logic Synthesis
Both PHDL and AHDL do not need to represent a physical “polarity
control” for an output. Both compilers automatically apply
De Morgan’s inversion to all functions as part of logic synthesis.
These compilers then compute the most appropriate configuration to
obtain the logical behavior that has been defined.

Identifiers
Identifiers are case-sensitive in PHDL designs, while AHDL
identifiers (symbolic names) are case insensitive.

Groups

You declare a set of signals in PHDL with an identifier followed by
square brackets that enclose a comma-separated list of set
members. Subsequent references to the set are made using the
identifier only. AHDL notation is slightly different. In AHDL, you
declare a group of signals with an identifier followed by an empty
pair of square brackets.

The following examples show how a group of seven associated D
flip-flops are declared and used in AHDL and PHDL.

AHDL Declaration:

countq[6..0] : DFF

AHDL Reference:

countq[] = countq[] & incadr & clrqdr & !carryq

countq[] & !incadr & clrard

PHDL Declaration:

countq = [q6..q0];

PHDL Reference:

countq:= countq & incadr & clradr & !carryq

countq & !incadr & clradr

Equations
All flip-flops must be explicitly specified before being used in AHDL.
Equations in AHDL are used only to describe combinatorial logic.
The explicit declaration of flip-flops in AHDL is somewhat analogous
to PHDL’s ISTYPE declaration and makes registered assignment
operators superfluous.

Comments
Comments in AHDL can span multiple lines and a comment must
begin and end with a percent character (%). Comments in PHDL
begin with either a quotation mark (“) or double slash (//) and
continue to the end of the line. Comments in PHDL can span
multiple lines with a /* */ enclosing the comments.

Active-Low Specification
The exclamation mark (!) in PHDL is used to declare active-low
ports. In AHDL, however, you cannot create active-low ports in the
Subdesign Section with the NOT (!) operator. In AHDL, the Logic
Section may refer to signals that are either actual device pins or
ports that connect to the next higher level of hierarchy. Therefore,
the names of ports and their logical sense must agree for the design
to compile without errors.

DESIGN CONVERSION EXAMPLE
This section contains a Counter design witch is implemented in
AHDL and then re-implemented using PHDL. This should give the

reader an idea of how to convert other designs.

Philips Semiconductors Application note

AN057
Altera (AHDL) to Philips (PHDL) design conversion
guidelines

1998 Jun 26 6

AHDL Design Example
Figure 1 gives a Counter implemented in AHDL.

TITLE “Arbitrary–length counter with Carry Out”;
CONSTANT PENULTIMATE_COUNT = 109

DESIGN IS “count110”
BEGIN

DEVICE IS EPM5032”
BEGIN

clradr @ 28, incadr @ 27, osc @ 16 : INPUT
a0 @3, a1 @ 4, a2 @ 5, a3 @ 6 :OUTPUT
a4 @ 9, a5 @ 10, a6 @ 11 :OUTPUT
carrya @ 12 :OUTPUT

END;
END;
%–––

This counter uses registered look–ahead carry to implement an arbitrary length count.
The input to the carryq register will be high at the 109 count. On the next Clock
with incadr high, the carryq will be set and the count will advance to 110. The
counter keeps incrementing as long as carryq is low, so the counter will return to 0
on the next Clock with incadr high.

–––%
SUBDESIGN Count110
(

osc, incadr, clradr :INPUT
a[6..0], carrya :OUTPUT

)
VARIABLE

carryq, count[6..0] :DFF

BEGIN
countq[].clk = osc;
countq[] = (count[] + 1) & incadr & clradr & !carryq

 # countq[] & !incadr & clradr;
a[] = countq[];
carryq = (countq[] == PENULTIMATE_COUNT) & incadr & clradr

carryq & !incadr & clradr;
carrya = carryq;

END;
SP00514

Figure 1. AHDL Counter Design

Philips Semiconductors Application note

AN057
Altera (AHDL) to Philips (PHDL) design conversion
guidelines

1998 Jun 26 7

PHDL Design Example
Figure 2 gives a Counter implemented in PHDL.

SP00515

Module Count110

TITLE ‘Arbitrary–length counter with Carry Out’

Declarations

osc, incadr, clradr pin 16, 27, 28;

A0, A1, A2, A3, A4, A5, A6 pin 3, 4, 5, 6, 9, 10, 11 istype ‘reg_d’;

carrya pin 12 istype ‘reg_d’;

counta = [A6, A5, A4, A3, A2, A1, A0];

PENULTIMATE_COUNT = 109;

“ This counter uses registered look–ahead carry to implement an arbitrary length count.

“ The input to the carryq register will be high at the 109 count. On the next Clock

“ with incadr high, the carryq will be set and the count will advance to 110. The

“ counter keeps incrementing as long as carryq is low, so the counter will return to 0

“ on the next Clock with incadr high.

Equations

counta.clk = osc;

counta.d := ((counta.q + 1) & incadr & clradr & !carrya

 # counta & !incadr & clradr);

carrya := (counta == PENULTIMATE_COUNT) & incadr & clradr

 # carrya & !incadr & clradr;

END;

Figure 2. PHDL Counter Design

TECHNICAL SUPPORT
With these guidelines, you should be well on your way to converting
designs written in AHDL into design utilizing the PHDL language.
This will enable you to take advantage of all the great features the
Philips CoolRunner CPLDs offer. If you wish to learn more about
PHDL, please refer to the XPLA Designer Users Manual.

This document was authored by Reno Sanchez, Applications and
Architecture Development Manager. If you need more information,
please contact me at 505–858–2790 or call the Philips CPLD
Technical Support Line at 1–888–COOLPLD (1–888–266–5753) or
505–858–2996; or send email to coolpld@scs.philips.com.

Philips Semiconductors Application note

AN057Altera (AHDL) to Philips (PHDL) design conversion
guidelines

yyyy mmm dd 8

Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 1998
All rights reserved. Printed in U.S.A.

print code Date of release: 07-98

Document order number: 9397 750 04154

�������
��	���
�����
�

	Document Scope
	Terminology

	Key Conversion Factors
	Number of Macrocells
	Clocking

	Structure Translation
	AHDL Structure
	PHDL Structure
	Key Structural Differences

	Language Translation
	Keyword cross-reference
	Operator Equivalents
	Dot Extensions

	Pitfalls
	Design Conversion Example
	AHDL Design Example
	PHDL Design Example

	Technical SupportT

